WO2022208663A1 - Wavelength conversion member, backlight unit, image display device, and curable composition - Google Patents

Wavelength conversion member, backlight unit, image display device, and curable composition Download PDF

Info

Publication number
WO2022208663A1
WO2022208663A1 PCT/JP2021/013556 JP2021013556W WO2022208663A1 WO 2022208663 A1 WO2022208663 A1 WO 2022208663A1 JP 2021013556 W JP2021013556 W JP 2021013556W WO 2022208663 A1 WO2022208663 A1 WO 2022208663A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
cured product
thiol compound
curable composition
Prior art date
Application number
PCT/JP2021/013556
Other languages
French (fr)
Japanese (ja)
Inventor
しん 江
雄麻 吉田
正人 西村
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2021/013556 priority Critical patent/WO2022208663A1/en
Publication of WO2022208663A1 publication Critical patent/WO2022208663A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a wavelength conversion member, a backlight unit, an image display device and a curable composition.
  • a wavelength conversion member containing a quantum dot phosphor is arranged, for example, in a backlight unit of an image display device.
  • a wavelength conversion member containing a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor emits light White light can be obtained from the converted red light and green light and the blue light transmitted through the wavelength conversion member.
  • the development of wavelength conversion members containing quantum dot phosphors has expanded the color reproducibility of displays from 72% of the conventional NTSC (National Television System Committee) ratio to 100% of the NTSC ratio.
  • a wavelength conversion member containing quantum dot phosphors usually has a cured product obtained by curing a curable composition containing quantum dot phosphors.
  • the curable composition includes thermosetting and photocurable compositions, and from the viewpoint of productivity, photocurable curable compositions are preferably used.
  • the phosphors such as quantum dot phosphors are likely to deteriorate due to the influence of oxygen, water, and the like.
  • the fluorescent substance such as the quantum dot fluorescent substance may deteriorate and the emission intensity may decrease. Therefore, it is desirable to use a wavelength conversion member that suppresses a decrease in emission intensity in a high-temperature, high-humidity environment and has excellent reliability in a high-temperature, high-humidity environment.
  • the present disclosure has been made in view of the above circumstances, and provides a wavelength conversion member that contains a phosphor and has excellent reliability in a high-temperature and high-humidity environment, and a backlight unit and an image display device that use this wavelength conversion member.
  • intended to provide An object of the present disclosure is to provide a curable composition containing a phosphor and capable of producing a wavelength conversion member having excellent reliability in a high-temperature and high-humidity environment.
  • the ratio (V4/V5) between the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to C—H stretching vibration is 0.0001 to 0. 005 wavelength conversion member.
  • a curable composition containing a phosphor, a polyfunctional thiol compound and a thiol compound containing a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth) acrylate compound is cured by curing.
  • the cured product is obtained by curing the curable composition further containing a polyfunctional (meth)acrylate compound, and the reaction rate of carbon-carbon double bonds in the cured product is 90% or more ⁇ 1> , ⁇ 2>, or the wavelength conversion member according to ⁇ 4>.
  • ⁇ 6> The wavelength conversion member according to ⁇ 3>, wherein the carbon-carbon double bond reaction rate of the cured product is 90% or more.
  • ⁇ 7> The wavelength conversion member according to ⁇ 3>, ⁇ 5> or ⁇ 6>, wherein the polyfunctional (meth)acrylate compound has 2 to 5 (meth)acryloyl groups in one molecule.
  • the cured product has a sulfide structure that bonds to two carbon atoms, and both of the carbon atoms that bond to the sulfide structure are primary carbon atoms ⁇ 1> to ⁇ 9> or the wavelength conversion member according to one.
  • a backlight unit comprising the wavelength conversion member according to any one of ⁇ 1> to ⁇ 10>, and a light source.
  • An image display device comprising the backlight unit according to ⁇ 11>.
  • a curable composition comprising a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound.
  • the present disclosure has been made in view of the above circumstances, and provides a wavelength conversion member that contains a phosphor and has excellent reliability in a high-temperature and high-humidity environment, and a backlight unit and an image display device that use this wavelength conversion member. can provide.
  • INDUSTRIAL APPLICABILITY The present disclosure can provide a curable composition containing a phosphor and capable of producing a wavelength conversion member with excellent reliability in a high-temperature and high-humidity environment.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term “layer” or “film” refers to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present, and only a part of the region. It also includes the case where it is formed.
  • the term “laminate” indicates stacking layers, and two or more layers may be bonded, or two or more layers may be detachable.
  • (meth)acryloyl means at least one of acryloyl and methacryloyl
  • “(meth)acrylate” means at least one of acrylate and methacrylate
  • “(meth)allyl” means allyl and methallyl. means at least one
  • the wavelength conversion member of the first embodiment to the wavelength conversion member of the third embodiment will be described.
  • the configurations and preferred configurations of the wavelength conversion member of the first embodiment to the wavelength conversion member of the third embodiment may be combined as appropriate.
  • the wavelength conversion member of the first embodiment of the present disclosure has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound, The reaction rate of thiol groups in the cured product is 70% to 90%.
  • the wavelength conversion member of the present embodiment may contain other constituent elements such as a coating material to be described later, if necessary.
  • the wavelength conversion member of this embodiment is suitably used for image display.
  • the wavelength conversion member of this embodiment has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound.
  • a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound.
  • the reaction rate of the thiol groups in the cured product is 70% to 90%.
  • the reaction rate of the thiol groups in the cured product is 70% or more, the number of unreacted thiol groups does not become too large, and the decrease in the crosslink density, the glass transition temperature of the cured product, etc. are preferably suppressed. Therefore, when the wavelength conversion member is left in a high-temperature and high-humidity environment, or when the wavelength conversion member is exposed to light in a high-temperature and high-humidity environment, it is possible to prevent a part of the cured product from melting out. This prevents the phosphor from coming into contact with oxygen, water, or the like. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
  • the reaction rate of the thiol groups in the cured product is 90% or less, the number of unreacted thiol groups does not decrease too much, and the thiol groups contained in the unreacted monofunctional thiol compound in the cured product do not reach the surface of the phosphor. It is coordinated to suitably suppress deterioration of the phosphor. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
  • the reaction rate of the thiol group in the cured product is calculated by performing FT-IR (Fourier transform infrared spectrophotometer) measurement on the curable composition and the cured product as described below.
  • FT-IR Fastier transform infrared spectrophotometer
  • the curable composition to be measured and the surface of the wavelength conversion member are analyzed by ATR (attenuated total reflection (total reflection measurement method)). Background measurement is performed in air, and FT-IR measurement is performed under the condition of 16 integration times.
  • ATR attenuated total reflection (total reflection measurement method)
  • V1 Peak area of the peak attributed to SH stretching vibration (peak at 2525 cm -1 to 2600 cm -1 )
  • V2 Peak attributed to C - H stretching vibration (peak at 2800 cm -1 to 3035 cm -1 )
  • V4 Peak attributed to SH stretching vibration (2525 cm ⁇ 1 to 2600 cm ⁇ 1 peak) peak area
  • V5 peak attributed to C-H stretching vibration (peak at 2800 cm -1 to 3035 cm -1 ) peak area
  • the reaction rate of the thiol groups in the cured product may be 72% to 88%, 75% to 85%, or 78% to 82%. good.
  • the cured product is preferably obtained by curing a curable composition that further contains a polyfunctional (meth)acrylate compound together with the phosphor and the polyfunctional thiol compound. It is preferable that the reaction rate of the double bond is 90% or more. As a result, when the curable composition is cured, the enethiol reaction proceeds between the polyfunctional thiol compound and the polyfunctional (meth)acrylate compound, and the resistance to moist heat and light resistance of the cured product tends to improve. .
  • the reaction rate of the carbon-carbon double bonds in the cured product is 90% or more, the amount of carbon-carbon double bonds that increase the free volume and increase the oxygen permeability is reduced, and the oxygen permeability in the cured product is reduced. It tends to be possible to reduce the oxidative degradation of the phosphor and more preferably suppress the oxidation deterioration of the phosphor.
  • the reaction rate of carbon-carbon double bonds in the cured product is preferably 92% to 100%, more preferably 94% to 100%, in order to further reduce the oxygen permeability in the cured product. %, more preferably 96% to 100%.
  • the ratio (V4/V5) of the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to C—H stretching vibration was 0. It is preferably 0.0001 to 0.005, more preferably 0.0003 to 0.0045, even more preferably 0.0005 to 0.004, and 0.0008 to 0.0035 is particularly preferred.
  • the ratio (V4/V5) is 0.0001 or more, the unreacted thiol group in the cured product tends to be favorably coordinated to the phosphor, thereby favorably suppressing oxidative deterioration of the phosphor.
  • the ratio (V4/V5) is 0.005 or less, unreacted thiol groups are not excessively increased in the cured product, and the strength of the cured product tends to be excellent.
  • the wavelength conversion member of the present embodiment since oxidative deterioration of the phosphor is suitably suppressed, there is a tendency that good emission intensity can be obtained even if the content of the phosphor in the cured product is smaller than in the conventional case. It is in.
  • the cured product preferably has a sulfide structure.
  • the sulfide structure is formed by a polymerization reaction between a thiol group in a polyfunctional thiol compound or a monofunctional thiol compound contained in the curable composition and a carbon-carbon double bond in a polyfunctional (meth)acrylate compound.
  • the cured product preferably has a sulfide structure that bonds with two carbon atoms, and both carbon atoms that bond with the sulfide structure are primary carbon atoms.
  • the cured product may have an alicyclic structure.
  • the alicyclic structure may be derived from, for example, an alicyclic structure in a polyfunctional (meth)acrylate compound having an alicyclic structure that can be contained in the curable composition.
  • the alicyclic structure that can be contained in the cured product is not particularly limited.
  • Specific examples of the alicyclic structure include tricyclodecane skeleton, cyclohexane skeleton, 1,3-adamantane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton, hydrogenated bisphenol S skeleton, isobornyl skeleton and the like.
  • a tricyclodecane skeleton or an isobornyl skeleton is preferable, and a tricyclodecane skeleton is more preferable.
  • the alicyclic structure contained in the cured product may be of one type alone or of at least two types.
  • examples of combinations of alicyclic structures include a combination of a tricyclodecane skeleton and an isobornyl skeleton, a combination of a hydrogenated bisphenol A skeleton and an isobornyl skeleton, and the like.
  • a combination of a tricyclodecane skeleton and an isobornyl skeleton is preferred.
  • the cured product may have an ester structure.
  • the ester structure may be derived from, for example, an ester structure in a (meth)acryloyloxy group in a polyfunctional (meth)acrylate compound that may be contained in the curable composition.
  • the cured product may contain a white pigment.
  • the details of the white pigment contained in the cured product will be described later. Details of the phosphor contained in the cured product are also described later.
  • the wavelength conversion member may contain the quantum dot fluorescent substance as fluorescent substance.
  • a quantum dot phosphor is a phosphor that is easily deteriorated by contact with oxygen, water, or the like. However, by satisfying the configuration of the wavelength conversion member of the present embodiment, deterioration of the quantum dot phosphor is preferably suppressed.
  • components that can be contained in the wavelength conversion member of the present embodiment and the curable composition used for producing the wavelength conversion member of the present embodiment will be described in detail.
  • the curable composition contains a phosphor.
  • the type of phosphor is not particularly limited, and examples thereof include organic phosphors and inorganic phosphors.
  • Organic phosphors include naphthalimide compounds, perylene compounds, and the like.
  • inorganic phosphors include Y 3 O 3 :Eu, YVO 4 :Eu, Y 2 O 2 :Eu, 3.5MgO ⁇ 0.5MgF 2 , GeO 2 :Mn, and (Y ⁇ Cd)BO 2 :Eu.
  • Red-emitting inorganic phosphor ZnS: Cu-Al, (Zn-Cd) S: Cu-Al, ZnS: Cu-Au - Al, Zn2SiO4: Mn, ZnSiO4 : Mn, ZnS: Ag - Cu, ( Zn-Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO4 : Ce-Tb, ZnGeO4 : Mn, GeMgAlO: Tb, SrGaS: Eu2 + , ZnS: Cu-Co, MgO-nB 2O3 : Ge.Tb , LaOBr :Tb.Tm, La2O2S :Tb and other green-emitting inorganic phosphors, ZnS:Ag, GaWO4 , Y2SiO6 :Ce, ZnS: Ag.Ga.Cl , Ca 2 B 4
  • the phosphor preferably contains a quantum dot phosphor.
  • Quantum dot phosphors are not particularly limited, and include particles containing at least one selected from the group consisting of II-VI compounds, III-V compounds, IV-VI compounds, and IV compounds.
  • the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
  • II-VI compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe.
  • III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaGaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and the like.
  • IV-VI compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, etc.
  • Specific examples of Group IV compounds include Si, Ge, SiC, SiGe and the like.
  • a quantum dot phosphor preferably has a core-shell structure.
  • core-shell By making the bandgap of the compound forming the shell wider than that of the compound forming the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor.
  • Combinations of core and shell (core/shell) include CdSe/ZnS, InP/ZnS, PbSe/PbS, CdSe/CdS, CdTe/CdS, CdTe/ZnS, and the like.
  • the quantum dot phosphor may have a so-called core-multi-shell structure in which the shell has a multilayer structure.
  • the shell has a multilayer structure.
  • the curable composition may contain one type of quantum dot phosphor alone, or may contain two or more types of quantum dot phosphors in combination.
  • embodiments that include a combination of two or more types of quantum dot phosphors include, for example, embodiments that include two or more types of quantum dot phosphors that have different components but have the same average particle size, and quantum dots that have different average particle sizes but have the same components.
  • the curable composition includes a quantum dot phosphor G having an emission center wavelength in a green wavelength range of 520 nm to 560 nm, and a quantum dot phosphor R having an emission center wavelength in a red wavelength range of 600 nm to 680 nm. may contain.
  • the quantum dot phosphor G and the quantum dot phosphor R Green light and red light are emitted from respectively.
  • white light can be obtained from the green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R and the blue light transmitted through the cured product.
  • the quantum dot phosphor may be used in the form of a quantum dot phosphor dispersion dispersed in a dispersion medium.
  • Dispersion media for dispersing the quantum dot phosphor include water, various organic solvents, and monofunctional (meth)acrylate compounds.
  • Organic solvents that can be used as the dispersion medium include acetone, ethyl acetate, toluene, n-hexane and the like.
  • the monofunctional (meth)acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at room temperature (25° C.), and examples thereof include isobornyl (meth)acrylate and dicyclopentanyl (meth)acrylate. mentioned.
  • the dispersion medium is preferably a monofunctional (meth)acrylate compound from the viewpoint of eliminating the need for a step of volatilizing the dispersion medium when curing the curable composition, and has an alicyclic structure. It is more preferably a monofunctional (meth)acrylate compound, more preferably at least one of isobornyl (meth)acrylate and dicyclopentanyl (meth)acrylate, and particularly preferably isobornyl (meth)acrylate.
  • the mass-based proportion of the quantum dot phosphor in the quantum dot phosphor dispersion is preferably 1% by mass to 15% by mass, more preferably 1% by mass to 14% by mass, 2% by mass to More preferably, it is 12% by mass.
  • the content of the quantum dot phosphor dispersion in the curable composition is 1% by mass to 15% by mass of the quantum dot phosphor in the quantum dot phosphor dispersion, and the curable composition For example, it is preferably 0.5% by mass to 12% by mass, more preferably 0.8% by mass to 11% by mass, and 1% by mass to 10% by mass. More preferred. Further, the content of the quantum dot phosphor in the curable composition is preferably, for example, 0.05% by mass to 2.0% by mass with respect to the total amount of the curable composition, and 0.08 mass % to 1.5% by mass, more preferably 0.1% to 1.0% by mass.
  • the content of the quantum dot phosphor is 0.05% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with the excitation light, and the content of the quantum dot phosphor is 2.0. If it is at most % by mass, aggregation of the quantum dot phosphor tends to be suppressed.
  • the curable composition comprises thiol compounds, including multifunctional thiol compounds and monofunctional thiol compounds.
  • thiol compounds including multifunctional thiol compounds and monofunctional thiol compounds.
  • the inclusion of a polyfunctional thiol compound in the curable composition tends to improve the optical properties of the cured product.
  • unreacted thiol groups in the cured product tend to coordinate with phosphors such as quantum dot phosphors, thereby improving the radiance of the wavelength conversion member.
  • the polyfunctional thiol compound may be a compound having two or more thiol groups in one molecule, preferably a compound having three or four thiol groups in one molecule.
  • the cured product composition may contain only one type of polyfunctional thiol compound, or may contain two or more types of polyfunctional thiol compounds.
  • the polyfunctional thiol compound preferably has at least one thiol group to which a primary carbon atom is bonded.
  • the curable composition comprises a polyfunctional thiol compound having at least one thiol group bonded to a primary carbon atom and a polyfunctional thiol compound having at least one thiol group bonded to a secondary or tertiary carbon atom. Both functional thiol compounds may be included.
  • polyfunctional thiol compounds include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2- Propylene glycol bis(3-mercaptopropionate), diethylene glycol bis(3-mercaptobutyrate), 1,4-butanediol bis(3-mercaptopropionate), 1,4-butanediol bis(3-mercaptobutyrate) rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropane tris (3-mercaptopropionate) pionate), trimethylolpropane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptoisobutyrate), tri
  • the monofunctional thiol compound should just be a compound which has one thiol group in 1 molecule.
  • the cured product composition may contain only one type of monofunctional thiol compound, or may contain two or more types of monofunctional thiol compounds.
  • the monofunctional thiol compound has a molecular weight of preferably 150 to 400, more preferably 160 to 380, more preferably 170 to 170, from the viewpoint of obtaining a wavelength conversion member that is more reliable in a high-temperature and high-humidity environment. 360 is more preferred.
  • the monofunctional thiol compound preferably contains a mercaptopropion skeleton or a thioglycol skeleton from the viewpoint of obtaining a wavelength conversion member with superior reliability in a high-temperature and high-humidity environment.
  • monofunctional thiol compounds include 1-nonanethiol, 1-decanethiol, 1-octadecanethiol (stearyl mercaptan), 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate.
  • the content of the thiol compound (total of polyfunctional thiol compound and monofunctional thiol compound) in the curable composition is preferably, for example, 15% by mass to 50% by mass with respect to the total amount of the curable composition. , more preferably 20% by mass to 40% by mass, more preferably 20% by mass to 30% by mass.
  • the reaction rate of the thiol group tends to be preferably reduced, and when the content of the thiol compound is 50% by mass or less, the unreacted thiol group is There is a tendency that it can be suppressed from becoming too large.
  • the content of the polyfunctional thiol compound in the curable composition may be 10 wt% to 45 wt%, 12 wt% to 30 wt% good too.
  • the content of the monofunctional thiol compound in the curable composition may be 3% by mass to 30% by mass, or 4% by mass to 20% by mass, relative to the total amount of the curable composition. , 4% by mass to 15% by mass.
  • the mass ratio of the polyfunctional thiol compound to the monofunctional thiol compound may be 0.5 to 10, and 0.8 to 6.0. may be
  • the ratio of the total number of thiol groups in the thiol compound (total of the polyfunctional thiol compound and the monofunctional thiol compound) to the total number of carbon-carbon double bonds in the polyfunctional (meth)acrylate compound is preferably from 0.25 to 1.0, more preferably from 0.35 to 0.8, and from 0.4 to 0.8. 65 is more preferred.
  • the cured product contained in the wavelength conversion member is obtained by curing a curable composition containing a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound depends on the unreacted thiol in the cured product. Confirmation can be achieved by detecting whether the compound is present. For example, the cured product is immersed in a liquid capable of dissolving the thiol compound, and the unreacted thiol compound contained in the cured product is extracted. The liquid containing the extracted thiol compound is subjected to high performance liquid chromatography (HPLC) to separate the thiol compounds by type.
  • HPLC high performance liquid chromatography
  • the molecular weight of the separated thiol compound is identified by gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS), or the like. As described above, it is possible to confirm that the unreacted thiol compound exists in the cured product, and to identify the molecular weights of the polyfunctional thiol compound and the monofunctional thiol compound that may be contained in the unreacted thiol compound.
  • GPC gel permeation chromatography
  • GC-MS gas chromatography-mass spectrometry
  • the curable composition may contain a polyfunctional (meth)acrylate compound.
  • a polyfunctional (meth)acrylate compound By the curable composition containing the aforementioned polyfunctional thiol compound and a polyfunctional (meth) acrylate compound, when the curable composition is cured between the polyfunctional thiol compound and the polyfunctional (meth) acrylate compound The enethiol reaction proceeds, and the wet heat resistance and the wet heat light resistance of the cured product tend to improve.
  • the cured product composition may contain only one type of polyfunctional (meth)acrylate compound, or may contain two or more types of polyfunctional (meth)acrylate compounds.
  • the polyfunctional (meth)acrylate compound may be any compound having two or more (meth)acryloyl groups in one molecule.
  • Polyfunctional (meth) acrylate compound from the viewpoint of wet heat resistance in a high temperature environment, preferably a compound having 2 to 5 (meth) acryloyl groups in one molecule, two in one molecule Compounds having up to 4 (meth)acryloyl groups are more preferred, and compounds having 2 or 3 (meth)acryloyl groups per molecule are even more preferred.
  • polyfunctional (meth)acrylate compounds include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and the like.
  • bisphenol type di (meth) acrylate such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, propoxylated ethoxylated bisphenol A type di (meth) acrylate Acrylate compounds; tricyclodecanedimethanol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, 1,3-adamantanedimethanol di(meth)acrylate, hydrogenated bisphenol A (poly)ethoxydi(meth)acrylate, water Hydrogenated bisphenol A (poly) propoxy di (meth) acrylate, hydrogenated bisphenol F (poly) ethoxy di (meth) acrylate, hydrogenated bisphenol F (poly) propoxy di (meth) acrylate, hydrogenated bisphenol S (poly) ethoxy di (meth) acrylate and (meth)acryl
  • the content of the polyfunctional (meth) acrylate compound in the curable composition is, for example, 30% by mass to the total amount of the curable composition. It is preferably 80% by mass, preferably 40% to 75% by mass, more preferably 40% to 65% by mass.
  • the content of the polyfunctional (meth)acrylate compound is 30% by mass or more, the decrease in the reaction rate of carbon-carbon double bonds tends to be suppressed, and the content of the polyfunctional (meth)acrylate compound is 80% by mass. When it is below, it tends to be possible to suppress the reaction rate of the thiol group from becoming too high.
  • the curable composition may contain a photoinitiator.
  • the photopolymerization initiator is not particularly limited, and specific examples thereof include compounds that generate radicals upon irradiation with active energy rays such as ultraviolet rays.
  • photopolymerization initiators include benzophenone, N,N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propanone-1,4,4′-bis(dimethylamino)benzophenone (also called “Michler ketone”), 4,4′-bis (Diethylamino)benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenyl ketone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-(4- Aromatic ketone compounds such as (2-hydroxyethoxy)-phenyl)-2-hydroxy-2-methyl-1-propan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1
  • the photopolymerization initiator is preferably at least one selected from the group consisting of acylphosphine oxide compounds, aromatic ketone compounds, and oxime ester compounds. At least one selected from the group consisting of more preferably an acylphosphine oxide compound.
  • the content of the photopolymerization initiator in the curable composition is preferably, for example, 0.1% by mass to 5% by mass, relative to the total amount of the curable composition, and 0.1% by mass to 3% by mass. %, more preferably 0.3 mass % to 1.5 mass %.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the curable composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, It tends to suppress the influence on the hue of the curable composition and the decrease in storage stability.
  • the curable composition may contain a liquid medium.
  • a liquid medium refers to a medium that is in a liquid state at room temperature (25° C.).
  • liquid medium examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl
  • Solvent methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol , sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, benz
  • Glycol monoether solvents such as terpene solvents such as terpinene, terpineol, myrcene, alloocimene, limonene, dipentene, pinene, carvone, ocimene, and phellandrene; straight silicone oils such as dimethylsilicone oil, methylphenylsilicone oil, and methylhydrogensilicone oil; Amino-modified silicone oil, epoxy-modified silicone oil, Cal Boxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, different functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid Modified silicone oils such as modified silicone oils and fluorine-modified silicone oils; Saturated aliphatic monocarboxylic acids with 4 or more carbon atoms such as hexade
  • the content of the liquid medium in the curable composition is preferably, for example, 1% by mass to 10% by mass with respect to the total amount of the curable composition. It is more preferably from 4% by mass to 10% by mass, and even more preferably from 4% by mass to 7% by mass.
  • the curable composition may contain a carboxylic acid having 1 to 17 carbon atoms (hereinafter also referred to as "specific carboxylic acid").
  • the specific carboxylic acid is less likely to seep out to the surface of the cured product, from the viewpoint of excellent reliability of the cured product, and from the viewpoint of less steric hindrance and easier coordination with phosphors such as quantum dot phosphors, 2 to 12 carbon atoms.
  • a carboxylic acid having 2 to 10 carbon atoms is more preferred, a carboxylic acid having 3 to 8 carbon atoms is more preferred, a carboxylic acid having 3 to 6 carbon atoms is particularly preferred, and a carboxylic acid having 3 to 6 carbon atoms is particularly preferred.
  • Carboxylic acids that are 5 are even more preferred.
  • the carbon of the carboxy group shall be included in the number of carbon atoms in the specific carboxylic acid.
  • the specific carboxylic acid may be an unsaturated carboxylic acid or a saturated carboxylic acid.
  • the carbon-carbon double bond in the unsaturated carboxylic acid reacts with the thiol group in the polyfunctional thiol compound, making it difficult for the specific carboxylic acid to stain the surface of the cured product, and from the viewpoint of excellent reliability of the cured product.
  • unsaturated carboxylic acids are preferred, and methacrylic acid, acrylic acid and the like are more preferred.
  • the specific carboxylic acid may be a carboxylic acid having one or more carboxy groups, or a carboxylic acid having two or more carboxy groups.
  • the specific carboxylic acid may have a substituent.
  • substituents include thiol groups, amino groups, hydroxy groups, alkoxy groups, acyl groups, sulfonic acid groups, aryl groups, halogen atoms, methacryl groups, acryl groups, and the like.
  • the number of carbon atoms in the specific carboxylic acid does not include the carbon atoms in the substituents.
  • carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, 2-ethylbutyric acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, Lauric acid, myristic acid, palmitic acid, margaric acid, methacrylic acid, acrylic acid, fumaric acid, maleic acid, mercaptoacetic acid, mercaptopropionic acid, mercaptobutyric acid, mercaptovaleric acid, lactic acid, malic acid, citric acid, benzoic acid, phenyl Acetic acid, phenylpropionic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, ⁇ -aminocaproic acid and the like.
  • the specific carboxylic acid preferably contains at least one selected from the group consisting of acetic acid, mercaptopropionic acid and methacrylic acid.
  • the specific carboxylic acid one type may be used alone, or two or more types may be used in combination.
  • the curable composition may or may not contain a carboxylic acid having 18 or more carbon atoms such as oleic acid.
  • the curable composition may contain a white pigment.
  • white pigments include titanium oxide, barium sulfate, zinc oxide, and calcium carbonate. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency.
  • the curable composition contains titanium oxide as a white pigment, the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
  • the average particle size of the white pigment is preferably 0.1 ⁇ m to 1 ⁇ m, more preferably 0.2 ⁇ m to 0.8 ⁇ m, even more preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the white pigment can be measured as follows. A white pigment extracted from the curable composition is dispersed in purified water containing a surfactant to obtain a dispersion. Using this dispersion, in the volume-based particle size distribution measured with a laser diffraction particle size distribution analyzer (eg, Shimadzu Corporation, SALD-3000J), the value when the integration from the small diameter side is 50% ( The median diameter (D50)) is taken as the average particle diameter of the white pigment.
  • a laser diffraction particle size distribution analyzer eg, Shimadzu Corporation, SALD-3000J
  • the curable composition is diluted with a liquid medium, and the white pigment is precipitated by centrifugal separation or the like and collected.
  • the average particle diameter of the white pigment contained in the cured product is obtained by observing the particles using a scanning electron microscope and calculating the equivalent circle diameter (geometric average of the major and minor diameters) of 50 particles. It can be obtained as an arithmetic mean value.
  • the white particles preferably have an organic layer containing an organic substance on at least part of the surface.
  • Organic substances contained in the organic substance layer include organic silanes, organosiloxanes, fluorosilanes, organic phosphonates, organic phosphoric acid compounds, organic phosphinates, organic sulfonic acid compounds, carboxylic acids, carboxylic acid esters, derivatives of carboxylic acids, amides, and hydrocarbons.
  • the organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol and the organic silane.
  • organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane.
  • silane, heptadecyltriethoxysilane, octadecyltriethoxysilane, and the like are examples of organic silanesilane, octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltrieth
  • organosiloxanes include polydimethylsiloxane terminated with trimethylsilyl functional groups (PDMS), polymethylhydrosiloxane (PMHS), polysiloxanes derived from functionalization of PMHS with olefins (via hydrosilylation), and the like. be done.
  • organic phosphonates include, for example, n-octylphosphonic acid and its esters, n-decylphosphonic acid and its esters, 2-ethylhexylphosphonic acid and its esters, and camphyl phosphonic acid and its esters.
  • organic phosphoric acid compounds include organic acidic phosphates, organic pyrophosphates, organic polyphosphates, organic metaphosphates, and salts thereof.
  • organic phosphinates include n-hexylphosphinic acid and its esters, n-octylphosphinic acid and its esters, di-n-hexylphosphinic acid and its esters, and di-n-octylphosphinic acid and its esters. mentioned.
  • organic sulfonic acid compounds include alkylsulfonic acids such as hexylsulfonic acid, octylsulfonic acid and 2-ethylhexylsulfonic acid, these alkylsulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum and titanium, ammonium ions, and salts with organic ammonium ions such as triethanolamine.
  • alkylsulfonic acids such as hexylsulfonic acid, octylsulfonic acid and 2-ethylhexylsulfonic acid
  • metal ions such as sodium, calcium, magnesium, aluminum and titanium
  • ammonium ions such as sodium, calcium, magnesium, aluminum and titanium
  • salts with organic ammonium ions such as triethanolamine.
  • carboxylic acids include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid and linoleic acid.
  • carboxylic acid esters include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, hydroquinone, Esters and partial esters formed by reaction with hydroxy compounds such as roglucinol are included.
  • Specific examples of amides include stearamide, oleamide, and erucamide.
  • polyolefins and copolymers thereof include polyethylene, polypropylene, copolymers of ethylene with one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide, and the like.
  • polyols include glycerol, trimethylolethane, trimethylolpropane and the like.
  • alkanolamine include diethanolamine and triethanolamine.
  • organic dispersants include citric acid, polyacrylic acid, polymethacrylic acid, and polymeric organic dispersants having functional groups such as anionic, cationic, zwitterionic, and nonionic. Suppression of aggregation of the white pigment in the curable composition tends to improve the dispersibility of the white pigment in the cured product.
  • the white pigment may have an oxide layer containing an oxide on at least part of the surface.
  • Oxides contained in the oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, boria, and the like.
  • the oxide layer may be one layer or two or more layers.
  • the white pigment has two oxide layers, it preferably comprises a first oxide layer containing silicon dioxide and a second oxide layer containing aluminum oxide. Since the white pigment has an oxide layer, the dispersibility of the white pigment in the cured product tends to be improved.
  • the white pigment may have an organic layer and an oxide layer.
  • the oxide layer and the organic layer are preferably provided on the surface of the white pigment in the order of the oxide layer and the organic layer.
  • a first oxide layer containing silicon dioxide, a second oxide layer containing aluminum oxide, and an organic layer are formed on the surface of the white pigment. It is preferable that the monoxide layer, the second oxide layer and the organic layer are provided in this order.
  • the content of the white pigment in the curable composition is, for example, 0.05% by mass to 1.0% by mass with respect to the total amount of the curable composition. is preferred, more preferably 0.1% by mass to 1.0% by mass, and even more preferably 0.2% by mass to 0.5% by mass.
  • the curable composition may further contain other components such as polymerization inhibitors, silane coupling agents, surfactants, adhesion promoters, antioxidants and the like.
  • the curable composition may contain one type of each of the other components alone, or may contain two or more types in combination. Moreover, the curable composition may or may not contain a (meth)allyl compound as necessary.
  • the content of the (meth)allyl compound in the curable composition may be 10% by mass or less, 5% by mass or less, or 1% by mass or less relative to the total amount of the curable composition.
  • the curable composition for example, a phosphor, a polyfunctional thiol compound, a monofunctional thiol compound, a polyfunctional (meth) acrylate compound and a photopolymerization initiator, and if necessary the components described above are prepared by a conventional method.
  • Phosphors preferably quantum dot phosphors, are preferably mixed in a dispersed state in a dispersion medium.
  • the shape of the wavelength conversion member is not particularly limited, and may be film-shaped, lens-shaped, or the like.
  • the wavelength conversion member is preferably in the form of a film.
  • the average thickness of the cured product may be appropriately adjusted according to the application, and may be, for example, 20 ⁇ m to 200 ⁇ m, 25 ⁇ m to 150 ⁇ m, or 30 ⁇ m to 100 ⁇ m. may be When the average thickness is 20 ⁇ m or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 200 ⁇ m or less, when applied to a backlight unit described later, the backlight unit tends to be thinner. be.
  • the average thickness of the cured product may be 50 ⁇ m to 200 ⁇ m, 60 ⁇ m to 150 ⁇ m, or 80 ⁇ m to 100 ⁇ m.
  • the average thickness of the cured product may be 20 ⁇ m to 100 ⁇ m, 25 ⁇ m to 80 ⁇ m, or 30 ⁇ m to 60 ⁇ m.
  • the average thickness of the film-shaped cured product is, for example, using a micrometer, or observing the cross section of the cured product using a SEM (scanning electron microscope), and calculating the arithmetic mean value of the thickness at any three points. Desired.
  • the average thickness of the wavelength conversion member and the average thickness of the wavelength conversion member other than the cured product are measured with a micrometer. and subtracting the average thickness of the wavelength conversion member other than the cured product from the average thickness of the wavelength conversion member.
  • the average thickness of the cured product is obtained from the film-shaped and multiple-layered wavelength conversion member, the average thickness of the cured product is obtained by using a reflection spectroscopic film thickness meter or the like, or by using a SEM (scanning electron microscope). Observing the cross section of the thickness, it is obtained as an arithmetic mean value of the thickness of any three measured points.
  • the wavelength conversion member may be obtained by curing one kind of curable composition, or by curing two or more kinds of curable compositions.
  • the wavelength conversion member is a first cured product obtained by curing a curable composition containing the first phosphor, and the first phosphor has different light emission characteristics.
  • a second cured product obtained by curing a curable composition containing two phosphors may be laminated.
  • a wavelength conversion member can be obtained by forming a coating film of a curable composition, a molded body, or the like, performing a drying treatment as necessary, and then irradiating an active energy ray such as ultraviolet rays.
  • the wavelength and irradiation dose of the active energy ray can be appropriately set according to the composition of the curable composition.
  • ultraviolet rays with a wavelength of 280 nm to 400 nm are irradiated at a dose of 100 mJ/cm 2 to 5000 mJ/cm 2 .
  • Ultraviolet light sources include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
  • the wavelength conversion member may further have a covering material that covers at least part of the cured product.
  • a covering material that covers at least part of the cured product.
  • the cured product is film-like
  • one side or both sides of the film-like cured product may be covered with a film-like coating material.
  • the coating material preferably has barrier properties against oxygen from the viewpoint of suppressing a decrease in luminous efficiency of phosphors such as quantum dot phosphors.
  • the material of the covering material is not particularly limited.
  • examples include resins.
  • the type of resin is not particularly limited, and polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon, and ethylene-vinyl alcohol copolymers. (EVOH) and the like.
  • the covering material may be one provided with a barrier layer (barrier film) for enhancing the barrier function.
  • the barrier layer include inorganic layers containing inorganic substances such as alumina and silica.
  • the covering material may have a single-layer structure or a multi-layer structure. In the case of a multi-layer structure, it may be a combination of two or more layers made of different materials.
  • the average thickness of the covering material may be appropriately adjusted depending on the application, and may be, for example, 10 ⁇ m to 150 ⁇ m, 15 ⁇ m to 140 ⁇ m, or 20 ⁇ m to 135 ⁇ m. may be When the average thickness is 10 ⁇ m or more, functions such as barrier properties tend to be sufficient, and when the average thickness is 150 ⁇ m or less, the decrease in light transmittance tends to be suppressed.
  • the average thickness of the film-like covering material is obtained in the same manner as the average thickness of the film-like wavelength conversion member.
  • the average thickness of the covering material may be 50 ⁇ m to 150 ⁇ m, 60 ⁇ m to 140 ⁇ m, or 80 ⁇ m to 135 ⁇ m.
  • the average thickness of the covering material may be 10 ⁇ m to 100 ⁇ m, 15 ⁇ m to 80 ⁇ m, or 20 ⁇ m to 60 ⁇ m.
  • the coating material preferably contains EVOH.
  • a coating material containing EVOH tends to be inferior in water barrier properties to a barrier film consisting of a resin base material and an inorganic layer. It has sufficient oxygen barrier properties to suppress deterioration.
  • the ratio of structural units derived from ethylene in EVOH is not particularly limited, and can be selected in consideration of the desired properties of the wavelength conversion member.
  • the ethylene content is preferably low, and from the viewpoints of strength and water resistance, the ethylene content is preferably high.
  • the ethylene content in EVOH is preferably 20 mol % to 50 mol %, more preferably 25 mol % to 45 mol %, even more preferably 30 mol % to 40 mol %.
  • the average thickness of the covering material containing EVOH is, for example, preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more. When the average thickness is 20 ⁇ m or more, functions such as barrier properties tend to be sufficient.
  • the average thickness of the covering material containing EVOH is, for example, preferably 150 ⁇ m or less, more preferably 125 ⁇ m or more. When the average thickness is 150 ⁇ m or less, the decrease in light transmittance tends to be suppressed.
  • the oxygen permeability of the covering material is, for example, preferably 0.5 cm 3 /(m 2 ⁇ day ⁇ atm) or less, more preferably 0.3 cm 3 /(m 2 ⁇ day ⁇ atm) or less. , 0.1 cm 3 /(m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability of the covering material can be measured using an oxygen permeability measuring device (eg, MOCON, OX-TRAN) under the conditions of 20°C and 65% relative humidity.
  • an oxygen permeability measuring device eg, MOCON, OX-TRAN
  • the upper limit of the water vapor transmission rate of the covering material is not particularly limited, it may be, for example, 1 ⁇ 10 ⁇ 1 g/(m 2 ⁇ day) or less.
  • the water vapor transmission rate of the covering material can be measured using a water vapor transmission rate measuring device (eg, MOCON, AQUATRAN) under an environment of 40°C and 90% relative humidity.
  • a water vapor transmission rate measuring device eg, MOCON, AQUATRAN
  • the wavelength conversion member preferably has a total light transmittance of 55% or more, more preferably 60% or more, and even more preferably 65% or more.
  • the total light transmittance of the wavelength conversion member can be measured according to the JIS K 7136:2000 measurement method.
  • the wavelength conversion member preferably has a haze of 95% or more, more preferably 97% or more, and even more preferably 99% or more, from the viewpoint of further improving the light utilization efficiency.
  • the haze of the wavelength conversion member can be measured according to the JIS K 7136:2000 measurement method.
  • FIG. 1 An example of the schematic configuration of the wavelength conversion member is shown in FIG.
  • the wavelength conversion member of the present disclosure is not limited to the configuration of FIG. 1 .
  • the sizes of the cured product and the coating material in FIG. 1 are conceptual, and the relative relationship of the sizes is not limited to this.
  • the same reference numerals are given to the same members, and redundant description may be omitted.
  • a wavelength conversion member 10 shown in FIG. The types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
  • the wavelength conversion member having the configuration shown in FIG. 1 can be manufactured, for example, by the following known manufacturing method.
  • a curable composition is applied to the surface of a continuously conveyed film-like coating material (hereinafter also referred to as "first coating material") to form a coating film.
  • first coating material a film-like coating material
  • the method of applying the curable composition is not particularly limited, and includes die coating, curtain coating, extrusion coating, rod coating, roll coating and the like.
  • a continuously conveyed film-like covering material (hereinafter also referred to as “second covering material”) is laminated onto the coating film of the curable composition.
  • the coating film is cured to form a cured product.
  • the wavelength conversion member having the structure shown in FIG. 1 can be obtained by cutting it into a specified size.
  • the coating film is irradiated with the active energy ray before bonding the second coating material, and the cured product is obtained. may be formed.
  • the wavelength conversion member of the second embodiment of the present disclosure has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound, and Fourier Ratio (V4/ V5) is between 0.0001 and 0.005.
  • the wavelength conversion member of this embodiment has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound.
  • a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound.
  • the ratio (V4/V5) of the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to CH stretching vibration is , 0.0001 to 0.005.
  • the V4/V5 of the cured product is 0.0001 or more, the number of unreacted thiol groups does not decrease too much, and the thiol groups contained in the unreacted monofunctional thiol compound in the cured product are arranged on the surface of the phosphor. Therefore, deterioration of the phosphor is preferably suppressed. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
  • the number of unreacted thiol groups does not increase excessively, and the decrease in the crosslink density, the decrease in the glass transition temperature of the cured product, etc. are preferably suppressed. Therefore, when left in a high-temperature and high-humidity environment, when exposed to light in a high-temperature and high-humidity environment, part of the cured product is suppressed from dissolving, and the phosphor, oxygen, and water etc. are suppressed from coming into contact with each other. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
  • the ratio (V4/V5) of the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to C—H stretching vibration was 0. 0.0001 to 0.005, preferably 0.0003 to 0.0045, more preferably 0.0005 to 0.004, even more preferably 0.0008 to 0.0035.
  • the reaction rate of the thiol group of the cured product is 70% to 90% may be A preferred configuration of the wavelength conversion member of the second embodiment is the same as the preferred configuration of the wavelength conversion member of the first embodiment.
  • the wavelength conversion member of the third embodiment of the present disclosure includes a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound. It has a cured product obtained by curing the curable composition.
  • the wavelength conversion member of the present embodiment is a curable composition containing a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound. It has a cured product.
  • a curable composition containing a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound. It has a cured product.
  • the decrease in the crosslink density, the decrease in the glass transition temperature of the cured product, and the like are preferably suppressed. Therefore, when left in a high-temperature and high-humidity environment, when exposed to light in a high-temperature and high-humidity environment, part of the cured product is suppressed from dissolving, and the phosphor, oxygen, and water etc. are suppressed from coming into contact with each other. Furthermore, the thiol group contained in the unreacted monofunctional thiol compound in the cured product is coordinated to the surface of the phosphor to suppress deterioration of the phosphor. As described above, a wavelength conversion member having excellent reliability in a high-temperature and high-humidity environment is provided.
  • a preferred configuration of the monofunctional thiol compound having a molecular weight of 150 to 400 is the same as the monofunctional thiol compound described in the first embodiment.
  • the curable composition of the present embodiment may or may not contain a monofunctional thiol compound with a molecular weight of less than 150 or a monofunctional thiol compound with a molecular weight of more than 400.
  • the content of a monofunctional thiol compound having a molecular weight of less than 150 is is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less, and particularly preferably 0% by mass.
  • the total content of the monofunctional thiol compound having a molecular weight of less than 150 and the monofunctional thiol compound having a molecular weight of more than 400 is preferably 5% by mass or less with respect to the total amount of the curable composition, and 3% by mass or less. is more preferably 1% by mass or less, and particularly preferably 0% by mass.
  • the total content of the polyfunctional thiol compound and the monofunctional thiol compound having a molecular weight of 150 to 400 is preferably 95% by mass or more with respect to the total amount of the thiol compound, and 97 It is more preferably at least 99% by mass, particularly preferably at least 100% by mass.
  • the reaction rate of the thiol group of the cured product may be 70% to 90%, and the V4/V5 of the cured product may be 0.0001 to 0.005.
  • the reaction rate of carbon-carbon double bonds in the cured product may be 90% or more.
  • the preferred configuration of the wavelength conversion member of the third embodiment is the same as the preferred configuration of the wavelength conversion member of the first embodiment and the preferred configuration of the wavelength conversion member of the second embodiment.
  • a backlight unit of the present disclosure includes the wavelength conversion member of the present disclosure described above and a light source.
  • the backlight unit preferably has a multi-wavelength light source.
  • blue light having an emission center wavelength in a wavelength range of 430 nm to 480 nm and an emission intensity peak with a half width of 100 nm or less, and an emission center wavelength in a wavelength range of 520 nm to 560 nm
  • a light unit may be mentioned.
  • the half width of the emission intensity peak means the peak width at half the peak height and the full width at half maximum (FWHM).
  • the emission central wavelength of blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
  • the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
  • the emission center wavelength of the red light emitted by the backlight unit is in the range of 610 nm to 640 nm.
  • the half width of each emission intensity peak of blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, and 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
  • the light source of the backlight unit for example, a light source that emits blue light having an emission central wavelength in the wavelength range of 430 nm to 480 nm can be used.
  • light sources include LEDs (Light Emitting Diodes) and lasers.
  • the wavelength conversion member preferably contains at least a phosphor R that emits red light and a phosphor G that emits green light. Thereby, white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
  • the light source of the backlight unit for example, a light source that emits ultraviolet light having an emission central wavelength in the wavelength range of 300 nm to 430 nm can be used.
  • Light sources include, for example, LEDs and lasers.
  • the wavelength conversion member preferably contains phosphor B, which is excited by excitation light and emits blue light, together with phosphor R and phosphor G. Thereby, white light can be obtained from red light, green light, and blue light emitted from the wavelength conversion member.
  • the backlight unit of the present disclosure may be of the edge light type or the direct type.
  • FIG. 2 An example of the schematic configuration of an edge-light type backlight unit is shown in FIG.
  • the backlight unit of the present disclosure is not limited to the configuration of FIG. 2 .
  • the sizes of the members in FIG. 2 are conceptual, and the relative relationship between the sizes of the members is not limited to this.
  • a backlight unit 20 shown in FIG. a retroreflective member 23 facing the light guide plate 22 with the wavelength converting member 10 interposed therebetween; and a reflector 24 facing the wavelength converting member 10 with the light guide plate 22 interposed therebetween.
  • the wavelength conversion member 10 emits red light L R and green light L G using part of the blue light L B as excitation light, and red light L R and green light L G and blue light L that did not become excitation light. B is emitted.
  • White light LW is emitted from the retroreflective member 23 by the red light L R , green light L G , and blue light L B .
  • the image display device of the present disclosure includes the backlight unit of the present disclosure described above.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device.
  • FIG. 3 An example of the schematic configuration of a liquid crystal display device is shown in FIG.
  • the liquid crystal display device of the present disclosure is not limited to the configuration of FIG.
  • the sizes of the members in FIG. 3 are conceptual, and the relative relationship between the sizes of the members is not limited to this.
  • a liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20 .
  • the liquid crystal cell unit 31 is configured such that the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
  • the driving method of the liquid crystal cell 32 is not particularly limited, and includes TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Virtual Alignment) method, IPS (In-Plane-Switching) method, and OCB (Optically Compensated Birefringence) method. methods and the like.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Virtual Alignment
  • IPS In-Plane-Switching
  • OCB Optically Compensated Birefringence
  • Example 1 of the curable composition of the present disclosure contains a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound, and is measured with a Fourier transform infrared spectrophotometer, SH stretching vibration
  • the ratio (V1/V2) between the peak area (V1) assigned to and the peak area (V2) assigned to CH stretching vibration may be 0.001 to 0.016.
  • V1/V2 may be from 0.003 to 0.015, or from 0.005 to 0.014.
  • Example 2 of the curable composition of the present disclosure is a phosphor, a polyfunctional thiol compound and a thiol compound containing a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth) acrylate compound Curing containing
  • a curable composition containing a phosphor and capable of producing a wavelength conversion member having excellent reliability in a high-temperature and high-humidity environment for example, the wavelength conversion member of the third embodiment.
  • the constituents of the curable composition described in the items such as the wavelength conversion member may be appropriately combined.
  • Examples 1 to 13 and Comparative Example 1 (Preparation of curable composition)
  • the curable compositions of Examples 1 to 13 and Comparative Example 1 were prepared by mixing the components shown in Tables 1 and 2 in the amounts shown in the same tables (unit: parts by weight).
  • Tricyclodecanedimethanol diacrylate (TCDD) was used as the polyfunctional (meth)acrylate compound.
  • Pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) was used as the polyfunctional thiol compound.
  • 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (TPO) was used as a photopolymerization initiator.
  • quantum dot phosphor 1 peak wavelength: 628 nm, half width: 44 nm
  • dispersion medium isobornyl acrylate
  • quantum dot phosphor concentration 10% by mass
  • quantum dot phosphor 2 having a core made of InP emitting green light and a shell made of ZnS (peak wavelength: 525 nm, half width: 40 nm, dispersion medium: isobornyl acrylate , quantum dot phosphor concentration: 10% by mass).
  • the content of the quantum dot phosphor 1 was 2.88% by mass and the content of the quantum dot phosphor 2 was 6.44% by mass with respect to the total amount of the curable composition.
  • Titanium oxide (Chemours, Taipure R-706, particle size 0.36 ⁇ m) was used as the white pigment.
  • a first oxide layer containing silicon oxide, a second oxide layer containing aluminum oxide, and an organic layer containing a polyol compound are provided on the surface of the titanium oxide in the order of the first oxide layer, the second oxide layer, and the organic layer. It is The monofunctional thiol compounds used in Examples 1 to 13 and Comparative Example 1 are as follows.
  • MPA 3-mercaptopropionic acid (molecular weight 106) STMP: stearyl-3-mercaptopropionate (molecular weight 359) EHMP: 2-ethylhexyl-3-mercaptopropionate (molecular weight 218) MBMP: methoxybutyl-3-mercaptopropionate (molecular weight 192) MTG: methoxybutyl thioglycolate (molecular weight 178) BMPA-2EH: n-octyl-3-mercaptopropionate (molecular weight 218) 1-octadecanethiol (molecular weight 287) Tridecyl-3-mercaptopropionate (molecular weight 288)
  • a curable composition was prepared by stirring each component shown in Table 1 using a rotation/revolution mixer (Thinky Co., Ltd., device name: Awatori Rentaro). Specifically, a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound and a monofunctional thiol compound are mixed and stirred, and then a white pigment is added to the mixture obtained by stirring, followed by stirring. and varnished. After adding a photopolymerization initiator to the varnish and stirring, a polymerization inhibitor and a quantum dot phosphor dispersion were further added to prepare a curable composition. The stirring conditions were 2000 rpm (rotation per minute) and 300 seconds.
  • the curable composition obtained above was applied to a barrier film (coating material) (Dai Nippon Printing Co., Ltd.) having an average thickness of 75 ⁇ m using an applicator to form a coating film.
  • a barrier film (coating material) having a thickness of 75 ⁇ m (Dai Nippon Printing Co., Ltd.) was laminated on the coating film to form a laminate.
  • an ultraviolet irradiation device (Eigraphics Co., Ltd.)
  • ultraviolet rays are irradiated under the conditions of an illuminance of 17 mW/cm 2 and an exposure amount of 900 mJ/cm 2 .
  • a conversion member was manufactured.
  • the average thickness of the cured product layer was 60 ⁇ m.
  • Each wavelength conversion member obtained above was cut into a size having a diameter of 21 mm to prepare an evaluation sample.
  • the initial emission intensity of the evaluation sample was measured using a fiber multichannel spectrometer (Ocean Photonics Co., Ltd., Ocean View).
  • the evaluation sample was placed in a thermo-hygrostat at 65° C. and 95% RH (relative humidity) and allowed to stand still for 1000 hours. Calculated.
  • Relative emission intensity retention rate 1 moisture heat resistance: (RLb1/RLa) x 100 RLa: Initial relative luminescence intensity RLb1: Relative luminescence intensity after 1000 hours at 65°C and 95% RH Note that the higher the value of the relative luminescence intensity retention rate 1, the more excellent the moisture-heat resistance of the wavelength conversion member.
  • Each wavelength conversion member obtained above was cut into a size having a diameter of 21 mm to prepare an evaluation sample.
  • a sample for evaluation was placed in a high luminance tester Light BOX (Nanosys) (LED peak wavelength: 448 nm), and tested under an environment of illuminance of 60 mW/cm 2 , 65° C., and 95% RH (relative humidity). After 1000 hours, the sample for evaluation was taken out, and the relative emission intensity retention rate 2 (wet heat resistance) of the wavelength conversion member was calculated according to the following formula.
  • Relative emission intensity retention rate 2 (wet heat resistance): (RLb2/RLa) x 100
  • RLa Initial relative luminous intensity
  • RLb2 Relative luminous intensity after 1000 hours in an environment of 600 mW/cm 2 , 65° C., 95% RH (relative humidity) Note that the higher the value of the relative luminous intensity retention rate 2, the more the wavelength conversion. The member has excellent (wet heat and light resistance).
  • V1 Peak area of the peak attributed to SH stretching vibration (peak at 2525 cm -1 to 2600 cm -1 )
  • V2 Peak attributed to C - H stretching vibration (peak at 2800 cm -1 to 3035 cm -1 ) Peak area
  • V4 Peak area of the peak attributed to SH stretching vibration (peak at 2525 cm -1 to 2600 cm -1 )
  • V5 Peak attributed to CH stretching vibration (peak at 2800 cm -1 to 3035 cm -1 ) peak area
  • FT-IR peak area ratio: V4/V5 C FT-IR
  • Each wavelength conversion member obtained above was cut into a size of A4 to prepare an evaluation sample.
  • An evaluation sample was placed on a backlight in which blue LEDs (wavelength: 448 nm) were arranged on a light diffusing plate and a reflecting plate, and measurements were carried out. The measurement was performed using a multi-spectral radiance meter (PR-740, PHOTO RESEARCH).
  • the incident light intensity before wavelength conversion was M1
  • the incident light intensity after wavelength conversion was M2
  • the wavelength converted light intensity was M3, and 100 ⁇ [M3/(M1 ⁇ M2)] was defined as the radiance efficiency (%).
  • the reaction rate of the thiol group was higher than in Comparative Example 1.
  • the monofunctional thiol compound used in each example had a larger molecular weight than the monofunctional thiol compound used in Comparative Example 1.
  • the curable composition and cured product obtained in each example had smaller ratios of V1/V2 and V4/V5 than the curable composition and cured product obtained in Comparative Example 1, respectively.
  • the wavelength conversion member obtained in each example was better than the wavelength conversion member obtained in Comparative Example 1 in resistance to moist heat and light. In each example, the same level of radiance efficiency as in Comparative Example 1 was obtained.
  • a curable composition was prepared by stirring using a rotation/revolution mixer (Thinky Co., Ltd., device name: Awatori Rentaro). Specifically, 69.01 parts by weight of TCDD which is a polyfunctional (meth)acrylate compound, 15.77 parts by weight of PETMP which is a polyfunctional thiol compound, and 15.22 parts by weight of STMP which is a monofunctional thiol compound are mixed. agitated to form a mixture. Quantum dot phosphor 1 and quantum dot phosphor 2 used in Example 1 to the mixture, a white pigment, a polymerization inhibitor and a polymerization initiator were mixed in the same manner as in Example 1 to prepare a curable composition. did.
  • the content of the quantum dot phosphor 1 is 2.88% by mass, and the content of the quantum dot phosphor 2 is 6 with respect to the total amount of the curable composition. 0.44 mass %. Furthermore, the contents of the white pigment, the polymerization inhibitor and the polymerization initiator were 0.25% by mass, 0.008% by mass and 0.50% by mass, respectively, based on the total amount of the curable composition.
  • a wavelength conversion member was produced in the same manner as in Example 1, in which coating materials were arranged on both sides of the cured product layer.
  • Example 2 A curable composition was prepared in the same manner as in Example 14 except that 15.22 parts by mass of MPA was used instead of 15.22 parts by mass of STMP in Example 14, and a wavelength conversion member was produced.
  • Example 14 15.22 parts by mass of tetraethylene glycol bis(3-mercaptopropionate) (EGMP-4), which is a polyfunctional thiol compound, was used instead of 15.22 parts by mass of STMP, which is a monofunctional thiol compound.
  • EGMP-4 tetraethylene glycol bis(3-mercaptopropionate)
  • STMP which is a monofunctional thiol compound
  • Example 14 Using the wavelength conversion members obtained in Example 14 and Comparative Examples 2 to 5, the radiance efficiency and the reaction rate of thiol groups were measured and evaluated in the same manner as described above. Table 5 shows the results. Blanks in Table 5 mean unblended or unmeasured.
  • the V4/V5 in the cured product was presumed to be 0.005 or less from the results of each Example, and in Comparative Example 2, the V4/V5 in the cured product was 0.005 based on the results of Comparative Example 1. It is assumed to be larger than 005.
  • Example 14 As shown in Table 5, the wavelength conversion member obtained in Example 14 was superior in radiance efficiency to the wavelength conversion members obtained in Comparative Examples 2-5.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

This wavelength conversion member has a cured product obtained by curing a curable composition including: a fluorescent body; and a thiol compound containing a polyfunctional thiol and a monofunctional thiol, wherein a reaction rate of a thiol group of the cured product is 70-90%.

Description

波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物WAVELENGTH CONVERSION MEMBER, BACKLIGHT UNIT, IMAGE DISPLAY DEVICE AND CURABLE COMPOSITION
 本発明は、波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物に関する。 The present invention relates to a wavelength conversion member, a backlight unit, an image display device and a curable composition.
 近年、液晶表示装置等の画像表示装置の分野においては、ディスプレイの色再現性を向上させることが求められている。色再現性を向上させる手段として、特表2013-544018号公報及び国際公開第2016/052625号に記載のように、量子ドット蛍光体を含む波長変換部材が注目を集めている。 In recent years, in the field of image display devices such as liquid crystal display devices, there has been a demand for improving the color reproducibility of displays. As a means for improving color reproducibility, wavelength conversion members containing quantum dot phosphors are attracting attention, as described in Japanese Patent Publication No. 2013-544018 and International Publication No. 2016/052625.
 量子ドット蛍光体を含む波長変換部材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する量子ドット蛍光体及び緑色光を発光する量子ドット蛍光体を含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、量子ドット蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。量子ドット蛍光体を含む波長変換部材の開発により、ディスプレイの色再現性は、従来のNTSC(National Television System Committee)比72%からNTSC比100%へと拡大している。 A wavelength conversion member containing a quantum dot phosphor is arranged, for example, in a backlight unit of an image display device. When using a wavelength conversion member containing a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light, when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor emits light White light can be obtained from the converted red light and green light and the blue light transmitted through the wavelength conversion member. The development of wavelength conversion members containing quantum dot phosphors has expanded the color reproducibility of displays from 72% of the conventional NTSC (National Television System Committee) ratio to 100% of the NTSC ratio.
 量子ドット蛍光体を含む波長変換部材は、通常、量子ドット蛍光体を含む硬化性組成物を硬化させた硬化物を有する。硬化性組成物としては熱硬化型及び光硬化型があり、生産性の観点からは光硬化型の硬化性組成物が好ましく用いられる。 A wavelength conversion member containing quantum dot phosphors usually has a cured product obtained by curing a curable composition containing quantum dot phosphors. The curable composition includes thermosetting and photocurable compositions, and from the viewpoint of productivity, photocurable curable compositions are preferably used.
 ところで量子ドット蛍光体等の蛍光体を含む波長変換部材では、量子ドット蛍光体等の蛍光体は酸素、水等の影響で劣化が起こりやすい。特に高温高湿環境下で放置した場合、高温高湿環境下で光に晒した場合等にて量子ドット蛍光体等の蛍光体が劣化し発光強度が低下するおそれがある。そのため、高温高湿環境下での発光強度の低下が抑制されて高温高湿環境下での信頼性に優れる波長変換部材が望ましい。 By the way, in wavelength conversion members containing phosphors such as quantum dot phosphors, the phosphors such as quantum dot phosphors are likely to deteriorate due to the influence of oxygen, water, and the like. In particular, when left in a high-temperature and high-humidity environment, or when exposed to light in a high-temperature and high-humidity environment, the fluorescent substance such as the quantum dot fluorescent substance may deteriorate and the emission intensity may decrease. Therefore, it is desirable to use a wavelength conversion member that suppresses a decrease in emission intensity in a high-temperature, high-humidity environment and has excellent reliability in a high-temperature, high-humidity environment.
 本開示は、上記事情に鑑みてなされたものであり、蛍光体を含み、高温高湿環境下での信頼性に優れる波長変換部材並びにこの波長変換部材を用いたバックライトユニット及び画像表示装置を提供することを目的とする。
 本開示は、蛍光体を含み、高温高湿環境下での信頼性に優れる波長変換部材を製造可能な硬化性組成物を提供することを目的とする。
The present disclosure has been made in view of the above circumstances, and provides a wavelength conversion member that contains a phosphor and has excellent reliability in a high-temperature and high-humidity environment, and a backlight unit and an image display device that use this wavelength conversion member. intended to provide
An object of the present disclosure is to provide a curable composition containing a phosphor and capable of producing a wavelength conversion member having excellent reliability in a high-temperature and high-humidity environment.
 前記課題を達成するための具体的手段は以下の通りである。
<1> 蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有し、
 前記硬化物のチオール基の反応率が70%~90%である波長変換部材。
<2> 蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有し、フーリエ変換赤外分光光度計で測定した前記硬化物における、S-H伸縮振動に帰属されるピーク面積(V4)と、C-H伸縮振動に帰属されるピーク面積(V5)との比率(V4/V5)が、0.0001~0.005である波長変換部材。
<3> 蛍光体と、多官能チオール化合物及び分子量が150~400である単官能チオール化合物を含むチオール化合物と、多官能(メタ)アクリレート化合物と、を含む硬化性組成物を硬化してなる硬化物を有する波長変換部材。
<4> 前記単官能チオール化合物の分子量は、150~400である<1>又は<2>に記載の波長変換部材。
<5> 前記硬化物は、多官能(メタ)アクリレート化合物をさらに含む前記硬化性組成物を硬化してなり、前記硬化物の炭素炭素二重結合の反応率が90%以上である<1>、<2>又は<4>に記載の波長変換部材。
<6> 前記硬化物の炭素炭素二重結合の反応率が90%以上である<3>に記載の波長変換部材。
<7> 前記多官能(メタ)アクリレート化合物は、1分子中に2個~5個の(メタ)アクリロイル基を有する、<3>、<5>又は<6>に記載の波長変換部材。
<8> 前記蛍光体が量子ドット蛍光体を含み、前記量子ドット蛍光体がCd及びInの少なくとも一方を含む化合物を含む、<1>~<7>のいずれか1つに記載の波長変換部材。
<9> 前記硬化物の少なくとも一部を被覆する被覆材をさらに有する、<1>~<8>のいずれか1つに記載の波長変換部材。
<10> 前記硬化物は、2つの炭素原子と結合するスルフィド構造を有し、前記スルフィド構造と結合する前記炭素原子が2つとも第一級炭素原子である<1>~<9>のいずれか1つに記載の波長変換部材。
<11> <1>~<10>のいずれか1つに記載の波長変換部材と、光源とを備えるバックライトユニット。
<12> <11>に記載のバックライトユニットを備える画像表示装置。
<13> 蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含み、フーリエ変換赤外分光光度計で測定した、S-H伸縮振動に帰属されるピーク面積(V1)と、C-H伸縮振動に帰属されるピーク面積(V2)との比率(V1/V2)が、0.001~0.016である硬化性組成物。
<14> 蛍光体と、多官能チオール化合物及び分子量が150~400である単官能チオール化合物を含むチオール化合物と、多官能(メタ)アクリレート化合物と、を含む硬化性組成物。
Specific means for achieving the above object are as follows.
<1> Having a cured product obtained by curing a curable composition containing a phosphor and a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound,
The wavelength conversion member, wherein the reaction rate of the thiol group of the cured product is 70% to 90%.
<2> A phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound, and a cured product obtained by curing a curable composition containing the above measured with a Fourier transform infrared spectrophotometer In the cured product, the ratio (V4/V5) between the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to C—H stretching vibration is 0.0001 to 0. 005 wavelength conversion member.
<3> A curable composition containing a phosphor, a polyfunctional thiol compound and a thiol compound containing a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth) acrylate compound is cured by curing. A wavelength conversion member having an object.
<4> The wavelength conversion member according to <1> or <2>, wherein the monofunctional thiol compound has a molecular weight of 150 to 400.
<5> The cured product is obtained by curing the curable composition further containing a polyfunctional (meth)acrylate compound, and the reaction rate of carbon-carbon double bonds in the cured product is 90% or more <1> , <2>, or the wavelength conversion member according to <4>.
<6> The wavelength conversion member according to <3>, wherein the carbon-carbon double bond reaction rate of the cured product is 90% or more.
<7> The wavelength conversion member according to <3>, <5> or <6>, wherein the polyfunctional (meth)acrylate compound has 2 to 5 (meth)acryloyl groups in one molecule.
<8> The wavelength conversion member according to any one of <1> to <7>, wherein the phosphor includes a quantum dot phosphor, and the quantum dot phosphor includes a compound containing at least one of Cd and In. .
<9> The wavelength conversion member according to any one of <1> to <8>, further comprising a covering material covering at least part of the cured product.
<10> The cured product has a sulfide structure that bonds to two carbon atoms, and both of the carbon atoms that bond to the sulfide structure are primary carbon atoms <1> to <9> or the wavelength conversion member according to one.
<11> A backlight unit comprising the wavelength conversion member according to any one of <1> to <10>, and a light source.
<12> An image display device comprising the backlight unit according to <11>.
<13> Phosphor and a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound, measured with a Fourier transform infrared spectrophotometer, peak area attributed to SH stretching vibration (V1) and the ratio (V1/V2) of the peak area (V2) attributed to CH stretching vibration is 0.001 to 0.016.
<14> A curable composition comprising a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound.
 本開示は、上記事情に鑑みてなされたものであり、蛍光体を含み、高温高湿環境下での信頼性に優れる波長変換部材並びにこの波長変換部材を用いたバックライトユニット及び画像表示装置を提供することができる。
 本開示は、蛍光体を含み、高温高湿環境下での信頼性に優れる波長変換部材を製造可能な硬化性組成物を提供することができる。
The present disclosure has been made in view of the above circumstances, and provides a wavelength conversion member that contains a phosphor and has excellent reliability in a high-temperature and high-humidity environment, and a backlight unit and an image display device that use this wavelength conversion member. can provide.
INDUSTRIAL APPLICABILITY The present disclosure can provide a curable composition containing a phosphor and capable of producing a wavelength conversion member with excellent reliability in a high-temperature and high-humidity environment.
波長変換部材の概略構成の一例を示す模式断面図である。It is a schematic cross section which shows an example of schematic structure of a wavelength conversion member. バックライトユニットの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of a backlight unit. 液晶表示装置の概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of a liquid crystal display device.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」はアリル及びメタリルの少なくとも一方を意味する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments for carrying out the present invention will be described in detail below. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present invention.
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In the present disclosure, the term “layer” or “film” refers to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present, and only a part of the region. It also includes the case where it is formed.
In the present disclosure, the term "laminate" indicates stacking layers, and two or more layers may be bonded, or two or more layers may be detachable.
In the present disclosure, "(meth)acryloyl" means at least one of acryloyl and methacryloyl, "(meth)acrylate" means at least one of acrylate and methacrylate, and "(meth)allyl" means allyl and methallyl. means at least one
 以下、本開示の波長変換部材の例として、第1実施形態の波長変換部材~第3実施形態の波長変換部材について説明する。第1実施形態の波長変換部材~第3実施形態の波長変換部材の構成及び好ましい構成については、それぞれ適宜組み合わせてもよい。 Hereinafter, as examples of the wavelength conversion member of the present disclosure, the wavelength conversion member of the first embodiment to the wavelength conversion member of the third embodiment will be described. The configurations and preferred configurations of the wavelength conversion member of the first embodiment to the wavelength conversion member of the third embodiment may be combined as appropriate.
[第1実施形態]
<波長変換部材>
 本開示の第1実施形態の波長変換部材は、蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有し、前記硬化物のチオール基の反応率が70%~90%である。
 本実施形態の波長変換部材は、必要に応じて、後述する被覆材等のその他の構成要素を含んでいてもよい。
 本実施形態の波長変換部材は、画像表示用として好適に用いられる。
[First embodiment]
<Wavelength conversion member>
The wavelength conversion member of the first embodiment of the present disclosure has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound, The reaction rate of thiol groups in the cured product is 70% to 90%.
The wavelength conversion member of the present embodiment may contain other constituent elements such as a coating material to be described later, if necessary.
The wavelength conversion member of this embodiment is suitably used for image display.
 本実施形態の波長変換部材は、蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有する。これにより、波長変換部材を高温高湿環境下で放置した場合に、波長変換部材の発光強度の低下が抑制される。この理由は、硬化物中の未反応の単官能チオール化合物に含まれるチオール基(-SH)が蛍光体の表面に配位して蛍光体の劣化を抑制するためと推測される。 The wavelength conversion member of this embodiment has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound. As a result, when the wavelength conversion member is left in a high-temperature and high-humidity environment, a decrease in emission intensity of the wavelength conversion member is suppressed. The reason for this is presumed to be that the thiol group (—SH) contained in the unreacted monofunctional thiol compound in the cured product is coordinated to the surface of the phosphor to suppress deterioration of the phosphor.
 さらに、本実施形態の波長変換部材では、硬化物のチオール基の反応率が70%~90%である。これにより、波長変換部材を高温高湿環境下で放置した場合に、波長変換部材の発光強度の低下がさらに抑制されるとともに、高温高湿環境下で光に晒した場合においても波長変換部材の発光強度の低下が抑制される。この理由は、以下のように推測される。 Furthermore, in the wavelength conversion member of this embodiment, the reaction rate of the thiol groups in the cured product is 70% to 90%. As a result, when the wavelength conversion member is left in a high-temperature and high-humidity environment, the deterioration of the emission intensity of the wavelength conversion member is further suppressed, and even when the wavelength conversion member is exposed to light in a high-temperature and high-humidity environment, the wavelength conversion member remains intact. A decrease in emission intensity is suppressed. The reason for this is presumed as follows.
 硬化物のチオール基の反応率が70%以上であることにより、未反応のチオール基が多くなりすぎず、架橋密度の低下、硬化物のガラス転移温度の低下等が好適に抑制される。そのため、高温高湿環境下にて波長変換部材が放置されている場合、高温高湿環境下で波長変換部材を光に晒した場合等にて硬化物の一部が溶け出したりすることが抑制され、蛍光体と酸素、水等が接触することが抑制される。従って、高温高湿環境下での信頼性に優れる波長変換部材が提供される。 When the reaction rate of the thiol groups in the cured product is 70% or more, the number of unreacted thiol groups does not become too large, and the decrease in the crosslink density, the glass transition temperature of the cured product, etc. are preferably suppressed. Therefore, when the wavelength conversion member is left in a high-temperature and high-humidity environment, or when the wavelength conversion member is exposed to light in a high-temperature and high-humidity environment, it is possible to prevent a part of the cured product from melting out. This prevents the phosphor from coming into contact with oxygen, water, or the like. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
 硬化物のチオール基の反応率が90%以下であることにより、未反応のチオール基が少なくなりすぎず、硬化物中の未反応の単官能チオール化合物に含まれるチオール基が蛍光体の表面に配位して蛍光体の劣化を好適に抑制する。従って、高温高湿環境下での信頼性に優れる波長変換部材が提供される。 When the reaction rate of the thiol groups in the cured product is 90% or less, the number of unreacted thiol groups does not decrease too much, and the thiol groups contained in the unreacted monofunctional thiol compound in the cured product do not reach the surface of the phosphor. It is coordinated to suitably suppress deterioration of the phosphor. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
 なお、硬化物のチオール基の反応率は、以下に記載するように、硬化性組成物及び硬化物におけるFT-IR(フーリエ変換赤外分光光度計)測定を行って算出する。まず、FT-IR Spectrometer(Perkin Elmer社)を用いて、測定対象の硬化性組成物及び波長変換部材の表面をATR(Attenuated Total Reflection(全反射測定法))分析する。バックグラウンド測定は、空気で測定し、積算回数16回の条件でFT-IR測定を実施する。波長変換部材が被覆材を有する場合、被覆材を剥離した状態の波長変換部材の硬化物をFT-IR測定に供する。
 前述のFT-IR測定により、硬化性組成物について以下のV1~V3のピーク面積を求め、硬化物について以下のV4~V6のピーク面積を求める。
 V1:S-H伸縮振動に帰属されるピーク(2525cm-1~2600cm-1でのピーク)のピーク面積
 V2:C-H伸縮振動に帰属されるピーク(2800cm-1~3035cm-1でのピーク)のピーク面積
 V3:C=C伸縮振動に帰属されるピーク(1628cm-1~1650cm-1でのピーク)のピーク面積
 V4:S-H伸縮振動に帰属されるピーク(2525cm-1~2600cm-1でのピーク)のピーク面積
 V5:C-H伸縮振動に帰属されるピーク(2800cm-1~3035cm-1でのピーク)のピーク面積
 V6:C=C伸縮振動に帰属されるピーク(1628cm-1~1650cm-1でのピーク)のピーク面積
 そして、硬化性組成物及び硬化物について、以下のFT-IRピーク面積比率を求め、これらのFT-IRピーク面積比率の値A~Dに基づき、以下の式からチオール基の反応率及び必要に応じて炭素炭素二重結合の反応率を求める。
 FT-IRピーク面積比率:V1/V2=A
 FT-IRピーク面積比率:V3/V2=B
 FT-IRピーク面積比率:V4/V5=C
 FT-IRピーク面積比率:V6/V5=D
 チオール基の反応率:100-100×(C/A)
 炭素炭素二重結合の反応率:100-100×(D/B)
The reaction rate of the thiol group in the cured product is calculated by performing FT-IR (Fourier transform infrared spectrophotometer) measurement on the curable composition and the cured product as described below. First, using an FT-IR Spectrometer (Perkin Elmer), the curable composition to be measured and the surface of the wavelength conversion member are analyzed by ATR (attenuated total reflection (total reflection measurement method)). Background measurement is performed in air, and FT-IR measurement is performed under the condition of 16 integration times. When the wavelength conversion member has a coating material, the cured product of the wavelength conversion member from which the coating material has been removed is subjected to FT-IR measurement.
By the FT-IR measurement described above, the following peak areas of V1 to V3 are determined for the curable composition, and the following peak areas of V4 to V6 are determined for the cured product.
V1: Peak area of the peak attributed to SH stretching vibration (peak at 2525 cm -1 to 2600 cm -1 ) V2: Peak attributed to C - H stretching vibration (peak at 2800 cm -1 to 3035 cm -1 ) Peak area V3: Peak area of the peak attributed to C=C stretching vibration (peak at 1628 cm −1 to 1650 cm −1 ) V4: Peak attributed to SH stretching vibration (2525 cm −1 to 2600 cm − 1 peak) peak area V5: peak attributed to C-H stretching vibration (peak at 2800 cm -1 to 3035 cm -1 ) peak area V6: peak attributed to C=C stretching vibration (1628 cm - 1 ~ 1650 cm -1 peak area) And, for the curable composition and the cured product, the following FT-IR peak area ratios are obtained, and based on these FT-IR peak area ratio values A to D, The reaction rate of the thiol group and, if necessary, the reaction rate of the carbon-carbon double bond are obtained from the following formula.
FT-IR peak area ratio: V1/V2 = A
FT-IR peak area ratio: V3/V2=B
FT-IR peak area ratio: V4/V5=C
FT-IR peak area ratio: V6/V5=D
Reaction rate of thiol group: 100-100×(C/A)
Reaction rate of carbon-carbon double bonds: 100-100×(D/B)
 本実施形態の波長変換部材では、硬化物のチオール基の反応率は、72%~88%であってもよく、75%~85%であってもよく、78%~82%であってもよい。 In the wavelength conversion member of the present embodiment, the reaction rate of the thiol groups in the cured product may be 72% to 88%, 75% to 85%, or 78% to 82%. good.
 本実施形態の波長変換部材では、硬化物は、蛍光体及び多官能チオール化合物とともに、多官能(メタ)アクリレート化合物をさらに含む硬化性組成物を硬化してなることが好ましく、硬化物の炭素炭素二重結合の反応率が90%以上であることが好ましい。これにより、硬化性組成物が硬化する際に多官能チオール化合物と多官能(メタ)アクリレート化合物との間でエンチオール反応が進行し、硬化物の耐湿熱性及び耐湿熱光性が向上する傾向にある。また、硬化物の炭素炭素二重結合の反応率が90%以上であることにより、自由体積が大きく酸素透過性を高くする炭素炭素二重結合の量が低下しており、硬化物における酸素透過性を低減でき、蛍光体の酸化劣化をより好適に抑制できる傾向にある。 In the wavelength conversion member of the present embodiment, the cured product is preferably obtained by curing a curable composition that further contains a polyfunctional (meth)acrylate compound together with the phosphor and the polyfunctional thiol compound. It is preferable that the reaction rate of the double bond is 90% or more. As a result, when the curable composition is cured, the enethiol reaction proceeds between the polyfunctional thiol compound and the polyfunctional (meth)acrylate compound, and the resistance to moist heat and light resistance of the cured product tends to improve. . In addition, since the reaction rate of the carbon-carbon double bonds in the cured product is 90% or more, the amount of carbon-carbon double bonds that increase the free volume and increase the oxygen permeability is reduced, and the oxygen permeability in the cured product is reduced. It tends to be possible to reduce the oxidative degradation of the phosphor and more preferably suppress the oxidation deterioration of the phosphor.
 本実施形態の波長変換部材では、硬化物における酸素透過性をより低減する点から、硬化物の炭素炭素二重結合の反応率は、92%~100%であることが好ましく、94%~100%であることがより好ましく、96%~100%であることがさらに好ましい。 In the wavelength conversion member of the present embodiment, the reaction rate of carbon-carbon double bonds in the cured product is preferably 92% to 100%, more preferably 94% to 100%, in order to further reduce the oxygen permeability in the cured product. %, more preferably 96% to 100%.
 FT-IR測定した硬化物における、S-H伸縮振動に帰属されるピーク面積(V4)と、C-H伸縮振動に帰属されるピーク面積(V5)との比率(V4/V5)は、0.0001~0.005であることが好ましく、0.0003~0.0045であることがより好ましく、0.0005~0.004であることがさらに好ましく、0.0008~0.0035であることが特に好ましい。比率(V4/V5)が0.0001以上であると、硬化物中の未反応のチオール基が蛍光体に好適に配位して蛍光体の酸化劣化が好適に抑制される傾向にある。また、比率(V4/V5)が0.005以下であると、硬化物中に未反応のチオール基が多くなりすぎず、硬化物の強度に優れる傾向にある。 In the cured product measured by FT-IR, the ratio (V4/V5) of the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to C—H stretching vibration was 0. It is preferably 0.0001 to 0.005, more preferably 0.0003 to 0.0045, even more preferably 0.0005 to 0.004, and 0.0008 to 0.0035 is particularly preferred. When the ratio (V4/V5) is 0.0001 or more, the unreacted thiol group in the cured product tends to be favorably coordinated to the phosphor, thereby favorably suppressing oxidative deterioration of the phosphor. Further, when the ratio (V4/V5) is 0.005 or less, unreacted thiol groups are not excessively increased in the cured product, and the strength of the cured product tends to be excellent.
 また、本実施形態の波長変換部材では、蛍光体の酸化劣化が好適に抑制されているため、硬化物中の蛍光体の含有量を従来よりも少なくしても良好な発光強度が得られる傾向にある。 In addition, in the wavelength conversion member of the present embodiment, since oxidative deterioration of the phosphor is suitably suppressed, there is a tendency that good emission intensity can be obtained even if the content of the phosphor in the cured product is smaller than in the conventional case. It is in.
 また、硬化物は、スルフィド構造を有することが好ましい。硬化物がスルフィド構造を有することにより、硬化物の極性向上に寄与し、非極性の酸素が硬化物中の成分に好適に溶解しにくくなる傾向にある。なお、スルフィド構造は、硬化性組成物に含まれる多官能チオール化合物又は単官能チオール化合物におけるチオール基と、多官能(メタ)アクリレート化合物における炭素炭素二重結合との重合反応により、形成されたものであってもよい。 Also, the cured product preferably has a sulfide structure. When the cured product has a sulfide structure, it tends to contribute to the improvement of the polarity of the cured product, making it difficult for non-polar oxygen to preferably dissolve in the components in the cured product. The sulfide structure is formed by a polymerization reaction between a thiol group in a polyfunctional thiol compound or a monofunctional thiol compound contained in the curable composition and a carbon-carbon double bond in a polyfunctional (meth)acrylate compound. may be
 高温環境下での耐光性の観点から、硬化物は、2つの炭素原子と結合するスルフィド構造を有し、スルフィド構造と結合する炭素原子が2つとも第一級炭素原子であることが好ましい。 From the viewpoint of light resistance in a high-temperature environment, the cured product preferably has a sulfide structure that bonds with two carbon atoms, and both carbon atoms that bond with the sulfide structure are primary carbon atoms.
 また、硬化物は、脂環式構造を有していてもよい。なお、脂環式構造は、例えば、硬化性組成物に含まれ得る脂環式構造を有する多官能(メタ)アクリレート化合物における脂環式構造由来であってもよい。 In addition, the cured product may have an alicyclic structure. The alicyclic structure may be derived from, for example, an alicyclic structure in a polyfunctional (meth)acrylate compound having an alicyclic structure that can be contained in the curable composition.
 硬化物に含まれ得る脂環式構造は特に限定されるものではない。脂環式構造の具体例としては、トリシクロデカン骨格、シクロヘキサン骨格、1,3-アダマンタン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格、水添ビスフェノールS骨格、イソボルニル骨格等が挙げられる。これらの中でも、トリシクロデカン骨格又はイソボルニル骨格であることが好ましく、トリシクロデカン骨格であることがより好ましい。 The alicyclic structure that can be contained in the cured product is not particularly limited. Specific examples of the alicyclic structure include tricyclodecane skeleton, cyclohexane skeleton, 1,3-adamantane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton, hydrogenated bisphenol S skeleton, isobornyl skeleton and the like. Among these, a tricyclodecane skeleton or an isobornyl skeleton is preferable, and a tricyclodecane skeleton is more preferable.
 硬化物に含まれる脂環式構造は、1種類単独であっても、少なくとも2種類であってもよい。
 少なくとも2種類の脂環式構造が硬化物に含まれる場合、脂環式構造の組み合わせとしては、トリシクロデカン骨格及びイソボルニル骨格の組み合わせ、水添ビスフェノールA骨格及びイソボルニル骨格の組み合わせ等が挙げられる。これらの中でも、トリシクロデカン骨格及びイソボルニル骨格の組み合わせが好ましい。
The alicyclic structure contained in the cured product may be of one type alone or of at least two types.
When at least two types of alicyclic structures are contained in the cured product, examples of combinations of alicyclic structures include a combination of a tricyclodecane skeleton and an isobornyl skeleton, a combination of a hydrogenated bisphenol A skeleton and an isobornyl skeleton, and the like. Among these, a combination of a tricyclodecane skeleton and an isobornyl skeleton is preferred.
 また、硬化物は、エステル構造を有していてもよい。なお、エステル構造は、例えば、硬化性組成物に含まれ得る多官能(メタ)アクリレート化合物における(メタ)アクリロイルオキシ基中のエステル構造由来であってもよい。 In addition, the cured product may have an ester structure. The ester structure may be derived from, for example, an ester structure in a (meth)acryloyloxy group in a polyfunctional (meth)acrylate compound that may be contained in the curable composition.
 硬化物は、白色顔料を含んでいてもよい。硬化物に含まれる白色顔料についての詳細は、後述のとおりである。
 また、硬化物に含まれる蛍光体についての詳細も、後述のとおりである。波長変換部材は、蛍光体として量子ドット蛍光体を含んでいてもよい。量子ドット蛍光体は、酸素、水等と接触することで劣化しやすい蛍光体である。しかしながら、本実施形態の波長変換部材の構成を満たすことにより、量子ドット蛍光体の劣化が好適に抑制される。
 以下、本実施形態の波長変換部材及び本実施形態の波長変換部材の作製に用いる硬化性組成物に含まれ得る成分について詳細に説明する。
The cured product may contain a white pigment. The details of the white pigment contained in the cured product will be described later.
Details of the phosphor contained in the cured product are also described later. The wavelength conversion member may contain the quantum dot fluorescent substance as fluorescent substance. A quantum dot phosphor is a phosphor that is easily deteriorated by contact with oxygen, water, or the like. However, by satisfying the configuration of the wavelength conversion member of the present embodiment, deterioration of the quantum dot phosphor is preferably suppressed.
Hereinafter, components that can be contained in the wavelength conversion member of the present embodiment and the curable composition used for producing the wavelength conversion member of the present embodiment will be described in detail.
(蛍光体)
 硬化性組成物は、蛍光体を含む。蛍光体の種類は特に限定されず、例えば、有機蛍光体及び無機蛍光体が挙げられる。
(Phosphor)
The curable composition contains a phosphor. The type of phosphor is not particularly limited, and examples thereof include organic phosphors and inorganic phosphors.
 有機蛍光体としては、ナフタルイミド化合物、ペリレン化合物等が挙げられる。
 無機蛍光体としては、Y:Eu、YVO:Eu、Y:Eu、3.5MgO・0.5MgF、GeO:Mn、(Y・Cd)BO:Eu等の赤色発光無機蛍光体、ZnS:Cu・Al、(Zn・Cd)S:Cu・Al、ZnS:Cu・Au・Al、ZnSiO:Mn、ZnSiO:Mn、ZnS:Ag・Cu、(Zn・Cd)S:Cu、ZnS:Cu、GdOS:Tb、LaOS:Tb、YSiO:Ce・Tb、ZnGeO:Mn、GeMgAlO:Tb、SrGaS:Eu2+、ZnS:Cu・Co、MgO・nB:Ge・Tb、LaOBr:Tb・Tm、LaS:Tb等の緑色発光無機蛍光体、ZnS:Ag、GaWO、YSiO:Ce、ZnS:Ag・Ga・Cl、CaOCl:Eu2+、BaMgAl:Eu2+等の青色発光無機蛍光体、量子ドット蛍光体などが挙げられる。
Organic phosphors include naphthalimide compounds, perylene compounds, and the like.
Examples of inorganic phosphors include Y 3 O 3 :Eu, YVO 4 :Eu, Y 2 O 2 :Eu, 3.5MgO·0.5MgF 2 , GeO 2 :Mn, and (Y·Cd)BO 2 :Eu. Red-emitting inorganic phosphor, ZnS: Cu-Al, (Zn-Cd) S: Cu-Al, ZnS: Cu-Au - Al, Zn2SiO4: Mn, ZnSiO4 : Mn, ZnS: Ag - Cu, ( Zn-Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO4 : Ce-Tb, ZnGeO4 : Mn, GeMgAlO: Tb, SrGaS: Eu2 + , ZnS: Cu-Co, MgO-nB 2O3 : Ge.Tb , LaOBr :Tb.Tm, La2O2S :Tb and other green-emitting inorganic phosphors, ZnS:Ag, GaWO4 , Y2SiO6 :Ce, ZnS: Ag.Ga.Cl , Ca 2 B 4 OCl:Eu 2+ , BaMgAl 4 O 3 :Eu 2+ , blue-emitting inorganic phosphors, quantum dot phosphors, and the like.
 画像表示装置の色再現性の観点からは、蛍光体は量子ドット蛍光体を含むことが好ましい。量子ドット蛍光体としては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の観点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。 From the viewpoint of color reproducibility of the image display device, the phosphor preferably contains a quantum dot phosphor. Quantum dot phosphors are not particularly limited, and include particles containing at least one selected from the group consisting of II-VI compounds, III-V compounds, IV-VI compounds, and IV compounds. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
Specific examples of II-VI compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe.
Specific examples of III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaGaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and the like.
Specific examples of IV-VI compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, etc. .
Specific examples of Group IV compounds include Si, Ge, SiC, SiGe and the like.
 量子ドット蛍光体としては、コアシェル構造を有するものが好ましい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。 A quantum dot phosphor preferably has a core-shell structure. By making the bandgap of the compound forming the shell wider than that of the compound forming the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor. Combinations of core and shell (core/shell) include CdSe/ZnS, InP/ZnS, PbSe/PbS, CdSe/CdS, CdTe/CdS, CdTe/ZnS, and the like.
 また、量子ドット蛍光体としては、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、量子ドット蛍光体の量子効率をさらに向上させることが可能となる。 In addition, the quantum dot phosphor may have a so-called core-multi-shell structure in which the shell has a multilayer structure. To further improve the quantum efficiency of a quantum dot phosphor by stacking one or more layers of a shell with a narrow bandgap on a core with a wide bandgap, and further stacking a shell with a wide bandgap on top of this shell. becomes possible.
 硬化性組成物は、1種類の量子ドット蛍光体を単独で含んでいてもよく、2種類以上の量子ドット蛍光体を組み合わせて含んでいてもよい。2種類以上の量子ドット蛍光体を組み合わせて含む態様としては、例えば、成分は異なるものの平均粒子径を同じくする量子ドット蛍光体を2種類以上含む態様、平均粒子径は異なるものの成分を同じくする量子ドット蛍光体を2種類以上含む態様、並びに成分及び平均粒子径の異なる量子ドット蛍光体を2種類以上含む態様が挙げられる。量子ドット蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、量子ドット蛍光体の発光中心波長を変更することができる。 The curable composition may contain one type of quantum dot phosphor alone, or may contain two or more types of quantum dot phosphors in combination. Examples of embodiments that include a combination of two or more types of quantum dot phosphors include, for example, embodiments that include two or more types of quantum dot phosphors that have different components but have the same average particle size, and quantum dots that have different average particle sizes but have the same components. Examples include an embodiment containing two or more types of dot phosphors and an embodiment containing two or more types of quantum dot phosphors having different components and average particle sizes. By changing at least one of the components and the average particle size of the quantum dot phosphor, the emission center wavelength of the quantum dot phosphor can be changed.
 例えば、硬化性組成物は、520nm~560nmの緑色の波長域に発光中心波長を有する量子ドット蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する量子ドット蛍光体Rとを含んでいてもよい。量子ドット蛍光体Gと量子ドット蛍光体Rとを含む硬化性組成物の硬化物に対して430nm~480nmの青色の波長域の励起光を照射すると、量子ドット蛍光体G及び量子ドット蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、量子ドット蛍光体G及び量子ドット蛍光体Rから発光される緑色光及び赤色光と、硬化物を透過する青色光とにより、白色光を得ることができる。 For example, the curable composition includes a quantum dot phosphor G having an emission center wavelength in a green wavelength range of 520 nm to 560 nm, and a quantum dot phosphor R having an emission center wavelength in a red wavelength range of 600 nm to 680 nm. may contain. When the cured product of the curable composition containing the quantum dot phosphor G and the quantum dot phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, the quantum dot phosphor G and the quantum dot phosphor R Green light and red light are emitted from respectively. As a result, white light can be obtained from the green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R and the blue light transmitted through the cured product.
 量子ドット蛍光体は、分散媒体に分散された量子ドット蛍光体分散液の状態で用いてもよい。量子ドット蛍光体を分散する分散媒体としては、水、各種有機溶剤及び単官能(メタ)アクリレート化合物が挙げられる。
 分散媒体として使用可能な有機溶剤としては、アセトン、酢酸エチル、トルエン、n-ヘキサン等が挙げられる。
 分散媒体として使用可能な単官能(メタ)アクリレート化合物としては、室温(25℃)において液体であれば特に限定されるものではなく、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。
 これらの中でも、分散媒体としては、硬化性組成物を硬化する際に分散媒体を揮発させる工程が不要になる観点から、単官能(メタ)アクリレート化合物であることが好ましく、脂環式構造を有する単官能(メタ)アクリレート化合物であることがより好ましく、イソボルニル(メタ)アクリレート及びジシクロペンタニル(メタ)アクリレートの少なくとも一方であることがさらに好ましく、イソボルニル(メタ)アクリレートであることが特に好ましい。
The quantum dot phosphor may be used in the form of a quantum dot phosphor dispersion dispersed in a dispersion medium. Dispersion media for dispersing the quantum dot phosphor include water, various organic solvents, and monofunctional (meth)acrylate compounds.
Organic solvents that can be used as the dispersion medium include acetone, ethyl acetate, toluene, n-hexane and the like.
The monofunctional (meth)acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at room temperature (25° C.), and examples thereof include isobornyl (meth)acrylate and dicyclopentanyl (meth)acrylate. mentioned.
Among these, the dispersion medium is preferably a monofunctional (meth)acrylate compound from the viewpoint of eliminating the need for a step of volatilizing the dispersion medium when curing the curable composition, and has an alicyclic structure. It is more preferably a monofunctional (meth)acrylate compound, more preferably at least one of isobornyl (meth)acrylate and dicyclopentanyl (meth)acrylate, and particularly preferably isobornyl (meth)acrylate.
 量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合は、1質量%~15質量%であることが好ましく、1質量%~14質量%であることがより好ましく、2質量%~12質量%であることがさらに好ましい。 The mass-based proportion of the quantum dot phosphor in the quantum dot phosphor dispersion is preferably 1% by mass to 15% by mass, more preferably 1% by mass to 14% by mass, 2% by mass to More preferably, it is 12% by mass.
 硬化性組成物中の量子ドット蛍光体分散液の含有率は、量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合が1質量%~15質量%である場合、硬化性組成物の全量に対して、例えば、0.5質量%~12質量%であることが好ましく、0.8質量%~11質量%であることがより好ましく、1質量%~10質量%であることがさらに好ましい。また、硬化性組成物中の量子ドット蛍光体の含有率は、硬化性組成物の全量に対して、例えば、0.05質量%~2.0質量%であることが好ましく、0.08質量%~1.5質量%であることがより好ましく、0.1質量%~1.0質量%であることがさらに好ましい。量子ドット蛍光体の含有率が0.05質量%以上であると、硬化物に励起光を照射する際に充分な発光強度が得られる傾向にあり、量子ドット蛍光体の含有率が2.0質量%以下であると、量子ドット蛍光体の凝集が抑えられる傾向にある。 The content of the quantum dot phosphor dispersion in the curable composition is 1% by mass to 15% by mass of the quantum dot phosphor in the quantum dot phosphor dispersion, and the curable composition For example, it is preferably 0.5% by mass to 12% by mass, more preferably 0.8% by mass to 11% by mass, and 1% by mass to 10% by mass. More preferred. Further, the content of the quantum dot phosphor in the curable composition is preferably, for example, 0.05% by mass to 2.0% by mass with respect to the total amount of the curable composition, and 0.08 mass % to 1.5% by mass, more preferably 0.1% to 1.0% by mass. When the content of the quantum dot phosphor is 0.05% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with the excitation light, and the content of the quantum dot phosphor is 2.0. If it is at most % by mass, aggregation of the quantum dot phosphor tends to be suppressed.
(チオール化合物)
 硬化性組成物は多官能チオール化合物及び単官能チオール化合物を含むチオール化合物を含む。硬化性組成物が多官能チオール化合物を含むことで、硬化物の光学特性が向上する傾向にある。硬化性組成物が単官能チオール化合物を含むことで、硬化物中の未反応のチオール基が量子ドット蛍光体等の蛍光体に配位し、波長変換部材の放射輝度が向上する傾向にある。
(thiol compound)
The curable composition comprises thiol compounds, including multifunctional thiol compounds and monofunctional thiol compounds. The inclusion of a polyfunctional thiol compound in the curable composition tends to improve the optical properties of the cured product. When the curable composition contains a monofunctional thiol compound, unreacted thiol groups in the cured product tend to coordinate with phosphors such as quantum dot phosphors, thereby improving the radiance of the wavelength conversion member.
<多官能チオール化合物>
 多官能チオール化合物としては、1分子中に2個以上のチオール基を有する化合物であればよく、1分子中に3個又は4個のチオール基を有する化合物であることが好ましい。硬化物組成物は、1種のみの多官能チオール化合物を含んでいてもよく、2種以上の多官能チオール化合物を含んでいてもよい。
<Polyfunctional thiol compound>
The polyfunctional thiol compound may be a compound having two or more thiol groups in one molecule, preferably a compound having three or four thiol groups in one molecule. The cured product composition may contain only one type of polyfunctional thiol compound, or may contain two or more types of polyfunctional thiol compounds.
 高温環境下での耐光性の観点から、多官能チオール化合物は、第一級炭素原子が結合したチオール基を少なくとも1つ有することが好ましい。 From the viewpoint of light resistance in high-temperature environments, the polyfunctional thiol compound preferably has at least one thiol group to which a primary carbon atom is bonded.
 硬化性組成物は、第一級炭素原子が結合したチオール基を少なくとも1つ有する多官能チオール化合物、及び、第二級炭素原子又は第三級炭素原子が結合したチオール基を少なくとも1つ有する多官能チオール化合物の両方を含んでいてもよい。 The curable composition comprises a polyfunctional thiol compound having at least one thiol group bonded to a primary carbon atom and a polyfunctional thiol compound having at least one thiol group bonded to a secondary or tertiary carbon atom. Both functional thiol compounds may be included.
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。 Specific examples of polyfunctional thiol compounds include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2- Propylene glycol bis(3-mercaptopropionate), diethylene glycol bis(3-mercaptobutyrate), 1,4-butanediol bis(3-mercaptopropionate), 1,4-butanediol bis(3-mercaptobutyrate) rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropane tris (3-mercaptopropionate) pionate), trimethylolpropane tris (3-mercaptobutyrate), trimethylolpropane tris (3-mercaptoisobutyrate), trimethylolpropane tris (2-mercaptoisobutyrate), trimethylolpropane tristhioglycolate, Tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate, trimethylolethane tris(3-mercaptobutyrate), pentaerythritol tetrakis(3-mercaptopropionate), pentaerythritol tetrakis(3-mercaptobutyrate) ), pentaerythritol tetrakis (3-mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakis (3-mercaptopropionate), dipentaerythritol hexakis (2-mercaptopropionate) pionate), dipentaerythritol hexakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptoisobutyrate), dipentaerythritol hexakis (2-mercaptoisobutyrate), pentaerythritol tetrakis thioglyco rate, dipentaerythritol hexakisthioglycolate, and the like.
<単官能チオール化合物>
 単官能チオール化合物は、1分子中に1個のチオール基を有する化合物であればよい。硬化物組成物は、1種のみの単官能チオール化合物を含んでいてもよく、2種以上の単官能チオール化合物を含んでいてもよい。
<Monofunctional thiol compound>
The monofunctional thiol compound should just be a compound which has one thiol group in 1 molecule. The cured product composition may contain only one type of monofunctional thiol compound, or may contain two or more types of monofunctional thiol compounds.
 単官能チオール化合物では、高温高湿環境下での信頼性により優れる波長変換部材を得る観点から、その分子量が、150~400であることが好ましく、160~380であることがより好ましく、170~360であることがさらに好ましい。 The monofunctional thiol compound has a molecular weight of preferably 150 to 400, more preferably 160 to 380, more preferably 170 to 170, from the viewpoint of obtaining a wavelength conversion member that is more reliable in a high-temperature and high-humidity environment. 360 is more preferred.
 単官能チオール化合物は、高温高湿環境下での信頼性により優れる波長変換部材を得る観点から、メルカプトプロピオン骨格又はチオグリコール骨格を含むことが好ましい。 The monofunctional thiol compound preferably contains a mercaptopropion skeleton or a thioglycol skeleton from the viewpoint of obtaining a wavelength conversion member with superior reliability in a high-temperature and high-humidity environment.
 単官能チオール化合物の具体例としては、1-ノナンチオール、1-デカンチオール、1-オクタデカンチオール(ステアリルメルカプタン)、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート(メルカプトプロピオン酸オクチル)、メトキシブチル-3-メルカプトプロピオネート(メルカプトプロピオン酸メトキシブチル)、トリデシル-3-メルカプトプロピオネート(メルカプトプロピオン酸トリデシル)、ステアリル-3-メルカプトプロピオネート、チオグリコール酸オクチル、チオグリコール酸メトキシブチル等が挙げられる。 Specific examples of monofunctional thiol compounds include 1-nonanethiol, 1-decanethiol, 1-octadecanethiol (stearyl mercaptan), 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate. (octyl mercaptopropionate), methoxybutyl-3-mercaptopropionate (methoxybutyl mercaptopropionate), tridecyl-3-mercaptopropionate (tridecyl mercaptopropionate), stearyl-3-mercaptopropionate, thioglycol octyl acid, methoxybutyl thioglycolate, and the like.
 硬化性組成物中のチオール化合物(多官能チオール化合物及び単官能チオール化合物の合計)の含有率は、硬化性組成物の全量に対して、例えば、15質量%~50質量%であることが好ましく、20質量%~40質量%であることがより好ましく、20質量%~30質量%であることがさらに好ましい。チオール化合物の含有率が15質量%以上であることにより、チオール基の反応率を好適に低下できる傾向にあり、チオール化合物の含有率が50質量%以下であることにより、未反応のチオール基が多くなりすぎることが抑制できる傾向にある。 The content of the thiol compound (total of polyfunctional thiol compound and monofunctional thiol compound) in the curable composition is preferably, for example, 15% by mass to 50% by mass with respect to the total amount of the curable composition. , more preferably 20% by mass to 40% by mass, more preferably 20% by mass to 30% by mass. When the content of the thiol compound is 15% by mass or more, the reaction rate of the thiol group tends to be preferably reduced, and when the content of the thiol compound is 50% by mass or less, the unreacted thiol group is There is a tendency that it can be suppressed from becoming too large.
 硬化性組成物中の多官能チオール化合物の含有率は、硬化性組成物の全量に対して、例えば、10質量%~45質量%であってもよく、12質量%~30質量%であってもよい。 The content of the polyfunctional thiol compound in the curable composition, relative to the total amount of the curable composition, for example, may be 10 wt% to 45 wt%, 12 wt% to 30 wt% good too.
 硬化性組成物中の単官能チオール化合物の含有率は、硬化性組成物の全量に対して、3質量%~30質量%であってもよく、4質量%~20質量%であってもよく、4質量%~15質量%であってもよい。 The content of the monofunctional thiol compound in the curable composition may be 3% by mass to 30% by mass, or 4% by mass to 20% by mass, relative to the total amount of the curable composition. , 4% by mass to 15% by mass.
 硬化性組成物にて、単官能チオール化合物に対する多官能チオール化合物の質量比(多官能チオール化合物/単官能チオール化合物)は、0.5~10であってもよく、0.8~6.0であってもよい。 In the curable composition, the mass ratio of the polyfunctional thiol compound to the monofunctional thiol compound (polyfunctional thiol compound/monofunctional thiol compound) may be 0.5 to 10, and 0.8 to 6.0. may be
 硬化性組成物にて、多官能(メタ)アクリレート化合物中の炭素炭素二重結合の合計数に対するチオール化合物(多官能チオール化合物及び単官能チオール化合物の合計)中のチオール基の合計数の比率(チオール基の合計数/炭素炭素二重結合の合計数)は、0.25~1.0であることが好ましく、0.35~0.8であることがより好ましく、0.4~0.65であることがさらに好ましい。 In the curable composition, the ratio of the total number of thiol groups in the thiol compound (total of the polyfunctional thiol compound and the monofunctional thiol compound) to the total number of carbon-carbon double bonds in the polyfunctional (meth)acrylate compound ( The total number of thiol groups/total number of carbon-carbon double bonds) is preferably from 0.25 to 1.0, more preferably from 0.35 to 0.8, and from 0.4 to 0.8. 65 is more preferred.
 波長変換部材に含まれる硬化物が多官能チオール化合物及び単官能チオール化合物を含むチオール化合物を含む硬化性組成物を硬化してなるものに該当するか否かは、硬化物中に未反応のチオール化合物が存在しているか否かを検出することによって確認することができる。例えば、チオール化合物を溶解可能な液体に硬化物を浸漬させ、硬化物中に含まれる未反応のチオール化合物を抽出する。抽出されたチオール化合物を含む液体を高速液体クロマトグラフィー(HPLC)によって種類ごとにチオール化合物を分離する。分離されたチオール化合物をゲル浸透クロマトグラフィー(GPC)、ガスクロマトグラフィー質量分析法(GC-MS)等で分子量同定する。以上により、未反応のチオール化合物が硬化物中に存在することが確認でき、当該未反応のチオール化合物に含まれ得る多官能チオール化合物及び単官能チオール化合物の分子量を同定することができる。 Whether or not the cured product contained in the wavelength conversion member is obtained by curing a curable composition containing a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound depends on the unreacted thiol in the cured product. Confirmation can be achieved by detecting whether the compound is present. For example, the cured product is immersed in a liquid capable of dissolving the thiol compound, and the unreacted thiol compound contained in the cured product is extracted. The liquid containing the extracted thiol compound is subjected to high performance liquid chromatography (HPLC) to separate the thiol compounds by type. The molecular weight of the separated thiol compound is identified by gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS), or the like. As described above, it is possible to confirm that the unreacted thiol compound exists in the cured product, and to identify the molecular weights of the polyfunctional thiol compound and the monofunctional thiol compound that may be contained in the unreacted thiol compound.
(多官能(メタ)アクリレート化合物)
 硬化性組成物は、多官能(メタ)アクリレート化合物を含んでいてもよい。硬化性組成物が前述の多官能チオール化合物と多官能(メタ)アクリレート化合物とを含むことで、硬化性組成物が硬化する際に多官能チオール化合物と多官能(メタ)アクリレート化合物との間でエンチオール反応が進行し、硬化物の耐湿熱性及び耐湿熱光性が向上する傾向にある。硬化物組成物は、1種のみの多官能(メタ)アクリレート化合物を含んでいてもよく、2種以上の多官能(メタ)アクリレート化合物を含んでいてもよい。
(Polyfunctional (meth)acrylate compound)
The curable composition may contain a polyfunctional (meth)acrylate compound. By the curable composition containing the aforementioned polyfunctional thiol compound and a polyfunctional (meth) acrylate compound, when the curable composition is cured between the polyfunctional thiol compound and the polyfunctional (meth) acrylate compound The enethiol reaction proceeds, and the wet heat resistance and the wet heat light resistance of the cured product tend to improve. The cured product composition may contain only one type of polyfunctional (meth)acrylate compound, or may contain two or more types of polyfunctional (meth)acrylate compounds.
 多官能(メタ)アクリレート化合物は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物であればよい。多官能(メタ)アクリレート化合物は、高温環境下での耐湿熱性の観点から、1分子中に2個~5個の(メタ)アクリロイル基を有する化合物であることが好ましく、1分子中に2個~4個の(メタ)アクリロイル基を有する化合物であることがより好ましく、1分子中に2個又は3個の(メタ)アクリロイル基を有する化合物であることがさらに好ましい。 The polyfunctional (meth)acrylate compound may be any compound having two or more (meth)acryloyl groups in one molecule. Polyfunctional (meth) acrylate compound, from the viewpoint of wet heat resistance in a high temperature environment, preferably a compound having 2 to 5 (meth) acryloyl groups in one molecule, two in one molecule Compounds having up to 4 (meth)acryloyl groups are more preferred, and compounds having 2 or 3 (meth)acryloyl groups per molecule are even more preferred.
 多官能(メタ)アクリレート化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート化合物;トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環式構造を有する(メタ)アクリレート化合物などが挙げられる。 Specific examples of polyfunctional (meth)acrylate compounds include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and the like. Alkylene glycol di (meth) acrylate; polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; trimethylol propane tri (meth) acrylate, ethylene oxide added trimethylol propane tri ( meth)acrylates, tri(meth)acrylate compounds such as tris(2-acryloyloxyethyl)isocyanurate; ethylene oxide-added pentaerythritol tetra(meth)acrylate, trimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, etc. tetra (meth) acrylate compounds; bisphenol type di (meth) acrylate such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, propoxylated ethoxylated bisphenol A type di (meth) acrylate Acrylate compounds; tricyclodecanedimethanol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, 1,3-adamantanedimethanol di(meth)acrylate, hydrogenated bisphenol A (poly)ethoxydi(meth)acrylate, water Hydrogenated bisphenol A (poly) propoxy di (meth) acrylate, hydrogenated bisphenol F (poly) ethoxy di (meth) acrylate, hydrogenated bisphenol F (poly) propoxy di (meth) acrylate, hydrogenated bisphenol S (poly) ethoxy di (meth) acrylate and (meth)acrylate compounds having an alicyclic structure such as hydrogenated bisphenol S (poly)propoxy di(meth)acrylate.
 硬化性組成物が多官能(メタ)アクリレート化合物を含む場合、硬化性組成物中の多官能(メタ)アクリレート化合物の含有率は、硬化性組成物の全量に対して、例えば、30質量%~80質量%であることが好ましく、40質量%~75質量%であることが好ましく、40質量%~65質量%であることがさらに好ましい。多官能(メタ)アクリレート化合物の含有率が30質量%以上であると、炭素炭素二重結合の反応率の低下を抑制できる傾向にあり、多官能(メタ)アクリレート化合物の含有率が80質量%以下であると、チオール基の反応率が高くなりすぎることを抑制できる傾向にある。 When the curable composition contains a polyfunctional (meth) acrylate compound, the content of the polyfunctional (meth) acrylate compound in the curable composition is, for example, 30% by mass to the total amount of the curable composition. It is preferably 80% by mass, preferably 40% to 75% by mass, more preferably 40% to 65% by mass. When the content of the polyfunctional (meth)acrylate compound is 30% by mass or more, the decrease in the reaction rate of carbon-carbon double bonds tends to be suppressed, and the content of the polyfunctional (meth)acrylate compound is 80% by mass. When it is below, it tends to be possible to suppress the reaction rate of the thiol group from becoming too high.
(光重合開始剤)
 硬化性組成物は、光重合開始剤を含んでいてもよい。光重合開始剤としては特に制限されず、具体例として、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
(Photoinitiator)
The curable composition may contain a photoinitiator. The photopolymerization initiator is not particularly limited, and specific examples thereof include compounds that generate radicals upon irradiation with active energy rays such as ultraviolet rays.
 光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。硬化性組成物は、1種類の光重合開始剤を単独で含んでいてもよく、2種類以上の光重合開始剤を組み合わせて含んでいてもよい。 Specific examples of photopolymerization initiators include benzophenone, N,N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propanone-1,4,4′-bis(dimethylamino)benzophenone (also called “Michler ketone”), 4,4′-bis (Diethylamino)benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenyl ketone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-(4- Aromatic ketone compounds such as (2-hydroxyethoxy)-phenyl)-2-hydroxy-2-methyl-1-propan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; quinone compounds such as anthraquinone and phenanthrenequinone; benzoin compounds such as benzoin and alkylbenzoin; benzoin ether compounds such as benzoin alkyl ether and benzoin phenyl ether; benzyl derivatives such as benzyl dimethyl ketal; -diphenylimidazole dimer, 2-(o-chlorophenyl)-4,5-di(m-methoxyphenyl)imidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o-methoxyphenyl)-4,5-diphenylimidazole dimer, 2,4-di(p-methoxyphenyl)-5-phenylimidazole dimer, 2-(2,4-dimethoxyphenyl)- 2,4,5-triarylimidazole dimers such as 4,5-diphenylimidazole dimer; acridine derivatives such as 9-phenylacridine and 1,7-(9,9′-acridinyl)heptane; 1,2 -octanedione 1-[4-(phenylthio)-2-(O-benzoyloxime)], ethanone 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-1- oxime ester compounds such as (O-acetyloxime); coumarin compounds such as 7-diethylamino-4-methylcoumarin; thioxanthone compounds such as 2,4-diethylthioxanthone; 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl - acylphosphine oxide compounds such as phenyl-ethoxy-phosphine oxide; The curable composition may contain one type of photopolymerization initiator alone, or may contain two or more types of photopolymerization initiators in combination.
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。 From the viewpoint of curability, the photopolymerization initiator is preferably at least one selected from the group consisting of acylphosphine oxide compounds, aromatic ketone compounds, and oxime ester compounds. At least one selected from the group consisting of more preferably an acylphosphine oxide compound.
 硬化性組成物中の光重合開始剤の含有率は、硬化性組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.3質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、硬化性組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、硬化性組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。 The content of the photopolymerization initiator in the curable composition is preferably, for example, 0.1% by mass to 5% by mass, relative to the total amount of the curable composition, and 0.1% by mass to 3% by mass. %, more preferably 0.3 mass % to 1.5 mass %. When the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the curable composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, It tends to suppress the influence on the hue of the curable composition and the decrease in storage stability.
(液状媒体)
 硬化性組成物は、液状媒体を含んでいてもよい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。
(liquid medium)
The curable composition may contain a liquid medium. A liquid medium refers to a medium that is in a liquid state at room temperature (25° C.).
 液状媒体の具体例としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル等のエーテル溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイル;ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸;などが挙げられる。硬化性組成物が液状媒体を含む場合、1種類の液状媒体を単独で含んでいてもよく、2種類以上の液状媒体を組み合わせて含んでいてもよい。 Specific examples of the liquid medium include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, Diethylene glycol methyl-n-propyl ether, diethylene glycol methyl-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol Ethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl Ether, tetraethylene glycol methyl-n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl-n-hexyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol Di-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl-n-butyl ether, dipropylene Len glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl -n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-butyl ether , tetrapropylene glycol di-n-butyl ether, tetrapropylene glycol methyl-n-hexyl ether and other ether solvents; propylene carbonate, ethylene carbonate, diethyl carbonate and other carbonate solvents; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate , n-butyl acetate, isobutyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2-(2- butoxyethoxy)ethyl, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl ether acetate , glycol diacetate, methoxytriethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, lactate n - amyl, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, γ - Ester solvents such as butyrolactone and γ-valerolactone; acetonitrile, N- Aprotic polar such as methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, etc. Solvent; methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol , sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, Alcohol solvents such as diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether , diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc. Glycol monoether solvents; terpene solvents such as terpinene, terpineol, myrcene, alloocimene, limonene, dipentene, pinene, carvone, ocimene, and phellandrene; straight silicone oils such as dimethylsilicone oil, methylphenylsilicone oil, and methylhydrogensilicone oil; Amino-modified silicone oil, epoxy-modified silicone oil, Cal Boxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, different functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid Modified silicone oils such as modified silicone oils and fluorine-modified silicone oils; Saturated aliphatic monocarboxylic acids with 4 or more carbon atoms such as hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanic acid, icosanoic acid and eicosenoic acid; saturated aliphatic monocarboxylic acid; and the like. When the curable composition contains a liquid medium, it may contain one type of liquid medium alone, or may contain two or more types of liquid medium in combination.
 硬化性組成物が液状媒体を含む場合、硬化性組成物中の液状媒体の含有率は、硬化性組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。 When the curable composition contains a liquid medium, the content of the liquid medium in the curable composition is preferably, for example, 1% by mass to 10% by mass with respect to the total amount of the curable composition. It is more preferably from 4% by mass to 10% by mass, and even more preferably from 4% by mass to 7% by mass.
(炭素数1~17であるカルボン酸)
 硬化性組成物は、炭素数1~17であるカルボン酸(以下、「特定カルボン酸」とも称する)を含んでいてもよい。特定カルボン酸は、硬化物表面にしみ出にくく、硬化物の信頼性に優れる観点、及び立体障害が少なく、量子ドット蛍光体等の蛍光体に配位しやすくなる観点から、炭素数2~12であるカルボン酸が好ましく、炭素数2~10であるカルボン酸がより好ましく、炭素数3~8であるカルボン酸がさらに好ましく、炭素数3~6であるカルボン酸が特に好ましく、炭素数3~5であるカルボン酸がより一層好ましい。
 なお、カルボキシ基の炭素は、特定カルボン酸中の炭素数に含めるものとする。
(Carboxylic acid having 1 to 17 carbon atoms)
The curable composition may contain a carboxylic acid having 1 to 17 carbon atoms (hereinafter also referred to as "specific carboxylic acid"). The specific carboxylic acid is less likely to seep out to the surface of the cured product, from the viewpoint of excellent reliability of the cured product, and from the viewpoint of less steric hindrance and easier coordination with phosphors such as quantum dot phosphors, 2 to 12 carbon atoms. is preferred, a carboxylic acid having 2 to 10 carbon atoms is more preferred, a carboxylic acid having 3 to 8 carbon atoms is more preferred, a carboxylic acid having 3 to 6 carbon atoms is particularly preferred, and a carboxylic acid having 3 to 6 carbon atoms is particularly preferred. Carboxylic acids that are 5 are even more preferred.
In addition, the carbon of the carboxy group shall be included in the number of carbon atoms in the specific carboxylic acid.
 特定カルボン酸としては、不飽和カルボン酸であってもよく、飽和カルボン酸であってもよい。例えば、不飽和カルボン酸中の炭素炭素二重結合が多官能チオール化合物中のチオール基と反応することにより、硬化物表面に特定カルボン酸がしみでにくくなり、硬化物の信頼性に優れる観点から、不飽和カルボン酸が好ましく、メタクリル酸、アクリル酸等がより好ましい。 The specific carboxylic acid may be an unsaturated carboxylic acid or a saturated carboxylic acid. For example, the carbon-carbon double bond in the unsaturated carboxylic acid reacts with the thiol group in the polyfunctional thiol compound, making it difficult for the specific carboxylic acid to stain the surface of the cured product, and from the viewpoint of excellent reliability of the cured product. , and unsaturated carboxylic acids are preferred, and methacrylic acid, acrylic acid and the like are more preferred.
 特定カルボン酸としては、カルボキシ基を1つ以上有するカルボン酸であってもよく、カルボキシ基を2つ以上有するカルボン酸であってもよい。 The specific carboxylic acid may be a carboxylic acid having one or more carboxy groups, or a carboxylic acid having two or more carboxy groups.
 特定カルボン酸は、置換基を有していてもよい。置換基として、具体的には、チオール基、アミノ基、ヒドロキシ基、アルコキシ基、アシル基、スルホン酸基、アリール基、ハロゲン原子、メタクリル基、アクリル基等が挙げられる。特定カルボン酸における炭素数には、置換基中の炭素が含まれないものとする。 The specific carboxylic acid may have a substituent. Specific examples of substituents include thiol groups, amino groups, hydroxy groups, alkoxy groups, acyl groups, sulfonic acid groups, aryl groups, halogen atoms, methacryl groups, acryl groups, and the like. The number of carbon atoms in the specific carboxylic acid does not include the carbon atoms in the substituents.
 特定カルボン酸としては、具体的には、蟻酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、カプロン酸、2-エチル酪酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミスチリン酸、パルミチン酸、マルガリン酸、メタクリル酸、アクリル酸、フマル酸、マレイン酸、メルカプト酢酸、メルカプトプロピオン酸、メルカプト酪酸、メルカプト吉草酸、乳酸、リンゴ酸、クエン酸、安息香酸、フェニル酢酸、フェニルプロピオン酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、ε-アミノカプロン酸等が挙げられる。中でも、特定カルボン酸としては、酢酸、メルカプトプロピオン酸及びメタクリル酸からなる群から選ばれる少なくとも1つを含むことが好ましい。
 特定カルボン酸としては、1種類を単独で用いてもよく、2種類以上を併用してもよい。
Specific carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, caproic acid, 2-ethylbutyric acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, Lauric acid, myristic acid, palmitic acid, margaric acid, methacrylic acid, acrylic acid, fumaric acid, maleic acid, mercaptoacetic acid, mercaptopropionic acid, mercaptobutyric acid, mercaptovaleric acid, lactic acid, malic acid, citric acid, benzoic acid, phenyl Acetic acid, phenylpropionic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, ε-aminocaproic acid and the like. Among them, the specific carboxylic acid preferably contains at least one selected from the group consisting of acetic acid, mercaptopropionic acid and methacrylic acid.
As the specific carboxylic acid, one type may be used alone, or two or more types may be used in combination.
 また、硬化性組成物は、オレイン酸等の炭素数18以上のカルボン酸を含んでいてもよく、含んでいなくてもよい。 In addition, the curable composition may or may not contain a carboxylic acid having 18 or more carbon atoms such as oleic acid.
(白色顔料)
 硬化性組成物は、白色顔料を含んでいてもよい。
 白色顔料の具体例としては、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これらの中でも、光散乱効率の観点から酸化チタンであることが好ましい。
 硬化性組成物が白色顔料として酸化チタンを含む場合、酸化チタンとしては、ルチル型酸化チタンであってもアナターゼ型酸化チタンであってもよく、ルチル型酸化チタンであることが好ましい。
(white pigment)
The curable composition may contain a white pigment.
Specific examples of white pigments include titanium oxide, barium sulfate, zinc oxide, and calcium carbonate. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency.
When the curable composition contains titanium oxide as a white pigment, the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
 白色顔料の平均粒子径は、0.1μm~1μmであることが好ましく、0.2μm~0.8μmであることがより好ましく、0.2μm~0.5μmであることがさらに好ましい。
 本開示において白色顔料の平均粒子径は、以下のようにして測定することができる。
 硬化性組成物から抽出した白色顔料を、界面活性剤を含んだ精製水に分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))を白色顔料の平均粒子径とする。硬化性組成物から白色顔料を抽出する方法としては、例えば、硬化性組成物を液状媒体で希釈し、遠心分離処理等により白色顔料を沈澱させて分収することで得ることができる。
 なお、硬化物中に含まれる白色顔料の平均粒子径は、走査型電子顕微鏡を用いた粒子の観察により、50個の粒子について円相当径(長径と短径の幾何平均)を算出し、その算術平均値として求めることができる。
The average particle size of the white pigment is preferably 0.1 μm to 1 μm, more preferably 0.2 μm to 0.8 μm, even more preferably 0.2 μm to 0.5 μm.
In the present disclosure, the average particle size of the white pigment can be measured as follows.
A white pigment extracted from the curable composition is dispersed in purified water containing a surfactant to obtain a dispersion. Using this dispersion, in the volume-based particle size distribution measured with a laser diffraction particle size distribution analyzer (eg, Shimadzu Corporation, SALD-3000J), the value when the integration from the small diameter side is 50% ( The median diameter (D50)) is taken as the average particle diameter of the white pigment. As a method of extracting the white pigment from the curable composition, for example, the curable composition is diluted with a liquid medium, and the white pigment is precipitated by centrifugal separation or the like and collected.
The average particle diameter of the white pigment contained in the cured product is obtained by observing the particles using a scanning electron microscope and calculating the equivalent circle diameter (geometric average of the major and minor diameters) of 50 particles. It can be obtained as an arithmetic mean value.
 硬化性組成物が白色顔料を含む場合、硬化性組成物中で白色顔料が凝集することを抑制する観点から、白色粒子は、表面の少なくとも一部に有機物を含む有機物層を有することが好ましい。有機物層に含まれる有機物としては、有機シラン、オルガノシロキサン、フルオロシラン、有機ホスホネート、有機リン酸化合物、有機ホスフィネート、有機スルホン酸化合物、カルボン酸、カルボン酸エステル、カルボン酸の誘導体、アミド、炭化水素ワックス、ポリオレフィン、ポリオレフィンのコポリマー、ポリオール、ポリオールの誘導体、アルカノールアミン、アルカノールアミンの誘導体、有機分散剤等が挙げられる。
 有機物層に含まれる有機物は、ポリオール、有機シラン等を含むことが好ましく、ポリオール又は有機シランの少なくとも一方を含むことがより好ましい。
 有機シランの具体例としては、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリエトキシシラン等が挙げられる。
 オルガノシロキサンの具体例としては、トリメチルシリル官能基で終端されたポリジメチルシロキサン(PDMS)、ポリメチルヒドロシロキサン(PMHS)、PMHSのオレフィンによる官能化(ヒドロシリル化による)により誘導されるポリシロキサン等が挙げられる。
 有機ホスホネートの具体例としては、例えば、n-オクチルホスホン酸及びそのエステル、n-デシルホスホン酸及びそのエステル、2-エチルヘキシルホスホン酸及びそのエステル並びにカンフィル(camphyl)ホスホン酸及びそのエステルが挙げられる。
 有機リン酸化合物の具体例としては、有機酸性ホスフェート、有機ピロホスフェート、有機ポリホスフェート、有機メタホスフェート、これらの塩等が挙げられる。
 有機ホスフィネートの具体例としては、例えば、n-ヘキシルホスフィン酸及びそのエステル、n-オクチルホスフィン酸及びそのエステル、ジ-n-ヘキシルホスフィン酸及びそのエステル並びにジ-n-オクチルホスフィン酸及びそのエステルが挙げられる。
 有機スルホン酸化合物の具体例としては、ヘキシルスルホン酸、オクチルスルホン酸、2-エチルヘキシルスルホン酸等のアルキルスルホン酸、これらアルキルスルホン酸と、ナトリウム、カルシウム、マグネシウム、アルミニウム、チタン等の金属イオン、アンモニウムイオン、トリエタノールアミン等の有機アンモニウムイオンなどとの塩が挙げられる。
 カルボン酸の具体例としては、マレイン酸、マロン酸、フマル酸、安息香酸、フタル酸、ステアリン酸、オレイン酸、リノール酸等が挙げられる。
 カルボン酸エステルの具体例としては、上記カルボン酸と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、グリセロール、ヘキサントリオール、エリトリトール、マンニトール、ソルビトール、ペンタエリトリトール、ビスフェノールA、ヒドロキノン、フロログルシノール等のヒドロキシ化合物との反応により生成するエステル及び部分エステルが挙げられる。
 アミドの具体例としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。
 ポリオレフィン及びそのコポリマーの具体例としては、ポリエチレン、ポリプロピレン、エチレンと、プロピレン、ブチレン、酢酸ビニル、アクリレート、アクリルアミド等から選択される1種又は2種以上の化合物との共重合体などが挙げられる。
 ポリオールの具体例としては、グリセロール、トリメチロールエタン、トリメチロールプロパン等が挙げられる。
 アルカノールアミンの具体例としては、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 有機分散剤の具体例としては、クエン酸、ポリアクリル酸、ポリメタクリル酸、陰イオン性、陽イオン性、双性、非イオン性等の官能基をもつ高分子有機分散剤などが挙げられる。
 硬化性組成物中における白色顔料の凝集が抑制されると、硬化物中における白色顔料の分散性が向上する傾向にある。
When the curable composition contains a white pigment, from the viewpoint of suppressing aggregation of the white pigment in the curable composition, the white particles preferably have an organic layer containing an organic substance on at least part of the surface. Organic substances contained in the organic substance layer include organic silanes, organosiloxanes, fluorosilanes, organic phosphonates, organic phosphoric acid compounds, organic phosphinates, organic sulfonic acid compounds, carboxylic acids, carboxylic acid esters, derivatives of carboxylic acids, amides, and hydrocarbons. Waxes, polyolefins, polyolefin copolymers, polyols, polyol derivatives, alkanolamines, alkanolamine derivatives, organic dispersants, and the like.
The organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol and the organic silane.
Specific examples of organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane. silane, heptadecyltriethoxysilane, octadecyltriethoxysilane, and the like.
Specific examples of organosiloxanes include polydimethylsiloxane terminated with trimethylsilyl functional groups (PDMS), polymethylhydrosiloxane (PMHS), polysiloxanes derived from functionalization of PMHS with olefins (via hydrosilylation), and the like. be done.
Specific examples of organic phosphonates include, for example, n-octylphosphonic acid and its esters, n-decylphosphonic acid and its esters, 2-ethylhexylphosphonic acid and its esters, and camphyl phosphonic acid and its esters.
Specific examples of organic phosphoric acid compounds include organic acidic phosphates, organic pyrophosphates, organic polyphosphates, organic metaphosphates, and salts thereof.
Specific examples of organic phosphinates include n-hexylphosphinic acid and its esters, n-octylphosphinic acid and its esters, di-n-hexylphosphinic acid and its esters, and di-n-octylphosphinic acid and its esters. mentioned.
Specific examples of organic sulfonic acid compounds include alkylsulfonic acids such as hexylsulfonic acid, octylsulfonic acid and 2-ethylhexylsulfonic acid, these alkylsulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum and titanium, ammonium ions, and salts with organic ammonium ions such as triethanolamine.
Specific examples of carboxylic acids include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid and linoleic acid.
Specific examples of carboxylic acid esters include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, hydroquinone, Esters and partial esters formed by reaction with hydroxy compounds such as roglucinol are included.
Specific examples of amides include stearamide, oleamide, and erucamide.
Specific examples of polyolefins and copolymers thereof include polyethylene, polypropylene, copolymers of ethylene with one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide, and the like.
Specific examples of polyols include glycerol, trimethylolethane, trimethylolpropane and the like.
Specific examples of alkanolamine include diethanolamine and triethanolamine.
Specific examples of organic dispersants include citric acid, polyacrylic acid, polymethacrylic acid, and polymeric organic dispersants having functional groups such as anionic, cationic, zwitterionic, and nonionic.
Suppression of aggregation of the white pigment in the curable composition tends to improve the dispersibility of the white pigment in the cured product.
 白色顔料は、表面の少なくとも一部に酸化物を含む酸化物層を有していてもよい。酸化物層に含まれる酸化物としては、二酸化ケイ素、酸化アルミニウム、ジルコニア、ホスホリア(phosphoria)、ボリア(boria)等が挙げられる。酸化物層は一層であっても二層以上であってもよい。白色顔料が二層の酸化物層を有する場合、二酸化ケイ素を含む第一酸化物層及び酸化アルミニウムを含む第二酸化物層を含むものであることが好ましい。
 白色顔料が酸化物層を有することで、硬化物中における白色顔料の分散性が向上する傾向にある。
The white pigment may have an oxide layer containing an oxide on at least part of the surface. Oxides contained in the oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, boria, and the like. The oxide layer may be one layer or two or more layers. When the white pigment has two oxide layers, it preferably comprises a first oxide layer containing silicon dioxide and a second oxide layer containing aluminum oxide.
Since the white pigment has an oxide layer, the dispersibility of the white pigment in the cured product tends to be improved.
 白色顔料は、有機物層と酸化物層とを有するものであってもよい。この場合、白色顔料の表面に、酸化物層及び有機物層が、酸化物層及び有機物層の順に設けられることが好ましい。白色顔料が有機物層と二層の酸化物層とを有するものである場合、白色顔料の表面に、二酸化ケイ素を含む第一酸化物層、酸化アルミニウムを含む第二酸化物層及び有機物層が、第一酸化物層、第二酸化物層及び有機物層の順に設けられることが好ましい。 The white pigment may have an organic layer and an oxide layer. In this case, the oxide layer and the organic layer are preferably provided on the surface of the white pigment in the order of the oxide layer and the organic layer. When the white pigment has an organic layer and two oxide layers, a first oxide layer containing silicon dioxide, a second oxide layer containing aluminum oxide, and an organic layer are formed on the surface of the white pigment. It is preferable that the monoxide layer, the second oxide layer and the organic layer are provided in this order.
 硬化性組成物が白色顔料を含む場合、硬化性組成物中の白色顔料の含有率は、硬化性組成物の全量に対して、例えば、0.05質量%~1.0質量%であることが好ましく、0.1質量%~1.0質量%であることがより好ましく、0.2質量%~0.5質量%であることがさらに好ましい。 When the curable composition contains a white pigment, the content of the white pigment in the curable composition is, for example, 0.05% by mass to 1.0% by mass with respect to the total amount of the curable composition. is preferred, more preferably 0.1% by mass to 1.0% by mass, and even more preferably 0.2% by mass to 0.5% by mass.
(その他の成分)
 硬化性組成物は、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤等のその他の成分をさらに含んでいてもよい。硬化性組成物は、その他の成分のそれぞれについて、1種類を単独で含んでいてもよく、2種類以上を組み合わせて含んでいてもよい。
 また、硬化性組成物は、必要に応じて(メタ)アリル化合物を含んでいてもよく、含んでいなくてもよい。
(other ingredients)
The curable composition may further contain other components such as polymerization inhibitors, silane coupling agents, surfactants, adhesion promoters, antioxidants and the like. The curable composition may contain one type of each of the other components alone, or may contain two or more types in combination.
Moreover, the curable composition may or may not contain a (meth)allyl compound as necessary.
 硬化性組成物中の(メタ)アリル化合物の含有率は、硬化性組成物全量に対し、10質量%以下であってもよく、5質量%以下であってもよく、1質量%以下であってもよい。 The content of the (meth)allyl compound in the curable composition may be 10% by mass or less, 5% by mass or less, or 1% by mass or less relative to the total amount of the curable composition. may
(硬化性組成物の調製方法)
 硬化性組成物は、例えば、蛍光体、多官能チオール化合物、単官能チオール化合物、多官能(メタ)アクリレート化合物及び光重合開始剤並びに必要に応じて前述した成分を常法により混合することで調製することができる。蛍光体、好ましくは量子ドット蛍光体は、分散媒体に分散させた状態で混合することが好ましい。
(Method for preparing curable composition)
The curable composition, for example, a phosphor, a polyfunctional thiol compound, a monofunctional thiol compound, a polyfunctional (meth) acrylate compound and a photopolymerization initiator, and if necessary the components described above are prepared by a conventional method. can do. Phosphors, preferably quantum dot phosphors, are preferably mixed in a dispersed state in a dispersion medium.
 波長変換部材の形状は特に制限されず、フィルム状、レンズ状等が挙げられる。波長変換部材を後述するバックライトユニットに適用する場合には、波長変換部材はフィルム状であることが好ましい。 The shape of the wavelength conversion member is not particularly limited, and may be film-shaped, lens-shaped, or the like. When applying the wavelength conversion member to a backlight unit which will be described later, the wavelength conversion member is preferably in the form of a film.
 硬化物がフィルム状である場合、硬化物の平均厚みは、用途に応じて適宜調整してもよく、例えば、20μm~200μmであってもよく、25μm~150μmであってもよく、30μm~100μmであってもよい。平均厚みが20μm以上であると、波長変換効率がより向上する傾向にあり、平均厚みが200μm以下であると、後述するバックライトユニットに適用した場合に、バックライトユニットをより薄型化できる傾向にある。
 例えば、波長変換部材がテレビ受像機等に用いられる場合、硬化物の平均厚みは、50μm~200μmであってもよく、60μm~150μmであってもよく、80μm~100μmであってもよい。
 例えば、波長変換部材が携帯情報端末等に用いられる場合、硬化物の平均厚みは、20μm~100μmであってもよく、25μm~80μmであってもよく、30μm~60μmであってもよい。
 フィルム状の硬化物の平均厚みは、例えば、マイクロメータを用いる、あるいは、SEM(走査型電子顕微鏡)を用いて硬化物の断面を観察し、測定した任意の3箇所の厚みの算術平均値として求められる。
 また、フィルム状かつ複数層の波長変換部材から硬化物の平均厚みを求める場合、波長変換部材の平均厚み及び波長変換部材における硬化物以外の平均厚み(例えば、被覆材の平均厚み)をマイクロメータを用いて前述のようにして求め、波長変換部材の平均厚みから波長変換部材における硬化物以外の平均厚みを差し引いてもよい。
 また、フィルム状かつ複数層の波長変換部材から硬化物の平均厚みを求める場合、硬化物の平均厚みは、反射分光膜厚計等を用いる、あるいはSEM(走査型電子顕微鏡)を用いて硬化物の断面を観察し、測定した任意の3箇所の厚みの算術平均値として求められる。
When the cured product is in the form of a film, the average thickness of the cured product may be appropriately adjusted according to the application, and may be, for example, 20 μm to 200 μm, 25 μm to 150 μm, or 30 μm to 100 μm. may be When the average thickness is 20 μm or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 200 μm or less, when applied to a backlight unit described later, the backlight unit tends to be thinner. be.
For example, when the wavelength conversion member is used in a television receiver or the like, the average thickness of the cured product may be 50 μm to 200 μm, 60 μm to 150 μm, or 80 μm to 100 μm.
For example, when the wavelength conversion member is used in a mobile information terminal or the like, the average thickness of the cured product may be 20 μm to 100 μm, 25 μm to 80 μm, or 30 μm to 60 μm.
The average thickness of the film-shaped cured product is, for example, using a micrometer, or observing the cross section of the cured product using a SEM (scanning electron microscope), and calculating the arithmetic mean value of the thickness at any three points. Desired.
In addition, when obtaining the average thickness of the cured product from a film-like and multiple-layered wavelength conversion member, the average thickness of the wavelength conversion member and the average thickness of the wavelength conversion member other than the cured product (for example, the average thickness of the coating material) are measured with a micrometer. and subtracting the average thickness of the wavelength conversion member other than the cured product from the average thickness of the wavelength conversion member.
Further, when the average thickness of the cured product is obtained from the film-shaped and multiple-layered wavelength conversion member, the average thickness of the cured product is obtained by using a reflection spectroscopic film thickness meter or the like, or by using a SEM (scanning electron microscope). Observing the cross section of the thickness, it is obtained as an arithmetic mean value of the thickness of any three measured points.
 波長変換部材は、1種類の硬化性組成物を硬化したものであってもよく、2種類以上の硬化性組成物を硬化したものであってもよい。例えば、波長変換部材がフィルム状である場合、波長変換部材は、第1の蛍光体を含む硬化性組成物を硬化した第1の硬化物と、第1の蛍光体とは発光特性が異なる第2の蛍光体を含む硬化性組成物を硬化した第2の硬化物とが積層されたものであってもよい。 The wavelength conversion member may be obtained by curing one kind of curable composition, or by curing two or more kinds of curable compositions. For example, when the wavelength conversion member is in the form of a film, the wavelength conversion member is a first cured product obtained by curing a curable composition containing the first phosphor, and the first phosphor has different light emission characteristics. A second cured product obtained by curing a curable composition containing two phosphors may be laminated.
 波長変換部材は、硬化性組成物の塗膜、成形体等を形成し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。活性エネルギー線の波長及び照射量は、硬化性組成物の組成に応じて適宜設定することができる。一態様では、280nm~400nmの波長の紫外線を100mJ/cm~5000mJ/cmの照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。 A wavelength conversion member can be obtained by forming a coating film of a curable composition, a molded body, or the like, performing a drying treatment as necessary, and then irradiating an active energy ray such as ultraviolet rays. The wavelength and irradiation dose of the active energy ray can be appropriately set according to the composition of the curable composition. In one embodiment, ultraviolet rays with a wavelength of 280 nm to 400 nm are irradiated at a dose of 100 mJ/cm 2 to 5000 mJ/cm 2 . Ultraviolet light sources include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
 波長変換部材は、硬化物の少なくとも一部を被覆する被覆材をさらに有していてもよい。例えば、硬化物がフィルム状である場合、フィルム状の硬化物の片面又は両面がフィルム状の被覆材によって被覆されていてもよい。 The wavelength conversion member may further have a covering material that covers at least part of the cured product. For example, when the cured product is film-like, one side or both sides of the film-like cured product may be covered with a film-like coating material.
 被覆材は、量子ドット蛍光体等の蛍光体の発光効率の低下を抑える観点から、酸素に対するバリア性を有することが好ましい。 The coating material preferably has barrier properties against oxygen from the viewpoint of suppressing a decrease in luminous efficiency of phosphors such as quantum dot phosphors.
 波長変換部材が被覆材を有する場合、被覆材の材質は、特に制限されない。例えば、樹脂が挙げられる。樹脂の種類は特に制限されず、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ナイロン等のポリアミド、エチレン-ビニルアルコール共重合体(EVOH)などが挙げられる。また、被覆材は、バリア機能を高めるためのバリア層を備えたもの(バリアフィルム)であってもよい。バリア層としては、アルミナ、シリカ等の無機物を含む無機層が挙げられる。 When the wavelength conversion member has a covering material, the material of the covering material is not particularly limited. Examples include resins. The type of resin is not particularly limited, and polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon, and ethylene-vinyl alcohol copolymers. (EVOH) and the like. Also, the covering material may be one provided with a barrier layer (barrier film) for enhancing the barrier function. Examples of the barrier layer include inorganic layers containing inorganic substances such as alumina and silica.
 被覆材は単層構造でも複層構造であってもよい。複層構造である場合は、材質の異なる2以上の層の組み合わせであってもよい。 The covering material may have a single-layer structure or a multi-layer structure. In the case of a multi-layer structure, it may be a combination of two or more layers made of different materials.
 被覆材がフィルム状である場合、被覆材の平均厚みは、用途に応じて適宜調整してもよく、例えば、10μm~150μmであってもよく、15μm~140μmであってもよく、20μm~135μmであってもよい。平均厚みが10μm以上であると、バリア性等の機能が充分なものとなる傾向にあり、平均厚みが150μm以下であると、光透過率の低下が抑えられる傾向にある。
 フィルム状の被覆材の平均厚みは、フィルム状の波長変換部材の平均厚みと同様にして求められる。
 例えば、波長変換部材がテレビ受像機等に用いられる場合、被覆材の平均厚みは、50μm~150μmであってもよく、60μm~140μmであってもよく、80μm~135μmであってもよい。
 例えば、波長変換部材が携帯情報端末等に用いられる場合、被覆材の平均厚みは、10μm~100μmであってもよく、15μm~80μmであってもよく、20μm~60μmであってもよい。
When the covering material is in the form of a film, the average thickness of the covering material may be appropriately adjusted depending on the application, and may be, for example, 10 μm to 150 μm, 15 μm to 140 μm, or 20 μm to 135 μm. may be When the average thickness is 10 μm or more, functions such as barrier properties tend to be sufficient, and when the average thickness is 150 μm or less, the decrease in light transmittance tends to be suppressed.
The average thickness of the film-like covering material is obtained in the same manner as the average thickness of the film-like wavelength conversion member.
For example, when the wavelength conversion member is used in a television receiver or the like, the average thickness of the covering material may be 50 μm to 150 μm, 60 μm to 140 μm, or 80 μm to 135 μm.
For example, when the wavelength conversion member is used in a mobile information terminal or the like, the average thickness of the covering material may be 10 μm to 100 μm, 15 μm to 80 μm, or 20 μm to 60 μm.
 波長変換部材の信頼性を維持しつつ低コスト化を図る観点からは、被覆材はEVOHを含むことが好ましい。EVOHを含む被覆材は、樹脂基材と無機層とからなるバリアフィルムよりも水バリア性に劣る傾向にあるが、樹脂の中でも酸素透過率が特に低いため、量子ドット蛍光体等の蛍光体の劣化を抑制するのに充分な酸素バリア性を有する。 From the viewpoint of cost reduction while maintaining the reliability of the wavelength conversion member, the coating material preferably contains EVOH. A coating material containing EVOH tends to be inferior in water barrier properties to a barrier film consisting of a resin base material and an inorganic layer. It has sufficient oxygen barrier properties to suppress deterioration.
 EVOHにおけるエチレンに由来する構造単位の割合(エチレン含有率)は特に制限されず、波長変換部材の所望の特性等を考慮して選択できる。酸素バリア性の観点からは、エチレン含有率が小さいことが好ましく、強度及び耐水性の観点からは、エチレン含有率が大きいことが好ましい。例えば、EVOHにおけるエチレン含有率は20モル%~50モル%であることが好ましく、25モル%~45モル%であることがより好ましく、30モル%~40モル%であることがさらに好ましい。 The ratio of structural units derived from ethylene in EVOH (ethylene content) is not particularly limited, and can be selected in consideration of the desired properties of the wavelength conversion member. From the viewpoint of oxygen barrier properties, the ethylene content is preferably low, and from the viewpoints of strength and water resistance, the ethylene content is preferably high. For example, the ethylene content in EVOH is preferably 20 mol % to 50 mol %, more preferably 25 mol % to 45 mol %, even more preferably 30 mol % to 40 mol %.
 EVOHを含む被覆材の平均厚みは、例えば、20μm以上であることが好ましく、50μm以上であることがより好ましい。平均厚みが20μm以上であると、バリア性等の機能が充分なものとなる傾向にある。
 EVOHを含む被覆材の平均厚みは、例えば、150μm以下であることが好ましく、125μm以上であることがより好ましい。平均厚みが150μm以下であると、光透過率の低下が抑えられる傾向にある。
The average thickness of the covering material containing EVOH is, for example, preferably 20 μm or more, more preferably 50 μm or more. When the average thickness is 20 μm or more, functions such as barrier properties tend to be sufficient.
The average thickness of the covering material containing EVOH is, for example, preferably 150 μm or less, more preferably 125 μm or more. When the average thickness is 150 µm or less, the decrease in light transmittance tends to be suppressed.
 被覆材の酸素透過率は、例えば、0.5cm/(m・day・atm)以下であることが好ましく、0.3cm/(m・day・atm)以下であることがより好ましく、0.1cm/(m・day・atm)以下であることがさらに好ましい。 The oxygen permeability of the covering material is, for example, preferably 0.5 cm 3 /(m 2 ·day·atm) or less, more preferably 0.3 cm 3 /(m 2 ·day·atm) or less. , 0.1 cm 3 /(m 2 ·day·atm) or less.
 被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、20℃、相対湿度65%の条件で測定することができる。 The oxygen permeability of the covering material can be measured using an oxygen permeability measuring device (eg, MOCON, OX-TRAN) under the conditions of 20°C and 65% relative humidity.
 被覆材の水蒸気透過率の上限値は特に制限されないが、例えば、1×10-1g/(m・day)以下であってもよい。 Although the upper limit of the water vapor transmission rate of the covering material is not particularly limited, it may be, for example, 1×10 −1 g/(m 2 ·day) or less.
 被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて40℃、相対湿度90%の環境下で測定することができる。 The water vapor transmission rate of the covering material can be measured using a water vapor transmission rate measuring device (eg, MOCON, AQUATRAN) under an environment of 40°C and 90% relative humidity.
 波長変換部材は、光の利用効率をより向上させる観点から、全光線透過率が55%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましい。波長変換部材の全光線透過率は、JIS K 7136:2000の測定法に準拠して測定することができる。 From the viewpoint of further improving light utilization efficiency, the wavelength conversion member preferably has a total light transmittance of 55% or more, more preferably 60% or more, and even more preferably 65% or more. The total light transmittance of the wavelength conversion member can be measured according to the JIS K 7136:2000 measurement method.
 また、波長変換部材は、光の利用効率をより向上させる観点から、ヘーズが95%以上であることが好ましく、97%以上であることがより好ましく、99%以上であることがさらに好ましい。波長変換部材のヘーズは、JIS K 7136:2000の測定法に準拠して測定することができる。 In addition, the wavelength conversion member preferably has a haze of 95% or more, more preferably 97% or more, and even more preferably 99% or more, from the viewpoint of further improving the light utilization efficiency. The haze of the wavelength conversion member can be measured according to the JIS K 7136:2000 measurement method.
 波長変換部材の概略構成の一例を図1に示す。但し、本開示の波長変換部材は図1の構成に限定されるものではない。また、図1における硬化物及び被覆材の大きさは概念的なものであり、大きさの相対的な関係はこれに限定されない。なお、各図面において、同一の部材には同一の符号を付し、重複した説明は省略することがある。 An example of the schematic configuration of the wavelength conversion member is shown in FIG. However, the wavelength conversion member of the present disclosure is not limited to the configuration of FIG. 1 . Moreover, the sizes of the cured product and the coating material in FIG. 1 are conceptual, and the relative relationship of the sizes is not limited to this. In addition, in each drawing, the same reference numerals are given to the same members, and redundant description may be omitted.
 図1に示す波長変換部材10は、フィルム状の硬化物である硬化物11と、硬化物11の両面に設けられたフィルム状の被覆材12A及び12Bとを有する。被覆材12A及び被覆材12Bの種類及び平均厚みは、それぞれ同一であっても異なっていてもよい。 A wavelength conversion member 10 shown in FIG. The types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
 図1に示す構成の波長変換部材は、例えば、以下のような公知の製造方法により製造することができる。 The wavelength conversion member having the configuration shown in FIG. 1 can be manufactured, for example, by the following known manufacturing method.
 まず、連続搬送されるフィルム状の被覆材(以下、「第1の被覆材」ともいう。)の表面に硬化性組成物を付与し、塗膜を形成する。硬化性組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。 First, a curable composition is applied to the surface of a continuously conveyed film-like coating material (hereinafter also referred to as "first coating material") to form a coating film. The method of applying the curable composition is not particularly limited, and includes die coating, curtain coating, extrusion coating, rod coating, roll coating and the like.
 次いで、硬化性組成物の塗膜の上に、連続搬送されるフィルム状の被覆材(以下、「第2の被覆材」ともいう。)を貼り合わせる。 Next, a continuously conveyed film-like covering material (hereinafter also referred to as "second covering material") is laminated onto the coating film of the curable composition.
 次いで、第1の被覆材及び第2の被覆材のうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、硬化物を形成する。その後、規定のサイズに切り出すことにより、図1に示す構成の波長変換部材を得ることができる。 Next, by irradiating the active energy ray from the side of the first coating material and the second coating material that can transmit the active energy ray, the coating film is cured to form a cured product. After that, the wavelength conversion member having the structure shown in FIG. 1 can be obtained by cutting it into a specified size.
 なお、第1の被覆材及び第2の被覆材のいずれも活性エネルギー線を透過可能でない場合には、第2の被覆材を貼り合わせる前に塗膜に活性エネルギー線を照射し、硬化物を形成してもよい。 In addition, when neither the first coating material nor the second coating material can transmit the active energy ray, the coating film is irradiated with the active energy ray before bonding the second coating material, and the cured product is obtained. may be formed.
[第2実施形態]
<波長変換部材>
 本開示の第2実施形態の波長変換部材は、蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有し、フーリエ変換赤外分光光度計で測定した前記硬化物における、S-H伸縮振動に帰属されるピーク面積(V4)と、C-H伸縮振動に帰属されるピーク面積(V5)との比率(V4/V5)が、0.0001~0.005である。
[Second embodiment]
<Wavelength conversion member>
The wavelength conversion member of the second embodiment of the present disclosure has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound, and Fourier Ratio (V4/ V5) is between 0.0001 and 0.005.
 本実施形態の波長変換部材は、蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有する。これにより、波長変換部材を高温高湿環境下で放置した場合に、波長変換部材の発光強度の低下が抑制される。この理由は、硬化物中の未反応の単官能チオール化合物に含まれるチオール基(-SH)が蛍光体の表面に配位して蛍光体の劣化を抑制するためと推測される。 The wavelength conversion member of this embodiment has a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound. As a result, when the wavelength conversion member is left in a high-temperature and high-humidity environment, a decrease in emission intensity of the wavelength conversion member is suppressed. The reason for this is presumed to be that the thiol group (—SH) contained in the unreacted monofunctional thiol compound in the cured product is coordinated to the surface of the phosphor to suppress deterioration of the phosphor.
 さらに、本実施形態の波長変換部材では、S-H伸縮振動に帰属されるピーク面積(V4)と、C-H伸縮振動に帰属されるピーク面積(V5)との比率(V4/V5)が、0.0001~0.005である。これにより、波長変換部材を高温高湿環境下で放置した場合に、波長変換部材の発光強度の低下がさらに抑制されるとともに、高温高湿環境下で光に晒した場合においても波長変換部材の発光強度の低下が抑制される。この理由は、以下のように推測される。 Furthermore, in the wavelength conversion member of the present embodiment, the ratio (V4/V5) of the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to CH stretching vibration is , 0.0001 to 0.005. As a result, when the wavelength conversion member is left in a high-temperature and high-humidity environment, the deterioration of the emission intensity of the wavelength conversion member is further suppressed, and even when the wavelength conversion member is exposed to light in a high-temperature and high-humidity environment, the wavelength conversion member remains intact. A decrease in emission intensity is suppressed. The reason for this is presumed as follows.
 硬化物のV4/V5が0.0001以上であることにより、未反応のチオール基が少なくなりすぎず、硬化物中の未反応の単官能チオール化合物に含まれるチオール基が蛍光体の表面に配位して蛍光体の劣化を好適に抑制する。従って、高温高湿環境下での信頼性に優れる波長変換部材が提供される。 When the V4/V5 of the cured product is 0.0001 or more, the number of unreacted thiol groups does not decrease too much, and the thiol groups contained in the unreacted monofunctional thiol compound in the cured product are arranged on the surface of the phosphor. Therefore, deterioration of the phosphor is preferably suppressed. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
 硬化物のV4/V5が0.005以下であることにより、未反応のチオール基が多くなりすぎず、架橋密度の低下、硬化物のガラス転移温度の低下等が好適に抑制される。そのため、高温高湿環境下にて放置されている場合、高温高湿環境下で光に晒した場合等にて硬化物の一部が溶け出したりすることが抑制され、蛍光体と酸素、水等が接触することが抑制される。従って、高温高湿環境下での信頼性に優れる波長変換部材が提供される。 When the V4/V5 of the cured product is 0.005 or less, the number of unreacted thiol groups does not increase excessively, and the decrease in the crosslink density, the decrease in the glass transition temperature of the cured product, etc. are preferably suppressed. Therefore, when left in a high-temperature and high-humidity environment, when exposed to light in a high-temperature and high-humidity environment, part of the cured product is suppressed from dissolving, and the phosphor, oxygen, and water etc. are suppressed from coming into contact with each other. Therefore, a wavelength conversion member is provided that is highly reliable in a high-temperature, high-humidity environment.
 FT-IR測定した硬化物における、S-H伸縮振動に帰属されるピーク面積(V4)と、C-H伸縮振動に帰属されるピーク面積(V5)との比率(V4/V5)は、0.0001~0.005であり、0.0003~0.0045であることが好ましく、0.0005~0.004であることがより好ましく、0.0008~0.0035であることがさらに好ましい。 In the cured product measured by FT-IR, the ratio (V4/V5) of the peak area (V4) attributed to SH stretching vibration and the peak area (V5) attributed to C—H stretching vibration was 0. 0.0001 to 0.005, preferably 0.0003 to 0.0045, more preferably 0.0005 to 0.004, even more preferably 0.0008 to 0.0035.
 第2実施形態の波長変換部材では、硬化物のチオール基の反応率が70%~90%
であってもよい。第2実施形態の波長変換部材の好ましい構成は、第1実施形態の波長変換部材の好ましい構成と同様である。
In the wavelength conversion member of the second embodiment, the reaction rate of the thiol group of the cured product is 70% to 90%
may be A preferred configuration of the wavelength conversion member of the second embodiment is the same as the preferred configuration of the wavelength conversion member of the first embodiment.
[第3実施形態]
<波長変換部材>
 本開示の第3実施形態の波長変換部材は、蛍光体と、多官能チオール化合物及び分子量が150~400である単官能チオール化合物を含むチオール化合物と、多官能(メタ)アクリレート化合物と、を含む硬化性組成物を硬化してなる硬化物を有する。
[Third embodiment]
<Wavelength conversion member>
The wavelength conversion member of the third embodiment of the present disclosure includes a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound. It has a cured product obtained by curing the curable composition.
 本実施形態の波長変換部材は、蛍光体と、多官能チオール化合物及び分子量が150~400である単官能チオール化合物を含むチオール化合物と、多官能(メタ)アクリレート化合物とを含む硬化性組成物を硬化してなる硬化物を有する。これにより、波長変換部材を高温高湿環境下で放置した場合又は高温高湿環境下で光に晒した場合において、波長変換部材の発光強度の低下が抑制される。この理由は、以下のように推測される。 The wavelength conversion member of the present embodiment is a curable composition containing a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound. It has a cured product. As a result, when the wavelength conversion member is left in a high-temperature and high-humidity environment or exposed to light in a high-temperature and high-humidity environment, a decrease in emission intensity of the wavelength conversion member is suppressed. The reason for this is presumed as follows.
 分子量が150~400である単官能チオール化合物を用いることにより、分子量が150~400である単官能チオール化合物を用いずに分子量が150未満の単官能チオール化合物を用いた場合と比較して多官能チオール化合物と多官能(メタ)アクリレート化合物の反応割合を高めることができる。これにより、硬化性組成物が硬化する際に多官能チオール化合物と多官能(メタ)アクリレート化合物との間でエンチオール反応が進行し、硬化物の耐湿熱性及び耐湿熱光性が向上する傾向にある。さらに、多官能チオール化合物と多官能(メタ)アクリレート化合物の反応割合が高まることで、架橋密度の低下、硬化物のガラス転移温度の低下等が好適に抑制される。そのため、高温高湿環境下にて放置されている場合、高温高湿環境下で光に晒した場合等にて硬化物の一部が溶け出したりすることが抑制され、蛍光体と酸素、水等が接触することが抑制される。さらに、硬化物中の未反応の単官能チオール化合物に含まれるチオール基は蛍光体の表面に配位して蛍光体の劣化を抑制する。以上により、高温高湿環境下での信頼性に優れる波長変換部材が提供される。 By using a monofunctional thiol compound having a molecular weight of 150 to 400, compared with the case of using a monofunctional thiol compound having a molecular weight of less than 150 without using a monofunctional thiol compound having a molecular weight of 150 to 400. Polyfunctional It is possible to increase the reaction ratio of the thiol compound and the polyfunctional (meth)acrylate compound. As a result, when the curable composition is cured, the enethiol reaction proceeds between the polyfunctional thiol compound and the polyfunctional (meth)acrylate compound, and the resistance to moist heat and light resistance of the cured product tends to improve. . Furthermore, by increasing the reaction ratio of the polyfunctional thiol compound and the polyfunctional (meth)acrylate compound, the decrease in the crosslink density, the decrease in the glass transition temperature of the cured product, and the like are preferably suppressed. Therefore, when left in a high-temperature and high-humidity environment, when exposed to light in a high-temperature and high-humidity environment, part of the cured product is suppressed from dissolving, and the phosphor, oxygen, and water etc. are suppressed from coming into contact with each other. Furthermore, the thiol group contained in the unreacted monofunctional thiol compound in the cured product is coordinated to the surface of the phosphor to suppress deterioration of the phosphor. As described above, a wavelength conversion member having excellent reliability in a high-temperature and high-humidity environment is provided.
 分子量が150~400である単官能チオール化合物の好ましい構成は、前述の第1実施形態に記載の単官能チオール化合物と同様である。 A preferred configuration of the monofunctional thiol compound having a molecular weight of 150 to 400 is the same as the monofunctional thiol compound described in the first embodiment.
 本実施形態の硬化性組成物は、分子量が150未満の単官能チオール化合物又は分子量が400超の単官能チオール化合物を含んでいてもよく、含まなくてもよい。高温高湿環境下での信頼性により優れる波長変換部材を得る観点から、本実施形態の硬化性組成物では、分子量が150未満の単官能チオール化合物の含有率は、硬化性組成物全量に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。
 また、分子量が150未満の単官能チオール化合物及び分子量が400超の単官能チオール化合物の合計含有率は、硬化性組成物全量に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。
The curable composition of the present embodiment may or may not contain a monofunctional thiol compound with a molecular weight of less than 150 or a monofunctional thiol compound with a molecular weight of more than 400. From the viewpoint of obtaining a wavelength conversion member that is more reliable in a high-temperature and high-humidity environment, in the curable composition of the present embodiment, the content of a monofunctional thiol compound having a molecular weight of less than 150 is is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less, and particularly preferably 0% by mass.
Further, the total content of the monofunctional thiol compound having a molecular weight of less than 150 and the monofunctional thiol compound having a molecular weight of more than 400 is preferably 5% by mass or less with respect to the total amount of the curable composition, and 3% by mass or less. is more preferably 1% by mass or less, and particularly preferably 0% by mass.
 本実施形態の硬化性組成物では、多官能チオール化合物及び分子量が150~400である単官能チオール化合物の合計含有率は、チオール化合物全量に対して、95質量%以上であることが好ましく、97質量%以上であることがより好ましく、99質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。 In the curable composition of the present embodiment, the total content of the polyfunctional thiol compound and the monofunctional thiol compound having a molecular weight of 150 to 400 is preferably 95% by mass or more with respect to the total amount of the thiol compound, and 97 It is more preferably at least 99% by mass, particularly preferably at least 100% by mass.
 第3実施形態の波長変換部材では、硬化物のチオール基の反応率が70%~90%であってもよく、硬化物のV4/V5が0.0001~0.005であってもよく、硬化物の炭素炭素二重結合の反応率が90%以上であってもよい。第3実施形態の波長変換部材の好ましい構成は、第1実施形態の波長変換部材の好ましい構成及び第2実施形態の波長変換部材の好ましい構成と同様である。 In the wavelength conversion member of the third embodiment, the reaction rate of the thiol group of the cured product may be 70% to 90%, and the V4/V5 of the cured product may be 0.0001 to 0.005. The reaction rate of carbon-carbon double bonds in the cured product may be 90% or more. The preferred configuration of the wavelength conversion member of the third embodiment is the same as the preferred configuration of the wavelength conversion member of the first embodiment and the preferred configuration of the wavelength conversion member of the second embodiment.
<バックライトユニット>
 本開示のバックライトユニットは、上述した本開示の波長変換部材と、光源とを備える。
<Backlight unit>
A backlight unit of the present disclosure includes the wavelength conversion member of the present disclosure described above and a light source.
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅であって半値全幅(Full Width at Half Maximum、FWHM)を意味する。 From the viewpoint of improving color reproducibility, the backlight unit preferably has a multi-wavelength light source. As a preferred embodiment, blue light having an emission center wavelength in a wavelength range of 430 nm to 480 nm and an emission intensity peak with a half width of 100 nm or less, and an emission center wavelength in a wavelength range of 520 nm to 560 nm, A backlight that emits green light having an emission intensity peak with a half-value width of 100 nm or less, and red light having an emission center wavelength in a wavelength range of 600 nm to 680 nm and an emission intensity peak with a half-value width of 100 nm or less. A light unit may be mentioned. The half width of the emission intensity peak means the peak width at half the peak height and the full width at half maximum (FWHM).
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。 From the viewpoint of further improving color reproducibility, the emission central wavelength of blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm. From the same point of view, the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm. From the same point of view, it is preferable that the emission center wavelength of the red light emitted by the backlight unit is in the range of 610 nm to 640 nm.
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。 In addition, from the viewpoint of further improving color reproducibility, the half width of each emission intensity peak of blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, and 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する蛍光体R及び緑色光を発光する蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。 As the light source of the backlight unit, for example, a light source that emits blue light having an emission central wavelength in the wavelength range of 430 nm to 480 nm can be used. Examples of light sources include LEDs (Light Emitting Diodes) and lasers. When using a light source that emits blue light, the wavelength conversion member preferably contains at least a phosphor R that emits red light and a phosphor G that emits green light. Thereby, white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、蛍光体R及び蛍光体Gとともに、励起光により励起され青色光を発光する蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。 Also, as the light source of the backlight unit, for example, a light source that emits ultraviolet light having an emission central wavelength in the wavelength range of 300 nm to 430 nm can be used. Light sources include, for example, LEDs and lasers. When a light source that emits ultraviolet light is used, the wavelength conversion member preferably contains phosphor B, which is excited by excitation light and emits blue light, together with phosphor R and phosphor G. Thereby, white light can be obtained from red light, green light, and blue light emitted from the wavelength conversion member.
 本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。 The backlight unit of the present disclosure may be of the edge light type or the direct type.
 エッジライト方式のバックライトユニットの概略構成の一例を図2に示す。但し、本開示のバックライトユニットは、図2の構成に限定されるものではない。また、図2における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。 An example of the schematic configuration of an edge-light type backlight unit is shown in FIG. However, the backlight unit of the present disclosure is not limited to the configuration of FIG. 2 . In addition, the sizes of the members in FIG. 2 are conceptual, and the relative relationship between the sizes of the members is not limited to this.
 図2に示すバックライトユニット20は、青色光Lを出射する光源21と、光源21から出射された青色光Lを導光して出射させる導光板22と、導光板22と対向配置される波長変換部材10と、波長変換部材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換部材10と対向配置される反射板24とを備える。波長変換部材10は、青色光Lの一部を励起光として赤色光L及び緑色光Lを発光し、赤色光L及び緑色光Lと、励起光とならなかった青色光Lとを出射する。この赤色光L、緑色光L、及び青色光Lにより、再帰反射性部材23から白色光Lが出射される。 A backlight unit 20 shown in FIG. a retroreflective member 23 facing the light guide plate 22 with the wavelength converting member 10 interposed therebetween; and a reflector 24 facing the wavelength converting member 10 with the light guide plate 22 interposed therebetween. . The wavelength conversion member 10 emits red light L R and green light L G using part of the blue light L B as excitation light, and red light L R and green light L G and blue light L that did not become excitation light. B is emitted. White light LW is emitted from the retroreflective member 23 by the red light L R , green light L G , and blue light L B .
<画像表示装置>
 本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。
<Image display device>
The image display device of the present disclosure includes the backlight unit of the present disclosure described above. The image display device is not particularly limited, and examples thereof include a liquid crystal display device.
 液晶表示装置の概略構成の一例を図3に示す。但し、本開示の液晶表示装置は、図3の構成に限定されるものではない。また、図3における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。 An example of the schematic configuration of a liquid crystal display device is shown in FIG. However, the liquid crystal display device of the present disclosure is not limited to the configuration of FIG. Also, the sizes of the members in FIG. 3 are conceptual, and the relative relationship between the sizes of the members is not limited to this.
 図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。 A liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20 . The liquid crystal cell unit 31 is configured such that the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Virtical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。 The driving method of the liquid crystal cell 32 is not particularly limited, and includes TN (Twisted Nematic) method, STN (Super Twisted Nematic) method, VA (Virtual Alignment) method, IPS (In-Plane-Switching) method, and OCB (Optically Compensated Birefringence) method. methods and the like.
<硬化性組成物の例1>
 本開示の硬化性組成物の例1は、蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含み、フーリエ変換赤外分光光度計で測定した、S-H伸縮振動に帰属されるピーク面積(V1)と、C-H伸縮振動に帰属されるピーク面積(V2)との比率(V1/V2)が、0.001~0.016であってもよい。これにより、蛍光体を含み、高温高湿環境下での信頼性に優れる波長変換部材、例えば、第2実施形態の波長変換部材を製造可能な硬化性組成物が提供できる。
<Example 1 of curable composition>
Example 1 of the curable composition of the present disclosure contains a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound, and is measured with a Fourier transform infrared spectrophotometer, SH stretching vibration The ratio (V1/V2) between the peak area (V1) assigned to and the peak area (V2) assigned to CH stretching vibration may be 0.001 to 0.016. Thereby, it is possible to provide a curable composition containing a phosphor and capable of producing a wavelength conversion member excellent in reliability in a high-temperature and high-humidity environment, for example, the wavelength conversion member of the second embodiment.
 硬化性組成物の例1では、V1/V2が、0.003~0.015であってもよく、0.005~0.014であってもよい。 In Example 1 of the curable composition, V1/V2 may be from 0.003 to 0.015, or from 0.005 to 0.014.
<硬化性組成物の例2>
 本開示の硬化性組成物の例2は、蛍光体と、多官能チオール化合物及び分子量が150~400である単官能チオール化合物を含むチオール化合物と、多官能(メタ)アクリレート化合物と、を含む硬化性組成物であるこれにより、蛍光体を含み、高温高湿環境下での信頼性に優れる波長変換部材、例えば、第3実施形態の波長変換部材を製造可能な硬化性組成物が提供できる。
<Example 2 of curable composition>
Example 2 of the curable composition of the present disclosure is a phosphor, a polyfunctional thiol compound and a thiol compound containing a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth) acrylate compound Curing containing As a result, it is possible to provide a curable composition containing a phosphor and capable of producing a wavelength conversion member having excellent reliability in a high-temperature and high-humidity environment, for example, the wavelength conversion member of the third embodiment.
 硬化性組成物の例1及び例2としては、前述の波長変換部材等の項目にて説明した硬化性組成物の各構成を適宜組み合わせてもよい。 As examples 1 and 2 of the curable composition, the constituents of the curable composition described in the items such as the wavelength conversion member may be appropriately combined.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
<実施例1~13及び比較例1>
(硬化性組成物の調製)
 表1及び表2に示す各成分を同表に示す配合量(単位:質量部)で混合することにより、実施例1~13及び比較例1の硬化性組成物をそれぞれ調製した。
 多官能(メタ)アクリレート化合物としては、トリシクロデカンジメタノールジアクリレート(TCDD)を用いた。
 多官能チオール化合物として、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(PETMP)を用いた。
 光重合開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(TPO)を用いた。
 重合禁止剤として、4-ヒドロキシ-2、2、6、6-テトラメチルピペリジン-N-オキシル(TEMPO)を用いた。
 量子ドット蛍光体分散液として、赤色光を発光するInPからなるコアとZnSからなるシェルとを有する量子ドット蛍光体1(ピーク波長:628nm、半値幅:44nm、分散媒体:イソボルニルアクリレート、量子ドット蛍光体濃度:10質量%)及び緑色光を発光するInPからなるコアとZnSからなるシェルとを有する量子ドット蛍光体2(ピーク波長:525nm、半値幅:40nm、分散媒体:イソボルニルアクリレート、量子ドット蛍光体濃度:10質量%)を用いた。硬化性組成物全量に対して、量子ドット蛍光体1の含有率は2.88質量%であり、量子ドット蛍光体2の含有率は6.44質量%であった。
 白色顔料として、酸化チタン(Chemours社、タイピュア R-706、粒子径0.36μm)を用いた。酸化チタンの表面には、酸化ケイ素を含む第一酸化物層、酸化アルミニウムを含む第二酸化物層及びポリオール化合物を含む有機物層が、第一酸化物層、第二酸化物層及び有機物層の順に設けられている。
 実施例1~13及び比較例1にて用いた単官能チオール化合物は以下の通りである。
 MPA・・・3-メルカプトプロピオン酸(分子量106)
 STMP・・・ステアリル-3-メルカプトプロピオネート(分子量359)
 EHMP・・・2-エチルヘキシル-3-メルカプトプロピオネート(分子量218)
 MBMP・・・メトキシブチル-3-メルカプトプロピオネート(分子量192)
 MTG・・・チオグリコール酸メトキシブチル(分子量178)
 BMPA-2EH・・・n-オクチル-3-メルカプトプロピオネート(分子量218)
 1-オクタデカンチオール(分子量287)
 トリデシル-3-メルカプトプロピオネート(分子量288)
<Examples 1 to 13 and Comparative Example 1>
(Preparation of curable composition)
The curable compositions of Examples 1 to 13 and Comparative Example 1 were prepared by mixing the components shown in Tables 1 and 2 in the amounts shown in the same tables (unit: parts by weight).
Tricyclodecanedimethanol diacrylate (TCDD) was used as the polyfunctional (meth)acrylate compound.
Pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) was used as the polyfunctional thiol compound.
2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (TPO) was used as a photopolymerization initiator.
As a polymerization inhibitor, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) was used.
As a quantum dot phosphor dispersion liquid, quantum dot phosphor 1 (peak wavelength: 628 nm, half width: 44 nm, dispersion medium: isobornyl acrylate, quantum dot phosphor concentration: 10% by mass) and a quantum dot phosphor 2 having a core made of InP emitting green light and a shell made of ZnS (peak wavelength: 525 nm, half width: 40 nm, dispersion medium: isobornyl acrylate , quantum dot phosphor concentration: 10% by mass). The content of the quantum dot phosphor 1 was 2.88% by mass and the content of the quantum dot phosphor 2 was 6.44% by mass with respect to the total amount of the curable composition.
Titanium oxide (Chemours, Taipure R-706, particle size 0.36 μm) was used as the white pigment. A first oxide layer containing silicon oxide, a second oxide layer containing aluminum oxide, and an organic layer containing a polyol compound are provided on the surface of the titanium oxide in the order of the first oxide layer, the second oxide layer, and the organic layer. It is
The monofunctional thiol compounds used in Examples 1 to 13 and Comparative Example 1 are as follows.
MPA: 3-mercaptopropionic acid (molecular weight 106)
STMP: stearyl-3-mercaptopropionate (molecular weight 359)
EHMP: 2-ethylhexyl-3-mercaptopropionate (molecular weight 218)
MBMP: methoxybutyl-3-mercaptopropionate (molecular weight 192)
MTG: methoxybutyl thioglycolate (molecular weight 178)
BMPA-2EH: n-octyl-3-mercaptopropionate (molecular weight 218)
1-octadecanethiol (molecular weight 287)
Tridecyl-3-mercaptopropionate (molecular weight 288)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(波長変換部材の製造)
 表1に示す各成分を自転・公転ミキサ(株式会社シンキー、装置名:泡とり錬太郎)を用いて撹拌して硬化性組成物を調製した。具体的には、多官能(メタ)アクリレート化合物、多官能チオール化合物及び単官能チオール化合物を混合して撹拌し、その後に撹拌して得られた混合物にさらに白色顔料を添加し、次いで撹拌を行ってワニスとした。ワニスに光重合開始剤を添加して撹拌した後に、重合禁止剤及び量子ドット蛍光体分散液をさらに添加して硬化性組成物を調製した。撹拌条件はいずれも2000rpm(回転毎分)、300秒とした。上記で得られた硬化性組成物を平均厚み75μmのバリアフィルム(大日本印刷株式会社)(被覆材)上にアプリケータを用い塗布して塗膜を形成した。この塗膜上に厚み75μmのバリアフィルム(大日本印刷株式会社)(被覆材)を貼り合わせて積層体とした。次いで、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照度17mW/cm、露光量900mJ/cmの条件で照射することにより、硬化物層の両面に被覆材が配置された波長変換部材を製造した。硬化物層の平均厚みは60μmであった。
(Manufacture of wavelength conversion member)
A curable composition was prepared by stirring each component shown in Table 1 using a rotation/revolution mixer (Thinky Co., Ltd., device name: Awatori Rentaro). Specifically, a polyfunctional (meth) acrylate compound, a polyfunctional thiol compound and a monofunctional thiol compound are mixed and stirred, and then a white pigment is added to the mixture obtained by stirring, followed by stirring. and varnished. After adding a photopolymerization initiator to the varnish and stirring, a polymerization inhibitor and a quantum dot phosphor dispersion were further added to prepare a curable composition. The stirring conditions were 2000 rpm (rotation per minute) and 300 seconds. The curable composition obtained above was applied to a barrier film (coating material) (Dai Nippon Printing Co., Ltd.) having an average thickness of 75 μm using an applicator to form a coating film. A barrier film (coating material) having a thickness of 75 μm (Dai Nippon Printing Co., Ltd.) was laminated on the coating film to form a laminate. Then, using an ultraviolet irradiation device (Eigraphics Co., Ltd.), ultraviolet rays are irradiated under the conditions of an illuminance of 17 mW/cm 2 and an exposure amount of 900 mJ/cm 2 . A conversion member was manufactured. The average thickness of the cured product layer was 60 μm.
<評価>
 実施例1~13及び比較例1で得られた波長変換部材を用いて、以下の各評価項目を測定及び評価した。結果を表3及び表4に示す。
<Evaluation>
Using the wavelength conversion members obtained in Examples 1 to 13 and Comparative Example 1, the following evaluation items were measured and evaluated. Tables 3 and 4 show the results.
(耐湿熱性)
 上記で得られた各波長変換部材を、直径21mmのサイズの寸法に裁断し、評価用サンプルを準備した。評価用サンプルについてファイバマルチチャンネル分光器(オーシャンフォトニクス株式会社、オーシャンビュー)にて初期の発光強度の測定を行った。次に、評価用サンプルを65℃、95%RH(相対湿度)の恒温恒湿槽に投入して1000時間静置し、下記式に従って波長変換部材の相対発光強度保持率1(耐湿熱性)を算出した。
  相対発光強度保持率1(耐湿熱性):(RLb1/RLa)×100
   RLa:初期相対発光強度
   RLb1:65℃95%RH、1000時間後の相対発光強度
 なお、相対発光強度保持率1の数値が高いほど波長変換部材は耐湿熱性に優れている。
(Damp heat resistance)
Each wavelength conversion member obtained above was cut into a size having a diameter of 21 mm to prepare an evaluation sample. The initial emission intensity of the evaluation sample was measured using a fiber multichannel spectrometer (Ocean Photonics Co., Ltd., Ocean View). Next, the evaluation sample was placed in a thermo-hygrostat at 65° C. and 95% RH (relative humidity) and allowed to stand still for 1000 hours. Calculated.
Relative emission intensity retention rate 1 (moisture heat resistance): (RLb1/RLa) x 100
RLa: Initial relative luminescence intensity RLb1: Relative luminescence intensity after 1000 hours at 65°C and 95% RH Note that the higher the value of the relative luminescence intensity retention rate 1, the more excellent the moisture-heat resistance of the wavelength conversion member.
(耐湿熱光性)
 上記で得られた各波長変換部材を、直径21mmサイズの寸法に裁断し、評価用サンプルを準備した。評価用サンプルを高輝度試験機Light BOX(Nanosys社)(LEDピーク波長448nm)に設置し、照度60mW/cm、65℃、95%RH(相対湿度)の環境下で試験を行った。1000時間後に評価用サンプルを取り出し、下記式に従って波長変換部材の相対発光強度保持率2(耐湿熱光性)を算出した。
  相対発光強度保持率2(耐湿熱光性):(RLb2/RLa)×100
   RLa:初期相対発光強度
   RLb2:600mW/cm、65℃、95%RH(相対湿度)の環境下での1000時間後の相対発光強度
 なお、相対発光強度保持率2の数値が高いほど波長変換部材は(耐湿熱光性)に優れている。
(Damp heat resistance)
Each wavelength conversion member obtained above was cut into a size having a diameter of 21 mm to prepare an evaluation sample. A sample for evaluation was placed in a high luminance tester Light BOX (Nanosys) (LED peak wavelength: 448 nm), and tested under an environment of illuminance of 60 mW/cm 2 , 65° C., and 95% RH (relative humidity). After 1000 hours, the sample for evaluation was taken out, and the relative emission intensity retention rate 2 (wet heat resistance) of the wavelength conversion member was calculated according to the following formula.
Relative emission intensity retention rate 2 (wet heat resistance): (RLb2/RLa) x 100
RLa: Initial relative luminous intensity RLb2: Relative luminous intensity after 1000 hours in an environment of 600 mW/cm 2 , 65° C., 95% RH (relative humidity) Note that the higher the value of the relative luminous intensity retention rate 2, the more the wavelength conversion. The member has excellent (wet heat and light resistance).
(FT-IRピーク面積比率及び反応率の算出)
 上記で得られた各硬化性組成物の表面及び各硬化性組成物を用いて得られる硬化物の表面を、FT-IR Spectrometer(Perkin Elmer社)を用いてATR分析した。各硬化物については、前述の(波長変換部材の製造)にてバリアフィルムの代わりに離型フィルムを用いて作製した波長変換部材を準備し、準備した波長変換部材の片面から離型フィルムを剥離して硬化物の表面をATR分析した。バックグラウンド測定は、空気で測定し、積算回数16回の条件でFT-IR測定を実施し、下記式に従ってFT-IRピーク面積比率及び反応率を算出した。
[硬化性組成物におけるFT-IRピーク面積比率]
 V1:S-H伸縮振動に帰属されるピーク(2525cm-1~2600cm-1でのピーク)のピーク面積
 V2:C-H伸縮振動に帰属されるピーク(2800cm-1~3035cm-1でのピーク)のピーク面積
 V3:C=C伸縮振動に帰属されるピーク(1628cm-1~1650cm-1でのピーク)のピーク面積
FT-IRピーク面積比率:V1/V2=A
FT-IRピーク面積比率:V3/V2=B
[硬化物におけるFT-IRピーク面積比率]
 V4:S-H伸縮振動に帰属されるピーク(2525cm-1~2600cm-1でのピーク)のピーク面積
 V5:C-H伸縮振動に帰属されるピーク(2800cm-1~3035cm-1でのピーク)のピーク面積
 V6:C=C伸縮振動に帰属されるピーク(1628cm-1~1650cm-1でのピーク)のピーク面積
 FT-IRピーク面積比率:V4/V5=C
 FT-IRピーク面積比率:V6/V5=D
[反応率]
 チオール基の反応率:100-100×(C/A)
 炭素炭素二重結合の反応率:100-100×(D/B)
(Calculation of FT-IR peak area ratio and reaction rate)
The surface of each curable composition obtained above and the surface of a cured product obtained using each curable composition were subjected to ATR analysis using an FT-IR Spectrometer (Perkin Elmer). For each cured product, prepare a wavelength conversion member produced using a release film instead of a barrier film in the above-mentioned (Production of wavelength conversion member), and peel off the release film from one side of the prepared wavelength conversion member. ATR analysis was performed on the surface of the cured product. Background measurement was performed in air, FT-IR measurement was performed under the condition of 16 integration times, and the FT-IR peak area ratio and reaction rate were calculated according to the following formulas.
[FT-IR peak area ratio in curable composition]
V1: Peak area of the peak attributed to SH stretching vibration (peak at 2525 cm -1 to 2600 cm -1 ) V2: Peak attributed to C - H stretching vibration (peak at 2800 cm -1 to 3035 cm -1 ) Peak area V3: Peak area of peak attributed to C=C stretching vibration (peak at 1628 cm −1 to 1650 cm −1 ) FT-IR peak area ratio: V1/V2=A
FT-IR peak area ratio: V3/V2=B
[FT-IR peak area ratio in cured product]
V4: Peak area of the peak attributed to SH stretching vibration (peak at 2525 cm -1 to 2600 cm -1 ) V5: Peak attributed to CH stretching vibration (peak at 2800 cm -1 to 3035 cm -1 ) peak area V6: C=C peak attributed to stretching vibration (peak at 1628 cm −1 to 1650 cm −1 ) peak area FT-IR peak area ratio: V4/V5=C
FT-IR peak area ratio: V6/V5=D
[Response rate]
Reaction rate of thiol group: 100-100×(C/A)
Reaction rate of carbon-carbon double bonds: 100-100×(D/B)
(放射輝度効率)
 上記で得られた各波長変換部材を、A4の寸法に裁断し、評価用サンプルを準備した。光拡散板及び反射板上に青色LED(波長:448nm)を配置したバックライトの上に評価用サンプルを設置し測定を行った。測定は、マルチ分光放射輝度計(PHOTO RESEARCH社、PR-740)を用いて実施した。波長変換前の入射光強度をM1、波長変換後の入射光強度をM2、波長変換光の強度をM3とし、100×[M3/(M1-M2)]を放射輝度効率(%)とした。
(radiance efficiency)
Each wavelength conversion member obtained above was cut into a size of A4 to prepare an evaluation sample. An evaluation sample was placed on a backlight in which blue LEDs (wavelength: 448 nm) were arranged on a light diffusing plate and a reflecting plate, and measurements were carried out. The measurement was performed using a multi-spectral radiance meter (PR-740, PHOTO RESEARCH). The incident light intensity before wavelength conversion was M1, the incident light intensity after wavelength conversion was M2, the wavelength converted light intensity was M3, and 100×[M3/(M1−M2)] was defined as the radiance efficiency (%).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3及び表4からわかるように各実施例では比較例1よりもチオール基の反応率が高かった。
 各実施例にて用いた単官能チオール化合物は比較例1にて用いた単官能チオール化合物よりも分子量が大きかった。
 各実施例にて得られた硬化性組成物及び硬化物では、比較例1にて得られた硬化性組成物及び硬化物よりもV1/V2及びV4/V5の割合がそれぞれ小さかった。
 さらに、表3及び表4からわかるように、各実施例にて得られた波長変換部材は比較例1にて得られた波長変換部材よりも耐湿熱性及び耐湿熱光性が良好であった。
 各実施例では、比較例1と同程度の放射輝度効率が得られた。
As can be seen from Tables 3 and 4, in each example, the reaction rate of the thiol group was higher than in Comparative Example 1.
The monofunctional thiol compound used in each example had a larger molecular weight than the monofunctional thiol compound used in Comparative Example 1.
The curable composition and cured product obtained in each example had smaller ratios of V1/V2 and V4/V5 than the curable composition and cured product obtained in Comparative Example 1, respectively.
Furthermore, as can be seen from Tables 3 and 4, the wavelength conversion member obtained in each example was better than the wavelength conversion member obtained in Comparative Example 1 in resistance to moist heat and light.
In each example, the same level of radiance efficiency as in Comparative Example 1 was obtained.
<実施例14>
 自転・公転ミキサ(株式会社シンキー、装置名:泡とり錬太郎)を用いて撹拌して硬化性組成物を調製した。具体的には、多官能(メタ)アクリレート化合物であるTCDD 69.01質量部、多官能チオール化合物であるPETMP 15.77質量部、及び単官能チオール化合物であるSTMP 15.22質量部を混合して撹拌して混合物とした。上記混合物に実施例1にて用いた量子ドット蛍光体1及び量子ドット蛍光体2、白色顔料、重合禁止剤及び重合開始剤を実施例1と同様の方法で混合して硬化性組成物を調製した。実施例14にて得られた硬化性組成物では、硬化性組成物全量に対して、量子ドット蛍光体1の含有率は2.88質量%であり、量子ドット蛍光体2の含有率は6.44質量%であった。さらに白色顔料、重合禁止剤及び重合開始剤の含有率は、硬化性組成物全量に対して、それぞれ0.25質量%、0.008質量%及び0.50質量%であった。
 実施例1と同様にして硬化物層の両面に被覆材が配置された波長変換部材を製造した。
<Example 14>
A curable composition was prepared by stirring using a rotation/revolution mixer (Thinky Co., Ltd., device name: Awatori Rentaro). Specifically, 69.01 parts by weight of TCDD which is a polyfunctional (meth)acrylate compound, 15.77 parts by weight of PETMP which is a polyfunctional thiol compound, and 15.22 parts by weight of STMP which is a monofunctional thiol compound are mixed. agitated to form a mixture. Quantum dot phosphor 1 and quantum dot phosphor 2 used in Example 1 to the mixture, a white pigment, a polymerization inhibitor and a polymerization initiator were mixed in the same manner as in Example 1 to prepare a curable composition. did. In the curable composition obtained in Example 14, the content of the quantum dot phosphor 1 is 2.88% by mass, and the content of the quantum dot phosphor 2 is 6 with respect to the total amount of the curable composition. 0.44 mass %. Furthermore, the contents of the white pigment, the polymerization inhibitor and the polymerization initiator were 0.25% by mass, 0.008% by mass and 0.50% by mass, respectively, based on the total amount of the curable composition.
A wavelength conversion member was produced in the same manner as in Example 1, in which coating materials were arranged on both sides of the cured product layer.
<比較例2>
 実施例14にてSTMP 15.22質量部の代わりにMPA 15.22質量部を使用した以外は実施例14と同様にして硬化性組成物を調製し、波長変換部材を製造した。
<Comparative Example 2>
A curable composition was prepared in the same manner as in Example 14 except that 15.22 parts by mass of MPA was used instead of 15.22 parts by mass of STMP in Example 14, and a wavelength conversion member was produced.
<比較例3>
 実施例14にて単官能チオール化合物であるSTMP 15.22質量部の代わりに多官能チオール化合物であるテトラエチレングリコールビス(3-メルカプトプロピオネート)(EGMP-4) 15.22質量部を使用した以外は実施例14と同様にして硬化性組成物を調製し、波長変換部材を製造した。
<Comparative Example 3>
In Example 14, 15.22 parts by mass of tetraethylene glycol bis(3-mercaptopropionate) (EGMP-4), which is a polyfunctional thiol compound, was used instead of 15.22 parts by mass of STMP, which is a monofunctional thiol compound. A curable composition was prepared and a wavelength conversion member was produced in the same manner as in Example 14 except for the above.
<比較例4>
 実施例14にて単官能チオール化合物であるSTMP 15.22質量部の代わりに多官能チオール化合物であるトリメチロールプロパントリス(3-メルカプトプロピオネート)(TMMP) 15.22質量部を使用した以外は実施例14と同様にして硬化性組成物を調製し、波長変換部材を製造した。
<Comparative Example 4>
Except for using 15.22 parts by mass of trimethylolpropane tris (3-mercaptopropionate) (TMMP), which is a polyfunctional thiol compound instead of 15.22 parts by mass of STMP, which is a monofunctional thiol compound in Example 14. A curable composition was prepared in the same manner as in Example 14 to produce a wavelength conversion member.
<比較例5>
 実施例14にて単官能チオール化合物であるSTMP 15.22質量部の代わりに多官能チオール化合物であるトリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(TEMPIC) 15.22質量部を使用した以外は実施例14と同様にして硬化性組成物を調製し、波長変換部材を製造した。
<Comparative Example 5>
Tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate (TEMPIC) 15.22 parts by mass, which is a polyfunctional thiol compound instead of 15.22 parts by mass of STMP which is a monofunctional thiol compound in Example 14 A curable composition was prepared in the same manner as in Example 14 except that the was used to produce a wavelength conversion member.
<評価>
 実施例14及び比較例2~5で得られた波長変換部材を用いて、前述と同様にして放射輝度効率及びチオール基の反応率を測定及び評価した。結果を表5に示す。表5中、空欄は未配合又は未測定を意味する。
 なお、実施例14では、各実施例の結果から硬化物におけるV4/V5は0.005以下であると推測され、比較例2では、比較例1の結果から硬化物におけるV4/V5は0.005よりも大きいと推測される。
<Evaluation>
Using the wavelength conversion members obtained in Example 14 and Comparative Examples 2 to 5, the radiance efficiency and the reaction rate of thiol groups were measured and evaluated in the same manner as described above. Table 5 shows the results. Blanks in Table 5 mean unblended or unmeasured.
In Example 14, the V4/V5 in the cured product was presumed to be 0.005 or less from the results of each Example, and in Comparative Example 2, the V4/V5 in the cured product was 0.005 based on the results of Comparative Example 1. It is assumed to be larger than 005.
(放射輝度効率の比較)
 前述の(放射輝度効率)の項目と同様にして実施例14及び比較例2~5にて得られた波長変換部材の放射輝度効率を測定した。実施例14にて得られた波長変換部材の放射輝度効率を100としたときの比較例2~5にて得られた波長変換部材の放射輝度効率の相対値を表5に示す。
(Comparison of radiance efficiency)
The radiance efficiencies of the wavelength conversion members obtained in Example 14 and Comparative Examples 2 to 5 were measured in the same manner as in the above item (Radiance efficiency). Table 5 shows the relative values of the radiance efficiencies of the wavelength conversion members obtained in Comparative Examples 2 to 5 when the radiance efficiency of the wavelength conversion member obtained in Example 14 is set to 100.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例14にて得られた波長変換部材では、比較例2~5にて得られた波長変換部材よりも放射輝度効率に優れていた。 As shown in Table 5, the wavelength conversion member obtained in Example 14 was superior in radiance efficiency to the wavelength conversion members obtained in Comparative Examples 2-5.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (14)

  1.  蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有し、
     前記硬化物のチオール基の反応率が70%~90%である波長変換部材。
    Having a cured product obtained by curing a curable composition containing a phosphor and a thiol compound including a polyfunctional thiol compound and a monofunctional thiol compound,
    The wavelength conversion member, wherein the reaction rate of the thiol group of the cured product is 70% to 90%.
  2.  蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含む硬化性組成物を硬化してなる硬化物を有し、フーリエ変換赤外分光光度計で測定した前記硬化物における、S-H伸縮振動に帰属されるピーク面積(V4)と、C-H伸縮振動に帰属されるピーク面積(V5)との比率(V4/V5)が、0.0001~0.005である波長変換部材。 Having a cured product obtained by curing a curable composition containing a phosphor and a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound, the cured product measured with a Fourier transform infrared spectrophotometer , The ratio (V4/V5) of the peak area (V4) assigned to SH stretching vibration and the peak area (V5) assigned to CH stretching vibration is 0.0001 to 0.005. Wavelength conversion member.
  3.  蛍光体と、多官能チオール化合物及び分子量が150~400である単官能チオール化合物を含むチオール化合物と、多官能(メタ)アクリレート化合物と、を含む硬化性組成物を硬化してなる硬化物を有する波長変換部材。 A cured product obtained by curing a curable composition containing a phosphor, a polyfunctional thiol compound, a thiol compound containing a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound. Wavelength conversion member.
  4.  前記単官能チオール化合物の分子量は、150~400である請求項1又は請求項2に記載の波長変換部材。 The wavelength conversion member according to claim 1 or claim 2, wherein the monofunctional thiol compound has a molecular weight of 150-400.
  5.  前記硬化物は、多官能(メタ)アクリレート化合物をさらに含む前記硬化性組成物を硬化してなり、前記硬化物の炭素炭素二重結合の反応率が90%以上である請求項1、請求項2又は請求項4に記載の波長変換部材。 The cured product is obtained by curing the curable composition further containing a polyfunctional (meth)acrylate compound, and the reaction rate of carbon-carbon double bonds in the cured product is 90% or more. 2. The wavelength conversion member according to claim 4.
  6.  前記硬化物の炭素炭素二重結合の反応率が90%以上である請求項3に記載の波長変換部材。 The wavelength conversion member according to claim 3, wherein the carbon-carbon double bond reaction rate of the cured product is 90% or more.
  7.  前記多官能(メタ)アクリレート化合物は、1分子中に2個~5個の(メタ)アクリロイル基を有する、請求項3、請求項5又は請求項6に記載の波長変換部材。 The wavelength conversion member according to claim 3, claim 5, or claim 6, wherein the polyfunctional (meth)acrylate compound has 2 to 5 (meth)acryloyl groups in one molecule.
  8.  前記蛍光体が量子ドット蛍光体を含み、前記量子ドット蛍光体がCd及びInの少なくとも一方を含む化合物を含む、請求項1~請求項7のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 7, wherein the phosphor includes a quantum dot phosphor, and the quantum dot phosphor includes a compound containing at least one of Cd and In.
  9.  前記硬化物の少なくとも一部を被覆する被覆材をさらに有する、請求項1~請求項8のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 8, further comprising a coating material that coats at least part of the cured product.
  10.  前記硬化物は、2つの炭素原子と結合するスルフィド構造を有し、前記スルフィド構造と結合する前記炭素原子が2つとも第一級炭素原子である請求項1~請求項9のいずれか1項に記載の波長変換部材。 10. Any one of claims 1 to 9, wherein the cured product has a sulfide structure bonded to two carbon atoms, and both of the carbon atoms bonded to the sulfide structure are primary carbon atoms. The wavelength conversion member as described in .
  11.  請求項1~請求項10のいずれか1項に記載の波長変換部材と、光源とを備えるバックライトユニット。 A backlight unit comprising the wavelength conversion member according to any one of claims 1 to 10 and a light source.
  12.  請求項11に記載のバックライトユニットを備える画像表示装置。 An image display device comprising the backlight unit according to claim 11.
  13.  蛍光体と、多官能チオール化合物及び単官能チオール化合物を含むチオール化合物と、を含み、フーリエ変換赤外分光光度計で測定した、S-H伸縮振動に帰属されるピーク面積(V1)と、C-H伸縮振動に帰属されるピーク面積(V2)との比率(V1/V2)が、0.001~0.016である硬化性組成物。 A phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound, and measured with a Fourier transform infrared spectrophotometer, the peak area attributed to SH stretching vibration (V1) and C A curable composition whose ratio (V1/V2) to the peak area (V2) attributed to -H stretching vibration is 0.001 to 0.016.
  14.  蛍光体と、多官能チオール化合物及び分子量が150~400である単官能チオール化合物を含むチオール化合物と、多官能(メタ)アクリレート化合物と、を含む硬化性組成物。 A curable composition containing a phosphor, a thiol compound containing a polyfunctional thiol compound and a monofunctional thiol compound having a molecular weight of 150 to 400, and a polyfunctional (meth)acrylate compound.
PCT/JP2021/013556 2021-03-30 2021-03-30 Wavelength conversion member, backlight unit, image display device, and curable composition WO2022208663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013556 WO2022208663A1 (en) 2021-03-30 2021-03-30 Wavelength conversion member, backlight unit, image display device, and curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013556 WO2022208663A1 (en) 2021-03-30 2021-03-30 Wavelength conversion member, backlight unit, image display device, and curable composition

Publications (1)

Publication Number Publication Date
WO2022208663A1 true WO2022208663A1 (en) 2022-10-06

Family

ID=83455794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013556 WO2022208663A1 (en) 2021-03-30 2021-03-30 Wavelength conversion member, backlight unit, image display device, and curable composition

Country Status (1)

Country Link
WO (1) WO2022208663A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035602A1 (en) * 2014-09-05 2016-03-10 住友化学株式会社 Curable composition
WO2017068781A1 (en) * 2015-10-20 2017-04-27 富士フイルム株式会社 Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device
JP2017137451A (en) * 2016-02-05 2017-08-10 大日本印刷株式会社 Light wavelength conversion composition, wavelength conversion member, light wavelength conversion sheet, backlight device and picture display unit
WO2019066064A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength-converting resin composition, and wavelength-converting cured resin
WO2019064590A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured material
WO2019189496A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
JP2019174565A (en) * 2018-03-27 2019-10-10 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and cured resin product
US20200201124A1 (en) * 2018-12-19 2020-06-25 Samsung Display Co., Ltd. Composition for light conversion layer, light conversion layer and electronic device including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035602A1 (en) * 2014-09-05 2016-03-10 住友化学株式会社 Curable composition
WO2017068781A1 (en) * 2015-10-20 2017-04-27 富士フイルム株式会社 Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device
JP2017137451A (en) * 2016-02-05 2017-08-10 大日本印刷株式会社 Light wavelength conversion composition, wavelength conversion member, light wavelength conversion sheet, backlight device and picture display unit
WO2019066064A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength-converting resin composition, and wavelength-converting cured resin
WO2019064590A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured material
WO2019189496A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
JP2019174565A (en) * 2018-03-27 2019-10-10 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion member, and cured resin product
US20200201124A1 (en) * 2018-12-19 2020-06-25 Samsung Display Co., Ltd. Composition for light conversion layer, light conversion layer and electronic device including the same

Similar Documents

Publication Publication Date Title
JP7120279B2 (en) Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured product
WO2019189495A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
JP6782419B2 (en) Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition and wavelength conversion resin cured product
WO2019186734A1 (en) Wavelength conversion member, backlight unit, image display device, curable composition and cured product
JP2019174562A (en) Wavelength conversion member, backlight unit, and image display device
JPWO2019189269A1 (en) Wavelength conversion member, backlight unit, and image display device
JP2019175952A (en) Image display device, curable composition, wavelength conversion member, and backlight unit
JP6658990B1 (en) Wavelength conversion member, backlight unit, image display device, and curable composition
WO2021106556A1 (en) Wavelength converting member and method for manufacturing same, back-light unit, and image display device
WO2022208663A1 (en) Wavelength conversion member, backlight unit, image display device, and curable composition
JP6702515B2 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186735A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019189497A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2022013983A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2019186730A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2021084603A1 (en) Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device
JP2022173738A (en) Wavelength conversion member, backlight unit and image display device
WO2020208754A1 (en) Wavelength conversion member, backlight unit, and image display device
JP2021015284A (en) Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion, and cured resin product for wavelength conversion
JPWO2020250414A1 (en) Wavelength conversion member and its use, backlight unit, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934834

Country of ref document: EP

Kind code of ref document: A1