WO2022202292A1 - パワー半導体装置および電力変換装置 - Google Patents

パワー半導体装置および電力変換装置 Download PDF

Info

Publication number
WO2022202292A1
WO2022202292A1 PCT/JP2022/010051 JP2022010051W WO2022202292A1 WO 2022202292 A1 WO2022202292 A1 WO 2022202292A1 JP 2022010051 W JP2022010051 W JP 2022010051W WO 2022202292 A1 WO2022202292 A1 WO 2022202292A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit body
circuit
power semiconductor
semiconductor device
wiring pattern
Prior art date
Application number
PCT/JP2022/010051
Other languages
English (en)
French (fr)
Inventor
ティ チェン
明博 難波
健 徳山
隆宏 荒木
亨太 浅井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US18/276,097 priority Critical patent/US20240105693A1/en
Priority to CN202280017462.7A priority patent/CN116941035A/zh
Priority to DE112022000403.7T priority patent/DE112022000403T5/de
Publication of WO2022202292A1 publication Critical patent/WO2022202292A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to power semiconductor devices and power conversion devices.
  • Power converters that convert power through the switching operation of power semiconductor devices have high conversion efficiency, so they are widely used for consumer, automotive, railway, and substation equipment. Since a large current flows through the power semiconductor device due to switching operation, a low-loss current path is required. For example, for vehicle use, miniaturization and low loss are required.
  • Patent Document 1 discloses a circuit body having a power semiconductor element, in which an upper arm side IGBT, an upper arm side diode, a lower arm side IGBT, and a lower arm side diode, which are power semiconductor elements, are soldered to a collector side lead frame.
  • a power semiconductor device is disclosed.
  • Patent Document 1 The device described in Patent Document 1 has problems in miniaturization and low loss.
  • a power semiconductor device comprises: a first circuit body constituting an upper arm of an inverter circuit for converting a direct current into an alternating current; a second circuit body constituting a lower arm of the inverter circuit; and the first circuit body. and a circuit board having an intermediate board between the first circuit body and the second circuit body, the intermediate board forming a through hole in which the second circuit body is arranged, wherein the intermediate board receives the alternating current
  • the first circuit body and the second circuit body are connected to the AC wiring pattern in surface contact with each other.
  • FIG. 10 is a top view showing Modified Example 1 of the through hole of the circuit board
  • FIG. 11 is a top view showing Modified Example 2 of the through hole of the circuit board
  • FIG. 1 is a top view of a power conversion device 1000 configured by a power semiconductor device 100.
  • the power semiconductor device 100 includes a first circuit body 110 forming an upper arm of an inverter circuit, which will be described later, and a second circuit body 120 forming a lower arm of the inverter circuit.
  • the power conversion device 1000 is configured by arranging a U-phase power semiconductor device 100U, a V-phase power semiconductor device 100V, and a W-phase power semiconductor device 100W in parallel on a circuit board 200 .
  • the power semiconductor devices 100U, 100V, and 100W have similar chip configurations, and may be simply referred to as the power semiconductor device 100 in the following description.
  • the circuit board 200 is formed with a through hole through which the first circuit body 110 and the second circuit body 120 are arranged through the upper surface and the lower surface of the circuit board 200, and the first circuit body 110 and the second circuit body 120 are arranged. It has an intermediate substrate 210 in between. Details of the through holes will be described later.
  • a positive DC wiring pattern 220 and a negative DC wiring pattern 230 are laminated in an insulated state from each other.
  • the positive DC wiring pattern 220 is connected to the positive terminal 221
  • the negative DC wiring pattern 230 is connected to the negative terminal 231 .
  • an AC wiring pattern 240 for transmitting AC current to the intermediate board 210 of the circuit board 200 is formed on the other side (lower side in the drawing) of the circuit board 200.
  • a control wiring pattern for transmitting control signals to the electrodes via lead wires 251 is formed in the control wiring pattern area 250 .
  • the AC wiring pattern 240 is connected to an AC terminal 241, and the control wiring pattern area 250 is connected to a control terminal (not shown).
  • the first circuit body 110 and the second circuit body 120 are respectively composed of a diode 130 and a transistor 140.
  • DC wiring patterns 220, 230, a diode 130, and a transistor 140 are arranged from one side to the other side of the circuit board 200.
  • the control wiring pattern area 250 are arranged in this order.
  • Transistor 140 is, for example, an IGBT.
  • a circuit component 300 such as a capacitor is mounted on the circuit board 200 .
  • Capacitors are, for example, film capacitors, ceramic capacitors, and the like. Electronic components other than capacitors may be mounted.
  • the circuit component 300 may be arranged on the side of the DC wiring patterns 220 and 230 or may be arranged on the side of the AC wiring pattern 240 .
  • the first circuit body 110 and the second circuit body 120 of the three-phase power semiconductor device 100 arranged in parallel on the circuit board 200 are sealed with a sealing member 400 .
  • the sealing member 400 is illustrated in a see-through state in order to clarify the internal configuration.
  • the sealing member 400 is an insulating resin material or the like, and includes all of the first circuit body 110 and the second circuit body 120, and part of the DC wiring patterns 220 and 230, the AC wiring pattern 240, and the control wiring pattern area 250. and are formed above and below the circuit board 200 .
  • the sealing member 400 may be formed including the circuit component 300 .
  • FIG. 2 is a cross-sectional view of the power converter 1000. As shown in FIG. 2 shows a cross section taken along the line XX' of FIG. 1.
  • FIG. 2 The emitter of transistor 140 is joined by solder 150 to emitter-side lead frame 140E.
  • the collector of transistor 140 is joined by solder 150 to collector side lead frame 140C.
  • the emitter side of the first circuit body 110 and the second circuit body 120 of the power semiconductor device 100 for three phases is provided on one surface of the circuit board 200, and the first circuit body 110 of the power semiconductor device 100 for three phases is provided on the other surface.
  • the collector side of the circuit body 110 and of the second circuit body 120 are arranged. As a result, the chip of each transistor 140 faces the same surface, which simplifies the manufacturing process.
  • the emitter-side lead frame 140E of the first circuit body 110 is connected to the AC wiring pattern 240 of the intermediate substrate 210 in surface contact. Also, the collector-side lead frame 140C of the second circuit body 120 is connected to the AC wiring pattern 240 of the intermediate substrate 210 in surface contact.
  • insulating members are provided on the emitter side of the first circuit body 110 and the second circuit body 120, and on the collector side of the first circuit body 110 and the second circuit body 120, which sandwich the circuit board 200.
  • a cooling device (not shown) is placed in contact with the cooling device. Since the through holes are provided in the circuit board 200 to expose the first circuit body 110 and the second circuit body 120 on both sides of the circuit board 200, the cooling device can cool the power semiconductor device 100 from both sides. Since the intermediate board 210, in which the lead frames 140E and 140C and the AC wiring pattern 240 are connected in surface contact, is located below the cooling device, the AC wiring pattern 240, which generates a large amount of heat, can be efficiently cooled.
  • FIG. 3 is a perspective view of a main part of power semiconductor device 100U.
  • the emitter-side lead frame 140E of the first circuit body 110 is connected to the AC wiring pattern 240 of the intermediate substrate 210 in surface contact.
  • the collector-side lead frame 140C of the second circuit body 120 is connected to the AC wiring pattern 240 of the intermediate substrate 210 in surface contact. Since the lead frames 140E and 140C and the AC wiring pattern 240 are in surface contact with each other on the intermediate substrate 210, the contact area is ensured and the loss of the flowing current can be reduced. In addition, since the current path connecting the emitter side of the first circuit body 110 and the collector side of the second circuit body 120 is also minimized, loss can be reduced and the size of the device can be reduced.
  • the inductance can be reduced and the surge voltage during high-speed switching can be reduced.
  • the connection process can be stably performed in the manufacturing process, and the structure of the device can be strengthened after manufacturing.
  • the collector-side lead frame 140C of the first circuit body 110 forms a region that is connected to the positive DC wiring pattern 220 in surface contact.
  • the emitter-side lead frame 140 ⁇ /b>E of the second circuit body 120 forms a region that is connected to the negative DC wiring pattern 230 in surface contact. Therefore, contact areas with the DC wiring patterns 220 and 230 are ensured, and current loss can be reduced. In addition, since the current path is also minimized, the loss can be reduced and the size of the device can be reduced. Moreover, since the devices are connected by surface contact, the connection process can be stably performed in the manufacturing process, and the structure of the device can be strengthened after manufacturing.
  • the first circuit body 110 and the second circuit body 120 are connected to the DC wiring patterns 220 and 230 and the AC wiring pattern 240 of the circuit board 200 in surface contact. Then, as shown in FIG. 2, a through hole is provided in the circuit board 200, and the first circuit body 110 and the second circuit body 120 are arranged in the through hole of the circuit board 200 to form a three-phase power semiconductor device. 100.
  • the power conversion device 1000 configured in this manner can be made thinner, smaller, and less lossy.
  • FIG. 4 is a circuit configuration diagram of the power semiconductor device 100.
  • the power conversion device 1000 configures an inverter circuit with U-phase, V-phase, and W-phase power semiconductor devices 100U, 100V, and 100W.
  • Each power semiconductor device 100 includes a first circuit body 110 forming an upper arm of the inverter circuit and a second circuit body 120 forming a lower arm of the inverter circuit.
  • the first circuit body 110 and the second circuit body 120 are each composed of a diode 130 and a transistor 140 .
  • a smoothing capacitor which is a circuit component 300, is connected between the DC wiring pattern 220 connected to the positive terminal 221 and the DC wiring pattern 230 connected to the negative terminal 231.
  • a DC power source such as a battery (not shown) is connected to the positive terminal 221 and the negative terminal 231 .
  • the inverter circuit converts the input DC power into AC power and outputs a three-phase AC current to the AC terminal 241 .
  • the emitter side of the first circuit body 110 and the collector side of the second circuit body 120 are connected in surface contact with the AC wiring pattern 240 of the intermediate substrate 210, so that the contact area is secured and the current flowing is reduced. loss can be reduced.
  • the current path connecting the emitter side of the first circuit body 110 and the collector side of the second circuit body 120 is also minimized.
  • FIG. 5 is a top view of the circuit board 200 of the power conversion device 1000.
  • FIG. 1 The difference from FIG. 1 is that the W-phase first circuit body 110 and second circuit body 120 are removed. Others are the same as those in FIG. 1, and the same reference numerals are given to the same parts, and the description thereof will be omitted.
  • the power converter 1000 shown in FIG. 5 has the same configuration as the power converter 1000 shown in FIG. 1, but FIG.
  • the through holes 260 are formed to allow the first circuit body 110 and the second circuit body 120 to pass through the upper and lower surfaces of the circuit board 200 .
  • the through hole 260 communicates with the hole in which the first circuit body 110 is arranged and the hole in which the second circuit body 120 is arranged, and the intermediate substrate 210 is formed between them.
  • the intermediate board 210 extends close to the circuit board 200 on which the DC wiring patterns 220 and 230 are arranged.
  • the emitter-side lead frame 140E of the first circuit body 110 and the collector-side lead frame 140C of the second circuit body 120 are connected to the AC wiring pattern 240 of the intermediate substrate 210 in surface contact. can be done.
  • the through hole 260 formed in the W phase of the circuit board 200 has been described as an example in FIG. 5, the U phase and V phase have the same configuration.
  • FIG. 6 is a top view showing Modification 1 of the through hole 260 of the circuit board 200. As shown in FIG. The difference from FIG. 1 is that the W-phase first circuit body 110 and second circuit body 120 are removed from the circuit board 200 . Others are the same as those in FIG. 1, and the same reference numerals are given to the same parts, and the description thereof will be omitted.
  • the intermediate board 210 extends close to the circuit board 200 on which the DC wiring patterns 220 and 230 are arranged, but in Modification 1 shown in FIG. It is connected to the circuit board 200 on which the wiring patterns 220 and 230 are arranged.
  • the through holes 260 independently form a first through hole 261 in which the first circuit body 110 is arranged and a second through hole 262 in which the second circuit body 120 is arranged, thereby forming an AC wiring pattern. is provided between the first through hole 26 and the second through hole 262 . Even with the configuration of Modification 1, the same effect as described above can be obtained.
  • FIG. 7 is a top view showing Modification 2 of the through hole 260 of the circuit board 200. As shown in FIG. The difference from FIG. 1 is that the W-phase first circuit body 110 and second circuit body 120 are removed from the circuit board 200 . Others are the same as those in FIG. 1, and the same reference numerals are given to the same parts, and the description thereof will be omitted.
  • the circuit board 200 is separated into a first circuit board 201 and a second circuit board 202 . That is, the circuit board 200 includes a first circuit board 201 on which the DC wiring patterns 220 and 230 and the circuit component 300 are arranged, an AC wiring pattern 240 and control wiring pattern areas of the first circuit body 110 and the second circuit body 120. 250 and the second circuit board 202 are arranged separately.
  • the intermediate board 210 is provided integrally with the second circuit board 202 and extends close to the first circuit board 201 on which the DC wiring patterns 220 and 230 are arranged.
  • a through hole 260 is formed between the first circuit board 201 and the second circuit board 202 .
  • the power semiconductor device 100 includes a first circuit body 110 forming an upper arm of an inverter circuit that converts a direct current into an alternating current, a second circuit body 120 forming a lower arm of the inverter circuit, and a first circuit.
  • a circuit board 200 having a through hole 260 in which the body 110 and the second circuit body 120 are arranged, and an intermediate board 210 between the first circuit body 110 and the second circuit body 120; has an AC wiring pattern 240 for transmitting an AC current, and the first circuit body 110 and the second circuit body 120 are connected to the AC wiring pattern 240 in surface contact. This makes it possible to reduce the size and loss of the power semiconductor device.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the features of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and several modifications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

パワー半導体装置は、直流電流を交流電流に変換するインバータ回路の上アームを構成する第1回路体と、前記インバータ回路の下アームを構成する第2回路体と、前記第1回路体と前記第2回路体が配置される貫通穴を形成し、前記第1回路体と前記第2回路体との間に中間基板を有する回路基板と、を備え、前記中間基板は、前記交流電流を伝達する交流配線パターンを有し、前記交流配線パターンには前記第1回路体と前記第2回路体が面接触して接続される。

Description

パワー半導体装置および電力変換装置
 本発明は、パワー半導体装置および電力変換装置に関する。
 パワー半導体装置のスイッチング動作により電力変換を行う電力変換装置は、変換効率が高いため、民生用、車載用、鉄道用、変電設備等に幅広く利用されている。このパワー半導体装置はスイッチング動作により大電流が流れるので、低損失な電流経路が求められる。例えば、車載用においては、小型化、低損失化が要求されている。
 特許文献1には、パワー半導体素子を有する回路体であって、コレクタ側リードフレームに、パワー半導体素子である上アーム側IGBT、上アーム側ダイオード、下アーム側IGBT、下アーム側ダイオードがはんだ接続されるパワー半導体装置が開示されている。
日本国特開2018-142620号公報
 特許文献1に記載の装置では、小型化、低損失化に課題がある。
 本発明によるパワー半導体装置は、直流電流を交流電流に変換するインバータ回路の上アームを構成する第1回路体と、前記インバータ回路の下アームを構成する第2回路体と、前記第1回路体と前記第2回路体が配置される貫通穴を形成し、前記第1回路体と前記第2回路体との間に中間基板を有する回路基板と、を備え、前記中間基板は、前記交流電流を伝達する交流配線パターンを有し、前記交流配線パターンには前記第1回路体と前記第2回路体が面接触して接続される。
 本発明によれば、パワー半導体装置の小型化、低損失化が可能となる。
電力変換装置の上面図である。 電力変換装置の断面図である。 パワー半導体装置の要部の斜視図である。 パワー半導体装置の回路構成図である。 回路基板の上面図である。 回路基板の貫通穴の変形例1を示す上面図である。 回路基板の貫通穴の変形例2を示す上面図である。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
 図1は、パワー半導体装置100により構成される電力変換装置1000の上面図である。
 パワー半導体装置100は、後述のインバータ回路の上アームを構成する第1回路体110と、インバータ回路の下アームを構成する第2回路体120とを備える。
 電力変換装置1000は、U相のパワー半導体装置100Uと、V相のパワー半導体装置100Vと、W相のパワー半導体装置100Wを回路基板200に並列に配置して構成される。パワー半導体装置100U、100V、100Wは同様のチップ構成であり、以下の説明では、単に、パワー半導体装置100と称する場合がある。
 回路基板200は、第1回路体110と第2回路体120が回路基板200の上面と下面に貫通して配置される貫通穴が形成され、第1回路体110と第2回路体120との間に中間基板210を有する。貫通穴の詳細は後述する。
 回路基板200の一側(図示の上方側)には、正極の直流配線パターン220と負極の直流配線パターン230とが互いに絶縁状態で積層して形成されている。正極の直流配線パターン220は、正極端子221へ、負極の直流配線パターン230は、負極端子231へ接続される。
 回路基板200の他側(図示の下方側)には、回路基板200の中間基板210に交流電流を伝達する交流配線パターン240が形成され、さらに、各回路体110、120内のトランジスタ140のゲート電極へリード線251を介して制御信号を伝達する制御配線パターンが制御配線パターンエリア250に形成されている。交流配線パターン240は、交流端子241へ、制御配線パターンエリア250は図示省略した制御端子へ接続される。
 第1回路体110および第2回路体120は、それぞれダイオード130とトランジスタ140より構成され、回路基板200の面の一側から他側に沿って、直流配線パターン220、230、ダイオード130、トランジスタ140、制御配線パターンエリア250が順に配置される。トランジスタ140は、例えばIGBTである。
 回路基板200上にはコンデンサなどの回路部品300が搭載される。コンデンサは、例えば、フィルムコンデンサ、セラミックコンデンサなどである。コンデンサ以外の他の電子部品を搭載してもよい。回路部品300は、直流配線パターン220、230側に配置してもよく、交流配線パターン240側に配置してもよい。
 回路基板200に並列に配置された三相分のパワー半導体装置100の第1回路体110および第2回路体120は、封止部材400で封止される。なお、図1では、内部の構成を明示する為に封止部材400を透過状態で図示している。封止部材400は、絶縁性の樹脂材料などであり、第1回路体110および第2回路体120の全部と、直流配線パターン220、230、交流配線パターン240、制御配線パターンエリア250の一部とを含み、回路基板200の上下に形成される。なお、封止部材400は、回路部品300を含めて形成してもよい。
 図2は、電力変換装置1000の断面図である。図1のX-X’線における断面を示す。
 トランジスタ140のエミッタは、はんだ150によりエミッタ側リードフレーム140Eと接合される。トランジスタ140のコレクタは、はんだ150によりコレクタ側リードフレーム140Cと接合される。回路基板200の一方の面に、三相分のパワー半導体装置100の第1回路体110および第2回路体120のエミッタ側を、他方の面に、三相分のパワー半導体装置100の第1回路体110のおよび第2回路体120のコレクタ側を配置する。これにより、各トランジスタ140のチップが同じ面を向くので、製造工程を簡略化できる。
 第1回路体110のエミッタ側リードフレーム140Eは、中間基板210の交流配線パターン240に面接触して接続される。また、第2回路体120のコレクタ側リードフレーム140Cは、中間基板210の交流配線パターン240に面接触して接続される。
 電力変換装置1000には、回路基板200を挟む、第1回路体110および第2回路体120のエミッタ側と、第1回路体110および第2回路体120のコレクタ側に、それぞれ絶縁部材を介して図示省略した冷却装置が接触して配置される。回路基板200に貫通穴を設けて、第1回路体110および第2回路体120を回路基板200の両面に露出するので、冷却装置はパワー半導体装置100を両面から冷却できる。そして、各リードフレーム140E、140Cと交流配線パターン240とが面接触して接続される中間基板210は、冷却装置の下に位置するので、発熱が大きい交流配線パターン240を効率よく冷却できる。
 図3は、パワー半導体装置100Uの要部の斜視図である。
 既に述べたように、第1回路体110のエミッタ側リードフレーム140Eは、中間基板210の交流配線パターン240に面接触して接続される。また、第2回路体120のコレクタ側リードフレーム140Cは、中間基板210の交流配線パターン240に面接触して接続される。各リードフレーム140E、140Cと交流配線パターン240とは中間基板210上に面で接触するので、接触面積が確保され、流れる電流の損失を低減できる。また、第1回路体110のエミッタ側と第2回路体120のコレクタ側を繋ぐ電流経路も最短化されるので損失を低減でき、装置を小型化できる。さらに、第1回路体110のエミッタ側と第2回路体120のコレクタ側を繋ぐ電流経路も最短化されることより、インダクタンスの低減ができ、高速スイッチング時のサージ電圧を低減できる。また、面接触して接続されるので、製造過程において接続工程を安定して行うことができ、製造後は装置の構成を強固にすることができる。
 さらに、第1回路体110のコレクタ側リードフレーム140Cは、正極の直流配線パターン220に面接触して接続される領域を形成している。第2回路体120のエミッタ側リードフレーム140Eは、負極の直流配線パターン230に面接触して接続される領域を形成している。したがって、各直流配線パターン220、230との接触面積が確保され、電流の損失を低減できる。また、電流経路も最短化されるので損失を低減でき、装置を小型化できる。また、面接触して接続されるので、製造過程において接続工程を安定して行うことができ、製造後は装置の構成を強固にすることができる。
 図3に示すように、パワー半導体装置100は、第1回路体110および第2回路体120が、回路基板200の直流配線パターン220、230および交流配線パターン240と面接触して接続される。そして、図2に示すように、回路基板200に貫通穴を設けて、回路基板200の貫通穴に第1回路体110および第2回路体120を配置して、三一相分のパワー半導体装置100を構成する。このように構成した電力変換装置1000は、薄型化が図れ、小型化、低損失化が可能となる。
 図4は、パワー半導体装置100の回路構成図である。
 電力変換装置1000は、U相、V相、W相のパワー半導体装置100U、100V、100Wによりインバータ回路を構成する。
 各パワー半導体装置100は、インバータ回路の上アームを構成する第1回路体110と、インバータ回路の下アームを構成する第2回路体120とを備える。第1回路体110および第2回路体120は、各々ダイオード130とトランジスタ140より構成される。
 正極端子221に接続される直流配線パターン220と負極端子231に接続される直流配線パターン230との間には、回路部品300である平滑用のコンデンサが接続される。図示省略したバッテリなどの直流電源は、正極端子221および負極端子231に接続される。インバータ回路は、入力された直流電力を交流電力に変換し、3相の交流電流を交流端子241へ出力する。上述したように、第1回路体110のエミッタ側と第2回路体120のコレクタ側は、中間基板210の交流配線パターン240に面接触して接続されるので、接触面積が確保され、流れる電流の損失を低減できる。また、第1回路体110のエミッタ側と第2回路体120のコレクタ側を繋ぐ電流経路も最短化される。
 図5は、電力変換装置1000の回路基板200の上面図である。
 図1とは、W相の第1回路体110および第2回路体120を取り除いた点が相違する。その他は、図1と同様であり、同一箇所には同一の符号を付してその説明を省略する。
 図5に示す電力変換装置1000は、図1に示した電力変換装置1000と同一の構成であるが、図5は、回路基板200に形成した貫通穴260を説明するための図である。貫通穴260は、第1回路体110と第2回路体120を回路基板200の上面と下面に貫通して配置するために形成される。この例では、貫通穴260は、第1回路体110が配置される穴と第2回路体120が配置される穴は連通し、その中間に中間基板210が形成されている。中間基板210は、直流配線パターン220、230が配置されている回路基板200の近くまで伸びている。これにより、既に述べたように、第1回路体110のエミッタ側リードフレーム140Eと第2回路体120のコレクタ側リードフレーム140Cを、中間基板210の交流配線パターン240に面接触して接続することができる。図5では、回路基板200のW相に形成された貫通穴260を例に説明したが、U相、V相も同様の構成である。
 図6は、回路基板200の貫通穴260の変形例1を示す上面図である。
 図1とは、回路基板200からW相の第1回路体110および第2回路体120を取り除いた点が相違する。その他は、図1と同様であり、同一箇所には同一の符号を付してその説明を省略する。
 図5では、中間基板210は、直流配線パターン220、230が配置されている回路基板200の近くまで伸びている例を示したが、図6に示す変形例1では、中間基板210は、直流配線パターン220、230が配置されている回路基板200に繋がっている。換言すれば、貫通穴260は、第1回路体110が配置される第1貫通穴261と第2回路体120が配置される第2貫通穴262とをそれぞれ独立して形成し、交流配線パターンを有する中間基板210は、第1貫通穴26と第2貫通穴262との間に設けられる。この変形例1の構成であっても、前述と同様の効果を奏する。
 図7は、回路基板200の貫通穴260の変形例2を示す上面図である。
 図1とは、回路基板200からW相の第1回路体110および第2回路体120を取り除いた点が相違する。その他は、図1と同様であり、同一箇所には同一の符号を付してその説明を省略する。
 図7に示すように、回路基板200は、第1回路基板201と第2回路基板202に分離している。すなわち、回路基板200は、直流配線パターン220、230と回路部品300とが配置される第1回路基板201と、交流配線パターン240と第1回路体110および第2回路体120の制御配線パターンエリア250とが配置される第2回路基板202とがそれぞれ別体に構成される。そして、中間基板210は、第2回路基板202と一体に設けられ、直流配線パターン220、230が配置されている第1回路基板201の近くまで伸びている。そして、第1回路基板201と第2回路基板202との間に貫通穴260が形成される。
 この変形例2の構成であっても、前述と同様の効果を奏する他、回路基板200の材料のコストを低減でき、回路基板200の生産性を向上させることができる。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)パワー半導体装置100は、直流電流を交流電流に変換するインバータ回路の上アームを構成する第1回路体110と、インバータ回路の下アームを構成する第2回路体120と、第1回路体110と第2回路体120が配置される貫通穴260を形成し、第1回路体110と第2回路体120との間に中間基板210を有する回路基板200と、を備え、中間基板210は、交流電流を伝達する交流配線パターン240を有し、交流配線パターン240には第1回路体110と第2回路体120が面接触して接続される。これにより、パワー半導体装置の小型化、低損失化が可能となる。
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
 100、100U、100V、100W・・・パワー半導体装置、110・・・第1回路体、120・・・第2回路体、130・・・ダイオード、140・・・トランジスタ、140C・・・コレクタ側リードフレーム、140E・・・エミッタ側リードフレーム、150・・・はんだ、200・・・回路基板、201・・・第1回路基板、202・・・第2回路基板、210・・・中間基板、220、230・・・直流配線パターン、221・・・正極端子、231・・・負極端子、240・・・交流配線パターン、241・・・交流端子、250・・・制御配線パターンエリア、251・・・リード線、260・・・貫通穴、261・・・第1貫通穴、262・・・第2貫通穴、300・・・回路部品、400・・・封止部材、1000・・・電力変換装置。
 

Claims (9)

  1.  直流電流を交流電流に変換するインバータ回路の上アームを構成する第1回路体と、
     前記インバータ回路の下アームを構成する第2回路体と、
     前記第1回路体と前記第2回路体が配置される貫通穴を形成し、前記第1回路体と前記第2回路体との間に中間基板を有する回路基板と、を備え、
     前記中間基板は、前記交流電流を伝達する交流配線パターンを有し、前記交流配線パターンには前記第1回路体と前記第2回路体が面接触して接続されるパワー半導体装置。
  2.  請求項1に記載のパワー半導体装置において、
     前記回路基板の一方の面に、前記第1回路体のおよび前記第2回路体のエミッタ側を、前記回路基板の他方の面に、前記第1回路体および前記第2回路体のコレクタ側を配置したパワー半導体装置。
  3.  請求項1に記載のパワー半導体装置において、
     前記回路基板は前記直流電流を伝達する直流配線パターンを有し、前記直流配線パターンには前記第1回路体および前記第2回路体が面接触して接続されるパワー半導体装置。
  4.  請求項3に記載のパワー半導体装置において、
     前記第1回路体および前記第2回路体は、それぞれダイオードとトランジスタより構成され、
     前記回路基板の面に沿って、前記直流配線パターン、前記ダイオード、前記トランジスタ、前記トランジスタの制御配線パターンが順に配置されるパワー半導体装置。
  5.  請求項3に記載のパワー半導体装置において、
     前記貫通穴は、前記第1回路体が配置される第1貫通穴と前記第2回路体が配置される第2貫通穴とにそれぞれ独立して形成され、前記交流配線パターンを有する前記中間基板は、前記第1貫通穴と前記第2貫通穴との間に設けられるパワー半導体装置。
  6.  請求項3に記載のパワー半導体装置において、
     前記回路基板は、前記直流配線パターンが配置される第1回路基板と、前記交流配線パターンと前記第1回路体および前記第2回路体の制御配線パターンとが配置される第2回路基板とをそれぞれ別体に構成するパワー半導体装置。
  7.  請求項3に記載のパワー半導体装置において、
     前記第1回路体および前記第2回路体は、封止部材で封止されるパワー半導体装置。
  8.  請求項3に記載のパワー半導体装置において、
     前記回路基板上には回路部品が搭載されるパワー半導体装置。
  9.  請求項1から請求項8までのいずれか一項に記載のパワー半導体装置により一相分が構成されるアーム回路を前記回路基板に三相分並列に配置した電力変換装置。
     
PCT/JP2022/010051 2021-03-24 2022-03-08 パワー半導体装置および電力変換装置 WO2022202292A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/276,097 US20240105693A1 (en) 2021-03-24 2022-03-08 Power semiconductor device and power conversion device
CN202280017462.7A CN116941035A (zh) 2021-03-24 2022-03-08 功率半导体装置以及电力转换装置
DE112022000403.7T DE112022000403T5 (de) 2021-03-24 2022-03-08 Leistungshalbleitervorrichtung und leistungswandlervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049835A JP7428679B2 (ja) 2021-03-24 2021-03-24 パワー半導体装置および電力変換装置
JP2021-049835 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202292A1 true WO2022202292A1 (ja) 2022-09-29

Family

ID=83397096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010051 WO2022202292A1 (ja) 2021-03-24 2022-03-08 パワー半導体装置および電力変換装置

Country Status (5)

Country Link
US (1) US20240105693A1 (ja)
JP (1) JP7428679B2 (ja)
CN (1) CN116941035A (ja)
DE (1) DE112022000403T5 (ja)
WO (1) WO2022202292A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030458A1 (ja) * 2012-08-20 2014-02-27 日立オートモティブシステムズ株式会社 パワー半導体モジュール
WO2019181261A1 (ja) * 2018-03-23 2019-09-26 日立オートモティブシステムズ株式会社 パワー半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767898B2 (ja) 2017-02-28 2020-10-14 日立オートモティブシステムズ株式会社 パワー半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030458A1 (ja) * 2012-08-20 2014-02-27 日立オートモティブシステムズ株式会社 パワー半導体モジュール
WO2019181261A1 (ja) * 2018-03-23 2019-09-26 日立オートモティブシステムズ株式会社 パワー半導体装置

Also Published As

Publication number Publication date
DE112022000403T5 (de) 2023-10-05
JP2022148233A (ja) 2022-10-06
US20240105693A1 (en) 2024-03-28
JP7428679B2 (ja) 2024-02-06
CN116941035A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
JP5841500B2 (ja) スタック型ハーフブリッジ電力モジュール
JP5259016B2 (ja) パワー半導体モジュール
JP5830480B2 (ja) 配線板およびそれを用いた電力変換装置
JP6836201B2 (ja) 電力変換装置
CN105470248B (zh) 半导体器件
US11296054B2 (en) Power converter module and method for production thereof
CN110506330B (zh) 功率电子模块以及包含该模块的电功率变换器
JP2008042074A (ja) 半導体装置及び電力変換装置
WO2017056686A1 (ja) 電力変換装置
CN116325135A (zh) 半导体封装、半导体装置以及电力变换装置
CN113557603B (zh) 半导体装置
JP7268563B2 (ja) 半導体装置
JP2000058372A (ja) セラミックコンデンサ実装構造
CN110880488B (zh) 半导体装置及电力转换装置
CN112992845A (zh) 功率模块及其制造方法
WO2022202292A1 (ja) パワー半導体装置および電力変換装置
JP6123722B2 (ja) 半導体装置
JP2002238260A (ja) 半導体装置
WO2021229859A1 (ja) 半導体装置、バスバー及び電力変換装置
JP7367506B2 (ja) 半導体モジュール
CN110622307A (zh) 半导体模块以及电力变换装置
WO2020184050A1 (ja) 半導体装置
WO2021015050A1 (ja) 電気回路装置
WO2023058381A1 (ja) 電力変換装置
WO2023100771A1 (ja) 半導体モジュール、電力変換装置、および半導体モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276097

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022000403

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202280017462.7

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22775085

Country of ref document: EP

Kind code of ref document: A1