WO2022220001A1 - Sizing agent for reinforcing fibers and use of same - Google Patents

Sizing agent for reinforcing fibers and use of same Download PDF

Info

Publication number
WO2022220001A1
WO2022220001A1 PCT/JP2022/011870 JP2022011870W WO2022220001A1 WO 2022220001 A1 WO2022220001 A1 WO 2022220001A1 JP 2022011870 W JP2022011870 W JP 2022011870W WO 2022220001 A1 WO2022220001 A1 WO 2022220001A1
Authority
WO
WIPO (PCT)
Prior art keywords
sizing agent
resin
fiber
resins
reinforcing fibers
Prior art date
Application number
PCT/JP2022/011870
Other languages
French (fr)
Japanese (ja)
Inventor
昌彦 吉田
吉彦 清水
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to CN202280019938.0A priority Critical patent/CN117043408A/en
Priority to JP2022547186A priority patent/JP7147108B1/en
Priority to KR1020237038735A priority patent/KR20230169274A/en
Publication of WO2022220001A1 publication Critical patent/WO2022220001A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • D06M13/17Polyoxyalkyleneglycol ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/262Sulfated compounds thiosulfates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts

Definitions

  • the present invention relates to a sizing agent for reinforcing fibers and uses thereof. More particularly, it relates to a reinforcing fiber sizing agent used to reinforce a matrix resin, a reinforcing fiber strand and a fiber-reinforced composite material using the same.
  • Fiber-reinforced composite materials in which plastic materials (called matrix resins) are reinforced with various synthetic fibers, are widely used for automotive applications, aerospace applications, sports and leisure applications, and general industrial applications.
  • Reinforcing fibers used in these composite materials include various inorganic fibers such as carbon fibers, glass fibers and ceramic fibers, and various organic fibers such as aramid fibers, polyamide fibers and polyethylene fibers.
  • These various reinforcing fibers are usually manufactured in a filament shape, and then processed into a sheet-like intermediate material called a unidirectional prepreg by a hot melt method, a drum winding method, or the like, or processed by a filament winding method, or in some cases, a woven fabric. Or, it is used after undergoing various high-order processing steps, such as being processed into a chopped fiber shape.
  • Epoxy resins are widely used as matrix resins for reinforcing fiber composite materials.
  • unsaturated polyester resins, vinyl ester resins, acrylic resins, etc. are used as matrix resins for radical polymerization.
  • the wettability and adhesiveness between the matrix resin and the reinforcing fiber are important. Sizing agents that improve adhesion have been proposed.
  • various reinforcing fibers are required to have bundling properties in order to suppress deterioration of various physical properties and quality due to thread breakage and fluff.
  • shape retention is required in order to suppress breakage after passing through processes such as guides during advanced processing and to improve handleability.
  • in order to manufacture a high-quality composite it is necessary to have the ability to spread the strand width uniformly while maintaining the shape.
  • the sizing agents described in Patent Document 1 and Patent Document 2 improve bundling properties in order to suppress deterioration of various physical properties and quality due to yarn breakage and fluff.
  • the adhesion of the sizing agent to the surface was poor, and although the initial bundleability was good, it was difficult to maintain the shape retention during the processing process, and the problem was the deterioration of handling.
  • an object of the present invention is to provide a sizing agent for reinforcing fibers that has excellent handleability and shape retention.
  • the reinforcing fiber sizing agent of the present invention is a reinforcing fiber sizing agent containing an epoxy resin (A), a surfactant (B) and water, and
  • the nonvolatile content of the sizing agent has a complex viscosity of 1 ⁇ 10 3 to 1 ⁇ 10 5 Pa ⁇ s, and the loss elastic modulus of the nonvolatile content of the sizing agent at 120° C., strain of 0.005, and frequency of 1 Hz is 5 to 30 Pa. be.
  • the epoxy resin (A) is preferably a compound represented by the following general formula (1).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a methyl group.
  • n is an integer of 0 or more.
  • the epoxy resin (A) in the nonvolatile matter of the sizing agent is 30% by weight or more, and the epoxy resin (A-1) in which n is 0 in the general formula (1) accounts for 15% in the nonvolatile matter of the sizing agent. % by weight or less is preferable. It is preferable to further contain at least one selected from the group consisting of vinyl ester resins, saturated polyester resins, unsaturated polyester resins and rosin ester resins.
  • the surfactant (B) contains at least one selected from nonionic surfactants and anionic surfactants, and the nonionic surfactant has a polyoxyethylene group at a plurality of terminals. and the anionic surfactant preferably contains at least one selected from sulfate salts and phosphate salts.
  • the reinforcing fiber strand of the present invention has the reinforcing fiber sizing agent adhered thereto.
  • the fiber-reinforced composite material of the present invention includes a matrix resin and the reinforcing fiber strands.
  • the matrix resin is a thermosetting resin.
  • the sizing agent for reinforcing fibers of the present invention can have shape retention properties.
  • a reinforcing fiber composite material having excellent physical properties can be obtained.
  • Epoxy resin (A) is an essential component of the reinforcing fiber sizing agent of the present invention.
  • epoxy resins include bisphenol-type epoxy resins, amine-type epoxy resins, phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, resorcinol-type epoxy resins, phenol aralkyl-type epoxy resins, naphthol aralkyl-type epoxy resins, and dicyclopentadiene-type epoxy resins.
  • Examples include epoxy resins, epoxy resins having a biphenyl skeleton, isocyanate-modified epoxy resins, tetraphenylethane-type epoxy resins, triphenylmethane-type epoxy resins, and the like.
  • the bisphenol-type epoxy resin is a bisphenol compound in which two phenolic hydroxyl groups are glycidylized, and includes bisphenol A type, bisphenol F type, bisphenol AD type, bisphenol S type, or halogen or alkyl of these bisphenols. Examples include substituted products, hydrogenated products, and the like. Moreover, not only monomers but also high molecular weight substances having a plurality of repeating units can be suitably used.
  • amine-type epoxy resins include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylylenediamine, and halogen- and alkynol-substituted products thereof, and hydrogenated products thereof.
  • the epoxy equivalent of the epoxy resin is preferably 100-1500 g/eq, more preferably 200-1000 g/eq, and even more preferably 300-800 g/eq.
  • the epoxy equivalent is less than 100 g/eq, the reinforcing fiber strands may be cured over time. If the epoxy equivalent exceeds 1500 g/eq, the adhesiveness to the matrix resin may deteriorate.
  • the epoxy equivalent is based on JIS-K-7236.
  • the weight average molecular weight of the epoxy resin is preferably 100-10000, more preferably 400-8000, and even more preferably 600-6000. If the weight-average molecular weight is less than 100, the shape-retaining property may be insufficient, and the heat resistance may be insufficient during the step of drying the reinforcing fiber strands, and volatilization may occur. If the weight-average molecular weight exceeds 10,000, the shape retention may be insufficient, and the long-term storage stability of the sizing agent may be lowered.
  • the epoxy resin is preferably an aromatic epoxy resin having an aromatic ring in its molecular structure from the viewpoint of improving the adhesion between the reinforcing fiber and the matrix resin.
  • aromatic epoxy resins include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcinol, and pyrocatechol; Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as bisphenol F novolak, bisphenol A novolak, dicyclopentadiene-modified phenol, triphenylmethane, and tetraphenylethane can be used.
  • bisphenol A type epoxy resins are preferable, and compounds represented by the following general formula (1) are more preferable from the viewpoint of the effects of the present application.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a methyl group.
  • n is an integer of 0 or more.
  • the method for producing the epoxy resin described above is not particularly limited, and known methods can be adopted. Moreover, the epoxy resins described above are generally commercially available, and the sizing agent for reinforcing fibers of the present invention can use these commercially available epoxy resins.
  • the surfactant (B) is not particularly limited, and can be appropriately selected and used from nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants. can be done. Surfactants may be used singly or in combination of two or more. Nonionic surfactants and anionic surfactants are preferred.
  • a nonionic surfactant is an organic compound having a hydrophilic group and a hydrophobic group, and the hydrophilic group includes a polyoxyethylene group and a polyoxyethylene/propylene oxide random copolymer group.
  • Hydrophobic groups include alkyl groups, alkenyl groups, aryl groups, alkylaryl groups, polycyclic aryl groups, polypropylene oxide groups and the like.
  • nonionic surfactants examples include alkylene oxide-added nonionic surfactants (higher alcohols, higher fatty acids, alkylphenols, styrenated phenols, benzylphenols, sorbitan, sorbitan esters, castor oil, hydrogenated castor oil, and ethylene alkylene oxide such as oxide and propylene oxide (two or more kinds thereof can be used in combination), polyalkylene glycol to which higher fatty acid or the like is added, ethylene oxide/propylene oxide copolymer, and the like.
  • nonionic surfactants nonionic surfactants having polyoxyethylene groups at a plurality of terminals are preferable from the viewpoint of exhibiting the effects of the present application.
  • Nonionic surfactants having polyoxyethylene groups at multiple ends include sorbitan, sorbitan ester, castor oil, hydrogenated castor oil with ethylene oxide added, and polypropylene glycol with ethylene oxide added ( so-called Pluronic (registered trademark) type surfactant) and the like.
  • alkyl group constituting the hydrophobic group examples include methyl group, ethyl group, propyl group, butyl group, hexyl group, 2-ethylhexyl group, decyl group, lauryl group, isodecyl group, tridecyl group, cetyl group, stearyl group and oleyl group. , behenyl group, etc., may have an unsaturated bond, may be primary, secondary or tertiary, and may have a linear or branched structure.
  • the alkylaryl group constituting the hydrophobic group includes tolyl group, xylyl group, cumyl group, octylphenyl group, 2-ethylhexylphenyl group, nonylphenyl group, decylphenyl group, methylnaphthyl group and the like. , the number is unlimited.
  • Polycyclic aryl groups constituting the hydrophobic group include styrylphenyl, styrylmethylphenyl, styrylnonylphenyl, alkylstyrylphenyl, tristyrylphenyl, distyrylphenyl, distyrylmethylphenyl, and tristyrylphenyl. group, benzylphenyl group, dibenzylphenyl group, alkyldiphenyl group, diphenyl group, cumylphenyl group, naphthyl group, etc., and the position and number of the substituents are not limited.
  • higher fatty acids examples include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, montanic acid, oleic acid, linoleic acid, linolenic acid, eleostearic acid, ricinoleic acid, erucic acid, and coconut oil fatty acid.
  • the average molecular weight of the nonionic surfactant is preferably 2,000 to 18,000, more preferably 3,000 to 6,000, from the viewpoint of shape retention.
  • the weight average molecular weight in the present invention was measured using a high-speed gel permeation chromatography device HLC-8220GPC manufactured by Tosoh Corporation, with a sample concentration of 3 mg / cc, and separation columns KF-402HQ and KF-403HQ manufactured by Showa Denko K.K. and calculated from the peak measured with a differential refractive index detector.
  • anionic surfactants include carboxylic acids (salts), sulfate salts of higher alcohols/higher alcohol ethers, sulfonates, and phosphate salts of higher alcohols/higher alcohol ethers. Sulfate salts and phosphate salts are preferred.
  • alkyl sulfate salts alkylaryl sulfate salts, polycyclic aryl sulfate salts, polyoxyalkylene alkyl ether sulfate salts, polyoxyalkylene alkyl aryl ether sulfate salts (polyoxyalkylene nonylphenyl ether sulfate salts, etc.), polyoxy Alkylene polycyclic aryl sulfate salts (polyoxyalkylene tristyrylphenyl ether sulfate salts, polyoxyalkylene distyrylphenyl ether sulfate salts, polyoxyalkylene styrylphenyl ether sulfate salts, polyoxyalkylene styrylmethylphenyl ether sulfate salts, polyoxyalkylene di Styryl methyl phenyl ether sulfate salt, polyoxyalkylene tristyryl methylphenyl ether
  • the anionic surfactant when it is a salt, it may be a hydrogen atom, an alkali metal salt, an alkaline earth metal salt, an ammonium salt, an organic amine salt, a quaternary ammonium salt, or the like.
  • Alkali metals include sodium, potassium, lithium and the like.
  • Alkaline earth metals include magnesium, calcium, barium and the like.
  • organic amines examples include alkylamines (trimethylamine, triethylamine, monomethylamine, dimethylamine, etc.), alkanolamines (monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, dimethylethanolamine, diethyl ethanolamine, etc.).
  • Quaternary ammonium includes tetramethylammonium, tetraethylammonium, tetramethanolammonium, tetraethanolammonium and the like. These anionic surfactants may be used singly or in combination of two or more.
  • Ammonium salts, organic amine salts, and quaternary ammonium salts are preferred because of their excellent affinity to the matrix.
  • cationic surfactants examples include quaternary ammonium salt cationic surfactants (lauryltrimethylammonium chloride, oleylmethylethylammonium ethosulfate, etc.), amine salt cationic surfactants (polyoxyethylene laurylamine lactate, etc.).
  • amphoteric surfactants examples include amino acid-type amphoteric surfactants (sodium laurylaminopropionate, etc.), betaine-type amphoteric surfactants (stearyldimethylbetaine, lauryldihydroxyethylbetaine, etc.), and the like.
  • a resin having a polymerizable double bond in its structure is more preferable because it has excellent shape retention and plays a role of enhancing affinity with the matrix resin. Examples include vinyl ester resins, unsaturated polyester resins and rosin ester resins.
  • vinyl ester resins include epoxy (meth)acrylate obtained by esterifying the above epoxy resin and ⁇ , ⁇ -unsaturated monocarboxylic acid.
  • ⁇ , ⁇ -unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, tiglic acid and cinnamic acid, and two or more of these may be used in combination.
  • Specific examples of the vinyl ester resin include, for example, a bisphenol-type epoxy resin (meth)acrylate-modified product (a terminal (meth) acrylate-modified resin, etc.).
  • saturated polyester resins include aliphatic polyester resins and aromatic polyester resins.
  • aromatic polyester resins are used, such as polyalkylene arylate resins or saturated aromatic polyester resins.
  • aromatic polyester resins include poly C2-4 alkylene terephthalates such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); etc.); 1,4-cyclohexyldimethylene terephthalate (PCT)).
  • the aromatic polyester resin may be a copolyester containing alkylene arylate units as a main component (for example, 50% by weight or more), and the copolymer components include C2 such as ethylene glycol, propylene glycol, butanediol, and hexanediol. -6 alkylene glycol, polyoxy C2-4 alkylene glycol, phthalic acid, asymmetric aromatic dicarboxylic acids such as isophthalic acid or their acid anhydrides, and aliphatic dicarboxylic acids such as adipic acid. Additionally, a small amount of polyol and/or polycarboxylic acid may be used to introduce a branched chain structure into the linear polyester.
  • a modified polyester resin modified with a modifying compound may be used.
  • Modified compounds include polyamines (ethylenediamine, trimethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane and other carbon Aliphatic diamines such as linear or branched alkylenediamines having a number of about 2 to 10; Alicyclic diamines such as isophoronediamine, bis(4-amino-3-methylcyclohexyl)methane, and bis(aminomethyl)cyclohexane ; for example, aromatic diamines such as phenylenediamine, xylylenediamine, diaminodiphenylmethane; etc.
  • the weight average molecular weight of the saturated polyester resin is preferably 3,000 to 12,000, more preferably 6,000 to 11,000.
  • the acid value is preferably 5 or less.
  • the weight of the saturated polyester resin in the non-volatile content of the sizing agent is preferably 30% or less.
  • unsaturated polyester resins include unsaturated polyesters obtained by reacting acid components containing ⁇ , ⁇ -unsaturated dicarboxylic acids with alcohols.
  • the ⁇ , ⁇ -unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and derivatives thereof such as acid anhydrides. Two or more of these may be used in combination.
  • acid components other than ⁇ , ⁇ -unsaturated dicarboxylic acids such as saturated dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid and sebacic acid, and acid anhydrides thereof.
  • Derivatives may be used in combination with ⁇ , ⁇ -unsaturated dicarboxylic acids.
  • alcohols include aliphatic glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,2-propanediol, 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol.
  • cyclopentanediol cyclohexanediol and other alicyclic diols
  • hydrogenated bisphenol A bisphenol A propylene oxide (1 to 100 mol) adducts
  • aromatic diols such as xylene glycol, trimethylolpropane, pentaerythritol and other polyhydric diols Alcohols and the like can be mentioned, and two or more of these may be used in combination.
  • unsaturated polyester resins include, for example, condensates of fumaric acid or maleic acid and ethylene oxide (hereinafter abbreviated as EO) adducts of bisphenol A; propylene oxide of fumaric acid or maleic acid and bisphenol A (hereinafter abbreviated as EO); , abbreviated as PO.) adducts, condensates of EO and PO adducts of fumaric acid or maleic acid and bisphenol A (the addition of EO and PO may be random or block), and the like. can.
  • EO ethylene oxide
  • PO propylene oxide of fumaric acid or maleic acid and bisphenol A
  • the weight average molecular weight of the unsaturated polyester resin is preferably 3000-12000, more preferably 3000-8000.
  • the acid value is preferably 5 or less.
  • the weight of the unsaturated polyester resin in the non-volatile content of the sizing agent is preferably 40% or less.
  • the rosin ester resin is an esterified product derived from rosin, for example, a compound obtained by esterifying rosin and a hydroxyl group-containing compound.
  • Rosin is a natural resin obtained from pine trees, and is a mixture containing abietic acid and its isomers in various proportions.
  • ingredients other than abietic acid include dehydroabietic acid, dihydroabietic acid, neoabietic acid, pimaric acid, isopimaric acid, levopimaric acid, and parastric acid.
  • the hydroxyl group-containing compound is not particularly limited, but examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neo Compounds having two hydroxyl groups such as pentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, octanediol, dipropylene glycol and bisphenol A, glycerin, trimethylolethane and trimethylol Examples include compounds having three hydroxyl groups such as propane, compounds having four hydroxyl groups such as pentaerythritol, sorbitan and diglycerin, and compounds having six hydroxyl groups such as sorbitol and dipentaerythritol.
  • rosin ester a compound obtained by adding an alkylene oxide such as ethylene oxide or propylene oxide to the esterified product can also be used. Addition of these alkylene oxides can be carried out according to a conventional method.
  • the weight of the rosin ester resin in the non-volatile content of the sizing agent is preferably 60% or less. A liquid rosin ester resin is preferred.
  • the liquid rosin ester resin has excellent shape retention and plays a role of enhancing affinity with the matrix resin. It is not clear why the liquid rosin ester resin exhibits excellent shape retention and the effect of increasing affinity with the matrix resin, but it is presumed that the uniform adhesion due to the molecular structure and mobility is the cause .
  • the “liquid” of the liquid rosin ester resin means that it has fluidity at normal temperature and normal pressure (1 atm, 25° C.). More specifically, it means that when the composition is tilted at 45°, the shape cannot be maintained for 10 minutes or more and the shape changes.
  • the complex viscosity at 25 ° C., strain 0.005, frequency 1 Hz is 10,000 Pa s or less, preferably 5,000 Pa s or less, and 4,000 Pa s or less is more preferable, and 3,000 Pa ⁇ s or less is even more preferable.
  • a preferable lower limit is 3,000 Pa ⁇ s.
  • the sizing agent for reinforcing fibers of the present invention contains 50 to 80% by weight of water for excellent stability and handleability.
  • the sizing agent of the present invention contains alcohol (methyl alcohol, ethyl alcohol, , isopropyl alcohol, etc.), glycols (ethylene glycol, diethylene glycol, propylene glycol, butyl glycol, butyl diglycol, isopropyl glycol, etc.), acetone, methyl ethyl ketone, and other organic solvents may be used.
  • alcohol methyl alcohol, ethyl alcohol, , isopropyl alcohol, etc.
  • glycols ethylene glycol, diethylene glycol, propylene glycol, butyl glycol, butyl diglycol, isopropyl glycol, etc.
  • acetone methyl ethyl ketone
  • other organic solvents may be used.
  • the sizing agent of the present invention may contain a leveling agent.
  • smoothing agents include esters of higher fatty acids and higher alcohols, natural fats and oils (coconut oil, beef tallow, olive oil, rapeseed oil, etc.), liquid paraffin, and waxes.
  • higher fatty acids are as described above.
  • alkyl groups of higher alcohols are as described above for the alkyl groups that make up the hydrophobic group.
  • waxes include polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, modified polyethylene, modified polypropylene, paraffin wax, candelilla wax, carnauba wax, rice wax, and beeswax.
  • the content of the smoothing agent is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight, based on the non-volatile content of the sizing agent for reinforcing fibers.
  • fatty acids and/or alcohols with 30 or more carbon atoms and/or esters thereof are preferably included from the viewpoint of shape retention and product stability.
  • examples include candelilla wax and carnauba wax.
  • the sizing agent for reinforcing fibers of the present invention has a non-volatile complex viscosity of 1 ⁇ 10 3 to 1 ⁇ 10 5 Pa ⁇ s at 25° C., a strain of 0.005, and a frequency of 1 Hz.
  • 1 ⁇ 10 5 Pa ⁇ s is preferable, 5 ⁇ 10 3 to 5 ⁇ 10 4 Pa ⁇ s is more preferable, and 1 ⁇ 10 4 to 5 ⁇ 10 4 Pa ⁇ s is further preferable. If it is less than 1 ⁇ 10 3 Pa ⁇ s, the shape retention is insufficient, and if it exceeds 1 ⁇ 10 5 Pa ⁇ s, it is too hard and the shape retention is insufficient.
  • the complex viscosity and the loss modulus were determined by drying the reinforcing fiber sizing agent composition at 105° C. for 1 hour in a constant temperature dryer, and using a rheometer at 25° C. or 120° C., a frequency of 1 Hz, and a strain of 0. It is measured under the condition of 0.005.
  • the non-volatile content in the present invention refers to the component when the sizing agent is heat-treated at 105° C. to remove water, solvent, etc. and reaches a constant weight.
  • the non-volatile loss elastic modulus of the sizing agent at 120° C., strain 0.005, frequency 1 Hz is 5 to 30 Pa, preferably 5 to 25 Pa, more preferably 8 to 20 Pa, and even more preferably 8 to 15 Pa. If the pressure is less than 5 Pa, the absolute dry material moves during drying with oil, resulting in poor adhesion and insufficient shape retention. If the pressure exceeds 30 Pa, the absolute dry material will not easily move during drying with oil, resulting in poor uniform adhesion and insufficient shape retention.
  • the organic compound having a molecular weight of 350 or less is 15% by weight or less from the viewpoint of shape retention. It is more preferably 12% by weight or less, and still more preferably 8% by weight or less.
  • the weight-average molecular weight in the present invention is determined by using a high-speed gel permeation chromatography device HLC-8220GPC manufactured by Tosoh Corporation, with a sample concentration of 3 mg / cc. and calculated from the peak measured with a differential refractive index detector.
  • bisphenol A diglycidyl ether is preferably 15% by weight or less, more preferably 12% by weight or less, and even more preferably 8% by weight or less, relative to the non-volatile matter.
  • the epoxy resin (A) is preferably 20 to 80% by weight, more preferably 30 to 80% by weight, and even more preferably 30 to 70% by weight, based on the non-volatile content of the reinforcing fiber sizing agent.
  • the surfactant (B) is preferably 10 to 40% by weight, more preferably 20 to 35% by weight, and even more preferably 20 to 30% by weight, based on the non-volatile content of the sizing agent for reinforcing fibers. .
  • the method for producing the sizing agent of the present invention is not particularly limited, and known methods can be adopted.
  • Each component constituting the sizing agent is mixed, and after heating the resulting mixture to a softening point or higher, water is gradually added while mechanical shearing force is applied using a homogenizer, homomixer, ball mill, or the like.
  • Examples include a method of phase inversion emulsification, and a method of mixing an emulsified and dispersed liquid in an oil bath in which the sizing agent is applied.
  • the sizing agent of the present invention is self-emulsified and/or emulsified and dispersed in water.
  • the average particle size of the sizing agent is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 0.01 to 1 ⁇ m, even more preferably 0.01 to 0.5 ⁇ m, from the viewpoint of shape retention. If the average particle size exceeds 10 ⁇ m, the sizing agent cannot be uniformly adhered to the reinforcing fibers, resulting in poor shape retention, and the sizing agent itself may separate in a few days. can be.
  • the average particle size referred to in the present invention is the average value calculated from the particle size distribution measured by a laser diffraction/scattering particle size distribution analyzer (LA-920, manufactured by Horiba).
  • the reinforcing fiber strand of the present invention is obtained by attaching the above reinforcing fiber sizing agent to a raw material synthetic fiber strand, and is a reinforcing fiber for reinforcing a thermosetting resin or a thermoplastic matrix resin.
  • the manufacturing method of the reinforcing fiber strand of the present invention is a manufacturing method including a sizing treatment step of attaching the reinforcing fiber sizing agent described above to the raw material synthetic fiber strand and drying the resulting deposit.
  • the method of attaching the reinforcing fiber sizing agent to the raw material synthetic fiber strand to obtain the deposit is not particularly limited. Any method may be used as long as it is attached to the raw material synthetic fiber strand. Among these methods, the roller dipping method is preferable because the reinforcing fiber sizing agent can be uniformly attached to the raw material synthetic fiber strand.
  • the method for drying the obtained deposit is not particularly limited, and for example, it can be dried by heating with a heating roller, hot air, a hot plate, or the like.
  • the drying temperature is not particularly limited, and is, for example, 100 to 250°C.
  • thermosetting resins such as epoxy resins, vinyl ester resins and phenolic resins and/or polyolefin resins other than the polymer component of the present invention, nylon resins, polycarbonate resins, polyester resins, etc.
  • Thermoplastic resins such as polyacetal resins, ABS resins, phenoxy resins, polymethyl methacrylate resins, polyphenylene sulfide resins, polyetherimide resins, and polyetherketone resins may be adhered to the starting synthetic fiber strands.
  • the reinforcing fiber strand of the present invention is used as a reinforcing fiber for composite materials in which various thermosetting resins or various thermoplastic resins are used as a matrix resin. It may be in a state where
  • the amount of non-volatile matter of the reinforcing fiber sizing agent attached to the raw material synthetic fiber strand can be selected as appropriate, and may be the amount necessary for the synthetic fiber strand to have the desired function. It is preferably 0.1 to 20% by weight.
  • the adhesion amount thereof is more preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the raw material synthetic fiber strands. Further, in a strand cut into a predetermined length, it is more preferably 0.5 to 20% by weight, more preferably 1 to 10% by weight.
  • the adhesion amount of the sizing agent for reinforcing fibers is small, it is difficult to obtain the effect of the present invention regarding shape retention, and the bundling of the synthetic fiber strands may be insufficient, resulting in poor handleability.
  • the amount of the sizing agent for reinforcing fibers attached is too large, the synthetic fiber strands become too rigid, which may adversely affect the shape retention and the resin impregnation during composite molding. I don't like it.
  • Synthetic fibers of the (raw material) synthetic fiber strand to which the sizing agent for reinforcing fibers of the present invention can be applied include various inorganic fibers such as carbon fiber, glass fiber, and ceramic fiber, aramid fiber, polyethylene fiber, polyethylene terephthalate fiber, and polybutylene.
  • Various organic fibers such as terephthalate fiber, polyethylene naphthalate fiber, polyarylate fiber, polyacetal fiber, PBO fiber, polyphenylene sulfide fiber and polyketone fiber can be used.
  • the synthetic fiber strand of the present invention is a fiber bundle obtained by bundling 3,000 to 100,000 single yarns (filaments) of at least one kind selected from the group consisting of these fibers. From the viewpoint of handleability and shape retention, the number is preferably 10,000 or more, more preferably 20,000 or more.
  • the synthetic fiber strand of the present invention may be subjected to a fiber opening process for widening the strand width. Examples of the method of fiber opening include rubbing against a metal surface. The temperature during the opening process is, for example, 20 to 100°C.
  • the fiber-reinforced composite material of the present invention contains a thermosetting matrix resin or a thermoplastic matrix resin and the reinforcing fiber strands described above. Since the reinforcing fiber strands are treated with the reinforcing fiber sizing agent of the present invention, the reinforcing fiber strands and the thermoplastic matrix resin have good affinity, resulting in a fiber-reinforced composite material with excellent adhesiveness.
  • the fiber-reinforced composite material of the present invention contains a matrix resin and the reinforcing fiber strands described above.
  • the reinforcing fiber strands are treated with the sizing agent of the present invention so that the sizing agent is evenly adhered to the reinforcing fiber strands, which improves the affinity between the reinforcing fiber strands and the matrix resin, resulting in a fiber-reinforced composite material with excellent adhesiveness. Furthermore, thermal decomposition of the sizing agent during high-temperature treatment can be suppressed, and inhibition of adhesion to the matrix resin due to thermal decomposition can be suppressed.
  • the matrix resin refers to a matrix resin made of a thermosetting resin or a thermoplastic resin, and may contain one or more types.
  • thermosetting resin is not particularly limited, and examples thereof include epoxy resins, phenol resins, unsaturated polyester resins, vinyl ester resins, cyanate ester resins, polyimide resins, and the like.
  • the thermoplastic resin is not particularly limited, and may be polyolefin resin, polyamide resin, polycarbonate resin, polyester resin, polyacetal resin, ABS resin, phenoxy resin, polymethyl methacrylate resin, polyphenylene sulfide resin, polyetherimide resin, poly Ether ketone resin and the like are included.
  • thermosetting resins are preferred, and epoxy resins and vinyl ester resins are more preferred, because the sizing agent of the present invention is more effective in improving adhesion.
  • the matrix resins may be partially or wholly modified for the purpose of further improving adhesion to the reinforcing fiber strands.
  • the method for producing the fiber-reinforced composite material is not particularly limited, and known methods such as compound injection molding using chopped fibers, long fiber pellets, etc., press molding using UD sheets, woven sheets, etc., and other filament winding molding can be used.
  • the content of the synthetic fiber strands in the fiber-reinforced composite material is also not particularly limited, and may be appropriately selected depending on the type and form of the fibers, the type of the thermoplastic matrix resin, etc. However, for the fiber-reinforced composite material obtained, 5 to 70% by weight is preferred, and 20 to 60% by weight is more preferred.
  • ⁇ Evaluation 1 of shape retention> The carbon fiber bundles were evaluated according to the following shape retention measurement method and evaluation criteria, and the results are shown in Tables 1-3.
  • ⁇ Method for measuring shape retention> In an environment of 25 ° C., while fixing one side of the carbon fiber bundle to a mirror surface stainless steel rod with a diameter of 8 mm and a length of 10 cm, it is bent downward along the curved surface of the mirror surface stainless steel rod at an angle of 90 degrees. , while applying a tension of 1000 g in the vertical direction, and held for 1 minute. After that, the fixation on the horizontal side was removed, and the bending angle when the tension in the vertical direction was released was measured using a protractor and evaluated according to the following evaluation criteria.
  • bending angle is 70 degrees or more and less than 100 degrees
  • bending angle is 50 degrees or more and less than 70 degrees or 100 degrees or more and less than 120 degrees
  • bending angle is less than 50 degrees or 120 degrees or more
  • the carbon fiber bundle was passed through the five mirror-finished stainless steel rods in a zigzag manner at a pulling force of 2000 g and a speed of 3 m/min.
  • ⁇ Complex viscosity and loss modulus> Using a rheometer (HAAKE MARS 40, manufactured by ThermoFisher SCIENTIFIC), the complex viscosity at 25°C and the loss modulus at 120°C were measured under conditions of a frequency of 1 Hz and a strain of 0.005.
  • Surfactant (B) (B-1): Pluronic (registered trademark) P-85 (manufactured by ADEKA Corporation) POEO polyether (B-2): Pluronic (registered trademark) L-121 (manufactured by ADEKA Corporation) POEO polyether (B -3): Pluronic (registered trademark) P-103 (manufactured by ADEKA Corporation) POEO polyether (B-4): Pluronic (registered trademark) F-108 (manufactured by ADEKA Corporation) POEO polyether (B-5) ): POE hydrogenated castor oil ether (50 mol of EO) (B-6): Newcole (registered trademark) 707-SF (manufactured by Nippon Nyukazai Co., Ltd., 30%) POE polycyclic phenyl ether sulfate ammonium salt (B-7): Newcole (registered trademark) 740-SF (Japan Emulsifier Co., Ltd.
  • Resin (C-1) Harrier Star SK-501NS (manufactured by Harima Kasei Co., Ltd.) rosin ester resin emulsion (50%), 25 ° C., 1 atm, complex viscosity of product dried at 105 ° C. for 2 hours 2100 Pa s)
  • C-2) Superester A-18 (manufactured by Arakawa Chemical Industries, Ltd.) rosin ester resin, 25 ° C., 1 atm, complex viscosity of product dried at 105 ° C.
  • C-3 Harrier SK-385NS (manufactured by Harima Kasei Co., Ltd.) solid rosin ester resin emulsion (50%)
  • C-4 Unsaturated polyester resin (C-4) shown below (C-5): saturated polyester resin (C-5) shown below (C-6): Unsaturated polyester resin (C-6) shown below (C-7): saturated polyester resin (C-7) shown below (C-8): Marposol (registered trademark) F-700: (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) acrylic resin emulsion (40%)
  • D-1 polyethylene glycol (average molecular weight 10000)
  • D-2 polyethylene glycol (average molecular weight 20000)
  • D-3 Brian (registered trademark) TW-85 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) carnauba wax emulsion (40%)
  • D-4 Sizing wax K-52 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) Mixed wax emulsion of carnauba wax, candelilla wax and rice wax (40%)
  • D-5) oleyl oleate
  • D-6) isopropyl glycol
  • the ingredients other than water shown in Tables 1 to 4 were charged into an emulsifier, and water was gradually added under stirring at 60°C for phase inversion emulsification to obtain an aqueous sizing agent dispersion.
  • the sizing agent aqueous dispersion thus obtained was diluted with water to prepare a sizing agent emulsion having a non-volatile content of 3% by weight, and a sizing agent-untreated carbon fiber strand (average diameter: 8 ⁇ m, number of filaments: 24,000) was immersed and impregnated. After drying, it was dried with hot air at 120° C. for 5 minutes to obtain a sizing agent-treated carbon fiber strand with a theoretical adhesion amount of 1.0%.
  • Each characteristic value of the present sizing agent and the present strand was evaluated by the method described above. The results are shown in Tables 1-4.
  • the sizing agents for reinforcing fibers of Examples 1 to 13 are sizing agents for reinforcing fibers containing an epoxy resin (A), a surfactant (B), and water.
  • the non-volatile complex viscosity of the sizing agent at a strain of 0.005 and a frequency of 1 Hz is 1 ⁇ 10 3 to 1 ⁇ 10 5 Pa s
  • the non-volatile of the sizing agent at 120 ° C. a strain of 0.005 and a frequency of 1 Hz Since the loss elastic modulus is 5 to 30 Pa, it is easy to handle and maintains its shape.

Abstract

The present invention provides a sizing agent for reinforcing fibers, the sizing agent having shape retainability, while exhibiting excellent handling properties. A sizing agent for reinforcing fibers, the sizing agent containing (A) an epoxy resin, (B) a surfactant, and water; the complex viscosity of the nonvolatile content of the sizing agent at 25°C, at a strain of 0.005 and at a frequency of 1 Hz is from 1 × 103 to 1 × 105 Pa·s; and the loss elastic modulus of the nonvolatile content of the sizing agent at 120°C, at a strain of 0.005 and at a frequency of 1 Hz is from 5 to 30 Pa.

Description

強化繊維用サイジング剤及びその用途Sizing agent for reinforcing fiber and use thereof
 本発明は、強化繊維用サイジング剤及びその用途に関する。詳細には、マトリックス樹脂を補強するために用いられる強化繊維用サイジング剤、これを用いた強化繊維ストランド及び繊維強化複合材料に関する。 The present invention relates to a sizing agent for reinforcing fibers and uses thereof. More particularly, it relates to a reinforcing fiber sizing agent used to reinforce a matrix resin, a reinforcing fiber strand and a fiber-reinforced composite material using the same.
 自動車用途、航空・宇宙用途、スポーツ・レジャー用途、一般産業用途等に、プラスチック材料(マトリックス樹脂と称される)を各種合成繊維で補強した繊維強化複合材料が幅広く利用されている。これらの複合材料に使用される強化繊維としては、炭素繊維、ガラス繊維、セラミック繊維などの各種無機繊維、アラミド繊維、ポリアミド繊維、ポリエチレン繊維などの各種有機繊維が挙げられる。これら各種強化繊維は通常、フィラメント形状で製造され、その後ホットメルト法やドラムワインディング法等により一方向プリプレグと呼ばれるシート状の中間材料に加工されたり、フィラメントワインディング法によって加工されたり、場合によっては織物又はチョップドファイバー形状に加工されたりする等、各種高次加工工程を経て、使用されている。 Fiber-reinforced composite materials, in which plastic materials (called matrix resins) are reinforced with various synthetic fibers, are widely used for automotive applications, aerospace applications, sports and leisure applications, and general industrial applications. Reinforcing fibers used in these composite materials include various inorganic fibers such as carbon fibers, glass fibers and ceramic fibers, and various organic fibers such as aramid fibers, polyamide fibers and polyethylene fibers. These various reinforcing fibers are usually manufactured in a filament shape, and then processed into a sheet-like intermediate material called a unidirectional prepreg by a hot melt method, a drum winding method, or the like, or processed by a filament winding method, or in some cases, a woven fabric. Or, it is used after undergoing various high-order processing steps, such as being processed into a chopped fiber shape.
 強化繊維複合材料のマトリックス樹脂としてはエポキシ樹脂が広く使用されている。エポキシ樹脂以外にもラジカル重合系のマトリックス樹脂として不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂等が使用されている。
 強化繊維複合材料の機械強度を向上させるためには、マトリックス樹脂と強化繊維の濡れ性や接着性が重要となり、上記のエポキシ樹脂、ラジカル重合系のマトリックス樹脂に対して、強化繊維の濡れ性や接着性が向上するサイジング剤が提案されている。
Epoxy resins are widely used as matrix resins for reinforcing fiber composite materials. In addition to epoxy resins, unsaturated polyester resins, vinyl ester resins, acrylic resins, etc. are used as matrix resins for radical polymerization.
In order to improve the mechanical strength of the reinforcing fiber composite material, the wettability and adhesiveness between the matrix resin and the reinforcing fiber are important. Sizing agents that improve adhesion have been proposed.
 各種高次加工工程において、各種強化繊維は、糸切れや毛羽による各種物性や品質の低下を抑制するため、集束性が求められる。また、高次加工時のガイドなどの工程通過後のバラケを抑制し、取扱性を向上させるために形体保持性が求められる。また、品質の高いコンポジットを製造するため、形状を保持したまま隙間なく均一にストランド幅を広げる開繊性が必要である。
 特許文献1や特許文献2に記載のサイジング剤は、糸切れや毛羽による各種物性や品質の低下を抑制するため、集束性を向上させているが、サイジング剤の付着工程や乾燥工程における強化繊維表面のサイジング剤の付着状態が悪く、初期の集束性は良くても加工工程の過程で形体保持性を維持させることは難しく、取扱性の低下が問題であった。
 
In various high-order processing steps, various reinforcing fibers are required to have bundling properties in order to suppress deterioration of various physical properties and quality due to thread breakage and fluff. In addition, shape retention is required in order to suppress breakage after passing through processes such as guides during advanced processing and to improve handleability. In addition, in order to manufacture a high-quality composite, it is necessary to have the ability to spread the strand width uniformly while maintaining the shape.
The sizing agents described in Patent Document 1 and Patent Document 2 improve bundling properties in order to suppress deterioration of various physical properties and quality due to yarn breakage and fluff. The adhesion of the sizing agent to the surface was poor, and although the initial bundleability was good, it was difficult to maintain the shape retention during the processing process, and the problem was the deterioration of handling.
日本国特開2015-190067号公報Japanese Patent Application Laid-Open No. 2015-190067 日本国特開2016-89276号公報Japanese Patent Application Laid-Open No. 2016-89276
 かかる従来の技術背景に鑑み、本発明の目的は、取扱性に優れた形体保持性を有する強化繊維用サイジング剤を提供することにある。 In view of such a conventional technical background, an object of the present invention is to provide a sizing agent for reinforcing fibers that has excellent handleability and shape retention.
 本発明者らは、上記課題を解決するために鋭意検討した結果、エポキシ樹脂、界面活性剤及び水を含有し、複素粘度及び損失弾性率が特定の値である強化繊維用サイジング剤であれば、上記課題を解決できることを見出した。
 すなわち、本発明の強化繊維用サイジング剤は、エポキシ樹脂(A)、界面活性剤(B)及び水を含有する強化繊維用サイジング剤であって、25℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の複素粘度が1×10~1×10Pa・sであり、120℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の損失弾性率が5~30Paである。
As a result of intensive studies to solve the above problems, the present inventors have found that a sizing agent for reinforcing fibers containing an epoxy resin, a surfactant and water and having specific values of complex viscosity and loss modulus , found that the above problems can be solved.
That is, the reinforcing fiber sizing agent of the present invention is a reinforcing fiber sizing agent containing an epoxy resin (A), a surfactant (B) and water, and The nonvolatile content of the sizing agent has a complex viscosity of 1×10 3 to 1×10 5 Pa·s, and the loss elastic modulus of the nonvolatile content of the sizing agent at 120° C., strain of 0.005, and frequency of 1 Hz is 5 to 30 Pa. be.
 前記エポキシ樹脂(A)が下記一般式(1)で示される化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000002
 (1)
(式(1)中、R、R、R及びRは、それぞれ独立して、水素原子又はメチル基である。nは0以上の整数である。)
 前記サイジング剤の不揮発分における前記エポキシ樹脂(A)が30重量%以上であり、前記サイジング剤の不揮発分に占める前記一般式(1)においてnが0であるエポキシ樹脂(A―1)が15重量%以下であると好ましい。
 ビニルエステル樹脂、飽和ポリエステル樹脂、不飽和ポリエステル樹脂及びロジンエステル樹脂からなる群から選ばれる少なくとも1種をさらに含有すると好ましい。
 前記界面活性剤(B)が、非イオン界面活性剤及びアニオン界面活性剤から選ばれる少なくとも1種を含み、前記非イオン界面活性剤が複数の末端にポリオキシエチレン基を有する非イオン界面活性剤を含み、前記アニオン界面活性剤がサルフェート塩及びホスフェート塩から選ばれる少なくとも1種を含むと好ましい。
The epoxy resin (A) is preferably a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
(1)
(In Formula (1), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a methyl group. n is an integer of 0 or more.)
The epoxy resin (A) in the nonvolatile matter of the sizing agent is 30% by weight or more, and the epoxy resin (A-1) in which n is 0 in the general formula (1) accounts for 15% in the nonvolatile matter of the sizing agent. % by weight or less is preferable.
It is preferable to further contain at least one selected from the group consisting of vinyl ester resins, saturated polyester resins, unsaturated polyester resins and rosin ester resins.
The surfactant (B) contains at least one selected from nonionic surfactants and anionic surfactants, and the nonionic surfactant has a polyoxyethylene group at a plurality of terminals. and the anionic surfactant preferably contains at least one selected from sulfate salts and phosphate salts.
 本発明の強化繊維ストランドは、前記強化繊維用サイジング剤を付着させたものである。
 本発明の繊維強化複合材料は、マトリックス樹脂と、前記強化繊維ストランドとを含む。
 前記マトリックス樹脂が熱硬化性樹脂であると好ましい。
The reinforcing fiber strand of the present invention has the reinforcing fiber sizing agent adhered thereto.
The fiber-reinforced composite material of the present invention includes a matrix resin and the reinforcing fiber strands.
Preferably, the matrix resin is a thermosetting resin.
 本発明の強化繊維用サイジング剤は、形体保持性を有することができる。本発明の強化繊維ストランドを使用することにより、優れた物性を有する強化繊維複合材料が得られる。 The sizing agent for reinforcing fibers of the present invention can have shape retention properties. By using the reinforcing fiber strand of the present invention, a reinforcing fiber composite material having excellent physical properties can be obtained.
 本発明の強化繊維用サイジング剤の各成分について詳細に説明する。
〔エポキシ樹脂(A)〕
 エポキシ樹脂(A)は、本発明の強化繊維用サイジング剤の必須成分である。
 エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、アミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、イソシアネート変性エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等を挙げることができる。
Each component of the sizing agent for reinforcing fibers of the present invention will be described in detail.
[Epoxy resin (A)]
The epoxy resin (A) is an essential component of the reinforcing fiber sizing agent of the present invention.
Examples of epoxy resins include bisphenol-type epoxy resins, amine-type epoxy resins, phenol novolac-type epoxy resins, cresol novolac-type epoxy resins, resorcinol-type epoxy resins, phenol aralkyl-type epoxy resins, naphthol aralkyl-type epoxy resins, and dicyclopentadiene-type epoxy resins. Examples include epoxy resins, epoxy resins having a biphenyl skeleton, isocyanate-modified epoxy resins, tetraphenylethane-type epoxy resins, triphenylmethane-type epoxy resins, and the like.
 ここで、ビスフェノール型エポキシ樹脂とは、ビスフェノール化合物の2つのフェノール性水酸基がグリシジル化されたものであり、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型、もしくはこれらビスフェノールのハロゲン、アルキル置換体、水添品等を挙げることができる。また、単量体に限らず、複数の繰り返し単位を有する高分子量体も好適に使用することができる。 Here, the bisphenol-type epoxy resin is a bisphenol compound in which two phenolic hydroxyl groups are glycidylized, and includes bisphenol A type, bisphenol F type, bisphenol AD type, bisphenol S type, or halogen or alkyl of these bisphenols. Examples include substituted products, hydrogenated products, and the like. Moreover, not only monomers but also high molecular weight substances having a plurality of repeating units can be suitably used.
 アミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキノール置換体、水添品等を挙げることができる。 Examples of amine-type epoxy resins include tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylylenediamine, and halogen- and alkynol-substituted products thereof, and hydrogenated products thereof.
 エポキシ樹脂のエポキシ当量は、100~1500g/eqが好ましく、200~1000g/eqがより好ましく、300~800g/eqがさらに好ましい。エポキシ当量が100g/eq未満の場合、強化繊維ストランドの経時硬化を促進することがある。エポキシ当量が1500g/eq超の場合、マトリックス樹脂との接着性が低下することがある。なお、エポキシ当量とは、JIS-K-7236に準拠したものをいう。 The epoxy equivalent of the epoxy resin is preferably 100-1500 g/eq, more preferably 200-1000 g/eq, and even more preferably 300-800 g/eq. When the epoxy equivalent is less than 100 g/eq, the reinforcing fiber strands may be cured over time. If the epoxy equivalent exceeds 1500 g/eq, the adhesiveness to the matrix resin may deteriorate. Incidentally, the epoxy equivalent is based on JIS-K-7236.
 エポキシ樹脂の重量平均分子量は、100~10000が好ましく、400~8000がより好ましく、600~6000がさらに好ましい。重量平均分子量が100未満の場合、形体保持性が不足するとともに、強化繊維ストランドの乾燥工程等で耐熱性が不足し揮散してしまうことがある。重量平均分子量が10000超の場合、形体保持性が不足するとともに、サイジング剤の長期保管安定性が低下することがある。 The weight average molecular weight of the epoxy resin is preferably 100-10000, more preferably 400-8000, and even more preferably 600-6000. If the weight-average molecular weight is less than 100, the shape-retaining property may be insufficient, and the heat resistance may be insufficient during the step of drying the reinforcing fiber strands, and volatilization may occur. If the weight-average molecular weight exceeds 10,000, the shape retention may be insufficient, and the long-term storage stability of the sizing agent may be lowered.
 エポキシ樹脂は、強化繊維とマトリックス樹脂の接着性向上の点から、分子構造中に芳香環を有する芳香族エポキシ樹脂が好ましい。
 上記の芳香族エポキシ樹脂としては、ハイドロキノン、レゾルシン、ピロカテコールなどの単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、ビスフェノールF、ビスフェノールA、フェノールノボラック、オルソクレゾールノボラック、レゾルシンノボラック、ビスフェノールFノボラック、ビスフェノールAノボラック、ジシクロペンタジエン変性フェノール、トリフェニルメタン、テトラフェニルエタンなどの多核多価フェノール化合物のポリグリシジルエーテル化合物などが挙げられる。
The epoxy resin is preferably an aromatic epoxy resin having an aromatic ring in its molecular structure from the viewpoint of improving the adhesion between the reinforcing fiber and the matrix resin.
Examples of the aromatic epoxy resins include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcinol, and pyrocatechol; Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as bisphenol F novolak, bisphenol A novolak, dicyclopentadiene-modified phenol, triphenylmethane, and tetraphenylethane can be used.
 これら芳香族エポキシ樹脂の中でも、ビスフェノールA型エポキシ樹脂が好ましく、下記一般式(1)で示される化合物であると、本願効果の観点から、さらに好ましい。 Among these aromatic epoxy resins, bisphenol A type epoxy resins are preferable, and compounds represented by the following general formula (1) are more preferable from the viewpoint of the effects of the present application.
Figure JPOXMLDOC01-appb-C000003
 (1)
(式(1)中、R、R、R及びRは、それぞれ独立して、水素原子又はメチル基である。nは0以上の整数である。)
Figure JPOXMLDOC01-appb-C000003
(1)
(In Formula (1), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a methyl group. n is an integer of 0 or more.)
本発明の強化繊維用サイジング剤の不揮発分に占める、上記n=0のエポキシ樹脂の重量割合は、15重量%以下が好ましく、10重量以下がより好ましく、5重量%以下がさらに好ましい。
 上記n=0のエポキシ樹脂の重量割合が少ないと、エポキシ樹脂の粘度が高くなり、エポキシ当量が増加することで、形体保持性や強化繊維用サイジング剤の安定性に優れる。
The weight ratio of the epoxy resin with n=0 in the non-volatile matter of the sizing agent for reinforcing fibers of the present invention is preferably 15% by weight or less, more preferably 10% by weight or less, and even more preferably 5% by weight or less.
When the weight ratio of the epoxy resin with n=0 is small, the viscosity of the epoxy resin increases, and the epoxy equivalent increases, thereby providing excellent shape retention and stability of the reinforcing fiber sizing agent.
 上述のエポキシ樹脂の製造方法としては、特に限定はなく、公知の方法を採用できる。また、上述のエポキシ樹脂は、一般に市販されているものであり、本発明の強化繊維用サイジング剤では、それら市販のエポキシ樹脂を使用することができる。 The method for producing the epoxy resin described above is not particularly limited, and known methods can be adopted. Moreover, the epoxy resins described above are generally commercially available, and the sizing agent for reinforcing fibers of the present invention can use these commercially available epoxy resins.
〔界面活性剤(B)〕
 界面活性剤(B)は、エポキシ樹脂(A)と併用されることで、エポキシ樹脂(A)が水中に容易分散し、強化繊維用サイジング剤の取扱い性や長期安定性が優れる。
 界面活性剤(B)としては、特に限定されず、非イオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤及び両性界面活性剤から、公知のものを適宜選択して使用することができる。界面活性剤は、1種又は2種以上を併用してもよい。好ましくは、非イオン系界面活性剤及びアニオン系界面活性剤である。
[Surfactant (B)]
When the surfactant (B) is used in combination with the epoxy resin (A), the epoxy resin (A) is easily dispersed in water, and the sizing agent for reinforcing fibers is excellent in handleability and long-term stability.
The surfactant (B) is not particularly limited, and can be appropriately selected and used from nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric surfactants. can be done. Surfactants may be used singly or in combination of two or more. Nonionic surfactants and anionic surfactants are preferred.
 非イオン系界面活性剤とは、親水基と疎水基を有する有機化合物であり、親水基としては、ポリオキシエチレン基、ポリオキシエチレン/プロピレンオキサイドランダム共重合基が挙げられる。疎水基としては、アルキル基、アルケニル基、アリール基、アルキルアリール基、多環アリール基、ポリプロピレンオキサイド基などが挙げられる。
 非イオン系界面活性剤としては、たとえば、アルキレンオキサイド付加非イオン系界面活性剤(高級アルコール、高級脂肪酸、アルキルフェノール、スチレン化フェノール、ベンジルフェノール、ソルビタン、ソルビタンエステル、ヒマシ油、硬化ヒマシ油等にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイド(2種以上の併用可)を付加させたもの)、ポリアルキレングリコールに高級脂肪酸等を付加させたもの、エチレンオキサイド/プロピレンオキサイド共重合体等を挙げることができる。非イオン系界面活性剤の中でも、複数の末端にポリオキシエチレン基を有する非イオン系界面活性剤が、本願効果を奏する観点から好ましい。複数の末端にポリオキシエチレン基を有する非イオン系界面活性剤としては、ソルビタン、ソルビタンエステル、ヒマシ油、硬化ヒマシ油にエチレンオキサイドを付加させたもの、ポリプロピレングリコールにエチレンオキサイドを付加させたもの(いわゆるプルロニック(登録商標)型界面活性剤)等が挙げられる。
A nonionic surfactant is an organic compound having a hydrophilic group and a hydrophobic group, and the hydrophilic group includes a polyoxyethylene group and a polyoxyethylene/propylene oxide random copolymer group. Hydrophobic groups include alkyl groups, alkenyl groups, aryl groups, alkylaryl groups, polycyclic aryl groups, polypropylene oxide groups and the like.
Examples of nonionic surfactants include alkylene oxide-added nonionic surfactants (higher alcohols, higher fatty acids, alkylphenols, styrenated phenols, benzylphenols, sorbitan, sorbitan esters, castor oil, hydrogenated castor oil, and ethylene alkylene oxide such as oxide and propylene oxide (two or more kinds thereof can be used in combination), polyalkylene glycol to which higher fatty acid or the like is added, ethylene oxide/propylene oxide copolymer, and the like. . Among nonionic surfactants, nonionic surfactants having polyoxyethylene groups at a plurality of terminals are preferable from the viewpoint of exhibiting the effects of the present application. Nonionic surfactants having polyoxyethylene groups at multiple ends include sorbitan, sorbitan ester, castor oil, hydrogenated castor oil with ethylene oxide added, and polypropylene glycol with ethylene oxide added ( so-called Pluronic (registered trademark) type surfactant) and the like.
 疎水基を構成するアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、2-エチルヘキシル基、デシル基、ラウリル基、イソデシル基、トリデシル基、セチル基、ステアリル基、オレイル基、ベヘニル基等が挙げられ、不飽和結合を有してもよく、第一級、第二級、第三級のいずれでもよく、直鎖でも分岐構造を有してもよい。 Examples of the alkyl group constituting the hydrophobic group include methyl group, ethyl group, propyl group, butyl group, hexyl group, 2-ethylhexyl group, decyl group, lauryl group, isodecyl group, tridecyl group, cetyl group, stearyl group and oleyl group. , behenyl group, etc., may have an unsaturated bond, may be primary, secondary or tertiary, and may have a linear or branched structure.
 疎水基を構成するアルキルアリール基としては、トリル基、キシリル基、クミル基、オクチルフェニル基、2-エチルヘキシルフェニル基、ノニルフェニル基、デシルフェニル基、メチルナフチル基等が挙げられ、アルキル基の位置、数に限定はない。 The alkylaryl group constituting the hydrophobic group includes tolyl group, xylyl group, cumyl group, octylphenyl group, 2-ethylhexylphenyl group, nonylphenyl group, decylphenyl group, methylnaphthyl group and the like. , the number is unlimited.
 疎水基を構成する多環アリール基としては、スチリルフェニル基、スチリルメチルフェニル基、スチリルノニルフェニル基、アルキルスチリルフェニル基、トリスチリルフェニル基、ジスチリルフェニル基、ジスチリルメチルフェニル基、トリスチリルフェニル基、ベンジルフェニル基、ジベンジルフェニル基、アルキルジフェニル基、ジフェニル基、クミルフェニル基、ナフチル基等が挙げられ、置換基の位置や数に限定はない。 Polycyclic aryl groups constituting the hydrophobic group include styrylphenyl, styrylmethylphenyl, styrylnonylphenyl, alkylstyrylphenyl, tristyrylphenyl, distyrylphenyl, distyrylmethylphenyl, and tristyrylphenyl. group, benzylphenyl group, dibenzylphenyl group, alkyldiphenyl group, diphenyl group, cumylphenyl group, naphthyl group, etc., and the position and number of the substituents are not limited.
 上記高級脂肪酸としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸、オレイン酸、リノール酸、リノレン酸、エレオステアリン酸、リシノレイン酸、エルカ酸、ヤシ油脂肪酸、パーム油脂肪酸、パーム核油脂肪酸、牛脂脂肪酸、ひまし油脂肪酸、ナタネ油脂肪酸等が挙げられる。 Examples of higher fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, montanic acid, oleic acid, linoleic acid, linolenic acid, eleostearic acid, ricinoleic acid, erucic acid, and coconut oil fatty acid. , palm oil fatty acid, palm kernel oil fatty acid, beef tallow fatty acid, castor oil fatty acid, rapeseed oil fatty acid and the like.
 非イオン系界面活性剤の中でも、本願効果を奏する観点から、好ましくは、エチレンオキサイド/プロピレンオキサイド共重合体である。非イオン系界面活性剤の平均分子量は、形体保持性の点で、2000~18000が好ましく、3000~6000がさらに好ましい。
 なお、本発明における重量平均分子量は、東ソー(株)製高速ゲルパーミエーションクロマトグラフィー装置HLC-8220GPCを用い、試料濃度3mg/ccで、昭和電工(株)製分離カラムKF-402HQ、KF-403HQに注入し、示差屈折率検出器で測定されたピークより算出した。
Among the nonionic surfactants, ethylene oxide/propylene oxide copolymers are preferable from the viewpoint of exhibiting the effects of the present application. The average molecular weight of the nonionic surfactant is preferably 2,000 to 18,000, more preferably 3,000 to 6,000, from the viewpoint of shape retention.
In addition, the weight average molecular weight in the present invention was measured using a high-speed gel permeation chromatography device HLC-8220GPC manufactured by Tosoh Corporation, with a sample concentration of 3 mg / cc, and separation columns KF-402HQ and KF-403HQ manufactured by Showa Denko K.K. and calculated from the peak measured with a differential refractive index detector.
 アニオン系界面活性剤としては、たとえば、カルボン酸(塩)、高級アルコール・高級アルコールエーテルのサルフェート塩、スルホン酸塩、高級アルコール・高級アルコールエーテルのホスフェート塩等を挙げることができる。好ましくはサルフェート塩、ホスフェート塩である。 Examples of anionic surfactants include carboxylic acids (salts), sulfate salts of higher alcohols/higher alcohol ethers, sulfonates, and phosphate salts of higher alcohols/higher alcohol ethers. Sulfate salts and phosphate salts are preferred.
 具体的には、アルキルサルフェート塩、アルキルアリールサルフェート塩、多環アリールサルフェート塩、ポリオキシアルキレンアルキルエーテルサルフェート塩、ポリオキシアルキレンアルキルアリールエーテルサルフェート塩(ポリオキシアルキレンノニルフェニルエーテルサルフェート塩等)、ポリオキシアルキレン多環アリールサルフェート塩(ポリオキシアルキレントリスチリルフェニルエーテルサルフェート塩、ポリオキシアルキレンジスチリルフェニルエーテルサルフェート塩、ポリオキシアルキレンスチリルフェニルエーテルサルフェート塩、ポリオキシアルキレンスチリルメチルフェニルエーテルサルフェート塩、ポリオキシアルキレンジスチリルメチルフェニルエーテルサルフェート塩、ポリオキシアルキレントリスチリルメチルフェニルエーテルサルフェート塩、ポリオキシアルキレンベンジルフェニルエーテルサルフェート塩、ポリオキシアルキレンジベンジルフェニルエーテルサルフェート塩、ポリオキシアルキレンクミルフェニルエーテルサルフェート塩、ポリオキシアルキレンジクミルフェニルエーテルサルフェート塩、ポリオキシアルキレンナフチルエーテルサルフェート塩等)、ポリオキシアルキレンアルキル多価アルコールエーテルサルフェート塩、アルルスルホネート塩、α-オレフィンスルホネート塩、アルキルアリールスルホネート塩、アルキルアリールジスルホネート塩(アルキルジフェニルジスルホネート塩等)、ビス(ポリオキシアルキレンスチリルフェニルエーテル)コハク酸エステルスルホネート塩、アルキルスルホコハク酸塩、アルキルホスフェート塩、アルキルアリールホスフェート塩、ポリオキシアルキレンアルキルエーテルホスフェート塩、ポリオキシアルキレンアルキルアリールエーテルホスフェート塩、多環アリールエーテルホスフェート塩、ポリオキシアルキレン多環アリールエーテルホスフェート塩、ポリオキシアルキレンアルキル多価アルコールエーテルホスフェート塩、芳香族スルホン酸塩(アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩等)、芳香族スルホン酸ホルマリン縮合物塩(アルキルナフタレンスルホン酸ホルマリン縮合物塩、ナフタレンスルホン酸ホルマリン縮合物塩、クレオソート油スルホン酸塩系ホルマリン縮合物等)、メラミンスルホン酸塩縮合物、ビスフェノールスルホン酸塩系縮合物、アルキルカルボキシレート塩、ポリオキシアルキレンアルキルエーテルカルボキシレート塩、ポリカルボン酸塩、ロート油、リグニンスルホン酸塩等が挙げられる。 Specifically, alkyl sulfate salts, alkylaryl sulfate salts, polycyclic aryl sulfate salts, polyoxyalkylene alkyl ether sulfate salts, polyoxyalkylene alkyl aryl ether sulfate salts (polyoxyalkylene nonylphenyl ether sulfate salts, etc.), polyoxy Alkylene polycyclic aryl sulfate salts (polyoxyalkylene tristyrylphenyl ether sulfate salts, polyoxyalkylene distyrylphenyl ether sulfate salts, polyoxyalkylene styrylphenyl ether sulfate salts, polyoxyalkylene styrylmethylphenyl ether sulfate salts, polyoxyalkylene di Styryl methyl phenyl ether sulfate salt, polyoxyalkylene tristyryl methyl phenyl ether sulfate salt, polyoxyalkylene benzyl phenyl ether sulfate salt, polyoxyalkylene dibenzyl phenyl ether sulfate salt, polyoxyalkylene cumyl phenyl ether sulfate salt, polyoxyalkylene dicumylphenyl ether sulfate salts, polyoxyalkylene naphthyl ether sulfate salts, etc.), polyoxyalkylene alkyl polyhydric alcohol ether sulfate salts, aryl sulfonate salts, α-olefin sulfonate salts, alkylaryl sulfonate salts, alkylaryl disulfonate salts (alkyl diphenyl disulfonate salts, etc.), bis(polyoxyalkylenestyrylphenyl ether) succinic acid ester sulfonate salts, alkyl sulfosuccinates, alkyl phosphate salts, alkylaryl phosphate salts, polyoxyalkylene alkyl ether phosphate salts, polyoxyalkylene alkyl aryl ethers Phosphate salts, polycyclic aryl ether phosphate salts, polyoxyalkylene polycyclic aryl ether phosphate salts, polyoxyalkylene alkyl polyhydric alcohol ether phosphate salts, aromatic sulfonates (alkylnaphthalene sulfonates, naphthalene sulfonates, etc.), Aromatic sulfonic acid formalin condensate salt (alkylnaphthalene sulfonic acid formalin condensate salt, naphthalene sulfonic acid formalin condensate salt, creosote oil sulfonate-based formalin condensate, etc.), melamine sulfonate condensate, bisphenol sulfonate condensate, alkyl carboxy Sylate salts, polyoxyalkylene alkyl ether carboxylate salts, polycarboxylates, funnel oil, lignin sulfonates, and the like.
 上記アニオン界面活性剤が塩の場合、水素原子、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、有機アミン塩、4級アンモニウム塩等であればよい。アルカリ金属としては、ナトリウム、カリウム、リチウム等が挙げられる。アルカリ土類金属としては、マグネシウム、カルシウム、バリウム等が挙げられる。有機アミンとしては、アルキルアミン(トリメチルアミン、トリエチルアミン、モノメチルアミン、ジメチルアミン等)、アルカノールアミン(モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン等)等が挙げられる。4級アンモニウムとしては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラメタノールアンモニウム、テトラエタノールアンモニウム等が挙げられる。これらのアニオン界面活性剤は1種又は2種以上を併用してもよい。
 マトリックスへの親和性に優れるため、好ましくは、アンモニウム塩、有機アミン塩、4級アンモニウム塩である。
When the anionic surfactant is a salt, it may be a hydrogen atom, an alkali metal salt, an alkaline earth metal salt, an ammonium salt, an organic amine salt, a quaternary ammonium salt, or the like. Alkali metals include sodium, potassium, lithium and the like. Alkaline earth metals include magnesium, calcium, barium and the like. Examples of organic amines include alkylamines (trimethylamine, triethylamine, monomethylamine, dimethylamine, etc.), alkanolamines (monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, dimethylethanolamine, diethyl ethanolamine, etc.). Quaternary ammonium includes tetramethylammonium, tetraethylammonium, tetramethanolammonium, tetraethanolammonium and the like. These anionic surfactants may be used singly or in combination of two or more.
Ammonium salts, organic amine salts, and quaternary ammonium salts are preferred because of their excellent affinity to the matrix.
 カチオン系界面活性剤としては、たとえば、第4級アンモニウム塩型カチオン系界面活性剤(ラウリルトリメチルアンモニウムクロライド、オレイルメチルエチルアンモニウムエトサルフェート等)、アミン塩型カチオン系界面活性剤(ポリオキシエチレンラウリルアミン乳酸塩等)等を挙げることができる。 Examples of cationic surfactants include quaternary ammonium salt cationic surfactants (lauryltrimethylammonium chloride, oleylmethylethylammonium ethosulfate, etc.), amine salt cationic surfactants (polyoxyethylene laurylamine lactate, etc.).
 両性界面活性剤としては、たとえば、アミノ酸型両性界面活性剤(ラウリルアミノプロピオン酸ナトリウム等)、ベタイン型両性界面活性剤(ステアリルジメチルベタイン、ラウリルジヒドロキシエチルベタイン等)等を挙げることができる。 Examples of amphoteric surfactants include amino acid-type amphoteric surfactants (sodium laurylaminopropionate, etc.), betaine-type amphoteric surfactants (stearyldimethylbetaine, lauryldihydroxyethylbetaine, etc.), and the like.
〔その他の樹脂〕
 ビニルエステル樹脂、飽和ポリエステル樹脂、不飽和ポリエステル樹脂及びロジンエステル樹脂からなる群から選ばれる少なくとも1種を含むと、形体保持性に優れるため、好ましい。
 構造中に重合性二重結合を有する樹脂であると、形体保持性に優れ、マトリックス樹脂との親和性を高める役割を有するため、さらに好ましい。例えば、ビニルエステル樹脂、不飽和ポリエステル樹脂及びロジンエステル樹脂が挙げられる。
[Other resins]
It is preferable to include at least one selected from the group consisting of vinyl ester resins, saturated polyester resins, unsaturated polyester resins, and rosin ester resins, because the shape retention is excellent.
A resin having a polymerizable double bond in its structure is more preferable because it has excellent shape retention and plays a role of enhancing affinity with the matrix resin. Examples include vinyl ester resins, unsaturated polyester resins and rosin ester resins.
 ビニルエステル樹脂としては、例えば、前記エポキシ樹脂とα,β-不飽和モノカルボン酸とをエステル化させることで得られるエポキシ(メタ)アクリレート等を挙げることができる。α,β-不飽和モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、チグリン酸及び桂皮酸等を挙げることができ、これらの2種以上を併用してもよい。ビニルエステル樹脂の具体例としては、例えば、ビスフェノール型エポキシ樹脂(メタ)アクリレート変性物(ビスフェノールA型エポキシ樹脂のエポキシ基と(メタ)アクリル酸のカルボキシル基とが反応して得られる末端(メタ)アクリレート変性樹脂等)等を挙げることができる。 Examples of vinyl ester resins include epoxy (meth)acrylate obtained by esterifying the above epoxy resin and α,β-unsaturated monocarboxylic acid. Examples of α,β-unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, tiglic acid and cinnamic acid, and two or more of these may be used in combination. Specific examples of the vinyl ester resin include, for example, a bisphenol-type epoxy resin (meth)acrylate-modified product (a terminal (meth) acrylate-modified resin, etc.).
 飽和ポリエステル樹脂としては、例えば、脂肪族ポリエステル樹脂、芳香族ポリエステル樹脂等を挙げることができる。通常は、芳香族ポリエステル樹脂、例えば、ポリアルキレンアリレート樹脂又は飽和芳香族ポリエステル樹脂が使用される。
 芳香族ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリC2-4アルキレンテレフタレート;このポリアルキレンテレフタレートに対応するポリC2-4アルキレンナフタレート(例えば、ポリエチレンナフタレートなど);1,4-シクロへキシルジメチレンテレフタレート(PCT))等を挙げることができる。芳香族ポリエステル樹脂は、アルキレンアリレート単位を主成分(例えば、50重量%以上)として含むコポリエステルであってもよく、共重合成分には、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオールなどのC2-6アルキレングリコール、ポリオキシC2-4アルキレングリコール、フタル酸、イソフタル酸などの非対称芳香族ジカルボン酸又はその酸無水物、アジピン酸などの脂肪族ジカルボン酸等を挙げることができる。さらに、少量のポリオール及び/又はポリカルボン酸を用い、線状ポリエステルに分岐鎖構造を導入してもよい。さらに、変性化合物で変性した変性ポリエステル系樹脂(例えば、アミノ基及びオキシアルキレン基から選択された少なくとも一種を有する芳香族ポリエステル樹脂)を用いてもよい。変性化合物としては、ポリアミン類(エチレンジアミン、トリメチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、1,7-ジアミノヘプタン、1,8-ジアミノオクタンなどの炭素数2~10程度の直鎖又は分岐鎖状アルキレンジアミン等の脂肪族ジアミン類;イソホロンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン等の脂環族ジアミン類;例えば、フェニレンジアミン、キシリレンジアミン、ジアミノジフェニルメタン等の芳香族ジアミン類;等)、ポリオール類(例えば、(ポリ)オキシエチレングリコール、(ポリ)オキシトリメチレングリコール、(ポリ)オキシプロピレングリコール、(ポリ)オキシテトラメチレングリコール等の(ポリ)オキシC2-4アルキレングリコール類等)等を挙げることができる。変性は、例えば、ポリエステル樹脂と変性化合物とを加熱混合し、アミド化、エステル化又はエステル交換反応を利用して行うことができる。
Examples of saturated polyester resins include aliphatic polyester resins and aromatic polyester resins. Typically aromatic polyester resins are used, such as polyalkylene arylate resins or saturated aromatic polyester resins.
Examples of aromatic polyester resins include poly C2-4 alkylene terephthalates such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT); etc.); 1,4-cyclohexyldimethylene terephthalate (PCT)). The aromatic polyester resin may be a copolyester containing alkylene arylate units as a main component (for example, 50% by weight or more), and the copolymer components include C2 such as ethylene glycol, propylene glycol, butanediol, and hexanediol. -6 alkylene glycol, polyoxy C2-4 alkylene glycol, phthalic acid, asymmetric aromatic dicarboxylic acids such as isophthalic acid or their acid anhydrides, and aliphatic dicarboxylic acids such as adipic acid. Additionally, a small amount of polyol and/or polycarboxylic acid may be used to introduce a branched chain structure into the linear polyester. Furthermore, a modified polyester resin modified with a modifying compound (for example, an aromatic polyester resin having at least one selected from amino groups and oxyalkylene groups) may be used. Modified compounds include polyamines (ethylenediamine, trimethylenediamine, propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane and other carbon Aliphatic diamines such as linear or branched alkylenediamines having a number of about 2 to 10; Alicyclic diamines such as isophoronediamine, bis(4-amino-3-methylcyclohexyl)methane, and bis(aminomethyl)cyclohexane ; for example, aromatic diamines such as phenylenediamine, xylylenediamine, diaminodiphenylmethane; etc.), polyols (for example, (poly) oxyethylene glycol, (poly) oxytrimethylene glycol, (poly) oxypropylene glycol, ( (poly)oxy C2-4 alkylene glycols such as poly)oxytetramethylene glycol, etc.). Modification can be performed, for example, by heating and mixing the polyester resin and the modifying compound, and using amidation, esterification, or transesterification reaction.
 飽和ポリエステル樹脂の重量平均分子量は、3000~12000が好ましく、6000~11000がさらに好ましい。酸価は5以下が好ましい。サイジング剤の不揮発分に占める飽和ポリエステル樹脂の重量は、30%以下が好ましい。 The weight average molecular weight of the saturated polyester resin is preferably 3,000 to 12,000, more preferably 6,000 to 11,000. The acid value is preferably 5 or less. The weight of the saturated polyester resin in the non-volatile content of the sizing agent is preferably 30% or less.
 不飽和ポリエステル樹脂としては、α,β-不飽和ジカルボン酸を含む酸成分とアルコールとを反応させて得られる不飽和ポリエステルを挙げることができる。α,β-不飽和ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸等及びこれらの酸無水物等の誘導体等を挙げることができ、これらは2種以上を併用してもよい。また、必要に応じてα,β-不飽和ジカルボン酸以外の酸成分としてフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバシン酸等の飽和ジカルボン酸及びこれらの酸無水物等の誘導体をα,β-不飽和ジカルボン酸と併用してもよい。アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール等の脂肪族グリコール、シクロペンタンジオール、シクロヘキサンジオール等の脂環式ジオール、水素化ビスフェノールA、ビスフェノールAプロピレンオキシド(1~100モル)付加物、キシレングリコール等の芳香族ジオール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール等を挙げることができ、これらの2種以上を併用してもよい。
 不飽和ポリエステル樹脂の具体例としては、例えば、フマル酸又はマレイン酸とビスフェノールAのエチレンオキサイド(以下、EOと略す)付加物との縮合物、フマル酸又はマレイン酸とビスフェノールAのプロピレンオキサイド(以下、POと略す。)付加物との縮合物、フマル酸又はマレイン酸とビスフェノールAのEO及びPO付加物(EO及びPOの付加は、ランダムでもブロックでもよい)との縮合物等を挙げることができる。
Examples of unsaturated polyester resins include unsaturated polyesters obtained by reacting acid components containing α,β-unsaturated dicarboxylic acids with alcohols. Examples of the α,β-unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and derivatives thereof such as acid anhydrides. Two or more of these may be used in combination. In addition, if necessary, acid components other than α,β-unsaturated dicarboxylic acids such as saturated dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid and sebacic acid, and acid anhydrides thereof. Derivatives may be used in combination with α,β-unsaturated dicarboxylic acids. Examples of alcohols include aliphatic glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,2-propanediol, 1,2-butanediol, 1,3-butanediol, and 1,4-butanediol. , cyclopentanediol, cyclohexanediol and other alicyclic diols, hydrogenated bisphenol A, bisphenol A propylene oxide (1 to 100 mol) adducts, aromatic diols such as xylene glycol, trimethylolpropane, pentaerythritol and other polyhydric diols Alcohols and the like can be mentioned, and two or more of these may be used in combination.
Specific examples of unsaturated polyester resins include, for example, condensates of fumaric acid or maleic acid and ethylene oxide (hereinafter abbreviated as EO) adducts of bisphenol A; propylene oxide of fumaric acid or maleic acid and bisphenol A (hereinafter abbreviated as EO); , abbreviated as PO.) adducts, condensates of EO and PO adducts of fumaric acid or maleic acid and bisphenol A (the addition of EO and PO may be random or block), and the like. can.
 不飽和ポリエステル樹脂の重量平均分子量は、3000~12000が好ましく、3000~8000がさらに好ましい。酸価は5以下が好ましい。サイジング剤の不揮発分に占める不飽和ポリエステル樹脂の重量は、40%以下が好ましい。 The weight average molecular weight of the unsaturated polyester resin is preferably 3000-12000, more preferably 3000-8000. The acid value is preferably 5 or less. The weight of the unsaturated polyester resin in the non-volatile content of the sizing agent is preferably 40% or less.
 ロジンエステル樹脂としては、ロジンから誘導されるエステル化物であり、たとえば、ロジンと水酸基含有化合物とをエステル化してなる化合物が挙げられる。 The rosin ester resin is an esterified product derived from rosin, for example, a compound obtained by esterifying rosin and a hydroxyl group-containing compound.
 ロジンは、松から得られる天然樹脂であり、アビエチン酸とその異性体等を種々の割合で含有する混合物である。アビエチン酸以外の含有物の例としては、デヒドロアビエチン酸、ジヒドロアビエチン酸、ネオアビエチン酸、ピマール酸、イソピマール酸、レボピマール酸、パラストリン酸などが挙げられる。 Rosin is a natural resin obtained from pine trees, and is a mixture containing abietic acid and its isomers in various proportions. Examples of ingredients other than abietic acid include dehydroabietic acid, dihydroabietic acid, neoabietic acid, pimaric acid, isopimaric acid, levopimaric acid, and parastric acid.
 上記水酸基含有化合物は特に限定されないが、たとえば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、オクタンジオール、ジプロピレングリコール及びビスフェノールAなどの水酸基を2個有する化合物、グリセリン、トリメチロールエタン及びトリメチロールプロパンなどの水酸基を3個有する化合物、ペンタエリスリトール、ソルビタン及びジグリセリンなどの水酸基を4個有する化合物、ソルビトール及びジペンタエリスリトールなどの水酸基を6個有する化合物が挙げられる。 The hydroxyl group-containing compound is not particularly limited, but examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neo Compounds having two hydroxyl groups such as pentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, octanediol, dipropylene glycol and bisphenol A, glycerin, trimethylolethane and trimethylol Examples include compounds having three hydroxyl groups such as propane, compounds having four hydroxyl groups such as pentaerythritol, sorbitan and diglycerin, and compounds having six hydroxyl groups such as sorbitol and dipentaerythritol.
 ロジンエステルとしては、上記エステル化物に、さらにエチレンオキシドやプロピレンオキシドなどのアルキレンオキシドを付加して得られる化合物を用いることもできる。これらアルキレンオキシドの付加は、常法に従い行うことができる。サイジング剤の不揮発分に占めるロジンエステル樹脂の重量は、60%以下が好ましい。
 好ましくは、液状ロジンエステル樹脂である。
As the rosin ester, a compound obtained by adding an alkylene oxide such as ethylene oxide or propylene oxide to the esterified product can also be used. Addition of these alkylene oxides can be carried out according to a conventional method. The weight of the rosin ester resin in the non-volatile content of the sizing agent is preferably 60% or less.
A liquid rosin ester resin is preferred.
 液状ロジンエステル樹脂は、本願発明の強化繊維用サイジング剤において、形体保持性に優れ、マトリックス樹脂との親和性を高める役割を果たす。液状ロジンエステル樹脂が、形体保持性に優れ、マトリックス樹脂との親和性を高める効果を発揮する理由としては定かではないが、分子構造と運動性に起因した均一付着性が原因と推定している。液状ロジンエステル樹脂の「液状」とは、常温常圧(1atm、25℃)において流動性を有することをいう。より具体的には、組成物を45°傾けた場合、その形状を10分以上保持できず、形状の変化を生じることを意味する。
 更に具体的には、25℃、ひずみ0.005、周波数1Hzにおける複素粘度が10,000Pa・s以下であり、5,000Pa・s以下であることが好ましく、4,000Pa・s以下であることがより好ましく、3,000Pa・s以下であることが更に好ましい。
好ましい下限値は、3,000Pa・sである。この範囲の物性を満たすことにより、形体保持性に優れ、マトリックス樹脂との親和性が高まり接着が容易となる。
In the sizing agent for reinforcing fibers of the present invention, the liquid rosin ester resin has excellent shape retention and plays a role of enhancing affinity with the matrix resin. It is not clear why the liquid rosin ester resin exhibits excellent shape retention and the effect of increasing affinity with the matrix resin, but it is presumed that the uniform adhesion due to the molecular structure and mobility is the cause . The “liquid” of the liquid rosin ester resin means that it has fluidity at normal temperature and normal pressure (1 atm, 25° C.). More specifically, it means that when the composition is tilted at 45°, the shape cannot be maintained for 10 minutes or more and the shape changes.
More specifically, the complex viscosity at 25 ° C., strain 0.005, frequency 1 Hz is 10,000 Pa s or less, preferably 5,000 Pa s or less, and 4,000 Pa s or less is more preferable, and 3,000 Pa·s or less is even more preferable.
A preferable lower limit is 3,000 Pa·s. By satisfying the physical properties within this range, the shape retention property is excellent, the affinity with the matrix resin is enhanced, and the adhesion is facilitated.
〔水〕
 本発明の強化繊維用サイジング剤は、安定性や取扱性に優れるため、水を50~80重量%を含有する。
〔water〕
The sizing agent for reinforcing fibers of the present invention contains 50 to 80% by weight of water for excellent stability and handleability.
 本発明のサイジング剤は、取扱い時の人体への安全性や、火災等の災害防止、自然環境の汚染防止等の観点から、本発明の効果を損なわない範囲で、アルコール(メチルアルコール、エチルアルコール、イソプロピルアルコールなど)、グリコール(エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチルグリコール、ブチルジグリコール、イソプロピルグリコールなど)、アセトン、メチルエチルケトン等の有機溶剤を用いてもよい。 The sizing agent of the present invention contains alcohol (methyl alcohol, ethyl alcohol, , isopropyl alcohol, etc.), glycols (ethylene glycol, diethylene glycol, propylene glycol, butyl glycol, butyl diglycol, isopropyl glycol, etc.), acetone, methyl ethyl ketone, and other organic solvents may be used.
 本発明のサイジング剤は、平滑剤を含むことができる。平滑剤としては、高級脂肪酸と高級アルコールのエステル化物、天然油脂(ヤシ油、牛脂、オリーブ油及びナタネ油等)及び流動パラフィン、ワックス等が挙げられる。高級脂肪酸の例は、上記に記載されたとおりである。高級アルコールのアルキル基の例は、疎水基を構成するアルキル基として上記に記載されたとおりである。ワックスとしては、ポリエチレン、ポリプロピレン、酸化ポリエチレン、酸化ポリプロピレン、変性ポリエチレン、変性ポリプロピレン、パラフィンワックス、キャンデリラワックス、カルナバワックス、ライスワックス、みつろう等が挙げられる。
 平滑剤は、強化繊維用サイジング剤の不揮発分に対して、0.1~20重量%であると好ましく、1~10重量%であるとより好ましい。
The sizing agent of the present invention may contain a leveling agent. Examples of smoothing agents include esters of higher fatty acids and higher alcohols, natural fats and oils (coconut oil, beef tallow, olive oil, rapeseed oil, etc.), liquid paraffin, and waxes. Examples of higher fatty acids are as described above. Examples of alkyl groups of higher alcohols are as described above for the alkyl groups that make up the hydrophobic group. Examples of waxes include polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, modified polyethylene, modified polypropylene, paraffin wax, candelilla wax, carnauba wax, rice wax, and beeswax.
The content of the smoothing agent is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight, based on the non-volatile content of the sizing agent for reinforcing fibers.
 平滑剤の中でも、形体保持性及び製品安定性の観点から、炭素数30以上の脂肪酸及び/またはアルコール、及びこれらのエステル化物を含むと好ましい。例えば、キャンデリラワックス、カルナバワックスが挙げられる。 Among the smoothing agents, fatty acids and/or alcohols with 30 or more carbon atoms and/or esters thereof are preferably included from the viewpoint of shape retention and product stability. Examples include candelilla wax and carnauba wax.
〔強化繊維用サイジング剤〕
 本発明の強化繊維用サイジング剤は、25℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の複素粘度が1×10~1×10Pa・sであり、5×10~1×10Pa・sが好ましく、5×10~5×10Pa・sがより好ましく、1×10~5×10Pa・sがさらに好ましい。1×10Pa・s未満では、形体保持性が不足し、1×10Pa・sを超えると硬すぎて形体保持性が不足する。なお、複素粘度と損失弾性率は、強化繊維用サイジング剤組成物を105℃で1時間、恒温乾燥機で絶乾させ、レオメーターを用いて、25℃、または120℃、周波数1Hz、ひずみ0.005の条件で測定したものである。
 なお、本発明における不揮発分とは、サイジング剤を105℃で熱処理して水や溶媒等を除去し、恒量に達した時の成分をいう。
[Sizing agent for reinforcing fibers]
The sizing agent for reinforcing fibers of the present invention has a non-volatile complex viscosity of 1×10 3 to 1×10 5 Pa·s at 25° C., a strain of 0.005, and a frequency of 1 Hz. 1×10 5 Pa·s is preferable, 5×10 3 to 5×10 4 Pa·s is more preferable, and 1×10 4 to 5×10 4 Pa·s is further preferable. If it is less than 1×10 3 Pa·s, the shape retention is insufficient, and if it exceeds 1×10 5 Pa·s, it is too hard and the shape retention is insufficient. The complex viscosity and the loss modulus were determined by drying the reinforcing fiber sizing agent composition at 105° C. for 1 hour in a constant temperature dryer, and using a rheometer at 25° C. or 120° C., a frequency of 1 Hz, and a strain of 0. It is measured under the condition of 0.005.
The non-volatile content in the present invention refers to the component when the sizing agent is heat-treated at 105° C. to remove water, solvent, etc. and reaches a constant weight.
 120℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の損失弾性率が5~30Paであり、5~25Paが好ましく、8~20Paがより好ましく、8~15Paがさらに好ましい。5Pa未満では、給油乾燥時の絶乾物が動き、付着性に劣るため、形体保持性が不足する。30Paを超えると、給油乾燥時の絶乾物が動きにくいため、均一付着性に劣るため形体保持性が不足する。 The non-volatile loss elastic modulus of the sizing agent at 120° C., strain 0.005, frequency 1 Hz is 5 to 30 Pa, preferably 5 to 25 Pa, more preferably 8 to 20 Pa, and even more preferably 8 to 15 Pa. If the pressure is less than 5 Pa, the absolute dry material moves during drying with oil, resulting in poor adhesion and insufficient shape retention. If the pressure exceeds 30 Pa, the absolute dry material will not easily move during drying with oil, resulting in poor uniform adhesion and insufficient shape retention.
 本発明の強化繊維用サイジング剤の不揮発分において、分子量350以下の有機化合物が15重量%以下であると、形体保持性の観点から好ましい。より好ましくは12重量%以下であり、さらに好ましくは8重量%以下である。
 本発明における重量平均分子量は、東ソー(株)製高速ゲルパーミエーションクロマトグラフィー装置HLC-8220GPCを用い、試料濃度3mg/ccで、昭和電工(株)製分離カラムKF-402HQ、KF-403HQに注入し、示差屈折率検出器で測定されたピークより算出した。
In the nonvolatile matter of the sizing agent for reinforcing fibers of the present invention, it is preferable that the organic compound having a molecular weight of 350 or less is 15% by weight or less from the viewpoint of shape retention. It is more preferably 12% by weight or less, and still more preferably 8% by weight or less.
The weight-average molecular weight in the present invention is determined by using a high-speed gel permeation chromatography device HLC-8220GPC manufactured by Tosoh Corporation, with a sample concentration of 3 mg / cc. and calculated from the peak measured with a differential refractive index detector.
 形体保持性の観点から、ビスフェノールAジグリシジルエーテルが不揮発分に対して、15重量%以下であると好ましく、12重量%以下であるとより好ましく、8重量%以下でさらに好ましい。 From the viewpoint of shape retention, bisphenol A diglycidyl ether is preferably 15% by weight or less, more preferably 12% by weight or less, and even more preferably 8% by weight or less, relative to the non-volatile matter.
 形体保持性の観点から、エポキシ樹脂(A)は強化繊維用サイジング剤の不揮発分に対し、20~80重量%が好ましく、30~80重量%がより好ましく、30~70重量%がさらに好ましい。
 形体保持性の観点から、界面活性剤(B)は強化繊維用サイジング剤の不揮発分に対し、10~40重量%が好ましく、20~35重量%がより好ましく、20~30重量%がさらに好ましい。
From the viewpoint of shape retention, the epoxy resin (A) is preferably 20 to 80% by weight, more preferably 30 to 80% by weight, and even more preferably 30 to 70% by weight, based on the non-volatile content of the reinforcing fiber sizing agent.
From the viewpoint of shape retention, the surfactant (B) is preferably 10 to 40% by weight, more preferably 20 to 35% by weight, and even more preferably 20 to 30% by weight, based on the non-volatile content of the sizing agent for reinforcing fibers. .
 本発明のサイジング剤を製造する方法については、特に限定はなく、公知の手法が採用できる。サイジング剤を構成する各成分を攪拌下の水中に投入して水溶液、乳化物または水分散物とする方法、サイジング剤を構成する各成分を製造する際に水溶液、乳化物または水分散物とする方法、界面活性剤の入った水中に、サイジング剤を構成する各成分を攪拌下、投入して乳化または分散する方法、サイジング剤を構成する各成分を、予め乳化分散した乳化分散液に混合する方法、サイジング剤を構成する各成分を混合し、得られた混合物を軟化点以上に加温後、ホモジナイザー、ホモミキサー、ボールミル等を用いて機械せん断力を加えつつ、水を徐々に投入して転相乳化する方法、サイジング剤を付与する給油浴において、乳化分散した乳化分散液とを混合する方法等が挙げられる。 The method for producing the sizing agent of the present invention is not particularly limited, and known methods can be adopted. A method in which each component constituting the sizing agent is put into water under stirring to form an aqueous solution, an emulsion, or an aqueous dispersion, and an aqueous solution, an emulsion, or an aqueous dispersion in the production of each component constituting the sizing agent. A method of emulsifying or dispersing each component of the sizing agent into water containing a surfactant while stirring, and mixing each component of the sizing agent with an emulsified dispersion that has been previously emulsified and dispersed. Each component constituting the sizing agent is mixed, and after heating the resulting mixture to a softening point or higher, water is gradually added while mechanical shearing force is applied using a homogenizer, homomixer, ball mill, or the like. Examples include a method of phase inversion emulsification, and a method of mixing an emulsified and dispersed liquid in an oil bath in which the sizing agent is applied.
 本発明のサイジング剤は、水に自己乳化及び/又は乳化分散してなるものである。サイジング剤の平均粒子径は、特に限定はないが、形体保持性の観点から、10μm以下が好ましく、0.01~1μmがより好ましく、0.01~0.5μmがさらに好ましい。該平均粒子径が10μm超の場合、強化繊維へ均一付着できず、形体保持性に劣るばかりか、サイジング剤自体が数日で分離してしまうおそれがあり、保管安定性が悪く実用的でないとなることがある。なお、本発明でいう平均粒子径とは、レーザー回折/ 散乱式粒度分布測定装置(堀場製LA-920)で測定された粒度分布より算出された平均値をいう。 The sizing agent of the present invention is self-emulsified and/or emulsified and dispersed in water. The average particle size of the sizing agent is not particularly limited, but is preferably 10 μm or less, more preferably 0.01 to 1 μm, even more preferably 0.01 to 0.5 μm, from the viewpoint of shape retention. If the average particle size exceeds 10 μm, the sizing agent cannot be uniformly adhered to the reinforcing fibers, resulting in poor shape retention, and the sizing agent itself may separate in a few days. can be. The average particle size referred to in the present invention is the average value calculated from the particle size distribution measured by a laser diffraction/scattering particle size distribution analyzer (LA-920, manufactured by Horiba).
〔強化繊維ストランド〕
 本発明の強化繊維ストランドは、原料合成繊維ストランドに対して、上記の強化繊維用サイジング剤を付着させたものであり、熱硬化性樹脂又は熱可塑性マトリックス樹脂を補強するための強化繊維である。
[Reinforcing fiber strand]
The reinforcing fiber strand of the present invention is obtained by attaching the above reinforcing fiber sizing agent to a raw material synthetic fiber strand, and is a reinforcing fiber for reinforcing a thermosetting resin or a thermoplastic matrix resin.
 本発明の強化繊維ストランドの製造方法は、前述した強化繊維用サイジング剤を原料合成繊維ストランドに付着させ、得られた付着物を乾燥するサイジング処理工程を含む製造方法である。
 強化繊維用サイジング剤を原料合成繊維ストランドに付着させて付着物を得る方法については、特に限定はないが、強化繊維用サイジング剤をキスローラー法、ローラー浸漬法、スプレー法その他公知の方法で、原料合成繊維ストランドに付着させる方法であればよい。これらの方法のうちでも、ローラー浸漬法が、強化繊維用サイジング剤を原料合成繊維ストランドに均一付着できるので好ましい。
 得られた付着物の乾燥方法については、特に限定はなく、例えば、加熱ローラー、熱風、熱板等で加熱乾燥することができる。乾燥温度は特に限定はなく、例えば100~250℃である。
The manufacturing method of the reinforcing fiber strand of the present invention is a manufacturing method including a sizing treatment step of attaching the reinforcing fiber sizing agent described above to the raw material synthetic fiber strand and drying the resulting deposit.
The method of attaching the reinforcing fiber sizing agent to the raw material synthetic fiber strand to obtain the deposit is not particularly limited. Any method may be used as long as it is attached to the raw material synthetic fiber strand. Among these methods, the roller dipping method is preferable because the reinforcing fiber sizing agent can be uniformly attached to the raw material synthetic fiber strand.
The method for drying the obtained deposit is not particularly limited, and for example, it can be dried by heating with a heating roller, hot air, a hot plate, or the like. The drying temperature is not particularly limited, and is, for example, 100 to 250°C.
 なお、本発明の強化繊維用サイジング剤の原料合成繊維ストランドへの付着にあたっては、強化繊維用サイジング剤の構成成分全てを混合後に付着させてもよいし、構成成分を別々に二段階以上に分けて付着させてもよい。また、本発明の効果を阻害しない範囲で、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂などの熱硬化性樹脂および/または本発明のポリマー成分以外のポリオレフィン系樹脂、ナイロン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアセタール樹脂、ABS樹脂、フェノキシ樹脂、ポリメチルメタクリレート樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂などの熱可塑性樹脂を原料合成繊維ストランドに付着させてもよい。 In attaching the reinforcing fiber sizing agent of the present invention to the raw material synthetic fiber strand, all the constituent components of the reinforcing fiber sizing agent may be mixed and then attached, or the constituent components may be divided into two or more stages separately. may be attached by In addition, thermosetting resins such as epoxy resins, vinyl ester resins and phenolic resins and/or polyolefin resins other than the polymer component of the present invention, nylon resins, polycarbonate resins, polyester resins, etc. Thermoplastic resins such as polyacetal resins, ABS resins, phenoxy resins, polymethyl methacrylate resins, polyphenylene sulfide resins, polyetherimide resins, and polyetherketone resins may be adhered to the starting synthetic fiber strands.
 本発明の強化繊維ストランドは、各種熱硬化性樹脂又は各種熱可塑性樹脂をマトリックス樹脂とする複合材料の強化繊維として使用され、使用させる形態としては、連続繊維の状態でも、所定の長さに切断された状態でもよい。 The reinforcing fiber strand of the present invention is used as a reinforcing fiber for composite materials in which various thermosetting resins or various thermoplastic resins are used as a matrix resin. It may be in a state where
 原料合成繊維ストランドへの強化繊維用サイジング剤の不揮発分の付着量は適宜選択でき、合成繊維ストランドが所望の機能を有するための必要量とすればよいが、その付着量は原料合成繊維ストランドに対して0.1~20重量%であることが好ましい。連続繊維の状態の合成繊維ストランドにおいては、その付着量は原料合成繊維ストランドに対して0.1~10重量%がより好ましく、0.5~5重量%がさらに好ましい。また、所定の長さに切断された状態のストランドにおいては0.5~20重量%がより好ましく、1~10重量%がさらに好ましい。 The amount of non-volatile matter of the reinforcing fiber sizing agent attached to the raw material synthetic fiber strand can be selected as appropriate, and may be the amount necessary for the synthetic fiber strand to have the desired function. It is preferably 0.1 to 20% by weight. In the case of synthetic fiber strands in the form of continuous fibers, the adhesion amount thereof is more preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the raw material synthetic fiber strands. Further, in a strand cut into a predetermined length, it is more preferably 0.5 to 20% by weight, more preferably 1 to 10% by weight.
 強化繊維用サイジング剤の付着量が少ないと、形体保持性に関する本発明の効果が得られにくく、また、合成繊維ストランドの集束性が不足し、取扱い性が悪くなることがある。また、強化繊維用サイジング剤の付着量が多過ぎると、合成繊維ストランドが剛直になり過ぎて、かえって形体保持性が悪くなったり、コンポジット成型の際に樹脂含浸性が悪くなったりすることがあり好ましくない。 If the adhesion amount of the sizing agent for reinforcing fibers is small, it is difficult to obtain the effect of the present invention regarding shape retention, and the bundling of the synthetic fiber strands may be insufficient, resulting in poor handleability. On the other hand, if the amount of the sizing agent for reinforcing fibers attached is too large, the synthetic fiber strands become too rigid, which may adversely affect the shape retention and the resin impregnation during composite molding. I don't like it.
 本発明の強化繊維用サイジング剤を適用し得る(原料)合成繊維ストランドの合成繊維としては、炭素繊維、ガラス繊維、セラミック繊維などの各種無機繊維、アラミド繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリアリレート繊維、ポリアセタール繊維、PBO繊維、ポリフェニレンサルフィド繊維、ポリケトン繊維などの各種有機繊維が挙げられる。得られる繊維強化複合材料としての物性の観点から、炭素繊維、アラミド繊維、ポリエチレン繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレンナフタレート繊維、ポリアリレート繊維、ポリアセタール繊維、PBO繊維、ポリフェニレンサルフィド繊維およびポリケトン繊維から選ばれる少なくとも1種が好ましい。さらに好ましくは炭素繊維である。
 本発明の合成繊維ストランドは、これらの繊維からなる群から選ばれる少なくとも1種の単糸(フィラメント)を、3000~10万本を束ねた繊維束である。取扱性や形体保持性の観点から、好ましくは10000本以上であり、さらに好ましくは20000本以上である。本発明の合成繊維ストランドは、ストランド幅を広げる開繊工程が行なわれる場合がある。開繊の方法としては、例えば金属面への擦過などが挙げられる。開繊工程時の温度は、例えば、20~100℃である。
Synthetic fibers of the (raw material) synthetic fiber strand to which the sizing agent for reinforcing fibers of the present invention can be applied include various inorganic fibers such as carbon fiber, glass fiber, and ceramic fiber, aramid fiber, polyethylene fiber, polyethylene terephthalate fiber, and polybutylene. Various organic fibers such as terephthalate fiber, polyethylene naphthalate fiber, polyarylate fiber, polyacetal fiber, PBO fiber, polyphenylene sulfide fiber and polyketone fiber can be used. Carbon fiber, aramid fiber, polyethylene fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyethylene naphthalate fiber, polyarylate fiber, polyacetal fiber, PBO fiber, polyphenylene sulfide fiber, from the viewpoint of physical properties as a fiber-reinforced composite material obtained. and polyketone fibers are preferred. Carbon fiber is more preferred.
The synthetic fiber strand of the present invention is a fiber bundle obtained by bundling 3,000 to 100,000 single yarns (filaments) of at least one kind selected from the group consisting of these fibers. From the viewpoint of handleability and shape retention, the number is preferably 10,000 or more, more preferably 20,000 or more. The synthetic fiber strand of the present invention may be subjected to a fiber opening process for widening the strand width. Examples of the method of fiber opening include rubbing against a metal surface. The temperature during the opening process is, for example, 20 to 100°C.
〔繊維強化複合材料〕
 本発明の繊維強化複合材料は、熱硬化性マトリックス樹脂又は熱可塑性マトリックス樹脂と前述の強化繊維ストランドを含むものである。強化繊維ストランドは本発明の強化繊維用サイジング剤により処理されているので、強化繊維ストランドおよび熱可塑性マトリックス樹脂との親和性が良好となり、接着性に優れた繊維強化複合材料となる。
 本発明の繊維強化複合材料は、マトリックス樹脂と前述の強化繊維ストランドを含むものである。強化繊維ストランドは本発明のサイジング剤により処理されて、サイジング剤が均一に付着しており、強化繊維ストランド及びマトリックス樹脂との親和性が良好となり、接着性に優れた繊維強化複合材料となる。さらに、高温処理時のサイジング剤の熱分解を抑制でき、熱分解に起因したマトリックス樹脂との接着阻害を抑制できる。ここで、マトリックス樹脂とは、熱硬化性樹脂又は熱可塑性樹脂からなるマトリックス樹脂をいい、1種又は2種以上含んでいてもよい。熱硬化性樹脂としては、特に制限はなく、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、シアネートエステル樹脂、ポリイミド樹脂等が挙げられる。熱可塑性樹脂としては、特に制限はなく、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアセタール樹脂、ABS樹脂、フェノキシ樹脂、ポリメチルメタクリレート樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂等が挙げられる。これらの中でも本発明のサイジング剤による接着性向上効果がより高い点から熱硬化性樹脂が好ましく、エポキシ樹脂、ビニルエステル樹脂がさらに好ましい。
[Fiber-reinforced composite material]
The fiber-reinforced composite material of the present invention contains a thermosetting matrix resin or a thermoplastic matrix resin and the reinforcing fiber strands described above. Since the reinforcing fiber strands are treated with the reinforcing fiber sizing agent of the present invention, the reinforcing fiber strands and the thermoplastic matrix resin have good affinity, resulting in a fiber-reinforced composite material with excellent adhesiveness.
The fiber-reinforced composite material of the present invention contains a matrix resin and the reinforcing fiber strands described above. The reinforcing fiber strands are treated with the sizing agent of the present invention so that the sizing agent is evenly adhered to the reinforcing fiber strands, which improves the affinity between the reinforcing fiber strands and the matrix resin, resulting in a fiber-reinforced composite material with excellent adhesiveness. Furthermore, thermal decomposition of the sizing agent during high-temperature treatment can be suppressed, and inhibition of adhesion to the matrix resin due to thermal decomposition can be suppressed. Here, the matrix resin refers to a matrix resin made of a thermosetting resin or a thermoplastic resin, and may contain one or more types. The thermosetting resin is not particularly limited, and examples thereof include epoxy resins, phenol resins, unsaturated polyester resins, vinyl ester resins, cyanate ester resins, polyimide resins, and the like. The thermoplastic resin is not particularly limited, and may be polyolefin resin, polyamide resin, polycarbonate resin, polyester resin, polyacetal resin, ABS resin, phenoxy resin, polymethyl methacrylate resin, polyphenylene sulfide resin, polyetherimide resin, poly Ether ketone resin and the like are included. Among these, thermosetting resins are preferred, and epoxy resins and vinyl ester resins are more preferred, because the sizing agent of the present invention is more effective in improving adhesion.
 これらマトリックス樹脂は、強化繊維ストランドとの接着性をさらに向上させるなどの目的で、その一部又は全部が変性したものであっても差し支えない。
 繊維強化複合材料の製造方法としては、特に限定はなく、チョップドファイバー、長繊維ペレットなどによるコンパウンド射出成型、UDシート、織物シートなどによるプレス成型、その他フィラメントワインディング成型など公知の方法を採用できる。
 繊維強化複合材料中の合成繊維ストランドの含有量についても特に限定はなく、繊維の種類、形態、熱可塑性マトリックス樹脂の種類などにより適宜選択すればよいが、得られる繊維強化複合材料に対して、5~70重量%が好ましく、20~60重量%がより好ましい。
These matrix resins may be partially or wholly modified for the purpose of further improving adhesion to the reinforcing fiber strands.
The method for producing the fiber-reinforced composite material is not particularly limited, and known methods such as compound injection molding using chopped fibers, long fiber pellets, etc., press molding using UD sheets, woven sheets, etc., and other filament winding molding can be used.
The content of the synthetic fiber strands in the fiber-reinforced composite material is also not particularly limited, and may be appropriately selected depending on the type and form of the fibers, the type of the thermoplastic matrix resin, etc. However, for the fiber-reinforced composite material obtained, 5 to 70% by weight is preferred, and 20 to 60% by weight is more preferred.
 以下、実施例により本発明を具体的に説明するが、ここに記載した実施例に限定されるものではない。なお、以下の実施例に示されるパーセント(%)、部は特に限定しない限り、「重量%」、「重量部」を示す。各特性値の測定は以下に示す方法に基づいて行った。 Although the present invention will be specifically described below with reference to examples, it is not limited to the examples described herein. Percentages (%) and parts shown in the following examples indicate "% by weight" and "parts by weight" unless otherwise specified. Each characteristic value was measured according to the method described below.
<形体保持性の評価1>
 炭素繊維束を下記形体保持性の測定方法及び評価基準に従って評価し、結果を表1~3に示した。
<形体保持性の測定方法>
 25℃の環境下、直径8mm、長さ10cmの鏡面ステンレス棒に、炭素繊維束の片方を水平側を固定させながら、鏡面ステンレス棒の曲面に沿って90度の角度で接触させて下方に曲げ、垂直方向に1000gの張力をかけながら、1分間保持した。その後、水平側の固定を外し、垂直方向の張力を解除したときの曲げ角度を、分度器を用いて測定し、以下の評価基準で評価した。
<Evaluation 1 of shape retention>
The carbon fiber bundles were evaluated according to the following shape retention measurement method and evaluation criteria, and the results are shown in Tables 1-3.
<Method for measuring shape retention>
In an environment of 25 ° C., while fixing one side of the carbon fiber bundle to a mirror surface stainless steel rod with a diameter of 8 mm and a length of 10 cm, it is bent downward along the curved surface of the mirror surface stainless steel rod at an angle of 90 degrees. , while applying a tension of 1000 g in the vertical direction, and held for 1 minute. After that, the fixation on the horizontal side was removed, and the bending angle when the tension in the vertical direction was released was measured using a protractor and evaluated according to the following evaluation criteria.
<評価基準>
◎:曲げ角度が70度以上100度未満
○:曲げ角度が50度以上70度未満又は100度以上120度未満
×:曲げ角度が50度未満又は120度以上
<Evaluation Criteria>
◎: bending angle is 70 degrees or more and less than 100 degrees ○: bending angle is 50 degrees or more and less than 70 degrees or 100 degrees or more and less than 120 degrees ×: bending angle is less than 50 degrees or 120 degrees or more
<形体保持性の評価2>
 炭素繊維束を下記開繊装置で開繊させた後、上記形体保持性の測定方法及び評価基準に従って評価し、結果を表1~3に示した。
<開繊装置>
 直径8mm、長さ10cmの鏡面ステンレス棒3本を、間隔が25mmとなるよう平行に配置した。炭素繊維束がステンレス棒の曲面に沿って90度の角度で接触しながら、ジグザグに通過するように、直径8mm、長さ10cmの鏡面ステンレス棒2本をさらに平行に配置した。25℃または60℃の環境下、炭素繊維束をこの5本の鏡面ステンレス棒にジグザグにかけ、引出張力2000g、速度3 m/分で通過させた。
<複素粘度と損失弾性率>
 レオメーター(HAAKE MARS 40、ThermoFisher SCIENTIFIC社製)を用いて、周波数1Hz、ひずみ0.005の条件で25℃における複素粘度、及び120℃における損失弾性率を測定した。
<Evaluation 2 of shape retention>
After opening the carbon fiber bundle with the following opening device, it was evaluated according to the measuring method and evaluation criteria for shape retention. The results are shown in Tables 1 to 3.
<Opening device>
Three mirror-finished stainless steel rods with a diameter of 8 mm and a length of 10 cm were arranged in parallel with an interval of 25 mm. Two mirror-finished stainless steel rods with a diameter of 8 mm and a length of 10 cm were further arranged in parallel so that the carbon fiber bundles passed zigzag along the curved surface of the stainless steel rod while being in contact with each other at an angle of 90 degrees. Under an environment of 25° C. or 60° C., the carbon fiber bundle was passed through the five mirror-finished stainless steel rods in a zigzag manner at a pulling force of 2000 g and a speed of 3 m/min.
<Complex viscosity and loss modulus>
Using a rheometer (HAAKE MARS 40, manufactured by ThermoFisher SCIENTIFIC), the complex viscosity at 25°C and the loss modulus at 120°C were measured under conditions of a frequency of 1 Hz and a strain of 0.005.
 実施例に使用した成分は次の通りである。
 エポキシ樹脂(A)
(A-1):jER(登録商標)828(三菱ケミカル株式会社製)ビスフェノールA型エポキシ樹脂(n=0の割合83%)
(A-2):jER(登録商標)834(三菱ケミカル株式会社製)ビスフェノールA型エポキシ樹脂(n=0の割合45%)
(A-3):jER(登録商標)1001(三菱ケミカル株式会社製)ビスフェノールA型エポキシ樹脂(n=0の割合12%)
(A-4):jER(登録商標)1002(三菱ケミカル株式会社製)ビスフェノールA型エポキシ樹脂(n=0の割合5%)
(A-5):jER(登録商標)1004(三菱ケミカル株式会社製)ビスフェノールA型エポキシ樹脂(n=0の割合2%)
(A-6):jER(登録商標)4007(三菱ケミカル株式会社製)ビスフェノールF型エポキシ樹脂
The components used in the examples are as follows.
Epoxy resin (A)
(A-1): jER (registered trademark) 828 (manufactured by Mitsubishi Chemical Corporation) bisphenol A type epoxy resin (83% when n = 0)
(A-2): jER (registered trademark) 834 (manufactured by Mitsubishi Chemical Corporation) bisphenol A type epoxy resin (ratio of n = 0: 45%)
(A-3): jER (registered trademark) 1001 (manufactured by Mitsubishi Chemical Corporation) bisphenol A type epoxy resin (ratio of n = 0: 12%)
(A-4): jER (registered trademark) 1002 (manufactured by Mitsubishi Chemical Corporation) bisphenol A type epoxy resin (n = 0, 5%)
(A-5): jER (registered trademark) 1004 (manufactured by Mitsubishi Chemical Corporation) bisphenol A type epoxy resin (ratio of n = 0, 2%)
(A-6): jER (registered trademark) 4007 (manufactured by Mitsubishi Chemical Corporation) bisphenol F type epoxy resin
 界面活性剤(B)
(B-1):プルロニック(登録商標)P-85(株式会社ADEKA社製)POEOポリエーテル
(B-2):プルロニック(登録商標)L-121(株式会社ADEKA社製)POEOポリエーテル
(B-3):プルロニック(登録商標)P-103(株式会社ADEKA社製)POEOポリエーテル
(B-4):プルロニック(登録商標)F-108(株式会社ADEKA社製)POEOポリエーテル
(B-5):POE硬化ひまし油エーテル(EO50モル)
(B-6):ニューコール(登録商標)707-SF(日本乳化剤株式会社製、30%)POE多環フェニルエーテルサルフェートアンモニウム塩
(B-7):ニューコール(登録商標)740-SF(日本乳化剤株式会社製、30%)POE多環フェニルエーテルサルフェートアンモニウム塩
(B-8):POEラウリルホスフェート(EO3モル)
(B-9):POEやし油アルコールホスフェート(EO7モル)
(B-10):エマルゲン(登録商標)A-500(花王株式会社製)POEジスチレン化フェニルエーテル
(B-11):ニューコール(登録商標)740(日本乳化剤株式会社製)POE多環フェニルエーテル
 POEOとは、ポリオキシプロピレンポリオキシエチレンを意味する。
Surfactant (B)
(B-1): Pluronic (registered trademark) P-85 (manufactured by ADEKA Corporation) POEO polyether (B-2): Pluronic (registered trademark) L-121 (manufactured by ADEKA Corporation) POEO polyether (B -3): Pluronic (registered trademark) P-103 (manufactured by ADEKA Corporation) POEO polyether (B-4): Pluronic (registered trademark) F-108 (manufactured by ADEKA Corporation) POEO polyether (B-5) ): POE hydrogenated castor oil ether (50 mol of EO)
(B-6): Newcole (registered trademark) 707-SF (manufactured by Nippon Nyukazai Co., Ltd., 30%) POE polycyclic phenyl ether sulfate ammonium salt (B-7): Newcole (registered trademark) 740-SF (Japan Emulsifier Co., Ltd., 30%) POE polycyclic phenyl ether sulfate ammonium salt (B-8): POE lauryl phosphate (3 mol of EO)
(B-9): POE coconut oil alcohol phosphate (7 mol of EO)
(B-10): Emulgen (registered trademark) A-500 (manufactured by Kao Corporation) POE distyrenated phenyl ether (B-11): Newcol (registered trademark) 740 (manufactured by Nippon Nyukazai Co., Ltd.) POE polycyclic phenyl ether POEO means polyoxypropylene polyoxyethylene.
 樹脂
(C-1):ハリエスターSK-501NS(ハリマ化成株式会社製)ロジンエステル樹脂エマルション(50%)、25℃、1atm、105℃で2時間乾燥させた物の複素粘度2100Pa・s)
(C-2):スーパーエステルA-18(荒川化学工業株式会社製)ロジンエステル樹脂、25℃、1atm、105℃で2時間乾燥させた物の複素粘度400Pa・s)
(C-3):ハリエスターSK-385NS(ハリマ化成株式会社製)固状ロジンエステル樹脂エマルション(50%)
(C-4):下記に示す不飽和ポリエステル樹脂(C-4)
(C-5):下記に示す飽和ポリエステル樹脂(C-5)
(C-6):下記に示す不飽和ポリエステル樹脂(C-6)
(C-7):下記に示す飽和ポリエステル樹脂(C-7)
(C-8):マーポゾール(登録商標)F-700:(松本油脂製薬株式会社製)アクリル樹脂エマルション(40%)
Resin (C-1): Harrier Star SK-501NS (manufactured by Harima Kasei Co., Ltd.) rosin ester resin emulsion (50%), 25 ° C., 1 atm, complex viscosity of product dried at 105 ° C. for 2 hours 2100 Pa s)
(C-2): Superester A-18 (manufactured by Arakawa Chemical Industries, Ltd.) rosin ester resin, 25 ° C., 1 atm, complex viscosity of product dried at 105 ° C. for 2 hours 400 Pa s)
(C-3): Harrier SK-385NS (manufactured by Harima Kasei Co., Ltd.) solid rosin ester resin emulsion (50%)
(C-4): Unsaturated polyester resin (C-4) shown below
(C-5): saturated polyester resin (C-5) shown below
(C-6): Unsaturated polyester resin (C-6) shown below
(C-7): saturated polyester resin (C-7) shown below
(C-8): Marposol (registered trademark) F-700: (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) acrylic resin emulsion (40%)
 その他成分
(D-1):ポリエチレングリコール(平均分子量10000)
(D-2):ポリエチレングリコール(平均分子量20000)
(D-3):ブリアン(登録商標)TW-85(松本油脂製薬株式会社製)カルナバワックス乳化物(40%)
(D-4):サイジングワックスK-52(松本油脂製薬株式会社製)カルナバワックス、キャンデリラワックス、ライスワックスの混合ワックス乳化物(40%)
(D-5):オレイン酸オレイル
(D-6):イソプロピルグリコール
Other component (D-1): polyethylene glycol (average molecular weight 10000)
(D-2): polyethylene glycol (average molecular weight 20000)
(D-3): Brian (registered trademark) TW-85 (manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) carnauba wax emulsion (40%)
(D-4): Sizing wax K-52 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) Mixed wax emulsion of carnauba wax, candelilla wax and rice wax (40%)
(D-5): oleyl oleate (D-6): isopropyl glycol
[不飽和ポリエステル(C-4)の合成]
 反応器内を窒素ガスで置換し、無水マレイン酸88部とビスフェノールAのエチレンオキサイド4モル付加物404部を仕込み、140℃で5時間反応を行い、水を留去させて、酸価2.5の不飽和ポリエステル(C-4)を得た。重量平均分子量Mwは3550であった。
[Synthesis of unsaturated polyester (C-4)]
The inside of the reactor was purged with nitrogen gas, and 88 parts of maleic anhydride and 404 parts of 4 mol ethylene oxide adduct of bisphenol A were charged and reacted at 140°C for 5 hours. An unsaturated polyester of No. 5 (C-4) was obtained. The weight average molecular weight Mw was 3,550.
[飽和ポリエステル樹脂(C-5)の合成]
 反応器内を窒素ガスで置換し、イソフタル酸ジメチル890部、5-ナトリウムスルホイソフタル酸ジメチル118部、ジエチレングリコール530部、酢酸亜鉛0.5部及び三酸化アンチモン0.5部を仕込み、140~220℃で5時間反応を行い、240~270℃でジエチレングリコールを留去し、酸価3.4の飽和ポリエステル樹脂(C-5)を得た。重量平均分子量Mwは10300であった。
[Synthesis of saturated polyester resin (C-5)]
The inside of the reactor was replaced with nitrogen gas, and 890 parts of dimethyl isophthalate, 118 parts of 5-sodium sulfoisophthalate dimethyl, 530 parts of diethylene glycol, 0.5 parts of zinc acetate and 0.5 parts of antimony trioxide were charged. C. for 5 hours, diethylene glycol was distilled off at 240-270.degree. C. to obtain a saturated polyester resin (C-5) having an acid value of 3.4. The weight average molecular weight Mw was 10,300.
[不飽和ポリエステル樹脂(C-6)の合成]
 反応器内を窒素ガスで置換し、ビスフェノールAのエチレンオキサイド4モル付加物690部、フマル酸154部及びテトラブトキシシチタネート0.3部を仕込み、170℃で8時間反応を行い、水を留去させて、酸価3.9の不飽和ポリエステル(C-6)を得た。重量平均分子量Mwは2120であった。
[飽和ポリエステル樹脂(C-7)の合成]
 反応器内を窒素ガスで置換し、テレフタル酸200部、ビスフェノールAのエチレンオキサイド4モル付加物490部、ジエチレングリコール80部、ポリエチレングリコール(平均分子量2000)370部、酢酸亜鉛0.5部及び三酸化アンチモン0.5部を仕込み、140~180℃で10時間反応を行い、酸価8.4の飽和ポリエステル樹脂(C-7)を得た。重量平均分子量Mwは3300であった。
[Synthesis of unsaturated polyester resin (C-6)]
The inside of the reactor was replaced with nitrogen gas, and 690 parts of 4 mol ethylene oxide adduct of bisphenol A, 154 parts of fumaric acid and 0.3 parts of tetrabutoxysititanate were charged, reacted at 170°C for 8 hours, and water was distilled off. The unsaturated polyester (C-6) with an acid value of 3.9 was obtained. The weight average molecular weight Mw was 2,120.
[Synthesis of saturated polyester resin (C-7)]
After purging the inside of the reactor with nitrogen gas, 200 parts of terephthalic acid, 490 parts of an adduct of bisphenol A with 4 mol of ethylene oxide, 80 parts of diethylene glycol, 370 parts of polyethylene glycol (average molecular weight: 2000), 0.5 parts of zinc acetate and trioxide were added. 0.5 part of antimony was charged and reacted at 140 to 180° C. for 10 hours to obtain a saturated polyester resin (C-7) having an acid value of 8.4. The weight average molecular weight Mw was 3,300.
 表1~4に示す水以外の成分を乳化装置に仕込み、60℃で撹拌下水を序々に加え転相乳化させ、サイジング剤水分散体を得た。得られたサイジング剤水分散体を水で希釈して、不揮発分濃度3重量%のサイジング剤エマルジョンを調製し、サイジング剤未処理炭素繊維ストランド(平均直径8μm、フィラメント数24000本)を浸漬・含浸させた後、120℃ で5分間熱風乾燥させて、理論付着量が1.0%であるサイジング剤処理炭素繊維ストランドを得た。本サイジング剤及び本ストランドについて、前述の方法により各特性値を評価した。その結果を表1~4に示した。 The ingredients other than water shown in Tables 1 to 4 were charged into an emulsifier, and water was gradually added under stirring at 60°C for phase inversion emulsification to obtain an aqueous sizing agent dispersion. The sizing agent aqueous dispersion thus obtained was diluted with water to prepare a sizing agent emulsion having a non-volatile content of 3% by weight, and a sizing agent-untreated carbon fiber strand (average diameter: 8 μm, number of filaments: 24,000) was immersed and impregnated. After drying, it was dried with hot air at 120° C. for 5 minutes to obtain a sizing agent-treated carbon fiber strand with a theoretical adhesion amount of 1.0%. Each characteristic value of the present sizing agent and the present strand was evaluated by the method described above. The results are shown in Tables 1-4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1~4から分かるように、実施例1~13の強化繊維用サイジング剤は、エポキシ樹脂(A)、界面活性剤(B)及び水を含有する強化繊維用サイジング剤であって、25℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の複素粘度が1×10~1×10Pa・sであり、120℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の損失弾性率が5~30Paであるため、取扱性に優れた形体保持性を有する。
 一方、複素粘度が1×10~1×10Pa・sの範囲にない場合(比較例2)、120℃、ひずみ0.005、周波数1Hzにおけるサイジング剤の不揮発分の損失弾性率が5~30Paの範囲にない場合(比較例1~7)には、取扱性に優れた形体保持性を有するという課題を解決できていない。
As can be seen from Tables 1 to 4, the sizing agents for reinforcing fibers of Examples 1 to 13 are sizing agents for reinforcing fibers containing an epoxy resin (A), a surfactant (B), and water. , the non-volatile complex viscosity of the sizing agent at a strain of 0.005 and a frequency of 1 Hz is 1 × 10 3 to 1 × 10 5 Pa s, and the non-volatile of the sizing agent at 120 ° C., a strain of 0.005 and a frequency of 1 Hz Since the loss elastic modulus is 5 to 30 Pa, it is easy to handle and maintains its shape.
On the other hand, when the complex viscosity is not in the range of 1×10 3 to 1×10 5 Pa·s (Comparative Example 2), the non-volatile loss elastic modulus of the sizing agent at 120° C., strain 0.005, frequency 1 Hz is 5. When it is not in the range of ~30 Pa (Comparative Examples 1 to 7), the problem of having excellent shape retention with good handleability cannot be solved.

Claims (8)

  1.  エポキシ樹脂(A)、界面活性剤(B)及び水を含有する強化繊維用サイジング剤であって、
     25℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の複素粘度が1×10~1×10Pa・sであり、
     120℃、ひずみ0.005、周波数1Hzにおける前記サイジング剤の不揮発分の損失弾性率が5~30Paである、強化繊維用サイジング剤。
    A sizing agent for reinforcing fibers containing an epoxy resin (A), a surfactant (B) and water,
    The non-volatile complex viscosity of the sizing agent at 25° C., strain 0.005, frequency 1 Hz is 1×10 3 to 1×10 5 Pa·s,
    A sizing agent for reinforcing fibers, wherein the non-volatile loss elastic modulus of the sizing agent at 120° C., strain 0.005, frequency 1 Hz is 5 to 30 Pa.
  2.  前記エポキシ樹脂(A)が下記一般式(1)で示される化合物である、請求項1に記載の強化繊維用サイジング剤。
    Figure JPOXMLDOC01-appb-C000001
     (1)
    (式(1)中、R、R、R及びRは、それぞれ独立して、水素原子又はメチル基である。nは0以上の整数である。)
    The sizing agent for reinforcing fibers according to claim 1, wherein the epoxy resin (A) is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (1)
    (In Formula (1), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a methyl group. n is an integer of 0 or more.)
  3.  前記サイジング剤の不揮発分における前記エポキシ樹脂(A)が30重量%以上であり、前記サイジング剤の不揮発分に占める前記一般式(1)においてnが0であるエポキシ樹脂(A―1)が15重量%以下である、請求項1又は2に記載の強化繊維用サイジング剤。 The epoxy resin (A) in the nonvolatile matter of the sizing agent is 30% by weight or more, and the epoxy resin (A-1) in which n is 0 in the general formula (1) accounts for 15% in the nonvolatile matter of the sizing agent. 3. The sizing agent for reinforcing fibers according to claim 1 or 2, which is weight % or less.
  4.  ビニルエステル樹脂、飽和ポリエステル樹脂、不飽和ポリエステル樹脂及びロジンエステル樹脂から選ばれる少なくとも1種をさらに含有する、請求項1~3のいずれかに記載の強化繊維用サイジング剤。 The sizing agent for reinforcing fibers according to any one of claims 1 to 3, further comprising at least one selected from vinyl ester resins, saturated polyester resins, unsaturated polyester resins and rosin ester resins.
  5.  前記界面活性剤(B)が、非イオン界面活性剤及びアニオン界面活性剤から選ばれる少なくとも1種を含み、前記非イオン界面活性剤が複数の末端にポリオキシエチレン基を有する非イオン界面活性剤を含み、前記アニオン界面活性剤がサルフェート塩及びホスフェート塩から選ばれる少なくとも1種を含む、請求項1~4のいずれかに記載の強化繊維用サイジング剤。 The surfactant (B) contains at least one selected from nonionic surfactants and anionic surfactants, and the nonionic surfactant has a polyoxyethylene group at a plurality of terminals. The sizing agent for reinforcing fibers according to any one of claims 1 to 4, wherein the anionic surfactant contains at least one selected from sulfate salts and phosphate salts.
  6.  請求項1~5のいずれかに記載の強化繊維用サイジング剤を付着させた、強化繊維ストランド。 A reinforcing fiber strand to which the reinforcing fiber sizing agent according to any one of claims 1 to 5 is adhered.
  7.  マトリックス樹脂と、請求項6に記載の強化繊維ストランドとを含む、繊維強化複合材料。 A fiber-reinforced composite material comprising a matrix resin and the reinforcing fiber strand according to claim 6.
  8.  前記マトリックス樹脂が熱硬化性樹脂である、請求項7に記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 7, wherein the matrix resin is a thermosetting resin.
PCT/JP2022/011870 2021-04-15 2022-03-16 Sizing agent for reinforcing fibers and use of same WO2022220001A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280019938.0A CN117043408A (en) 2021-04-15 2022-03-16 Sizing agent for reinforcing fibers and use thereof
JP2022547186A JP7147108B1 (en) 2021-04-15 2022-03-16 Sizing agent for reinforcing fiber and use thereof
KR1020237038735A KR20230169274A (en) 2021-04-15 2022-03-16 Sizing agents for reinforcing fibers and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-068742 2021-04-15
JP2021068742 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022220001A1 true WO2022220001A1 (en) 2022-10-20

Family

ID=83640553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011870 WO2022220001A1 (en) 2021-04-15 2022-03-16 Sizing agent for reinforcing fibers and use of same

Country Status (1)

Country Link
WO (1) WO2022220001A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429828B1 (en) 2022-09-12 2024-02-08 松本油脂製薬株式会社 Sizing agents for textiles and their uses
WO2024057700A1 (en) * 2022-09-12 2024-03-21 松本油脂製薬株式会社 Sizing agent for fibers and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067929A (en) * 2013-09-30 2015-04-13 ニチアス株式会社 Inorganic fiber body
JP2016151069A (en) * 2015-02-17 2016-08-22 松本油脂製薬株式会社 Sizing agent for reinforced fiber and use thereof
JP2020002518A (en) * 2018-06-26 2020-01-09 三洋化成工業株式会社 Sizing agent for fiber, fiber bundle, fiber product, prepreg and molded body
JP2021055244A (en) * 2019-09-25 2021-04-08 三洋化成工業株式会社 Sizing agent composition for fibers, fiber bundles, fiber products and composite materials
WO2022009796A1 (en) * 2020-07-07 2022-01-13 帝人株式会社 Carbon fiber bundle with adhered sizing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067929A (en) * 2013-09-30 2015-04-13 ニチアス株式会社 Inorganic fiber body
JP2016151069A (en) * 2015-02-17 2016-08-22 松本油脂製薬株式会社 Sizing agent for reinforced fiber and use thereof
JP2020002518A (en) * 2018-06-26 2020-01-09 三洋化成工業株式会社 Sizing agent for fiber, fiber bundle, fiber product, prepreg and molded body
JP2021055244A (en) * 2019-09-25 2021-04-08 三洋化成工業株式会社 Sizing agent composition for fibers, fiber bundles, fiber products and composite materials
WO2022009796A1 (en) * 2020-07-07 2022-01-13 帝人株式会社 Carbon fiber bundle with adhered sizing agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429828B1 (en) 2022-09-12 2024-02-08 松本油脂製薬株式会社 Sizing agents for textiles and their uses
WO2024057700A1 (en) * 2022-09-12 2024-03-21 松本油脂製薬株式会社 Sizing agent for fibers and use thereof

Similar Documents

Publication Publication Date Title
WO2022220001A1 (en) Sizing agent for reinforcing fibers and use of same
TWI648451B (en) Sizing agent for resinforced fiber and its use
KR101557568B1 (en) Carbon fiber sizing agent, aqueous dispersion thereof, carbon fiber bundle having adsorbed sizing agent, sheet-shaped article, and carbon fiber reinforced composite material
TWI494479B (en) A production method for carbon fibers of coated sizing agent and the carbon fibers of coated sizing agent
JP7350745B2 (en) Fiber sizing agent compositions, fiber bundles, textile products and composite materials
JP7281352B2 (en) Fiber sizing agents, fiber bundles, textile products, prepregs and moldings
JPS60122756A (en) Glass fiber for reinforcing polymeric material
JP6175936B2 (en) Carbon fiber coated with sizing agent and production method thereof, carbon fiber reinforced composite material
JP7147107B1 (en) Sizing agent for reinforcing fiber and use thereof
JP2019163583A (en) Sizing agent composition for fiber, fiber bundle and fiber product
JP3723462B2 (en) Bundling agent for inorganic fibers
JP7026426B1 (en) Sizing agent for inorganic fibers and inorganic fibers
JP2008002046A (en) Sizing agent and method for producing carbon fiber strand using the same
JP7147108B1 (en) Sizing agent for reinforcing fiber and use thereof
JP6626875B2 (en) Sizing agent composition for fibers
JP6048235B2 (en) Sizing agent-coated carbon fiber and method for producing sizing agent-coated carbon fiber
JPH0931851A (en) Sizing of carbon fiber
JP7429828B1 (en) Sizing agents for textiles and their uses
WO2024057700A1 (en) Sizing agent for fibers and use thereof
JP7269781B2 (en) Fiber sizing agents, fiber bundles, textile products, prepregs and moldings
JP5834884B2 (en) Sizing agent-coated carbon fiber and method for producing sizing agent-coated carbon fiber
CN116457396A (en) Sizing agent for inorganic fibers, method for producing same, and composite material
JP7214933B1 (en) Sizing agent for reinforcing fiber and use thereof
JP7429827B1 (en) Sizing agents for textiles and their uses
WO2023026674A1 (en) Sizing agent for reinforcing fibers and use of same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022547186

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019938.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237038735

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038735

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787927

Country of ref document: EP

Kind code of ref document: A1