WO2017068781A1 - Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device - Google Patents

Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device Download PDF

Info

Publication number
WO2017068781A1
WO2017068781A1 PCT/JP2016/004628 JP2016004628W WO2017068781A1 WO 2017068781 A1 WO2017068781 A1 WO 2017068781A1 JP 2016004628 W JP2016004628 W JP 2016004628W WO 2017068781 A1 WO2017068781 A1 WO 2017068781A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
wavelength conversion
acrylate
film
Prior art date
Application number
PCT/JP2016/004628
Other languages
French (fr)
Japanese (ja)
Inventor
翔 筑紫
浩史 遠山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017068781A1 publication Critical patent/WO2017068781A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a polymerizable composition, a polymer, a wavelength conversion member, a backlight unit, and a liquid crystal display device.
  • liquid crystal display devices Liquid Crystal Display (also abbreviated as LCD for short)
  • LCD liquid Crystal Display
  • the liquid crystal display device is composed of at least a backlight and a liquid crystal cell, and usually further includes members such as a backlight side polarizing plate and a viewing side polarizing plate.
  • the wavelength conversion member of the backlight unit is provided with a wavelength conversion layer containing a quantum dot (also called Quantum Dot, QD, or quantum dot) as a light emitting material.
  • a quantum dot also called Quantum Dot, QD, or quantum dot
  • the wavelength conversion member is a member that converts the wavelength of light incident from a light source and emits it as white light.
  • a wavelength conversion layer that includes quantum dots as a light emitting material two or three types of quantum having different light emission characteristics are used.
  • White light can be realized using fluorescence in which dots are excited by light incident from a light source to emit light.
  • Fluorescence due to quantum dots has high brightness and a small half-value width, so that LCDs using quantum dots are excellent in color reproducibility.
  • the color gamut of the LCD has been expanded from 72% to 100% of NTSC (National Television System Committee) ratio.
  • the matrix of the wavelength conversion layer including quantum dots is required to have (1) high transparency and (2) high oxygen and water barrier properties in order to improve optical characteristics such as luminance.
  • an epoxy resin is used in ready-made products.
  • the epoxy resin is easily discolored by light irradiation, and there is a problem that the luminance is lowered in a liquid crystal display device using such a wavelength conversion member having a wavelength conversion layer.
  • improvement of durability under high illumination conditions has been a problem. Therefore, the present inventors examined a wavelength conversion layer using a polyfunctional (meth) acrylate resin as a matrix in order to satisfy the above performances (1) and (2) and suppress discoloration due to light irradiation.
  • Patent Document 1 discloses a luminescent particle, a first monomer containing at least two thiol groups at a terminal, and at least two at a terminal.
  • a composition comprising a second monomer having an unsaturated carbon-carbon bond is described. It is described that the polymer polymerized from this composition forms a dense cross-linked structure and can block external factors such as oxygen and moisture existing outside the luminescent particles.
  • Patent Document 2 discloses a composition including a group of quantum dot phosphors and a reflective material, both of which are suspended in a first matrix material.
  • octanethiol is used as a reducing agent. It is described that light emission characteristics are improved in a display device using such a composition as a material.
  • the wavelength conversion member is required to have the performances (1) and (2) described above and satisfy the light durability and the heat durability at a higher level.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polymerizable composition capable of obtaining a wavelength conversion layer having luminance light durability and heat durability. Another object of the present invention is to provide a polymer having a luminance light durability and a heat durability, a wavelength conversion member, a backlight unit, and a liquid crystal display device.
  • the present inventors have speculated that the decrease in luminance at the end face of the wavelength conversion member is caused by the fact that the curing reaction of acrylate is not completely completed. From the viewpoint of imparting mechanical strength to the wavelength conversion layer and from the viewpoint of forming a dense film that does not allow oxygen to penetrate, polyfunctional (meth) acrylate is more preferable, but polyfunctional (meth) acrylate is polymerized to some extent. The chain reaction stops and a dense film is not formed. Further, the unreacted (meth) acryloyl group is easily affected by oxygen entering from the end face. Therefore, the present inventors tried to improve the reaction rate of (meth) acrylate. As a result, it has been found that by adding a specific thiol compound as a chain transfer agent, the reaction rate can be improved and the luminance reduction can be satisfactorily suppressed. The present invention has been made based on such findings.
  • the polymerizable composition of the present invention is Including quantum dots, (meth) acrylate monomers, polymerization initiators, and thiol compounds
  • the thiol compound has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are compounds bonded to secondary carbon atoms, tertiary carbon atoms, or carbon atoms on the ring structure,
  • the (meth) acryloyl group / thiol group which is the functional group ratio between the (meth) acryloyl group of the (meth) acrylate monomer and the thiol group of the thiol compound, is greater than 3.
  • all of the plurality of thiol compounds may be bonded only to the secondary carbon atom, or all of the plurality of thiol groups may be bonded only to the tertiary carbon atom. All of the plurality of thiol groups may be bonded only to carbon atoms on the ring structure. Further, all of the plurality of thiol groups may be bonded to any of secondary carbon atoms, tertiary carbon atoms, and carbon atoms on the ring structure.
  • the thiol compound is preferably one represented by the following general formula I.
  • A represents an n-valent organic linking group
  • R 1 and R 2 each represent a hydrogen atom or an organic group
  • at least one of R 1 and R 2 is an organic group.
  • R 1 and R 2 may form a ring.
  • n is an integer of 2 to 6
  • m is an integer of 0 to 3.
  • the (meth) acrylate monomer is preferably polyfunctional.
  • the molecular weight of the thiol compound is preferably 200 or more and less than 3000.
  • the polymer of the present invention includes quantum dots, poly (meth) acrylate, and a polymerization initiator, and the poly (meth) acrylate is a bond represented by the following general formula II-A or general formula II-B in the molecule. It is what has.
  • R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 represents a substituted or unsubstituted alkyl group, cycloalkyl group or aryl group. * Represents a bond.
  • the polymer of the present invention may be a product obtained by curing the polymerizable composition of the present invention.
  • the wavelength conversion member of the present invention includes a wavelength conversion layer containing the polymer of the present invention.
  • the wavelength conversion member of the present invention further includes a barrier film having an oxygen permeability of 1.00 cm 3 / (m 2 ⁇ day ⁇ atm) or less, and at least one of the two main surfaces of the wavelength conversion layer is The film may be in contact with the barrier film.
  • the wavelength conversion member of the present invention preferably has two barrier films, and the two main surfaces of the wavelength conversion layer are in contact with the barrier films, respectively.
  • the backlight unit of the present invention includes at least the wavelength conversion member of the present invention and a light source.
  • the liquid crystal display device of the present invention includes at least the backlight unit of the present invention and a liquid crystal cell.
  • the polymerizable composition of the present invention includes quantum dots, a (meth) acrylate monomer, a polymerization initiator, and a thiol compound, the thiol compound has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are all , A secondary carbon atom, a tertiary carbon atom, or a compound bonded to a carbon atom on the ring structure, and the functional group ratio of the (meth) acryloyl group of the (meth) acrylate monomer to the thiol group of the thiol compound A certain (meth) acryloyl group / thiol group is larger than 3.
  • the thiol groups are thiol compounds bonded to secondary carbon atoms, tertiary carbon atoms, or carbon atoms on the ring structure, the thiol groups are arranged on the quantum dots due to steric hindrance. Therefore, since there is no exchange with existing ligands, there is an advantage that the luminous efficiency of quantum dots is not affected.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “half-value width” of a peak refers to the width of the peak at a peak height of 1 ⁇ 2.
  • the light having a color is called red light.
  • the (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group.
  • (Meth) acrylate means one or both of acrylate and methacrylate.
  • the polymerizable composition of the present invention includes quantum dots, a (meth) acrylate monomer, a polymerization initiator, and a thiol compound, and the thiol compound has a plurality of thiol groups in the molecule, and includes a plurality of thiols. All of the groups are compounds bonded to a secondary carbon atom, a tertiary carbon atom, or a carbon atom on the ring structure, and the (meth) acryloyl group of the (meth) acrylate monomer and the thiol group of the thiol compound
  • the functional group ratio (meth) acryloyl group / thiol group is greater than 3.
  • the detail of the structural component of polymeric composition is demonstrated.
  • Quantum dots are semiconductor nanoparticles that emit fluorescence when excited by excitation light.
  • the polymerizable composition may contain two or more types of quantum dots having different emission characteristics as quantum dots.
  • the polymerizable composition is excited by being excited by the blue light L B fluorescent quantum dots emits (red light) L R, and the blue light L B fluorescence ( It may contain quantum dots that emit green light) L G.
  • the polymerizable composition when ultraviolet light is used as excitation light, the polymerizable composition is excited by ultraviolet light L UV to emit fluorescence (red light) LR, and is excited by ultraviolet light L UV to emit fluorescence ( quantum dot emits green light) L G, and is excited by the ultraviolet light L UV may contain quantum dots to emit fluorescence (blue light) L B.
  • the quantum dots that emit red light L R may be mentioned those having an emission center wavelength in a wavelength range of 600 ⁇ 680 nm.
  • the quantum dot emits green light L G it may be mentioned those having an emission center wavelength in a wavelength range of 520 ⁇ 560 nm.
  • the quantum dot emitting blue light L B may include those having an emission center wavelength in a wavelength range of 430 ⁇ 480 nm.
  • quantum dots for example, paragraphs 0060 to 0066 of JP2012-169271A can be referred to, but the quantum dots are not limited to those described in this publication.
  • quantum dots for example, core-shell type semiconductor nanoparticles are preferable from the viewpoint of improving durability.
  • the core II-VI semiconductor nanoparticles, III-V semiconductor nanoparticles, multi-component semiconductor nanoparticles, and the like can be used. Specific examples include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, and InGaP, but are not limited thereto. Among these, CdSe, CdTe, InP, and InGaP are preferable from the viewpoint of emitting visible light with high efficiency.
  • the shell CdS, ZnS, ZnO, GaAs, and a composite thereof can be used, but the shell is not limited thereto.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • a ligand having a coordinating group may be coordinated on the surface of the quantum dot.
  • a ligand may be added to the polymerizable composition, or a quantum dot already coordinated with such a ligand can be used in the polymerizable composition of the present invention.
  • the coordinating group include an amino group, a carboxy group, a mercapto group, a phosphine group, and a phosphine oxide group.
  • hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, and trioctylphosphine oxide examples include hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, and trioctylphosphine oxide.
  • hexadecylamine, trioctylphosphine, and trioctylphosphine oxide are preferable, and trioctylphosphine oxide is particularly preferable.
  • Quantum dots coordinated with these ligands can be produced by a known synthesis method. For example, C.I. B. Murray, D.M. J. et al. Norris, M.M. G. It can be synthesized by a method described in Bawendi, Journal American Chemical Society, 1993, 115 (19), pp 8706-8715, or The Journal Physical Chemistry, 101, pp 9463-9475, 1997.
  • the quantum dot which the ligand coordinated can use a commercially available thing without a restriction
  • the content of the quantum dot coordinated with the ligand is preferably 0.01 to 10% by mass relative to the total mass of the polymerizable compound contained in the polymerizable composition. More preferably, the content is 05 to 5% by mass.
  • Quantum dots in the present invention may be added to the polymerizable composition in the form of particles, or may be added in the form of a dispersion dispersed in a solvent.
  • the addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles.
  • the solvent used here is not particularly limited.
  • the polymerizable composition of the present invention contains a (meth) acrylate monomer.
  • the (meth) acrylate monomer that can be used in the polymerizable composition of the present invention contains one or more kinds of (meth) acrylate compounds such as monofunctional or polyfunctional (meth) acrylate monomers, polymers thereof, prepolymers, and the like. Is preferred.
  • Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
  • an alkyl (meth) acrylate having 4 to 30 carbon atoms is preferably used, and an alkyl (meth) acrylate having 12 to 22 carbon atoms is used to improve the dispersibility of the quantum dots. From the viewpoint of, it is more preferable. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the wavelength conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast.
  • monofunctional (meth) acrylate monomers include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, oleyl (meth) acrylate, stearyl (meth) acrylate, and behenyl (meth) acrylate.
  • Butyl (meth) acrylamide, octyl (meth) acrylamide, lauryl (meth) acrylamide, oleyl (meth) acrylamide, stearyl (meth) acrylamide, behenyl (meth) acrylamide and the like are preferable.
  • lauryl (meth) acrylate, oleyl (meth) acrylate, and stearyl (meth) acrylate are particularly preferable.
  • the monofunctional (meth) acrylate compound is selected from the group consisting of a hydroxy group and an aryl group from the viewpoint of further reducing the oxygen transmission coefficient of the wavelength conversion layer and improving the adhesion with other layers or members. It is also preferable to use a monofunctional (meth) acrylate compound having one or more groups. As a group which a monofunctional (meth) acrylate compound has, a hydroxyl group and a phenyl group are preferable.
  • Preferable specific compounds include benzyl acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, 1,4-cyclohexanedimethanol monoacrylate, 2-hydroxy-3-phenoxypropyl acrylate, and 4-hydroxybutyl acrylate.
  • a polyfunctional (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule may be used.
  • a polyfunctional (meth) acrylate monomer is more preferable from the viewpoint of imparting mechanical strength.
  • the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol diacrylate and the like are preferable examples.
  • the trifunctional or higher functional (meth) acrylate monomers include ECH (epichlorohydrin) modified glycerol tri (meth) acrylate, EO (ethylene oxide) modified glycerol tri ( (Meth) acrylate, PO (propylene oxide) modified glycerol tri (meth) acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, EO modified phosphate triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri ( (Meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acrylo) Ciethyl) isocyanurate, dipentaerythritol hexa (me
  • the polymerizable composition of the present invention contains a thiol compound.
  • the thiol compound acts as a chain transfer agent (hereinafter also referred to as a chain transfer agent).
  • the thiol compound in the present invention has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are bonded to secondary carbon atoms, tertiary carbon atoms, or carbon atoms on the ring structure.
  • Examples of the ring structure include an alicyclic monocyclic ring, an alicyclic polycyclic ring, an aromatic monocyclic ring, a condensed polycyclic ring, and a heterocyclic ring.
  • Such thiol compounds are preferably those represented by the following general formula I.
  • A represents an n-valent organic linking group
  • R 1 and R 2 each represent a hydrogen atom or an organic group
  • at least one of R 1 and R 2 is an organic group.
  • R 1 and R 2 may form a ring.
  • n is an integer of 2 to 6
  • m is an integer of 0 to 3.
  • the n-valent organic linking group represented by A includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 atoms.
  • a group consisting of a hydrogen atom and 0 to 20 sulfur atoms is included, which may be unsubstituted or may further have a substituent.
  • n-valent organic linking group A includes 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, 1 to 120 hydrogen atoms, and Groups consisting of 0 to 10 sulfur atoms are preferred, 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 to 100 And more preferably a group consisting of 0 to 7 sulfur atoms, 1 to 40 carbon atoms, 0 to 8 nitrogen atoms, 0 to 20 oxygen atoms, Particularly preferred are groups consisting of 1 to 80 hydrogen atoms and 0 to 5 sulfur atoms.
  • the n-valent organic linking group A is a group composed of a combination of the following structural units or structural units (straight chain or branched group, alicyclic monocyclic, alicyclic polycyclic, aromatic single A ring structure such as a ring, a condensed polycyclic ring, and a heterocyclic ring may be formed.
  • organic linking group represents a site bonded to (CH 2 ) m in the general formula I.
  • n-valent organic linking group A has a substituent
  • substituents include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and a carbon group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group.
  • 1 to 6 carbon atoms such as acyloxy groups having 1 to 6 carbon atoms such as aryl groups, hydroxyl groups, amino groups, carboxy groups, sulfonamido groups, N-sulfonylamido groups, acetoxy groups, etc., methoxy groups, ethoxy groups, etc.
  • alkoxy group of 2 to 7 carbon atoms such as a methoxycarbonyl group, an ethoxycarbonyl group, a cyclohexyloxycarbonyl group, a cyano group, a carbonate ester group such as t-butyl carbonate, Etc.
  • n-valent organic linking group A is the following group from the viewpoint of availability of raw materials, ease of synthesis, monomer, and solubility in various solvents.
  • R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring.
  • the organic group is an alkyl group, alkenyl group or alkynyl group which may have a substituent.
  • the number of carbon atoms is preferably 1 to 30, and more preferably 1 to 20 carbon atoms.
  • substituents examples include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, an aryl group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group, a hydroxyl group, an amino group, a carboxy group, and a sulfone.
  • C1-C6 acyloxy groups such as amide group, N-sulfonylamide group, acetoxy group, etc.
  • C1-C6 alkoxy groups such as methoxy group, ethoxy group, halogen atoms such as chlorine and bromine, methoxycarbonyl Groups, alkoxycarbonyl groups having 2 to 7 carbon atoms such as ethoxycarbonyl group and cyclohexyloxycarbonyl group, carbonate groups such as cyano group and t-butyl carbonate.
  • the ring structure formed by R 1 and R 2 may be an alicyclic monocyclic ring, an alicyclic polycyclic ring, an aromatic monocyclic ring, a condensed polycyclic ring, a heterocyclic ring, or the like.
  • the thiol compound can be used without particular limitation as long as it is a substance that moves the active site of the reaction by a chain transfer reaction in the polymerization reaction.
  • the ease of the transfer reaction of the chain transfer agent is represented by the chain transfer constant Cs, but the chain transfer constant Cs ⁇ 10 4 (60 ° C.) of the thiol compound used in the present invention is 0.01 or more. Is more preferable, 0.1 or more is more preferable, and 1 or more is particularly preferable.
  • the content of the thiol compound in the polymerizable composition of the present invention is 3 (meth) acryloyl group / thiol group, which is a functional group ratio of the (meth) acryloyl group of the (meth) acrylate monomer to the thiol group of the thiol compound. Try to be bigger.
  • a thiol compound within this range it is possible to reduce the residual monomer and suppress the generation of volatile components after the polymerizable composition is cured.
  • the molecular weight of the thiol compound can be close to the unreacted (meth) acryloyl group of the poly (meth) acrylate, and cannot be coordinated to the quantum dot due to steric hindrance from 200 to 3000. It is less than 250 and 2000 or less, and 250 or more and 1000 or less are more preferable.
  • the weight average molecular weight (Mw) is a value measured in terms of polystyrene by gel permeation chromatography (GPC).
  • TSKgel SuperHZM-H TSKgel SuperHZ4000
  • TSKgel Measurements can be made using a column connected to SuperHZ2000 (manufactured by Tosoh Corp.) Tetrahydrofuran can be used as a carrier (eluent), and a suitable carrier and column can be selected and used depending on the polymer type. preferable.
  • Karenz MT-BD1, Karenz MT-NR1, and Karenz MT-PE1 are preferred from the viewpoint of improving the reaction rate of (meth) acrylate and preventing coordination to quantum dots.
  • a photopolymerization initiator or a thermal polymerization initiator can be used as a polymerization initiator.
  • a known radical initiator or cationic polymerization initiator may be used.
  • photopolymerization initiators include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon substituted aromatic acyloin compounds, polynuclear quinone compounds, or combinations of triarylimidazole dimers and p-aminophenyl ketones. Is mentioned.
  • photopolymerization initiators acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds
  • examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins.
  • JP, 2013-043382, A paragraph 0037 and JP, 2011-159924, A paragraphs 0040-0042 can be referred to for a photoinitiator.
  • photocleavable photoradical polymerization initiators examples include Irgacure (registered trademark) series (for example, Irgacure 651, Irgacure 754) commercially available from Ciba Specialty Chemicals as examples of photopolymerization initiators.
  • a photosensitizer may be used.
  • the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone.
  • one or more auxiliary agents such as an azide compound, a thiourea compound, and a mercapto compound may be used in combination.
  • Examples of commercially available photosensitizers include “Kaya Cure (DMBI, EPA)” manufactured by Nippon Kayaku Co., Ltd.
  • Irgacure 2022 and Irgacure 819 are preferable because they have absorption on the longer wavelength side than the absorption wavelength of the base material and can be cured efficiently.
  • the polymerization initiator is more preferably a photopolymerization initiator.
  • the polymerizable composition of the present invention may contain a viscosity modifier, a solvent, a silane coupling agent, an antioxidant, and an acid scavenger.
  • the polymerizable composition may contain a viscosity modifier as necessary. They can be adjusted to the desired viscosity by adding viscosity modifiers.
  • the viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm.
  • the viscosity modifier may be a thixotropic agent.
  • the thixotropic property refers to the property of reducing the viscosity with respect to the increase in shear rate in the liquid composition
  • the thixotropic agent includes the liquid composition by including it. It refers to a material having a function of imparting thixotropic properties to the composition.
  • thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite.
  • sericite bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
  • the polymerizable composition may contain a solvent as necessary.
  • the type and amount of the solvent used are suitable for anionic polymerization.
  • Solvents include, for example, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, butanol, isopropyl alcohol, ethylene glycol and propylene glycol, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, tetrahydrofuran And cyclic ethers such as 1,4-dioxane.
  • the addition amount is preferably 0 to 500% by mass or less with respect to 100% by mass of the polymerizable composition from the viewpoint of coating viscosity adjustment and film thickness control.
  • the organic solvent can be used alone or in combination of two or more.
  • the composition may further contain a silane coupling agent. Since the wavelength conversion layer formed from the polymerizable composition containing the silane coupling agent becomes stronger in adhesion to the adjacent layer by the silane coupling agent, it can exhibit even more excellent light resistance. . This is mainly due to the fact that the silane coupling agent contained in the wavelength conversion layer forms a covalent bond with the surface of the adjacent layer and the constituent components of the layer by hydrolysis reaction or condensation reaction. At this time, it is also preferable to provide an inorganic layer described later as an adjacent layer.
  • the silane coupling agent has a reactive functional group such as a radical polymerizable group
  • a monomer component constituting the wavelength conversion layer and a cross-linked structure can also be formed, thereby improving the adhesion between the wavelength conversion layer and the adjacent layer. Can contribute.
  • the silane coupling agent contained in the wavelength conversion layer is meant to include the silane coupling agent in the form after the reaction as described above.
  • silane coupling agent a known silane coupling agent can be used without any limitation.
  • a silane coupling agent represented by the general formula (1) described in JP2013-43382A can be exemplified.
  • the amount of the additive such as a silane coupling agent is not particularly limited and can be set as appropriate.
  • the polymerizable composition may further contain an inhibitor.
  • the wavelength conversion layer formed from the polymerizable composition containing an antioxidant contributes to stabilization of light emission of the quantum dots and prevention of discoloration of the matrix due to auto-oxidation, and can improve luminance durability.
  • antioxidant known peroxide decomposing agents and radical scavengers can be used without any limitation.
  • the peroxide decomposer used in the present invention includes phosphorus-based and sulfur-based peroxide decomposers.
  • phosphorus compounds include triphenyl phosphite, trisnonylphenyl phosphite, tricresyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, tris (tridecyl) phos Phyto, trioleyl phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite, diphenyl mono (tridecyl) phosphite, trilauryl trithiophosphite, tetraphenyl dipropylene glycol diphosphite, tetraphenyl (Tetratridecyl)
  • sulfur compounds include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl, and distearyl, and ⁇ -alkylmercaptopropionates of polyols such as pentaerythritol tetra ( ⁇ -dodecyl mercaptopropionate). Is mentioned.
  • radical scavenger used in the present invention examples include phenolic and hindered amine radical scavengers.
  • examples of the phenol radical scavenger include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-ditert-butyl-4-hydroxy).
  • hindered amine radical scavenger examples include 2,2,6,6-tetramethyl-4-piperidylbenzoate, N- (2,2,6,6-tetramethyl-4-piperidyl) dodecyl succinimide, -[(3,5-ditert-butyl-4-hydroxyphenyl) propionyloxyethyl] -2,2,6,6-tetramethyl-4-piperidyl- (3,5-ditert-butyl-4-hydroxy Phenyl) propionate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2,2 , 6,6-Pentamethyl-4-piperidyl) -2-butyl-2- (3,5-ditert-butyl-4-hydroxybenzyl) malonate, N, N′-bis (2,2 6,6-tetramethyl-4-piperidyl) -
  • the polymerizable composition may further contain an acid scavenger.
  • the acid scavenger can improve the light emission stability of the quantum dots by capturing an initiator decomposition product generated during polymerization or an acid generated by hydrolysis of (meth) acrylate and antioxidant.
  • Examples of the acid scavenger include epoxy compounds, amino-substituted triazines, carbodiimide compounds and the like, and particularly compounds having an epoxy group as described in US Pat. No. 4,137,201 are used as acid scavengers. Useful.
  • the method for preparing the polymerizable composition is not particularly limited, and may be performed according to a general procedure for preparing the polymerizable composition.
  • the polymer of the present invention is preferably a product obtained by curing the polymerizable composition of the present invention.
  • the polymer of the present invention is represented by the following general formula II-A or general formula II-B generated by the reaction of the (meth) acryloyl group of (meth) acrylate and the thiol group of the thiol compound in the polymerizable composition. It has a bond. That is, the polymer of the present invention includes quantum dots, poly (meth) acrylate, and a polymerization initiator, and the poly (meth) acrylate is represented by the following general formula II-A or general formula II-B in the molecule. It has a bond.
  • R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 represents a substituted or unsubstituted alkyl group, cycloalkyl group or aryl group. * Represents a bond.
  • R 4 has a substituent
  • substituents include an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms), a cycloalkyl group (preferably having 3 to 15 carbon atoms, More preferably a cycloalkyl group having 3 to 10 carbon atoms, an aryl group (preferably 6 to 15 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms), an aralkyl group (preferably 7 to 20 carbon atoms, more Preferably an aralkyl group having 7 to 15 carbon atoms), an alkoxy group (preferably 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, more preferably ethoxy or methoxy), a hydroxyl group, a halogen atom (fluorine atom) , A chlorine atom, etc.), a nitro group, an acyl group (preferably having 2 to 10 carbon
  • an acyloxy group preferably an acyloxy group having 2 to 10, more preferably 2 to 5, more preferably 2 or 3 carbon atoms
  • an acylamino group preferably 2 to 10 carbon atoms, more preferably Is an acylamino group having 2 to 5 carbon atoms, more preferably an acylamino group having 2 or 3 carbon atoms
  • a sulfonylamino group preferably having 2 to 20 carbon atoms, more preferably a dialkylamino group having 2 to 10 carbon atoms, Preferably diethylamino or dimethylamino
  • an alkylthio group preferably an alkylthio group having 1 to 10 carbon atoms, more preferably an alkylthio group having 1 to 5 carbon atoms, more preferably ethylthio or methylthio
  • an arylthio group preferably having 6 to 20 carbon atoms, More preferably an arylthio group having 6 to 20 carbon atoms, More
  • the organic groups R 1 and R 2 in the general formulas II-A and II-B are groups derived from a thiol compound, and are synonymous with R 1 and R 2 in the general formula I. The same.
  • R 4 is more preferably polyfunctional from the viewpoint of increasing the reaction rate of (meth) acrylate and forming a dense film.
  • a known method can be used as the polymerization method, and the polymerizable composition is cured with light (for example, ultraviolet rays), an electron beam, or a heat beam, but is preferably cured with light.
  • the light to irradiate is usually ultraviolet light from a high pressure mercury lamp or a low pressure mercury lamp.
  • the radiation energy is preferably 0.1 J / cm 2 or more, 0.5 J / cm 2 or more is more preferable. Since (meth) acrylate compounds are subject to polymerization inhibition by oxygen in the air, it is preferable to lower the oxygen concentration or oxygen partial pressure during polymerization.
  • the oxygen concentration at the time of polymerization is lowered by the nitrogen substitution method
  • the oxygen concentration is preferably 1000 ppm or less, more preferably 100 ppm or less.
  • the total pressure is preferably 1000 Pa or less, and more preferably 100 Pa or less.
  • FIG. 1 is a schematic cross-sectional view of the wavelength conversion member of the present embodiment.
  • the wavelength conversion member 1 ⁇ / b> D of the present embodiment includes a wavelength conversion layer 30 obtained by curing a polymerizable composition and barrier films 10 and 20 disposed on both main surfaces of the wavelength conversion layer 30.
  • the “main surface” refers to the surface (front surface, back surface) of the wavelength conversion layer disposed on the viewing side or the backlight side when the wavelength conversion member is used in a display device described later. The same applies to the main surfaces of the other layers and members.
  • Each of the barrier films 10 and 20 includes the barrier layers 12 and 22 and the supports 11 and 21 from the wavelength conversion layer 30 side, respectively.
  • the details of the wavelength conversion layer 30, the barrier films 10 and 20, the supports 11 and 21, and the barrier layers 12 and 22 will be described.
  • Wavelength conversion layer 30 Wavelength conversion layer 30, as shown in FIG. 1, it is excited by being excited by the blue light L B fluorescent quantum dots 30A emits (red light) L R, and the blue light L B in the organic matrix 30P fluorescence quantum dots 30B for emitting (green light) L G is dispersed.
  • the quantum dots 30A and 30B are greatly illustrated for easy visual recognition.
  • the thickness of the wavelength conversion layer 30 is 50 to 100 ⁇ m, and the quantum dot diameter is 2 to 7 nm. It is a range.
  • the ligand of the present invention is coordinated on the surfaces of the quantum dots 30A and 30B.
  • the wavelength conversion layer 30 is obtained by curing a polymerizable composition containing quantum dots 30A and 30B coordinated with the ligand of the present invention, a polymerizable compound, and a polymerization initiator by light irradiation.
  • the organic matrix 30P is formed by curing a polymerizable compound by light irradiation or heat.
  • the thickness of the wavelength conversion layer 30 is preferably in the range of 1 to 500 ⁇ m, more preferably in the range of 10 to 250 ⁇ m, and still more preferably in the range of 30 to 150 ⁇ m.
  • a thickness of 1 ⁇ m or more is preferable because a high wavelength conversion effect can be obtained. Further, it is preferable that the thickness is 500 ⁇ m or less because the backlight unit can be thinned when incorporated in the backlight unit.
  • the wavelength converting layer 30, the quantum dots 30A that emits ultraviolet light L UV by being excited fluorescence (red light) L R in an organic matrix 30P
  • the ultraviolet light L UV fluorescent quantum dots 30C for emitting quantum dots 30B for emitting (green light) L G after being excited by the ultraviolet light L UV fluorescent (blue light) L B (not shown) May be dispersed.
  • the shape of the wavelength conversion layer is not particularly limited, and can be an arbitrary shape.
  • the barrier films 10 and 20 are films having a gas barrier function for blocking oxygen.
  • the barrier layers 12 and 22 are provided on the supports 11 and 21, respectively. Due to the presence of the supports 11 and 21, the strength of the wavelength conversion member 1D is improved, and each layer can be easily formed.
  • the barrier films 10 and 20 in which the barrier layers 12 and 22 are supported by the supports 11 and 21 are shown. However, the barrier layers 12 and 22 are not supported by the supports 11 and 21. Also good.
  • the wavelength conversion member in which the barrier layers 12 and 22 are provided adjacent to both main surfaces of the wavelength conversion layer 30 is shown. However, the supports 11 and 21 have sufficient barrier properties. When it exists, you may form a barrier layer only by the support bodies 11 and 21. FIG.
  • the aspect in which two barrier films 10 and 20 are contained in the wavelength conversion member like this embodiment is preferable, the aspect in which only one may be contained may be sufficient.
  • the barrier films 10 and 20 preferably have a total light transmittance of 80% or more in the visible light region, and more preferably 90% or more.
  • the visible light region refers to a wavelength region of 380 to 780 nm, and the total light transmittance indicates an average value of light transmittance over the visible light region.
  • the oxygen permeability of the barrier films 10 and 20 is preferably 1.00 cm 3 / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability oxygen permeability
  • the oxygen permeability of the barrier films 10 and 20 is more preferably 0.10 cm 3 / (m 2 ⁇ day ⁇ atm) or less, and still more preferably 0.01 cm 3 / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability 1.00 cm 3 / (m 2 ⁇ day ⁇ atm) is 1.14 ⁇ 10 ⁇ 1 fm / Pa ⁇ s in terms of the SI unit system.
  • At least one main surface of the wavelength conversion layer 30 is supported by the support 11 or 21.
  • this wavelength conversion layer 30 it is preferable that the main surfaces of the front and back of the wavelength conversion layer 30 are supported by the support bodies 11 and 21 like this embodiment.
  • the average film thickness of the supports 11 and 21 is preferably 10 ⁇ m or more and 500 ⁇ m or less, more preferably 20 ⁇ m or more and 400 ⁇ m or less, and more preferably 30 ⁇ m or more and 300 ⁇ m or less from the viewpoint of impact resistance of the wavelength conversion member. It is preferable. In an aspect in which retroreflection of light is increased, such as when the concentration of the quantum dots 30A and 30B included in the wavelength conversion layer 30 is reduced, or when the thickness of the wavelength conversion layer 30 is reduced, absorption of light having a wavelength of 450 nm is performed. Since the rate is preferably lower, the average film thickness of the supports 11 and 21 is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less from the viewpoint of suppressing a decrease in luminance.
  • the support is preferably a transparent support that is transparent to visible light.
  • being transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere type light transmittance measuring device. It can be calculated by subtracting the rate.
  • paragraphs 0046 to 0052 of JP-A-2007-290369 and paragraphs 0040 to 0055 of JP-A-2005-096108 can be referred to.
  • the supports 11 and 21 preferably have an in-plane retardation Re (589) at a wavelength of 589 nm of 1000 nm or less. More preferably, it is 500 nm or less, and further preferably 200 nm or less.
  • Re (589) of the support is in the above range because foreign matters and defects can be more easily found during inspection using a polarizing plate.
  • Re (589) is measured by making light having a wavelength of 589 nm incident in the normal direction of the film in KOBRA-21ADH or KOBRA WR (manufactured by Oji Scientific Instruments).
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • the supports 11 and 21 are preferably supports having a barrier property against oxygen and moisture.
  • Preferred examples of the support include a polyethylene terephthalate film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
  • the barrier layers 12 and 22 are respectively provided with organic layers 12a and 22a and inorganic layers 12b and 22b in this order from the supports 11 and 21 side.
  • the organic layers 12 a and 22 a may be provided between the inorganic layers 12 b and 22 b and the wavelength conversion layer 30.
  • the barrier layers 12 and 22 are formed by being formed on the surfaces of the supports 11 and 21. Therefore, the barrier films 10 and 20 are comprised by the support bodies 11 and 21 and the barrier layers 12 and 22 provided on it. In the case where the barrier layers 12 and 22 are provided, the support preferably has high heat resistance.
  • the layer in the barrier films 10 and 20 adjacent to the wavelength conversion layer 30 may be an inorganic layer or an organic layer, and is not particularly limited.
  • the barrier layers 12 and 22 are preferably composed of a plurality of layers because the barrier property can be further enhanced. Therefore, the barrier layers 12 and 22 are preferable from the viewpoint of improving light resistance. However, as the number of layers increases, the light transmission of the wavelength conversion member increases. Since the rate tends to decrease, it is preferable to design in consideration of good light transmittance and barrier properties.
  • the inorganic layer is a layer mainly composed of an inorganic material, and is preferably a layer in which the inorganic material occupies 50% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more, and is formed only from the inorganic material. Is most preferred.
  • the inorganic layers 12b and 22b suitable for the barrier layers 12 and 22 are not particularly limited, and various inorganic compounds such as metals, inorganic oxides, nitrides, and oxynitrides can be used.
  • silicon, aluminum, magnesium, titanium, tin, indium and cerium are preferable, and one or more of these may be included.
  • the inorganic compound examples include silicon oxide, silicon oxynitride, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, indium oxide alloy, silicon nitride, aluminum nitride, and titanium nitride.
  • a metal film such as an aluminum film, a silver film, a tin film, a chromium film, a nickel film, or a titanium film may be provided.
  • an inorganic layer containing silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, or aluminum oxide is particularly preferable. Since the inorganic layer made of these materials has good adhesion to the organic layer, even when the inorganic layer has pinholes, the organic layer can effectively fill the pinholes, and the barrier property is further improved. It can be made even higher. Further, silicon nitride is most preferable from the viewpoint of suppressing light absorption in the barrier layer.
  • the method for forming the inorganic layer is not particularly limited, and for example, various film forming methods capable of evaporating or scattering the film forming material and depositing it on the deposition surface can be used.
  • Examples of the method for forming the inorganic layer include a vacuum evaporation method in which an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is heated and evaporated; an inorganic material is used as a raw material, and oxygen gas is introduced.
  • an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is heated and evaporated; an inorganic material is used as a raw material, and oxygen gas is introduced.
  • Oxidation reaction vapor deposition method for oxidizing and vapor deposition sputtering method using inorganic material as target raw material, introducing argon gas and oxygen gas and performing sputtering; plasma generated on inorganic material with plasma gun
  • chemical vapor deposition methods Physical Vapor Deposition method, PVD method
  • ion plating method which are heated by a beam for vapor deposition, or when a silicon oxide vapor deposition film is formed
  • a plasma chemical vapor phase using an organosilicon compound as a raw material Growth method (Chemical Vapor Deposition method, CV Law), and the like.
  • the thickness of the inorganic layer may be 1 nm to 500 nm, preferably 5 nm to 300 nm, and more preferably 10 nm to 150 nm.
  • the film thickness of the adjacent inorganic layer is within the above-described range, it is possible to suppress absorption of light in the inorganic layer while realizing good barrier properties, and provide a wavelength conversion member with higher light transmittance. Because it can be done.
  • the organic layer is a layer containing an organic material as a main component, and is preferably a layer in which the organic material occupies 50% by mass or more, further 80% by mass or more, particularly 90% by mass or more.
  • the organic layer paragraphs 0020 to 0042 of JP-A-2007-290369 and paragraphs 0074 to 0105 of JP-A-2005-096108 can be referred to.
  • the organic layer preferably contains a cardo polymer. This is because the adhesion between the organic layer and the adjacent layer, particularly the adhesion with the inorganic layer, is improved, and a further excellent barrier property can be realized.
  • the thickness of the organic layer is preferably in the range of 0.05 ⁇ m to 10 ⁇ m, and more preferably in the range of 0.5 to 10 ⁇ m.
  • the thickness of the organic layer is preferably in the range of 0.5 to 10 ⁇ m, and more preferably in the range of 1 to 5 ⁇ m.
  • it is preferably in the range of 0.05 ⁇ m to 5 ⁇ m, and more preferably in the range of 0.05 ⁇ m to 1 ⁇ m. This is because when the film thickness of the organic layer formed by the wet coating method or the dry coating method is within the above-described range, the adhesion with the inorganic layer can be further improved.
  • the wavelength conversion layer, the inorganic layer, the organic layer, and the support may be laminated in this order, between the inorganic layer and the organic layer, between the two organic layers, or between the two layers.
  • a support may be disposed between the inorganic layers and laminated.
  • the barrier film 10 is provided with the uneven
  • the unevenness providing layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles. Moreover, although it is preferable to provide in the surface on the opposite side to the wavelength conversion layer of an uneven
  • the wavelength conversion member 1D can have a light scattering function in order to efficiently extract the fluorescence of the quantum dots to the outside.
  • the light scattering function may be provided inside the wavelength conversion layer 30, or a layer having a light scattering function may be separately provided as the light scattering layer.
  • the light scattering layer may be provided on the surface of the barrier layer 22 on the wavelength conversion layer 30 side, or may be provided on the surface of the support opposite to the wavelength conversion layer.
  • the unevenness providing layer is preferably a layer that can also be used as a light scattering layer.
  • the wavelength conversion layer 30 can be formed by applying the prepared polymerizable composition to the surfaces of the barrier films 10 and 20 and then curing it by light irradiation or heating.
  • Known coating methods include curtain coating, dip coating, spin coating, print coating, spray coating, slot coating, roll coating, slide coating, blade coating, gravure coating, and wire bar method. The coating method is mentioned.
  • Curing conditions can be appropriately set according to the type of anionic polymerizable compound used and the composition of the polymerizable composition. Further, when the polymerizable composition is a composition containing a solvent, a drying treatment may be performed to remove the solvent before curing.
  • the curing of the polymerizable composition may be performed in a state where the polymerizable composition is sandwiched between two supports.
  • One aspect of the manufacturing process of the wavelength conversion member including the curing process will be described below with reference to FIGS.
  • the present invention is not limited to the following embodiments.
  • FIG. 2 is a schematic configuration diagram of an example of a manufacturing apparatus for the wavelength conversion member 1D
  • FIG. 3 is a partially enlarged view of the manufacturing apparatus shown in FIG.
  • the manufacturing apparatus of this embodiment includes a delivery machine (not shown), an application unit 120 that forms a coating film 30M by applying a polymerizable composition on the first barrier film 10, and a second barrier on the coating film 30M.
  • Laminating unit 130 for bonding film 20 and sandwiching coating film 30M between first barrier film 10 and second barrier film 20, curing unit 160 for curing coating film 30M, and a winder (not shown) Is provided.
  • the manufacturing process of the wavelength conversion member using the manufacturing apparatus shown in FIGS. 2 and 3 applies a polymerizable composition to the surface of the first barrier film 10 (hereinafter referred to as “first film”) that is continuously conveyed. And a step of forming a coating film, and a second barrier film 20 (hereinafter also referred to as “second film”) that is continuously conveyed is laminated (overlaid) on the coating film to form a first film. A step of sandwiching the coating film between the first film and the second film, and a backup roller for either the first film or the second film in a state where the coating film is sandwiched between the first film and the second film.
  • a barrier film having a barrier property against oxygen and moisture is used for both the first film and the second film.
  • wavelength conversion member 1D by which both surfaces of the wavelength conversion layer were protected by the barrier film can be obtained.
  • a wavelength conversion member having one surface protected by a barrier film may be used, and in that case, the barrier film side is preferably used as the side close to the outside air.
  • the first film 10 is continuously conveyed from the unillustrated transmitter to the coating unit 120.
  • the first film 10 is delivered from the delivery device at a conveyance speed of 1 to 50 m / min. However, it is not limited to this conveyance speed.
  • a tension of 20 to 150 N / m, preferably 30 to 100 N / m is applied to the first film 10.
  • a polymerizable composition (hereinafter also referred to as “coating liquid”) is applied to the surface of the first film 10 that is continuously conveyed, and a coating film 30M (see FIG. 3) is formed.
  • a coating film 30M (see FIG. 3) is formed.
  • the coating film 30M is formed.
  • the coating film 30 ⁇ / b> M refers to a polymerizable composition before curing applied on the first film 10.
  • the die coater 124 to which the extrusion coating method is applied is shown as the coating device in the coating unit 120, but the present invention is not limited to this.
  • a coating apparatus to which various methods such as a curtain coating method, a rod coating method, or a roll coating method are applied can be used.
  • the first film 10 that has passed through the coating unit 120 and has the coating film 30M formed thereon is continuously conveyed to the laminating unit 130.
  • the second film 20 continuously conveyed is laminated on the coating film 30 ⁇ / b> M, and the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20.
  • a laminating roller 132 and a heating chamber 134 surrounding the laminating roller 132 are installed in the laminating unit 130.
  • the heating chamber 134 is provided with an opening 136 for allowing the first film 10 to pass therethrough and an opening 138 for allowing the second film 20 to pass therethrough.
  • a backup roller 162 is disposed at a position facing the laminating roller 132.
  • the first film 10 on which the coating film 30M is formed is wound around the backup roller 162 on the surface opposite to the surface on which the coating film 30M is formed, and is continuously conveyed to the laminating position P.
  • Lamination position P means the position where the contact between the second film 20 and the coating film 30M starts.
  • the first film 10 is preferably wound around the backup roller 162 before reaching the laminating position P. This is because even if wrinkles occur in the first film 10, the wrinkles are corrected and removed by the backup roller 162 before reaching the laminate position P.
  • the position (contact position) where the first film 10 is wound around the backup roller 162 and the distance L1 to the laminate position P are preferably long, for example, 30 mm or more is preferable, and the upper limit is usually It is determined by the diameter of the backup roller 162 and the pass line.
  • the second film 20 is laminated by the backup roller 162 and the laminating roller 132 used in the curing unit 160. That is, the backup roller 162 used in the curing unit 160 is also used as a roller used in the laminating unit 130.
  • the present invention is not limited to the above form, and a laminating roller may be installed in the laminating unit 130 in addition to the backup roller 162 so that the backup roller 162 is not used.
  • the backup roller 162 used in the curing unit 160 in the laminating unit 130, the number of rollers can be reduced.
  • the backup roller 162 can also be used as a heat roller for the first film 10.
  • the second film 20 sent from a sending machine (not shown) is wound around the laminating roller 132 and continuously conveyed between the laminating roller 132 and the backup roller 162.
  • the second film 20 is laminated on the coating film 30M formed on the first film 10 at the laminating position P. Thereby, the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20.
  • Lamination refers to laminating the second film 20 on the coating film 30M.
  • the distance L2 between the laminating roller 132 and the backup roller 162 is a value of the total thickness of the first film 10, the wavelength conversion layer (cured layer) 30 obtained by polymerizing and curing the coating film 30M, and the second film 20.
  • the above is preferable.
  • L2 is below the length which added 5 mm to the total thickness of the 1st film 10, the coating film 30M, and the 2nd film 20.
  • FIG. By making the distance L2 equal to or less than the total thickness plus 5 mm, it is possible to prevent bubbles from entering between the second film 20 and the coating film 30M.
  • the distance L2 between the laminating roller 132 and the backup roller 162 is the shortest distance between the outer circumferential surface of the laminating roller 132 and the outer circumferential surface of the backup roller 162.
  • Rotational accuracy of the laminating roller 132 and the backup roller 162 is 0.05 mm or less, preferably 0.01 mm or less in radial runout. The smaller the radial runout, the smaller the thickness distribution of the coating film 30M.
  • the difference between the temperature of the backup roller 162 of the curing unit 160 and the temperature of the first film 10 is preferably 30 ° C. or less, more preferably 15 ° C. or less, and most preferably the same.
  • the heating chamber 134 In order to reduce the difference from the temperature of the backup roller 162, when the heating chamber 134 is provided, it is preferable to heat the first film 10 and the second film 20 in the heating chamber 134.
  • hot air is supplied to the heating chamber 134 by a hot air generator (not shown), and the first film 10 and the second film 20 can be heated.
  • the first film 10 may be heated by the backup roller 162 by being wound around the temperature-adjusted backup roller 162.
  • the second film 20 can be heated with the laminating roller 132 by using the laminating roller 132 as a heat roller.
  • the heating chamber 134 and the heat roller are not essential, and can be provided as necessary.
  • the first film 10 and the second film 20 are continuously conveyed to the curing unit 160 in a state where the coating film 30M is sandwiched between the first film 10 and the second film 20.
  • curing in the curing unit 160 is performed by light irradiation, but when the polymerizable compound contained in the polymerizable composition is polymerized by heating, by heating such as blowing hot air, Curing can be performed.
  • a light irradiation device 164 is provided at a position facing the backup roller 162 and the backup roller 162. Between the backup roller 162 and the light irradiation device 164, the first film 10 and the second film 20 sandwiching the coating film 30M are continuously conveyed. What is necessary is just to determine the light irradiated by a light irradiation apparatus according to the kind of photopolymerizable compound contained in a polymeric composition, and an ultraviolet-ray is mentioned as an example.
  • the ultraviolet light means light having a wavelength of 280 to 400 nm.
  • a light source that generates ultraviolet rays for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the light irradiation amount may be set within a range in which polymerization and curing of the coating film can proceed.
  • the coating film 30M can be irradiated with ultraviolet rays having an irradiation amount of 100 to 10,000 mJ / cm 2 .
  • the first film 10 is wound around the backup roller 162 in a state where the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20, and is continuously conveyed from the light irradiation device 164.
  • the wavelength conversion layer 30 can be formed by performing light irradiation to cure the coating film 30M.
  • the first film 10 side is wound around the backup roller 162 and continuously conveyed, but the second film 20 may be wound around the backup roller 162 and continuously conveyed.
  • Wrapping around the backup roller 162 means a state in which either the first film 10 or the second film 20 is in contact with the surface of the backup roller 162 at a certain wrap angle. Accordingly, the first film 10 and the second film 20 move in synchronization with the rotation of the backup roller 162 while being continuously conveyed. Winding around the backup roller 162 may be at least during the irradiation of ultraviolet rays.
  • the backup roller 162 includes a cylindrical main body and rotating shafts disposed at both ends of the main body.
  • the main body of the backup roller 162 has a diameter of ⁇ 200 to 1000 mm, for example. There is no restriction on the diameter ⁇ of the backup roller 162. In consideration of curl deformation of the laminated film, equipment cost, and rotational accuracy, the diameter is preferably 300 to 500 mm.
  • the temperature of the backup roller 162 is determined in consideration of heat generation during light irradiation, curing efficiency of the coating film 30M, and occurrence of wrinkle deformation on the backup roller 162 of the first film 10 and the second film 20. can do.
  • the backup roller 162 is preferably set to a temperature range of 10 to 95 ° C., for example, and more preferably 15 to 85 ° C.
  • the temperature related to the roller refers to the surface temperature of the roller.
  • the distance L3 between the laminate position P and the light irradiation device 164 can be set to 30 mm or more, for example.
  • the coating film 30M is cured by the light irradiation to become the wavelength conversion layer 30, and the wavelength conversion member 1D including the first film 10, the wavelength conversion layer 30, and the second film 20 is manufactured.
  • the wavelength conversion member 1D is peeled off from the backup roller 162 by the peeling roller 180.
  • the wavelength conversion member 1D is continuously conveyed to a winder (not shown), and then the wavelength conversion member 1D is wound into a roll by the winder.
  • FIG. 4 is a schematic cross-sectional view showing the backlight unit.
  • the backlight unit 2 of the present invention includes a light source 1A that emits primary light (blue light L B ), and a light guide plate 1B that guides and emits primary light emitted from the light source 1A.
  • L G, the L R, and L B emits white light Lw from the surface of the retroreflective member 2B.
  • the shape of the wavelength conversion member 1D is not particularly limited, and may be an arbitrary shape such as a sheet shape or a bar shape.
  • L B emitted from the wavelength conversion member 1D, L G, and L R is incident on the retroreflective member 2B, the light incident, between the reflective plate 2A and the retroreflective member 2B The reflection is repeated and passes through the wavelength conversion member 1D many times.
  • the wavelength conversion member 1D in a sufficient amount of excitation light (the blue light L B) is, quantum dots 30A that emits red light L R, is absorbed by the quantum dots 30B for emitting green light L G, the amount of required Fluorescence (green light L G , red light L R ) is emitted, and white light L W is embodied and emitted from the retroreflective member 2B.
  • UV light When ultraviolet light is used as excitation light, light is emitted from the quantum dots 30A by making ultraviolet light incident on the wavelength conversion layer 30 including the quantum dots 30A and 30B in FIG. 1 and 30C (not shown) as excitation light.
  • White light can be embodied by red light, green light emitted by the quantum dots 30B, and blue light emitted by the quantum dots 30C.
  • a backlight unit that has been converted to a multi-wavelength light source.
  • blue light having an emission center wavelength in a wavelength band of 430 to 480 nm and a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 520 to 560 nm, and a half width of It is preferable to emit green light having an emission intensity peak that is 100 nm or less and red light having an emission center wavelength in the wavelength band of 600 to 680 nm and having an emission intensity peak that is 100 nm or less.
  • the wavelength band of blue light emitted from the backlight unit is more preferably 440 to 460 nm.
  • the wavelength band of the green light emitted from the backlight unit is more preferably 520 to 545 nm.
  • the wavelength band of red light emitted from the backlight unit is more preferably 610 to 640 nm.
  • the half-value widths of the emission intensity of blue light, green light, and red light emitted from the backlight unit are all preferably 80 nm or less, more preferably 50 nm or less, and 40 nm or less. More preferably, it is more preferably 30 nm or less. Among these, it is particularly preferable that the half-value width of each emission intensity of blue light is 25 nm or less.
  • the backlight unit 2 includes at least the planar light source 1C together with the wavelength conversion member 1D.
  • the light source 1A include those that emit blue light having an emission center wavelength in the wavelength band of 430 nm to 480 nm, and those that emit ultraviolet light.
  • a light emitting diode, a laser light source, or the like can be used as the light source 1A.
  • the planar light source 1 ⁇ / b> C may be a light source including a light source 1 ⁇ / b> A and a light guide plate 1 ⁇ / b> B that guides and emits primary light emitted from the light source 1 ⁇ / b> A.
  • the light source may be a light source that is arranged in a plane parallel to the member 1D and includes a diffusion plate instead of the light guide plate 1B.
  • the former light source is generally called an edge light method, and the latter light source is generally called a direct type.
  • the edge light method using a light guide plate, a reflection plate, or the like as a constituent member has been described in FIG. 4, but a direct type may be used. Any known light guide plate can be used without any limitation.
  • a case where a planar light source is used as the light source has been described as an example.
  • a light source other than the planar light source can be used as the light source.
  • the wavelength conversion layer preferably includes at least quantum dots 30A that are excited by excitation light and emit red light, and quantum dots 30B that emit green light.
  • white light can be embodied by blue light emitted from the light source and transmitted through the wavelength conversion member, and red light and green light emitted from the wavelength conversion member.
  • a light source that emits ultraviolet light having an emission center wavelength in the wavelength band of 300 nm to 430 nm can be used.
  • a laser light source can be used instead of the light emitting diode.
  • the reflecting plate 2A is not particularly limited, and known ones can be used, and are described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, etc. Incorporated into the present invention.
  • the retroreflective member 2B is composed of a known diffusion plate, diffusion sheet, prism sheet (eg, BEF series manufactured by Sumitomo 3M), reflective polarizing film (eg, DBEF series manufactured by Sumitomo 3M), and the like. Also good.
  • the configuration of the retroreflective member 2B is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • FIG. 5 shows a schematic cross-sectional view of the liquid crystal display device of the present invention.
  • the liquid crystal display device 4 includes the backlight unit 2 according to the above-described embodiment and the liquid crystal cell unit 3 disposed to face the retroreflective member 2 ⁇ / b> B in the backlight unit 2.
  • the liquid crystal cell unit 3 has a configuration in which the liquid crystal cell 31 is sandwiched between polarizing plates 32 and 33.
  • the polarizing plates 32 and 33 have polarizing plate protective films 321 and 323 on both main surfaces of the polarizers 322 and 332, respectively. It is configured to be protected by 331 and 333.
  • liquid crystal cell 31 there are no particular limitations on the liquid crystal cell 31, the polarizing plates 32 and 33, and the components thereof that constitute the liquid crystal display device 4, and those produced by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • the driving mode of the liquid crystal cell 31 is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). ) And other modes can be used.
  • the liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • the configuration shown in FIG. the configuration shown in FIG.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • the liquid crystal display device 4 further includes an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an adhesive layer In addition to or in place of color filter substrate, thin layer transistor substrate, lens film, diffusion sheet, hard coat layer, antireflection layer, low reflection layer, antiglare layer, etc., forward scattering layer, primer layer, antistatic layer, undercoat A surface layer such as a layer may be disposed.
  • the polarizing plate 32 on the backlight side may have a retardation film as the polarizing plate protective film 323 on the liquid crystal cell 31 side.
  • a retardation film a known cellulose acylate film or the like can be used.
  • the backlight unit 2 and the liquid crystal display device 4 include the wavelength conversion member having the good initial luminance of the present invention and reduced luminance deterioration, the backlight unit 2 and the liquid crystal display device are obtained.
  • barrier film 10 (Preparation of barrier film 10) Using a polyethylene terephthalate (PET) film (trade name “Cosmo Shine (registered trademark) A4300”, thickness 50 ⁇ m, manufactured by Toyobo Co., Ltd.) as a support, an organic layer and an inorganic layer were formed on one side of the support by the following procedure. Sequentially formed.
  • PET polyethylene terephthalate
  • A4300 thickness 50 ⁇ m, manufactured by Toyobo Co., Ltd.
  • the sample was irradiated with ultraviolet rays (integrated irradiation amount: about 600 mJ / cm 2 ) in a nitrogen atmosphere, cured with ultraviolet rays, and wound up.
  • the thickness of the organic layer formed on the support was 1 ⁇ m.
  • an inorganic layer (silicon nitride layer) was formed on the surface of the organic layer using a roll-to-roll CVD apparatus.
  • Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases.
  • a high frequency power supply having a frequency of 13.56 MHz was used as the power supply.
  • the film forming pressure was 40 Pa, and the reached film thickness was 50 nm.
  • Example 1 preparation of polymerizable composition used in Example 1 and preparation of coating solution
  • the following polymerizable composition 1 was prepared, filtered through a polypropylene filter having a pore size of 0.2 ⁇ m, dried under reduced pressure for 30 minutes, and used as a coating solution.
  • Quantum dot 1 (CZ520-100, manufactured by NN-Labs) is a core / shell type quantum dot in which the core is made of CdSe and the shell is made of ZnS, the emission center wavelength is 520 nm, and the half width is 30 nm. .
  • Octadecylamine is coordinated to the quantum dot 1 as a ligand.
  • Quantum dot 2 (CZ620-100, manufactured by NN-Labs) is a core / shell type quantum dot in which the core is made of CdSe and the shell is made of ZnS, the emission center wavelength is 630 nm, and the half width is 35 nm. It is. Octadecylamine is coordinated to the quantum dot 2 as a ligand.
  • Example 6 (Preparation of polymerizable composition used in Example 6 and preparation of coating solution) It was produced in the same manner as in Example 1 except that the monomer 1 content was as shown in Table 1, and IBXA, which is a monofunctional acrylate, was used as the monomer 2.
  • Example 11 (Preparation of polymerizable composition used in Example 11 and preparation of coating solution) It was produced in the same manner as in Example 1 except that the content of monomer 1 was changed as shown in Table 2, and that DCP, which is a monofunctional acrylate, was used as monomer 2.
  • Example 12 (Preparation of polymerizable composition used in Example 12 and preparation of coating solution) As in Example 1, except that the content of monomer 1 was changed as shown in Table 2, IBXA was used as monomer 2, and Karenz MT-NR1, which is a trifunctional secondary thiol compound, was used as the thiol compound. Produced.
  • Comparative Example 1 (Preparation of polymerizable composition used in Comparative Example 4 and preparation of coating solution) Comparative Example 1 was repeated except that DPHA was used as monomer 1 and monofunctional acrylate IBXA was used as monomer 2.
  • the barrier film 10 produced by the above-described procedure was used as the first film and the second film, and a wavelength conversion member was obtained by the manufacturing process described with reference to FIGS. 2 and 3.
  • the barrier film 10 is prepared as the first film, and the polymerizable composition 1 prepared above is formed on the surface of the inorganic layer with a die coater while continuously transporting at a tension of 1 m / min and 60 N / m. This was applied to form a coating film having a thickness of 50 ⁇ m.
  • the first film on which the coating film is formed is wound around a backup roller, and the second film is laminated on the coating film so that the inorganic layer surface is in contact with the coating film.
  • a wavelength conversion member was prepared in the same manner as in Example 1 except that the coating solution used in the other examples and comparative examples prepared above was used.
  • the photo-curing property is determined by using a single wavelength conversion layer film obtained by using release paper as a base material of each wavelength conversion member, and using a commercially available FT-IR apparatus (PerkinElmer, Frontier series) Using the solution (polymerizable compound) as a reference, the acrylate reaction rate was calculated from the absorption peak intensity of the vinyl group observed in the vicinity of 1650 cm ⁇ 1 and evaluated based on the following evaluation criteria.
  • reaction rate 90% or more A: reaction rate 80 or more and less than 90%
  • reaction rate 50 or more and less than 65% D: reaction rate 50% or less
  • a commercially available tablet terminal (trade name “Kindle (registered trademark) Fire HDX 7”, manufactured by Amazon, Inc., hereinafter simply referred to as “Kindle Fire HDX 7”) may be disassembled and back mounted. The light unit was taken out. Instead of QDEF (Quantum Dot Enhancement Film), the wavelength conversion member of the example or comparative example cut into a rectangle was incorporated. In this way, a liquid crystal display device was produced. The prepared liquid crystal display device is turned on so that the entire surface is displayed in white, and the luminance is measured with a luminance meter (trade name “SR3”, manufactured by TOPCON) installed at a position of 520 mm perpendicular to the surface of the light guide plate. did. The evaluation results are shown in Tables 1 to 3.
  • the prepared wavelength conversion member was irradiated for 1000 hours at an illuminance of 300 mw / cm ⁇ 2 using a blue LED having a center wavelength of 450 nm. After that, it was incorporated into Kindle Fire HDX 7 in the same manner as described above, and the luminance was measured. The light durability of the luminance was evaluated based on the following evaluation criteria.
  • the produced wavelength conversion member was heated at 85 ° C. for 1000 hours using a precision thermostat DF411 manufactured by Yamato Scientific Co., Ltd. After that, it was incorporated into Kindle Fire HDX 7 in the same manner as described above, and the luminance was measured. The thermal durability of luminance was evaluated based on the following evaluation criteria.
  • DPHA dipentaerythritol hexaacrylate
  • PETA penentaerythritol tetraacrylate
  • A-DCP tricyclodecane dimethanol diacrylate
  • DCP dicyclopentanyl acrylate: Monofunctional acrylate IBXA (isobornyl acrylate) manufactured by Hitachi Chemical Co., Ltd .: monofunctional acrylate, Karenz MT-BD1 (1,4-bis (3-mercaptobutyryloxy) butane) manufactured by Osaka Organic Chemical Industry Co., Ltd .: bifunctional thiol, Showa Denko Co., Ltd.
  • Lens MT-NR1 (1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione): trifunctional thiol, Karenz MT-PE1 (pentaerythritol tetrakis (3-mercaptobutyrate)) manufactured by Showa Denko KK: tetrafunctional thiol, PEMP (pentaerythritol tetrakis 3-mercaptopropionate) manufactured by Showa Denko KK): 4-functional thiol primary thiol Irgacure (registered trademark) 819 manufactured by SC Organic Chemical Co., Ltd .: radical polymerization initiator, C8SH (octanethiol) manufactured by BASF: primary thiol, AO-20 manufactured by Tokyo Chemical Industry Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Led Device Packages (AREA)

Abstract

[Problem] To provide a polymerizable composition, a wavelength conversion member, a backlight unit, and a liquid crystal display device having excellent light durability and heat resistance. [Solution] Provided is a polymerizable composition that includes quantum dots, a (meth)acrylate monomer, a polymerization initiator, and a thiol compound. The thiol compound has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are bound to a secondary carbon atom, a tertiary carbon atom, or a carbon atom on a ring structure. The ratio of (meth)acryloyl groups/thiol groups, i.e. the functional group ratio of the (meth)acryloyl groups of the (meth)acrylate monomer to the thiol groups of the thiol compound, is higher than 3.

Description

重合性組成物、重合物、波長変換部材、バックライトユニット、および液晶表示装置Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device
 本発明は、重合性組成物、重合物、波長変換部材、バックライトユニット、および液晶表示装置に関する。 The present invention relates to a polymerizable composition, a polymer, a wavelength conversion member, a backlight unit, and a liquid crystal display device.
 液晶表示装置(Liquid Crystal Display(略してLCDとも記載される。))などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、少なくともバックライトと液晶セルとから構成され、通常、さらに、バックライト側偏光板、視認側偏光板などの部材が含まれる。 Flat panel displays such as liquid crystal display devices (Liquid Crystal Display (also abbreviated as LCD for short)) have low power consumption, and their use is expanding year by year as space-saving image display devices. The liquid crystal display device is composed of at least a backlight and a liquid crystal cell, and usually further includes members such as a backlight side polarizing plate and a viewing side polarizing plate.
 近年、LCDの色再現性の向上を目的として、バックライトユニットの波長変換部材に、量子ドット(Quantum Dot、QD、または量子点とも呼ばれる。)を発光材料として含んだ波長変換層を備えた構成が注目されている。波長変換部材は、光源から入射された光の波長を変換して白色光として出射させる部材であり、量子ドットを発光材料として含んだ波長変換層では、発光特性の異なる2種又は3種の量子ドットが光源から入射された光により励起されて発光する蛍光を利用して白色光を具現化することができる。 In recent years, for the purpose of improving the color reproducibility of LCD, the wavelength conversion member of the backlight unit is provided with a wavelength conversion layer containing a quantum dot (also called Quantum Dot, QD, or quantum dot) as a light emitting material. Is attracting attention. The wavelength conversion member is a member that converts the wavelength of light incident from a light source and emits it as white light. In a wavelength conversion layer that includes quantum dots as a light emitting material, two or three types of quantum having different light emission characteristics are used. White light can be realized using fluorescence in which dots are excited by light incident from a light source to emit light.
 量子ドットによる蛍光は高輝度であり、しかも半値幅が小さいため、量子ドットを用いたLCDは色再現性に優れる。このような量子ドットを用いた3波長光源化技術の進行により、LCDの色再現域は、NTSC(National Television System Committee)比72%から100%へと拡大している。 Fluorescence due to quantum dots has high brightness and a small half-value width, so that LCDs using quantum dots are excellent in color reproducibility. With the progress of the three-wavelength light source technology using such quantum dots, the color gamut of the LCD has been expanded from 72% to 100% of NTSC (National Television System Committee) ratio.
 量子ドットを含む波長変換層のマトリクスには、輝度などの光学特性を向上させるため(1)高い透明性と(2)高い酸素および水バリア性とが要求される。(1)および(2)の性能を満たす材料として、既製品ではエポキシ樹脂が用いられている。ところが、エポキシ樹脂は光照射で変色しやすく、このような波長変換層を有する波長変換部材を用いた液晶表示装置において輝度が低下するという問題がある。特に、高照度条件下での耐久性の改善が課題であった。そこで、本発明者らは、上記(1)および(2)の性能を満たし、かつ、光照射による変色を抑えるために多官能(メタ)アクリレート樹脂をマトリクスに用いた波長変換層を検討した。 The matrix of the wavelength conversion layer including quantum dots is required to have (1) high transparency and (2) high oxygen and water barrier properties in order to improve optical characteristics such as luminance. As a material satisfying the performances of (1) and (2), an epoxy resin is used in ready-made products. However, the epoxy resin is easily discolored by light irradiation, and there is a problem that the luminance is lowered in a liquid crystal display device using such a wavelength conversion member having a wavelength conversion layer. In particular, improvement of durability under high illumination conditions has been a problem. Therefore, the present inventors examined a wavelength conversion layer using a polyfunctional (meth) acrylate resin as a matrix in order to satisfy the above performances (1) and (2) and suppress discoloration due to light irradiation.
 従来、アクリル樹脂をマトリクスに用いた光学部材について研究が多くされており、例えば、特許文献1には、発光粒子、末端に少なくとも2つのチオール基を含む第1のモノマー、および末端に少なくとも2つの不飽和炭素-炭素結合を有する第2のモノマーを含む組成物が記載されている。この組成物から重合される高分子は、緻密な架橋構造を形成しており、発光粒子の外部に存在する酸素および水分などの外部因子を遮断することができることが記載されている。
 また、特許文献2には、量子ドット蛍光体の集団と反射材料とを含み、それら両方が第1のマトリクス材料に懸濁している組成物が開示されている。さらに、オクタンチオールが還元剤として使用されている。このような組成物を材料に用いた表示装置で発光特性が改善されることが記載されている。
Conventionally, much research has been conducted on an optical member using an acrylic resin as a matrix. For example, Patent Document 1 discloses a luminescent particle, a first monomer containing at least two thiol groups at a terminal, and at least two at a terminal. A composition comprising a second monomer having an unsaturated carbon-carbon bond is described. It is described that the polymer polymerized from this composition forms a dense cross-linked structure and can block external factors such as oxygen and moisture existing outside the luminescent particles.
Patent Document 2 discloses a composition including a group of quantum dot phosphors and a reflective material, both of which are suspended in a first matrix material. In addition, octanethiol is used as a reducing agent. It is described that light emission characteristics are improved in a display device using such a composition as a material.
特開2013-518267号公報JP 2013-518267 A 特表2015-522668号公報Special table 2015-522668 gazette
 しかし、多官能(メタ)アクリレート樹脂をマトリクスに用いた波長変換層では、液晶表示装置に組み込んだとき、耐熱試験時に部材の端面から輝度が低下するという問題が生じた。波長変換部材においては、上記(1)および(2)の性能を有し、光耐久性および熱耐久性をさらに高いレベルで満足することが求められる。 However, in a wavelength conversion layer using a polyfunctional (meth) acrylate resin as a matrix, when incorporated in a liquid crystal display device, there arises a problem that luminance decreases from the end face of the member during a heat resistance test. The wavelength conversion member is required to have the performances (1) and (2) described above and satisfy the light durability and the heat durability at a higher level.
 本発明は上記事情に鑑みてなされたものであり、輝度の光耐久性および熱耐久性を有する波長変換層を得ることが可能な重合性組成物を提供することを目的とするものである。
 また、本発明は、輝度の光耐久性および熱耐久性を有する重合物、波長変換部材、バックライトユニット、および液晶表示装置を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polymerizable composition capable of obtaining a wavelength conversion layer having luminance light durability and heat durability.
Another object of the present invention is to provide a polymer having a luminance light durability and a heat durability, a wavelength conversion member, a backlight unit, and a liquid crystal display device.
 本発明らは、波長変換部材の端面の輝度低下は、アクリレートの硬化反応が一部において完結していないことが原因であると推測した。波長変換層の機械的強度付与の観点、および酸素が侵入しないような緻密な膜を形成する観点から、多官能の(メタ)アクリレートがより好ましいが、多官能(メタ)アクリレートは、ある程度重合すると連鎖反応が停止し緻密な膜が形成されない。また、未反応の(メタ)アクリロイル基は、端面から侵入した酸素の影響を受けやすい。そこで、本発明者らは、(メタ)アクリレートの反応率の改善を試みた。その結果、特定のチオール化合物を連鎖移動剤として添加することで、反応率を改善することができ、輝度低下を良好に抑制することを見出した。本発明はこのような知見に基づいてなされたものである。 The present inventors have speculated that the decrease in luminance at the end face of the wavelength conversion member is caused by the fact that the curing reaction of acrylate is not completely completed. From the viewpoint of imparting mechanical strength to the wavelength conversion layer and from the viewpoint of forming a dense film that does not allow oxygen to penetrate, polyfunctional (meth) acrylate is more preferable, but polyfunctional (meth) acrylate is polymerized to some extent. The chain reaction stops and a dense film is not formed. Further, the unreacted (meth) acryloyl group is easily affected by oxygen entering from the end face. Therefore, the present inventors tried to improve the reaction rate of (meth) acrylate. As a result, it has been found that by adding a specific thiol compound as a chain transfer agent, the reaction rate can be improved and the luminance reduction can be satisfactorily suppressed. The present invention has been made based on such findings.
 すなわち、本発明の重合性組成物は、
 量子ドット、(メタ)アクリレートモノマー、重合開始剤、および、チオール化合物を含み、
 チオール化合物が、分子内にチオール基を複数有し、複数のチオール基の全てが、第二級炭素原子、第三級炭素原子、または環構造上の炭素原子に結合した化合物であり、
 (メタ)アクリレートモノマーの(メタ)アクリロイル基とチオール化合物のチオール基との官能基比率である(メタ)アクリロイル基/チオール基が3より大きいものである。
That is, the polymerizable composition of the present invention is
Including quantum dots, (meth) acrylate monomers, polymerization initiators, and thiol compounds,
The thiol compound has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are compounds bonded to secondary carbon atoms, tertiary carbon atoms, or carbon atoms on the ring structure,
The (meth) acryloyl group / thiol group, which is the functional group ratio between the (meth) acryloyl group of the (meth) acrylate monomer and the thiol group of the thiol compound, is greater than 3.
 ここで、上記チオール化合物においては、複数のチオール化合物の全てが第二級炭素原子のみに結合していてもよいし、複数のチオール基の全てが第三級炭素原子のみに結合していてもよいし、複数のチオール基の全てが環構造上の炭素原子のみに結合していてもよい。また、複数のチオール基の全てが、第二級炭素原子、第三級炭素原子、および環構造上の炭素原子いずれかに結合していてもよい。 Here, in the thiol compound, all of the plurality of thiol compounds may be bonded only to the secondary carbon atom, or all of the plurality of thiol groups may be bonded only to the tertiary carbon atom. All of the plurality of thiol groups may be bonded only to carbon atoms on the ring structure. Further, all of the plurality of thiol groups may be bonded to any of secondary carbon atoms, tertiary carbon atoms, and carbon atoms on the ring structure.
 チオール化合物は、下記一般式Iで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000001
The thiol compound is preferably one represented by the following general formula I.
Figure JPOXMLDOC01-appb-C000001
 一般式I中、Aはn価の有機連結基を表し、RおよびRはそれぞれ水素原子または有機基を表し、かつRおよびRの少なくとも一方は有機基である。RおよびRは環を形成してもよい。nは2~6の整数であり、mは0~3の整数である。 In general formula I, A represents an n-valent organic linking group, R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring. n is an integer of 2 to 6, and m is an integer of 0 to 3.
 (メタ)アクリレートモノマーは、多官能であることが好ましい。 The (meth) acrylate monomer is preferably polyfunctional.
 チオール化合物の分子量は200以上3000未満であることが好ましい。 The molecular weight of the thiol compound is preferably 200 or more and less than 3000.
 本発明の重合物は、量子ドット、ポリ(メタ)アクリレート、および重合開始剤を含み、ポリ(メタ)アクリレートは、分子中に下記一般式II-Aまたは一般式II-Bで表される結合を有するものである。
Figure JPOXMLDOC01-appb-C000002
The polymer of the present invention includes quantum dots, poly (meth) acrylate, and a polymerization initiator, and the poly (meth) acrylate is a bond represented by the following general formula II-A or general formula II-B in the molecule. It is what has.
Figure JPOXMLDOC01-appb-C000002
 一般式II-Aおよび一般式II-B中、RおよびRはそれぞれ水素原子または有機基を表し、かつRおよびRの少なくとも一方は有機基である。RおよびRは環を形成してもよい。Rは水素原子またはメチル基を表す。Rは置換または無置換のアルキル基、シクロアルキル基またはアリール基を表す。*は結合手を表す。 In General Formula II-A and General Formula II-B, R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring. R 3 represents a hydrogen atom or a methyl group. R 4 represents a substituted or unsubstituted alkyl group, cycloalkyl group or aryl group. * Represents a bond.
 また、本発明の重合物は、本発明の重合性組成物を硬化したものであってもよい。 The polymer of the present invention may be a product obtained by curing the polymerizable composition of the present invention.
 本発明の波長変換部材は、本発明の重合物を含む波長変換層を備えたものである。 The wavelength conversion member of the present invention includes a wavelength conversion layer containing the polymer of the present invention.
 また、本発明の波長変換部材は、さらに、酸素透過度が1.00cm/(m・day・atm)以下であるバリアフィルムを有し、波長変換層の2つの主表面の少なくとも一方が、バリアフィルムに接しているものであってもよい。 In addition, the wavelength conversion member of the present invention further includes a barrier film having an oxygen permeability of 1.00 cm 3 / (m 2 · day · atm) or less, and at least one of the two main surfaces of the wavelength conversion layer is The film may be in contact with the barrier film.
 また、本発明の波長変換部材は、バリアフィルムを2つ有し、波長変換層の2つの主表面が、それぞれバリアフィルムに接していることが好ましい。 Further, the wavelength conversion member of the present invention preferably has two barrier films, and the two main surfaces of the wavelength conversion layer are in contact with the barrier films, respectively.
 本発明のバックライトユニットは、少なくとも本発明の波長変換部材と光源とを備える。 The backlight unit of the present invention includes at least the wavelength conversion member of the present invention and a light source.
 本発明の液晶表示装置は、少なくとも本発明のバックライトユニットと液晶セルとを備える。 The liquid crystal display device of the present invention includes at least the backlight unit of the present invention and a liquid crystal cell.
 本発明の重合性組成物は、量子ドット、(メタ)アクリレートモノマー、重合開始剤、および、チオール化合物を含み、チオール化合物が、分子内にチオール基を複数有し、複数のチオール基の全てが、第二級炭素原子、第三級炭素原子、または環構造上の炭素原子に結合した化合物であり、(メタ)アクリレートモノマーの(メタ)アクリロイル基とチオール化合物のチオール基との官能基比率である(メタ)アクリロイル基/チオール基が3より大きいものである。このような構成を有することにより、未反応の(メタ)アクリロイル基を架橋させることができ、緻密な構造のマトリクスを形成することができ、光照射時および耐熱試験において、端面からの輝度低下を良好に抑制することができ、光耐久性および熱耐久性を有する波長変換部材、バックライト、および液晶表示装置を提供することができる。
 具体的には、チオール化合物が複数のチオール基を有するため、未反応の(メタ)アクリロイル基同士を架橋させることができ、(メタ)アクリレートの重合物の網目構造をより緻密なものとすることが可能である。さらには、複数のチオール基の全てが、第二級炭素原子、第三級炭素原子、または環構造上の炭素原子に結合したチオール化合物であることにより、立体障害によってチオール基が量子ドットに配位する、あるいは既存の配位子との交換が生じないため、量子ドットの発光効率に影響を与えることがないという利点を有する。
The polymerizable composition of the present invention includes quantum dots, a (meth) acrylate monomer, a polymerization initiator, and a thiol compound, the thiol compound has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are all , A secondary carbon atom, a tertiary carbon atom, or a compound bonded to a carbon atom on the ring structure, and the functional group ratio of the (meth) acryloyl group of the (meth) acrylate monomer to the thiol group of the thiol compound A certain (meth) acryloyl group / thiol group is larger than 3. By having such a configuration, it is possible to crosslink unreacted (meth) acryloyl groups, to form a dense structure matrix, and to reduce luminance from the end face during light irradiation and heat resistance tests. A wavelength conversion member, a backlight, and a liquid crystal display device that can be satisfactorily suppressed and have light durability and heat durability can be provided.
Specifically, since the thiol compound has a plurality of thiol groups, unreacted (meth) acryloyl groups can be cross-linked with each other, and the network structure of the polymer of (meth) acrylate should be made denser. Is possible. Furthermore, since all of the plurality of thiol groups are thiol compounds bonded to secondary carbon atoms, tertiary carbon atoms, or carbon atoms on the ring structure, the thiol groups are arranged on the quantum dots due to steric hindrance. Therefore, since there is no exchange with existing ligands, there is an advantage that the luminous efficiency of quantum dots is not affected.
本発明の一実施形態である波長変換部材を示す概略構成断面図である。It is a schematic structure sectional view showing the wavelength conversion member which is one embodiment of the present invention. 波長変換部材の製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus of a wavelength conversion member. 図2に示す製造装置の部分拡大図である。It is the elements on larger scale of the manufacturing apparatus shown in FIG. 本発明の一実施形態である波長変換部材を備えたバックライトユニットの概略構成断面図である。It is a schematic structure sectional view of a backlight unit provided with a wavelength conversion member which is one embodiment of the present invention. 本発明のバックライトユニットを備えた液晶表示装置を示す概略構成断面図である。It is a schematic structure sectional view showing a liquid crystal display provided with the backlight unit of the present invention.
 以下、本発明の実施形態について図面を参照しながら説明する。以下の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本明細書において、ピークの「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。また、430~480nmの波長帯域に発光中心波長を有する光を青色光と呼び、520~560nmの波長帯域に発光中心波長を有する光を緑色光と呼び、600~680nmの波長帯域に発光中心波長を有する光を赤色光と呼ぶ。
 また、(メタ)アクリロイル基とは、アクリロイル基およびメタクリロイル基の一方または両方を意味する。(メタ)アクリレートとは、アクリレートおよびメタクリレートの一方または両方を意味する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. Further, in this specification, the “half-value width” of a peak refers to the width of the peak at a peak height of ½. The light having the emission center wavelength in the wavelength band of 430 to 480 nm is called blue light, the light having the emission center wavelength in the wavelength band of 520 to 560 nm is called green light, and the emission center wavelength in the wavelength band of 600 to 680 nm. The light having a color is called red light.
The (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group. (Meth) acrylate means one or both of acrylate and methacrylate.
[重合性組成物]
 本発明の重合性組成物は、量子ドット、(メタ)アクリレートモノマー、重合開始剤、および、チオール化合物を含むものであって、チオール化合物は、分子内にチオール基を複数有し、複数のチオール基の全てが、第二級炭素原子、第三級炭素原子、または環構造上の炭素原子に結合した化合物であり、(メタ)アクリレートモノマーの(メタ)アクリロイル基とチオール化合物のチオール基との官能基比率である(メタ)アクリロイル基/チオール基が3より大きいものである。
 以下、重合性組成物の構成成分の詳細について説明する。
[Polymerizable composition]
The polymerizable composition of the present invention includes quantum dots, a (meth) acrylate monomer, a polymerization initiator, and a thiol compound, and the thiol compound has a plurality of thiol groups in the molecule, and includes a plurality of thiols. All of the groups are compounds bonded to a secondary carbon atom, a tertiary carbon atom, or a carbon atom on the ring structure, and the (meth) acryloyl group of the (meth) acrylate monomer and the thiol group of the thiol compound The functional group ratio (meth) acryloyl group / thiol group is greater than 3.
Hereinafter, the detail of the structural component of polymeric composition is demonstrated.
(量子ドット)
 量子ドットは、励起光により励起されて蛍光を発光する半導体ナノ粒子である。重合性組成物は、量子ドットとして発光特性の異なる二種以上の量子ドットを含有してもよい。励起光として青色光を用いた場合には、重合性組成物は、青色光Lにより励起されて蛍光(赤色光)Lを発光する量子ドット、および青色光Lにより励起されて蛍光(緑色光)Lを発光する量子ドットを含有することができる。
 また、励起光として紫外光を用いた場合は、重合性組成物は、紫外光LUVにより励起されて蛍光(赤色光)Lを発光する量子ドット、紫外光LUVにより励起されて蛍光(緑色光)Lを発光する量子ドット、および紫外光LUVにより励起されて蛍光(青色光)Lを発光する量子ドットを含有することができる。
(Quantum dot)
Quantum dots are semiconductor nanoparticles that emit fluorescence when excited by excitation light. The polymerizable composition may contain two or more types of quantum dots having different emission characteristics as quantum dots. In the case of using the blue light as the excitation light, the polymerizable composition is excited by being excited by the blue light L B fluorescent quantum dots emits (red light) L R, and the blue light L B fluorescence ( It may contain quantum dots that emit green light) L G.
In addition, when ultraviolet light is used as excitation light, the polymerizable composition is excited by ultraviolet light L UV to emit fluorescence (red light) LR, and is excited by ultraviolet light L UV to emit fluorescence ( quantum dot emits green light) L G, and is excited by the ultraviolet light L UV may contain quantum dots to emit fluorescence (blue light) L B.
 赤色光Lを発光する量子ドットとしては、600~680nmの波長範囲に発光中心波長を有するものを挙げることができる。緑色光Lを発光する量子ドットとしては、520~560nmの波長範囲に発光中心波長を有するものを挙げることができる。青色光Lを発光する量子ドットとしては、430~480nmの波長範囲に発光中心波長を有するものを挙げることができる。 The quantum dots that emit red light L R, may be mentioned those having an emission center wavelength in a wavelength range of 600 ~ 680 nm. The quantum dot emits green light L G, it may be mentioned those having an emission center wavelength in a wavelength range of 520 ~ 560 nm. The quantum dot emitting blue light L B, may include those having an emission center wavelength in a wavelength range of 430 ~ 480 nm.
 量子ドットについては、例えば特開2012-169271号公報の段落0060~0066を参照することができるが、この公報に記載のものに限定されるものではない。 Regarding the quantum dots, for example, paragraphs 0060 to 0066 of JP2012-169271A can be referred to, but the quantum dots are not limited to those described in this publication.
 量子ドットとしては、例えば、コアーシェル型の半導体ナノ粒子が、耐久性を向上する観点から好ましい。コアとしては、II-VI族半導体ナノ粒子、III-V族半導体ナノ粒子、及び多元系半導体ナノ粒子等を用いることができる。具体的には、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、InP、InAs、InGaP等が挙げられるが、これらに限定されない。中でも、CdSe、CdTe、InP、InGaPが、高効率で可視光を発光する観点から、好ましい。シェルとしては、CdS、ZnS、ZnO、GaAs、およびこれらの複合体を用いることができるが、これらに限定されない。量子ドットの発光波長は、通常、粒子の組成およびサイズにより調整することができる。 As the quantum dots, for example, core-shell type semiconductor nanoparticles are preferable from the viewpoint of improving durability. As the core, II-VI semiconductor nanoparticles, III-V semiconductor nanoparticles, multi-component semiconductor nanoparticles, and the like can be used. Specific examples include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, and InGaP, but are not limited thereto. Among these, CdSe, CdTe, InP, and InGaP are preferable from the viewpoint of emitting visible light with high efficiency. As the shell, CdS, ZnS, ZnO, GaAs, and a composite thereof can be used, but the shell is not limited thereto. The emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
 量子ドットの表面には、配位性基を有する配位子が配位していても良い。重合性組成物に配位子を添加してもよいし、すでにこのような配位子が配位した量子ドットを本発明の重合性組成物に用いることも可能である。配位性基としては、アミノ基、カルボキシ基、メルカプト基、ホスフィン基、およびホスフィンオキシド基、等を挙げることができる。具体的には、ヘキシルアミン、デシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン、オレイン酸、メルカプトプロピオン酸、トリオクチルホスフィン、およびトリオクチルホスフィンオキシド等を上げることができる。なかでも、ヘキサデシルアミン、トリオクチルホスフィン、およびトリオクチルホスフィンオキシドが好ましく、トリオクチルホスフィンオキシドが特に好ましい。 A ligand having a coordinating group may be coordinated on the surface of the quantum dot. A ligand may be added to the polymerizable composition, or a quantum dot already coordinated with such a ligand can be used in the polymerizable composition of the present invention. Examples of the coordinating group include an amino group, a carboxy group, a mercapto group, a phosphine group, and a phosphine oxide group. Specific examples include hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, and trioctylphosphine oxide. Of these, hexadecylamine, trioctylphosphine, and trioctylphosphine oxide are preferable, and trioctylphosphine oxide is particularly preferable.
 これらの配位子が配位した量子ドットは、公知の合成方法によって作製することができる。例えば、C.B.Murray,D.J.Norris、M.G.Bawendi,Journal Amarican Chemical Society,1993,115(19),pp8706-8715、またはThe Journal Physical Chemistry,101,pp9463-9475,1997に記載された方法によって合成することができる。また、配位子が配位した量子ドットは、市販のものを何ら制限無く用いることができる。例えば、Lumidot(シグマアルドリッチ社製)を挙げることができる。 Quantum dots coordinated with these ligands can be produced by a known synthesis method. For example, C.I. B. Murray, D.M. J. et al. Norris, M.M. G. It can be synthesized by a method described in Bawendi, Journal American Chemical Society, 1993, 115 (19), pp 8706-8715, or The Journal Physical Chemistry, 101, pp 9463-9475, 1997. Moreover, the quantum dot which the ligand coordinated can use a commercially available thing without a restriction | limiting at all. For example, Lumidot (manufactured by Sigma Aldrich) can be mentioned.
 本発明の重合性組成物において、配位子が配位した量子ドットの含有量は、重合性組成物に含まれる重合性化合物の全質量に対し0.01~10質量%が好ましく、0.05~5質量%がより好ましい。 In the polymerizable composition of the present invention, the content of the quantum dot coordinated with the ligand is preferably 0.01 to 10% by mass relative to the total mass of the polymerizable compound contained in the polymerizable composition. More preferably, the content is 05 to 5% by mass.
 本発明における量子ドットは、上記重合性組成物に粒子の状態で添加してもよく、溶媒に分散した分散液の状態で添加してもよい。分散液の状態で添加することが量子ドットの粒子の凝集を抑制する観点から好ましい。ここで使用される溶媒は、特に限定されるものではない。 Quantum dots in the present invention may be added to the polymerizable composition in the form of particles, or may be added in the form of a dispersion dispersed in a solvent. The addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles. The solvent used here is not particularly limited.
((メタ)アクリレートモノマー)
 本発明の重合性組成物は、(メタ)アクリレートモノマーを含有する。
本発明の重合性組成物に用いることができる(メタ)アクリレートモノマーは、単官能または多官能(メタ)アクリレートモノマー等の(メタ)アクリレート化合物や、そのポリマー、プレポリマー等を一種類以上含むことが好ましい。
((Meth) acrylate monomer)
The polymerizable composition of the present invention contains a (meth) acrylate monomer.
The (meth) acrylate monomer that can be used in the polymerizable composition of the present invention contains one or more kinds of (meth) acrylate compounds such as monofunctional or polyfunctional (meth) acrylate monomers, polymers thereof, prepolymers, and the like. Is preferred.
 単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を分子内に1個有するモノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本発明はこれに限定されるものではない。
 メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレート;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、グリセロールのモノまたはジ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、アクリロイルモルホリン等の(メタ)アクリルアミドなどが挙げられる。
Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present invention is not limited thereto.
Methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having an alkyl group such as meth) acrylate having 1 to 30 carbon atoms; aralkyl (meth) acrylates having an aralkyl group such as benzyl (meth) acrylate having 7 to 20 carbon atoms; butoxyethyl (meth) ) An alkoxyalkyl (meth) acrylate having 2 to 30 carbon atoms of an alkoxyalkyl group such as acrylate; the total carbon number of a (monoalkyl or dialkyl) aminoalkyl group such as N, N-dimethylaminoethyl (meth) acrylate; 1-2 An aminoalkyl (meth) acrylate which is: (meth) acrylate of diethylene glycol ethyl ether, (meth) acrylate of triethylene glycol butyl ether, (meth) acrylate of tetraethylene glycol monomethyl ether, (meth) acrylate of hexaethylene glycol monomethyl ether, Octaethylene glycol monomethyl ether (meth) acrylate, nonaethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, heptapropylene glycol monomethyl ether (meth) acrylate, tetraethylene glycol monoethyl Alkyl chain such as ether (meth) acrylate has 1 to 10 carbon atoms and terminal alkyl (Meth) acrylate of polyalkylene glycol alkyl ether having 1 to 10 carbon atoms in ether; alkylene chain such as (meth) acrylate of hexaethylene glycol phenyl ether having 1 to 30 carbon atoms and terminal aryl ether having 6 carbon atoms (Meth) acrylate of -20 polyalkylene glycol aryl ethers; cycloaliphatic structures such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, and methylene oxide-added cyclodecatriene (meth) acrylate (Meth) acrylates having a total carbon number of 4 to 30; fluorinated alkyl (meth) acrylates having a total carbon number of 4 to 30 such as heptadecafluorodecyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, mono (meth) acrylate of triethylene glycol, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (Meth) acrylate, (meth) acrylate having a hydroxyl group such as glycerol mono- or di (meth) acrylate; (meth) acrylate having a glycidyl group such as glycidyl (meth) acrylate; tetraethylene glycol mono (meth) acrylate, hexa Polyethylene glycol mono (meth) having an alkylene chain of 1 to 30 carbon atoms such as ethylene glycol mono (meth) acrylate and octapropylene glycol mono (meth) acrylate. ) Acrylate; (meth) acrylamide, N, N- dimethyl (meth) acrylamide, N- isopropyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide, acryloyl morpholine (meth) acrylamide and the like.
 単官能(メタ)アクリレートモノマーとしては、炭素数が4~30のアルキル(メタ)アクリレートを用いることが好ましく、炭素数12~22のアルキル(メタ)アクリレートを用いることが、量子ドットの分散性向上の観点から、より好ましい。量子ドットの分散性が向上するほど、波長変換層から出射面に直行する光量が増えるため、正面輝度および正面コントラストの向上に有効である。具体的には、単官能(メタ)アクリレートモノマーとしては、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ブチル(メタ)アクリルアミド、オクチル(メタ)アクリルアミド、ラウリル(メタ)アクリルアミド、オレイル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が好ましい。中でもラウリル(メタ)アクリレート、オレイル(メタ)アクリレート、ステアリル(メタ)アクリレートが特に好ましい。 As the monofunctional (meth) acrylate monomer, an alkyl (meth) acrylate having 4 to 30 carbon atoms is preferably used, and an alkyl (meth) acrylate having 12 to 22 carbon atoms is used to improve the dispersibility of the quantum dots. From the viewpoint of, it is more preferable. As the dispersibility of the quantum dots improves, the amount of light that goes straight from the wavelength conversion layer to the exit surface increases, which is effective in improving front luminance and front contrast. Specifically, monofunctional (meth) acrylate monomers include butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, oleyl (meth) acrylate, stearyl (meth) acrylate, and behenyl (meth) acrylate. Butyl (meth) acrylamide, octyl (meth) acrylamide, lauryl (meth) acrylamide, oleyl (meth) acrylamide, stearyl (meth) acrylamide, behenyl (meth) acrylamide and the like are preferable. Of these, lauryl (meth) acrylate, oleyl (meth) acrylate, and stearyl (meth) acrylate are particularly preferable.
 また、単官能(メタ)アクリレート化合物としては、波長変換層の酸素透過係数の更なる低減や他の層または部材との密着性向上の観点から、ヒドロキシ基およびアリール基からなる群から選択される1つ以上の基を有する単官能(メタ)アクリレート化合物を用いることも好ましい。
 単官能(メタ)アクリレート化合物が有する基としては、ヒドロキシ基およびフェニル基が好ましい。好ましい具体的な化合物としては、ベンジルアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、4―ヒドロキシブチルアクリレートを挙げることができる。
The monofunctional (meth) acrylate compound is selected from the group consisting of a hydroxy group and an aryl group from the viewpoint of further reducing the oxygen transmission coefficient of the wavelength conversion layer and improving the adhesion with other layers or members. It is also preferable to use a monofunctional (meth) acrylate compound having one or more groups.
As a group which a monofunctional (meth) acrylate compound has, a hydroxyl group and a phenyl group are preferable. Preferable specific compounds include benzyl acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, 1,4-cyclohexanedimethanol monoacrylate, 2-hydroxy-3-phenoxypropyl acrylate, and 4-hydroxybutyl acrylate.
 本発明における(メタ)エクリレートとして、(メタ)アクリロイル基を分子内に2個以上有する多官能(メタ)アクリレートモノマーを用いてもよい。機械的強度付与の観点から多官能(メタ)アクリレートモノマーがより好ましい。
 2官能以上の(メタ)アクリレートモノマーのうち、2官能の(メタ)アクリレートモノマーとしては、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート等が好ましい例として挙げられる。
As the (meth) acrylate in the present invention, a polyfunctional (meth) acrylate monomer having two or more (meth) acryloyl groups in the molecule may be used. A polyfunctional (meth) acrylate monomer is more preferable from the viewpoint of imparting mechanical strength.
Among the bifunctional or higher functional (meth) acrylate monomers, the bifunctional (meth) acrylate monomers include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol diacrylate and the like are preferable examples.
 また、2官能以上の(メタ)アクリレートモノマーのうち、3官能以上の(メタ)アクリレートモノマーとしては、ECH(エピクロロヒドリン)変性グリセロールトリ(メタ)アクリレート、EO(エチレンオキサイド)変性グリセロールトリ(メタ)アクリレート、PO(プロピレンオキサイド)変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が好ましい例として挙げられる。 Among the bifunctional or higher functional (meth) acrylate monomers, the trifunctional or higher functional (meth) acrylate monomers include ECH (epichlorohydrin) modified glycerol tri (meth) acrylate, EO (ethylene oxide) modified glycerol tri ( (Meth) acrylate, PO (propylene oxide) modified glycerol tri (meth) acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, EO modified phosphate triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri ( (Meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acrylo) Ciethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, alkyl-modified dipentaerythritol penta (Meth) acrylate, dipentaerythritol poly (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate Etc. are mentioned as preferable examples.
(チオール化合物)
 本発明の重合性組成物は、チオール化合物を含有する。チオール化合物は、連鎖移動剤として作用する(以下、連鎖移動剤とも記載する。)。
 本発明におけるチオール化合物は、分子内にチオール基を複数有し、複数のチオール基の全てが、第二級炭素原子、第三級炭素原子、または環構造上の炭素原子に結合した化合物である。
 環構造として、脂環式単環、脂環式多環、芳香族単環、縮合多環、および複素環等を挙げることができる。
(Thiol compound)
The polymerizable composition of the present invention contains a thiol compound. The thiol compound acts as a chain transfer agent (hereinafter also referred to as a chain transfer agent).
The thiol compound in the present invention has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are bonded to secondary carbon atoms, tertiary carbon atoms, or carbon atoms on the ring structure. .
Examples of the ring structure include an alicyclic monocyclic ring, an alicyclic polycyclic ring, an aromatic monocyclic ring, a condensed polycyclic ring, and a heterocyclic ring.
 このようなチオール化合物は、下記一般式Iで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000003
Such thiol compounds are preferably those represented by the following general formula I.
Figure JPOXMLDOC01-appb-C000003
 一般式I中、Aはn価の有機連結基を表し、RおよびRはそれぞれ水素原子または有機基を表し、かつRおよびRの少なくとも一方は有機基である。RおよびRは環を形成してもよい。nは2~6の整数であり、mは0~3の整数である。 In general formula I, A represents an n-valent organic linking group, R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring. n is an integer of 2 to 6, and m is an integer of 0 to 3.
 Aで表されるn価の有機連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、および0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基をさらに有していてもよい。 The n-valent organic linking group represented by A includes 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 atoms. A group consisting of a hydrogen atom and 0 to 20 sulfur atoms is included, which may be unsubstituted or may further have a substituent.
 n価の有機連結基Aとしては、1から60個までの炭素原子、0個から10個までの窒素原子、0個から40個までの酸素原子、1個から120個までの水素原子、および0個から10個までの硫黄原子から成り立つ基が好ましく、1から50個までの炭素原子、0個から10個までの窒素原子、0個から30個までの酸素原子、1個から100個までの水素原子、および0個から7個までの硫黄原子から成り立つ基がより好ましく、1から40個までの炭素原子、0個から8個までの窒素原子、0個から20個までの酸素原子、1個から80個までの水素原子、および0個から5個までの硫黄原子から成り立つ基が特に好ましい。 n-valent organic linking group A includes 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, 1 to 120 hydrogen atoms, and Groups consisting of 0 to 10 sulfur atoms are preferred, 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 to 100 And more preferably a group consisting of 0 to 7 sulfur atoms, 1 to 40 carbon atoms, 0 to 8 nitrogen atoms, 0 to 20 oxygen atoms, Particularly preferred are groups consisting of 1 to 80 hydrogen atoms and 0 to 5 sulfur atoms.
 n価の有機連結基Aは、下記の構造単位または構造単位が組み合わさって構成される基(直鎖あるいは分岐状の基、または、脂環式単環、脂環式多環、芳香族単環、縮合多環、および複素環等の環構造を形成していてもよい)を挙げることができる。 The n-valent organic linking group A is a group composed of a combination of the following structural units or structural units (straight chain or branched group, alicyclic monocyclic, alicyclic polycyclic, aromatic single A ring structure such as a ring, a condensed polycyclic ring, and a heterocyclic ring may be formed.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 n価の有機連結基Aの具体例(1)~(17)を以下に示す。但し、本発明においては、これらに制限されるものではない。下記の有機連結基中の*は、一般式I中の(CHと結合する部位を示す。 Specific examples (1) to (17) of the n-valent organic linking group A are shown below. However, the present invention is not limited to these. * In the following organic linking group represents a site bonded to (CH 2 ) m in the general formula I.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 n価の有機連結基Aが置換基を有する場合、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシ基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基、等が挙げられる。 When the n-valent organic linking group A has a substituent, examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and a carbon group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group. 1 to 6 carbon atoms such as acyloxy groups having 1 to 6 carbon atoms such as aryl groups, hydroxyl groups, amino groups, carboxy groups, sulfonamido groups, N-sulfonylamido groups, acetoxy groups, etc., methoxy groups, ethoxy groups, etc. An alkoxy group of 2 to 7 carbon atoms such as a methoxycarbonyl group, an ethoxycarbonyl group, a cyclohexyloxycarbonyl group, a cyano group, a carbonate ester group such as t-butyl carbonate, Etc.
 上記の具体例の中でも、原料の入手性、合成の容易さ、モノマー、および各種溶媒への溶解性の観点から、最も好ましいn価の有機連結基Aは下記の基である。 Among the above specific examples, the most preferable n-valent organic linking group A is the following group from the viewpoint of availability of raw materials, ease of synthesis, monomer, and solubility in various solvents.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式I中、RおよびRはそれぞれ水素原子または有機基を表し、かつRおよびRの少なくとも一方は有機基である。RおよびRは環を形成してもよい。
 有機基としては、置換基を有してもよいアルキル基、アルケニル基またはアルキニル基である。炭素数1から30が好ましく、炭素数1から20がより好ましい。置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシ基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。
 また、RおよびRが形成する環構造としては、脂環式単環、脂環式多環、芳香族単環、縮合多環、または複素環等であってもよい。
In general formula I, R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring.
The organic group is an alkyl group, alkenyl group or alkynyl group which may have a substituent. The number of carbon atoms is preferably 1 to 30, and more preferably 1 to 20 carbon atoms. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, an aryl group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group, a hydroxyl group, an amino group, a carboxy group, and a sulfone. C1-C6 acyloxy groups such as amide group, N-sulfonylamide group, acetoxy group, etc., C1-C6 alkoxy groups such as methoxy group, ethoxy group, halogen atoms such as chlorine and bromine, methoxycarbonyl Groups, alkoxycarbonyl groups having 2 to 7 carbon atoms such as ethoxycarbonyl group and cyclohexyloxycarbonyl group, carbonate groups such as cyano group and t-butyl carbonate.
Further, the ring structure formed by R 1 and R 2 may be an alicyclic monocyclic ring, an alicyclic polycyclic ring, an aromatic monocyclic ring, a condensed polycyclic ring, a heterocyclic ring, or the like.
 本発明に用いうるチオール化合物の具体例としては、例えば、シクロペンタンチオール、1,2-シクロヘキサンジチオール、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、1,3,5-ベンゼントリチオール、1,5-ジメルカプトナフタレン、8-メルカプトメントン、3-メルカプト-3-メチル-1-ブタノール、トリフェニルメタンチオール、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、チオフェノール、チオクレゾールが挙げられるが、これらに限定されるものではない。
 チオール化合物は、1種のみを用いてもよく、2種以上を併用してもよい。
Specific examples of the thiol compound that can be used in the present invention include, for example, cyclopentanethiol, 1,2-cyclohexanedithiol, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 1,3 , 5-benzenetrithiol, 1,5-dimercaptonaphthalene, 8-mercaptomentone, 3-mercapto-3-methyl-1-butanol, triphenylmethanethiol, 1,4-bis (3-mercaptobutyryloxy) Butane, 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, pentaerythritol tetrakis (3-mercaptobuty Rate), thiophenol, thiocresol, but are not limited to these Absent.
Only 1 type may be used for a thiol compound and it may use 2 or more types together.
 チオール化合物としては、重合反応において連鎖移動反応により、反応の活性点を移動させる物質であれば特に制限なく使用することができる。連鎖移動剤の移動反応の起こり易さは、連鎖移動定数Csで表されるが、本発明で用いられるチオール化合物の連鎖移動定数Cs×10(60℃)は、0.01以上であることが好ましく、0.1以上であることがより好ましく、1以上であることが特に好ましい。 The thiol compound can be used without particular limitation as long as it is a substance that moves the active site of the reaction by a chain transfer reaction in the polymerization reaction. The ease of the transfer reaction of the chain transfer agent is represented by the chain transfer constant Cs, but the chain transfer constant Cs × 10 4 (60 ° C.) of the thiol compound used in the present invention is 0.01 or more. Is more preferable, 0.1 or more is more preferable, and 1 or more is particularly preferable.
 本発明の重合性組成物中のチオール化合物の含有量は、(メタ)アクリレートモノマーの(メタ)アクリロイル基とチオール化合物のチオール基との官能基比率である(メタ)アクリロイル基/チオール基が3より大きくなるようにする。
 この範囲でチオール化合物を使用することで、残存モノマーを低減し、重合性組成物が硬化した後の揮発成分の発生を抑制することができる。
The content of the thiol compound in the polymerizable composition of the present invention is 3 (meth) acryloyl group / thiol group, which is a functional group ratio of the (meth) acryloyl group of the (meth) acrylate monomer to the thiol group of the thiol compound. Try to be bigger.
By using a thiol compound within this range, it is possible to reduce the residual monomer and suppress the generation of volatile components after the polymerizable composition is cured.
 また、チオール化合物の分子量は、ポリ(メタ)アクリレートの未反応(メタ)アクリロイル基に近づくことができ、かつ量子ドットへは立体障害によって配位することができないようにする観点から、200以上3000未満であり、250以上2000以下が好ましく、250以上1000以下がより好ましい。
 ポリマー骨格を有するチオール化合物の場合、重量平均分子量(Mw)は、(ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で計測した値を採用する。使用カラムはTSKgel SuperHZM-H、TSKgel SuperHZ4000、およびTSKgel SuperHZ2000(東ソー社製)をつないだカラムを用いて測定することができる。キャリア(溶離液)としてテトラヒドロフランを用いることができる。ポリマー種によって、それに適合するキャリアおよびカラムを適宜選定して用いることが好ましい。
In addition, the molecular weight of the thiol compound can be close to the unreacted (meth) acryloyl group of the poly (meth) acrylate, and cannot be coordinated to the quantum dot due to steric hindrance from 200 to 3000. It is less than 250 and 2000 or less, and 250 or more and 1000 or less are more preferable.
In the case of a thiol compound having a polymer skeleton, the weight average molecular weight (Mw) is a value measured in terms of polystyrene by gel permeation chromatography (GPC). The columns used are TSKgel SuperHZM-H, TSKgel SuperHZ4000, and TSKgel Measurements can be made using a column connected to SuperHZ2000 (manufactured by Tosoh Corp.) Tetrahydrofuran can be used as a carrier (eluent), and a suitable carrier and column can be selected and used depending on the polymer type. preferable.
 市販品としては、カレンズMT(登録商標)シリーズ(昭和電工社製)、カレンズMT-BD1(1,4-ビス(3-メルカプトブチリルオキシ)ブタン)、カレンズMT-NR1(1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン)、カレンズMT-PE1(ペンタエリスリトールテトラキス(3-メルカプトブチレート))が好適に用いられる。また、以下のCTA-1~CTA-6のような高分子チオール、CTA-7のような多官能チオールを合成して用いても良い。 Commercially available products include Karenz MT (registered trademark) series (manufactured by Showa Denko KK), Karenz MT-BD1 (1,4-bis (3-mercaptobutyryloxy) butane), Karenz MT-NR1 (1,3,5) -Tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione), Karenz MT-PE1 (pentaerythritol tetrakis (3-mercaptobutyrate) )) Is preferably used. Further, polymer thiols such as CTA-1 to CTA-6 below and polyfunctional thiols such as CTA-7 may be synthesized and used.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 中でも、(メタ)アクリレートの反応率向上と量子ドットへの配位防止の観点から、カレンズMT-BD1、カレンズMT-NR1、およびカレンズMT-PE1が好ましい。 Of these, Karenz MT-BD1, Karenz MT-NR1, and Karenz MT-PE1 are preferred from the viewpoint of improving the reaction rate of (meth) acrylate and preventing coordination to quantum dots.
(重合開始剤)
 重合性組成物の重合には、重合開始剤として、光重合開始剤または熱重合開始剤を用いることができる。公知のラジカル開始剤やカチオン重合開始剤でもよい。例えば、光重合開始剤の例としては、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、または、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤については、特開2013-043382号公報段落0037、特開2011-159924号公報段落0040~0042を参照できる。
(Polymerization initiator)
For the polymerization of the polymerizable composition, a photopolymerization initiator or a thermal polymerization initiator can be used as a polymerization initiator. A known radical initiator or cationic polymerization initiator may be used. Examples of photopolymerization initiators include α-carbonyl compounds, acyloin ethers, α-hydrocarbon substituted aromatic acyloin compounds, polynuclear quinone compounds, or combinations of triarylimidazole dimers and p-aminophenyl ketones. Is mentioned.
As photopolymerization initiators, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. JP, 2013-043382, A paragraph 0037 and JP, 2011-159924, A paragraphs 0040-0042 can be referred to for a photoinitiator.
 「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65~148にも種々の例が記載されており本発明に有用である。 “Latest UV Curing Technology” {Technical Information Association, Inc.} (1991), p. 159, and “UV Curing System” written by Kiyomi Kato (published by the General Technology Center in 1989), p. Various examples are also described in 65 to 148 and are useful in the present invention.
 市販の光開裂型の光ラジカル重合開始剤としては、光重合開始剤の例としてはチバ・スペシャルティー・ケミカルズ社から市販されているイルガキュア(Irgacure、登録商標)シリーズ(例えば、イルガキュア651、イルガキュア754、イルガキュア184、イルガキュア2959、イルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819など)、ダロキュア(Darocure、登録商標)シリーズ(例えば、ダロキュアTPO、ダロキュア1173など)、クオンタキュア(Quantacure、登録商標)PDO、ランベルティ(Lamberti)社から市販されているエザキュア(Ezacure、登録商標)シリーズ(例えば、エザキュアTZM、エザキュアTZT、エザキュアKTO46など)等が挙げられる。 Examples of commercially available photocleavable photoradical polymerization initiators include Irgacure (registered trademark) series (for example, Irgacure 651, Irgacure 754) commercially available from Ciba Specialty Chemicals as examples of photopolymerization initiators. , Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, etc., Darocure (registered trademark) series (eg Darocur TPO, Darocur 1173, etc.), Quantacure (registered trademark) PDO, Examples include Ezacure (registered trademark) series (for example, Ezacure TZM, Ezacure TZT, Ezacure KTO46, etc.) commercially available from Lamberti.
 光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、ミヒラーケトン及びチオキサントンなどを挙げることができる。更にアジド化合物、チオ尿素化合物、メルカプト化合物などの助剤を1種以上組み合わせて用いてもよい。 In addition to the photopolymerization initiator, a photosensitizer may be used. Specific examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, Michler's ketone and thioxanthone. Further, one or more auxiliary agents such as an azide compound, a thiourea compound, and a mercapto compound may be used in combination.
 市販の光増感剤としては、日本化薬(株)製の「カヤキュアー(DMBI,EPA)」などが挙げられる。 Examples of commercially available photosensitizers include “Kaya Cure (DMBI, EPA)” manufactured by Nippon Kayaku Co., Ltd.
 熱重合開始剤としては、イルガキュア2022、イルガキュア819が基材の吸収波長よりも長波長側に吸収をもつため、効率よく硬化できるため好ましい。 As the thermal polymerization initiator, Irgacure 2022 and Irgacure 819 are preferable because they have absorption on the longer wavelength side than the absorption wavelength of the base material and can be cured efficiently.
 重合開始剤は、光重合開始剤がより好ましい。 The polymerization initiator is more preferably a photopolymerization initiator.
 重合性組成物に含まれる重合性化合物中に含まれる重合性官能基の全モル量に対して0.1モル%以上であることが好ましく、0.5~2モル%であることがより好ましい。 It is preferably 0.1 mol% or more, more preferably 0.5 to 2 mol%, based on the total molar amount of polymerizable functional groups contained in the polymerizable compound contained in the polymerizable composition. .
(その他の添加剤)
 本発明の重合性組成物は、粘度調整剤、溶媒、シランカップリング剤、酸化防止剤、酸捕捉剤を含有してもよい。
(Other additives)
The polymerizable composition of the present invention may contain a viscosity modifier, a solvent, a silane coupling agent, an antioxidant, and an acid scavenger.
-粘度調整剤-
 重合性組成物は、必要に応じて粘度調整剤を含んでもよい。粘度調整剤を添加することによって、それらを所望の粘度に調整することが可能である。粘度調整剤は、粒径が5nm~300nmであるフィラーであることが好ましい。また、粘度調整剤はチキソトロピー剤であってもよい。なお、本発明および本明細書中、チキソトロピー性とは、液状組成物において、せん断速度の増加に対して粘性を減じる性質を指し、チキソトロピー剤とは、それを液状組成物に含ませることによって、組成物にチキソトロピー性を付与する機能を有する素材のことを指す。チキソトロピー剤の具体例としては、ヒュームドシリカ、アルミナ、窒化珪素、二酸化チタン、炭酸カルシウム、酸化亜鉛、タルク、雲母、長石、カオリナイト(カオリンクレー)、パイロフィライト(ろう石クレー)、セリサイト(絹雲母)、ベントナイト、スメクタイト・バーミキュライト類(モンモリロナイト、バイデライト、ノントロナイト、サポナイトなど)、有機ベントナイト、有機スメクタイト等が挙げられる。
-Viscosity modifier-
The polymerizable composition may contain a viscosity modifier as necessary. They can be adjusted to the desired viscosity by adding viscosity modifiers. The viscosity modifier is preferably a filler having a particle size of 5 nm to 300 nm. The viscosity modifier may be a thixotropic agent. In the present invention and the present specification, the thixotropic property refers to the property of reducing the viscosity with respect to the increase in shear rate in the liquid composition, and the thixotropic agent includes the liquid composition by including it. It refers to a material having a function of imparting thixotropic properties to the composition. Specific examples of thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite. (Sericite), bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, organic smectite and the like.
-溶媒-
 重合性組成物は、必要に応じて溶媒を含んでもよい。この場合に使用される溶媒の種類及び添加量は、アニオン重合に適したものとする。溶媒として、例えば、トルエン、キシレンなどの芳香族炭化水素、メタノール、エタノール、ブタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコールなどのアルコール、酢酸エチル、酢酸ブチルなどのエステル、アセトン、メチルエチルケトンなどのケトン、テトラヒドロフラン、1,4-ジオキサンなどの環状エーテルを挙げることができる。添加量は、塗布粘度調整と膜厚制御の観点から、重合性組成物100質量%に対して0~500質量%以下とすることが好ましい。有機溶媒は一種で用いることができ、また二種以上混合して用いることができる。
-solvent-
The polymerizable composition may contain a solvent as necessary. In this case, the type and amount of the solvent used are suitable for anionic polymerization. Solvents include, for example, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, butanol, isopropyl alcohol, ethylene glycol and propylene glycol, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, tetrahydrofuran And cyclic ethers such as 1,4-dioxane. The addition amount is preferably 0 to 500% by mass or less with respect to 100% by mass of the polymerizable composition from the viewpoint of coating viscosity adjustment and film thickness control. The organic solvent can be used alone or in combination of two or more.
-シランカップリング剤-
 組成物は、更に、シランカップリング剤を含んでもよい。シランカップリング剤を含む重合性組成物から形成される波長変換層は、シランカップリング剤により隣接する層との密着性が強固なものとなるため、より一層優れた耐光性を示すことができる。これは主に、波長変換層に含まれるシランカップリング剤が、加水分解反応や縮合反応により、隣接する層の表面や当該層の構成成分と共有結合を形成することによるものである。このとき、隣接する層として後述の無機層を設けることも好ましい。また、シランカップリング剤がラジカル重合性基等の反応性官能基を有する場合、波長変換層を構成するモノマー成分と架橋構造を形成することも、波長変換層と隣接する層との密着性向上に寄与し得る。なお本明細書において、波長変換層に含まれるシランカップリング剤とは、上記のような反応後の形態のシランカップリング剤も含む意味である。
-Silane coupling agent-
The composition may further contain a silane coupling agent. Since the wavelength conversion layer formed from the polymerizable composition containing the silane coupling agent becomes stronger in adhesion to the adjacent layer by the silane coupling agent, it can exhibit even more excellent light resistance. . This is mainly due to the fact that the silane coupling agent contained in the wavelength conversion layer forms a covalent bond with the surface of the adjacent layer and the constituent components of the layer by hydrolysis reaction or condensation reaction. At this time, it is also preferable to provide an inorganic layer described later as an adjacent layer. In addition, when the silane coupling agent has a reactive functional group such as a radical polymerizable group, a monomer component constituting the wavelength conversion layer and a cross-linked structure can also be formed, thereby improving the adhesion between the wavelength conversion layer and the adjacent layer. Can contribute. In addition, in this specification, the silane coupling agent contained in the wavelength conversion layer is meant to include the silane coupling agent in the form after the reaction as described above.
 シランカップリング剤としては、公知のシランカップリング剤を、何ら制限なく使用することができる。密着性の観点から好ましいシランカップリング剤としては、特開2013-43382号公報に記載の一般式(1)で表されるシランカップリング剤を挙げることができる。詳細については、特開2013-43382号公報の段落0011~0016の記載を参照できる。シランカップリング剤等の添加剤の使用量は特に限定されるものではなく、適宜設定可能である。 As the silane coupling agent, a known silane coupling agent can be used without any limitation. As a preferable silane coupling agent from the viewpoint of adhesion, a silane coupling agent represented by the general formula (1) described in JP2013-43382A can be exemplified. For details, the description of paragraphs 0011 to 0016 of JP2013-43382A can be referred to. The amount of the additive such as a silane coupling agent is not particularly limited and can be set as appropriate.
-酸化防止剤-
 重合性組成物は、更に、防止剤を含んでもよい。酸化防止剤を含む重合性組成物から形成される波長変換層は、量子ドットの発光安定化、および自動酸化によるマトリクスの変色防止に寄与し、輝度の耐久性を改善することができる。
-Antioxidant-
The polymerizable composition may further contain an inhibitor. The wavelength conversion layer formed from the polymerizable composition containing an antioxidant contributes to stabilization of light emission of the quantum dots and prevention of discoloration of the matrix due to auto-oxidation, and can improve luminance durability.
 酸化防止剤としては、公知の過酸化物分解剤、ラジカル捕捉剤を何ら制限なく使用することができる。 As the antioxidant, known peroxide decomposing agents and radical scavengers can be used without any limitation.
 本発明で使用される過酸化物分解剤としては、リン系および硫黄系の過酸化物分解剤が挙げられる。リン系化合物としては例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリス(2-エチルへキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリオレイルホスファイト、ジフェニルモノ(2-エチルへキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、トリラウリルトリチオホスファイト、テトラフェニルジプロピレングリコールジホスファイト、テトラフェニル(テトラトリデシル)ペンタエリスリトールテトラホスファイト、テトラ(C12~C15アルキル)-4,4’-イソプロピリデンジフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイトとビス(ノニルフェニル)ペンタエリスリトールジホスファイトの混合物、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、水添ビスフェノールA・ペンタエリスリトールホスファイトポリマー、水添ビスフェノールA・フェニルホスファイトポリマー、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)-2-エチルへキシルホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト)、6-tert-ブチル-4-[3-(2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イルオキシ)プロピル]-o-クレゾールなどが挙げられる。 The peroxide decomposer used in the present invention includes phosphorus-based and sulfur-based peroxide decomposers. Examples of phosphorus compounds include triphenyl phosphite, trisnonylphenyl phosphite, tricresyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, tris (tridecyl) phos Phyto, trioleyl phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite, diphenyl mono (tridecyl) phosphite, trilauryl trithiophosphite, tetraphenyl dipropylene glycol diphosphite, tetraphenyl (Tetratridecyl) pentaerythritol tetraphosphite, tetra (C12-C15 alkyl) -4,4′-isopropylidene diphenylphosphite, bis (tridecyl) pentaerythris A mixture of tall diphosphite and bis (nonylphenyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphosphite, bis (tridecyl) pentaerythritol diphosphite, tristearyl phosphite, distearyl pentaerythritol diphosphite , Tris (2,4-di-tert-butylphenyl) phosphite, hydrogenated bisphenol A / pentaerythritol phosphite polymer, hydrogenated bisphenol A / phenyl phosphite polymer, 2,2′-methylenebis (4,6-di -Tert-butylphenyl) -2-ethylhexyl phosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) Pentaeri Litol diphosphite), 6-tert-butyl-4- [3- (2,4,8,10-tetra-tert-butyldibenzo [d, f] [1,3,2] dioxaphosphine -6-yloxy) propyl] -o-cresol and the like.
 硫黄系化合物としては例えば、チオジプロピオン酸ジラウリル、ジミリスチル、ジステアリル等のジアルキルチオジプロピオネート類及びペンタエリスリトールテトラ(β-ドデシルメルカプトプロピオネート)等のポリオールのβ-アルキルメルカプトプロピオン酸エステル類が挙げられる。 Examples of sulfur compounds include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl, and distearyl, and β-alkylmercaptopropionates of polyols such as pentaerythritol tetra (β-dodecyl mercaptopropionate). Is mentioned.
 本発明で使用されるラジカル捕捉剤としては、フェノール系およびヒンダードアミン系ラジカル捕捉剤を挙げることができる。フェノール系ラジカル捕捉剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジtert-ブチル-4-ヒドロキシフェニル)-プロピオネート、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドルキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、テトラキス〔メチレン-3-(3’,5’-ジ第三ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕、2-[1-(2-ヒドロキシ-3, 5-ジ第三ペンチルフェニル)エチル]-4,6-ジ第三ペンチルフェニルアクリレート等が挙げられる。 Examples of the radical scavenger used in the present invention include phenolic and hindered amine radical scavengers. Examples of the phenol radical scavenger include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-ditert-butyl-4-hydroxy). Phenyl) -propionate, distearyl (3,5-ditert-butyl-4-hydroxybenzyl) phosphonate, thiodiethylene glycol bis [(3,5-ditert-butyl-4-hydroxyphenyl) propionate], 1,6- Hexamethylene bis [(3,5-ditert-butyl-4-hydroxyphenyl) propionate], 1,6-hexamethylene bis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tert-butyl-m-cresol), 2,2'-methylenebis (4-methyl-6- Tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), bis [3,3-bis (4-hydroxy-3-tert-butylphenyl) butyric acid] glycol ester, 4 , 4'-butylidenebis (6-tert-butyl-m-cresol), 2,2'-ethylidenebis (4,6-ditert-butylphenol), 2,2'-ethylidenebis (4-secondarybutyl-6 -Tert-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, bis [2-tert-butyl-4-methyl-6- (2-hydroxy-) 3-tert-butyl-5-methylbenzyl) phenyl] terephthalate, 1,3,5-tris (2,6-dimethyl-3-hydroxy-4-tert-butylbenzyl) isocyanurate 1,3,5-tris (3,5-ditert-butyl-4-hydroxylbenzyl) isocyanurate, 1,3,5-tris (3,5-ditert-butyl-4-hydroxybenzyl) ) -2,4,6-trimethylbenzene, 1,3,5-tris [(3,5-ditert-butyl-4-hydroxyphenyl) propionyloxyethyl] isocyanurate, tetrakis [methylene-3- (3 ′ , 5′-ditert-butyl-4′-hydroxyphenyl) propionate] methane, 2-tert-butyl-4-methyl-6- (2-acryloyloxy-3-tert-butyl-5-methylbenzyl) phenol, 3,9-bis [1,1-dimethyl-2-{(3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} ethyl] -2,4,8,10-tetraoxas B [5.5] undecane, triethylene glycol bis [(3-tert-butyl-4-hydroxy-5-methylphenyl) propionate], 2- [1- (2-hydroxy-3, 5-ditert-pentyl) Phenyl) ethyl] -4,6-ditertiarypentylphenyl acrylate and the like.
 ヒンダードアミン系ラジカル捕捉剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、N-(2,2,6,6-テトラメチル-4-ピペリジル)ドデシルコハク酸イミド、1-〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕-2,2,6,6-テトラメチル-4-ピペリジル-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミン、テトラ(2,2,6,6-テトラメチル-4-ピペリジル)ブタンテトラカルボキシレート、テトラ(1,2,2,6,6-ペンタメチル-4-ピペリジル)ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)ブタンテトラカルボキシレート、3,9-ビス〔1,1-ジメチル-2-{トリス(2,2,6,6-テトラメチル-4-ピペリジルオキシカルボニルオキシ)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、3,9-ビス〔1,1-ジメチル-2-{トリス(1,2,2,6,6-ペンタメチル-4-ピペリジルオキシカルボニルオキシ)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、1,5,8,12-テトラキス〔4,6-ビス{N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミノ}-1,3,5-トリアジン-2-イル〕-1,5,8,12-テトラアザドデカン、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノール/コハク酸ジメチル縮合物、2-第三オクチルアミノ-4,6-ジクロロ-s-トリアジン/N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミン縮合物、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミン/ジブロモエタン縮合物等が挙げられる。 Examples of the hindered amine radical scavenger include 2,2,6,6-tetramethyl-4-piperidylbenzoate, N- (2,2,6,6-tetramethyl-4-piperidyl) dodecyl succinimide, -[(3,5-ditert-butyl-4-hydroxyphenyl) propionyloxyethyl] -2,2,6,6-tetramethyl-4-piperidyl- (3,5-ditert-butyl-4-hydroxy Phenyl) propionate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2,2 , 6,6-Pentamethyl-4-piperidyl) -2-butyl-2- (3,5-ditert-butyl-4-hydroxybenzyl) malonate, N, N′-bis (2,2 6,6-tetramethyl-4-piperidyl) hexamethylenediamine, tetra (2,2,6,6-tetramethyl-4-piperidyl) butanetetracarboxylate, tetra (1,2,2,6,6-pentamethyl) -4-piperidyl) butanetetracarboxylate, bis (2,2,6,6-tetramethyl-4-piperidyl) di (tridecyl) butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl) -4-piperidyl) .di (tridecyl) butanetetracarboxylate, 3,9-bis [1,1-dimethyl-2- {tris (2,2,6,6-tetramethyl-4-piperidyloxycarbonyloxy) Butylcarbonyloxy} ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 3,9-bis [1,1 Dimethyl-2- {tris (1,2,2,6,6-pentamethyl-4-piperidyloxycarbonyloxy) butylcarbonyloxy} ethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane 1,5,8,12-tetrakis [4,6-bis {N- (2,2,6,6-tetramethyl-4-piperidyl) butylamino} -1,3,5-triazin-2-yl ] -1,5,8,12-tetraazadodecane, 1- (2-hydroxyethyl) -2,2,6,6-tetramethyl-4-piperidinol / dimethyl succinate condensate, 2-tert-octylamino -4,6-dichloro-s-triazine / N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl) hexamethylenediamine condensate, N, N'-bis (2,2, 6,6-tetra And methyl-4-piperidyl) hexamethylenediamine / dibromoethane condensate.
-酸捕捉剤-
 重合性組成物は、更に、酸捕捉剤を含んでもよい。酸捕捉剤は、重合時に発生する開始剤分解物や、(メタ)アクリレートおよび酸化防止剤が加水分解して発生する酸を捕捉することで、量子ドットの発光安定性を改善することができる。
 酸捕捉剤としては例えば、エポキシ化合物、アミノ置換トリアジン、カルボジイミド化合物等が挙げられ、特に米国特許第4,137,201号明細書に記載されるような、エポキシ基をもつ化合物が酸捕捉剤として有用である。
-Acid scavenger-
The polymerizable composition may further contain an acid scavenger. The acid scavenger can improve the light emission stability of the quantum dots by capturing an initiator decomposition product generated during polymerization or an acid generated by hydrolysis of (meth) acrylate and antioxidant.
Examples of the acid scavenger include epoxy compounds, amino-substituted triazines, carbodiimide compounds and the like, and particularly compounds having an epoxy group as described in US Pat. No. 4,137,201 are used as acid scavengers. Useful.
 重合性組成物の調製方法は特に制限されず、一般的な重合性組成物の調製手順により実施すればよい。 The method for preparing the polymerizable composition is not particularly limited, and may be performed according to a general procedure for preparing the polymerizable composition.
[重合物]
 本発明の重合物は、本発明の重合性組成物を硬化したものであることが好ましい。
 また、本発明の重合物は、重合性組成物中の(メタ)アクリレートの(メタ)アクリロイル基とチオール化合物のチオール基の反応によって生じる下記一般式II-Aまたは一般式II-Bで表される結合を有するものである。
 すなわち、本発明の重合物は、量子ドット、ポリ(メタ)アクリレート、および重合開始剤を含み、ポリ(メタ)アクリレートは、分子中に下記一般式II-Aまたは一般式II-Bで表される結合を有するものである。
[Polymerized product]
The polymer of the present invention is preferably a product obtained by curing the polymerizable composition of the present invention.
The polymer of the present invention is represented by the following general formula II-A or general formula II-B generated by the reaction of the (meth) acryloyl group of (meth) acrylate and the thiol group of the thiol compound in the polymerizable composition. It has a bond.
That is, the polymer of the present invention includes quantum dots, poly (meth) acrylate, and a polymerization initiator, and the poly (meth) acrylate is represented by the following general formula II-A or general formula II-B in the molecule. It has a bond.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式II-Aおよび一般式II-B中、RおよびRはそれぞれ水素原子または有機基を表し、かつRおよびRの少なくとも一方は有機基である。RおよびRは環を形成してもよい。Rは水素原子またはメチル基を表す。Rは置換または無置換のアルキル基、シクロアルキル基またはアリール基を表す。*は結合手を表す。 In General Formula II-A and General Formula II-B, R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring. R 3 represents a hydrogen atom or a methyl group. R 4 represents a substituted or unsubstituted alkyl group, cycloalkyl group or aryl group. * Represents a bond.
 Rが置換基を有する場合、置換基としては、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~10のアルキル基)、シクロアルキル基(好ましくは炭素数3~15、より好ましくは炭素数3~10のシクロアルキル基)、アリール基(好ましくは炭素数6~15、より好ましくは炭素数6~10のアリール基)、アラルキル基(好ましくは炭素数7~20、より好ましくは炭素数7~15のアラルキル基)、アルコキシ基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルコキシ基、さらに好ましくはエトキシ又はメトキシ)、水酸基、ハロゲン原子(フッ素原子、塩素原子など)、ニトロ基、アシル基(好ましくは炭素数2~10、より好ましくは炭素数2~5、さらに好ましくは炭素数2又は3のアシル基)、アシルオキシ基(好ましくは炭素数2~10、より好ましくは炭素数2~5、さらに好ましくは炭素数2又は3のアシルオキシ基)、アシルアミノ基(好ましくは炭素数2~10、より好ましくは炭素数2~5、さらに好ましくは炭素数2又は3のアシルアミノ基)、スルホニルアミノ基、ジアルキルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10のジアルキルアミノ基、さらに好ましくはジエチルアミノ又はジメチルアミノ)、アルキルチオ基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキルチオ基、さらに好ましくはエチルチオ又はメチルチオ)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~15のアリールチオ基、さらに好ましくはフェニルチオ又はナフチルチオ)、アラルキルチオ基(好ましくは炭素数7~20、より好ましくは炭素数7~15のアラルキルチオ基)、チエニルカルボニルオキシ基、チエニルメチルカルボニルオキシ基、ピロリドン残基等のヘテロ環残基、エポキシ基、及びオキセタン基が挙げられる。
 Rが置換基を有する場合、上記結合における複数のRのうち一部が上記置換基を有してもよく、複数のRのすべてが上記置換基を有してもよい。また、複数のRは異なる置換基を有していてもよい。
When R 4 has a substituent, examples of the substituent include an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms), a cycloalkyl group (preferably having 3 to 15 carbon atoms, More preferably a cycloalkyl group having 3 to 10 carbon atoms, an aryl group (preferably 6 to 15 carbon atoms, more preferably an aryl group having 6 to 10 carbon atoms), an aralkyl group (preferably 7 to 20 carbon atoms, more Preferably an aralkyl group having 7 to 15 carbon atoms), an alkoxy group (preferably 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, more preferably ethoxy or methoxy), a hydroxyl group, a halogen atom (fluorine atom) , A chlorine atom, etc.), a nitro group, an acyl group (preferably having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, still more preferably 2 or 3 carbon atoms). Syl group), an acyloxy group (preferably an acyloxy group having 2 to 10, more preferably 2 to 5, more preferably 2 or 3 carbon atoms), an acylamino group (preferably 2 to 10 carbon atoms, more preferably Is an acylamino group having 2 to 5 carbon atoms, more preferably an acylamino group having 2 or 3 carbon atoms), a sulfonylamino group, a dialkylamino group (preferably having 2 to 20 carbon atoms, more preferably a dialkylamino group having 2 to 10 carbon atoms, Preferably diethylamino or dimethylamino), an alkylthio group (preferably an alkylthio group having 1 to 10 carbon atoms, more preferably an alkylthio group having 1 to 5 carbon atoms, more preferably ethylthio or methylthio), an arylthio group (preferably having 6 to 20 carbon atoms, More preferably an arylthio group having 6 to 15 carbon atoms, still more preferably phenylthio or Naphthylthio), an aralkylthio group (preferably an aralkylthio group having 7 to 20 carbon atoms, more preferably an aralkylthio group having 7 to 15 carbon atoms), a thienylcarbonyloxy group, a thienylmethylcarbonyloxy group, a heterocyclic residue such as a pyrrolidone residue, An epoxy group and an oxetane group are mentioned.
When R 4 has a substituent, some of the plurality of R 4 in the bond may have the substituent, and all of the plurality of R 4 may have the substituent. Moreover, several R < 4 > may have a different substituent.
 一般式II-Aおよび一般式II-B中の有機基RおよびRは、チオール化合物に由来する基であり、上記一般式I中のRおよびRと同義であり、好ましい範囲も同じである。 The organic groups R 1 and R 2 in the general formulas II-A and II-B are groups derived from a thiol compound, and are synonymous with R 1 and R 2 in the general formula I. The same.
 Rは、(メタ)アクリレートの反応率を上げて緻密な膜を形成する観点から、多官能であることがより好ましい。 R 4 is more preferably polyfunctional from the viewpoint of increasing the reaction rate of (meth) acrylate and forming a dense film.
 重合方法は、公知の方法を用いることができ、重合性組成物を、光(例えば、紫外線)、電子線、または熱線にて、硬化させるが、光によって硬化させることが好ましい。照射する光は、通常、高圧水銀灯もしくは低圧水銀灯による紫外線である。照射エネルギーは0.1J/cm2以上が好ましく、0.5J/cm2以上がより好ましい。(メタ)アクリレート系化合物は、空気中の酸素によって重合阻害を受けるため、重合時の酸素濃度もしくは酸素分圧を低くすることが好ましい。窒素置換法によって重合時の酸素濃度を低下させる場合、酸素濃度は1000ppm以下が好ましく、100ppm以下がより好ましい。減圧法により重合時の酸素分圧を低下させる場合、全圧が1000Pa以下であることが好ましく、100Pa以下であることがより好ましい。また、100Pa以下の減圧条件下で0.5J/cm2以上のエネルギーを照射して紫外線重合を行うのが特に好ましい。 A known method can be used as the polymerization method, and the polymerizable composition is cured with light (for example, ultraviolet rays), an electron beam, or a heat beam, but is preferably cured with light. The light to irradiate is usually ultraviolet light from a high pressure mercury lamp or a low pressure mercury lamp. The radiation energy is preferably 0.1 J / cm 2 or more, 0.5 J / cm 2 or more is more preferable. Since (meth) acrylate compounds are subject to polymerization inhibition by oxygen in the air, it is preferable to lower the oxygen concentration or oxygen partial pressure during polymerization. When the oxygen concentration at the time of polymerization is lowered by the nitrogen substitution method, the oxygen concentration is preferably 1000 ppm or less, more preferably 100 ppm or less. When the oxygen partial pressure during polymerization is reduced by the decompression method, the total pressure is preferably 1000 Pa or less, and more preferably 100 Pa or less. Further, it is particularly preferable to perform ultraviolet polymerization by irradiating energy of 0.5 J / cm 2 or more under a reduced pressure condition of 100 Pa or less.
 次に、図面を参照して、本発明の一実施形態である波長変換部材及びそれを備えたバックライトユニットについて説明する。図1は、本実施形態の波長変換部材の概略構成断面図である。 Next, a wavelength conversion member and a backlight unit including the same according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of the wavelength conversion member of the present embodiment.
[波長変換部材]
 本実施形態の波長変換部材1Dは、図1に示すように、重合性組成物を硬化させてなる波長変換層30と波長変換層30の両主面に配置されたバリアフィルム10,20とを備える。ここで、「主表面」とは、波長変換部材を、後述する表示装置に用いた場合の視認側又はバックライト側に配置される波長変換層の表面(おもて面、裏面)をいう。他の層や部材についての主表面も、同様である。バリアフィルム10,20は、それぞれ、波長変換層30側から、それぞれバリア層12,22、および支持体11,21を備える。以下、波長変換層30、バリアフィルム10,20、支持体11,21、およびバリア層12,22の詳細について説明する。
[Wavelength conversion member]
As shown in FIG. 1, the wavelength conversion member 1 </ b> D of the present embodiment includes a wavelength conversion layer 30 obtained by curing a polymerizable composition and barrier films 10 and 20 disposed on both main surfaces of the wavelength conversion layer 30. Prepare. Here, the “main surface” refers to the surface (front surface, back surface) of the wavelength conversion layer disposed on the viewing side or the backlight side when the wavelength conversion member is used in a display device described later. The same applies to the main surfaces of the other layers and members. Each of the barrier films 10 and 20 includes the barrier layers 12 and 22 and the supports 11 and 21 from the wavelength conversion layer 30 side, respectively. Hereinafter, the details of the wavelength conversion layer 30, the barrier films 10 and 20, the supports 11 and 21, and the barrier layers 12 and 22 will be described.
(波長変換層)
 波長変換層30は、図1に示すように、有機マトリックス30P中に青色光Lにより励起されて蛍光(赤色光)Lを発光する量子ドット30A、および青色光Lにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bが分散されてなる。なお、図1において量子ドット30A,30Bは、視認しやすくするために大きく記載してあるが、実際は、例えば、波長変換層30の厚み50~100μmに対し、量子ドットの直径は2~7nmの範囲である。
 量子ドット30A,30Bの表面には、本発明の配位子が配位している。波長変換層30は、本発明の配位子が配位した量子ドット30A,30Bと重合性化合物と重合開始剤とを含む重合性組成物を、光照射によって硬化させてなるものである。
 有機マトリックス30Pは、重合性化合物が光照射または熱によって硬化されてなる。
(Wavelength conversion layer)
Wavelength converting layer 30, as shown in FIG. 1, it is excited by being excited by the blue light L B fluorescent quantum dots 30A emits (red light) L R, and the blue light L B in the organic matrix 30P fluorescence quantum dots 30B for emitting (green light) L G is dispersed. In FIG. 1, the quantum dots 30A and 30B are greatly illustrated for easy visual recognition. However, in actuality, for example, the thickness of the wavelength conversion layer 30 is 50 to 100 μm, and the quantum dot diameter is 2 to 7 nm. It is a range.
The ligand of the present invention is coordinated on the surfaces of the quantum dots 30A and 30B. The wavelength conversion layer 30 is obtained by curing a polymerizable composition containing quantum dots 30A and 30B coordinated with the ligand of the present invention, a polymerizable compound, and a polymerization initiator by light irradiation.
The organic matrix 30P is formed by curing a polymerizable compound by light irradiation or heat.
 波長変換層30の厚みは、好ましくは1~500μmの範囲であり、より好ましくは10~250μmの範囲であり、さらに好ましくは30~150μmの範囲である。厚みが1μm以上であると、高い波長変換効果が得られるため、好ましい。また、厚みが500μm以下であると、バックライトユニットに組み込んだ場合に、バックライトユニットを薄くすることができるため、好ましい。 The thickness of the wavelength conversion layer 30 is preferably in the range of 1 to 500 μm, more preferably in the range of 10 to 250 μm, and still more preferably in the range of 30 to 150 μm. A thickness of 1 μm or more is preferable because a high wavelength conversion effect can be obtained. Further, it is preferable that the thickness is 500 μm or less because the backlight unit can be thinned when incorporated in the backlight unit.
 上記実施態様では、光源として青色光を用いた態様について説明したが、波長変換層30は、有機マトリックス30P中に紫外光LUVにより励起されて蛍光(赤色光)Lを発光する量子ドット30Aと、紫外光LUVにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bと、紫外光LUVにより励起されて蛍光(青色光)Lを発光する量子ドット30C(不図示)とが分散されてなるものであってもよい。波長変換層の形状は特に限定されるものではなく、任意の形状とすることができる。 In the above embodiment has been described manner using the blue light as the light source, the wavelength converting layer 30, the quantum dots 30A that emits ultraviolet light L UV by being excited fluorescence (red light) L R in an organic matrix 30P When, by being excited by the ultraviolet light L UV fluorescent quantum dots 30C for emitting quantum dots 30B for emitting (green light) L G, after being excited by the ultraviolet light L UV fluorescent (blue light) L B (not shown) May be dispersed. The shape of the wavelength conversion layer is not particularly limited, and can be an arbitrary shape.
(バリアフィルム)
 バリアフィルム10,20は、酸素を遮断するガスバリア機能を有するフィルムである。本実施形態では、支持体11,21上にバリア層12,22をそれぞれ備える。支持体11,21の存在により、波長変換部材1Dの強度が向上され、且つ、容易に各層を製膜することができる。
 なお、本実施形態では、バリア層12,22が支持体11,21により支持されてなるバリアフィルム10,20について示したが、バリア層12,22は支持体11,21に支持されていなくてもよい。また、本実施形態では、波長変換層30の両主面にバリア層12,22が隣接して備えられている波長変換部材について示したが、支持体11,21がバリア性を充分有している場合は、支持体11,21のみでバリア層を形成してもよい。
(Barrier film)
The barrier films 10 and 20 are films having a gas barrier function for blocking oxygen. In this embodiment, the barrier layers 12 and 22 are provided on the supports 11 and 21, respectively. Due to the presence of the supports 11 and 21, the strength of the wavelength conversion member 1D is improved, and each layer can be easily formed.
In the present embodiment, the barrier films 10 and 20 in which the barrier layers 12 and 22 are supported by the supports 11 and 21 are shown. However, the barrier layers 12 and 22 are not supported by the supports 11 and 21. Also good. In the present embodiment, the wavelength conversion member in which the barrier layers 12 and 22 are provided adjacent to both main surfaces of the wavelength conversion layer 30 is shown. However, the supports 11 and 21 have sufficient barrier properties. When it exists, you may form a barrier layer only by the support bodies 11 and 21. FIG.
 また、バリアフィルム10,20は、本実施形態のように、波長変換部材中に2つ含まれる態様が好ましいが、1つだけ含まれる態様であってもよい。 Moreover, although the aspect in which two barrier films 10 and 20 are contained in the wavelength conversion member like this embodiment is preferable, the aspect in which only one may be contained may be sufficient.
 バリアフィルム10,20は、可視光領域における全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。可視光領域とは、380~780nmの波長領域をいうものとし、全光線透過率とは、可視光領域にわたる光透過率の平均値を示す。 The barrier films 10 and 20 preferably have a total light transmittance of 80% or more in the visible light region, and more preferably 90% or more. The visible light region refers to a wavelength region of 380 to 780 nm, and the total light transmittance indicates an average value of light transmittance over the visible light region.
 バリアフィルム10,20の酸素透過度は1.00cm/(m・day・atm)以下であることが好ましい。ここで、上記酸素透過度(酸素透過率)は、測定温度23℃、相対湿度90%の条件下で、酸素ガス透過率測定装置(商品名「OX-TRAN 2/20」,MOCON社製)を用いて測定した値である。バリアフィルム10,20の酸素透過度は、より好ましくは、0.10cm/(m・day・atm)以下、さらに好ましくは、0.01cm/(m・day・atm)以下である。酸素透過度1.00cm/(m・day・atm)は、SI単位系に換算すると、1.14×10-1fm/Pa・sである。 The oxygen permeability of the barrier films 10 and 20 is preferably 1.00 cm 3 / (m 2 · day · atm) or less. Here, the oxygen permeability (oxygen permeability) is measured under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90% (product name “OX-TRAN 2/20”, manufactured by MOCON). It is the value measured using. The oxygen permeability of the barrier films 10 and 20 is more preferably 0.10 cm 3 / (m 2 · day · atm) or less, and still more preferably 0.01 cm 3 / (m 2 · day · atm) or less. . The oxygen permeability 1.00 cm 3 / (m 2 · day · atm) is 1.14 × 10 −1 fm / Pa · s in terms of the SI unit system.
(支持体)
 波長変換部材1Dにおいて、波長変換層30は、少なくとも一方の主表面が支持体11又は21によって支持されている。波長変換層30は、本実施形態のように、波長変換層30の表裏の主表面を支持体11及び21によって支持されていることが好ましい。
(Support)
In the wavelength conversion member 1D, at least one main surface of the wavelength conversion layer 30 is supported by the support 11 or 21. As for this wavelength conversion layer 30, it is preferable that the main surfaces of the front and back of the wavelength conversion layer 30 are supported by the support bodies 11 and 21 like this embodiment.
 支持体11,21の平均膜厚は、波長変換部材の耐衝撃性等の観点から、10μm以上500μm以下であることが好ましく、20μm以上400μm以下であることがより好ましく、30μm以上300μm以下であることが好ましい。波長変換層30に含まれる量子ドット30A,30Bの濃度を低減した場合や、波長変換層30の厚みを低減した場合のように、光の再帰反射を増加させる態様では、波長450nmの光の吸収率がより低いことが好ましいため、輝度低下を抑制する観点から、支持体11,21の平均膜厚は、40μm以下であることが好ましく、25μm以下であることがさらに好ましい。 The average film thickness of the supports 11 and 21 is preferably 10 μm or more and 500 μm or less, more preferably 20 μm or more and 400 μm or less, and more preferably 30 μm or more and 300 μm or less from the viewpoint of impact resistance of the wavelength conversion member. It is preferable. In an aspect in which retroreflection of light is increased, such as when the concentration of the quantum dots 30A and 30B included in the wavelength conversion layer 30 is reduced, or when the thickness of the wavelength conversion layer 30 is reduced, absorption of light having a wavelength of 450 nm is performed. Since the rate is preferably lower, the average film thickness of the supports 11 and 21 is preferably 40 μm or less, and more preferably 25 μm or less from the viewpoint of suppressing a decrease in luminance.
 波長変換層30に含まれる量子ドット30A,30Bの濃度をより低減させる、あるいは波長変換層30の厚みをより低減させるには、LCDの表示色を維持するために後述するバックライトユニットの再帰反射性部材に、プリズムシートを複数枚設ける等、光の再帰反射を増加させる手段を設けてさらに励起光が波長変換層を通過する回数を増加させる必要がある。従って、支持体は可視光に対して透明である透明支持体であることが好ましい。
 ここで可視光に対して透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。支持体については、特開2007-290369号公報の段落0046~0052、特開2005-096108号公報の段落0040~0055を参照できる。
In order to further reduce the concentration of the quantum dots 30A and 30B included in the wavelength conversion layer 30, or to further reduce the thickness of the wavelength conversion layer 30, retroreflection of a backlight unit described later to maintain the display color of the LCD. It is necessary to increase the number of times the excitation light passes through the wavelength conversion layer by providing means for increasing the retroreflection of light, such as providing a plurality of prism sheets on the active member. Therefore, the support is preferably a transparent support that is transparent to visible light.
Here, being transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more. The light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere type light transmittance measuring device. It can be calculated by subtracting the rate. Regarding the support, paragraphs 0046 to 0052 of JP-A-2007-290369 and paragraphs 0040 to 0055 of JP-A-2005-096108 can be referred to.
 また、支持体11,21は、波長589nmにおける面内リターデーションRe(589)が1000nm以下であることが好ましい。500nm以下であることがより好ましく、200nm以下であることがさらに好ましい。
 波長変換部材1Dを作製した後、異物や欠陥の有無を検査する際、2枚の偏光板を消光位に配置し、その間に波長変換部材を差し込んで観察することで、異物や欠陥を見つけやすい。支持体のRe(589)が上記範囲であると、偏光板を用いた検査の際に、異物や欠陥をより見つけやすくなるため、好ましい。
 ここで、Re(589)はKOBRA-21ADH、又はKOBRA WR(王子計測機器(株)製)において、波長589nmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、又は測定値をプログラム等で変換して測定することができる。
The supports 11 and 21 preferably have an in-plane retardation Re (589) at a wavelength of 589 nm of 1000 nm or less. More preferably, it is 500 nm or less, and further preferably 200 nm or less.
After the wavelength conversion member 1D is manufactured, when inspecting for the presence of foreign matter or defects, two polarizing plates are placed in the extinction position, and the wavelength conversion member is inserted between them for observation, making it easy to find foreign matters and defects. . It is preferable that the Re (589) of the support is in the above range because foreign matters and defects can be more easily found during inspection using a polarizing plate.
Here, Re (589) is measured by making light having a wavelength of 589 nm incident in the normal direction of the film in KOBRA-21ADH or KOBRA WR (manufactured by Oji Scientific Instruments). In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
 支持体11,21としては、酸素及び水分に対するバリア性を有する支持体が好ましい。かかる支持体としては、ポリエチレンテレフタレートフィルム、環状オレフィン構造を有するポリマーからなるフィルム、及びポリスチレンフィルム等が、好ましい例として挙げられる。 The supports 11 and 21 are preferably supports having a barrier property against oxygen and moisture. Preferred examples of the support include a polyethylene terephthalate film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
(バリア層)
 バリア層12,22は、支持体11,21側から順に、それぞれ有機層12a,22aと、無機層12b,22bと、を備えてなる。有機層12a,22aは、無機層12b,22bと波長変換層30との間に設けられていてもよい。
(Barrier layer)
The barrier layers 12 and 22 are respectively provided with organic layers 12a and 22a and inorganic layers 12b and 22b in this order from the supports 11 and 21 side. The organic layers 12 a and 22 a may be provided between the inorganic layers 12 b and 22 b and the wavelength conversion layer 30.
 バリア層12,22は、支持体11,21の表面に成膜されることにより形成される。従って、支持体11,21と、その上に設けられたバリア層12,22とでバリアフィルム10,20を構成している。バリア層12,22を設ける場合は、支持体は高い耐熱性を有していることが好ましい。波長変換部材1Dにおいて、波長変換層30に隣接しているバリアフィルム10,20中の層は、無機層でも有機層でもよく、特に限定されない。 The barrier layers 12 and 22 are formed by being formed on the surfaces of the supports 11 and 21. Therefore, the barrier films 10 and 20 are comprised by the support bodies 11 and 21 and the barrier layers 12 and 22 provided on it. In the case where the barrier layers 12 and 22 are provided, the support preferably has high heat resistance. In the wavelength conversion member 1D, the layer in the barrier films 10 and 20 adjacent to the wavelength conversion layer 30 may be an inorganic layer or an organic layer, and is not particularly limited.
 バリア層12,22は、複数の層により構成されてなる方がより一層バリア性を高めることができるため、耐光性向上の観点からは好ましいが、層数が増えるほど、波長変換部材の光透過率は低下する傾向があるため、良好な光透過率とバリア性とを考慮して設計されることが好ましい。 The barrier layers 12 and 22 are preferably composed of a plurality of layers because the barrier property can be further enhanced. Therefore, the barrier layers 12 and 22 are preferable from the viewpoint of improving light resistance. However, as the number of layers increases, the light transmission of the wavelength conversion member increases. Since the rate tends to decrease, it is preferable to design in consideration of good light transmittance and barrier properties.
-無機層-
 無機層とは、無機材料を主成分とする層であり、無機材料が50質量%以上、さらには80質量%以上、特に90質量%以上を占める層が好ましく、無機材料のみから形成される層が最も好ましい。バリア層12,22に好適な無機層12b,22bとしては、特に限定されず、金属、無機酸化物、窒化物、酸化窒化物等の各種無機化合物を用いることができる。無機材料を構成する元素としては、ケイ素、アルミニウム、マグネシウム、チタン、スズ、インジウム及びセリウムが好ましく、これらを一種又は二種以上含んでいてもよい。無機化合物の具体例としては、酸化ケイ素、酸化窒化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化スズ、酸化インジウム合金、窒化ケイ素、窒化アルミニウム、窒化チタンを挙げることができる。また、無機層として、金属膜、例えば、アルミニウム膜、銀膜、錫膜、クロム膜、ニッケル膜、チタン膜を設けてもよい。
-Inorganic layer-
The inorganic layer is a layer mainly composed of an inorganic material, and is preferably a layer in which the inorganic material occupies 50% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more, and is formed only from the inorganic material. Is most preferred. The inorganic layers 12b and 22b suitable for the barrier layers 12 and 22 are not particularly limited, and various inorganic compounds such as metals, inorganic oxides, nitrides, and oxynitrides can be used. As an element constituting the inorganic material, silicon, aluminum, magnesium, titanium, tin, indium and cerium are preferable, and one or more of these may be included. Specific examples of the inorganic compound include silicon oxide, silicon oxynitride, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, indium oxide alloy, silicon nitride, aluminum nitride, and titanium nitride. As the inorganic layer, a metal film such as an aluminum film, a silver film, a tin film, a chromium film, a nickel film, or a titanium film may be provided.
 上記の材料の中でも、ケイ素酸化物、ケイ素窒化物、ケイ素酸化窒化物、ケイ素炭化物、又はアルミニウム酸化物を含む無機層が特に好ましい。これらの材料からなる無機層は、有機層との密着性が良好であることから、無機層にピンホールがある場合でも、有機層がピンホールを効果的に埋めることができ、バリア性をより一層高くすることができる。
 また、バリア層における光の吸収を抑制する観点からは、窒化ケイ素がもっとも好ましい。
Among the above materials, an inorganic layer containing silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, or aluminum oxide is particularly preferable. Since the inorganic layer made of these materials has good adhesion to the organic layer, even when the inorganic layer has pinholes, the organic layer can effectively fill the pinholes, and the barrier property is further improved. It can be made even higher.
Further, silicon nitride is most preferable from the viewpoint of suppressing light absorption in the barrier layer.
 無機層の形成方法としては、特に限定されず、例えば成膜材料を蒸発ないし飛散させ被蒸着面に堆積させることができる各種成膜方法を用いることができる。 The method for forming the inorganic layer is not particularly limited, and for example, various film forming methods capable of evaporating or scattering the film forming material and depositing it on the deposition surface can be used.
 無機層の形成方法の例としては、無機酸化物、無機窒化物、無機酸化窒化物、金属等の無機材料を、加熱して蒸着させる真空蒸着法;無機材料を原料として用い、酸素ガスを導入することにより酸化させて蒸着させる酸化反応蒸着法;無機材料をターゲット原料として用い、アルゴンガス、酸素ガスを導入して、スパッタリングすることにより蒸着させるスパッタリング法;無機材料にプラズマガンで発生させたプラズマビームにより加熱させて蒸着させるイオンプレーティング法等の物理気相成長法(Physical VaporDeposition法、PVD法)、酸化ケイ素の蒸着膜を成膜させる場合は、有機ケイ素化合物を原料とするプラズマ化学気相成長法(Chemical Vapor Deposition法、CVD法)が挙げられる。 Examples of the method for forming the inorganic layer include a vacuum evaporation method in which an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is heated and evaporated; an inorganic material is used as a raw material, and oxygen gas is introduced. Oxidation reaction vapor deposition method for oxidizing and vapor deposition; sputtering method using inorganic material as target raw material, introducing argon gas and oxygen gas and performing sputtering; plasma generated on inorganic material with plasma gun When chemical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as ion plating method, which are heated by a beam for vapor deposition, or when a silicon oxide vapor deposition film is formed, a plasma chemical vapor phase using an organosilicon compound as a raw material Growth method (Chemical Vapor Deposition method, CV Law), and the like.
 無機層の厚さは、1nm~500nmであればよく、5nm~300nmであることが好ましく、特に10nm~150nmであることがより好ましい。隣接無機層の膜厚が、上述した範囲内であることにより、良好なバリア性を実現しつつ、無機層における光の吸収を抑制することができ、光透過率がより高い波長変換部材を提供することができるからである。 The thickness of the inorganic layer may be 1 nm to 500 nm, preferably 5 nm to 300 nm, and more preferably 10 nm to 150 nm. When the film thickness of the adjacent inorganic layer is within the above-described range, it is possible to suppress absorption of light in the inorganic layer while realizing good barrier properties, and provide a wavelength conversion member with higher light transmittance. Because it can be done.
-有機層-
 有機層とは、有機材料を主成分とする層であって、好ましくは有機材料が50質量%以上、さらには80質量%以上、特に90質量%以上を占める層である。有機層としては、特開2007-290369号公報の段落0020~0042、特開2005-096108号公報の段落0074~0105を参照できる。なお有機層は、カルドポリマーを含むことが好ましい。これにより、有機層と隣接する層との密着性、特に、無機層とも密着性が良好になり、より一層優れたバリア性を実現することができるからである。カルドポリマーの詳細については、上述の特開2005-096108号公報の段落0085~0095を参照できる。有機層の膜厚は、0.05μm~10μmの範囲内であることが好ましく、中でも0.5~10μmの範囲内であることが好ましい。有機層がウェットコーティング法により形成される場合には、有機層の膜厚は、0.5~10μmの範囲内、中でも1μm~5μmの範囲内であることが好ましい。また、ドライコーティング法により形成される場合には、0.05μm~5μmの範囲内、中でも0.05μm~1μmの範囲内であることが好ましい。ウェットコーティング法又はドライコーティング法により形成される有機層の膜厚が上述した範囲内であることにより、無機層との密着性をより良好なものとすることができるからである。
-Organic layer-
The organic layer is a layer containing an organic material as a main component, and is preferably a layer in which the organic material occupies 50% by mass or more, further 80% by mass or more, particularly 90% by mass or more. As the organic layer, paragraphs 0020 to 0042 of JP-A-2007-290369 and paragraphs 0074 to 0105 of JP-A-2005-096108 can be referred to. The organic layer preferably contains a cardo polymer. This is because the adhesion between the organic layer and the adjacent layer, particularly the adhesion with the inorganic layer, is improved, and a further excellent barrier property can be realized. For details of the cardo polymer, reference can be made to paragraphs 0085 to 0095 of the above-mentioned JP-A-2005-096108. The thickness of the organic layer is preferably in the range of 0.05 μm to 10 μm, and more preferably in the range of 0.5 to 10 μm. When the organic layer is formed by a wet coating method, the thickness of the organic layer is preferably in the range of 0.5 to 10 μm, and more preferably in the range of 1 to 5 μm. Further, when formed by a dry coating method, it is preferably in the range of 0.05 μm to 5 μm, and more preferably in the range of 0.05 μm to 1 μm. This is because when the film thickness of the organic layer formed by the wet coating method or the dry coating method is within the above-described range, the adhesion with the inorganic layer can be further improved.
 無機層および有機層のその他詳細については、上述の特開2007-290369号公報、特開2005-096108号公報、さらにUS2012/0113672A1の記載を参照できる。 As for other details of the inorganic layer and the organic layer, reference can be made to the description in the above-mentioned Japanese Patent Application Publication No. 2007-290369, Japanese Patent Application Publication No. 2005-096108, and US2012 / 0113672A1.
 波長変換部材1Dにおいて、波長変換層、無機層、有機層、支持体は、この順に積層されていてもよく、無機層と有機層との間、二層の有機層の間、又は二層の無機層の間に、支持体を配して積層されていてもよい。 In the wavelength conversion member 1D, the wavelength conversion layer, the inorganic layer, the organic layer, and the support may be laminated in this order, between the inorganic layer and the organic layer, between the two organic layers, or between the two layers. A support may be disposed between the inorganic layers and laminated.
(凹凸付与層)
 バリアフィルム10は、波長変換層30側の面と反対側の面に、凹凸構造を付与する凹凸付与層13を備えていることが好ましい。バリアフィルム10が凹凸付与層13を有していると、バリアフィルムのブロッキング性、滑り性を改良することができるため、好ましい。凹凸付与層は粒子を含有する層であることが好ましい。粒子としては、シリカ、アルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等が挙げられる。また、凹凸付与層、バリアフィルムの波長変換層とは反対側の表面に設けられることが好ましいが、両面に設けられていてもよい。
(Roughness imparting layer)
It is preferable that the barrier film 10 is provided with the uneven | corrugated provision layer 13 which provides an uneven | corrugated structure in the surface on the opposite side to the surface by the side of the wavelength conversion layer 30 side. It is preferable that the barrier film 10 has the unevenness imparting layer 13 because the blocking property and slipping property of the barrier film can be improved. The unevenness providing layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles. Moreover, although it is preferable to provide in the surface on the opposite side to the wavelength conversion layer of an uneven | corrugated provision layer and a barrier film, you may provide in both surfaces.
 波長変換部材1Dは、量子ドットの蛍光を効率よく外部に取り出すために光散乱機能を有することができる。光散乱機能は、波長変換層30内部に設けてもよいし、光散乱層として光散乱機能を有する層を別途設けてもよい。光散乱層は、バリア層22の波長変換層30側の面に設けられていてもよいし、支持体の波長変換層とは反対側の面に設けられていてもよい。上記凹凸付与層を設ける場合は、凹凸付与層を光散乱層と兼用できる層とすることが好ましい。 The wavelength conversion member 1D can have a light scattering function in order to efficiently extract the fluorescence of the quantum dots to the outside. The light scattering function may be provided inside the wavelength conversion layer 30, or a layer having a light scattering function may be separately provided as the light scattering layer. The light scattering layer may be provided on the surface of the barrier layer 22 on the wavelength conversion layer 30 side, or may be provided on the surface of the support opposite to the wavelength conversion layer. In the case of providing the unevenness providing layer, the unevenness providing layer is preferably a layer that can also be used as a light scattering layer.
<波長変換部材の製造方法>
 次に、波長変換層30の両面に、支持体11,21上にバリア層12,22を備えたバリアフィルム10,20を有する態様の波長変換部材1Dの製造方法の一例を説明する。
 本実施形態において、波長変換層30は、調製した重合性組成物をバリアフィルム10,20の表面に塗布した後に光照射、又は加熱により硬化させ、形成することができる。塗布方法としてはカーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の塗布方法が挙げられる。
<Method for producing wavelength conversion member>
Next, an example of a method for manufacturing the wavelength conversion member 1D having an aspect in which the barrier films 10 and 20 including the barrier layers 12 and 22 on the supports 11 and 21 are provided on both surfaces of the wavelength conversion layer 30 will be described.
In this embodiment, the wavelength conversion layer 30 can be formed by applying the prepared polymerizable composition to the surfaces of the barrier films 10 and 20 and then curing it by light irradiation or heating. Known coating methods include curtain coating, dip coating, spin coating, print coating, spray coating, slot coating, roll coating, slide coating, blade coating, gravure coating, and wire bar method. The coating method is mentioned.
 硬化条件は、使用するアニオン重合性化合物の種類や重合性組成物の組成に応じて、適宜設定することができる。また、重合性組成物が溶媒を含む組成物である場合には、硬化を行う前に、溶媒除去のために乾燥処理を施してもよい。 Curing conditions can be appropriately set according to the type of anionic polymerizable compound used and the composition of the polymerizable composition. Further, when the polymerizable composition is a composition containing a solvent, a drying treatment may be performed to remove the solvent before curing.
 重合性組成物の硬化は、重合性組成物を2枚の支持体間に挟持した状態で行ってもよい。硬化処理を含む波長変換部材の製造工程の一態様を、図2および図3を参照して以下に説明する。ただし、本発明は、下記態様に限定されるものではない。 The curing of the polymerizable composition may be performed in a state where the polymerizable composition is sandwiched between two supports. One aspect of the manufacturing process of the wavelength conversion member including the curing process will be described below with reference to FIGS. However, the present invention is not limited to the following embodiments.
 図2は、波長変換部材1Dの製造装置の一例の概略構成図であり、図3は、図2に示す製造装置の部分拡大図である。
 本実施態様の製造装置は、図示しない送出機と、第一のバリアフィルム10上に重合性組成物を塗布して塗膜30Mを形成する塗布部120と、塗膜30M上に第二のバリアフィルム20を貼り合わせて、塗膜30Mを第一のバリアフィルム10と第二のバリアフィルム20とで挟持するラミネート部130と、塗膜30Mを硬化する硬化部160と、図示しない巻き取り機とを備える。
2 is a schematic configuration diagram of an example of a manufacturing apparatus for the wavelength conversion member 1D, and FIG. 3 is a partially enlarged view of the manufacturing apparatus shown in FIG.
The manufacturing apparatus of this embodiment includes a delivery machine (not shown), an application unit 120 that forms a coating film 30M by applying a polymerizable composition on the first barrier film 10, and a second barrier on the coating film 30M. Laminating unit 130 for bonding film 20 and sandwiching coating film 30M between first barrier film 10 and second barrier film 20, curing unit 160 for curing coating film 30M, and a winder (not shown) Is provided.
 図2および図3に示す製造装置を用いる波長変換部材の製造工程は、連続搬送される第一のバリアフィルム10(以下、「第一のフィルム」という。)の表面に重合性組成物を塗布し塗膜を形成する工程と、塗膜の上に、連続搬送される第二のバリアフィルム20(以下、「第二のフィルム」ともいう。)をラミネートし(重ねあわせ)、第一のフィルムと第二のフィルムとで塗膜を挟持する工程と、第一のフィルムと第二のフィルムとで塗膜を挟持した状態で、第一のフィルム、及び第二のフィルムの何れかをバックアップローラに巻きかけて、連続搬送しながら光照射し、塗膜を重合硬化させて波長変換層(硬化層)を形成する工程とを少なくとも含む。本実施形態では、第一のフィルム、第二のフィルムの双方に、酸素や水分に対するバリア性を有するバリアフィルムを用いている。かかる態様とすることにより、波長変換層の両面がバリアフィルムにより保護された波長変換部材1Dを得ることができる。片面がバリアフィルムにより保護された波長変換部材としてもよく、その場合は、バリアフィルム側を外気に近い側として用いることが好ましい。 The manufacturing process of the wavelength conversion member using the manufacturing apparatus shown in FIGS. 2 and 3 applies a polymerizable composition to the surface of the first barrier film 10 (hereinafter referred to as “first film”) that is continuously conveyed. And a step of forming a coating film, and a second barrier film 20 (hereinafter also referred to as “second film”) that is continuously conveyed is laminated (overlaid) on the coating film to form a first film. A step of sandwiching the coating film between the first film and the second film, and a backup roller for either the first film or the second film in a state where the coating film is sandwiched between the first film and the second film. And irradiating with light while continuously transporting, polymerizing and curing the coating film to form a wavelength conversion layer (cured layer). In this embodiment, a barrier film having a barrier property against oxygen and moisture is used for both the first film and the second film. By setting it as this aspect, wavelength conversion member 1D by which both surfaces of the wavelength conversion layer were protected by the barrier film can be obtained. A wavelength conversion member having one surface protected by a barrier film may be used, and in that case, the barrier film side is preferably used as the side close to the outside air.
 より詳しくは、まず、図示しない送出機から第一のフィルム10が塗布部120へと連続搬送される。送出機から、例えば、第一のフィルム10が1~50m/分の搬送速度で送出される。但し、この搬送速度に限定されない。送出される際、例えば、第一のフィルム10には、20~150N/mの張力、好ましくは30~100N/mの張力が加えられる。 More specifically, first, the first film 10 is continuously conveyed from the unillustrated transmitter to the coating unit 120. For example, the first film 10 is delivered from the delivery device at a conveyance speed of 1 to 50 m / min. However, it is not limited to this conveyance speed. When delivered, for example, a tension of 20 to 150 N / m, preferably 30 to 100 N / m, is applied to the first film 10.
 塗布部120では、連続搬送される第一のフィルム10の表面に重合性組成物(以下、「塗布液」とも記載する。)が塗布され、塗膜30M(図3参照)が形成される。塗布部120では、例えば、ダイコーター124と、ダイコーター124に対向配置されたバックアップローラ126とが設置されている。第一のフィルム10の塗膜30Mの形成される表面と反対の表面をバックアップローラ126に巻きかけて、連続搬送される第一のフィルム10の表面にダイコーター124の吐出口から塗布液が塗布され、塗膜30Mが形成される。ここで塗膜30Mとは、第一のフィルム10上に塗布された硬化前の重合性組成物をいう。 In the coating unit 120, a polymerizable composition (hereinafter also referred to as “coating liquid”) is applied to the surface of the first film 10 that is continuously conveyed, and a coating film 30M (see FIG. 3) is formed. In the application unit 120, for example, a die coater 124 and a backup roller 126 disposed to face the die coater 124 are installed. The surface opposite to the surface on which the coating film 30M of the first film 10 is formed is wound around the backup roller 126, and the coating liquid is applied from the discharge port of the die coater 124 onto the surface of the first film 10 that is continuously conveyed. Thus, the coating film 30M is formed. Here, the coating film 30 </ b> M refers to a polymerizable composition before curing applied on the first film 10.
 本実施形態では、塗布部120における塗布装置としてエクストルージョンコーティング法を適用したダイコーター124を示したが、これに限定されない。例えば、カーテンコーティング法、ロッドコーティング法又はロールコーティング法等、種々の方法を適用した塗布装置を用いることができる。 In this embodiment, the die coater 124 to which the extrusion coating method is applied is shown as the coating device in the coating unit 120, but the present invention is not limited to this. For example, a coating apparatus to which various methods such as a curtain coating method, a rod coating method, or a roll coating method are applied can be used.
 塗布部120を通過し、その上に塗膜30Mが形成された第一のフィルム10は、ラミネート部130に連続搬送される。ラミネート部130では、塗膜30Mの上に、連続搬送される第二のフィルム20がラミネートされ、第一のフィルム10と第二のフィルム20とで塗膜30Mが挟持される。 The first film 10 that has passed through the coating unit 120 and has the coating film 30M formed thereon is continuously conveyed to the laminating unit 130. In the laminating unit 130, the second film 20 continuously conveyed is laminated on the coating film 30 </ b> M, and the coating film 30 </ b> M is sandwiched between the first film 10 and the second film 20.
 ラミネート部130には、ラミネートローラ132と、ラミネートローラ132を囲う加熱チャンバー134とが設置されている。加熱チャンバー134には第一のフィルム10を通過させるための開口部136、及び第二のフィルム20を通過させるための開口部138が設けられている。 In the laminating unit 130, a laminating roller 132 and a heating chamber 134 surrounding the laminating roller 132 are installed. The heating chamber 134 is provided with an opening 136 for allowing the first film 10 to pass therethrough and an opening 138 for allowing the second film 20 to pass therethrough.
 ラミネートローラ132に対向する位置には、バックアップローラ162が配置されている。塗膜30Mの形成された第一のフィルム10は、塗膜30Mの形成面と反対の表面がバックアップローラ162に巻きかけられ、ラミネート位置Pへと連続搬送される。ラミネート位置Pは第二のフィルム20と塗膜30Mとの接触が開始する位置を意味する。第一のフィルム10はラミネート位置Pに到達する前にバックアップローラ162に巻きかけられることが好ましい。仮に第一のフィルム10にシワが発生した場合でも、バックアップローラ162によりシワがラミネート位置Pに達するまでに矯正され、除去できるからである。したがって、第一のフィルム10がバックアップローラ162に巻きかけられた位置(接触位置)と、ラミネート位置Pまでの距離L1は長いことが好ましく、例えば、30mm以上が好ましく、その上限値は、通常、バックアップローラ162の直径とパスラインとにより決定される。 A backup roller 162 is disposed at a position facing the laminating roller 132. The first film 10 on which the coating film 30M is formed is wound around the backup roller 162 on the surface opposite to the surface on which the coating film 30M is formed, and is continuously conveyed to the laminating position P. Lamination position P means the position where the contact between the second film 20 and the coating film 30M starts. The first film 10 is preferably wound around the backup roller 162 before reaching the laminating position P. This is because even if wrinkles occur in the first film 10, the wrinkles are corrected and removed by the backup roller 162 before reaching the laminate position P. Therefore, the position (contact position) where the first film 10 is wound around the backup roller 162 and the distance L1 to the laminate position P are preferably long, for example, 30 mm or more is preferable, and the upper limit is usually It is determined by the diameter of the backup roller 162 and the pass line.
 本実施の形態では硬化部160で使用されるバックアップローラ162とラミネートローラ132とにより第二のフィルム20のラミネートが行われる。即ち、硬化部160で使用されるバックアップローラ162が、ラミネート部130で使用するローラとして兼用される。ただし、上記形態に限定されるものではなく、ラミネート部130に、バックアップローラ162と別に、ラミネート用のローラを設置し、バックアップローラ162を兼用しないようにすることもできる。 In this embodiment, the second film 20 is laminated by the backup roller 162 and the laminating roller 132 used in the curing unit 160. That is, the backup roller 162 used in the curing unit 160 is also used as a roller used in the laminating unit 130. However, the present invention is not limited to the above form, and a laminating roller may be installed in the laminating unit 130 in addition to the backup roller 162 so that the backup roller 162 is not used.
 硬化部160で使用されるバックアップローラ162をラミネート部130で使用することで、ローラの数を減らすことができる。また、バックアップローラ162は、第一のフィルム10に対するヒートローラとしても使用できる。 By using the backup roller 162 used in the curing unit 160 in the laminating unit 130, the number of rollers can be reduced. The backup roller 162 can also be used as a heat roller for the first film 10.
 図示しない送出機から送出された第二のフィルム20は、ラミネートローラ132に巻きかけられ、ラミネートローラ132とバックアップローラ162との間に連続搬送される。第二のフィルム20は、ラミネート位置Pで、第一のフィルム10に形成された塗膜30Mの上にラミネートされる。これにより、第一のフィルム10と第二のフィルム20とにより塗膜30Mが挟持される。ラミネートとは、第二のフィルム20を塗膜30Mの上に重ねあわせ、積層することをいう。 The second film 20 sent from a sending machine (not shown) is wound around the laminating roller 132 and continuously conveyed between the laminating roller 132 and the backup roller 162. The second film 20 is laminated on the coating film 30M formed on the first film 10 at the laminating position P. Thereby, the coating film 30 </ b> M is sandwiched between the first film 10 and the second film 20. Lamination refers to laminating the second film 20 on the coating film 30M.
 ラミネートローラ132とバックアップローラ162との距離L2は、第一のフィルム10と、塗膜30Mを重合硬化させた波長変換層(硬化層)30と、第二のフィルム20と、の合計厚みの値以上であることが好ましい。また、L2は第一のフィルム10と塗膜30Mと第二のフィルム20との合計厚みに5mmを加えた長さ以下であることが好ましい。距離L2を合計厚みに5mmを加えた長さ以下にすることより、第二のフィルム20と塗膜30Mとの間に泡が侵入することを防止することができる。ここでラミネートローラ132とバックアップローラ162との距離L2とは、ラミネートローラ132の外周面とバックアップローラ162の外周面との最短距離をいう。 The distance L2 between the laminating roller 132 and the backup roller 162 is a value of the total thickness of the first film 10, the wavelength conversion layer (cured layer) 30 obtained by polymerizing and curing the coating film 30M, and the second film 20. The above is preferable. Moreover, it is preferable that L2 is below the length which added 5 mm to the total thickness of the 1st film 10, the coating film 30M, and the 2nd film 20. FIG. By making the distance L2 equal to or less than the total thickness plus 5 mm, it is possible to prevent bubbles from entering between the second film 20 and the coating film 30M. Here, the distance L2 between the laminating roller 132 and the backup roller 162 is the shortest distance between the outer circumferential surface of the laminating roller 132 and the outer circumferential surface of the backup roller 162.
 ラミネートローラ132とバックアップローラ162の回転精度は、ラジアル振れで0.05mm以下、好ましくは0.01mm以下である。ラジアル振れが小さいほど、塗膜30Mの厚み分布を小さくすることができる。 Rotational accuracy of the laminating roller 132 and the backup roller 162 is 0.05 mm or less, preferably 0.01 mm or less in radial runout. The smaller the radial runout, the smaller the thickness distribution of the coating film 30M.
 また、第一のフィルム10と第二のフィルム20とで塗膜30Mを挟持した後の熱変形を抑制するため、硬化部160のバックアップローラ162の温度と第一のフィルム10の温度との差、及びバックアップローラ162の温度と第二のフィルム20の温度との差は30℃以下であることが好ましく、より好ましくは15℃以下、最も好ましくは同じである。 Further, in order to suppress thermal deformation after the coating film 30M is sandwiched between the first film 10 and the second film 20, the difference between the temperature of the backup roller 162 of the curing unit 160 and the temperature of the first film 10 The difference between the temperature of the backup roller 162 and the temperature of the second film 20 is preferably 30 ° C. or less, more preferably 15 ° C. or less, and most preferably the same.
 バックアップローラ162の温度との差を小さくするため、加熱チャンバー134が設けられている場合には、第一のフィルム10、及び第二のフィルム20を加熱チャンバー134内で加熱することが好ましい。例えば、加熱チャンバー134には、図示しない熱風発生装置により熱風が供給され、第一のフィルム10、及び第二のフィルム20を加熱することができる。 In order to reduce the difference from the temperature of the backup roller 162, when the heating chamber 134 is provided, it is preferable to heat the first film 10 and the second film 20 in the heating chamber 134. For example, hot air is supplied to the heating chamber 134 by a hot air generator (not shown), and the first film 10 and the second film 20 can be heated.
 第一のフィルム10が、温度調整されたバックアップローラ162に巻きかけられることにより、バックアップローラ162によって第一のフィルム10を加熱してもよい。 The first film 10 may be heated by the backup roller 162 by being wound around the temperature-adjusted backup roller 162.
 一方、第二のフィルム20については、ラミネートローラ132をヒートローラとすることにより、第二のフィルム20をラミネートローラ132で加熱することができる。ただし、加熱チャンバー134、及びヒートローラは必須ではなく、必要に応じで設けることができる。 On the other hand, the second film 20 can be heated with the laminating roller 132 by using the laminating roller 132 as a heat roller. However, the heating chamber 134 and the heat roller are not essential, and can be provided as necessary.
 次に、第一のフィルム10と第二のフィルム20とにより塗膜30Mが挟持された状態で、硬化部160に連続搬送される。図面に示す態様では、硬化部160における硬化は光照射により行われるが、重合性組成物に含まれる重合性化合物が加熱により重合するものである場合には、温風の吹き付け等の加熱により、硬化を行うことができる。 Next, the first film 10 and the second film 20 are continuously conveyed to the curing unit 160 in a state where the coating film 30M is sandwiched between the first film 10 and the second film 20. In the embodiment shown in the drawing, curing in the curing unit 160 is performed by light irradiation, but when the polymerizable compound contained in the polymerizable composition is polymerized by heating, by heating such as blowing hot air, Curing can be performed.
 バックアップローラ162と、バックアップローラ162に対向する位置には、光照射装置164が設けられている。バックアップローラ162と光照射装置164との間を、塗膜30Mを挟持した第一のフィルム10と第二のフィルム20とが連続搬送される。光照射装置により照射される光は、重合性組成物に含まれる光重合性化合物の種類に応じて決定すればよく、一例としては、紫外線が挙げられる。ここで紫外線とは、波長280~400nmの光をいうものとする。紫外線を発生する光源として、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。光照射量は塗膜の重合硬化を進行させ得る範囲に設定すればよく、例えば、一例として100~10000mJ/cmの照射量の紫外線を塗膜30Mに向けて照射することができる。 A light irradiation device 164 is provided at a position facing the backup roller 162 and the backup roller 162. Between the backup roller 162 and the light irradiation device 164, the first film 10 and the second film 20 sandwiching the coating film 30M are continuously conveyed. What is necessary is just to determine the light irradiated by a light irradiation apparatus according to the kind of photopolymerizable compound contained in a polymeric composition, and an ultraviolet-ray is mentioned as an example. Here, the ultraviolet light means light having a wavelength of 280 to 400 nm. As a light source that generates ultraviolet rays, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The light irradiation amount may be set within a range in which polymerization and curing of the coating film can proceed. For example, the coating film 30M can be irradiated with ultraviolet rays having an irradiation amount of 100 to 10,000 mJ / cm 2 .
 硬化部160では、第一のフィルム10と第二のフィルム20とにより塗膜30Mを挟持した状態で、第一のフィルム10をバックアップローラ162に巻きかけて、連続搬送しながら光照射装置164から光照射を行い、塗膜30Mを硬化させて波長変換層30を形成することができる。 In the curing unit 160, the first film 10 is wound around the backup roller 162 in a state where the coating film 30 </ b> M is sandwiched between the first film 10 and the second film 20, and is continuously conveyed from the light irradiation device 164. The wavelength conversion layer 30 can be formed by performing light irradiation to cure the coating film 30M.
 本実施の形態では、第一のフィルム10側をバックアップローラ162に巻きかけて、連続搬送したが、第二のフィルム20をバックアップローラ162に巻きかけて、連続搬送させることもできる。 In the present embodiment, the first film 10 side is wound around the backup roller 162 and continuously conveyed, but the second film 20 may be wound around the backup roller 162 and continuously conveyed.
 バックアップローラ162に巻きかけるとは、第一のフィルム10及び第二のフィルム20の何れかが、あるラップ角でバックアップローラ162の表面に接触している状態をいう。したがって、連続搬送される間、第一のフィルム10及び第二のフィルム20はバックアップローラ162の回転と同期して移動する。バックアップローラ162へ巻きかけは、少なくとも紫外線が照射されている間であればよい。 Wrapping around the backup roller 162 means a state in which either the first film 10 or the second film 20 is in contact with the surface of the backup roller 162 at a certain wrap angle. Accordingly, the first film 10 and the second film 20 move in synchronization with the rotation of the backup roller 162 while being continuously conveyed. Winding around the backup roller 162 may be at least during the irradiation of ultraviolet rays.
 バックアップローラ162は、円柱状の形状の本体と、本体の両端部に配置された回転軸とを備えている。バックアップローラ162の本体は、例えば、φ200~1000mmの直径を有している。バックアップローラ162の直径φについて制限はない。積層フィルムのカール変形と、設備コストと、回転精度とを考慮すると直径φ300~500mmであることが好ましい。バックアップローラ162の本体に温度調節器を取り付けることにより、バックアップローラ162の温度を調整することができる。 The backup roller 162 includes a cylindrical main body and rotating shafts disposed at both ends of the main body. The main body of the backup roller 162 has a diameter of φ200 to 1000 mm, for example. There is no restriction on the diameter φ of the backup roller 162. In consideration of curl deformation of the laminated film, equipment cost, and rotational accuracy, the diameter is preferably 300 to 500 mm. By attaching a temperature controller to the main body of the backup roller 162, the temperature of the backup roller 162 can be adjusted.
 バックアップローラ162の温度は、光照射時の発熱と、塗膜30Mの硬化効率と、第一のフィルム10と第二のフィルム20のバックアップローラ162上でのシワ変形の発生を考慮して、決定することができる。バックアップローラ162は、例えば、10~95℃の温度範囲に設定することが好ましく、15~85℃であることがより好ましい。ここでローラに関する温度とは、ローラの表面温度をいうものとする。 The temperature of the backup roller 162 is determined in consideration of heat generation during light irradiation, curing efficiency of the coating film 30M, and occurrence of wrinkle deformation on the backup roller 162 of the first film 10 and the second film 20. can do. The backup roller 162 is preferably set to a temperature range of 10 to 95 ° C., for example, and more preferably 15 to 85 ° C. Here, the temperature related to the roller refers to the surface temperature of the roller.
 ラミネート位置Pと光照射装置164との距離L3は、例えば30mm以上とすることができる。 The distance L3 between the laminate position P and the light irradiation device 164 can be set to 30 mm or more, for example.
 光照射により塗膜30Mは硬化されて波長変換層30となり、第一のフィルム10と波長変換層30と第二のフィルム20とを含む波長変換部材1Dが製造される。波長変換部材1Dは、剥離ローラ180によりバックアップローラ162から剥離される。波長変換部材1Dは、図示しない巻き取り機に連続搬送され、次いで巻き取り機により波長変換部材1Dはロール状に巻き取られる。 The coating film 30M is cured by the light irradiation to become the wavelength conversion layer 30, and the wavelength conversion member 1D including the first film 10, the wavelength conversion layer 30, and the second film 20 is manufactured. The wavelength conversion member 1D is peeled off from the backup roller 162 by the peeling roller 180. The wavelength conversion member 1D is continuously conveyed to a winder (not shown), and then the wavelength conversion member 1D is wound into a roll by the winder.
[バックライトユニット]
 次に、本発明の波長変換部材を備えたバックライトユニットについて説明する。図4は、バックライトユニットを示す概略構成断面図である。
 図4に示されるように、本発明のバックライトユニット2は、一次光(青色光L)を出射する光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる面状光源1Cと、面状光源1C上に備えられてなる波長変換部材1Dと、波長変換部材1Dを挟んで面状光源1Cと対向配置される再帰反射性部材2Bと、面状光源1Cを挟んで波長変換部材1Dと対向配置される反射板2Aとを備えており、波長変換部材1Dは、面状光源1Cから出射された一次光Lの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(緑色光L,赤色光L)及び波長変換部材1Dを透過した一次光Lを出射するものである。L、L、およびLにより、再帰反射性部材2Bの表面から白色光Lwを出射する。
 波長変換部材1Dの形状は特に限定されるものではなく、シート状、バー状等の任意の形状であることができる。
[Backlight unit]
Next, the backlight unit provided with the wavelength conversion member of the present invention will be described. FIG. 4 is a schematic cross-sectional view showing the backlight unit.
As shown in FIG. 4, the backlight unit 2 of the present invention includes a light source 1A that emits primary light (blue light L B ), and a light guide plate 1B that guides and emits primary light emitted from the light source 1A. A planar light source 1C, a wavelength conversion member 1D provided on the planar light source 1C, a retroreflective member 2B disposed to face the planar light source 1C across the wavelength conversion member 1D, and a planar light source across 1C and a reflecting plate 2A disposed opposite and the wavelength converting member 1D, the wavelength conversion member 1D, at least a portion of the primary light L B emitted from the surface light source 1C as excitation light, fluorescent , And the secondary light (green light L G , red light L R ) composed of this fluorescence and the primary light L B transmitted through the wavelength conversion member 1D are emitted. L G, the L R, and L B, emits white light Lw from the surface of the retroreflective member 2B.
The shape of the wavelength conversion member 1D is not particularly limited, and may be an arbitrary shape such as a sheet shape or a bar shape.
 図4において、波長変換部材1Dから出射されたL、LG、およびLは、再帰反射性部材2Bに入射し、入射した各光は、再帰反射性部材2Bと反射板2Aとの間で反射を繰り返し、何度も波長変換部材1Dを通過する。その結果、波長変換部材1Dでは充分な量の励起光(青色光L)が、赤色光Lを発光する量子ドット30A、緑色光L発光する量子ドット30Bによって吸収され、必要な量の蛍光(緑色光L,赤色光L)が発光し、再帰反射性部材2Bから白色光Lが具現化されて出射される。 In FIG. 4, L B emitted from the wavelength conversion member 1D, L G, and L R is incident on the retroreflective member 2B, the light incident, between the reflective plate 2A and the retroreflective member 2B The reflection is repeated and passes through the wavelength conversion member 1D many times. As a result, the wavelength conversion member 1D in a sufficient amount of excitation light (the blue light L B) is, quantum dots 30A that emits red light L R, is absorbed by the quantum dots 30B for emitting green light L G, the amount of required Fluorescence (green light L G , red light L R ) is emitted, and white light L W is embodied and emitted from the retroreflective member 2B.
 励起光として紫外光を用いた場合は、図1における量子ドット30A、30B、及び、図示しない30Cを含む波長変換層30に励起光として紫外光を入射させることにより、量子ドット30Aにより発光される赤色光、量子ドット30Bにより発光される緑色光、及び量子ドット30Cにより発光される青色光により、白色光を具現化することができる。 When ultraviolet light is used as excitation light, light is emitted from the quantum dots 30A by making ultraviolet light incident on the wavelength conversion layer 30 including the quantum dots 30A and 30B in FIG. 1 and 30C (not shown) as excitation light. White light can be embodied by red light, green light emitted by the quantum dots 30B, and blue light emitted by the quantum dots 30C.
 高輝度かつ高い色再現性の実現の観点からは、バックライトユニットとして、多波長光源化されたものを用いることが好ましい。例えば、430~480nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する青色光と、520~560nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する緑色光と、600~680nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する赤色光とを発光することが好ましい。
 さらなる輝度および色再現性の向上の観点から、バックライトユニットが発光する青色光の波長帯域は、440~460nmであることがより好ましい。
 同様の観点から、バックライトユニットが発光する緑色光の波長帯域は、520~545nmであることがより好ましい。
 また、同様の観点から、バックライトユニットが発光する赤色光の波長帯域は、610~640nmであることがより好ましい。
From the viewpoint of realizing high luminance and high color reproducibility, it is preferable to use a backlight unit that has been converted to a multi-wavelength light source. For example, blue light having an emission center wavelength in a wavelength band of 430 to 480 nm and a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 520 to 560 nm, and a half width of It is preferable to emit green light having an emission intensity peak that is 100 nm or less and red light having an emission center wavelength in the wavelength band of 600 to 680 nm and having an emission intensity peak that is 100 nm or less. .
From the viewpoint of further improving luminance and color reproducibility, the wavelength band of blue light emitted from the backlight unit is more preferably 440 to 460 nm.
From the same viewpoint, the wavelength band of the green light emitted from the backlight unit is more preferably 520 to 545 nm.
From the same viewpoint, the wavelength band of red light emitted from the backlight unit is more preferably 610 to 640 nm.
 また同様の観点から、バックライトユニットが発光する青色光、緑色光および赤色光の各発光強度の半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが一層好ましい。これらの中でも、青色光の各発光強度の半値幅が25nm以下であることが、特に好ましい。 From the same viewpoint, the half-value widths of the emission intensity of blue light, green light, and red light emitted from the backlight unit are all preferably 80 nm or less, more preferably 50 nm or less, and 40 nm or less. More preferably, it is more preferably 30 nm or less. Among these, it is particularly preferable that the half-value width of each emission intensity of blue light is 25 nm or less.
 バックライトユニット2は、少なくとも、上記波長変換部材1Dとともに、面状光源1Cを含む。光源1Aとしては、430nm~480nmの波長帯域に発光中心波長を有する青色光を発光するもの、又は、紫外光を発光するものが挙げられる。光源1Aとしては、発光ダイオードやレーザー光源等を使用することができる。 The backlight unit 2 includes at least the planar light source 1C together with the wavelength conversion member 1D. Examples of the light source 1A include those that emit blue light having an emission center wavelength in the wavelength band of 430 nm to 480 nm, and those that emit ultraviolet light. As the light source 1A, a light emitting diode, a laser light source, or the like can be used.
 面状光源1Cは、図4に示すように、光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる光源であっても良いし、光源1Aが波長変換部材1Dと平行な平面状に並べて配置され、導光板1Bに替えて拡散板を備えた光源であっても良い。前者の光源は一般にエッジライト方式、後者の光源は一般に直下型方式と呼ばれている。
 バックライトユニットの構成としては、図4では、導光板や反射板などを構成部材とするエッジライト方式について説明したが、直下型方式であっても構わない。導光板としては、公知のものを何ら制限なく使用することができる。
 なお、本実施形態では、光源として面状光源を用いた場合を例に説明したが、光源としては面状光源以外の光源も使用することができる。
As shown in FIG. 4, the planar light source 1 </ b> C may be a light source including a light source 1 </ b> A and a light guide plate 1 </ b> B that guides and emits primary light emitted from the light source 1 </ b> A. The light source may be a light source that is arranged in a plane parallel to the member 1D and includes a diffusion plate instead of the light guide plate 1B. The former light source is generally called an edge light method, and the latter light source is generally called a direct type.
As the configuration of the backlight unit, the edge light method using a light guide plate, a reflection plate, or the like as a constituent member has been described in FIG. 4, but a direct type may be used. Any known light guide plate can be used without any limitation.
In the present embodiment, a case where a planar light source is used as the light source has been described as an example. However, a light source other than the planar light source can be used as the light source.
 青色光を発光する光源を用いる場合、波長変換層には、少なくとも、励起光により励起され赤色光を発光する量子ドット30Aと、緑色光を発光する量子ドット30Bが含まれることが好ましい。これにより、光源から発光され波長変換部材を透過した青色光と、波長変換部材から発光される赤色光および緑色光により、白色光を具現化することができる。 When a light source that emits blue light is used, the wavelength conversion layer preferably includes at least quantum dots 30A that are excited by excitation light and emit red light, and quantum dots 30B that emit green light. Thereby, white light can be embodied by blue light emitted from the light source and transmitted through the wavelength conversion member, and red light and green light emitted from the wavelength conversion member.
 または他の態様では、光源として、300nm~430nmの波長帯域に発光中心波長を有する紫外光を発光するもの(紫外光源)、例えば、紫外線発光ダイオードを用いることができる。また他の態様では、発光ダイオードに替えてレーザー光源を使用することもできる。 Alternatively, in another aspect, a light source that emits ultraviolet light having an emission center wavelength in the wavelength band of 300 nm to 430 nm (ultraviolet light source), for example, an ultraviolet light emitting diode can be used. In another embodiment, a laser light source can be used instead of the light emitting diode.
 また、反射板2Aとしては、特に制限は無く、公知のものを用いることができ、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。 Further, the reflecting plate 2A is not particularly limited, and known ones can be used, and are described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, etc. Incorporated into the present invention.
 再帰反射性部材2Bは、公知の拡散板や拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズなど)、反射型偏光フィルム(例えば、住友スリーエム社製DBEFシリーズなど)等から構成されていてもよい。再帰反射性部材2Bの構成については、特許3416302号公報、特許3363565号公報、特許4091978号公報、特許3448626号公報などに記載されており、これらの公報の内容は本発明に組み込まれる。 The retroreflective member 2B is composed of a known diffusion plate, diffusion sheet, prism sheet (eg, BEF series manufactured by Sumitomo 3M), reflective polarizing film (eg, DBEF series manufactured by Sumitomo 3M), and the like. Also good. The configuration of the retroreflective member 2B is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
[液晶表示装置]
 上述のバックライトユニット2は液晶表示装置に応用することができる。図5に、本発明の液晶表示装置の概略構成断面図を示す。
 図5に示されるように、液晶表示装置4は、上記実施形態のバックライトユニット2とバックライトユニット2における再帰反射性部材2B側に対向配置された液晶セルユニット3とを備えてなる。液晶セルユニット3は、液晶セル31を偏光板32と33とで挟持した構成であり、偏光板32,33は、それぞれ、偏光子322、332の両主面を偏光板保護フィルム321と323、331と333で保護された構成としている。
[Liquid Crystal Display]
The backlight unit 2 described above can be applied to a liquid crystal display device. FIG. 5 shows a schematic cross-sectional view of the liquid crystal display device of the present invention.
As shown in FIG. 5, the liquid crystal display device 4 includes the backlight unit 2 according to the above-described embodiment and the liquid crystal cell unit 3 disposed to face the retroreflective member 2 </ b> B in the backlight unit 2. The liquid crystal cell unit 3 has a configuration in which the liquid crystal cell 31 is sandwiched between polarizing plates 32 and 33. The polarizing plates 32 and 33 have polarizing plate protective films 321 and 323 on both main surfaces of the polarizers 322 and 332, respectively. It is configured to be protected by 331 and 333.
 液晶表示装置4を構成する液晶セル31、偏光板32、33及びその構成要素については特に限定はなく、公知の方法で作製されるものや市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。 There are no particular limitations on the liquid crystal cell 31, the polarizing plates 32 and 33, and the components thereof that constitute the liquid crystal display device 4, and those produced by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
 液晶セル31の駆動モードについては特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモード、又はTNモードであることが好ましいが、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報の図2に示す構成が一例として挙げられる。ただし、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。 The driving mode of the liquid crystal cell 31 is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). ) And other modes can be used. The liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto. As an example of the configuration of the VA mode liquid crystal display device, the configuration shown in FIG. However, the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
 液晶表示装置4には、さらに必要に応じて光学補償を行う光学補償部材、接着層などの付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに又はそれに替えて、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。 The liquid crystal display device 4 further includes an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer. In addition to or in place of color filter substrate, thin layer transistor substrate, lens film, diffusion sheet, hard coat layer, antireflection layer, low reflection layer, antiglare layer, etc., forward scattering layer, primer layer, antistatic layer, undercoat A surface layer such as a layer may be disposed.
 バックライト側の偏光板32は、液晶セル31側の偏光板保護フィルム323として、位相差フィルムを有していてもよい。このような位相差フィルムとしては、公知のセルロースアシレートフィルム等を用いることができる。 The polarizing plate 32 on the backlight side may have a retardation film as the polarizing plate protective film 323 on the liquid crystal cell 31 side. As such a retardation film, a known cellulose acylate film or the like can be used.
 バックライトユニット2及び液晶表示装置4は、上記本発明の良好な初期輝度を有し、かつ輝度劣化が低減された波長変換部材を備えるため、高輝度なバックライトユニット及び液晶表示装置となる。 Since the backlight unit 2 and the liquid crystal display device 4 include the wavelength conversion member having the good initial luminance of the present invention and reduced luminance deterioration, the backlight unit 2 and the liquid crystal display device are obtained.
 以下に実施例に基づき本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described more specifically based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
(バリアフィルム10の作製)
 支持体としてポリエチレンテレフタレート(PET)フィルム(東洋紡社製、商品名「コスモシャイン(登録商標)A4300」、厚さ50μm)を用いて、支持体の片面側に以下の手順で有機層および無機層を順次形成した。
(Preparation of barrier film 10)
Using a polyethylene terephthalate (PET) film (trade name “Cosmo Shine (registered trademark) A4300”, thickness 50 μm, manufactured by Toyobo Co., Ltd.) as a support, an organic layer and an inorganic layer were formed on one side of the support by the following procedure. Sequentially formed.
(有機層の形成)
 トリメチロールプロパントリアクリレート(製品名「TMPTA」、ダイセル・オルネクス(株)製)および光重合開始剤(商品名「ESACURE(登録商標) KTO46」、ランベルティ社製、)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。この塗布液を、ダイコーターを用いてロールトウロールにてPETフィルム上に塗布し、50℃の乾燥ゾーンを3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm)し、紫外線にて硬化させ、巻き取った。支持体上に形成された有機層の厚さは、1μmであった。
(Formation of organic layer)
Prepare trimethylolpropane triacrylate (product name “TMPTA”, manufactured by Daicel Ornex Co., Ltd.) and photopolymerization initiator (trade name “ESACURE (registered trademark) KTO46”, manufactured by Lamberti Co., Ltd.) Weighed to 95: 5 and dissolved them in methyl ethyl ketone to obtain a coating solution having a solid content concentration of 15%. This coating solution was applied onto a PET film with a roll-to-roll using a die coater, and passed through a drying zone at 50 ° C. for 3 minutes. Thereafter, the sample was irradiated with ultraviolet rays (integrated irradiation amount: about 600 mJ / cm 2 ) in a nitrogen atmosphere, cured with ultraviolet rays, and wound up. The thickness of the organic layer formed on the support was 1 μm.
(無機層の形成)
 次に、ロールトウロールのCVD装置を用いて、有機層の表面に無機層(窒化ケイ素層)を形成した。原料ガスとして、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。製膜圧力は40Pa、到達膜厚は50nmであった。このようにして支持体上に形成された有機層の表面に無機層が積層されたバリアフィルム10を作製した。
(Formation of inorganic layer)
Next, an inorganic layer (silicon nitride layer) was formed on the surface of the organic layer using a roll-to-roll CVD apparatus. Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases. A high frequency power supply having a frequency of 13.56 MHz was used as the power supply. The film forming pressure was 40 Pa, and the reached film thickness was 50 nm. Thus, the barrier film 10 in which the inorganic layer was laminated on the surface of the organic layer formed on the support was produced.
(実施例1で使用する重合性組成物の調製および塗布液の作製)
 下記の重合性組成物1を調製し、孔径0.2μmのポリプロピレン製フィルタでろ過した後、30分間減圧乾燥して塗布液として用いた。
(Preparation of polymerizable composition used in Example 1 and preparation of coating solution)
The following polymerizable composition 1 was prepared, filtered through a polypropylene filter having a pore size of 0.2 μm, dried under reduced pressure for 30 minutes, and used as a coating solution.
-重合性組成物1-
 量子ドット1のトルエン分散液(発光極大:520nm)  20質量部
 量子ドット2のトルエン分散液(発光極大:630nm)   2質量部
 モノマー1(DPHA)               88.5質量部
 チオール化合物(カレンズMT-BD1)         10質量部
 Irgacure819(重合開始剤)         0.2質量部
 添加剤1                       0.2質量部
 添加剤2                       0.4質量部
 添加剤3(サイクロマーM100)           0.5質量部
なお、量子ドット1および量子ドット2のトルエン分散液の量子ドット濃度は3質量%である。
-Polymerizable composition 1-
Toluene dispersion of quantum dots 1 (emission maximum: 520 nm) 20 parts by mass Toluene dispersion of quantum dots 2 (emission maximum: 630 nm) 2 parts by mass Monomer 1 (DPHA) 88.5 parts by mass Thiol compound (Karenz MT-BD1) 10 parts by weight Irgacure 819 (polymerization initiator) 0.2 parts by weight Additive 1 0.2 parts by weight Additive 2 0.4 parts by weight Additive 3 (Cyclomer M100) 0.5 parts by weight Quantum dot 1 and quantum The quantum dot concentration of the toluene dispersion of dot 2 is 3% by mass.
 量子ドット1(CZ520-100、NN-ラボズ社製)はコアがCdSeで、シェルがZnSで構成されたコア/シェル型の量子ドットであり、発光中心波長が520nmであり、半値幅30nmである。
 配位子として、オクタデシルアミンが量子ドット1に配位している。
 量子ドット2(CZ620-100、NN-ラボズ社製)は、コアがCdSeで、シェルがZnSで構成されたコア/シェル型の量子ドットであり、発光中心波長が630nmであり、半値幅が35nmである。
 配位子として、オクタデシルアミンが量子ドット2に配位している。
Quantum dot 1 (CZ520-100, manufactured by NN-Labs) is a core / shell type quantum dot in which the core is made of CdSe and the shell is made of ZnS, the emission center wavelength is 520 nm, and the half width is 30 nm. .
Octadecylamine is coordinated to the quantum dot 1 as a ligand.
Quantum dot 2 (CZ620-100, manufactured by NN-Labs) is a core / shell type quantum dot in which the core is made of CdSe and the shell is made of ZnS, the emission center wavelength is 630 nm, and the half width is 35 nm. It is.
Octadecylamine is coordinated to the quantum dot 2 as a ligand.
(実施例2で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量およびチオール化合物の含有量を表1のようにした以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 2 and preparation of coating solution)
It was produced in the same manner as in Example 1 except that the content of monomer 1 and the content of thiol compound were as shown in Table 1.
(実施例3で使用する重合性組成物の調製および塗布液の作製)
 モノマー1に4官能アクリレートであるPETAを用いた以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 3 and preparation of coating solution)
It was produced in the same manner as in Example 1 except that PETA, which is a tetrafunctional acrylate, was used as the monomer 1.
(実施例4で使用する重合性組成物の調製および塗布液の作製)
 モノマー1に2官能アクリレートであるA-DCPを用いた以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 4 and preparation of coating solution)
This was prepared in the same manner as in Example 1 except that A-DCP, which is a bifunctional acrylate, was used for monomer 1.
(実施例5で使用する重合性組成物の調製および塗布液の作製)
 モノマー1に2官能アクリレートである1,9-NDAを用いた以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 5 and preparation of coating solution)
It was produced in the same manner as in Example 1 except that 1,9-NDA, which is a bifunctional acrylate, was used for monomer 1.
(実施例6で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量を表1のようにし、さらにモノマー2として単官能アクリレートであるIBXAを用いた以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 6 and preparation of coating solution)
It was produced in the same manner as in Example 1 except that the monomer 1 content was as shown in Table 1, and IBXA, which is a monofunctional acrylate, was used as the monomer 2.
(実施例7で使用する重合性組成物の調製および塗布液の作製)
 モノマー2の含有量およびチオール化合物の含有量を表1のようにした以外は、実施例6と同様に作製した。
(Preparation of polymerizable composition used in Example 7 and preparation of coating solution)
It was produced in the same manner as in Example 6 except that the content of monomer 2 and the content of thiol compound were as shown in Table 1.
(実施例8で使用する重合性組成物の調製および塗布液の作製)
 モノマー2の含有量およびチオール化合物の含有量を表2のようにした以外は、実施例6と同様に作製した。
(Preparation of polymerizable composition used in Example 8 and preparation of coating solution)
It was produced in the same manner as in Example 6 except that the content of monomer 2 and the content of thiol compound were as shown in Table 2.
(実施例9で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量、モノマー2の含有量およびチオール化合物の含有量を表2のようにした以外は、実施例6と同様に作製した。
(Preparation of polymerizable composition used in Example 9 and preparation of coating solution)
It was produced in the same manner as in Example 6 except that the content of monomer 1, the content of monomer 2 and the content of thiol compound were as shown in Table 2.
(実施例10で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量およびチオール化合物の含有量を表2のようにした以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 10 and preparation of coating solution)
It was produced in the same manner as in Example 1 except that the content of monomer 1 and the content of thiol compound were as shown in Table 2.
(実施例11で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量を表2のように変更し、さらにモノマー2として単官能アクリレートであるDCPを用いた以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 11 and preparation of coating solution)
It was produced in the same manner as in Example 1 except that the content of monomer 1 was changed as shown in Table 2, and that DCP, which is a monofunctional acrylate, was used as monomer 2.
(実施例12で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量を表2のように変更し、さらにモノマー2としてIBXAを用い、チオール化合物として3官能の二級チオール化合物であるカレンズMT-NR1を用いた以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 12 and preparation of coating solution)
As in Example 1, except that the content of monomer 1 was changed as shown in Table 2, IBXA was used as monomer 2, and Karenz MT-NR1, which is a trifunctional secondary thiol compound, was used as the thiol compound. Produced.
(実施例13で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量を表2のように変更し、さらにモノマー2としてIBXAを用い、チオール化合物として4官能の二級チオール化合物であるカレンズMT-PE1を用いた以外は、実施例1と同様に作製した。
(Preparation of polymerizable composition used in Example 13 and preparation of coating solution)
The content of monomer 1 was changed as shown in Table 2, and IBXA was used as monomer 2 and Karenz MT-PE1, which is a tetrafunctional secondary thiol compound, was used as the thiol compound, as in Example 1. Produced.
(比較例1で使用する重合性組成物の調製および塗布液の作製)
 チオール化合物を用いなかったこと以外は、実施例1と同様に作製した。比較例の材料および配合を表3に示す。
(Preparation of polymerizable composition used in Comparative Example 1 and preparation of coating solution)
It was produced in the same manner as in Example 1 except that no thiol compound was used. Table 3 shows the materials and blends of the comparative examples.
(比較例2で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量および重合開始剤の含有量を表3のようにした以外は、比較例1と同様に作製した。
(Preparation of polymerizable composition used in Comparative Example 2 and preparation of coating solution)
It was produced in the same manner as in Comparative Example 1 except that the content of the monomer 1 and the content of the polymerization initiator were as shown in Table 3.
(比較例3で使用する重合性組成物の調製および塗布液の作製)
 モノマー1として単官能アクリレートであるIBXAを用いた以外は、比較例1と同様に作製した。
(Preparation of polymerizable composition used in Comparative Example 3 and preparation of coating solution)
It was produced in the same manner as Comparative Example 1 except that IBXA, which is a monofunctional acrylate, was used as the monomer 1.
(比較例4で使用する重合性組成物の調製および塗布液の作製)
 モノマー1としてDPHAを用い、モノマー2として単官能アクリレートIBXAを用いた以外は、比較例1と同様にした。
(Preparation of polymerizable composition used in Comparative Example 4 and preparation of coating solution)
Comparative Example 1 was repeated except that DPHA was used as monomer 1 and monofunctional acrylate IBXA was used as monomer 2.
(比較例5で使用する重合性組成物の調製および塗布液の作製)
 モノマー2の含有量を変更し、チオール化合物として単官能であって複素環にチオール基が結合しているMBIを用いた以外は、比較例4と同様に作製した。
(Preparation of polymerizable composition used in Comparative Example 5 and preparation of coating solution)
It was produced in the same manner as in Comparative Example 4 except that the content of monomer 2 was changed and MBI having a monofunctional thiol group and a thiol group bonded to the heterocyclic ring was used as the thiol compound.
(比較例6で使用する重合性組成物の調製および塗布液の作製)
 モノマー2の含有量を変更し、チオール化合物として単官能の一級チオール化合物のC8SHを用いた以外は、比較例4と同様に作製した。
(Preparation of polymerizable composition used in Comparative Example 6 and preparation of coating solution)
It was produced in the same manner as in Comparative Example 4 except that the content of the monomer 2 was changed and a monofunctional primary thiol compound C8SH was used as the thiol compound.
(比較例7で使用する重合性組成物の調製および塗布液の作製)
 チオール化合物として多官能の一級チオール化合物であるPEMPを用いた以外は、比較例4と同様に作製した。
(Preparation of polymerizable composition used in Comparative Example 7 and preparation of coating solution)
It produced similarly to the comparative example 4 except having used PEMP which is a polyfunctional primary thiol compound as a thiol compound.
(比較例8で使用する重合性組成物の調製および塗布液の作製)
 モノマー1の含有量を変更し、チオール化合物としてカレンズMT-BD1を加え、メタ(アクリル)基/チオール基を3以下に調整した以外は、比較例1と同様に作製した。
(Preparation of polymerizable composition used in Comparative Example 8 and preparation of coating solution)
It was produced in the same manner as in Comparative Example 1 except that the content of monomer 1 was changed, Karenz MT-BD1 was added as a thiol compound, and the meth (acryl) group / thiol group was adjusted to 3 or less.
(実施例1の波長変換部材の作製)
 上述した手順で作製したバリアフィルム10を第一のフィルムおよび第二のフィルムとして使用し、図2および図3を参照して説明した製造工程により、波長変換部材を得た。具体的には、第一のフィルムとしてバリアフィルム10を用意し、1m/分、60N/mの張力で連続搬送しながら、無機層面上に上記で調製した重合性組成物1をダイコーターにて塗布し、50μmの厚さの塗膜を形成した。次いで、塗膜が形成された第一のフィルムをバックアップローラに巻きかけ、塗膜の上に第二のフィルムを無機層面が塗膜に接する向きでラミネートし、2枚のバリアフィルム10で塗膜を挟持した状態で連続搬送しながら、100℃の加熱ゾーンを3分間通過させた。その後、160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、紫外線を照射して硬化させ、量子ドットを含有する波長変換層を形成した。紫外線の照射量は2000mJ/cmであった。また、図3におけるL1は50mm、L2は1mm、L3は50mmであった。
(Preparation of wavelength conversion member of Example 1)
The barrier film 10 produced by the above-described procedure was used as the first film and the second film, and a wavelength conversion member was obtained by the manufacturing process described with reference to FIGS. 2 and 3. Specifically, the barrier film 10 is prepared as the first film, and the polymerizable composition 1 prepared above is formed on the surface of the inorganic layer with a die coater while continuously transporting at a tension of 1 m / min and 60 N / m. This was applied to form a coating film having a thickness of 50 μm. Next, the first film on which the coating film is formed is wound around a backup roller, and the second film is laminated on the coating film so that the inorganic layer surface is in contact with the coating film. Was passed through a heating zone at 100 ° C. for 3 minutes while being continuously conveyed. Thereafter, using a 160 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.), it was cured by irradiating with ultraviolet rays to form a wavelength conversion layer containing quantum dots. The irradiation amount of ultraviolet rays was 2000 mJ / cm 2 . In FIG. 3, L1 was 50 mm, L2 was 1 mm, and L3 was 50 mm.
(その他の実施例および比較例の波長変換部材の作製)
 上記で作製した、その他の実施例および比較例で使用する塗布液を用いた以外は、実施例1と同様にして波長変換部材を作製した。
(Production of wavelength conversion members of other examples and comparative examples)
A wavelength conversion member was prepared in the same manner as in Example 1 except that the coating solution used in the other examples and comparative examples prepared above was used.
(波長変換層の光硬化性評価)
 光硬化性は、測定対象を各波長変換部材の基材に剥離紙を用いて得られた波長変換層の単膜とし、市販のFT-IR装置(PerkinElmer社製、Frontierシリーズ)を用い、モノマー溶液(重合性化合物)を基準として、1650cm-1近傍に観測されるビニル基の吸収ピーク強度からアクリレート反応率を算出し、下記評価基準に基づいて評価した。
(Evaluation of photocurability of wavelength conversion layer)
The photo-curing property is determined by using a single wavelength conversion layer film obtained by using release paper as a base material of each wavelength conversion member, and using a commercially available FT-IR apparatus (PerkinElmer, Frontier series) Using the solution (polymerizable compound) as a reference, the acrylate reaction rate was calculated from the absorption peak intensity of the vinyl group observed in the vicinity of 1650 cm −1 and evaluated based on the following evaluation criteria.
<評価基準>
 A+:反応率90%以上
 A:反応率80以上90%未満
 B:反応率65以上80%未満
 C:反応率50以上65%未満
 D:反応率50%未満
<Evaluation criteria>
A: reaction rate 90% or more A: reaction rate 80 or more and less than 90% B: reaction rate 65 or more and less than 80% C: reaction rate 50 or more and less than 65% D: reaction rate 50% or less
(輝度の測定)
 バックライトユニットに青色光源を備える市販のタブレット端末(商品名「Kindle(登録商標)Fire HDX 7」,Amazon社製,以下、単にKindle Fire HDX 7と記載する場合がある。)を分解し、バックライトユニットを取り出した。QDEF(Quantum Dot Enhancement Film)に代えて矩形に切り出した実施例または比較例の波長変換部材を組み込んだ。このようにして液晶表示装置を作製した。作製した液晶表示装置を点灯させ、全面が白表示になるようにし、導光板の面に対して垂直方向520mmの位置に設置した輝度計(商品名「SR3」、TOPCON社製)に輝度を測定した。評価結果を表1~表3に示す。
(Measurement of brightness)
A commercially available tablet terminal (trade name “Kindle (registered trademark) Fire HDX 7”, manufactured by Amazon, Inc., hereinafter simply referred to as “Kindle Fire HDX 7”) may be disassembled and back mounted. The light unit was taken out. Instead of QDEF (Quantum Dot Enhancement Film), the wavelength conversion member of the example or comparative example cut into a rectangle was incorporated. In this way, a liquid crystal display device was produced. The prepared liquid crystal display device is turned on so that the entire surface is displayed in white, and the luminance is measured with a luminance meter (trade name “SR3”, manufactured by TOPCON) installed at a position of 520 mm perpendicular to the surface of the light guide plate. did. The evaluation results are shown in Tables 1 to 3.
(輝度の光耐久性)
 作製した波長変換部材を、450nmの中心波長をもつ青色LEDを用いて照度300mw/cm-2で1000時間照射した。その後、上記と同様にしてKindle Fire HDX 7に組み込み、輝度を測定した。輝度の光耐久性を、下記評価基準に基づいて評価した。
(Luminous light durability)
The prepared wavelength conversion member was irradiated for 1000 hours at an illuminance of 300 mw / cm −2 using a blue LED having a center wavelength of 450 nm. After that, it was incorporated into Kindle Fire HDX 7 in the same manner as described above, and the luminance was measured. The light durability of the luminance was evaluated based on the following evaluation criteria.
<評価基準>
 A:加熱後の輝度の低下が5%未満
 B:加熱後の輝度の低下が5%以上10%未満
 C:加熱後の輝度の低下が10%以上15%未満
 D:加熱後の輝度の低下が15%以上
<Evaluation criteria>
A: Decrease in luminance after heating is less than 5% B: Decrease in luminance after heating is 5% or more and less than 10% C: Decrease in luminance after heating is 10% or more and less than 15% D: Decrease in luminance after heating 15% or more
(輝度の熱耐久性)
 作製した波長変換部材を、ヤマト科学株式会社製精密恒温器DF411を用い、85℃で1000時間加熱した。その後、上記と同様にしてKindle Fire HDX 7に組み込み、輝度を測定した。
 輝度の熱耐久性を、下記評価基準に基づいて評価した。
(Brightness thermal durability)
The produced wavelength conversion member was heated at 85 ° C. for 1000 hours using a precision thermostat DF411 manufactured by Yamato Scientific Co., Ltd. After that, it was incorporated into Kindle Fire HDX 7 in the same manner as described above, and the luminance was measured.
The thermal durability of luminance was evaluated based on the following evaluation criteria.
<評価基準>
 A:加熱後の輝度の低下が5%未満
 B:加熱後の輝度の低下が5%以上10%未満
 C:加熱後の輝度の低下が10%以上15%未満
 D:加熱後の輝度の低下が15%以上
<Evaluation criteria>
A: Decrease in luminance after heating is less than 5% B: Decrease in luminance after heating is 5% or more and less than 10% C: Decrease in luminance after heating is 10% or more and less than 15% D: Decrease in luminance after heating 15% or more
 評価結果を表1~3に示す。 Evaluation results are shown in Tables 1-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例および比較例に用いた材料]
 DPHA(ジペンタエリスリトールヘキサアクリレート):6官能アクリレート、新中村化学工業株式会社製
 PETA(ペンタエリスリトールテトラアクリレート):4官能アクリレート、新中村化学工業株式会社製
 A-DCP(トリシクロデカンジメタノールジアクリレート):2官能アクリレート、新中村化学工業株式会社製
 1,9-NDA(1,9-ノナンジアクリレート):2官能アクリレート、共栄社化学工業株式会社製
 DCP(ジシクロペンタニルアクリレート):単官能アクリレート、日立化成株式会社製
 IBXA(イソボルニルアクリレート):単官能アクリレート、大阪有機化学工業株式会社製
 カレンズMT-BD1(1,4-ビス(3-メルカプトブチリルオキシ)ブタン):2官能チオール、昭和電工株式会社製
 カレンズMT-NR1(1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン):3官能チオール、昭和電工株式会社製
 カレンズMT-PE1(ペンタエリスリトール テトラキス(3-メルカプトブチレート)):4官能チオール、昭和電工株式会社製
 PEMP(ペンタエリスリトールテトラキス3-メルカプトプロピオネート)):4官能チオール一級チオール、SC有機化学株式会社製
 Irgacure(登録商標)819:ラジカル重合開始剤、BASF社製
 C8SH(オクタンチオール):一級チオール、東京化成工業株式会社製
 AO-20(1,3,5-トリス[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン:フェノール系ラジカル捕捉剤、株式会社アデカ製
 PEP-8(ジステアリルペンタエリスリトールジホスファイト):リン系過酸化物分解剤、株式会社アデカ製
 サイクロマーM100(3,4-エポキシシクロヘキシルメチルメタアクリレート):エポキシ系酸捕捉剤、株式会社ダイセル製
 MBI(2-メルカプトベンゾイミダゾール):連鎖移動剤、東京化成工業株式会社製
[Materials Used in Examples and Comparative Examples]
DPHA (dipentaerythritol hexaacrylate): hexafunctional acrylate, manufactured by Shin-Nakamura Chemical Co., Ltd. PETA (pentaerythritol tetraacrylate): tetrafunctional acrylate, manufactured by Shin-Nakamura Chemical Co., Ltd. A-DCP (tricyclodecane dimethanol diacrylate) ): Bifunctional acrylate, Shin-Nakamura Chemical Co., Ltd. 1,9-NDA (1,9-nonane diacrylate): Bifunctional acrylate, Kyoeisha Chemical Co., Ltd. DCP (dicyclopentanyl acrylate): Monofunctional acrylate IBXA (isobornyl acrylate) manufactured by Hitachi Chemical Co., Ltd .: monofunctional acrylate, Karenz MT-BD1 (1,4-bis (3-mercaptobutyryloxy) butane) manufactured by Osaka Organic Chemical Industry Co., Ltd .: bifunctional thiol, Showa Denko Co., Ltd. Lens MT-NR1 (1,3,5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione): trifunctional thiol, Karenz MT-PE1 (pentaerythritol tetrakis (3-mercaptobutyrate)) manufactured by Showa Denko KK: tetrafunctional thiol, PEMP (pentaerythritol tetrakis 3-mercaptopropionate) manufactured by Showa Denko KK): 4-functional thiol primary thiol Irgacure (registered trademark) 819 manufactured by SC Organic Chemical Co., Ltd .: radical polymerization initiator, C8SH (octanethiol) manufactured by BASF: primary thiol, AO-20 manufactured by Tokyo Chemical Industry Co., Ltd. [1,3,5-Tris [[ 3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl]- , 3,5-triazine-2,4,6 (1H, 3H, 5H) -trione: phenolic radical scavenger, manufactured by ADEKA CORPORATION PEP-8 (distearylpentaerythritol diphosphite): phosphorus peroxide Decomposing agent, Adeka Co., Ltd., Cyclomer M100 (3,4-epoxycyclohexylmethyl methacrylate): Epoxy acid scavenger, manufactured by Daicel Corporation MBI (2-mercaptobenzimidazole): Chain transfer agent, Tokyo Chemical Industry Co., Ltd. Made
 表1~3に示すように、第二級炭素原子、第三級炭素原子、または環構造上の炭素原子に結合したチオール化合物を用いた実施例は、チオール化合物を用いない比較例1および比較例2と比較して、アクリレート反応率が良く、熱耐久性が向上した。さらに、単官能チオール化合物および多官能の一級チオール化合物と比較して光耐久性が向上した。
 また、4官能の二級チオールを用いた実施例13は、4官能の一級チオール化合物を用いた比較例7に対して、光耐久性および熱耐久性のいずれも優れていることがわかった。特に、実施例11~実施例13から、多官能のアクリレートのうち、2官能のチオール化合物のアクリレート反応率が特に良いことがわかった。これは2官能であることにより、重合反応がある程度進んだポリマー分子の未反応アクリロイル基に近づくことができたため、良好に架橋することができたと推測する。
 一方、比較例6および比較例7は、単官能の一級チオール化合物が量子ドットに配位したか、あるいは既存の配位子との交換が生じたため、光耐久性および熱耐久性が低下したと考えられる。
 また、比較例8は、アクリロイル基/チオール基の比率が1.5と低く、チオール基の比率が高い。この場合、アクリレート反応率は良好であるが、光耐久性および熱耐久性のいずれにおいても実施例より劣った。未反応のチオールが存在することにより硬化が不充分であり、ガスバリア性が低下したことによると考えられる。
As shown in Tables 1 to 3, Examples using a thiol compound bonded to a secondary carbon atom, a tertiary carbon atom, or a carbon atom on a ring structure are compared with Comparative Example 1 and Comparative Example in which no thiol compound is used. Compared with Example 2, the acrylate reaction rate was good and the thermal durability was improved. Furthermore, light durability improved compared with the monofunctional thiol compound and the polyfunctional primary thiol compound.
In addition, Example 13 using a tetrafunctional secondary thiol was found to be superior in both light durability and heat durability to Comparative Example 7 using a tetrafunctional primary thiol compound. In particular, from Examples 11 to 13, it was found that among the polyfunctional acrylates, the acrylate reaction rate of the bifunctional thiol compound was particularly good. It is presumed that this was able to crosslink well because it was able to approach the unreacted acryloyl group of the polymer molecule in which the polymerization reaction proceeded to some extent because it was bifunctional.
On the other hand, in Comparative Example 6 and Comparative Example 7, the monofunctional primary thiol compound was coordinated to the quantum dot, or exchange with an existing ligand occurred, so that the light durability and the heat durability decreased. Conceivable.
In Comparative Example 8, the ratio of acryloyl group / thiol group is as low as 1.5 and the ratio of thiol group is high. In this case, the acrylate reaction rate was good, but both the light durability and the heat durability were inferior to those of the examples. It is considered that the presence of unreacted thiol is insufficient in curing and the gas barrier property is lowered.
1A 光源
1B 導光板
1C 面状光源
1D 波長変換部材
2 バックライトユニット
2A 反射板
2B 再帰反射性部材
3 液晶セルユニット
4 液晶表示装置
10,20 バリアフィルム
11,21 支持体
12,22バリア層
12a,22a 有機層
12b,22b 無機層
13 凹凸付与層(マット層)
30 波長変換層
30A,30B 量子ドット
30P 有機マトリックス
31 液晶セル
 励起光(一次光、青色光)
 赤色光(二次光、蛍光)
 緑色光(二次光、蛍光)
 白色光
DESCRIPTION OF SYMBOLS 1A Light source 1B Light guide plate 1C Planar light source 1D Wavelength conversion member 2 Backlight unit 2A Reflection plate 2B Retroreflective member 3 Liquid crystal cell unit 4 Liquid crystal display device 10, 20 Barrier film 11, 21 Support body 12, 22 Barrier layer 12a, 22a Organic layer 12b, 22b Inorganic layer 13 Concavity and convexity providing layer (mat layer)
30 Wavelength conversion layer 30A, 30B quantum dots 30P organic matrix 31 liquid crystal cell L B excitation light (primary light, blue light)
LR red light (secondary light, fluorescence)
L G the green light (secondary light, fluorescence)
L W white light

Claims (11)

  1.  量子ドット、(メタ)アクリレートモノマー、重合開始剤、および、チオール化合物を含み、
     該チオール化合物が、分子内にチオール基を複数有し、該複数のチオール基の全てが、第二級炭素原子、第三級炭素原子、または環構造上の炭素原子に結合した化合物であり、
     前記(メタ)アクリレートモノマーの(メタ)アクリロイル基と前記チオール化合物のチオール基との官能基比率である(メタ)アクリロイル基/チオール基が3より大きい重合性組成物。
    Including quantum dots, (meth) acrylate monomers, polymerization initiators, and thiol compounds,
    The thiol compound has a plurality of thiol groups in the molecule, and all of the plurality of thiol groups are compounds bonded to a secondary carbon atom, a tertiary carbon atom, or a carbon atom on a ring structure,
    A polymerizable composition having a (meth) acryloyl group / thiol group greater than 3 which is a functional group ratio of the (meth) acryloyl group of the (meth) acrylate monomer to the thiol group of the thiol compound.
  2.  前記チオール化合物が、下記一般式Iで表される請求項1記載の重合性組成物。
    Figure JPOXMLDOC01-appb-C000011
    一般式I中、Aはn価の有機連結基を表し、RおよびRはそれぞれ水素原子または有機基を表し、かつRおよびRの少なくとも一方は有機基である。RおよびRは環を形成してもよい。nは2~6の整数であり、mは0~3の整数である。
    The polymerizable composition according to claim 1, wherein the thiol compound is represented by the following general formula I.
    Figure JPOXMLDOC01-appb-C000011
    In general formula I, A represents an n-valent organic linking group, R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring. n is an integer of 2 to 6, and m is an integer of 0 to 3.
  3.  前記(メタ)アクリレートモノマーが、多官能である請求項1または2記載の重合性組成物。 The polymerizable composition according to claim 1 or 2, wherein the (meth) acrylate monomer is polyfunctional.
  4.  前記チオール化合物の分子量が200以上3000未満である請求項1から3いずれか1項記載の重合性組成物。 The polymerizable composition according to any one of claims 1 to 3, wherein the molecular weight of the thiol compound is 200 or more and less than 3000.
  5.  量子ドット、ポリ(メタ)アクリレート、および重合開始剤を含み、前記ポリ(メタ)アクリレートが、分子中に下記一般式II-Aまたは一般式II-Bで表される結合を有する重合物。
    Figure JPOXMLDOC01-appb-C000012
    一般式II-Aおよび一般式II-B中、RおよびRはそれぞれ水素原子または有機基を表し、かつRおよびRの少なくとも一方は有機基である。RおよびRは環を形成してもよい。Rは水素原子またはメチル基を表す。Rは置換または無置換のアルキル基、シクロアルキル基またはアリール基を表す。*は結合手を表す。
    A polymer comprising a quantum dot, poly (meth) acrylate, and a polymerization initiator, wherein the poly (meth) acrylate has a bond represented by the following general formula II-A or general formula II-B in the molecule.
    Figure JPOXMLDOC01-appb-C000012
    In General Formula II-A and General Formula II-B, R 1 and R 2 each represent a hydrogen atom or an organic group, and at least one of R 1 and R 2 is an organic group. R 1 and R 2 may form a ring. R 3 represents a hydrogen atom or a methyl group. R 4 represents a substituted or unsubstituted alkyl group, cycloalkyl group or aryl group. * Represents a bond.
  6.  請求項1から4いずれか1項記載の重合性組成物を硬化した重合物。 A polymer obtained by curing the polymerizable composition according to any one of claims 1 to 4.
  7.  請求項5または6記載の重合物を含む波長変換層を備えた波長変換部材。 A wavelength conversion member provided with a wavelength conversion layer containing the polymer according to claim 5 or 6.
  8.  さらに、酸素透過度が1.00cm/(m・day・atm)以下であるバリアフィルムを有し、前記波長変換層の2つの主表面の少なくとも一方が、前記バリアフィルムに接している請求項7記載の波長変換部材。 And a barrier film having an oxygen permeability of 1.00 cm 3 / (m 2 · day · atm) or less, wherein at least one of the two main surfaces of the wavelength conversion layer is in contact with the barrier film. Item 8. The wavelength conversion member according to Item 7.
  9.  前記バリアフィルムを2つ有し、前記波長変換層の2つの主表面が、それぞれ前記バリアフィルムに接している請求項8記載の波長変換部材。 The wavelength conversion member according to claim 8, comprising two barrier films, wherein two main surfaces of the wavelength conversion layer are respectively in contact with the barrier film.
  10.  少なくとも請求項7から9いずれか1項記載の波長変換部材と光源とを備えるバックライトユニット。 A backlight unit comprising at least the wavelength conversion member according to any one of claims 7 to 9 and a light source.
  11.  少なくとも請求項10記載のバックライトユニットと液晶セルとを備える液晶表示装置。 A liquid crystal display device comprising at least the backlight unit according to claim 10 and a liquid crystal cell.
PCT/JP2016/004628 2015-10-20 2016-10-19 Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device WO2017068781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206551 2015-10-20
JP2015206551A JP2017078120A (en) 2015-10-20 2015-10-20 Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2017068781A1 true WO2017068781A1 (en) 2017-04-27

Family

ID=58556937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004628 WO2017068781A1 (en) 2015-10-20 2016-10-19 Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2017078120A (en)
WO (1) WO2017068781A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562339A (en) * 2017-02-16 2018-11-14 Dow Global Technologies Llc Polymer composites and films comprising reactive additives having thiol groups for improved quantum dot dispursion and barrier properties
CN109061937A (en) * 2018-11-02 2018-12-21 京东方科技集团股份有限公司 Preparation method, quantum dot conversion film and the display device of color membrane substrates
WO2019066064A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength-converting resin composition, and wavelength-converting cured resin
CN109962168A (en) * 2017-12-26 2019-07-02 Tcl集团股份有限公司 A kind of film and QLED device
WO2019189497A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186731A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit and image display device
WO2019186735A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186733A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019189495A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186734A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, curable composition and cured product
CN111183376A (en) * 2017-09-29 2020-05-19 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured product
CN111919144A (en) * 2018-03-27 2020-11-10 日立化成株式会社 Wavelength conversion member, backlight unit, and image display device
WO2021084603A1 (en) * 2019-10-29 2021-05-06 昭和電工マテリアルズ株式会社 Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device
WO2021221080A1 (en) * 2020-04-28 2021-11-04 富士フイルム株式会社 Quantum dot-containing polymerizable composition, cured product, wavelength conversion member, backlight unit, and liquid crystal display device
WO2022208663A1 (en) * 2021-03-30 2022-10-06 昭和電工マテリアルズ株式会社 Wavelength conversion member, backlight unit, image display device, and curable composition

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786799B2 (en) * 2015-12-28 2020-11-18 大日本印刷株式会社 Light wavelength conversion sheet, backlight device, image display device, and composition for light wavelength conversion layer
US10768477B2 (en) 2016-06-27 2020-09-08 Unique Materials Co., Ltd. Backlight module
JP2019117734A (en) * 2017-12-27 2019-07-18 優美特創新材料股▲ふん▼有限公司 Backlight module
JP7230382B2 (en) * 2018-09-12 2023-03-01 東洋インキScホールディングス株式会社 Ink composition and printed matter
KR102010905B1 (en) * 2019-01-25 2019-08-14 주식회사 신아티앤씨 Photocurable Resin Composition, Method for Preparing the Same and Optical Film Comprising the Same
KR102010907B1 (en) * 2019-01-25 2019-08-14 주식회사 신아티앤씨 Photocurable Resin Composition, Method for Preparing the Same and Optical Film Comprising the Same
KR102010904B1 (en) * 2019-01-25 2019-08-14 주식회사 신아티앤씨 Photocurable Resin Composition, Method for Preparing the Same and Optical Film Comprising the Same
KR101967408B1 (en) * 2019-01-25 2019-08-19 주식회사 신아티앤씨 Photocurable Resin Composition, Method for Preparing the Same and Optical Film Comprising the Same
KR102010906B1 (en) * 2019-01-25 2019-08-14 주식회사 신아티앤씨 Photocurable Resin Composition, Method for Preparing the Same and Optical Film Comprising the Same
KR101967409B1 (en) * 2019-01-25 2019-08-19 주식회사 신아티앤씨 Photocurable Resin Composition, Method for Preparing the Same and Optical Film Comprising the Same
WO2020183618A1 (en) * 2019-03-12 2020-09-17 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, and wavelength conversion resin composition
JP2021161394A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Curable resin composition and display device
JP7351001B2 (en) * 2020-04-28 2023-09-26 富士フイルム株式会社 Quantum dot-containing polymerizable composition, cured product, wavelength conversion member, backlight unit, and liquid crystal display device
TWI755197B (en) * 2020-12-11 2022-02-11 南亞塑膠工業股份有限公司 Optical film, backlight module and manufacturing method of optical film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121702A (en) * 2013-12-24 2015-07-02 Jsr株式会社 Curable resin composition, cured film, light-emitting element, wavelength conversion film, and method for forming light-emitting layer
WO2016023819A1 (en) * 2014-08-11 2016-02-18 Henkel Ag & Co. Kgaa Electroluminescent crosslinked nanocrystal films
WO2016035602A1 (en) * 2014-09-05 2016-03-10 住友化学株式会社 Curable composition
JP2016053716A (en) * 2014-09-03 2016-04-14 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition
WO2016167927A1 (en) * 2015-04-16 2016-10-20 3M Innovative Properties Company Quantum dot article with thiol-epoxy matrix

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121702A (en) * 2013-12-24 2015-07-02 Jsr株式会社 Curable resin composition, cured film, light-emitting element, wavelength conversion film, and method for forming light-emitting layer
WO2016023819A1 (en) * 2014-08-11 2016-02-18 Henkel Ag & Co. Kgaa Electroluminescent crosslinked nanocrystal films
JP2016053716A (en) * 2014-09-03 2016-04-14 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition
WO2016035602A1 (en) * 2014-09-05 2016-03-10 住友化学株式会社 Curable composition
WO2016167927A1 (en) * 2015-04-16 2016-10-20 3M Innovative Properties Company Quantum dot article with thiol-epoxy matrix

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2562339B (en) * 2017-02-16 2022-07-06 Dow Global Technologies Llc Polymer composites and films comprising reactive additives having thiol groups for improved quantum dot dispersion and barrier properties
GB2562339A (en) * 2017-02-16 2018-11-14 Dow Global Technologies Llc Polymer composites and films comprising reactive additives having thiol groups for improved quantum dot dispursion and barrier properties
CN111149022A (en) * 2017-09-29 2020-05-12 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured product
WO2019066064A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength-converting resin composition, and wavelength-converting cured resin
WO2019064589A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured material
CN112230319A (en) * 2017-09-29 2021-01-15 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured product
JPWO2019066064A1 (en) * 2017-09-29 2020-08-20 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition and wavelength conversion resin cured product
CN111183376A (en) * 2017-09-29 2020-05-19 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, wavelength conversion resin composition, and wavelength conversion resin cured product
CN109962168A (en) * 2017-12-26 2019-07-02 Tcl集团股份有限公司 A kind of film and QLED device
WO2019186735A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
CN111919144A (en) * 2018-03-27 2020-11-10 日立化成株式会社 Wavelength conversion member, backlight unit, and image display device
WO2019189495A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186734A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, curable composition and cured product
WO2019189496A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
JP6658990B1 (en) * 2018-03-27 2020-03-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, and curable composition
JP6658991B1 (en) * 2018-03-27 2020-03-04 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, and curable composition
JPWO2019189498A1 (en) * 2018-03-27 2020-04-30 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019189498A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186733A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186731A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit and image display device
WO2019186732A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit and image display device
WO2019189497A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device and curable composition
EP3761077A4 (en) * 2018-03-27 2021-03-24 Hitachi Chemical Company, Ltd. Wavelength conversion member, backlight unit, image display device, curable composition and cured product
EP3761076A4 (en) * 2018-03-27 2021-03-17 Hitachi Chemical Company, Ltd. Wavelength conversion member, backlight unit, image display device and curable composition
CN109061937B (en) * 2018-11-02 2021-03-16 京东方科技集团股份有限公司 Preparation method of color film substrate, quantum dot light conversion film and display device
CN109061937A (en) * 2018-11-02 2018-12-21 京东方科技集团股份有限公司 Preparation method, quantum dot conversion film and the display device of color membrane substrates
WO2021084603A1 (en) * 2019-10-29 2021-05-06 昭和電工マテリアルズ株式会社 Resin composition for wavelength conversion, cured resin material for wavelength conversion, wavelength conversion member, backlight unit and image display device
WO2021221080A1 (en) * 2020-04-28 2021-11-04 富士フイルム株式会社 Quantum dot-containing polymerizable composition, cured product, wavelength conversion member, backlight unit, and liquid crystal display device
JP7351000B2 (en) 2020-04-28 2023-09-26 富士フイルム株式会社 Quantum dot-containing polymerizable composition, cured product, wavelength conversion member, backlight unit, and liquid crystal display device
WO2022208663A1 (en) * 2021-03-30 2022-10-06 昭和電工マテリアルズ株式会社 Wavelength conversion member, backlight unit, image display device, and curable composition

Also Published As

Publication number Publication date
JP2017078120A (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2017068781A1 (en) Polymerizable composition, polymer, wavelength conversion member, backlight unit, and liquid crystal display device
JP6653622B2 (en) Wavelength conversion member, backlight unit, liquid crystal display, and quantum dot-containing polymerizable composition
JP6295237B2 (en) Backlight unit, liquid crystal display device, and wavelength conversion member
JP6448782B2 (en) Quantum dot-containing composition, wavelength conversion member, backlight unit, and liquid crystal display device
JP6309472B2 (en) Polymerizable composition, wavelength conversion member, backlight unit, and liquid crystal display device
JP6506392B2 (en) Wavelength conversion member, backlight unit provided with the same, liquid crystal display device
JP6339053B2 (en) Wavelength conversion member, backlight unit including the same, and liquid crystal display device
CN109476989B (en) Quantum dot-containing composition, wavelength conversion member, backlight unit, and liquid crystal display device
JP6333749B2 (en) Wavelength conversion member, backlight unit including the same, liquid crystal display device, and method for manufacturing wavelength conversion member
KR102153459B1 (en) Wavelength conversion member, backlight unit, and liquid crystal display device, and polymerizable composition containing quantum dot
JP6363526B2 (en) Wavelength conversion member, backlight unit including the same, liquid crystal display device, and method for manufacturing wavelength conversion member
JP6419960B2 (en) Composition, polymer molding composition, and wavelength converter, wavelength conversion member, backlight unit, and liquid crystal display device obtained using the same
JP6224016B2 (en) Composition for wavelength conversion layer, wavelength conversion member, backlight unit, and liquid crystal display device
KR20170070158A (en) Wavelength conversion member, backlight unit including wavelength conversion member, and liquid crystal display device
WO2016075950A1 (en) Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
WO2016051760A1 (en) Wavelength conversion member, backlight unit provided with same, and liquid crystal display device
WO2016052626A1 (en) Backlight unit, liquid crystal display device and wavelength conversion member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857102

Country of ref document: EP

Kind code of ref document: A1