WO2022208575A1 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
WO2022208575A1
WO2022208575A1 PCT/JP2021/013201 JP2021013201W WO2022208575A1 WO 2022208575 A1 WO2022208575 A1 WO 2022208575A1 JP 2021013201 W JP2021013201 W JP 2021013201W WO 2022208575 A1 WO2022208575 A1 WO 2022208575A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
chamber
control
knocking
engine
Prior art date
Application number
PCT/JP2021/013201
Other languages
English (en)
French (fr)
Inventor
欣也 井上
遼太 朝倉
涼太 中田
貴之 城田
捷 飯塚
和郎 倉田
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to PCT/JP2021/013201 priority Critical patent/WO2022208575A1/ja
Priority to CN202180096593.4A priority patent/CN117136273A/zh
Priority to EP21934752.3A priority patent/EP4279730A4/en
Priority to US18/278,510 priority patent/US20240151190A1/en
Priority to JP2023509890A priority patent/JP7517593B2/ja
Publication of WO2022208575A1 publication Critical patent/WO2022208575A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This case relates to an engine control device that has a main chamber and a sub chamber in the combustion chamber.
  • a pre-combustion chamber type engine in which a communicating main chamber (main combustion chamber) and a pre-combustion chamber (sub-combustion chamber) are formed in the combustion chamber, and a spark plug electrode is arranged inside the pre-combustion chamber.
  • the flame generated inside the pre-chamber is formed so as to blow out like a torch toward the main chamber.
  • a pre-chamber engine requires an appropriate amount of fuel to be supplied to the interior of the pre-chamber, and the injection period during which fuel is injected into the pre-chamber tends to be limited compared to other engines.
  • the range of appropriate ignition timing is narrower than other engines. Therefore, there is a problem that it is difficult to largely change the ignition timing in response to problems such as knocking and poor combustion, and it is difficult to stabilize the combustion state.
  • One of the purposes of this case was to improve the combustion state of the pre-chamber engine, which was invented in light of the above issues.
  • the engine control device of the present invention comprises main chamber injection means for supplying fuel to the main chamber, pre-chamber injection means for supplying fuel to the pre-chamber after fuel is supplied by the main chamber injection means, and control of knocking intensity and occurrence frequency.
  • estimating means for estimating the degree of knocking, which is an index; and fuel control for reducing the amount of fuel supplied from the pre-chamber injection means, that is, the pre-chamber fuel amount, when the degree of knocking is equal to or greater than a first predetermined value. and a fuel control means for
  • the combustion state of the pre-chamber engine can be improved.
  • FIG. 1 is a schematic diagram showing the structure of an engine to which a control device as an embodiment is applied;
  • FIG. 10 is a schematic diagram showing the structure of another engine to which the control device as an embodiment is applied;
  • 4 is a map for setting a first index value related to the degree of knocking;
  • A) is a graph for setting a second index value relating to the degree of knocking, and
  • B) is a graph for setting a third index value.
  • FIG. 5 is a schematic diagram showing the relationship between the degree of knocking and the type of control; 4 is a flow chart for explaining the contents of control; 4 is a flow chart for explaining the contents of control; 4 is a flow chart for explaining the contents of control;
  • FIGS. 1 to 8 are diagrams for explaining a control device for an engine 10 (internal combustion engine) mounted on a vehicle.
  • 1 and 2 schematically illustrate the structure of a passive pre-combustion chamber engine 10 in which a communicating main chamber 8 (main combustion chamber) and sub-combustion chamber 5 (sub-combustion chamber) are formed in the cylinder. showing.
  • FIG. 1 shows an injection valve (pre-chamber injection valve 2) for supplying fuel to the pre-chamber 5 and an injection valve (port injection valve 1, in-cylinder injection valve 3) for supplying fuel to the main chamber 8.
  • FIG. 2 illustrates the structure of an engine 10 in which a single injection valve (multi-function injection valve 4) is used to blow fuel into the main chamber 8 and sub chamber 5 respectively.
  • the control device for the engine 10 includes main chamber injection means (port injection valve 1, in-cylinder injection valve 3, multi-function injection valve 4) that supplies fuel to the main chamber 8, and fuel to the auxiliary chamber 5.
  • a pre-chamber injection means pre-chamber injection valve 2, multi-function injection valve 4) is provided.
  • Fuel supply by the pre-chamber injection means is carried out after fuel supply by the main chamber injection means in one combustion cycle (a cycle consisting of four strokes of an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke).
  • fuel supply by the main chamber injection means is carried out from the latter half of the exhaust stroke to the intake stroke.
  • the fuel supply by the pre-chamber injection means is performed in the intake stroke and the compression stroke after the main chamber injection. Therefore, even if the main chamber injection and the sub chamber injection are performed by only a single injection valve, it is possible to clearly distinguish them based on the injection timing.
  • the fuel injected from the main chamber injection means burns only in the main chamber 8, and some of the fuel may flow into the auxiliary chamber 5 as well.
  • the fuel injected from the pre-chamber injection means burns only in the pre-chamber 5, and some of the fuel may flow out to the main chamber 8 as well.
  • the fuel injected from the main chamber injection means is intended to burn in the main chamber 8, is injected at a timing that facilitates combustion in the main chamber 8, and most of it burns in the main chamber 8. .
  • the fuel injected from the pre-chamber injection means is fuel intended to burn in the pre-chamber 5, is injected at a timing that facilitates combustion in the pre-chamber 5, and most of it burns in the pre-chamber 5.
  • the main chamber injection means may be defined as "means for supplying fuel at timing suitable for combustion in the main chamber 8”
  • the pre-chamber injection means may be defined as "means for supplying fuel at timing suitable for combustion in the pre-chamber 5". may be defined as "means for supplying fuel”.
  • the auxiliary chamber 5 is formed, for example, in a hollow hemispherical shape protruding from the center of the top surface of the combustion chamber toward the piston side.
  • 1 and 2 show an example in which a pre-chamber 5 is arranged between an intake port 11 and an exhaust port 12 in a pent roof type cylinder head.
  • the position of the pre-chamber 5 is preferably set in consideration of the overall shape of the combustion chamber, or in consideration of the operating ranges of the intake valve 13 and the exhaust valve 14 .
  • the auxiliary chamber 5 may be arranged outside the cylinder relative to the intake port 11 and the exhaust port 12 .
  • a minute hole 7 is formed in the partition wall 6 that separates the sub-chamber 5 and the main chamber 8 .
  • An electrode of a spark plug 9 is arranged inside the sub chamber 5 .
  • the engine 10 of the present invention is of the passive type in which the fuel for forming the flame is supplied from the outside of the pre-chamber 5, in order to form the air-fuel mixture in the pre-chamber 5 by injecting fuel from the pre-chamber injection means.
  • the passive system is not limited to this.
  • Fuel is supplied to form a flame in the vicinity of the pre-chamber 5, and the cylinder pressure rises in the compression stroke.
  • Various methods of supplying fuel for forming a flame from the outside of the pre-chamber 5 are included, such as a method in which the fuel supplied to the vicinity of the pre-chamber 5 is introduced into the pre-chamber 5 by .
  • an engine 10 that directly injects fuel into the pre-chamber 5, although not specifically described in this case.
  • Such an engine 10 is called an active pre-chamber engine 10 .
  • the port injection valve 1 shown in FIG. 1 is one of the main chamber injection means, and is a passive injector that injects fuel into the intake port 11 .
  • the direction of fuel injection by the port injection valve 1 is set, for example, toward the gap between the open intake valve 13 and the intake port 11 .
  • the in-cylinder injection valve 3 is also one of the main chamber injection means, and is an injector that injects fuel into the main chamber 8 .
  • the direction of fuel injection by the in-cylinder injection valve 3 is set, for example, according to the direction and flow velocity of airflow (tumble flow or swirl flow) formed in the combustion chamber during the compression stroke. Either one of the port injection valve 1 and the in-cylinder injection valve 3 can be omitted.
  • the pre-chamber injection valve 2 shown in FIG. 1 is one of pre-chamber injection means, and is a passive injector that injects fuel into the pre-chamber 5 .
  • the injection direction of the pre-chamber injection valve 2 is set, for example, toward the pre-chamber 5 .
  • the injection direction of the pre-chamber injection valve 2 is not limited to the direction toward the pre-chamber 5 .
  • the fuel may be injected toward a position slightly deviated from the pre-chamber 5 in consideration of the direction and velocity of the airflow (tumble flow or swirl flow) formed in the cylinder.
  • the multi-function injection valve 4 shown in FIG. 2 is an injector having both the function of main chamber injection means and the function of pre-chamber injection means. At least two injection holes are formed at the tip of the multifunction injection valve 4 .
  • One of the injection holes is an injection hole for realizing fuel injection similar to that of the in-cylinder injection valve 3 in FIG.
  • the other injection hole is an injection hole for realizing fuel injection similar to that of the pre-chamber injection valve 2 in FIG.
  • the open/closed state of each injection hole is individually controlled.
  • the engine 10 is provided with a knock sensor 15, an in-cylinder pressure sensor 16, an engine speed sensor 17, an accelerator opening sensor 18, and a vehicle speed sensor 19.
  • the knock sensor 15 is a sensor for detecting the presence or absence of knocking, which is a kind of abnormal combustion, and detects, for example, force, pressure, acceleration, etc. caused by cylinder vibration.
  • the in-cylinder pressure sensor 16 is a sensor for grasping the combustion state in the combustion chamber, and detects the pressure in the main chamber 8 .
  • the engine speed sensor 17 is a sensor for grasping the operating state of the engine 10, and detects, for example, the engine speed (angular velocity of the crankshaft) per unit time.
  • the accelerator opening sensor 18 is a sensor for grasping the magnitude of the torque (driver requested torque) required for the engine 10, and detects the depression operation amount (accelerator opening) of an accelerator pedal (not shown).
  • the vehicle speed sensor 19 is a sensor that detects the vehicle speed (running speed) of the vehicle in which the engine 10 is mounted. Various information detected by these sensors 15 to 19 is transmitted to the ECU 20 .
  • the ECU 20 is an electronic control unit (Engine Control Unit, Electronic Control Unit) for controlling the operating state of the engine 10, and is an electronic device equipped with a processor and memory.
  • the processor is, for example, a microprocessor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit), and the memory is, for example, ROM (Read Only Memory), RAM (Random Access Memory), non-volatile memory, or the like.
  • the contents of the control performed by the ECU 20 are recorded and saved in the memory as firmware and application programs. When executing a program, the contents of the program are expanded in the memory space and executed by the processor.
  • the ECU 20 is connected to each of the devices to be controlled and the sensors 15 to 19 via an in-vehicle network (not shown).
  • devices to be controlled include a port injection valve 1, a pre-chamber injection valve 2, an in-cylinder injection valve 3, a multifunction injection valve 4, and an ignition plug 9.
  • the fuel injection amount and ignition timing of the engine 10 are centrally managed by the ECU 20 .
  • Information detected by sensors not shown in FIGS. 1 and 2 can also be used to correct the fuel injection amount and ignition timing.
  • the fuel injection amount and ignition timing may be corrected based on temperature information detected by an outside air temperature sensor, an engine cooling water temperature sensor, or the like.
  • the ECU 20 is provided with estimation means 21, fuel control means 22, and ignition control means 23. These elements represent the functions realized by the ECU 20, and can be programmed as software recorded and stored in the ROM or auxiliary storage device within the ECU 20, for example. Alternatively, it may be realized as an electronic circuit (hardware) corresponding to the software, or as a system in which software and hardware coexist.
  • the estimating means 21 estimates a knocking degree N, which is an index of knocking intensity and occurrence frequency.
  • the degree of knocking N is calculated according to at least the engine load. Preferably, it is calculated according to the engine load and the engine speed, and more preferably, it is calculated in consideration of the in-cylinder pressure and the rotation fluctuation of the engine 10 . It is determined that the higher the knocking degree N (that is, the larger the value of the knocking degree N), the stronger the knocking or the higher the frequency of occurrence. In this case, the value of the knocking degree N is given by the product of the first index value M1, the second index value M2, and the third index value M3.
  • the estimating means 21 calculates each of the first index value M 1 , the second index value M 2 , and the third index value M 3 , for example, for each combustion cycle, and calculates the value of the degree of knocking N as the product of these values. Information on the degree of knocking N calculated here is transmitted to the fuel control means 22 and the ignition control means 23 .
  • the first index value M1 is an index value calculated based on at least the engine load.
  • the first index value M1 is calculated based on the engine load and the engine speed.
  • FIG. 3 is a three-dimensional map that defines the relationship between the first index value M1, the engine load, and the engine speed.
  • the engine load is calculated, for example, based on the accelerator opening and the vehicle speed.
  • the value of the first index value M1 is set to a larger value as the engine load increases with respect to the same engine speed.
  • the increasing gradient of the value of the first index value M1 is set so as to increase as the engine load increases. That is, in the three-dimensional map shown in FIG. 3, the interval between contour lines drawn by connecting points having the same value of the first index value M1 becomes narrower toward the upper side where the engine load is high.
  • the value of the first index value M1 is set so as not to fluctuate significantly with respect to changes in the engine speed. That is, in the three-dimensional map shown in FIG. 3, the contour lines of the first index value M1 have a shape extending in the horizontal direction. Therefore, even if the first index value M1 is calculated based only on the engine load without considering the engine speed, the accuracy of the value will not be greatly impaired.
  • the second index value M2 is an index value calculated based on the in-cylinder pressure.
  • FIG. 4A is a two-dimensional map illustrating the relationship between the second index value M2 and the in-cylinder pressure.
  • the value of the second index value M2 is set to a larger value as the in-cylinder pressure is higher.
  • the relationship between the second index value M2 and the in-cylinder pressure is set according to the magnitude of the influence of the in-cylinder pressure on the degree of knocking N. It may be set to a relationship represented by a curved graph.
  • the third index value M3 is an index value calculated based on the rotation fluctuation of the engine 10 .
  • FIG. 4B is a two-dimensional map illustrating the relationship between the third index value M3 and rotational fluctuation.
  • the rotation fluctuation is given by, for example, the absolute value of the change gradient (angular acceleration) of the engine speed.
  • the value of the third index value M3 is set to a larger value as the rotation fluctuation increases.
  • the relationship between the third index value M3 and the rotation fluctuation is set according to the magnitude of the influence of the rotation fluctuation on the degree of knocking N. It may be set to a relationship represented by a curved graph.
  • the fuel control means 22 controls the main chamber fuel amount, which is the fuel amount supplied by the main chamber injection means, and the pre-chamber fuel amount, which is the fuel amount supplied by the pre-chamber injection means. These fuel amounts are basically set based on the engine load and engine speed.
  • the degree of knocking N is higher than that in the normal operating state of the engine 10
  • fuel control is performed to reduce the pre-chamber fuel amount. At this time, the amount of reduction in the amount of fuel in the pre-chamber increases as the value of the knocking degree N increases.
  • the degree of knocking N is low compared to the normal operating state of the engine 10
  • fuel control is performed to increase the pre-chamber fuel amount. At this time, the amount of increase in the pre-chamber fuel amount increases as the value of the knocking degree N decreases.
  • the pre-chamber fuel amount may be increased or decreased by controlling the pressure of the fuel supplied to the pre-chamber injection means or the injection pressure.
  • fuel is supplied in one combustion cycle by weakening or strengthening the injection momentum without changing the start timing (SOI, Start Of Injection) or end timing (EOI, End Of Injection) of fuel injection. It is possible to increase or decrease the amount of fuel in the pre-chamber.
  • the pre-chamber fuel amount may be increased or decreased by controlling the start timing and end timing of fuel injection. In this case, by shortening or extending the fuel injection period while maintaining the pressure of the fuel supplied to the pre-chamber injection means and the injection pressure constant, the amount of fuel supplied to the pre-chamber in one combustion cycle is can be increased or decreased.
  • the main chamber fuel amount may be set based on the engine load and the engine speed. Alternatively, the main chamber fuel amount may be increased (or decreased) by the same amount as the sub chamber fuel amount is decreased (or increased) so that the total fuel injection amount does not change.
  • the standard main chamber fuel amount is denoted as F MAIN
  • the standard sub chamber fuel amount is denoted as F SUB . If the decrease amount of the pre-chamber fuel amount is expressed as F DEC , the fuel amount actually injected from the pre-chamber injection means is F SUB -F DEC . At this time, the amount of fuel injected from the main chamber injection means may remain at F MAIN or may be set at F MAIN +F DEC .
  • the amount of fuel injected from the main chamber injection means may be set within a range of F MAIN or more and F MAIN +F DEC or less.
  • the amount of increase in the pre-chamber fuel amount is expressed as FINC
  • the fuel amount actually injected from the pre-chamber injection means is F SUB + FINC .
  • the amount of fuel injected from the main chamber injection means may remain at F MAIN or may be set at F MAIN -F INC .
  • the amount of fuel injected from the main chamber injection means may be set within a range of F MAIN ⁇ F INC or more and F MAIN or less.
  • the ignition control means 23 controls the ignition timing of the spark plug 9 (the timing of igniting the fuel mixture).
  • the ignition timing is basically set based on the engine load and engine speed.
  • ignition control is performed to retard the ignition timing.
  • the range of appropriate ignition timing is narrower than in other engines, and it is desired to suppress changes in ignition timing as much as possible. Therefore, ignition retard control is started only when the degree of knocking N is too high or when the effect of fuel control for reducing the pre-chamber fuel amount is weak.
  • FIG. 5 is a table exemplifying the relationship between the various controls described above and the knocking degree N value.
  • pre-chamber fuel amount reduction control and ignition retard control are performed.
  • the value of the knocking degree N is equal to or greater than the first predetermined value N1 and is less than the second predetermined value N2, which is larger than the first predetermined value N1, control to reduce the pre-combustion fuel amount is performed first. After that, ignition retard control is started. If the value of the knocking degree N decreases to less than the first predetermined value N1 before the ignition retard control is started, the ignition retard control is not executed as a result, that is, the ignition timing is not changed and the combustion state is changed. can be improved.
  • the ignition retard control is performed first, and then the pre-chamber fuel amount reduction control is started. be done. Ignition retard control can improve the combustion state of the engine 10 with high response compared to control for reducing the amount of fuel in the pre-combustion chamber. That is, when the degree of knocking N is too high, priority is given to the ignition retard control, thereby quickly and reliably improving the combustion state.
  • ignition control is performed at normal ignition timing (ignition timing set based on the engine load and engine speed).
  • fuel control is performed to increase the pre-chamber fuel amount.
  • the normal fuel amount main chamber fuel amount set based on the engine load and engine speed The engine 10 is controlled by the amount of fuel and pre-chamber fuel amount).
  • [2. flowchart] 6 to 8 are flowcharts for explaining the contents of the control performed by the ECU 20.
  • FIG. The control shown in these flow charts is repeatedly executed in cycles corresponding to one combustion cycle.
  • the standard fuel amount in the combustion cycle is calculated based on the engine speed and the engine load, and the standard ignition timing in the combustion cycle is calculated.
  • the fuel amount the main chamber fuel amount and the sub chamber fuel amount are calculated separately.
  • the auxiliary chamber fuel amount is calculated as a value smaller than the main chamber fuel amount.
  • the pre-chamber fuel amount is about several percent to ten and several percent of the total fuel amount.
  • step A2 the estimating means 21 estimates the degree of knocking N, which is an index of the intensity and frequency of knocking.
  • the first index value M1 is calculated based on, for example, the engine speed and the engine load.
  • a second index value M2 is calculated based on the in-cylinder pressure
  • a third index value M3 is calculated based on the rotational fluctuation.
  • the value of the knocking degree N is calculated as the product of these.
  • step A3 it is determined whether or not the knocking degree N is greater than or equal to a first predetermined value N1. When this condition is satisfied, fuel control is performed to reduce at least the pre-chamber fuel amount. In this case, the process proceeds to step A4 and further condition determination is made. If the value of the knocking degree N is less than the first predetermined value N1 in step A3, the process proceeds to the later-described flow of FIG. 8 (from symbol B to step A22).
  • step A4 it is determined whether or not the value of the degree of knocking N is greater than or equal to a second predetermined value N2, which is greater than the first predetermined value N1. If this condition is satisfied, it is determined that the occurrence of knocking must be suppressed immediately, and the process proceeds to step A5 to advance the ignition retard control. If the value of the knocking degree N is less than the second predetermined value N2 in step A4, the process proceeds to the flow (from symbol A to step A12) in FIG. 7, which will be described later. At step A5, the elapsed time Y is reset. The elapsed time Y is a parameter referred to in the flow of FIG. 7, and means the time during which the state of N 1 ⁇ N ⁇ N 2 has continued.
  • Elapsed time X means the time during which the state of N ⁇ N2 has continued.
  • the units of the elapsed times X and Y may be seconds or the number of combustion cycles.
  • step A7 it is determined whether or not the elapsed time X is equal to or less than a predetermined time X1.
  • the predetermined time X1 may be a preset time or the number of combustion cycles, or may be a time or the number of combustion cycles set according to the engine speed. If this condition is satisfied, the process proceeds to step A8, and fuel injection is performed with the standard main chamber fuel amount and sub chamber fuel amount. Further, in step A9, ignition retard control is performed with a predetermined retard amount. The retard amount at this time is controlled based on the standard ignition timing. The control in this combustion cycle is now finished, and the control is repeated from step A1 in the next combustion cycle.
  • steps A8 and A9 The control of steps A8 and A9 is continued until the elapsed time X reaches the predetermined time X1 while the value of the knocking degree N is equal to or greater than the second predetermined value N2. If the elapsed time X exceeds the predetermined time X1, the process proceeds to step A10.
  • step A10 fuel control is performed to reduce the amount of fuel in the pre-chamber according to the degree of knocking N.
  • the greater the value of the knocking degree N the more the pre-chamber fuel amount is reduced.
  • step A11 ignition retard control is performed to gradually reduce the retard amount as the elapsed time X progresses.
  • the ignition retard control is performed with the predetermined retard amount only for the predetermined time X1, and thereafter the ignition timing is controlled so as to gradually approach the standard ignition timing.
  • the ignition retard control with the predetermined retard amount is performed prior to the reduction control of the pre-combustion chamber fuel amount.
  • the control in this combustion cycle is now finished, and the control is repeated from step A1 in the next combustion cycle.
  • the control of steps A10 and A11 is continued as long as the value of the knocking degree N is equal to or greater than the second predetermined value N2 after the elapsed time X exceeds the predetermined time X1.
  • step A4 of FIG. 6 when the value of the knocking degree N becomes less than the second predetermined value N2, the control proceeds to the flow of FIG.
  • the elapsed time X is reset.
  • measurement of the elapsed time Y is started in step A13, and the process proceeds to step A14.
  • the predetermined time Y1 may be a preset time or the number of combustion cycles, or may be a time or the number of combustion cycles set according to the engine speed.
  • step A15 fuel control is performed to decrease the pre-chamber fuel amount in accordance with the degree of knocking N.
  • the greater the value of the knocking degree N the more the pre-chamber fuel amount is reduced.
  • step A16 ignition control is performed with standard ignition timing.
  • the control in this combustion cycle is now finished, and the control is repeated from step A1 in the next combustion cycle.
  • the control of steps A15 and A16 is continued until the elapsed time Y reaches the predetermined time Y1 while the value of the knocking degree N is equal to or greater than the first predetermined value N1 and less than the second predetermined value N2. If the value of the knocking degree N decreases to less than the first predetermined value N1 before the elapsed time Y reaches the predetermined time Y1, the ignition retard is not started, and only the fuel control to reduce the pre-combustion fuel amount is performed. will be implemented. On the other hand, when the elapsed time Y exceeds the predetermined time Y1, the process proceeds to step A17.
  • step A17 it is determined whether or not the elapsed time Y is equal to or shorter than a predetermined time Y2 which is longer than the predetermined time Y1.
  • the predetermined time Y2 may be a preset time or the number of combustion cycles, or may be a time or the number of combustion cycles set according to the engine speed.
  • the process proceeds to step A18, and the fuel control for decreasing the pre-chamber fuel amount according to the knocking degree N is continued.
  • step A19 ignition retard control is performed with a predetermined retard amount. The retard amount at this time is controlled based on the standard ignition timing. The control in this combustion cycle is now finished, and the control is repeated from step A1 in the next combustion cycle.
  • steps A18 and A19 The control of steps A18 and A19 is continued until the elapsed time Y reaches the predetermined time Y2 while the value of the knocking degree N is equal to or greater than the first predetermined value N1 and less than the second predetermined value N2.
  • the process proceeds to step A20.
  • step A20 the fuel control for decreasing the pre-chamber fuel amount according to the degree of knocking N is continued. Further, in step A21, ignition retard control is performed to gradually reduce the retard amount as the elapsed time Y progresses. That is, the ignition retard control is performed with the predetermined retard amount only for the predetermined time period Y 2 -Y 1 , and thereafter the ignition timing is controlled so as to gradually approach the standard ignition timing. The control in this combustion cycle is now finished, and the control is repeated from step A1 in the next combustion cycle.
  • the control of steps A20 and A21 is continued as long as the value of the knocking degree N is equal to or greater than the first predetermined value N1 and less than the second predetermined value N2 after the elapsed time Y exceeds the predetermined time Y2.
  • step A3 of FIG. 6 when the value of the knocking degree N becomes less than the first predetermined value N1, the control proceeds to the flow of FIG. At step A22 in FIG. 8, the elapsed times X and Y are both reset. Further, in step A23, it is determined whether or not the value of the knocking degree N is less than a third predetermined value N3 which is smaller than the first predetermined value N1. If this condition is satisfied, the process proceeds to step A24, where fuel control is performed to increase the pre-chamber fuel amount in accordance with the degree of knocking N. Here, the smaller the value of the knocking degree N, the more the pre-chamber fuel amount is increased. Further, at step A25, ignition control is performed at standard ignition timing. The control in this combustion cycle is now finished, and the control is repeated from step A1 in the next combustion cycle. The control of steps A24 and A25 is continued as long as the knocking degree N is less than the third predetermined value N3.
  • step A23 when the value of the degree of knocking N is equal to or greater than the third predetermined value N3, the process proceeds to step A26, where fuel is injected with the standard main chamber fuel amount and sub chamber fuel amount. Further, at step A27, ignition control is performed at standard ignition timing. Thus, if the degree of knocking N satisfies N 3 ⁇ N ⁇ N 1 , normal fuel control and ignition control are performed. The control in this combustion cycle is now finished, and the control is repeated from step A1 in the next combustion cycle.
  • the combustion state of the engine 10 can be easily improved without changing the control on the main chamber injection means side. Further, when the main chamber fuel amount is increased according to the amount of decrease in the pre-chamber fuel amount, the change in the total fuel amount can be reduced, and the combustion state of the engine 10 can be further stabilized.
  • the ignition control for retarding the ignition timing is the ignition control.
  • the ignition retard control can be used together, and the knocking degree N can be reliably reduced. Therefore, the combustion state of engine 10 can be improved.
  • the ignition control means 23 first performs the ignition retard control. After that, the fuel control means 22 performs fuel control to decrease the pre-chamber fuel amount. In this way, when the knocking degree N is too high, the knocking degree N can be quickly reduced by prioritizing the ignition retard control, which is more responsive than the fuel control. Therefore, the combustion state of engine 10 can be improved.
  • the fuel control means 22 increases the pre-chamber fuel amount. Enforce controls. In this manner, in a combustion failure state in which the knocking degree N is too low, the combustion state of the engine 10 can be stabilized by increasing the pre-chamber fuel amount. Moreover, since the amount of fuel to be increased is the amount of fuel in the pre-combustion chamber, the possibility of adversely affecting the combustion state in the main chamber 8 is extremely small. Therefore, the combustion state of engine 10 can be improved.
  • the combustion state of the engine 10 can be easily improved without changing the control on the main chamber injection means side. Further, when the main chamber fuel amount is decreased according to the increase in the pre-chamber fuel amount, the change in the total fuel amount can be reduced, and the combustion state of the engine 10 can be further stabilized.
  • control device for the engine 10 mounted on the vehicle has been described in detail, but the application of the control device according to the present invention is not limited to the vehicle engine, and can be installed, for example, on a ship or a power generation facility. It is also applicable to engines that are The control device according to the present invention can be applied to an internal combustion engine having at least a main chamber injection means and a pre-chamber injection means.
  • the ignition control means 23 when the degree of knocking N is equal to or greater than the second predetermined value N2, which is larger than the first predetermined value N1, the ignition control means 23 first performs the ignition retard control, and then the fuel injection Although the control means 22 is performing fuel control to decrease the pre-chamber fuel amount, the ignition control means 23 and the fuel control means 22 are set to retard the ignition at a fourth predetermined value N4 or more, which is larger than the second predetermined value N2. It is also possible to initiate control and fuel control at the same time. By simultaneously starting the retard control and the fuel control in this manner, the knocking degree N can be reduced more quickly and reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

本件のエンジンの制御装置は、主室(8)に燃料を供給する主室噴射手段(1,3)と、主室噴射手段(1,3)による燃料供給後に副室(5)に燃料を供給する副室噴射手段(2)とを備える。また、ノッキングの強度及び発生頻度の指標であるノッキング度合(N)を推定する推定手段(21)と、ノッキング度合(N)が第1所定値(N1)以上である場合に、副室噴射手段(2)から供給される燃料量である副室燃料量を減少させる燃料制御を実施する燃料制御手段(22)とを備える。このように、副室燃料量を減少させることでノッキングの発生を抑制することができ、副室式エンジンの燃焼状態を改善することができる。

Description

エンジンの制御装置
 本件は、燃焼室内に主室及び副室を備えたエンジンの制御装置に関する。
 従来、連通する主室(主燃焼室)及び副室(副燃焼室)を燃焼室内に形成し、副室の内部に点火プラグの電極を配した副室式エンジンが知られている。このエンジンでは、副室の内部で発生した火炎が、主室に向かってトーチ状に噴出するように形成される。これにより、主室内の空燃比が理論空燃比よりも希薄な状態であっても、燃料混合気を効率的に燃焼させることができる(特許文献1参照)。
特開2018-105171号公報
 副室式エンジンでは、副室の内部に適量の燃料を供給する必要があり、副室への燃料噴射が実施される噴射期間が他のエンジンと比較して制限されやすい。また、燃料の噴射期間と点火時期との相関も重要であることから、適切な点火時期の範囲が他のエンジンと比較して狭いという特性がある。そのため、例えばノッキングや燃焼不良といった不具合に対して点火時期を大幅に変更することが難しく、燃焼状態を安定させにくいという課題がある。
 本件の目的の一つは、上記のような課題に照らして創案されたものであり、副室式エンジンの燃焼状態を改善することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けることができる。
 本件のエンジンの制御装置は、主室に燃料を供給する主室噴射手段と、前記主室噴射手段による燃料供給後に副室に燃料を供給する副室噴射手段と、ノッキングの強度及び発生頻度の指標であるノッキング度合を推定する推定手段と、前記ノッキング度合が第1所定値以上である場合に、前記副室噴射手段から供給される燃料量である副室燃料量を減少させる燃料制御を実施する燃料制御手段と、を備える。
 本件のエンジンの制御装置によれば、副室式エンジンの燃焼状態を改善できる。
実施例としての制御装置が適用されるエンジンの構造を示す模式図である。 実施例としての制御装置が適用される他のエンジンの構造を示す模式図である。 ノッキング度合に係る第1指標値を設定するためのマップである。 (A)はノッキング度合に係る第2指標値を設定するためのグラフであり、(B)は第3指標値を設定するためのグラフである。 ノッキング度合と制御の種類との関係を示す模式図である。 制御内容を説明するためのフローチャートである。 制御内容を説明するためのフローチャートである。 制御内容を説明するためのフローチャートである。
[1.構成]
 図1~図8は、車両に搭載されるエンジン10(内燃機関)の制御装置を説明するための図である。図1及び図2はいずれも、連通する主室8(主燃焼室)及び副室5(副燃焼室)がシリンダ内に形成された、パッシブ方式の副室式エンジン10の構造を模式的に示している。図1は、副室5に燃料を供給するための噴射弁(副室噴射弁2)と主室8に燃料を供給するための噴射弁(ポート噴射弁1,筒内噴射弁3)とが別設されたエンジン10の構造を例示している。一方、図2は単一の噴射弁(多機能噴射弁4)を用いて主室8と副室5とのそれぞれに燃料を吹き分けるエンジン10の構造を例示している。
 本件に係るエンジン10の制御装置は、主室8に燃料を供給する主室噴射手段(ポート噴射弁1,筒内噴射弁3,多機能噴射弁4)と、副室5に燃料を供給する副室噴射手段(副室噴射弁2,多機能噴射弁4)とを備える。副室噴射手段による燃料供給は、一つの燃焼サイクル(吸気行程,圧縮行程,燃焼行程,排気行程の四行程からなるサイクル)において、主室噴射手段による燃料供給の後に実施される。例えば、主室噴射手段による燃料供給は、排気行程後半から吸気行程にかけて実施される。これに対し、副室噴射手段による燃料供給は、主室噴射後の吸気行程や圧縮行程で実施される。したがって、単一の噴射弁のみで主室噴射と副室噴射が実施される場合であっても、噴射タイミングに基づいてそれらを明確に区別することが可能である。
 なお、主室噴射手段から噴射される燃料の全てが主室8のみで燃焼するとは限らず、一部の燃料は副室5にも流入しうる。同様に、副室噴射手段から噴射される燃料の全てが副室5のみで燃焼するとは限らず、一部の燃料は主室8にも流出しうる。しかしながら、主室噴射手段から噴射される燃料は、主室8で燃焼することが意図された燃料であって、主室8で燃焼しやすいタイミングで噴射され、そのほとんどが主室8で燃焼する。同様に、副室噴射手段から噴射される燃料は、副室5で燃焼することが意図された燃料であって、副室5で燃焼しやすいタイミングで噴射され、そのほとんどが副室5で燃焼する。したがって、主室噴射手段を「主室8での燃焼に適したタイミングで燃料を供給する手段」と定義してもよいし、副室噴射手段を「副室5での燃焼に適したタイミングで燃料を供給する手段」と定義してもよい。
 図1,図2に示すように、副室5は、例えば燃焼室内の頂面中央部からピストン側に向かって膨出した中空の半球状に形成される。図1,図2は、ペントルーフ型のシリンダヘッドにおいて、吸気ポート11と排気ポート12との間に副室5が配置された事例を示している。副室5の位置は、燃焼室の全体形状を考慮して、あるいは、吸気バルブ13や排気バルブ14の動作範囲を考慮して設定することが好ましい。また、吸気ポート11や排気ポート12よりもシリンダの外側に副室5を配置してもよい。
 副室5と主室8とを隔てる隔壁6には、微小な孔7が形成される。また、副室5の内部には、点火プラグ9の電極が配置される。副室5の内部で燃料混合気が点火されると、その火炎が複数の孔7を介して副室5から主室8へと放射状にトーチ状の火炎として噴出するようになっている。なお、本件のエンジン10は、火炎を形成するための燃料が副室5の外部から供給されるパッシブ方式のうち、副室噴射手段からの燃料噴射により副室5内の混合気を形成するための燃料を供給する方式の副室式エンジン10であるが、パッシブ方式にはこれに限らず、副室5付近に火炎を形成するための燃料を供給し、圧縮行程で筒内圧が上昇することにより副室5の付近に供給された燃料が副室5内に導入される方式等、火炎を形成するための燃料が副室5の外部から供給される様々な方式が含まれる。一方、本件では特に説明しないが、副室5の内部に直接的に燃料を噴射するようなエンジン10も存在する。このようなエンジン10は、アクティブ方式の副室式エンジン10と呼ばれる。
 図1に示すポート噴射弁1は、主室噴射手段の一つであって、吸気ポート11に燃料を噴射するパッシブ型のインジェクタである。ポート噴射弁1による燃料の噴射方向は、例えば開放状態の吸気バルブ13と吸気ポート11との隙間に向かう方向に設定される。また、筒内噴射弁3も主室噴射手段の一つであって、主室8に燃料を噴射するインジェクタである。筒内噴射弁3による燃料の噴射方向は、例えば圧縮行程で燃焼室内に形成される気流(タンブル流やスワール流)の向きや流速に応じて設定される。ポート噴射弁1及び筒内噴射弁3のいずれか一方は省略可能である。
 図1に示す副室噴射弁2は、副室噴射手段の一つであって、副室5に燃料を噴射するパッシブ型のインジェクタである。副室噴射弁2の噴射方向は、例えば副室5へ向かう方向に設定される。ただし、副室噴射弁2の噴射方向は、副室5へ向かう方向のみに限定されるわけではない。例えば、シリンダ内に形成される気流(タンブル流やスワール流)の向きや流速を考慮して、副室5からややずれた位置に向かって燃料を噴射させてもよい。
 図2に示す多機能噴射弁4は、主室噴射手段としての機能と副室噴射手段としての機能とを兼ね備えたインジェクタである。多機能噴射弁4の先端には、少なくとも二つの噴孔が形成される。一方の噴孔は、図1中の筒内噴射弁3と同様の燃料噴射を実現するための噴孔であって、主室8に供給される燃料が噴射される噴孔である。他方の噴孔は、図1中の副室噴射弁2と同様の燃料噴射を実現するための噴孔であって、副室5に供給される燃料が噴射される噴孔である。各々の噴孔の開閉状態は、個別に制御される。
 エンジン10には、ノックセンサ15,筒内圧センサ16,エンジン回転数センサ17,アクセル開度センサ18,車速センサ19が設けられる。ノックセンサ15は、異常燃焼の一種であるノッキングの有無を把握するためのセンサであり、例えばシリンダの振動によって生じる力,圧力,加速度などを検出する。筒内圧センサ16は、燃焼室内における燃焼状態を把握するためのセンサであり、主室8の圧力を検出する。エンジン回転数センサ17は、エンジン10の作動状態を把握するためのセンサであり、例えば単位時間あたりのエンジン回転数(クランクシャフトの角速度)を検出する。アクセル開度センサ18は、エンジン10に要求されるトルク(ドライバ要求トルク)の大きさを把握するためのセンサであり、図示しないアクセルペダルの踏み込み操作量(アクセル開度)を検出する。車速センサ19は、エンジン10が搭載された車両の車速(走行速度)を検出するセンサである。これらのセンサ15~19で検出された各種情報は、ECU20に伝達される。
 ECU20は、エンジン10の作動状態を制御するための電子制御装置(Engine Control Unit, Electronic Control Unit)であって、プロセッサとメモリとを搭載した電子デバイスである。プロセッサは、例えばCPU(Central Processing Unit),MPU(Micro Processing Unit)などのマイクロプロセッサであり、メモリは、例えばROM(Read Only Memory),RAM(Random Access Memory),不揮発メモリなどである。ECU20で実施される制御の内容は、ファームウェアやアプリケーションプログラムとしてメモリに記録,保存される。プログラムの実行時には、プログラムの内容がメモリ空間内に展開され、プロセッサによって実行される。
 ECU20は、図示しない車載ネットワークを介して、制御対象となる装置及びセンサ15~19の各々に接続される。図1,図2に示すように、制御対象となる装置にはポート噴射弁1,副室噴射弁2,筒内噴射弁3,多機能噴射弁4,点火プラグ9が含まれる。エンジン10の燃料噴射量や点火時期は、ECU20によって統括的に管理される。なお、図1,図2に示されていないセンサで検出された情報を併用して、燃料噴射量や点火時期を補正することも可能である。例えば、外気温センサやエンジン冷却水温センサなどで検出された温度情報に基づき、燃料噴射量や点火時期を補正してもよい。
 ECU20には、推定手段21,燃料制御手段22,点火制御手段23が設けられる。これらの要素は、ECU20で実現される機能を表現したものであり、例えばECU20内のROMや補助記憶装置に記録,保存されるソフトウェアとしてプログラミングされうる。あるいは、そのソフトウェアに対応する電子回路(ハードウェア)として実現されてもよいし、ソフトウェアとハードウェアとが混在するシステムとして実現されてもよい。
 推定手段21は、ノッキングの強度及び発生頻度の指標であるノッキング度合Nを推定するものである。ノッキング度合Nは、少なくともエンジン負荷に応じて算出される。好ましくは、エンジン負荷,エンジン回転数に応じて算出され、より好ましくは筒内圧やエンジン10の回転変動を考慮して算出される。ノッキング度合Nが高いほど(すなわちノッキング度合Nの値が大きいほど)、ノッキングの強度が強く、あるいは発生頻度が高いものと判断される。本件では、ノッキング度合Nの値が第1指標値M,第2指標値M,第3指標値Mの積で与えられるものとする。推定手段21は、第1指標値M,第2指標値M,第3指標値Mの各々を例えば燃焼サイクル毎に算出し、ノッキング度合Nの値をこれらの積として算出する。ここで算出されたノッキング度合Nの情報は、燃料制御手段22と点火制御手段23とに伝達される。
 第1指標値Mは、少なくともエンジン負荷に基づいて算出される指標値である。本件では、エンジン負荷とエンジン回転数と基づいて第1指標値Mが算出される。図3は、第1指標値Mとエンジン負荷とエンジン回転数との関係が規定された三次元マップである。エンジン負荷は、例えばアクセル開度と車速とに基づいて算出される。第1指標値Mの値は、同一のエンジン回転数に対してエンジン負荷が大きいほど、大きな値に設定される。
 第1指標値Mの値の増加勾配は、エンジン負荷が大きいほど増大するように設定される。つまり、図3に示す三次元マップにおいて、第1指標値Mの値が同一である点をつないで描かれる等高線の間隔は、エンジン負荷が大きい領域である上側に進むほど狭くなっている。また、エンジン回転数の変化に対しては、第1指標値Mの値があまり大きく変動しないように設定される。つまり、図3に示す三次元マップにおいて、第1指標値Mの等高線は、左右方向に伸びた形状になる。したがって、仮にエンジン回転数を考慮することなく、エンジン負荷のみに基づいて第1指標値Mを算出したとしても、その値の精度が大きく損なわれることはない。
 第2指標値Mは、筒内圧に基づいて算出される指標値である。図4(A)は、第2指標値Mと筒内圧との関係を例示する二次元マップである。第2指標値Mの値は、筒内圧が高いほど、大きな値に設定される。第2指標値Mと筒内圧との関係は、筒内圧がノッキング度合Nに与える影響の大小に応じて設定され、例えば直線状のグラフで表現される関係に設定されることもあれば、曲線状のグラフで表現される関係に設定されることもある。
 第3指標値Mは、エンジン10の回転変動に基づいて算出される指標値である。図4(B)は、第3指標値Mと回転変動との関係を例示する二次元マップである。回転変動は、例えばエンジン回転数の変化勾配(角加速度)の絶対値で与えられる。第3指標値Mの値は、回転変動が大きいほど、大きな値に設定される。第3指標値Mと回転変動との関係は、回転変動がノッキング度合Nに与える影響の大小に応じて設定され、例えば直線状のグラフで表現される関係に設定されることもあれば、曲線状のグラフで表現される関係に設定されることもある。
 燃料制御手段22は、主室噴射手段が供給する燃料量である主室燃料量と、副室噴射手段が供給する燃料量である副室燃料量とを制御するものである。これらの燃料量は、基本的にはエンジン負荷とエンジン回転数とに基づいて設定される。一方、エンジン10の通常の作動状態と比較してノッキング度合Nが高い場合には、副室燃料量を減少させる燃料制御が実施される。このとき、副室燃料量の削減量は、ノッキング度合Nの値が大きいほど増量される。反対に、エンジン10の通常の作動状態と比較してノッキング度合Nが低い場合には、副室燃料量を増加させる燃料制御が実施される。このとき、副室燃料量の増加量は、ノッキング度合Nの値が小さいほど増量される。
 副室燃料量は、副室噴射手段に供給される燃料の圧力や噴射圧をコントロールすることで増減させてもよい。この場合、燃料噴射の開始時期(SOI, Start Of Injection)や終了時期(EOI, End Of Injection)を変更することなく噴射の勢いを弱めたり強めたりすることで、一回の燃焼サイクルで供給される副室燃料量を増減させることができる。あるいは、燃料噴射の開始時期や終了時期をコントロールすることで副室燃料量を増減させてもよい。この場合、副室噴射手段に供給される燃料の圧力や噴射圧を一定に保ちつつ、燃料噴射期間を短縮したり延長したりすることで、一回の燃焼サイクルで供給される副室燃料量を増減させることができる。
 主室燃料量は、ノッキング度合Nの高低に関わらず、エンジン負荷とエンジン回転数とに基づいて設定されることにしてもよい。あるいは、トータルの燃料噴射量が変化しないように、副室燃料量を減少(または増加)させた分だけ主室燃料量を増加(または減少)させてもよい。ここで、標準的な主室燃料量をFMAINと表記し、標準的な副室燃料量をFSUBと表記する。副室燃料量の減少量をFDECと表記すれば、実際に副室噴射手段から噴射される燃料量はFSUB-FDECとなる。このとき、主室噴射手段から噴射される燃料量はFMAINのままにしてもよいし、FMAIN+FDECとしてもよい。あるいは、FMAIN以上かつFMAIN+FDEC以下の範囲内で、主室噴射手段から噴射される燃料量を設定してもよい。同様に、副室燃料量の増加量をFINCと表記すれば、実際に副室噴射手段から噴射される燃料量はFSUB+FINCとなる。このとき、主室噴射手段から噴射される燃料量はFMAINのままにしてもよいし、FMAIN-FINCとしてもよい。あるいは、FMAIN-FINC以上かつFMAIN以下の範囲内で、主室噴射手段から噴射される燃料量を設定してもよい。
 点火制御手段23は、点火プラグ9の点火時期(燃料混合気を点火するタイミング)を制御するものである。点火時期は、基本的にはエンジン負荷とエンジン回転数とに基づいて設定される。一方、エンジン10の通常の作動状態と比較してノッキング度合Nが高い場合には、点火時期をリタードさせる点火制御が実施される。ただし、副室式エンジンにおいては、適切な点火時期の範囲が他のエンジンと比較して狭く、点火時期の変化をできるだけ抑制することが望まれる。そこで、ノッキング度合Nが高すぎる場合や、副室燃料量を減少させる燃料制御の効果が弱い場合に限って、点火リタード制御を開始することとする。
 図5は、上記の各種制御とノッキング度合Nの値との関係を例示する表である。ノッキング度合Nの値が第1所定値N以上であるとき、副室燃料量の削減制御や点火リタード制御が実施される。ここで、ノッキング度合Nの値が第1所定値N以上、かつ、第1所定値Nよりも大きい第2所定値N未満であれば、先に副室燃料量の削減制御が実施され、その後に点火リタード制御が開始される。点火リタード制御が開始される前にノッキング度合Nの値が第1所定値N未満まで低下した場合には、結果的に点火リタード制御が実施されず、すなわち点火時期を移動させずに燃焼状態を改善できる。
 一方、ノッキング度合Nの値が第2所定値N以上であれば、ノッキング度合Nが高すぎるものと判断され、先に点火リタード制御が実施され、その後に副室燃料量の削減制御が開始される。点火リタード制御は、副室燃料量の削減制御と比較して、高応答でエンジン10の燃焼状態を改善できる。つまり、ノッキング度合Nが高すぎる場合には、点火リタード制御を優先することで、燃焼状態を素早く確実に改善している。なお、副室燃料量の削減制御が開始される前にノッキング度合Nの値が第2所定値N未満まで低下した場合には、点火リタード制御が一旦終了し、副室燃料量の削減制御が実施されることになる。
 ノッキング度合Nの値が第1所定値N未満の場合には、通常の点火時期(エンジン負荷とエンジン回転数とに基づいて設定される点火時期)で点火制御が実施される。また、燃料噴射量については、ノッキング度合Nの値が第1所定値Nよりも小さい第3所定値N未満である場合に、副室燃料量を増加させる燃料制御が実施される。また、ノッキング度合Nの値が第3所定値N以上、かつ、第1所定値N未満であれば、通常の燃料量(エンジン負荷とエンジン回転数とに基づいて設定される主室燃料量及び副室燃料量)でエンジン10が制御される。
[2.フローチャート]
 図6~図8は、ECU20で実施される制御の内容を説明するためのフローチャートである。これらのフローチャートに示される制御は、一回の燃焼サイクルに対応する周期で繰り返し実行される。
 図6のステップA1では、エンジン回転数及びエンジン負荷に基づき、その燃焼サイクルでの標準的な燃料量が算出されるとともに、その燃焼サイクルでの標準的な点火時期が算出される。燃料量は、主室燃料量と副室燃料量とが個別に算出される。本件では、副室燃料量が主室燃料量よりも少ない値として算出される。例えば、副室燃料量が燃料量全体に対して数パーセントから十数パーセント程度とされる。
 ステップA2では、推定手段21において、ノッキングの強度及び発生頻度の指標であるノッキング度合Nが推定される。ここでは、例えばエンジン回転数及びエンジン負荷に基づいて第1指標値Mが算出される。また、筒内圧に基づいて第2指標値Mが算出され、回転変動に基づいて第3指標値Mが算出される。その後、これらの積としてノッキング度合Nの値が算出される。
 ステップA3では、ノッキング度合Nの値が第1所定値N以上であるか否かが判定される。この条件が成立する場合には、少なくとも副室燃料量を減少させる燃料制御が実施される。本件ではステップA4に進み、さらなる条件判定がなされる。なお、ステップA3においてノッキング度合Nの値が第1所定値N未満であった場合には、後述する図8のフロー(記号BからステップA22)に進む。
 ステップA4では、ノッキング度合Nの値が第1所定値Nよりも大きい第2所定値N以上であるか否かが判定される。この条件が成立する場合には、ノッキングの発生を直ちに抑制する必要があるものと判断され、点火リタード制御を先行させるべくステップA5に進む。なお、ステップA4においてノッキング度合Nの値が第2所定値N未満であった場合には、後述する図7のフロー(記号AからステップA12)に進む。
 ステップA5では、経過時間Yがリセットされる。経過時間Yは、図7のフローで参照されるパラメータであり、N≦N<Nである状態が継続した時間を意味する。また、ステップA6で経過時間Xの計測が開始され、ステップA7に進む。経過時間Xは、N≧Nである状態が継続した時間を意味する。なお、経過時間X,Yの単位は秒であってもよいし、燃焼サイクル数であってもよい。
 ステップA7では、経過時間Xが所定時間X以下であるか否かが判定される。所定時間Xは、予め設定された時間や燃焼サイクル数であってもよいし、エンジン回転数に応じて設定される時間や燃焼サイクル数であってもよい。この条件が成立する場合にはステップA8に進み、標準的な主室燃料量,副室燃料量で燃料噴射が実施される。また、ステップA9では、所定のリタード量で点火リタード制御が実施される。このときのリタード量は、標準的な点火時期を基準として制御される。この燃焼サイクルでの制御はこれで終了し、次回の燃焼サイクルではステップA1から制御が繰り返される。ステップA8,A9の制御は、ノッキング度合Nの値が第2所定値N以上の状態で、経過時間Xが所定時間Xになるまで継続される。経過時間Xが所定時間Xを超えた場合には、ステップA10に進む。
 ステップA10では、ノッキング度合Nに応じて副室燃料量を減少させる燃料制御が実施される。ここでは、ノッキング度合Nの値が大きいほど、副室燃料量がより削減される。また、ステップA11では、経過時間Xが進むほど徐々にリタード量を削減する点火リタード制御が実施される。つまり、所定のリタード量で点火リタード制御が実施されるのは所定時間Xだけであり、その後は徐々に点火時期が標準的な点火時期へ近づくように制御される。また、所定のリタード量での点火リタード制御は、副室燃料量の削減制御に先行して実施される。この燃焼サイクルでの制御はこれで終了し、次回の燃焼サイクルではステップA1から制御が繰り返される。ステップA10,A11の制御は、経過時間Xが所定時間Xを超えた後、ノッキング度合Nの値が第2所定値N以上である限り継続される。
 図6のステップA4において、ノッキング度合Nの値が第2所定値N未満になると、制御が図7のフローに進む。図7のステップA12では、経過時間Xがリセットされる。また、ステップA13で経過時間Yの計測が開始され、ステップA14に進む。ステップA14では、経過時間Yが所定時間Y以下であるか否かが判定される。所定時間Yは、予め設定された時間や燃焼サイクル数であってもよいし、エンジン回転数に応じて設定される時間や燃焼サイクル数であってもよい。この条件が成立する場合にはステップA15に進み、ノッキング度合Nに応じて副室燃料量を減少させる燃料制御が実施される。ここでは、ノッキング度合Nの値が大きいほど、副室燃料量がより削減される。
 また、ステップA16では、標準的な点火時期で点火制御が実施される。この燃焼サイクルでの制御はこれで終了し、次回の燃焼サイクルではステップA1から制御が繰り返される。ステップA15,A16の制御は、ノッキング度合Nの値が第1所定値N以上かつ第2所定値N未満の状態で、経過時間Yが所定時間Yになるまで継続される。経過時間Yが所定時間Yに達する前にノッキング度合Nの値が第1所定値N未満まで低下すれば、点火リタードが開始されることなく、副室燃料量を減少させる燃料制御のみが実施されることになる。一方、経過時間Yが所定時間Yを超えた場合には、ステップA17に進む。
 ステップA17では、経過時間Yが所定時間Yよりも大きい所定時間Y以下であるか否かが判定される。所定時間Yは、予め設定された時間や燃焼サイクル数であってもよいし、エンジン回転数に応じて設定される時間や燃焼サイクル数であってもよい。この条件が成立する場合にはステップA18に進み、ノッキング度合Nに応じて副室燃料量を減少させる燃料制御が継続される。また、ステップA19では、所定のリタード量で点火リタード制御が実施される。このときのリタード量は、標準的な点火時期を基準として制御される。この燃焼サイクルでの制御はこれで終了し、次回の燃焼サイクルではステップA1から制御が繰り返される。ステップA18,A19の制御は、ノッキング度合Nの値が第1所定値N以上かつ第2所定値N未満の状態で、経過時間Yが所定時間Yになるまで継続される。経過時間Yが所定時間Yを超えた場合には、ステップA20に進む。
 ステップA20では、ノッキング度合Nに応じて副室燃料量を減少させる燃料制御が継続される。また、ステップA21では、経過時間Yが進むほど徐々にリタード量を削減する点火リタード制御が実施される。つまり、所定のリタード量で点火リタード制御が実施されるのは所定時間Y-Yだけであり、その後は徐々に点火時期が標準的な点火時期へ近づくように制御される。この燃焼サイクルでの制御はこれで終了し、次回の燃焼サイクルではステップA1から制御が繰り返される。ステップA20,A21の制御は、経過時間Yが所定時間Yを超えた後、ノッキング度合Nの値が第1所定値N以上かつ第2所定値N未満である限り継続される。
 図6のステップA3において、ノッキング度合Nの値が第1所定値N未満になると、制御が図8のフローに進む。図8のステップA22では、経過時間X,Yがともにリセットされる。また、ステップA23では、ノッキング度合Nの値が第1所定値Nよりも小さい第3所定値N未満であるか否かが判定される。この条件が成立する場合にはステップA24に進み、ノッキング度合Nに応じて副室燃料量を増加させる燃料制御が実施される。ここでは、ノッキング度合Nの値が小さいほど、副室燃料量がより増量される。また、ステップA25では、標準的な点火時期で点火制御が実施される。この燃焼サイクルでの制御はこれで終了し、次回の燃焼サイクルではステップA1から制御が繰り返される。ステップA24,A25の制御は、ノッキング度合Nの値が第3所定値N未満である限り継続される。
 ステップA23において、ノッキング度合Nの値が第3所定値N以上である場合には、ステップA26に進み、標準的な主室燃料量,副室燃料量で燃料噴射が実施される。また、ステップA27では、標準的な点火時期で点火制御が実施される。このように、ノッキング度合NがN≦N<Nであれば、通常の燃料制御及び点火制御が実施される。この燃焼サイクルでの制御はこれで終了し、次回の燃焼サイクルではステップA1から制御が繰り返される。
[3.作用,効果]
 (1)上記のエンジン10の制御装置(すなわちECU20)では、推定手段21で推定されたノッキング度合Nが第1所定値N以上である場合に、副室燃料量を減少させる燃料制御が燃料制御手段22によって実施される。このような構成により、例えば点火時期を変更することなくノッキング度合Nを低下させることができ、ノッキングの発生を抑制できる。したがって、エンジン10の燃焼状態を安定させることができる。また、減少させる燃料量が副室燃料量であることから、主室8での燃焼状態に悪影響を与える可能性が極めて小さい。したがって、エンジン10の燃焼状態を改善することができる。なお、主室燃料量を保ったまま副室燃料量のみを減少させた場合には、主室噴射手段側の制御を変更することなく容易にエンジン10の燃焼状態を改善することができる。また、副室燃料量の減少量に応じて主室燃料量を増加させた場合には、トータルの燃料量の変化を小さくすることができ、エンジン10の燃焼状態をさらに安定させることができる。
 (2)上記のエンジン10の制御装置では、燃料制御手段22による燃料制御の実施後に、ノッキング度合Nが第1所定値N以上である場合には、点火時期をリタードさせる点火制御が点火制御手段23によって実施される。このような構成により、例えば燃料制御だけではノッキングを短時間で解消できないような場合に、点火リタード制御を併用することができ、ノッキング度合Nを確実に低下させることができる。したがって、エンジン10の燃焼状態を改善することができる。
 (3)上記のエンジン10の制御装置では、ノッキング度合Nが第1所定値Nよりも大きい第2所定値N以上である場合に、点火制御手段23が点火リタード制御を先に実施し、その後に燃料制御手段22が副室燃料量を減少させる燃料制御を実施する。このように、ノッキング度合Nが高すぎる場合には、燃料制御と比較して応答性に優れる点火リタード制御を先行させることで、ノッキング度合Nを素早く低下させることができる。したがって、エンジン10の燃焼状態を改善することができる。
 (4)上記のエンジン10の制御装置では、点火制御手段23が点火時期をリタードさせた後にリタード量を徐々に減少させる制御を実施する。このような構成により、点火時期を急に標準的な点火時期まで戻した場合と比較して、エンジン10の燃焼状態を安定させることができる。また、点火時期を標準的な点火時期よりもリタードさせた状態が、ある程度の時間は継続されるため、ノッキング度合Nを確実に低下させることができる。
 (5)上記のエンジン10の制御装置では、ノッキング度合Nが第1所定値Nよりも小さい第3所定値N未満である場合に、燃料制御手段22が副室燃料量を増加させる燃料制御を実施する。このように、ノッキング度合Nが低すぎる燃焼不良状態では、副室燃料量を増加させることで、エンジン10の燃焼状態を安定させることができる。また、増加させる燃料量が副室燃料量であることから、主室8での燃焼状態に悪影響を与える可能性が極めて小さい。したがって、エンジン10の燃焼状態を改善することができる。なお、主室燃料量を保ったまま副室燃料量のみを増加させた場合には、主室噴射手段側の制御を変更することなく容易にエンジン10の燃焼状態を改善することができる。また、副室燃料量の増加量に応じて主室燃料量を減少させた場合には、トータルの燃料量の変化を小さくすることができ、エンジン10の燃焼状態をさらに安定させることができる。
[4.変形例]
 上記の実施例はあくまでも例示に過ぎず、本実施例で明示しない種々の変形や技術の適用を排除する意図はない。本実施例の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施できる。また、本実施例の各構成は、必要に応じて取捨選択でき、あるいは適宜組み合わせることができる。例えば、上記の実施例では車両に搭載されるエンジン10の制御装置について詳述したが、本件に係る制御装置の適用対象は車載エンジンのみに制限されることはなく、例えば船舶や発電施設に設置されるエンジンにも適用可能である。少なくとも、主室噴射手段と副室噴射手段とを備えた内燃機関であれば、本件に係る制御装置を適用することが可能である。
 また、上記の実施例では、ノッキング度合Nが第1所定値Nよりも大きい第2所定値N以上である場合に、点火制御手段23が点火リタード制御を先に実施し、その後に燃料制御手段22が副室燃料量を減少させる燃料制御を実施しているが、第2所定値Nよりも大きい第4所定値N以上で点火制御手段23及び燃料制御手段22が、点火リタード制御及び燃料制御を同時に開始することも可能である。このように、リタード制御と燃料制御を同時に開始することで、ノッキング度合Nをより素早く確実に低下させることができる。
1 ポート噴射弁(主室噴射手段)
2 副室噴射弁(副室噴射手段)
3 筒内噴射弁(主室噴射手段)
4 多機能噴射弁(主室噴射手段,副室噴射手段)
5 副室
6 隔壁
7 孔
8 主室
9 点火プラグ
10 エンジン
11 吸気ポート
12 排気ポート
13 吸気バルブ
14 排気バルブ
15 ノックセンサ
16 筒内圧センサ
17 エンジン回転数センサ
18 アクセル開度センサ
19 車速センサ
20 ECU(制御装置)
21 推定手段
22 燃料制御手段
23 点火制御手段
 第1指標値
 第2指標値
 第3指標値
N ノッキング度合
 第1所定値
 第2所定値
 第3所定値
X 経過時間
Y 経過時間
 所定時間
 所定時間
 所定時間
 

Claims (5)

  1.  主室に燃料を供給する主室噴射手段と、
     前記主室噴射手段による燃料供給後に副室に燃料を供給する副室噴射手段と、
     ノッキングの強度及び発生頻度の指標であるノッキング度合を推定する推定手段と、
     前記ノッキング度合が第1所定値以上である場合に、前記副室噴射手段から供給される燃料量である副室燃料量を減少させる燃料制御を実施する燃料制御手段と、を備える
    ことを特徴とする、エンジンの制御装置。
  2.  点火時期をリタードさせる点火制御を実施する点火制御手段を更に備え、
     前記燃料制御手段による前記燃料制御の実施後に、前記ノッキング度合が前記第1所定値以上である場合には、前記点火制御を実施する
    ことを特徴とする、請求項1に記載のエンジンの制御装置。
  3.  前記ノッキング度合が前記第1所定値よりも大きい第2所定値以上の場合には、前記点火制御手段が前記点火制御を先に実施し、その後に前記燃料制御手段が前記燃料制御を実施する
    ことを特徴とする、請求項2に記載のエンジンの制御装置。
  4.  前記点火制御手段は、前記点火時期をリタードさせた後にリタード量を徐々に減少させる
    ことを特徴とする、請求項2または3に記載のエンジンの制御装置。
  5.  前記燃料制御手段は、前記ノッキング度合が前記第1所定値よりも小さい第3所定値未満である場合に、前記燃料制御手段が前記副室燃料量を増加させる燃料制御を実施する
    ことを特徴とする、請求項1~4のいずれか1項に記載のエンジンの制御装置。
PCT/JP2021/013201 2021-03-29 2021-03-29 エンジンの制御装置 WO2022208575A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/013201 WO2022208575A1 (ja) 2021-03-29 2021-03-29 エンジンの制御装置
CN202180096593.4A CN117136273A (zh) 2021-03-29 2021-03-29 发动机控制装置
EP21934752.3A EP4279730A4 (en) 2021-03-29 2021-03-29 ENGINE CONTROL DEVICE
US18/278,510 US20240151190A1 (en) 2021-03-29 2021-03-29 Engine control device
JP2023509890A JP7517593B2 (ja) 2021-03-29 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013201 WO2022208575A1 (ja) 2021-03-29 2021-03-29 エンジンの制御装置

Publications (1)

Publication Number Publication Date
WO2022208575A1 true WO2022208575A1 (ja) 2022-10-06

Family

ID=83455703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013201 WO2022208575A1 (ja) 2021-03-29 2021-03-29 エンジンの制御装置

Country Status (4)

Country Link
US (1) US20240151190A1 (ja)
EP (1) EP4279730A4 (ja)
CN (1) CN117136273A (ja)
WO (1) WO2022208575A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742557A (ja) * 1993-07-27 1995-02-10 Mitsubishi Heavy Ind Ltd 大型2サイクル直接噴射式メタノールエンジン
JP2013217335A (ja) * 2012-04-11 2013-10-24 Mitsubishi Heavy Ind Ltd 2サイクルガスエンジン
WO2014049646A1 (ja) * 2012-09-26 2014-04-03 川崎重工業株式会社 副室式ガスエンジン用の燃焼安定化装置
JP2016113982A (ja) * 2014-12-16 2016-06-23 株式会社デンソー エンジン制御装置
JP2017180247A (ja) * 2016-03-30 2017-10-05 マツダ株式会社 エンジンの制御装置
JP2018105171A (ja) 2016-12-26 2018-07-05 本田技研工業株式会社 内燃機関の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759932B2 (ja) * 1986-10-20 1995-06-28 本田技研工業株式会社 多気筒内燃機関の点火時期及び過給圧制御装置
JPWO2004099584A1 (ja) * 2003-05-09 2006-07-13 ヤンマー株式会社 副室式ガス機関の燃焼室構造及び副室式ガス機関
JP2005307889A (ja) * 2004-04-22 2005-11-04 Toyota Motor Corp 内燃機関の点火時期制御装置
JP2006037812A (ja) * 2004-07-26 2006-02-09 Toyota Motor Corp エンジンのバルブ特性制御装置
US7971567B2 (en) * 2007-10-12 2011-07-05 Ford Global Technologies, Llc Directly injected internal combustion engine system
JP6049921B1 (ja) * 2016-01-29 2016-12-21 川崎重工業株式会社 ガスエンジンの制御方法およびガスエンジン駆動システム
JP6594825B2 (ja) * 2016-05-27 2019-10-23 日立オートモティブシステムズ株式会社 内燃機関制御装置
US11365685B2 (en) * 2020-02-20 2022-06-21 Ford Global Technologies, Llc Methods and systems for a series gap igniter with a passive prechamber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742557A (ja) * 1993-07-27 1995-02-10 Mitsubishi Heavy Ind Ltd 大型2サイクル直接噴射式メタノールエンジン
JP2013217335A (ja) * 2012-04-11 2013-10-24 Mitsubishi Heavy Ind Ltd 2サイクルガスエンジン
WO2014049646A1 (ja) * 2012-09-26 2014-04-03 川崎重工業株式会社 副室式ガスエンジン用の燃焼安定化装置
JP2016113982A (ja) * 2014-12-16 2016-06-23 株式会社デンソー エンジン制御装置
JP2017180247A (ja) * 2016-03-30 2017-10-05 マツダ株式会社 エンジンの制御装置
JP2018105171A (ja) 2016-12-26 2018-07-05 本田技研工業株式会社 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4279730A4

Also Published As

Publication number Publication date
US20240151190A1 (en) 2024-05-09
EP4279730A4 (en) 2024-05-15
JPWO2022208575A1 (ja) 2022-10-06
EP4279730A1 (en) 2023-11-22
CN117136273A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
JP7312362B2 (ja) エンジンシステム
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US6425371B2 (en) Controller for internal combustion engine
JP5548029B2 (ja) 内燃機関の制御装置
JP2017141693A (ja) 内燃機関の制御装置
JP6315003B2 (ja) 内燃機関の制御装置
US20180163687A1 (en) Internal combustion engine control device and internal combustion engine control method
JP2023020228A (ja) エンジンシステム
JP2023020229A (ja) エンジンシステム
JP2023020227A (ja) エンジンシステム
JP3893909B2 (ja) 直噴火花点火式内燃機関の制御装置
JP2007064187A (ja) 内燃機関のノック抑制装置
WO2022208575A1 (ja) エンジンの制御装置
JP5696568B2 (ja) 内燃機関の制御装置
JP3680432B2 (ja) 内燃機関の制御装置
JP7517593B2 (ja) エンジンの制御装置
JP2010065558A (ja) 内燃機関の燃焼安定化装置
WO2022208578A1 (ja) エンジンの制御装置
JP7517594B2 (ja) エンジンの制御装置
WO2022208577A1 (ja) エンジンの制御装置
WO2022208576A1 (ja) エンジンの制御装置
JP2004052624A (ja) 筒内噴射式内燃機関の制御装置
JP7473077B2 (ja) ハイブリッド車両の制御装置
JP2538626B2 (ja) 内燃機関の制御装置
JP2002070624A (ja) 筒内噴射式内燃機関の燃焼制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934752

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2023509890

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021934752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18278510

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021934752

Country of ref document: EP

Effective date: 20230814

WWE Wipo information: entry into national phase

Ref document number: 2301006268

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE