WO2022259605A1 - 給電ケーブルおよびコネクタ付き給電ケーブル - Google Patents

給電ケーブルおよびコネクタ付き給電ケーブル Download PDF

Info

Publication number
WO2022259605A1
WO2022259605A1 PCT/JP2022/004310 JP2022004310W WO2022259605A1 WO 2022259605 A1 WO2022259605 A1 WO 2022259605A1 JP 2022004310 W JP2022004310 W JP 2022004310W WO 2022259605 A1 WO2022259605 A1 WO 2022259605A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply cable
heat pipe
container
connector
Prior art date
Application number
PCT/JP2022/004310
Other languages
English (en)
French (fr)
Inventor
ランディープ シン
明弘 高宮
洋司 川原
剛 小川
一郎 照沼
貴博 菅
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to DE112022002043.1T priority Critical patent/DE112022002043T5/de
Priority to JP2023527481A priority patent/JPWO2022259605A1/ja
Priority to CN202280036795.4A priority patent/CN117355909A/zh
Publication of WO2022259605A1 publication Critical patent/WO2022259605A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/22Cables including at least one electrical conductor together with optical fibres

Definitions

  • the present invention relates to a power supply cable and a power supply cable with a connector.
  • This application claims priority based on Japanese Patent Application No. 2021-097989 filed in Japan on June 11, 2021, the content of which is incorporated herein.
  • Patent Document 1 a power supply cable as shown in Patent Document 1 below has been known.
  • This power supply cable has an electric wire having a conductor and a covering that covers the electric wire, and an inclusion is arranged in a gap between the electric wire and the covering.
  • the inclusions are made of a material with low thermal resistance, and can transmit heat generated by the conductor to the cover and dissipate the heat.
  • a large current of, for example, 400A or more flows through the power line. Since the temperature of the power supply cable may become high when such a large current is flowing, it is necessary to keep the temperature of the power supply cable within a predetermined range.
  • the present invention has been made in consideration of such circumstances, and it is an object of the present invention to provide a power supply cable and a power supply cable with a connector that can be efficiently cooled even when a large current flows.
  • a power supply cable includes a heat pipe having a container and an insulating layer formed on the outer periphery of the container, and disposed radially outside the heat pipe, and a plurality of power lines having conductive lines.
  • the power supply cable can be efficiently cooled even when a large current flows through the conductive wire.
  • a large current of 400 A or more is applied, a conventional power supply cable that does not have a heat pipe cooling method needs to be designed with a large cable diameter, which may increase the weight of the cable.
  • the heat pipe can efficiently cool the power supply cable, the diameter and weight of the power supply cable can be reduced.
  • the cooling method using a heat pipe enables cooling of the cable without using an external auxiliary power supply. A safer cooling method can be provided because no electrical short circuit occurs due to the auxiliary power supply or the conductor for the auxiliary power supply.
  • the cable length is long, it can be appropriately cooled over the entire length as compared with the conventional cable. Since the power supply cable can be properly cooled, deterioration of the constituent materials can be prevented and the life of the product can be extended. Furthermore, since the power supply cable allows a large current to flow, the electric vehicle can be rapidly charged.
  • the heat pipe may be loop-shaped and extend from the first end and the second end of the power supply cable.
  • the heat pipe may be linear and extend from the first end and the second end of the power supply cable.
  • the plurality of power lines may have a positive potential power line used at positive potential and a negative potential power line used at negative potential.
  • the container may have a corrugated portion in which convex portions protruding radially outward and concave portions concave radially inward are alternately arranged along the longitudinal direction of the heat pipe.
  • a plurality of grooves may be formed on the inner surface of the container in the corrugated portion, and the grooves may extend spirally along the longitudinal direction of the heat pipe.
  • At least a portion of the heat pipe extending from the end of the power supply cable may have a flattened cross-sectional shape.
  • the condensing portion where the working fluid condenses in the heat pipe may be positioned higher in the vertical direction than the evaporating portion where the working fluid evaporates in the heat pipe.
  • the inner diameter of the container of the liquid phase transfer section through which the liquid phase working fluid moves may be smaller than the inner diameter of the container of the gas phase transfer section through which the gas phase working fluid moves.
  • a power supply cable with a connector includes the power supply cable described above, and a connector provided at a first end of the power supply cable and connectable to a power supply source, A connector has a connector terminal, and the connector terminal is in contact with the heat pipe extending from the power supply cable.
  • FIG. 1 is a cross-sectional view of a power supply cable according to a first embodiment
  • FIG. 1 is a schematic diagram of a power supply cable and a connector according to a first embodiment
  • FIG. It is the side view which looked at the heat pipe from the radial direction outer side.
  • FIG. 3 is a cross-sectional view of the heat pipe of FIG. 2 taken along line IV-IV.
  • FIG. 7 is a schematic diagram of a power supply cable and a connector according to a second embodiment
  • FIG. 11 is a cross-sectional view of a power supply cable according to a third embodiment
  • FIG. 10 is a schematic diagram of a power supply cable and a connector according to a third embodiment; It is a schematic diagram for demonstrating the modification of an electric power feeding cable. It is a schematic diagram for demonstrating a different modification of an electric power feeding cable. It is a schematic diagram for demonstrating the other modification of an electric power feeding cable.
  • the power supply cable 1 includes a heat pipe 10 , multiple power lines 20 , multiple communication cords 30 , and a sheath 40 .
  • the direction along the central axis of the power supply cable 1 is called the longitudinal direction.
  • the direction perpendicular to the central axis is called the radial direction, and the direction of rotation around the central axis is called the circumferential direction.
  • the heat pipe 10 includes a wick 12, a container 13, and an insulating layer 14. As shown in FIG. The heat pipe 10 is a heat transport element that transports heat using the latent heat of the working fluid enclosed in the container 13 .
  • the container 13 is a cylindrical hollow container.
  • the container 13 is made of metal, for example.
  • Metals that constitute the container 13 include copper, steel, and aluminum.
  • a copper pipe is used as the container 13 .
  • the power supply cable 1 may be required to be easily bendable in a portion so that it can be easily routed along the wire harness inside the automobile. Therefore, as shown in FIG. 3, the container 13 of the heat pipe 10 has a corrugated portion 13a and a non-corrugated portion 13b in the longitudinal direction. In the corrugated portion 13a, the container 13 has a plurality of protrusions 13a1 protruding radially outward and a plurality of recesses 13a2 recessed radially inward. alternately formed along the
  • a corrugated shape is formed, for example, by heating and twisting a cylindrical copper tube.
  • the corrugated shape may be formed by applying pressure from the radially outer side of the cylindrical container 13 .
  • the convex portion 13a1 and the concave portion 13a2 may not be spiral and may be ring-shaped.
  • the heat pipe 10 can be bent according to the purpose.
  • an insulating layer 14 is formed on the outer peripheral surface of the container 13 .
  • the insulating layer 14 is made of an insulating material and has a thickness of about 0.1 to 0.5 mm, for example. Even if electric leakage occurs in the power supply cable 1 , the presence of the insulating layer 14 can prevent an electrical short circuit via the heat pipe 10 .
  • the insulating layer 14 is preferably made of a material with low thermal resistance. In this case, the heat generated by the conductive wire 21 can be efficiently transmitted into the heat pipe 10 .
  • a working fluid is enclosed in the internal space 11 of the container 13 .
  • the working fluid is a well-known heat transport medium capable of phase change, and changes phases within the container 13 between a liquid phase and a gas phase.
  • water, alcohol, ammonia, or the like can be used as the working fluid.
  • a refrigerant such as R134a may be employed as the working fluid.
  • the liquid-phase working fluid may be referred to as "working liquid”
  • the gas-phase working fluid may be referred to as "vapor”.
  • working fluids when the liquid phase and the gas phase are not particularly distinguished, they are simply referred to as working fluids. The working fluid is not shown.
  • a wick 12 is arranged in the container 13 .
  • the wick 12 is formed along the inner peripheral surface of the container 13 as shown in FIG. 1, for example.
  • the wick 12 may be formed only in a part of the inner peripheral surface of the container 13 in the circumferential direction and the longitudinal direction.
  • the wick 12 is formed, for example, by bundling a plurality of thin metal wires such as copper thin wires.
  • the thin copper wires are filaments extending in the longitudinal direction of the container 13 .
  • the wick 12 is, for example, a plurality of thin copper wires.
  • the outer diameter of the thin copper wire is, for example, several ⁇ m to several hundred ⁇ m.
  • a gap extending in the longitudinal direction is formed between the thin copper wires.
  • the gap is used as a liquid flow path for flowing the working fluid, and serves as a return path (hereinafter referred to as "flow path") for returning the working fluid from the condensation section C to the evaporation section E.
  • the hydraulic fluid in the channel flows longitudinally due to capillary force.
  • the wick 12 is not limited to the thin metal wire, and a metal mesh (net-like body), a sintered body of metal powder, and the like can also be used.
  • Metals that make up the wick 12 include copper, aluminum, stainless steel, and alloys thereof.
  • the wick 12 is not limited to being made of metal, and may be made of a carbon material or the like.
  • the wick 12 may be composed of fine carbon wires, carbon mesh, or the like.
  • Each power line 20 has a plurality of conductive lines 21 and an insulating coating 22 .
  • each power line 20 is formed in an arc along the outer peripheral surface of the heat pipe 10 .
  • the power supply cable 1 has two power lines 20 , and the power lines 20 are arranged so as to sandwich the heat pipe 10 on the radially outer side of the heat pipe 10 .
  • the conductive wire 21 is formed by bundling and twisting a plurality of strands.
  • a tin-plated annealed copper wire can be used as the wire constituting the conductive wire 21 . Since the plurality of conductive wires 21 are arranged in an arc along the curved surface of the outer peripheral surface of the heat pipe 10, the conductive wires 21 are evenly cooled in the circumferential direction. The number of conductive wires 21 and the number of wires included in one power line 20 can be changed as appropriate.
  • the insulating coating 22 covers the conductive wire 21 .
  • EP rubber for example, can be used as the material of the insulating coating 22 .
  • the power supply cable 1 has two power lines 20 , and each power line 20 is arranged so as to be in contact with the outer peripheral surface of the heat pipe 10 .
  • a gap extending along the recess 13a2 is formed between the heat pipe 10 and the power line 20.
  • the communication code 30 is used, for example, for communication between a vehicle, which is an object to be powered, and a power supply source.
  • the communication cord 30 is arranged radially outside the heat pipe 10 .
  • two communication cords 30 are arranged so as to sandwich the heat pipe 10 in the radial direction, and are arranged in the same position as the power line 20 in the circumferential direction.
  • the communication cords 30 and the power lines 20 are alternately arranged in the circumferential direction.
  • the outer diameters of the two communication cords 30 are substantially equal to each other, and equal to the thickness of the power line 20 in the radial direction.
  • the communication cord 30 has four signal lines 31 and a coating 32 that wraps the signal lines 31 .
  • the signal line 31 has a structure in which a conductor is covered with an insulating coating. In the communication cord 30, the signal line 31 is wrapped in a coating 32 while being helically twisted. Moreover, the communication cord 30 has flexibility.
  • Each signal line 31 can be used, for example, for controlling the lock mechanism of the connector 50 of the power supply cable 1, for the power line for an LED that lights up when power is supplied, and for the signal line for the temperature sensor if the connector 50 is equipped with a temperature sensor. Used. Also, part of the signal line 31 may be used as an auxiliary power supply line to the power supply object.
  • the sheath 40 covers the heat pipe 10, the power line 20, and the communication cord 30.
  • the power line 20 and the communication cord 30 may be arranged linearly along the heat pipe 10 or may be spirally wound around the heat pipe 10 .
  • the sheath 40 can be formed by, for example, extrusion molding using chloroprene rubber or the like.
  • FIG. 2 is a schematic diagram of a power supply cable 60 with a connector that includes the power supply cable 1.
  • the connector-equipped power supply cable 60 includes two power supply cables 1 and a power supply connector (hereinafter simply referred to as connector 50 ) arranged at the first end 1 a of each power supply cable 1 .
  • the power supply cable 1 of the present embodiment is arranged inside an electric vehicle (vehicle), for example, a lead cable with a connector (not shown) extending from a charging stand for an electric vehicle (electric car charging gun) and the battery 100 of the electric vehicle. It is used to electrically connect and supply power to the battery 100 .
  • the length of the power supply cable 1 in the longitudinal direction can be, for example, about 0.5 to 1.5 m, but can be changed as appropriate according to the length from the connector 50 to the battery 100 .
  • the connector 50 is arranged near the side of the vehicle, for example, and is covered with a lid (not shown) except during charging.
  • a connector 50 that can be connected to a connector of a lead cable is arranged at the first end 1a of the power supply cable 1 .
  • a power line 20 is electrically connected to a battery 100 of an object to be fed at a second end 1b of the power feeding cable 1 .
  • the object to be fed is described as the battery 100 of an electric vehicle (vehicle), but it may be another object to be fed.
  • the power line 20P of one power supply cable 1 (first power supply cable 1P) is used at a positive potential
  • the power line 20N of the other power supply cable 1 (second power supply cable 1N) is used at a negative potential.
  • the connector 50 includes multiple connector terminals 51 and a case 52 .
  • the case 52 is made of a material such as plastic, and accommodates the first end 10 a of the heat pipe 10 extending from the first end 1 a of the power supply cable 1 and the connector terminal 51 .
  • Each connector terminal 51 is electrically connected to a conductive wire 21 in the power line 20 .
  • the connector terminal 51 is a female connector having a hole into which the connector terminal of the lead cable is inserted.
  • two connector terminals 51 are arranged and connected to the power line 20P used at positive potential or the power line 20N used at negative potential.
  • the heat pipe 10 of the power supply cable 1 extends inside the connector 50 .
  • the heat pipes 10 of this embodiment are loop-shaped, and the first ends 10a of the two heat pipes 10 arranged in the two power supply cables 1P and 1N are connected to each other in the connector 50. ing. In the following description, the first ends of the two heat pipes 10 connected to each other are denoted by reference numeral 10a.
  • the corrugated portion 13a of the heat pipe 10 may be arranged, or the non-corrugated portion 13b may be arranged.
  • the two heat pipes 10 may be connected to each other by a connecting pipe (not shown). In the connector 50, the heat pipe 10 and the connector terminal 51 are in contact with each other. Thereby, the heat generated at the connector terminals 51 can be transported by the heat pipes 10 .
  • a power line 20 and a heat pipe 10 extend from the second end 1b of the power supply cable 1 .
  • the extended power line 20 is connected to the battery 100 .
  • a heat pipe 10 extending from the second end 1b of the power supply cable 1 extends to a cooling device arranged in the vehicle body, and is arranged so as to be in contact with the cooling device.
  • the cooling device in this embodiment is the cold plate 110 .
  • the extension of heat pipe 10 may be placed on the empty space of cold plate 110 for cooling battery 100 .
  • the heat pipe 10 may be arranged so as to indirectly contact the cold plate 110 . In other words, an interposition that conducts heat may be arranged between the heat pipe 10 and the cold plate 110 .
  • the cold plate 110 and the battery 100 are arranged separately in FIG. 2 , the cold plate 110 may be arranged so as to contact the battery 100 to cool the battery 100 .
  • the cold plate 110 and the battery 100 may be separated and connected by a heat transport element (other heat pipe or the like).
  • a heat transport element other heat pipe or the like.
  • the heat pipe 10 extending from the second end portion 1b of the power supply cable 1 may be partially formed with a corrugated portion 13a. This allows the heat pipe 10 to reach the cold plate 110 while being partially bent.
  • the second ends 10b of the two heat pipes 10 are connected to each other.
  • the second ends of the two heat pipes 10 connected to each other are denoted by reference numeral 10b.
  • the second ends 10b of the two heat pipes 10 may be connected to each other by a connecting pipe (not shown).
  • the heat pipe 10 has a flattened cross-sectional shape at the location where it contacts the cold plate 110, that is, the width of the surface that contacts the cold plate 110 is larger than the thickness.
  • the cross section of the container 13 is generally oval.
  • the "elliptical shape" is composed of two straight portions 10c that are parallel and face each other, and a curved convex shape (for example, a semicircular shape, an elliptical arc shape, etc.) that connects the ends of these two straight portions 10c. Shape.
  • the straight portion 10c of the heat pipe 10 is arranged in contact with the cold plate 110.
  • the contact area between the heat pipe 10 and the cold plate 110 can be increased, so that heat can be transported more efficiently.
  • the U-shaped portion of the second end 10b where the two heat pipes 10 are connected may be arranged on the cold plate 110 . In this case, even the U-shaped portion can transfer heat from the heat pipe 10 to the cold plate 110 .
  • the insulating layer 14 shown in FIG. 1 may be provided over the entire heat pipe 10 . In this case, the insulating layer 14 is sandwiched between the cold plate 110 and the container 13 and heat is transferred through the insulating layer 14 .
  • the heat pipes 10 included in the power supply cables 1P and 1N are connected to each other at the first end 10a and the second end 10b to form a loop.
  • the steam generated in the evaporator E flows through the internal space 11 toward the second end 10b of the heat pipe (the portion where the heat pipe 10 extends from the power supply cable 1), which has a lower pressure and temperature than the evaporator E. flow.
  • the working fluid generated in the condensing section C permeates into the channel of the wick 12, flows through the channel by capillary force, and is returned from the condensing section C to the evaporating section E.
  • the working fluid that has returned to the evaporating section E evaporates again in the evaporating section E.
  • the working fluid repeats a cycle of being evaporated in the evaporating section E, condensed in the condensing section C, and refluxed to the evaporating section E (heat transport cycle). Thereby, power line 20 and connector terminal 51 can be cooled.
  • the power supply cable 1 of the present embodiment includes the heat pipe 10 having the container 13 and the insulating layer 14 formed on the outer periphery of the container 13, and the heat pipe 10 disposed radially outwardly of the heat pipe 10. and a plurality of power lines 20 having Thereby, even when a large current flows through the conductive wire 21, the power supply cable 1 can be efficiently cooled.
  • a large current of 400 A or more is applied, a conventional power supply cable that does not have a heat pipe cooling method needs to be designed with a large cable diameter, which may increase the weight of the cable.
  • the heat pipe 10 can efficiently cool the power supply cable 1 of the present embodiment, the diameter and weight of the cable can be reduced.
  • the cooling method using the heat pipe 10 enables cooling of the cable without using an auxiliary power supply from the outside.
  • a safer cooling method can be provided because no electrical short circuit occurs due to the auxiliary power supply or the conductor for the auxiliary power supply.
  • the cable length is long, it can be appropriately cooled over the entire length as compared with the conventional cable. Since the power supply cable 1 can be appropriately cooled, deterioration of constituent materials can be prevented and the life of the product can be extended. Furthermore, since the power supply cable 1 allows a large current to flow, the electric vehicle can be rapidly charged.
  • the heat pipe 10 may be loop-shaped and extend from the first end 1 a and the second end 1 b of the power supply cable 1 . In this case, it is possible to suppress a rapid drop in the pressure of the steam (gas-phase working fluid). Moreover, even when the length of the heat pipe 10 or the power supply cable 1 is long (for example, 5 m or longer), the entire length of the cable can be cooled satisfactorily.
  • the container 13 has a corrugated portion 13a in which convex portions 13a1 protruding radially outward and concave portions 13a2 concave radially inward are alternately arranged along the longitudinal direction of the heat pipe 10. good.
  • the heat pipe 10 can be easily bent at the portion where the corrugated portion 13a is formed. Therefore, by forming the corrugated portion 13a on at least a part of the heat pipe 10, the power supply cable 1 and the heat pipe 10 extending from the power supply cable 1 can be easily arranged in a limited space inside the vehicle body. becomes possible.
  • At least a part of the heat pipe 10 extending from the second end 1b of the power supply cable 1 may have a flat cross-sectional shape. As a result, the contact area between the cold plate 110 and the heat pipe 10 is increased, so that heat can be exchanged efficiently.
  • a power supply cable 60 with a connector of the present embodiment includes the power supply cable 1 described above and a connector 50 provided at the first end 1a of the power supply cable 1 and connectable to a power supply source. has a connector terminal 51 , and the connector terminal 51 is in contact with the heat pipe 10 extending from the power supply cable 1 . As a result, the connector terminal 51 through which a large current flows can also be efficiently cooled.
  • FIG. 5 shows the power supply cable 1 and connector 50 according to the second embodiment.
  • the heat pipes 10 of this embodiment are linear, and differ from the first embodiment in that the heat pipes 10 extending from the ends of the two power supply cables 1 are not connected to each other. That is, the power supply cable with connector of this embodiment has two independent heat pipes 10 .
  • the heat pipe 10 extending from the first end 1a of the first power supply cable 1P is in contact with the positive side connector terminal 51, and the heat pipe 10 extending from the first end 1a of the second power supply cable 1N is , are in contact with the connector terminal 51 on the negative side.
  • the first ends 10a of the two heat pipes 10 are not connected to each other. In other words, the first ends 10a of the two heat pipes 10 are respectively arranged within the connector 50 apart from each other.
  • the heat pipe 10 extending from the second end 1b of the power supply cable 1 is flattened at the second end 10b that contacts the cold plate 110 .
  • the second ends 10b of the two heat pipes 10 are not connected to each other. In other words, the second ends 10b of the two heat pipes 10 are in contact with the cold plate 110 while being separated from each other.
  • the heat pipe 10 of this embodiment is linear and extends from the first end 1a and the second end 1b of the power supply cable 1 .
  • the heat pipe 10 can efficiently transport the heat of the conductive wire 21 and the connector terminal 51 .
  • the heat pipes 10 can be arranged more freely.
  • FIG. 6 and 7 show a power supply cable 1 and a power supply cable 60 with a connector according to the third embodiment.
  • Four power lines 20 are arranged in one power supply cable 1, two of the four power lines 20 are positive potential power lines 20P used at positive potential, and the remaining two are used at negative potential. is the negative potential power line 20N.
  • two positive potential power lines 20P are arranged on the first side surface of the power supply cable 1 (the upper side of the paper surface in FIG. 6), and the second side surface of the power supply cable 1 (the upper side of the paper in FIG. , the negative potential power line 20N is arranged on the lower side of the paper).
  • the positive potential power line 20P is connected to the connector terminal 51 on the positive side
  • the negative potential power line 20N is connected to the connector terminal 51 on the negative side.
  • the heat pipe 10 extending from the first end 1 a of the power supply cable 1 is in contact with two connector terminals 51 .
  • the heat pipe 10 extending from the second end 1b of the power supply cable 1 is flattened at a portion where it contacts the cold plate 110 .
  • the power lines 20 include the positive power lines 20P used at positive potential and the negative power lines 20N used at negative potential. Since one power supply cable 1 includes the positive potential power line 20P and the negative potential power line 20N, the power supply cable 1 can be wired even in a smaller space.
  • the capillary force generated by the wick 12 is used to move the working fluid, but the working fluid may be moved without using the wick 12 .
  • the condensation section C is positioned higher than the evaporation section E in the vertical direction, and the working fluid can be moved by gravity.
  • the condensation section C may be positioned lower than the evaporation section E in the vertical direction.
  • the condensation section C and the evaporation section E may be located at the same position in the vertical direction.
  • a plurality of grooves g are formed in the inner surface of the container 13 in the corrugated portion 13a, and the grooves g extend in the longitudinal direction of the heat pipe 10.
  • the working fluid can be moved along the longitudinal direction of the heat pipe 10 along the groove g.
  • the working fluid may be moved by generating a capillary force with the groove g.
  • a wick may not be arranged on the corrugated portion 13a.
  • the groove g of the corrugated portion 13a and the wick 12 may be combined to form a working fluid flow path. In the example shown in FIG.
  • grooves g are formed on the inner surface of the container 13 at locations corresponding to the insides of the plurality of convex portions 13a1 of the corrugated portion 13a. However, it is not limited to the example of FIG. 9, and grooves g may be formed on the inner surface of the container 13 at locations that do not correspond to the insides of the plurality of convex portions 13a1 of the corrugated portion 13a.
  • the working fluid and the steam may circulate in the same direction in the heat pipe 10 formed in a loop shape.
  • the volume of the wick 12 arranged in the portion of the heat pipe 10 where steam mainly moves may be smaller than the volume of the wick 12 placed in the portion where the working fluid mainly moves.
  • the wick 12 may not be arranged at locations where steam mainly moves.
  • the heat pipe 10 is formed in a loop shape extending from both ends of one power supply cable 1 . Inside the heat pipe 10, the working fluid circulates in the directions of arrows A1 and A2 in the figure.
  • the loop-shaped heat pipe 10 has a liquid phase transfer portion 10d in which the working liquid mainly moves from the cold plate 110 side toward the power supply cable 1, and a vapor mainly from the power supply cable 1 to the cold plate 110 side. and a moving gas phase moving part 10e.
  • the working liquid moves in the direction indicated by the arrow A1
  • the vapor phase transfer section 10e the vapor moves in the direction indicated by the arrow A2.
  • the working fluid has a much smaller volume than the working fluid in vapor form. Therefore, the diameter (inner diameter) D1 of the container 13 of the liquid phase transfer section 10d can be made smaller than the diameter (inner diameter) D2 of the container 13 of the gas phase transfer section 10e. Thereby, the diameter of the power supply cable 1 can be further reduced. If the working fluid does not circulate in one direction, the steam and the working fluid move in the same tube within the container 13 of the heat pipe 10, and their moving directions are opposite to each other. Compared to this case, in the loop-shaped heat pipe 10 shown in FIG. 10, since the steam and the working liquid move through different parts, the steam pressure loss can be reduced.
  • the amount and locations of the wick 12 arranged in the heat pipe 10 can be reduced.
  • the weight of the heat pipe 10 can be reduced, and the heat pipe 10 can be manufactured more easily.
  • the heat pipe 10 may be flattened at the first end 10 a that contacts the connector terminal 51 . Furthermore, the heat pipe 10 may be deformed according to the shape of the connector terminal 51 . Thereby, the connector terminal 51 can be cooled more efficiently.
  • the corrugated portion 13a of the heat pipe 10 may be formed over the entire length of the heat pipe 10, or may be formed only in a portion that is bent when arranged in the vehicle body.
  • the power line 20 having a plurality of conductive lines 21 and the communication cord 30 having a plurality of signal lines 31 are flexible, the power supply cable 1 having the heat pipe 10 including the corrugated portion 13a at least in part is It can be easily transformed.
  • the corrugated portion 13a may not be formed in the portion that contacts the connector terminal 51 or the cold plate 110. Since the corrugated portion 13a is not formed, it is possible to increase the area of direct contact between the heat pipe 10 and the connector terminal 51 or the cold plate 110, thereby increasing the efficiency of heat exchange. .
  • the insulating layer 14 of the heat pipe 10 is formed on the outer peripheral surface over the entire length of the heat pipe 10 . Thereby, an electrical short circuit through the heat pipe 10 can be prevented more reliably.
  • the insulating layer 14 may be separate from the heat pipe 10 and may be arranged between the heat pipe 10 and the power line 20 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Insulated Conductors (AREA)

Abstract

給電ケーブルは、コンテナおよびコンテナの外周に形成された絶縁層を有するヒートパイプと、ヒートパイプの径方向外側に配置され、導電線を有する複数の電力線と、を備える。

Description

給電ケーブルおよびコネクタ付き給電ケーブル
 本発明は、給電ケーブルおよびコネクタ付き給電ケーブルに関する。
 本願は、2021年6月11日に、日本に出願された特願2021-097989号に基づき優先権を主張し、その内容をここに援用する。
 従来から、下記特許文献1に示されるような給電ケーブルが知られている。この給電ケーブルは、導体を有する電線と、電線を覆う被覆部とを有し、電線と被覆部との間の隙間部分に介在物が配置されている。介在物は熱抵抗の低い材料であり、導体で発生した熱を被覆部に伝達し放熱することができる。
日本国特開2012-146542号公報
 給電ケーブルを用いて、電気自動車用バッテリーを急速充電する場合には、例えば400A以上の大電流が電力線内を流れる。このような大電流を流している状態では、給電ケーブルが高温になる場合があるため、給電ケーブルの温度を所定の範囲内に抑える必要がある。
 本発明はこのような事情を考慮してなされ、大電流が流れる場合でも効率よく冷却可能な給電ケーブルおよびコネクタ付き給電ケーブルを提供することを目的とする。
 上記課題を解決するために、本発明の第1の態様に係る給電ケーブルは、コンテナおよび前記コンテナの外周に形成された絶縁層を有するヒートパイプと、前記ヒートパイプの径方向外側に配置され、導電線を有する複数の電力線と、を備える。
 上記態様によれば、導電線に大電流が流れる場合でも、給電ケーブルを効率よく冷却できる。400A以上の大電流を流す場合、ヒートパイプによる冷却方法を有さない従来の給電ケーブルではケーブル径を太く設計する必要があり、ケーブル重量が重くなる場合があった。これに対して、ヒートパイプにより効率よく冷却可能であるため上記態様の給電ケーブルではケーブルの細径化や軽量化が可能になる。
 また、ヒートパイプを用いた冷却方法は、外部からの補助電源を用いることなくケーブルの冷却が可能となる。補助電源や補助電源用の導体による電気短絡が発生することがないので、より安全な冷却方法を提供することができる。また、従来のケーブルと比較し、ケーブル長が長い場合でも、全長に亘って適切に冷却することができる。給電ケーブルを適切に冷却することができるので、構成材料の劣化を防ぎ、製品の寿命を延ばすことができる。
 さらに、給電ケーブルでは大電流を流すことが可能となるので、電気自動車を急速充電することができる。
 また、前記ヒートパイプはループ状であり、前記給電ケーブルの第1の端部および第2の端部から延出していてもよい。
 また、前記ヒートパイプは線状であり、前記給電ケーブルの第1の端部および第2の端部から延出していてもよい。
 また、複数の前記電力線は、プラス電位で使用されるプラス電位電力線とマイナス電位で使用されるマイナス電位電力線とを有していてもよい。
 また、前記コンテナは、径方向外側に突出した凸部と径方向内側に窪んだ凹部とが、前記ヒートパイプの長手方向に沿って交互に配置されたコルゲート部を有していてもよい。
 また、前記コルゲート部における前記コンテナの内面には複数の溝が形成され、前記溝は前記ヒートパイプの長手方向に沿って螺旋状に延びていてもよい。
 また、前記給電ケーブルの端部から延出した前記ヒートパイプの少なくとも一部において、断面形状が扁平に形成されていてもよい。
 また、前記ヒートパイプにおいて作動流体が凝縮する凝縮部は、前記ヒートパイプにおいて前記作動流体が蒸発する蒸発部より鉛直方向において高い位置にあってもよい。
 また、前記ヒートパイプにおいて、液相の作動流体が移動する液相移動部の前記コンテナの内径が、気相の作動流体が移動する気相移動部の前記コンテナの内径よりも小さくてもよい。
 本発明の第2の態様に係るコネクタ付き給電ケーブルは、上記の給電ケーブルと、前記給電ケーブルの第1の端部に設けられ、かつ電力供給源と接続可能であるコネクタと、を備え、前記コネクタはコネクタ端子を有し、前記コネクタ端子は前記給電ケーブルから延出した前記ヒートパイプに接している。
 本発明の上記態様によれば、大電流が流れる場合でも効率よく冷却可能な給電ケーブルおよびコネクタ付き給電ケーブルを提供することができる。
第1実施形態に係る給電ケーブルの横断面図である。 第1実施形態に係る給電ケーブルおよびコネクタの模式図である。 ヒートパイプを径方向外側から見た側面図である。 図2のヒートパイプのIV-IV断面矢視図である。 第2実施形態に係る給電ケーブルおよびコネクタの模式図である。 第3実施形態に係る給電ケーブルの横断面図である。 第3実施形態に係る給電ケーブルおよびコネクタの模式図である。 給電ケーブルの変形例を説明するための模式図である。 給電ケーブルの異なる変形例を説明するための模式図である。 給電ケーブルのその他の変形例を説明するための模式図である。
(第1実施形態)
 以下、本実施形態の給電ケーブル1の構成を図面に基づいて説明する。
 図1および図2に示すように、給電ケーブル1は、ヒートパイプ10と、複数の電力線20と、複数の通信コード30と、シース40とを備えている。
(方向定義)
 本実施形態では、給電ケーブル1の中心軸線に沿う方向を長手方向という。また、中心軸線に直交する横断面視において、中心軸線に直交する方向を径方向といい、中心軸線周りに周回する方向を周方向という。
(ヒートパイプ10)
 図1に示すように、ヒートパイプ10は、ウイック12と、コンテナ13と、絶縁層14と、を備える。ヒートパイプ10は、コンテナ13内に封入された作動流体の潜熱を利用して熱を輸送する熱輸送素子である。
 コンテナ13は、円筒状の中空容器である。コンテナ13は、例えば、金属で構成される。コンテナ13を構成する金属としては、銅、スチール、アルミニウムなどが挙げられる。本実施形態では、コンテナ13として銅管を用いている。
 給電ケーブル1は、自動車の中にワイヤーハーネスに沿って容易に配線できるよう、一部分において曲げ易いことが求められる場合がある。そこで、図3に示すように、ヒートパイプ10のコンテナ13は、長手方向において、コルゲート加工がされたコルゲート部13aと、コルゲート加工がされていない非コルゲート部13bと、を有する。
 コルゲート部13aでは、コンテナ13は、径方向外側に突出した複数の凸部13a1と、径方向内側に窪んだ複数の凹部13a2と、を有しており、凸部13a1および凹部13a2は長手方向に沿って交互に形成されている。
 図3におけるコルゲート部13aの複数の凸部13a1および凹部13a2は、筒状のコンテナ13の外周面および内周面に沿って螺旋状に形成されている。このようなコルゲート形状は、例えば円筒状の銅の筒を加熱し捻じることにより形成される。コルゲート形状は、筒状のコンテナ13の径方向外側から押圧を加えることで形成されてもよい。ただし、凸部13a1および凹部13a2は螺旋状でなくてもよく、リング状であってもよい。
 コルゲート部13aでは、ヒートパイプ10を目的に応じて曲げることが可能になる。
 図1に示すように、コンテナ13の外周面には絶縁層14が形成されている。絶縁層14は、絶縁性を有する材料により形成されており、例えば厚さ0.1~0.5mm程度である。給電ケーブル1において漏電が発生した場合でも、絶縁層14があることで、ヒートパイプ10を介した電気短絡を防ぐことができる。
 絶縁層14は、熱抵抗の低い材料で形成されることが好ましい。この場合、導電線21で発生した熱をヒートパイプ10内へ効率よく伝達することができる。
 コンテナ13の内部空間11には、作動流体が封入されている。作動流体は、相変化することが可能な周知の熱輸送媒体であって、コンテナ13内で液相と気相とに相変化する。作動流体としては、例えば、水、アルコール、アンモニアなどを採用できる。また、作動流体としてR134a等の冷媒を採用してもよい。なお、本明細書では液相の作動流体を「作動液」と称し、気相の作動流体を「蒸気」と称する場合がある。また、液相と気相とを特に区別しない場合には単に作動流体と記載する。作動流体は図示されていない。
 コンテナ13内には、ウイック12が配置されている。
 ウイック12は、例えば図1に示すように、コンテナ13の内周面に沿って形成されている。ウイック12はコンテナ13の内周面のうち、周方向および長手方向の一部の領域のみに形成されていてもよい。
 ウイック12は、例えば、複数本の金属細線、例えば銅細線を束ねて形成されている。銅細線は、コンテナ13の長手方向に延在する線条体である。ウイック12は、例えば、複数本の銅細線である。銅細線の外径は、例えば、数μm~数百μmである。
 銅細線どうしの間には長手方向に延びる隙間が形成される。その隙間は作動液を流動させる液体流路として用いられ、作動液を凝縮部Cから蒸発部Eへ還流させるための還流路(以下、「流路」という)となる。流路内の作動液は、毛管力によって長手方向に流動する。
 ウイック12は、金属細線に限らず、金属メッシュ(網状体)、および金属粉末の焼結体なども使用できる。
 ウイック12を構成する金属としては、銅、アルミニウム、ステンレス、これらの合金などが挙げられる。ウイック12は、金属製に限らず、カーボン材などで構成されていてもよい。例えば、ウイック12は、カーボン細線、カーボンメッシュなどで構成されていてもよい。
(電力線20)
 電力線20は、それぞれ複数の導電線21と、絶縁被覆22と、を有する。導電線21には、例えば400A以上の直流電流が流れる。
 図1に示す横断面視では、各電力線20はヒートパイプ10の外周面に沿うように弧状に形成されている。また、給電ケーブル1は2本の電力線20を有し、各電力線20は、ヒートパイプ10の径方向外側においてヒートパイプ10を挟むように配置されている。
 導電線21は、複数本の素線を束ねて撚ることで形成されている。導電線21を構成する素線としては、例えば錫メッキ軟銅線を用いることができる。複数の導電線21は、ヒートパイプ10の外周面の曲面に沿うように弧状に配置されていので、導電線21は、周方向において偏りなく冷却される。
 なお、1つの電力線20が有する導電線21および素線の本数は適宜変更可能である。
 絶縁被覆22は、導電線21を被覆している。絶縁被覆22の材質としては、例えばEPゴムを用いることができる。
 本実施形態では、給電ケーブル1は2本の電力線20を有し、各電力線20は、ヒートパイプ10の外周面に接するように配置されている。なお、図示は省略するが、ヒートパイプ10のコルゲート部13aが給電ケーブル1の内部に配置されている場合には、ヒートパイプ10と電力線20との間に、凹部13a2に沿って延びる隙間が形成されていてもよい。
(通信コード30)
 通信コード30は、例えば給電対象物である車両と電力供給源との間の通信に用いられる。通信コード30は、ヒートパイプ10の径方向外側に配置されている。図1に示す横断面図では、2本の通信コード30が、径方向でヒートパイプ10を挟むように配置され、周方向で電力線20と同等の位置に配置されている。また、周方向において、通信コード30と電力線20とが交互に配置されている。2本の通信コード30の外径は、互いに略同等となっており、径方向における電力線20の厚さと同等になっている。
 通信コード30は、4本の信号線31と、信号線31を包む被覆32と、を備えている。信号線31は、導体に絶縁被覆が被覆された構成となっている。通信コード30内で、信号線31は、螺旋状に撚り合わされた状態で、被覆32に包まれている。また、通信コード30は、可撓性を有している。
 各信号線31は、例えば、給電ケーブル1のコネクタ50のロック機構の制御、給電時に点灯するLEDの電源線、コネクタ50が温度センサーを備えている場合には温度センサーの信号線などの用途に用いられる。また、信号線31の一部は給電対象物への補助給電線として使用されてもよい。
 シース40は、ヒートパイプ10、電力線20、および通信コード30を被覆している。電力線20及び通信コード30はヒートパイプ10に沿って直線状に配置されていてもよいし、ヒートパイプ10に螺旋状に巻きつけられていてもよい。シース40は、例えばクロロプレンゴムなどを用いて、押出し成形などによって形成することができる。
 図2は、給電ケーブル1を備えたコネクタ付き給電ケーブル60の概略図である。なお、通信コード30の図示は省略している。
 コネクタ付き給電ケーブル60は、2本の給電ケーブル1と、各給電ケーブル1の第1の端部1aに配置された給電コネクタ(以下、単にコネクタ50という)と、を備えている。
 本実施形態の給電ケーブル1は、電気自動車(車両)の内部に配置され、例えば電気自動車用の充電スタンドから延びる不図示のコネクタ付きリードケーブル(electric car charging gun)と電気自動車のバッテリー100とを電気的に接続して、バッテリー100に電力を供給する際に用いられる。給電ケーブル1の長手方向の長さは、例えば0.5~1.5m程度とすることができるが、コネクタ50からバッテリー100までの長さに応じて、適宜変更できる。コネクタ50は、例えば車両の側面近傍に配置され、充電時以外は蓋(不図示)によって覆われる。
 給電ケーブル1の第1の端部1aには、リードケーブルのコネクタと接続可能なコネクタ50が配置されている。給電ケーブル1の第2の端部1bでは電力線20が給電対象物のバッテリー100に電気的に接続されている。本実施形態において、給電対象物は、電気自動車(車両)のバッテリー100として説明するが、その他の給電対象物であってもよい。
 本実施形態では、一方の給電ケーブル1(第1給電ケーブル1P)の電力線20Pは、プラス電位で使用され、他方の給電ケーブル1(第2給電ケーブル1N)の電力線20Nは、マイナス電位で使用される。
(給電ケーブル1の第1の端部1a)
 コネクタ50は、複数のコネクタ端子51と、ケース52と、を備えている。ケース52は、例えばプラスチックなどの材料で形成されており、給電ケーブル1の第1の端部1aから延出したヒートパイプ10の第1の端部10a、およびコネクタ端子51を収容する。
 各コネクタ端子51は、それぞれ電力線20内の導電線21に電気的に接続されている。コネクタ端子51は、リードケーブルのコネクタの端子が挿入される孔を有する雌型コネクタである。図2の例では、コネクタ端子51は2つ配置されており、それぞれプラス電位で使用される電力線20P、またはマイナス電位で使用される電力線20Nが接続されている。
 コネクタ50内には、給電ケーブル1のヒートパイプ10が延出している。本実施形態のヒートパイプ10はループ状であり、2本の給電ケーブル1P、1N内にそれぞれ配置された2本のヒートパイプ10の第1の端部10a同士が、コネクタ50内で互いに接続されている。以降、互いに接続された2本のヒートパイプ10の第1の端部に符号10aを付して説明する。
 コネクタ50内には、ヒートパイプ10のコルゲート部13aが配置されていてもよいし、非コルゲート部13bが配置されていてもよい。2本のヒートパイプ10同士は接続管(不図示)により互いに接続されていてもよい。
 コネクタ50内において、ヒートパイプ10とコネクタ端子51とは接触している。これにより、コネクタ端子51で発生した熱をヒートパイプ10により輸送することができる。
(給電ケーブル1の第2の端部1b)
 給電ケーブル1の第2の端部1bでは、電力線20およびヒートパイプ10が延出している。延出した電力線20は、バッテリー100に接続される。
 給電ケーブル1の第2の端部1bから延出したヒートパイプ10は、車体内に配置された冷却装置まで延び、冷却装置に接するように配置される。本実施形態における冷却装置はコールドプレート110である。例えば、ヒートパイプ10の延出部は、バッテリー100を冷却するためのコールドプレート110の空きスペース上に配置されてもよい。なお、ヒートパイプ10はコールドプレート110に間接的に接するように配置されていてもよい。つまり、ヒートパイプ10とコールドプレート110との間に、熱を伝導する介在物が配置されていてもよい。
 図2では、コールドプレート110とバッテリー100とが離れて配置されているが、コールドプレート110はバッテリー100に接するように配置されてバッテリー100を冷却してもよい。あるいは、コールドプレート110とバッテリー100とが離れて配置され、両者が熱輸送素子(他のヒートパイプ等)によって接続されていてもよい。バッテリー100用のコールドプレート110を用いてヒートパイプ10を冷却することで、給電ケーブル1の冷却装置(ヒートシンク等)を車体の内部にさらに設置する必要がなくなるため、省スペース化が図れる。
 給電ケーブル1の第2の端部1bから延出したヒートパイプ10は、部分的にコルゲート部13aが形成されていてもよい。これにより、ヒートパイプ10を部分的に曲げながら、コールドプレート110まで到達させることができる。
 2本のヒートパイプ10の第2の端部10b同士は互いに接続されている。以降、互いに接続された2本のヒートパイプ10の第2の端部に符号10bを付して説明する。2本のヒートパイプ10の第2の端部10b同士は接続管(不図示)により互いに接続されていてもよい。
 図4に示すように、ヒートパイプ10は、コールドプレート110と接触する箇所において、断面形状が扁平、すなわち、コールドプレート110に接触する面の幅が厚みより大きい形状になっている。コンテナ13の横断面は、概略、長円形状である。「長円形状」は、平行で向かい合う2つの直線部10cと、これら2つの直線部10cの端部同士をそれぞれ結ぶ湾曲凸状(例えば半円状、楕円弧状など)の曲線とで構成される形状である。
 図4に示すように、ヒートパイプ10の直線部10cがコールドプレート110に接するように配置される。これにより、ヒートパイプ10とコールドプレート110との接触面積を大きくすることができるため、より効率よく熱を輸送することができる。図2に示すように、2本のヒートパイプ10同士が接続された第2の端部10bにおけるU字状の部分が、コールドプレート110の上に配置されていてもよい。この場合、当該U字状の部分でも、ヒートパイプ10からコールドプレート110に熱を輸送することができる。
なお、図1に示す絶縁層14は、ヒートパイプ10の全体にわたって設けられていてもよい。この場合、コールドプレート110とコンテナ13との間に絶縁層14が挟まれ、絶縁層14を介して熱の受け渡しが行われる。
 このように、給電ケーブル1P、1Nにそれぞれ含まれるヒートパイプ10は、第1の端部10aおよび第2の端部10bにおいて互いに接続され、ループ状になっている。
[熱輸送サイクル]
 次に、ヒートパイプ10による熱輸送サイクルについて説明する。電力線20およびコネクタ端子51が通電に伴い温度が上昇することにより、給電ケーブル1およびコネクタ50近傍ではヒートパイプ10内の作動液が蒸発する。すなわち、電力線20およびコネクタ端子51の近傍がヒートパイプ10の蒸発部Eとなる。蒸発部Eでは、ウイック12の流路内に浸透している作動液が蒸発する。
 蒸発部Eで生じた蒸気は、蒸発部Eよりも圧力および温度が低いヒートパイプの第2の端部10b側(ヒートパイプ10が給電ケーブル1から延出した部分)へ向けて内部空間11を流動する。ヒートパイプ10がコールドプレート110に接触する部分では、蒸気の一部が凝縮する。すなわち、コールドプレート110に配置されたヒートパイプ10の一部が凝縮部Cとなる。凝縮部Cで生じた作動液は、ウイック12の流路内に浸透し、毛管力によって流路内を流動して凝縮部Cから蒸発部Eへ還流される。
 蒸発部Eに還流した作動液は、蒸発部Eにおいて再び蒸発する。作動液は、蒸発部Eで蒸発し、凝縮部Cで凝縮して蒸発部Eに還流するサイクル(熱輸送サイクル)を繰り返す。これにより、電力線20およびコネクタ端子51を冷却することができる。
 以上説明したように、本実施形態の給電ケーブル1は、コンテナ13およびコンテナ13の外周に形成された絶縁層14を有するヒートパイプ10と、ヒートパイプ10の径方向外側に配置され、導電線21を有する複数の電力線20と、を備える。
 これにより、導電線21に大電流が流れる場合でも、給電ケーブル1を効率よく冷却できる。400A以上の大電流を流す場合、ヒートパイプによる冷却方法を有さない従来の給電ケーブルではケーブル径を太く設計する必要があり、ケーブル重量が重くなる場合があった。これに対して、ヒートパイプ10により効率よく冷却可能であるため本実施形態の給電ケーブル1ではケーブルの細径化や軽量化が可能になる。
 また、ヒートパイプ10を用いた冷却方法は、外部からの補助電源を用いることなくケーブルの冷却が可能となる。補助電源や補助電源用の導体による電気短絡が発生することがないので、より安全な冷却方法を提供することができる。また、従来のケーブルと比較し、ケーブル長が長い場合でも、全長に亘って適切に冷却することができる。給電ケーブル1を適切に冷却することができるので、構成材料の劣化を防ぎ、製品の寿命を延ばすことができる。
 さらに、給電ケーブル1では大電流を流すことが可能となるので、電気自動車を急速充電することができる。
 また、ヒートパイプ10はループ状であり、給電ケーブル1の第1の端部1aおよび第2の端部1bから延出していてもよい。この場合、蒸気(気相の作動流体)の圧力の急激な低下を抑えることができる。また、ヒートパイプ10や給電ケーブル1の長さが長く(例えば5m以上に)なった場合でも、ケーブル全長を良好に冷却できる。
 また、コンテナ13は、径方向外側に突出した凸部13a1と径方向内側に窪んだ凹部13a2とが、ヒートパイプ10の長手方向に沿って交互に配置されたコルゲート部13aを有していてもよい。
 コルゲート部13aが形成されている部分では、ヒートパイプ10は曲げ易くなる。このため、ヒートパイプ10の少なくとも一部にコルゲート部13aを形成することで、給電ケーブル1および給電ケーブル1から延出したヒートパイプ10を、車体の内部の限られたスペースに容易に配置することが可能になる。
 また、給電ケーブル1の第2の端部1bから延出したヒートパイプ10の少なくとも一部において、断面形状が扁平に形成されていてもよい。
 これにより、コールドプレート110とヒートパイプ10との接触面積が大きくなるので、効率よく熱交換できる。
 本実施形態のコネクタ付き給電ケーブル60は、上述の給電ケーブル1と、給電ケーブル1の第1の端部1aに設けられ、かつ電力供給源と接続可能であるコネクタ50と、を備え、コネクタ50はコネクタ端子51を有し、コネクタ端子51は給電ケーブル1から延出した前記ヒートパイプ10に接している。
 これにより、大電流が流れるコネクタ端子51も効率よく冷却できる。
<第2実施形態>
 次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図5に、第2実施形態に係る給電ケーブル1およびコネクタ50を示す。本実施形態のヒートパイプ10は線状であり、2本の給電ケーブル1の端部からそれぞれ延出するヒートパイプ10同士が互いに接続されていない点が第1実施形態と異なる。つまり、本実施形態のコネクタ付き給電ケーブルは、2本の独立したヒートパイプ10を有する。
 第1給電ケーブル1Pの第1の端部1aから延出するヒートパイプ10は、プラス側のコネクタ端子51に接し、第2給電ケーブル1Nの第1の端部1aから延出するヒートパイプ10は、マイナス側のコネクタ端子51に接している。
 コネクタ50内において、2本のヒートパイプ10の第1の端部10a同士は互いに接続されていない。言い換えると、2本のヒートパイプ10の第1の端部10aはそれぞれ、コネクタ50内で互いに離れて配置されている。
 給電ケーブル1の第2の端部1bから延出するヒートパイプ10は、コールドプレート110と接する第2の端部10bにおいて、扁平に形成されている。2本のヒートパイプ10の第2の端部10b同士は互いに接続されていない。言い換えると、2本のヒートパイプ10の第2の端部10bはそれぞれ、互いに離れた状態でコールドプレート110に接している。
 以上説明したように、本実施形態のヒートパイプ10は線状であり、給電ケーブル1の第1の端部1aおよび第2の端部1bから延出している。
 本実施形態では、第1実施形態と同様、ヒートパイプ10により導電線21およびコネクタ端子51の熱を効率よく輸送することができる。さらに、2本のヒートパイプ10同士が接続されていないので、ヒートパイプ10の配置の自由度をより高めることができる。
<第3実施形態>
 次に、本発明に係る第3実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図6、7に、第3実施形態に係る給電ケーブル1およびコネクタ付き給電ケーブル60を示す。
 1つの給電ケーブル1に4本の電力線20が配置されており、4本の電力線20のうち2本がプラス電位で使用されるプラス電位電力線20Pであり、残りの2本がマイナス電位で使用されるマイナス電位電力線20Nである。図6に示されているように、給電ケーブル1の第1側面側(図6における紙面上側)に2本のプラス電位電力線20Pが配置されており、給電ケーブル1の第2側面側(図6における紙面下側)にマイナス電位電力線20Nが配置されている。
 コネクタ50内で、プラス電位電力線20Pは、プラス側のコネクタ端子51に、マイナス電位電力線20Nはマイナス側のコネクタ端子51にそれぞれ接続される。
 給電ケーブル1の第1の端部1aから延出するヒートパイプ10は、2つのコネクタ端子51に接している。
 給電ケーブル1の第2の端部1bから延出するヒートパイプ10は、コールドプレート110と接する箇所において扁平に形成されている。
 以上説明したように、本実施形態の給電ケーブル1では、複数の電力線20は、プラス電位で使用されるプラス電位電力線20Pとマイナス電位で使用されるマイナス電位電力線20Nとを有する。
 1本の給電ケーブル1がプラス電位電力線20Pとマイナス電位電力線20Nとを備えているため、より小さなスペースにも給電ケーブル1を配線することが可能になる。
 なお、本発明の技術的範囲は前記実施形態または実施例に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記の実施形態ではウイック12が生じさせる毛管力を用いて作動液を移動させたが、ウイック12を用いずに作動液の移動が行われるような構成になっていてもよい。
 例えば、図8に示すように、鉛直方向において、コールドプレート110が上側(+X側)に配置され、コネクタ50が下側(-X側)に配置されている場合には、ヒートパイプ10の第2の端部10bがヒートパイプ10の第1の端部10aよりも上側(+X側)に配置される。この場合、鉛直方向において、凝縮部Cが蒸発部Eより高い位置にあり、重力により作動液を移動させることができるため、ヒートパイプ10内にウイック12が配置されていなくてもよい。ただし、例えばウイック12が生じさせる毛管力を用いれば、重力に逆らって作動液を移動させることも可能である。したがって、凝縮部Cが蒸発部Eより鉛直方向において低い位置にあってもよい。また、凝縮部Cと蒸発部Eとが鉛直方向において同等の位置にあってもよい。
 また、コルゲート部13aを長手方向に切った断面を表示する図9に示されるように、コルゲート部13aにおけるコンテナ13の内面に複数の溝gが形成され、当該溝gがヒートパイプ10の長手方向に沿って螺旋状に延びるような構成となっている場合は、溝gを伝って、作動液をヒートパイプ10の長手方向に沿って移動させることができる。さらに、この溝gによって毛管力を生じさせることで、作動液を移動させてもよい。この場合、コルゲート部13aにはウイックが配置されていなくてもよい。また、コルゲート部13aの溝gとウイック12とを組み合わせて作動液の流路が形成されてもよい。なお、図9に示す例では、コンテナ13の内面において、コルゲート部13aの複数の凸部13a1の内側に相当する箇所に溝gが形成されている。しかしながら、図9の例に限定されず、コンテナ13の内面において、コルゲート部13aの複数の凸部13a1の内側に相当しない箇所に溝gが形成されていてもよい。
 また、例えば、図10に示すように、ループ状に形成されたヒートパイプ10の中で、作動液および蒸気が同じ方向に循環するように移動する場合がある。この場合、ヒートパイプ10のうち、主に蒸気が移動する箇所では、配置されるウイック12の体積が、主に作動液が移動する箇所のウイック12よりも小さくてもよい。もしくは、主に蒸気が移動する箇所では、ウイック12が配置されていなくてもよい。
 図10に示す例では、ヒートパイプ10は、1本の給電ケーブル1の両方の端部から延出しループ状に形成されている。ヒートパイプ10の内部で図中の矢印A1、A2の方向に作動流体が循環している。より詳しくは、ループ状のヒートパイプ10は、コールドプレート110側から給電ケーブル1に向かって主に作動液が移動する液相移動部10dと、給電ケーブル1からコールドプレート110側へ主に蒸気が移動する気相移動部10eと、を有する。液相移動部10dでは、矢印A1の示す方向に作動液が移動し、気相移動部10eでは、矢印A2の示す方向に蒸気が移動する。
 作動液は、作動流体が蒸気となった状態よりも非常に体積が小さい。このため、液相移動部10dのコンテナ13の直径(内径)D1は気相移動部10eのコンテナ13の直径(内径)D2よりも小さくできる。これにより、給電ケーブル1をより細径化できる。
 作動流体が一方向に循環していない場合には、ヒートパイプ10のコンテナ13内の同一の管内で、蒸気と、作動液とが移動し、その移動方向が互いに対向することになる。この場合と比較し、図10に示すループ状のヒートパイプ10では、蒸気と作動液とが異なる部分を移動するため、蒸気圧力のロスを小さくすることができる。
 このように、ヒートパイプ10の形状や配置を変更することで、ヒートパイプ10内にウイック12を配置する量や箇所を減らすことができる。これにより、ヒートパイプ10の軽量化が可能になり、また、より容易にヒートパイプ10を製造することができるようになる。
 また、ヒートパイプ10は、コネクタ端子51に接する第1の端部10aにおいて扁平になっていてもよい。さらに、コネクタ端子51の形状に合わせて、ヒートパイプ10を変形させてもよい。これにより、より効率よくコネクタ端子51を冷却することができる。
 また、ヒートパイプ10のコルゲート部13aは、ヒートパイプ10の全長に亘って形成されていてもよいし、車体内に配置する際に曲げられる部分だけに形成されていてもよい。なお、複数の導電線21を有する電力線20、複数の信号線31を有する通信コード30は、可撓性を有するので、少なくとも一部においてコルゲート部13aを含むヒートパイプ10を有する給電ケーブル1は、容易に変形させることができる。
 また、ヒートパイプ10の第1の端部10aおよび第2の端部10bにおいて、コネクタ端子51またはコールドプレート110に接触する部分はコルゲート部13aが形成されていなくてもよい。コルゲート部13aが形成されていないことで、ヒートパイプ10と、コネクタ端子51またはコールドプレート110とが、直接接触する面積を大きくすることが可能となるため、熱交換の効率を高くすることができる。
 また、ヒートパイプ10の絶縁層14は、ヒートパイプ10の全長に亘って外周面に形成されている。これにより、より確実にヒートパイプ10を介した電気短絡を防ぐことができる。なお、絶縁層14がヒートパイプ10と別体となっており、ヒートパイプ10と電力線20との間に配置されていてもよい。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
 1…給電ケーブル 1a…第1の端部 1b…第2の端部 10…ヒートパイプ 10a…ヒートパイプの第1の端部 10b…ヒートパイプの第2の端部 11…内部空間 12…ウイック 13…コンテナ 13a…コルゲート部 13a1…凸部 13a2…凹部 14…絶縁層 20…電力線 20P…プラス電位電力線 20N…マイナス電位電力線 21…導電線 22…絶縁被覆 30…通信コード 40…シース 50…コネクタ 51…コネクタ端子 60…コネクタ付き給電ケーブル 100…バッテリー 110…コールドプレート C…凝縮部 E…蒸発部

Claims (10)

  1.  コンテナおよび前記コンテナの外周に形成された絶縁層を有するヒートパイプと、
     前記ヒートパイプの径方向外側に配置され、導電線を有する複数の電力線と、を備える、給電ケーブル。
  2.  前記ヒートパイプはループ状であり、前記給電ケーブルの第1の端部および第2の端部から延出している、請求項1に記載の給電ケーブル。
  3.  前記ヒートパイプは線状であり、前記給電ケーブルの第1の端部および第2の端部から延出している、請求項1に記載の給電ケーブル。
  4.  複数の前記電力線は、プラス電位で使用されるプラス電位電力線とマイナス電位で使用されるマイナス電位電力線とを有する、請求項1から3のいずれか1項に記載の給電ケーブル。
  5.  前記コンテナは、径方向外側に突出した凸部と径方向内側に窪んだ凹部とが、前記ヒートパイプの長手方向に沿って交互に配置されたコルゲート部を有する、請求項1から4のいずれか1項に記載の給電ケーブル。
  6.  前記コルゲート部における前記コンテナの内面には複数の溝が形成され、
     前記溝は前記ヒートパイプの長手方向に沿って螺旋状に延びている、請求項5に記載の給電ケーブル。
  7.  前記給電ケーブルの端部から延出した前記ヒートパイプの少なくとも一部において、断面形状が扁平に形成されている、請求項1から6のいずれか1項に記載の給電ケーブル。
  8.  前記ヒートパイプにおいて作動流体が凝縮する凝縮部は、前記ヒートパイプにおいて前記作動流体が蒸発する蒸発部より鉛直方向において高い位置にある、請求項1から7のいずれか1項に記載の給電ケーブル。
  9.  前記ヒートパイプにおいて、液相の作動流体が移動する液相移動部の前記コンテナの内径が、気相の作動流体が移動する気相移動部の前記コンテナの内径よりも小さい、請求項1から8のいずれか1項に記載の給電ケーブル。
  10.  請求項1から9のいずれか1項に記載の前記給電ケーブルと、
     前記給電ケーブルの第1の端部に設けられ、かつ電力供給源と接続可能であるコネクタと、を備え、
     前記コネクタはコネクタ端子を有し、前記コネクタ端子は前記給電ケーブルから延出した前記ヒートパイプに接している、コネクタ付き給電ケーブル。
PCT/JP2022/004310 2021-06-11 2022-02-03 給電ケーブルおよびコネクタ付き給電ケーブル WO2022259605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022002043.1T DE112022002043T5 (de) 2021-06-11 2022-02-03 Stromversorgungskabel und mit einem verbinder ausgestattetes stromversorgungskabel
JP2023527481A JPWO2022259605A1 (ja) 2021-06-11 2022-02-03
CN202280036795.4A CN117355909A (zh) 2021-06-11 2022-02-03 供电电缆以及带连接器的供电电缆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021097989 2021-06-11
JP2021-097989 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022259605A1 true WO2022259605A1 (ja) 2022-12-15

Family

ID=84425633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004310 WO2022259605A1 (ja) 2021-06-11 2022-02-03 給電ケーブルおよびコネクタ付き給電ケーブル

Country Status (4)

Country Link
JP (1) JPWO2022259605A1 (ja)
CN (1) CN117355909A (ja)
DE (1) DE112022002043T5 (ja)
WO (1) WO2022259605A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169164U (ja) * 1974-11-27 1976-06-01
JPH0630672U (ja) * 1992-09-02 1994-04-22 株式会社フジクラ コルゲート型ヒートパイプ
JP2004198096A (ja) * 2002-10-25 2004-07-15 Furukawa Electric Co Ltd:The 優れた毛細管力を有する扁平型ヒートパイプおよびそれを用いた冷却装置
JP2007066994A (ja) * 2005-08-29 2007-03-15 Auto Network Gijutsu Kenkyusho:Kk シールド導電体
JP2013033807A (ja) * 2011-08-01 2013-02-14 Nec Corp 冷却装置およびそれを用いた電子機器
JP2015072083A (ja) * 2013-10-03 2015-04-16 株式会社フジクラ ループ型ヒートパイプを備えた熱輸送装置
JP2017507640A (ja) * 2014-02-05 2017-03-16 テスラ・モーターズ・インコーポレーテッド 充電ケーブルの冷却
JP2018018748A (ja) * 2016-07-29 2018-02-01 株式会社フジクラ 給電ケーブル、及びコネクタ付給電ケーブル
JP2020204429A (ja) * 2019-06-17 2020-12-24 株式会社デンソー 冷却装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146542A (ja) 2011-01-13 2012-08-02 Yazaki Corp ケーブル
JP7194136B2 (ja) 2019-08-09 2022-12-21 キヤノン株式会社 眼科装置、眼科装置の制御方法、及びプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169164U (ja) * 1974-11-27 1976-06-01
JPH0630672U (ja) * 1992-09-02 1994-04-22 株式会社フジクラ コルゲート型ヒートパイプ
JP2004198096A (ja) * 2002-10-25 2004-07-15 Furukawa Electric Co Ltd:The 優れた毛細管力を有する扁平型ヒートパイプおよびそれを用いた冷却装置
JP2007066994A (ja) * 2005-08-29 2007-03-15 Auto Network Gijutsu Kenkyusho:Kk シールド導電体
JP2013033807A (ja) * 2011-08-01 2013-02-14 Nec Corp 冷却装置およびそれを用いた電子機器
JP2015072083A (ja) * 2013-10-03 2015-04-16 株式会社フジクラ ループ型ヒートパイプを備えた熱輸送装置
JP2017507640A (ja) * 2014-02-05 2017-03-16 テスラ・モーターズ・インコーポレーテッド 充電ケーブルの冷却
JP2018018748A (ja) * 2016-07-29 2018-02-01 株式会社フジクラ 給電ケーブル、及びコネクタ付給電ケーブル
JP2020204429A (ja) * 2019-06-17 2020-12-24 株式会社デンソー 冷却装置

Also Published As

Publication number Publication date
DE112022002043T5 (de) 2024-03-07
CN117355909A (zh) 2024-01-05
JPWO2022259605A1 (ja) 2022-12-15

Similar Documents

Publication Publication Date Title
US10378789B2 (en) Inter-axial inline fluid heater
US8380056B2 (en) Inter-axial inline fluid heater
JP6721708B2 (ja) 冷却された接点要素を具備するプラグインコネクタポート
CN1341280A (zh) 固态热电器件
US20060249508A1 (en) Tubular heating element with conical heating coil
US20020024277A1 (en) Coolable infrared radiator element
US7010997B2 (en) Motorcycle grip with grip heater and method of making same
CN109693514B (zh) 用于机动车辆的电加热器
US11380460B2 (en) Electric vehicle onboard charging cable cooling
CN108882417B (zh) 电加热器
JP7273462B2 (ja) 高圧端子の冷却構造
US20120023993A1 (en) Evaporator with integrated heating element
WO2022259605A1 (ja) 給電ケーブルおよびコネクタ付き給電ケーブル
EP4163935A1 (en) High voltage power cable
JP6719601B2 (ja) 回路遮断器
JPH1055878A (ja) 低周波電磁誘導加熱器
US6880762B2 (en) Heater for a motor air conditioning system comprising at least one heat pipe
WO2021221068A1 (ja) 被覆電線
CN111094823A (zh) 线缆卷筒
JP2024505057A (ja) 非流体冷却式の電気自動車用急速充電ケーブル
JP2021184464A (ja) コネクタ要素用の冷却デバイスおよび高電圧用途用のコネクタ要素
JP2018125112A (ja) 冷却管内蔵電力線の製造方法
JP2021077590A (ja) 給電ケーブル、ケーブル付き給電コネクタ
US20050175327A1 (en) Heat exchanger provided for heating purposes and comprising an electric heating device
GB2501824A (en) A heatable receptacle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023527481

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280036795.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2301007932

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 112022002043

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819796

Country of ref document: EP

Kind code of ref document: A1