WO2022228340A1 - 一种微型射频玻璃绝缘子用低介电封接玻璃粉 - Google Patents

一种微型射频玻璃绝缘子用低介电封接玻璃粉 Download PDF

Info

Publication number
WO2022228340A1
WO2022228340A1 PCT/CN2022/088738 CN2022088738W WO2022228340A1 WO 2022228340 A1 WO2022228340 A1 WO 2022228340A1 CN 2022088738 W CN2022088738 W CN 2022088738W WO 2022228340 A1 WO2022228340 A1 WO 2022228340A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
dielectric
glass powder
low
miniature radio
Prior art date
Application number
PCT/CN2022/088738
Other languages
English (en)
French (fr)
Inventor
彭寿
张冲
王巍巍
李常青
李金威
杨小菲
周刚
柯震坤
曹欣
单传丽
倪嘉
崔介东
赵凤阳
仲召进
王萍萍
高强
韩娜
石丽芬
杨勇
Original Assignee
中建材玻璃新材料研究院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建材玻璃新材料研究院集团有限公司 filed Critical 中建材玻璃新材料研究院集团有限公司
Priority to US18/266,273 priority Critical patent/US20240059605A1/en
Priority to JP2023553931A priority patent/JP2024516065A/ja
Publication of WO2022228340A1 publication Critical patent/WO2022228340A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2205/00Compositions applicable for the manufacture of vitreous enamels or glazes

Definitions

  • the invention relates to the field of electronic glass, in particular to a low-dielectric sealing glass powder for a miniature radio frequency glass insulator.
  • sealing glass frit With the rapid development of information transmission and high-frequency communication technology, electronic devices have higher and higher requirements for the dielectric properties of sealing glass frit.
  • Low dielectric glass powder is an ideal candidate material. Low dielectric glass powder has low dielectric constant and dielectric loss, which are basically unchanged with test temperature and frequency, and play a role in electronic packaging, such as protecting circuits, isolating insulation and preventing signal distortion.
  • the low dielectric constant sealing glass frit used under high frequency microwave conditions is mainly used for the input and output of microwave signals and control signals of modules and components, which can reduce signal relaxation and cross-interference, as well as reduce high frequency and high resistivity Excessive heat consumption.
  • the purpose of the present invention is to solve the deficiencies of the prior art and provide a low-dielectric sealing glass powder for miniature radio frequency glass insulators. Forming temperature and other characteristics, can meet the requirements of miniature radio frequency glass insulator sealing.
  • a low-dielectric sealing glass powder for miniature radio frequency glass insulators is characterized in that it is made of raw materials expressed in mole percentage: SiO 2 : 70.5-74.0%, B 2 O 3 : 20.5-23.5%, Ga 2 O 3 : 0.5 to 2.0%, P 2 O 5 : 0.25 to 2.0%, Li 2 O: 0.4 to 6.0%, K 2 O: 0.1 to 1.5%, LaB 6 : 0.05 to 1.0%, NaCl: 0.03 to 0.3%.
  • the low-dielectric sealing glass powder for micro-frequency glass insulators is characterized in that it is made of raw materials expressed in mole percentage: SiO 2 : 71.5-73.0%, B 2 O 3 : 21.5-23%, Ga 2 O 3 : 0.8 to 1.5%, P 2 O 5 : 0.5 to 1.5%, Li 2 O: 0.8 to 5.5%, K 2 O: 0.3 to 1.2%, LaB 6 : 0.1 to 0.8%, NaCl: 0.1 to 0.1% 0.25%.
  • the low-dielectric sealing glass powder for micro-frequency glass insulators is characterized in that it is made of raw materials expressed in mole percentage: SiO 2 : 71.5-72.5%, B 2 O 3 : 22-23%, Ga 2 O 3 : 1-1.2%, P 2 O 5 : 0.8-1.2%, Li 2 O: 1.5-2.5%, K 2 O: 0.5-1.0%, LaB 6 : 0.2-0.7%, NaCl: 0.15- 0.2%.
  • the low-dielectric sealing glass powder for a miniature radio frequency glass insulator is characterized in that the ratio of Li 2 O/K 2 O is 1-6.
  • the low-dielectric sealing glass powder for micro-frequency glass insulators is characterized in that the ratio of Li 2 O/K 2 O is 1-3.
  • the dielectric properties are related to the ionic polarizability, and the ionic polarizability is mainly affected by the glass network structure. ; The lower the degree of network polymerization, the increase in charge movement leads to an increase in polarization, which deteriorates the dielectric properties.
  • SiO 2 is a glass network generator, and increasing the content is beneficial to reduce the dielectric constant, but if the content is too high, the viscosity of the glass liquid will increase rapidly and melting will be difficult.
  • the suitable range of SiO 2 in the present invention is 70.5-74.0%;
  • B 2 O 3 plays the role of a network intermediate and has a low ionic polarizability.
  • the purpose of improving the dielectric properties of glass can be achieved by appropriately increasing the content of B 2 O 3.
  • B 2 O 3 is good It can effectively reduce the high temperature viscosity of the glass, but the excessive content of B 2 O 3 will directly lead to the reduction of mechanical properties of the glass powder and the deterioration of water resistance.
  • the suitable range of B 2 O 3 in the present invention is 20.5 ⁇ 23.5%;
  • Ga 2 O 3 acts as an intermediate oxide in the low-dielectric glass network structure.
  • the content can reconnect the broken chemical bonds in the glass network structure and repair the network, thereby improving the low-dielectric glass.
  • Mechanical strength and glass stability; and Ga 2 O 3 has a larger ionic radius, which makes the network structure of the glass dense, thereby inhibiting the movement of alkali metal ions, which is beneficial to reduce the dielectric constant.
  • the suitable range of Ga 2 O 3 is 0.5-2.0%;
  • P 2 O 5 is beneficial to reduce the melting temperature of glass, because the viscous activation energy of P 2 O 5 melt is small, it is close to that of B 2 O 3 , and P 2 O 5 enters the glass structure to form [ P0 4 ], in which there is an oxygen with a double bond, and the phosphorus-oxygen tetrahedron with a double bond is an asymmetric center, which can reduce the viscosity of the glass, thereby reducing the characteristic viscosity point of the glass at high temperature, which is conducive to float forming Process control, but too high P 2 O 5 will lead to poor chemical stability of the glass, and the suitable range of P 2 O 5 in the present invention is 0.25-2.0%;
  • the present invention introduces lanthanum boride (LaB 6 ), and LaB 6 is oxidized at high temperature to form lanthanum borate during the batch reaction process, which plays the role of a network intermediate, and an appropriate amount of addition has the effect of connecting non-bridging oxygen to complement the network.
  • LaB 6 lanthanum boride
  • [BO 4 ] and [SiO 4 ] and [BO 4 ] form a tight spatial network, thereby improving the dielectric properties of the glass; in addition, the large radius of La ions makes the glass network structure more dense, thereby inhibiting the movement of alkali metals and alkaline earth metals, Therefore, adding a small amount of LaB 6 can improve the dielectric properties of the glass, but if it is introduced too much, it will destroy the glass network structure and make the dielectric properties of the glass worse.
  • the suitable range of LaB 6 is 0.05-1.0%;
  • Li 2 O and K 2 O are beneficial to the melting of glass and the formation of glassy state; since the ionic radius of Li 2 O is very different from that of K 2 O alkali metal ions, an appropriate amount of Li 2 O can form mixed alkali with K 2 O effect, which significantly improves the dielectric properties of the glass.
  • the suitable range of Li 2 O is 0.4-6.0%, and the suitable range of K 2 O is 0.1-1.5%;
  • Selecting NaCl as the clarifying agent for the low-dielectric glass powder of the present invention can achieve the purpose of better clarifying the glass, and the suitable range of NaCl in the present invention is 0.03-0.3%.
  • the present invention has the following advantages:
  • the raw material components are simple, and the preparation method is simple and easy;
  • the obtained glass powder has low dielectric constant and dielectric loss, and low melting and forming temperature, which is convenient for large-scale industrial production;
  • the melting and forming temperature of the glass powder is 1320 ⁇ 1360°C, the obtained glass has a dielectric constant of 3.8 ⁇ 4.1 at a frequency of 1MHz, and a dielectric loss of 4 ⁇ 10 -4 to 10 ⁇ 10 -4 . Temperature 900-950°C.
  • Fig. 1 is the variation diagram of the dielectric constant of the glass powder of the embodiment sample with the test frequency
  • Fig. 2 is a graph showing the variation of the dielectric loss of glass powder of the embodiment sample with the test frequency
  • Fig. 3 is the high temperature viscosity-temperature curve diagram of the glass frit of the embodiment sample
  • FIG. 4 is a sintering image of the glass powder of the example sample.
  • the dielectric constant, dielectric loss, melting forming temperature and sealing temperature were characterized by using precision impedance analyzer, glass high temperature viscometer and sintered image meter respectively.
  • the sealing temperature is represented by the hemispherical temperature of the cylindrical glass powder sample in the sintered imager, where the edge passivation temperature is the temperature corresponding to when the edges and corners of the cylindrical sample begin to show a smooth arc after being heated, which is the use of the sealing glass powder.
  • the lower limit temperature; the hemisphere temperature is the temperature at which the height of the cylindrical glass sample drops and the bottom expands, and the sample gradually assumes a hemispherical shape and exists stably, and is the upper limit temperature for the use of the sealing glass powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于由以摩尔百分比表示的原料制成:SiO 2:70.5~74.0%,B 2O 3:20.5~23.5%,Ga 2O 3:0.5~2.0%,P 2O 5:0.25~2.0%,Li 2O:0.4~6.0%,K 2O:0.1~1.5%,LaB 6:0.05~1.0%,NaCl:0.03~0.3%。本发明的优点:原材料组分简单,制备方法简便易行;制得的玻璃粉介电常数和介电损耗较低、熔制成形温度较低,便于大规模工业化生产;玻璃粉的熔制成形温度为1320~1360℃,制得的玻璃在频率为1MHz时介电常数为3.8~4.1,介电损耗为4×10 -4~10×10 -4,封接温度900-950℃。

Description

一种微型射频玻璃绝缘子用低介电封接玻璃粉 技术领域
本发明涉及电子玻璃领域,具体涉及一种微型射频玻璃绝缘子用低介电封接玻璃粉。
背景技术
随着信息传输和高频通信技术的快速发展,电子器件对封接玻璃粉的介电性能要求越来越高。材料的介电常数越小则信号的传播速率越快,材料的介电损耗越小则其在固定传播频率下的传播损失就越小,因此,需要封接玻璃粉具有较低的介电常数和介电损耗。
近年来,射频连接器、微波器件等工作频率范围大幅提高,为了降低由此带来的阻抗延时及功率损耗,除了采用低电阻率金属外,重要的是降低介质层的寄生电容。电容C与介电常数ε成正比,可采用低介电常数材料作互连介质,减小阻抗延迟,从而满足集成电路发展的需要,低介电玻璃粉就是一种很理想的候选材料。低介电玻璃粉具有较低的介电常数和介电损耗,它们随测试温度和频率基本不变,在电子封装中起着如保护电路、隔离绝缘和防止信号失真等作用。在高频微波条件下使用的低介电常数封接玻璃粉,主要用于模块、部件的微波信号及控制信号的输入输出,可以减少信号的弛豫和交叉干扰以及减少高频和大电阻率下的热耗过多。
但是,目前能够提供低介电封接玻璃粉的厂家很少,因为目前存在的主要问题包括(1)玻璃粉的熔制温度过高、高温粘度大,导致封接温度高;(2)玻璃粉的介电常数或介电损耗偏大,影响了低介电封接玻璃粉的实际应用。
发明内容
本发明的目的是为了解决弥补现有技术的不足,提供一种微型射频玻璃绝缘子用低介电封接玻璃粉,该玻璃因具有较低的介电常数和介电损耗、较低的熔制成形温度等特点,可满足微型射频玻璃绝缘子封接使用要求。
为了实现上述目的,本发明采用的技术方案如下:
一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于由以摩尔百分比表示的原料制成:SiO 2:70.5~74.0%,B 2O 3:20.5~23.5%,Ga 2O 3:0.5~2.0%,P 2O 5:0.25~2.0%,Li 2O:0.4~6.0%,K 2O:0.1~1.5%,LaB 6:0.05~1.0%,NaCl:0.03~0.3%。
进一步,所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于由以摩尔百分比表示的原料制成:SiO 2:71.5~73.0%,B 2O 3:21.5~23%,Ga 2O 3:0.8~1.5%,P 2O 5:0.5~1.5%,Li 2O:0.8~5.5%,K 2O:0.3~1.2%,LaB 6:0.1~0.8%,NaCl:0.1~0.25%。
进一步,所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于由以摩尔百分比表示的原料制成:SiO 2:71.5~72.5%,B 2O 3:22~23%,Ga 2O 3:1~1.2%,P 2O 5:0.8~1.2%,Li 2O:1.5~2.5%,K 2O:0.5~1.0%,LaB 6:0.2~0.7%,NaCl:0.15~0.2%。
进一步,所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于:Li 2O/K 2O的比例为1~6。
进一步,所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于:Li 2O/K 2O的比例为1~3。
各成分在配方中的作用,含量的选取理由,本发明所依据的技术原理是:
介电性能与离子极化率相关,而离子极化率主要受玻璃网络结构的影响,网络结构聚合度越大,电荷移动受空间阻力就越大则极化就越小,介电性能得到提升;网络聚合度越低,则电荷移动增多导致极化增大,使介电性能变差。
SiO 2是玻璃网络生成体,含量升高有利于降低介电常数,但含量过高则会导致玻璃液粘度迅速增大、熔化困难,本发明中SiO 2的适宜范围为70.5~74.0%;
B 2O 3起到网络中间体的作用,且本身具有较低的离子极化率,通过适当提高B 2O 3的含量可以达到改善玻璃介电性能的目的,同时B 2O 3又是良好的助熔剂,能够有效的降低玻璃的高温黏度,但B 2O 3含量过高,会直接导致玻璃粉力学性能降低、耐水性变差等问题,本发明中B 2O 3的适宜范围为20.5~23.5%;
Ga 2O 3作用是低介电玻璃网络结构中的中间体氧化物,适当含量时能够将玻璃网络结构中断裂的化学键重新连接起来,起到修补网络体的作用,从而提高低介电玻璃的机械强度及玻璃的稳定性;且Ga 2O 3具有更大的离子半径,使玻璃的网络结构致密从而抑制碱金属离子的移动,有利于降低介电常数。但含量过高会导致Ga 3+游离于网络结构之外,使介电性能变差,本发明中Ga 2O 3的适宜范围为0.5~2.0%;
P 2O 5有利于降低玻璃的熔制温度,因为P 2O 5熔体的黏滞活化能小,它与B 20 3的黏滞活化能接近,同时P 2O 5进入玻璃结构形成[P0 4],其中有一个带双键的氧,带双键的磷氧四面体,是不对称中心,它可以导致玻璃的黏度变小,从而使得玻璃高温特征黏度点降低,有利于浮法成型工艺的控制,但过高的P 2O 5会导致玻璃化学稳定性变差,本发明中P 2O 5的适宜范围是0.25~2.0%;
本发明引入硼化镧(LaB 6),LaB 6在配合料反应过程中高温氧化形成硼酸镧,起到网络中间体的作用,适量的添加具有连接非桥氧起到补网的作用,结构中[BO 4]与[SiO 4]与[BO 4]形成紧密空间网络,从而提高玻璃的介电性能;此外La离子的大半径使得玻璃网络结构更加致密,从而抑制碱金属及碱土金属的移动,所以少量添加LaB 6可以改善玻璃的介电性能,但若引入过多则会破坏玻璃网络结构,使玻璃介电性能变差。本发明中LaB 6的适宜范围为0.05~1.0%;
Li 2O与K 2O有利于玻璃的熔制和玻璃态的形成;由于Li 2O离子半径与K 2O碱金属离子半径差别很大,所以适量Li 2O可以与K 2O形成混合碱效应,显著地提升了玻璃的介电性能。本发明中Li 2O的适宜范围是0.4~6.0%,K 2O的适宜范围是0.1~1.5%;
选择NaCl作为本发明低介电玻璃粉的澄清剂能够达到较好的澄清玻璃的目的,本发明中NaCl的适宜范围是0.03~0.3%。
与现有技术相比,本发明具有如下优点:
1.原材料组分简单,制备方法简便易行;
2.制得的玻璃粉介电常数和介电损耗较低、熔制成形温度较低,便于大规模工业化生产;
3.玻璃粉的熔制成形温度为1320~1360℃,制得的玻璃在频率为1MHz时介电常数为3.8~4.1,介电损耗为4×10 -4~10×10 -4,封接温度900-950℃。
附图说明
图1是实施例样品玻璃粉介电常数随测试频率变化图;
图2是实施例样品玻璃粉介电损耗随测试频率变化图;
图3是实施例样品玻璃粉高温粘度-温度曲线图;
图4是实施例样品玻璃粉烧结影像图。
具体实施方式
下面结合具体实施例对本发明进行详细说明,但下述实施例仅用于说明本发明,并不用于限定本发明的实施范围。
实施例
(1)配制混合料:按质量份数称取上述配方原料,并将各原料在混料机充分混合均匀,混料2小时,配制成混合料;
(2)熔制:在电炉中装好坩埚,按阶梯温度制度升到预定熔制温度1550℃,加料,并保温180分钟,得到澄清的玻璃液;
(3)将熔制好的玻璃液少部分倒入铜板模具中成形,制样用作相关性能测试;其余在去离子冷水中水淬后取出,干燥;
(4)将干燥后的玻璃放入球磨机中球磨12小时,过300目筛,制得本发明的微型射频玻璃绝缘子用低介电封接玻璃粉。
(5)分别采用精密阻抗分析仪、玻璃高温黏度计和烧结影像仪表征介电常数、介电损耗、熔制成形温度和封接温度。封接温度用烧结影像仪中圆柱形玻璃粉样品的半球温度来表示,其中,棱角钝化温度是圆柱形样品受热后棱角处开始呈现圆滑弧形时对应的温度,是封接玻璃粉的使用下限温度;半球温度是圆柱形玻璃样品高度下降、底部扩大,样品逐渐呈现半球状并稳定存在的温度,是封接玻璃粉的使用上限温度。
表1
Figure PCTCN2022088738-appb-000001

Claims (6)

  1. 一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于由以摩尔百分比表示的原料制成:SiO 2:70.5~74.0%,B 2O 3:20.5~23.5%,Ga 2O 3:0.5~2.0%,P 2O 5:0.25~2.0%,Li 2O:0.4~6.0%,K 2O:0.1~1.5%,LaB 6:0.05~1.0%,NaCl:0.03~0.3%。
  2. 根据权利要求1所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于由以摩尔百分比表示的原料制成:SiO 2:71.5~73.0%,B 2O 3:21.5~23%,Ga 2O 3:0.8~1.5%,P 2O 5:0.5~1.5%,Li 2O:0.8~5.5%,K 2O:0.3~1.2%,LaB 6:0.1~0.8%,NaCl:0.1~0.25%。
  3. 根据权利要求1所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于由以摩尔百分比表示的原料制成:SiO 2:71.5~72.5%,B 2O 3:22~23%,Ga 2O 3:1~1.2%,P 2O 5:0.8~1.2%,Li 2O:1.5~2.5%,K 2O:0.5~1.0%,LaB 6:0.2~0.7%,NaCl:0.15~0.2%。
  4. 根据权利要求1任一项所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于:Li 2O/K 2O的比例为1~6。
  5. 根据权利要求1-4任一项所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于:Li 2O/K 2O的比例为1~3。
  6. 根据权利要求1-4任一项所述一种微型射频玻璃绝缘子用低介电封接玻璃粉,其特征在于:玻璃粉熔制成形温度为1320~1360℃,制得的玻璃在频率为1MHz时介电常数为3.8~4.1,介电损耗为4×10 -4~10×10 -4,封接温度900-950℃。
PCT/CN2022/088738 2021-04-25 2022-04-24 一种微型射频玻璃绝缘子用低介电封接玻璃粉 WO2022228340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/266,273 US20240059605A1 (en) 2021-04-25 2022-04-24 Low dielectric sealing glass powder for miniature radio-frequency glass insulator
JP2023553931A JP2024516065A (ja) 2021-04-25 2022-04-24 小型rfガラス絶縁体のための低誘電率封着用ガラス粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110446122.3 2021-04-25
CN202110446122.3A CN113121119B (zh) 2021-04-25 2021-04-25 一种微型射频玻璃绝缘子用低介电封接玻璃粉

Publications (1)

Publication Number Publication Date
WO2022228340A1 true WO2022228340A1 (zh) 2022-11-03

Family

ID=76779788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088738 WO2022228340A1 (zh) 2021-04-25 2022-04-24 一种微型射频玻璃绝缘子用低介电封接玻璃粉

Country Status (4)

Country Link
US (1) US20240059605A1 (zh)
JP (1) JP2024516065A (zh)
CN (1) CN113121119B (zh)
WO (1) WO2022228340A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121119B (zh) * 2021-04-25 2022-04-08 中建材玻璃新材料研究院集团有限公司 一种微型射频玻璃绝缘子用低介电封接玻璃粉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0016498A1 (fr) * 1979-03-23 1980-10-01 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Mélange de départ pour une composition diélectrique, encre sérigraphiable comportant un tel mélange, et utilisation de cette encre
JP2004269269A (ja) * 2003-03-05 2004-09-30 Nippon Electric Glass Co Ltd ガラス粉末、ガラスセラミック誘電体材料、焼結体及び高周波用回路部材
JP2021024775A (ja) * 2019-08-08 2021-02-22 日本電気硝子株式会社 ガラス粉末、誘電体材料、焼結体及び高周波用回路部材
CN112456795A (zh) * 2020-12-29 2021-03-09 中建材蚌埠玻璃工业设计研究院有限公司 一种具有较低表面张力的高黏度玻璃
CN113121119A (zh) * 2021-04-25 2021-07-16 中建材蚌埠玻璃工业设计研究院有限公司 一种微型射频玻璃绝缘子用低介电封接玻璃粉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1282023A (en) * 1969-11-03 1972-07-19 Standard Telephones Cables Ltd Electrical resistor material
CN1060747C (zh) * 1995-01-06 2001-01-17 佳能株式会社 成像装置
CN102001833A (zh) * 2010-12-20 2011-04-06 昆明理工大学 电子浆料用无铅玻璃粉及制备方法
DE102018123702A1 (de) * 2017-09-26 2019-03-28 Sindlhauser Materials Gmbh Nanoskaliges LaB6- Pulver und Verfahren zu dessen Herstellung
CN108383378A (zh) * 2018-06-04 2018-08-10 中建材蚌埠玻璃工业设计研究院有限公司 一种低介电常数玻璃
CN109399937A (zh) * 2018-12-27 2019-03-01 中建材蚌埠玻璃工业设计研究院有限公司 一种低介电常数玻璃粉及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0016498A1 (fr) * 1979-03-23 1980-10-01 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Mélange de départ pour une composition diélectrique, encre sérigraphiable comportant un tel mélange, et utilisation de cette encre
JP2004269269A (ja) * 2003-03-05 2004-09-30 Nippon Electric Glass Co Ltd ガラス粉末、ガラスセラミック誘電体材料、焼結体及び高周波用回路部材
JP2021024775A (ja) * 2019-08-08 2021-02-22 日本電気硝子株式会社 ガラス粉末、誘電体材料、焼結体及び高周波用回路部材
CN112456795A (zh) * 2020-12-29 2021-03-09 中建材蚌埠玻璃工业设计研究院有限公司 一种具有较低表面张力的高黏度玻璃
CN113121119A (zh) * 2021-04-25 2021-07-16 中建材蚌埠玻璃工业设计研究院有限公司 一种微型射频玻璃绝缘子用低介电封接玻璃粉

Also Published As

Publication number Publication date
JP2024516065A (ja) 2024-04-12
CN113121119A (zh) 2021-07-16
CN113121119B (zh) 2022-04-08
US20240059605A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
CN109399937A (zh) 一种低介电常数玻璃粉及其制备方法
CN104774005B (zh) 一种低温烧结无铅系微波介质陶瓷及其制备方法
TWI694976B (zh) 一種低氣泡數之低介電常數玻璃組成物及玻璃纖維
WO2022188220A1 (zh) 一种SiO2系高频低介低温共烧陶瓷材料及其制备方法
CN102718406B (zh) 一种拉丝温度低的低介电常数玻璃纤维
CN111484245B (zh) 一种高强度、低介电常数低介电损耗玻璃及其制备和应用
CN108383378A (zh) 一种低介电常数玻璃
WO2022228340A1 (zh) 一种微型射频玻璃绝缘子用低介电封接玻璃粉
CN110436894A (zh) 一种低介电常数ltcc材料及其制备方法
CN110217993A (zh) 一种环保型低温封接玻璃及其制备方法
CN106882922B (zh) 一种耐550℃高温的封接玻璃及其制备方法
CN104496185B (zh) 一种纳米微晶介电玻璃及其制备方法
CN111499187A (zh) 一种在20-60GHz高频频段内具有低损耗和低压电系数d33的玻璃材料
CN112777931B (zh) 低介电常数玻璃
CN110790504B (zh) 一种低介电常数玻璃配合料
CN114315160A (zh) 一种低介电封接玻璃造粒粉及其制备方法
CN111470776B (zh) 一种高频低损耗玻璃陶瓷材料及其制备方法
CN110229002B (zh) 一种低温共烧陶瓷材料及制备方法
CN112723737B (zh) 一种低介电磷玻璃及其制备方法、应用
CN108314330A (zh) 一种含Ce2O3无氟低介电玻璃纤维及其制备方法
Zou et al. Microwave dielectric properties of a novel Li2O–Al2O3–B2O3 glass-ceramic for ULTCC application
CN109734428B (zh) 一种低介低温共烧陶瓷材料及其制备方法
CN114213000A (zh) 一种电连接器用封接玻璃坯及其制备方法
CN116730619B (zh) 一种用于ltcc的低损耗微晶玻璃材料及其制备方法
CN115724589A (zh) 一种射频连接器用封接玻璃粉及其制备与封接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023553931

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794811

Country of ref document: EP

Kind code of ref document: A1