WO2022199431A1 - 干扰检测方法及装置 - Google Patents

干扰检测方法及装置 Download PDF

Info

Publication number
WO2022199431A1
WO2022199431A1 PCT/CN2022/081036 CN2022081036W WO2022199431A1 WO 2022199431 A1 WO2022199431 A1 WO 2022199431A1 CN 2022081036 W CN2022081036 W CN 2022081036W WO 2022199431 A1 WO2022199431 A1 WO 2022199431A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference
filtered
radar echo
radar
Prior art date
Application number
PCT/CN2022/081036
Other languages
English (en)
French (fr)
Inventor
徐磊磊
秦博雅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22774092.5A priority Critical patent/EP4306991A1/en
Publication of WO2022199431A1 publication Critical patent/WO2022199431A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present application relates to the field of radar technology, and in particular, to an interference detection method and device.
  • ADAS Advanced driver assistance system
  • environmental perception is a prerequisite for ADAS to support intelligent driving. It is usually necessary to install sensors around the car to improve ADAS's ability to detect road targets.
  • vehicle-mounted millimeter-wave radar is one of the key sensors commonly used in automobiles.
  • the average energy method can generally be used to determine the interference detection threshold corresponding to the radar echo signal, and then based on the interference detection threshold, each sampling point signal included in the radar echo signal is detected. If there is a sampling point signal that exceeds the threshold, it is determined that the sampling point signal is interfered (that is, the radar echo signal has an interference signal).
  • this method has low detection accuracy and poor applicability.
  • Embodiments of the present application provide an interference detection method and device, which are used to improve the accuracy of interference detection.
  • the present application provides an interference detection method, the method comprising: acquiring a digital signal obtained by processing a radar echo signal; at least two filtered signals; according to each of the at least two filtered signals and the interference detection threshold corresponding to each of the filtered signals, determine whether there is an interference signal in the radar echo signal.
  • the method can be performed by an interference detection device.
  • the interference detection device may be a radar device.
  • the radar device may be a millimeter-wave radar
  • the radar echo signal may be a frequency-modulated continuous wave signal.
  • the digital signal obtained by processing the radar echo signal by acquiring the digital signal obtained by processing the radar echo signal, and inputting the digital signal into at least two filters with different cutoff frequencies in parallel for processing, at least two filters with different frequency ranges can be obtained. filter the signal. Further, interference detection is performed on each filtered signal based on the interference detection threshold of each filtered signal, and finally it is determined whether there is an interference signal in the radar echo signal according to the interference detection result of each filtered signal, which can improve the detection of the presence of interference in the radar echo signal. The detection accuracy of the interference signal.
  • the at least two filters include at least two of the following filters: a low-pass filter, a band-pass filter, a high-pass filter and a band-stop filter.
  • the at least two filters include at least one low-pass filter and at least one bandpass filter; or the at least two filters include at least one bandpass filter and at least one high-pass filter; or the at least two filters include at least one low-pass filter and at least one high-pass filter; or the at least two filters include at least two band-pass filters; or the at least two filters At least two band-stop filters are included; or the at least two filters include at least one band-pass filter and at least one band-stop filter.
  • the at least two filters include a low-pass filter with a first cutoff frequency, a bandpass filter with a second cutoff frequency, and a high-pass filter with a third cutoff frequency
  • the second cutoff frequency includes an upper cutoff frequency and a lower cutoff frequency, wherein the lower cutoff frequency is not greater than the first cutoff frequency, and the upper limit cutoff frequency is not less than the third cutoff frequency.
  • each of the at least two filtered signals includes at least one sampling point signal; the above-mentioned at least two filtered signals correspond to each of the filtered signals and the above-mentioned filtered signals
  • the interference detection threshold is determined, and determining whether there is an interference signal in the above-mentioned radar echo signal includes: determining that at least one sampling point signal included in each of the above-mentioned filtered signals is not less than the first sample of the interference detection threshold corresponding to each of the above-mentioned filtered signals The signal index value corresponding to the point signal; according to the signal index value corresponding to the first sampling point signal included in each filter signal, it is determined whether there is an interference signal in the radar echo signal.
  • the first sampling point signal that is greater than or equal to the interference detection threshold corresponding to the filtered signal is obtained, and then according to the first sampling point signal included in each filtered signal
  • the signal index value corresponding to the sampling point signal determines whether there is an interference signal in the radar echo signal, which can improve the granularity of interference detection.
  • determining whether there is an interference signal in the radar echo signal according to the signal index value corresponding to the first sampling point signal included in each filtered signal includes: according to The signal index value corresponding to the first sampling point signal included in each of the above-mentioned filtered signals generates a set of signal index values corresponding to each of the above-mentioned filtered signals, wherein one filtered signal corresponds to one set of signal index values; according to the signals corresponding to each of the above-mentioned filtered signals A set of index values to determine whether there is an interference signal in the above radar echo signal.
  • the above-mentioned determining whether there is an interference signal in the above-mentioned radar echo signal according to the set of signal index values corresponding to each of the above-mentioned filtered signals includes: a signal index corresponding to each of the above-mentioned filtered signals.
  • the value set is fused to obtain a fusion result; according to the fusion result, it is determined whether there is an interference signal in the radar echo signal.
  • performing fusion processing on the set of signal index values corresponding to each of the above-mentioned filtered signals to obtain a fusion result includes: taking a union of the sets of signal index values corresponding to each of the above-mentioned filtered signals Or take an intersection to obtain a set of signals of over-threshold sampling points; and determine the set of signals of over-threshold sampling points as the fusion result.
  • the number of interference signals included in the fusion result can be increased, and the detection accuracy can be improved.
  • the above-mentioned determining whether there is an interference signal in the above-mentioned radar echo signal according to the above-mentioned fusion result includes: if the above-mentioned set of over-threshold sampling point signals is a non-empty set, then determining the above-mentioned radar echo signal There is an interfering signal in the echo signal; if the above-mentioned set of signals passing the threshold sampling point is an empty set, it is determined that there is no interfering signal in the above-mentioned radar echo signal.
  • determining whether there is an interference signal in the radar echo signal according to the set of signal index values corresponding to each of the filtered signals includes: selecting from at least two sets of signal index values Determine the number of sets of non-empty sets; obtain an interference judgment threshold, and determine whether there is an interference signal in the radar echo signal according to the interference judgment threshold, the number of sets, and the number of filters.
  • determining whether there is an interference signal in the radar echo signal according to the interference judgment threshold, the number of sets, and the number of filters includes: determining the number of sets and the number of filters If the ratio is not less than the interference judgment threshold, it is determined that there is an interference signal in the radar echo signal; if the ratio is less than the interference judgment threshold, it is determined that there is no interference signal in the radar echo signal.
  • the method further includes: if it is determined If there is an interference signal in the radar echo signal, the interference removal process is performed on the radar echo signal.
  • the interference removal processing is performed on the radar echo signal based on the result of the interference detection, which can reduce the interference existing in the radar echo signal and improve the interference suppression effect. Further, when ranging and speed measurement are performed on the radar echo signal after the interference removal processing, the accuracy of the ranging and speed measurement can also be improved.
  • the present application provides an interference detection device, the device includes: an acquisition unit for acquiring a digital signal obtained by processing a radar echo signal; a filtering unit for performing different cutoff frequencies on the digital signal respectively to obtain at least two filtered signals; the processing unit is configured to determine whether there is an interference signal in the above-mentioned radar echo signal according to each of the above-mentioned at least two filtered signals and the interference detection threshold corresponding to each of the above-mentioned filtered signals.
  • the at least two filters include at least two of the following filters: a low-pass filter, a band-pass filter, a high-pass filter and a band-stop filter.
  • the at least two filters include at least one low-pass filter and at least one bandpass filter; or the at least two filters include at least one bandpass filter and at least one high-pass filter; or the at least two filters include at least one low-pass filter and at least one high-pass filter; or the at least two filters include at least two band-pass filters; or the at least two filters At least two band-stop filters are included; or the at least two filters include at least one band-pass filter and at least one band-stop filter.
  • the at least two filters include a low-pass filter with a first cutoff frequency, a bandpass filter with a second cutoff frequency, and a high-pass filter with a third cutoff frequency
  • the second cutoff frequency includes an upper cutoff frequency and a lower cutoff frequency, wherein the lower cutoff frequency is not greater than the first cutoff frequency, and the upper limit cutoff frequency is not less than the third cutoff frequency.
  • each of the at least two filtered signals includes at least one sampling point signal; the processing unit is specifically configured to:
  • the signal index value corresponding to the first sampling point signal that is not less than the interference detection threshold corresponding to each of the above-mentioned filtered signals in at least one sampling point signal included in each of the above-mentioned filtered signals;
  • the signal index value corresponding to the signal of the sampling point determines whether there is an interference signal in the above-mentioned radar echo signal.
  • the above-mentioned processing unit is further used for:
  • the above-mentioned processing unit is further used for:
  • the above-mentioned processing unit is further used for:
  • the above-mentioned set of over-threshold sampling point signals is determined as the above-mentioned fusion result.
  • the above-mentioned processing unit is further used for:
  • the above-mentioned set of over-threshold sampling point signals is a non-empty set, it is determined that there is an interference signal in the above-mentioned radar echo signal;
  • the above-mentioned set of signals passing the threshold sampling point is an empty set, it is determined that there is no interference signal in the above-mentioned radar echo signal.
  • the above-mentioned processing unit is further used for:
  • the above-mentioned processing unit is further used for:
  • the ratio is smaller than the interference judgment threshold, it is determined that there is no interference signal in the radar echo signal.
  • the above-mentioned processing unit is further used for:
  • the interference removal process is performed on the radar echo signal.
  • a detection device which may be a radar or a component (such as a circuit or a chip) for a radar, comprising a processor and a memory, the processor and the memory being connected to each other, and the memory is used to store one or more a program, the processor is used to call the program stored in the memory, and when the program is executed by the computer, the computer executes the interference detection method in the first aspect and any possible implementation manner thereof.
  • the detection device further includes a communication interface, wherein the above-mentioned communication interface is used for receiving and sending data.
  • the above-mentioned processor and memory may be physically independent units, or, the memory may also be integrated with the processor.
  • the embodiments of the present application also provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is modified to run on a computer, the computer is made to execute the first aspect or the first aspect.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is modified to run on a computer, the computer is made to execute the first aspect or the first aspect.
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the processor is used to call and run an instruction from the communication interface, and when the processor executes the instruction, the chip executes as described in the first step.
  • An aspect or various embodiments of the first aspect are as described above.
  • the acquired digital signal is divided into at least two filter signals in different frequency bands, and then interference detection is performed on each filter signal to realize the radar echo Signal interference detection can improve the accuracy of interference detection.
  • Figure 1 is a schematic diagram of the architecture of the radar system
  • FIG. 2 is a schematic structural diagram of a millimeter-wave radar provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of mutual interference between radars according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the results of interference detection on radar echo signals in different scenarios based on the energy mean method
  • FIG. 6 is a schematic flowchart of an interference detection method provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of a filter selection method provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of another filter selection method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the effect of a digital signal provided by an embodiment of the present application after being filtered by a filter
  • FIG. 9 is a schematic diagram of a signal index value provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an application scenario of interference detection provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a test result of an interference detection method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an interference detection apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another interference detection device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • Radar or a radar device
  • the signal transmitted by the radar may be a radar signal, and correspondingly, the received reflected signal reflected by the target object may also be a radar signal.
  • a radar emits multiple radar signals outward and receives multiple echoes/reflection signals reflected by a target object. Further, processing is performed for each received signal.
  • Frequency modulated continuous wave also known as chirp signal, is an electromagnetic wave whose frequency varies with time.
  • Linear frequency modulated continuous wave an electromagnetic wave whose frequency varies linearly with time.
  • the linear change here generally refers to a linear change within one emission period.
  • the waveform of the chirp continuous wave is generally a sawtooth wave or a triangular wave, or there may also be other possible waveforms, such as a chirp step frequency waveform and the like.
  • Intermediate frequency (Intermediate Frequency, IF) signal the signal processed by the mixer of the radar local oscillator signal and the received target reflected signal is the intermediate frequency signal. Specifically, part of the FM continuous wave signal generated by the oscillator is used as a local oscillator signal, and a part is transmitted through the transmitting antenna as a transmitting signal, and the reflected signal of the transmitting signal received by the receiving antenna will be mixed with the local oscillator signal to obtain "IF signal”.
  • the intermediate frequency signal at least one of the position information, velocity information and angle information of the target object can be obtained.
  • the position information, speed information and angle information may be relative position, relative speed and relative angle information relative to the current radar.
  • the frequency of the intermediate frequency signal is the intermediate frequency frequency.
  • Field of view refers to the world that can be seen, also known as the field of view.
  • LOS line of sight
  • the transmission of signals such as radio waves, lasers
  • the signal can be transmitted to the receiver or target object.
  • NLOS non-line of sight area
  • the radar can be a radar installed on terminal equipment (referred to as terminal) such as motor vehicles, intersection cameras, drones, rail cars, bicycles, signal lights or speed measuring devices.
  • terminal such as motor vehicles, intersection cameras, drones, rail cars, bicycles, signal lights or speed measuring devices.
  • the radar may also be a radar installed on a network device (such as a base station in various systems), etc., which is not limited here.
  • the radar mentioned in the embodiments of the present application may be a millimeter-wave radar, a laser radar, or an ultrasonic radar, etc., which is not limited herein.
  • the millimeter-wave radar includes FMCW radar, LFMCW radar, etc., which is not limited here.
  • the radar in the embodiments of the present application can be applied to various fields such as intelligent transportation, automatic driving, atmospheric environment monitoring, geographic surveying and mapping, and unmanned aerial vehicles, and can complete target detection, distance measurement, speed measurement, target tracking, and imaging. One or more functions of identification, etc.
  • the embodiments of the present application are applicable not only to the radar system between vehicles, but also to the radar system between vehicles and other devices such as drones, or the radar system between other devices, etc., which are not limited here. .
  • radar can be installed on smart terminals such as smart transportation equipment, smart home equipment, and robots.
  • the embodiment of the present application does not limit the type of the terminal device on which the radar is installed, the installation position of the radar, and the function of the radar.
  • the following embodiments of the present application are described by taking an intelligent terminal as an intelligent transportation device and a radar as an example of a millimeter-wave radar.
  • millimeter-wave radar is the first to become the main sensor for unmanned systems and assisted driving systems.
  • ADAS has developed more than ten functions, including Adaptive Cruise Control (ACC), Automatic Emergency Braking (AEB), Lane Change Assist (LCA), Blind Spot Monitoring (Blind Spot). Spot Monitoring, BSD) is inseparable from millimeter-wave radar.
  • millimeter waves refer to electromagnetic waves with wavelengths between 1 and 10 mm, and the corresponding frequency range is 30 to 300 GHz. In this frequency band, mmWave-related characteristics make it ideal for automotive applications.
  • FIG. 2 is a schematic structural diagram of a millimeter-wave radar provided by an embodiment of the present application.
  • a millimeter-wave radar generally includes an oscillator (local oscillator, LO) 201, a transmit antenna (TX) 202, a receive antenna (RX) 203, a mixer (mixer) 204, a processor 205, and the like.
  • the processor may include processing devices such as a low pass filter (low pass filter, LPF), an analog-to-digital converter (analog-to-digital converter, ADC), and a digital signal processor (digital signal processor, DSP).
  • LPF low pass filter
  • ADC analog-to-digital converter
  • DSP digital signal processor
  • the oscillator will generate a signal whose frequency increases linearly with time, and the radar signal is generally a frequency-modulated continuous wave. Part of the signal is output to the mixer as the local oscillator signal, and part is transmitted through the transmitting antenna.
  • the receiving antenna receives the echo signal reflected by the transmitted radar signal after encountering the target object, and the mixer combines the echo signal with the local signal.
  • the vibration signal is mixed to obtain an intermediate frequency signal.
  • the intermediate frequency signal is sent to the processor after being amplified and processed by a low-pass filter, and the processor processes the received signal (usually performing fast Fourier transform, spectrum analysis, etc.
  • the fast Fourier transform is generally performed at the fast time and the slow time, respectively.
  • the fast time refers to the time dimension of a single reflection period of the millimeter-wave radar
  • the slow time refers to the time dimension of the detection frame of the millimeter-wave radar (including the emission periods of multiple millimeter-wave radars).
  • the processor can also output the obtained information such as distance, speed and angle to the controller (not shown in the figure), so that the controller can make corresponding decisions, such as controlling the behavior of the vehicle.
  • the controller can be external to the radar or internal to the radar.
  • FIG. 3 is a schematic diagram of mutual interference between radars according to an embodiment of the present application.
  • the radar 301 can send out detection signals and receive echo signals reflected by the target object 302 .
  • the radar 301 since there is also a radar 303 in the field of view of the radar 301, when the radar 301 receives the echo signal reflected by the target object 302, its receiving antenna can also receive the transmission signal of the radar 303 or the corresponding transmission signal of the radar 303.
  • the echo signal of the radar 301 or the echo signal corresponding to the transmit signal of the radar 303 received by the radar 301 or the echo signal of the radar 303 is an interference signal for the radar 301 .
  • the receiving module of the radar 301 can perform the same signal processing operation on the received signal (the received signal includes the echo signal reflected by the target object 302 and the transmission signal from the radar 303 ), which will cause the transmission signal of the radar 303 to interfere with the Processing of the original echo signal. Understandably, when there is an interference signal in the received signal of the radar 301, the interference signal may increase the false alarm probability of the radar, or the interference signal may also reduce the detection probability of the radar.
  • the radar 301 can receive the echo signal of the target object 302 within the time of receiving the echo signal, and obtain the intermediate frequency signal of the real echo signal.
  • the radar 301 can also receive the signal transmitted by the radar 303, and after the radar processes the signal, the intermediate frequency signal of the interference signal is obtained.
  • the radar can obtain a target object 1 ahead by processing the real intermediate frequency signal.
  • the radar 301 processes the intermediate frequency signal of the interference signal, it may be considered that there is a target object 2 ahead. But in fact, the target object 2 does not exist, such a situation is called "false alarm" or "ghost".
  • the autonomous vehicle that is, the vehicle where the radar 301 is located
  • the interference signal may also cover the real echo signal (or drown the real echo signal), resulting in missed detection of the radar signal.
  • the radar 301 receives the echo signal of the target object 302 and the signal transmitted by the radar 303 (or the echo corresponding to the transmitted signal of the radar 303 ) within the time of receiving the echo signal. signal), if the frequency range of the signal of the radar 303 is the same as that of the radar 301, after the radar 301 processes the signal transmitted by the radar 303, the real echo signal may not be obvious enough, or even cover the real echo signal. Detecting the target object brings difficulties and increases the possibility of missed detection.
  • the self-driving car After the missed detection, the self-driving car will mistakenly think that there is no object when there is an object in front of it, and then it will not take actions such as decelerating, evading or braking, causing traffic accidents, reducing the safety of vehicle driving, and endangering the personal safety of passengers. .
  • the interference detection may be performed using an energy averaging method.
  • FIG. 4 is a schematic flowchart of a method for detecting interference.
  • the radar echo signal can be received through the receiving antenna, and then the received radar echo signal is passed through the low-noise amplifier, the de-slope processing module, the low-pass filter 1 and the analog-to-digital converter (analog-to-digital converter) in turn.
  • -to-digital converter, ADC for preprocessing to obtain the digital signal output by the ADC.
  • the energy mean value of the digital signal can be obtained.
  • the interference detection threshold corresponding to the radar echo signal can be obtained.
  • the energy of each sampling point signal included in the digital signal is detected based on the interference detection threshold. If there is a sampling point signal that exceeds the threshold, it is judged that the sampling point signal is interfered (that is, there is an interference signal in the radar echo signal), and then the interference signal is subjected to subsequent processing (such as interference suppression or signal reconstruction, etc.).
  • subsequent processing such as interference suppression or signal reconstruction, etc.
  • FIG. 5 is a schematic diagram of the results of interference detection on radar echo signals in different scenarios based on the energy mean method.
  • (a) in FIG. 5 is an interference detection result in a single interferer scenario
  • (b) in FIG. 5 is an interference detection result in a multi-interference source scenario.
  • ADC data in Figure 5 represents the digital signal obtained after the radar echo signal is processed
  • threshold represents the interference detection threshold
  • Sample represents the sampling point
  • Amplitude represents the amplitude. It is understandable that whether it is a single-interference source scenario or a multi-interference source scenario, the higher the proportion of the sampling points that are disturbed, the larger the calculated energy mean value.
  • the interference detection calculated based on the same fixed coefficient The threshold is also larger. Since the interference detection is performed based on the interference detection threshold, the sampling point whose energy is greater than the interference detection threshold is determined as the interference sampling point. Therefore, if the calculated interference detection threshold is larger, only some sampling points with strong interference can be detected, but sampling points with less interference cannot be detected, and the interference detection accuracy is low.
  • the present application proposes an interference detection method.
  • acquiring a digital signal obtained by processing a radar echo signal and inputting the digital signal into at least two filters with different cutoff frequencies in parallel for processing, different At least two filtered signals for the frequency range.
  • interference detection is performed on each filtered signal based on the interference detection threshold of each filtered signal, and finally it is determined whether there is an interference signal in the radar echo signal according to the interference detection result of each filtered signal, which can improve the detection of the presence of interference in the radar echo signal.
  • the detection accuracy of the interference signal is performed.
  • FIG. 6 is a schematic flowchart of an interference detection method provided by an embodiment of the present application.
  • the method can be implemented based on the interference detection device.
  • the interference detection device can be a radar or can be deployed in a radar (such as a millimeter-wave radar or other radar), that is, a chip inside the radar itself, or the interference detection device can also be deployed outside the radar to assist Radar work, etc., are not limited here.
  • the above-mentioned interference detection method at least comprises the following steps:
  • the interference detection device may acquire a digital signal obtained by processing the radar echo signal.
  • the interference detection device may be a radar or other device with detection function, for example, the interference detection device may be at least one of a millimeter wave radar, an ultrasonic radar, a laser radar, an infrared detector, a ranging device, and the like. That is, the jammer detection device can be deployed in a radar (eg, a millimeter-wave radar or other radar), or the jammer detection device is a radar, or the jammer detection device can also be deployed outside the radar for assisting Radar works.
  • a radar eg, a millimeter-wave radar or other radar
  • the jammer detection device is a radar
  • the jammer detection device can also be deployed outside the radar for assisting Radar works.
  • the radar echo signal can be preprocessed by each module included in the radar, to get a digital signal.
  • the received radar echo signal can be processed by the low noise amplifier first, so as to reduce the noise in the radar echo signal. .
  • the signal obtained after being processed by the low-noise amplifier is sequentially input to a de-slope processing module and an analog low-pass filter (low-pass filter 1 shown in FIG. 4 ) for processing to obtain a baseband signal.
  • the baseband signal is input into the ADC to obtain a digital signal determined after digital sampling by the ADC. Therefore, further processing can be performed on the digital signal subsequently.
  • the interference detection device receives the preprocessed digital signal from the radar, so that the interference detection device can further process the received digital signal.
  • the radar echo signal can also be received through the interference detection device, and then the received radar echo signal is input into the radar for preprocessing to obtain the radar echo signal. corresponding digital signal. Furthermore, the interference detection device receives the digital signal from the radar, so as to further process the received digital signal subsequently.
  • the radar echo signal in this application may be the echo signal returned by the received target object based on the detection signal after the radar transmits the detection signal outward, and/or the echo signal emitted by other radars within the field of view of the radar.
  • the detection signal of , and/or the echo signal corresponding to the detection signal of other radars, etc., are not limited here.
  • the radar 301 can transmit detection signals outward and receive echo signals reflected by the target object 302 .
  • the radar 301 since there is also a radar 303 in the field of view of the radar 301, when the radar 301 receives the echo signal reflected by the target object 302, its receiving antenna can also receive the detection signal transmitted by the radar 303, then, the radar 301
  • the received radar echo signal includes the echo signal reflected by the target object 302 and the detection signal transmitted by the radar 303 .
  • the transmission signal of the radar 303 received by the radar 301 is an interference signal for the radar 301 . Understandably, since digital signals are easier to store and analyze than analog signals, when a radar echo signal is received, it is first necessary to process the radar echo signal to obtain a digital signal and then analyze it.
  • S602 Process the digital signal through at least two filters with different cutoff frequencies, respectively, to obtain at least two filtered signals.
  • the digital signal is processed through at least two filters with different cutoff frequencies, respectively, to obtain at least two filtered signals.
  • the superposition/synthesis result of the above at least two filtered signals is the same as the digital signal.
  • the obtained superposition result of the at least two filtered signals is the same as the digital signal, it can be understood that the superposition/synthesis result of the filtered signal is the same as the digital signal within a certain error range, this is because the actual filtering of the filter The effect is caused by non-ideal, therefore, there will be some errors.
  • the at least two filters selected in the embodiments of the present application need to satisfy that the superposition/synthesis result of the at least two filtered signals obtained after filtering is basically the same as the digital signal, that is, the same within a certain error range.
  • the at least two filters selected in this application must meet the requirements that the at least two filtered signals obtained after filtering can carry all or most of the frequency information of the digital signal.
  • the at least two filters mentioned above may be at least two of a low-pass filter, a band-pass filter, a high-pass filter and a band-stop filter.
  • the at least two filters may include at least one low-pass filter and at least one band-pass filter, or the at least two filters may include at least one band-pass filter and at least one high-pass filter, or the at least two filters may include at least one low-pass filter and at least one high-pass filter, or at least two filters including at least two bandpass filters, or at least two filters including at least two bandstop filters, or at least two filters including At least one band-pass filter and at least one band-stop filter, etc., are specifically determined according to actual application scenarios, and are not limited herein.
  • the selected at least two filters may further include at least one low-pass filter, at least one band-pass filter, and at least one high-pass filter, etc., which are specifically determined according to actual application scenarios, and are not limited herein.
  • the filter used for processing digital signals in this embodiment of the present application may be an infinite impulse response (infinite impulse response, IIR) filter, or may also be a finite impulse response filter.
  • IIR infinite impulse response
  • FIR finite impulse response filter
  • the parameter settings such as the order of the filter and the cutoff frequency can be set according to the actual application scenario, the characteristics of the interference source, and the characteristics of the target object.
  • the limit frequency of the passband and stopband is called the cutoff frequency.
  • the frequency range of the signal that can be passed is usually called the passband
  • the frequency range of the signal that is blocked and attenuated is called the stopband.
  • the characteristic of the low-pass filter is to allow low-frequency or DC components in the signal to pass, and suppress high-frequency components or interference and noise.
  • the cut-off frequency of the low-pass filter is the first cut-off frequency
  • the ideal low-pass filter should allow all signals below the first cut-off frequency to pass without loss, and all signals above the first cut-off frequency should is infinitely attenuated.
  • the characteristics of the band-pass filter are to allow signals within a certain frequency band to pass, and to suppress signals, interference and noise below or above the frequency band.
  • the cut-off frequency of the band-pass filter is the second cut-off frequency, wherein the second cut-off frequency includes the upper-limit cut-off frequency and the lower-limit cut-off frequency, and the upper-limit cut-off frequency is greater than the lower-limit cut-off frequency, then the ideal band-pass filter can be allowed to be in the All signals between the lower cutoff frequency and the upper cutoff frequency pass through without loss, while blocking/rejecting signals less than the lower cutoff frequency and greater than the upper cutoff frequency from passing.
  • the characteristics of a high-pass filter are to allow high-frequency components in the signal to pass, and suppress low-frequency or DC components.
  • the cut-off frequency of the high-pass filter is the third cut-off frequency
  • an ideal high-pass filter can allow all signals above the third cut-off frequency to pass without loss, and all signals below the third cut-off frequency are infinitely attenuated.
  • the characteristic of the band-stop filter is to suppress the signal in a certain frequency band and allow the signal outside the frequency band to pass, also known as the notch filter.
  • the cut-off frequency of the band-stop filter is the fourth cut-off frequency, wherein the fourth cut-off frequency includes the upper cut-off frequency and the lower-limit cut-off frequency, and the upper-limit cut-off frequency is greater than the lower-limit cut-off frequency, then the ideal band-stop filter can be allowed to be less than The lower cutoff frequency, and the signal greater than the upper cutoff frequency pass through without loss, while the signal between the lower cutoff frequency and the upper cutoff frequency is blocked/suppressed from passing.
  • the filtering ranges of the at least two filters selected in the embodiments of the present application need to satisfy signals covering all frequency ranges included in the digital signal.
  • FIG. 7a is a schematic diagram of a filter selection method provided by an embodiment of the present application.
  • the at least two filters selected in the embodiment of the present application are a low-pass filter and a high-pass filter, and the cut-off frequency of the low-pass filter is the first cut-off frequency, and the high-pass filter If the cutoff frequency of the device is the third cutoff frequency, the first cutoff frequency must be greater than or equal to the third cutoff frequency.
  • the filtering ranges of the two selected filters can meet the requirements of covering all frequency ranges included in the digital signal. Signal.
  • FIG. 7b is a schematic diagram of another filter selection method provided by an embodiment of the present application.
  • the at least two filters selected in this embodiment of the present application are a low-pass filter, a band-pass filter, and a high-pass filter, wherein the cut-off frequency of the low-pass filter is the first cut-off frequency, the cut-off frequency of the high-pass filter is the third cut-off frequency, the cut-off frequency of the band-pass filter is the second cut-off frequency, and the second cut-off frequency includes the upper limit frequency and the lower limit frequency, then the lower limit of the second cut-off frequency
  • the frequency needs to be no greater than the first cutoff frequency (that is, the lower limit frequency in the second cutoff frequency must be less than or equal to the first cutoff frequency), and the upper limit frequency in the second cutoff frequency must be no less than the third cutoff frequency (ie, the second cutoff frequency in the The upper limit frequency is greater than or equal to the third cutoff frequency
  • FIG. 8 is a schematic diagram of the effect of the digital signal provided by the embodiment of the present application after being filtered by a filter.
  • the at least two filters are respectively a low-pass filter, a band-pass filter and a high-pass filter as an example.
  • (a) in FIG. 8 is a schematic diagram of raw ADC data (ie, a digital signal).
  • FIG. 8 is a schematic diagram of a filtered signal obtained after the digital signal in (a) in FIG. 8 is filtered by a low-pass filter, and (c) in FIG. 8 is a digital signal after passing through a band-pass filter.
  • a schematic diagram of a filtered signal obtained after filtering (d) in FIG. 8 is a schematic diagram of a filtered signal obtained after a digital signal is filtered by a high-pass filter.
  • (e) in FIG. 8 is a schematic diagram of a synthesized signal obtained by synthesizing/superimposing the filtered signals in (b), (c) and (d) in FIG. 8 .
  • (f) in Fig. 8 is a comparison diagram of the digital signal shown in (a) in Fig.
  • the synthesized signal obtained by synthesizing the filtered signals obtained by the above three filters is basically the same as the original digital signal, that is, the superposition/synthesis result of the filtered signal is the same as the original digital signal. same within a certain margin of error.
  • S603. Determine whether there is an interference signal in the radar echo signal according to each of the filtered signals and the interference detection threshold corresponding to each of the filtered signals in the at least two filtered signals.
  • the same calculation method can be used to determine the interference detection threshold corresponding to each filtered signal.
  • the interference detection threshold corresponding to each of the filtered signals is calculated by the energy mean method.
  • the calculation process of the energy mean value method is as follows: firstly calculate the energy mean value of each sampling point signal included in the filtered signal, and then obtain a preset coefficient, so as to determine the product of the calculated energy mean value and the preset coefficient as the filter The interference detection threshold corresponding to the signal.
  • the filtered signal obtained after the low-pass filter is the first filtered signal
  • the filtered signal obtained after the high-pass filter is The second filtered signal
  • the calculated energy mean value of the first filtered signal is the first energy mean value
  • the energy mean value of the second filtered signal is the second energy mean value
  • the obtained preset coefficient is the first coefficient. Therefore, the interference detection threshold corresponding to the first filtered signal is equal to the product of the first energy mean value and the first coefficient
  • the interference detection threshold corresponding to the second filtered signal is equal to the product of the second energy mean value and the first coefficient.
  • the preset coefficient for performing the calculation of the interference detection threshold may further include a first coefficient and a second coefficient, wherein the first coefficient and the second coefficient are two different coefficients. Therefore, the interference detection threshold corresponding to the first filtered signal may be equal to the product of the first energy mean value and the first coefficient, and the interference detection threshold corresponding to the second filtered signal may be equal to the product of the second energy mean value and the second coefficient.
  • the manner of determining the interference detection threshold corresponding to each filtered signal may also be different.
  • at least two filters are respectively a low-pass filter and a high-pass filter, wherein, for the first filtered signal obtained by filtering based on the low-pass filter, the first filtering can be calculated based on the energy mean method.
  • the interference detection threshold corresponding to the signal, for the second filtered signal obtained based on high-pass filter filtering, the constant false alarm rate (CFAR) detection algorithm can be used to calculate the interference detection threshold corresponding to the filtered signal.
  • CFAR constant false alarm rate
  • each filtered signal includes at least one sample point signal. It can also be said that each filtered signal can be composed of at least one sample point signal. Wherein, after calculating the interference detection threshold corresponding to each filtered signal, it can be determined whether there is an interference signal in the radar echo signal according to each filtered signal and the interference detection threshold corresponding to each filtered signal.
  • the signal index value corresponding to the first sampling point signal that is not less than the interference detection threshold corresponding to each filtered signal can be determined from at least one sampling point signal included in each filtered signal. Then, according to the signal index value corresponding to the first sampling point signal included in each filtered signal, it is determined whether there is an interference signal in the radar echo signal. Understandably, a signal index value is used to mark a sample point signal.
  • the signal index value in this embodiment of the present application may be a signal position, or may also be other identifiers used to identify a sampling point signal, etc., which is specifically determined according to an actual application scenario, and is not limited here.
  • the signal position can be understood as the sampling sequence of the analog signal when the analog signal is converted into a digital signal by the ADC.
  • FIG. 9 is a schematic diagram of a signal index value provided by an embodiment of the present application.
  • A, B, and C as shown in Figure 9 are the sampling point signals, wherein the sampling order of the sampling point signals A, B, and C is from left to right.
  • the sampling point signal A is the first sampling point
  • the sampling The point signal B is the second sampling point
  • the sampling point signal C is the third sampling point. Therefore, the signal index value of the sampling point signal may be the sampling order (or sampling position) of the sampling point signal.
  • the signal index value of the sampling point signal A is 1
  • the signal index value of the sampling point signal B is 2
  • the signal index value of the sampling point signal C is 3.
  • it is determined whether there is an interference signal in the radar echo signal according to the signal index value corresponding to the first sampling point signal included in each filtered signal which can be understood as: according to the signal index value included in each filtered signal
  • the signal index value corresponding to the first sampling point signal generates a signal index value set corresponding to each filtered signal, wherein one filtered signal corresponds to one signal index value set. Therefore, whether there is an interference signal in the radar echo signal can be determined according to the set of signal index values corresponding to each filtered signal.
  • determining whether there is an interference signal in the radar echo signal according to the set of signal index values corresponding to each filtered signal can be understood as: performing fusion processing on the set of signal index values corresponding to each filtered signal to obtain a fusion result, and then determine according to the fusion result. Whether there is interference signal in the radar echo signal.
  • the fusion process can be understood as taking the union or intersection of the signal index value sets corresponding to each filtered signal to obtain a set of over-threshold sampling point signals, and then determining the set of over-threshold sampling point signals as a fusion result. It is understandable that if the set of signals passing the threshold sampling point is a non-empty set, it can be determined that there is an interference signal in the radar echo signal. If the signal set passing the threshold sampling point is an empty set, it can be determined that there is no interference signal in the radar echo signal.
  • the at least two filters as a low-pass filter, a band-pass filter and a high-pass filter as an example, that is, the number of filters is three.
  • the first filtered signal can be obtained after the digital signal is filtered by the low-pass filter based on the first cut-off frequency
  • the second filtered signal can be obtained after the digital signal is filtered by the band-pass filter based on the second cut-off frequency
  • the third filtered signal can be obtained.
  • the interference detection threshold determined based on the first filtered signal is the first interference detection threshold
  • the interference detection threshold determined based on the second filtered signal is the second interference detection threshold
  • the interference detection threshold determined based on the third filtered signal is The third interference detection threshold. Understandably, it is assumed that based on the first interference detection threshold, the signal index values of the first sampling point greater than the first interference detection threshold are determined from at least one sampling point signal included in the first filtered signal to be 1, 2, and 3, respectively, 4, 5.
  • signal index values 6, 7, 8, and 9 of the first sampling point greater than the second interference detection threshold are determined from at least one sampling point signal included in the second filtered signal, respectively.
  • the corresponding first filtered signal can be obtained.
  • the first signal index value set S1 ⁇ 1, 2, 3, 4, 5 ⁇ of
  • the second signal index value set S2 ⁇ 6, 7, 8, 9 ⁇ corresponding to the second filtered signal
  • the third signal index value set of S3 ⁇ 10, 11 ⁇ .
  • the fusion result can be obtained by performing fusion processing on the set of signal index values corresponding to each filtered signal.
  • the fusion process involved in this application is to take the union of each signal index value set
  • the embodiment of the present application will be described by taking the fusion process as taking the union of each signal index value set as an example.
  • determining whether there is an interference signal in the radar echo signal according to the set of signal index values corresponding to each filtered signal can also be understood as: determining from at least two sets of signal index values. The number of collections for non-empty collections. Further, the interference decision threshold is obtained, so as to determine whether there is interference signal in the radar echo signal according to the interference decision threshold, the number of sets, and the number of filters. Specifically, the ratio of the number of sets to the number of filters can be determined according to the number of sets and the number of filters in the non-empty set. If the ratio is not less than the interference judgment threshold, it is determined that there is an interference signal in the radar echo signal. If the ratio is smaller than the interference judgment threshold, it is determined that there is no interference signal in the radar echo signal.
  • the first filtered signal can be obtained after the digital signal is filtered by the low-pass filter based on the first cut-off frequency
  • the second filtered signal can be obtained after the digital signal is filtered by the band-pass filter based on the second cut-off frequency
  • the third filtered signal can be obtained.
  • the interference detection threshold determined based on the first filtered signal is the first interference detection threshold
  • the interference detection threshold determined based on the second filtered signal is the second interference detection threshold
  • the interference detection threshold determined based on the third filtered signal is The third interference detection threshold. Understandably, it is assumed that based on the first interference detection threshold, the signal index values of the first sampling point greater than the first interference detection threshold are determined from at least one sampling point signal included in the first filtered signal to be 1, 2, and 3, respectively, 4, 5.
  • signal index values 6, 7, 8, and 9 of the first sampling point greater than the second interference detection threshold are determined from at least one sampling point signal included in the second filtered signal, respectively.
  • the third interference detection threshold Based on the third interference detection threshold, it is determined from at least one sampling point signal included in the third filtered signal that the signal index values of the first sampling point greater than the third interference detection threshold are 10 and 11, respectively, then the corresponding first filtered signal can be obtained.
  • the first signal index value set S1 ⁇ 1, 2, 3, 4, 5 ⁇ of
  • the second signal index value set S2 ⁇ 6, 7, 8, 9 ⁇ corresponding to the second filtered signal
  • the third signal index value set of S3 ⁇ 10, 11 ⁇ .
  • the obtained interference decision threshold is 0.5
  • 1>0.5 that is, the ratio of the number of sets of non-empty sets to the number of filters is greater than the interference decision threshold, it can be determined that there is an interference signal in the radar echo signal.
  • the interference removal process may be performed on the radar echo signal.
  • the sampling point signal with interference can be determined from the digital signal according to each signal index value included in the set of over-threshold sampling point signals, so as to perform interference suppression on the sampling point signal with interference (for example, set the sampling value to zero) , or perform windowing and other processing on the sampling point signal).
  • each sampling point signal corresponding to each signal index value included in the threshold-crossing sampling point signal set in the embodiment of the present application can be understood as a sampling point signal with interference.
  • signal reconstruction may also be performed on the sampling point signal after the suppression operation to improve a signal-to-noise ratio (signal noise ratio, SNR).
  • SNR signal-to-noise ratio
  • the signal of the sampling point at the position may be reconstructed by an interpolation method, etc., which is specifically determined according to the actual application scenario, and is not limited here.
  • a one-dimensional fast Fourier transform (fast Fourier transform, FFT) operation can also be performed on the digital signal obtained after interference suppression and signal reconstruction along the fast time dimension, and then a two-dimensional fast Fourier transform (FFT) operation can be performed along the slow time dimension.
  • FFT fast Fourier transform
  • dimensional FFT operations, etc. to obtain range-Doppler maps.
  • operations such as CFAR may be further performed on the signal obtained through the above series of processing, which is not limited here.
  • a one-dimensional FFT operation may be performed on the original ADC data (ie, digital signal) along the fast time dimension, and then on the slow time dimension.
  • a two-dimensional FFT operation is performed on the time dimension to obtain a range-Doppler map.
  • operations such as incoherent accumulation, parameter estimation, or CFAR may also be performed on the data obtained after the two-dimensional FFT operation, which is not limited here.
  • FIG. 10 is a schematic diagram of an application scenario of interference detection provided by an embodiment of the present application. It is assumed that the radar system is a vehicle-mounted millimeter-wave radar system, and the transmitted signal is FMCW. As shown in Figure 10, when the radar echo signal is received based on the receiving antenna, the radar echo signal is sequentially passed through the low noise amplifier, the de-slope processing module, and the low-pass filter 1 (the low-pass filter 1 here is used to The de-skewed signal is filtered into the baseband bandwidth) and an analog-to-digital converter is used to obtain a digital signal. The digital signal is detected separately after being filtered by a multi-stage filter, the detected effect is fused, and finally the detected result is output.
  • the radar echo signal is sequentially passed through the low noise amplifier, the de-slope processing module, and the low-pass filter 1 (the low-pass filter 1 here is used to The de-skewed signal is filtered into the baseband bandwidth) and an analog-to-digital converter is used to obtain a digital signal
  • the multi-stage filter filtering of the above digital signal can be understood as the parallel input of the digital signal into the low-pass filter, the band-pass filter and the high-pass filter as shown in FIG. filter signal.
  • the interference detection threshold corresponding to each filtered signal can be calculated separately. Further, compare the filtered signals of each filter with their respective interference detection thresholds (as shown in the interference detection threshold 1, interference detection threshold 2, and interference detection threshold 3 in FIG. A set composed of threshold sampling point signals (ie, the first sampling point signal in this application) (such as signal index value set 1, signal index value set 2, and signal index value set 3 in FIG. 10 ).
  • the signal index values in the signal set of over-threshold sampling points can be respectively corresponded to the digital signal, so as to suppress the interference of the sampling point signal at the corresponding position in the digital signal (for example, set the sampling value to zero, etc.)
  • the signal of the sampling point is reconstructed, so that the reconstructed data can be further subjected to a one-dimensional FFT operation along the fast time dimension, and then a two-dimensional FFT operation is performed along the slow time dimension to obtain a range-Doppler map, Then perform subsequent operations, such as incoherent accumulation, parameter estimation, etc., which are not limited here.
  • the set of signals passing the threshold sampling point is an empty set, it is determined that there is no interference in the radar echo signal.
  • a one-dimensional FFT operation can be performed on the digital signal along the fast time dimension, and then a two-dimensional FFT operation can be performed along the slow time dimension.
  • dimensional FFT operation, and then subsequent operations, such as incoherent accumulation, parameter estimation, etc., can be performed, which are not limited here.
  • the interference detection method in the embodiment of the present application by acquiring a digital signal obtained by processing a radar echo signal, and inputting the digital signal into at least two filtering signals in parallel for processing, at least two filtering signals in different frequency ranges can be obtained. Signal. Further, based on the interference detection threshold of each filtered signal, the interference detection is performed on each filtered signal, and finally, whether there is an interference signal in the radar echo signal is determined according to the interference detection result of each filtered signal, which can improve the accuracy of the radar echo signal. The detection accuracy of the presence of interfering signals.
  • the interference detection method provided in this application obtains different frequency ranges by performing multi-stage filtering on the digital signal obtained by preprocessing (that is, inputting the digital signal into at least two filters in parallel for filtering respectively). At least two filtered signals are obtained, and then interference detection is performed on each filtered signal to realize the interference detection of the radar echo signal, which can improve the detection accuracy of the interference.
  • the inventor of the present application has verified and compared the interference detection method provided by the present application with the interference detection method shown in FIG. 4 based on the test data. Referring to FIG. 11 , FIG. 11 is a schematic diagram of a test result of the interference detection method provided by the embodiment of the present application.
  • the embodiment of the present application shows the test result of the interference detection method by setting the detected sample with interference to zero.
  • Original ADC represents the digital signal obtained after the radar echo signal is preprocessed
  • Original method represents the interference detection method shown in Figure 4
  • Proposed method represents the interference detection method provided by this application.
  • FIG 11 (a) in Figure 11 is a schematic diagram of the interference suppression effect of different interference detection methods in a single interference source scenario
  • Figure 11 (b) is the interference suppression effect of different interference detection methods in a multi-interference source scenario Schematic.
  • the multiple interference sources in (b) of FIG. 11 include interference source 1 and interference source 2 .
  • FIG. 11 shows an enlarged view of the position of the interference source 1 in the multi-interference source scenario
  • FIG. 11 shows an enlarged view of the position of the interference source 2 in the multi-interference source scenario.
  • the method proposed in the present application obtains more benefits in the multi-interference source scenario, that is, the interference detection method proposed in the present application is more applicable in the multi-interference source scenario. , the detection effect is better.
  • FIG. 12 is a schematic structural diagram of an interference detection apparatus provided by an embodiment of the present application.
  • the interference detection apparatus 120 may include an acquisition unit 1201 , a filtering unit 1202 and a processing unit 1203 .
  • the interference detection device 120 is used to implement the aforementioned interference detection method, for example, it can be used to implement the interference detection method shown in FIG. 6 .
  • the interference detection apparatus 120 may be the interference detection apparatus in the embodiment shown in FIG. 6 , or one or more modules of the interference detection apparatus.
  • the above-mentioned obtaining unit 1201 is configured to obtain the digital signal obtained after processing the radar echo signal;
  • a filtering unit 1202 configured to perform filtering processing with different cutoff frequencies on the digital signal respectively, to obtain at least two filtered signals
  • the processing unit 1203 is configured to determine whether there is an interference signal in the radar echo signal according to each of the filtered signals and the interference detection threshold corresponding to each of the filtered signals in the at least two filtered signals.
  • the above obtaining unit 1201 may specifically be a combination of one or more of a receiving antenna, a low-noise amplifier, a de-slope processing module, a low-pass filter, an analog-to-digital converter, and the like.
  • the filtering unit 1202 includes at least two filters, wherein the at least two filters may include at least two of a low-pass filter, a band-pass filter, a high-pass filter, and a band-stop filter, etc., depending on the actual application The scene is determined, and there is no restriction here.
  • the processing unit 1203 may specifically be a mixer, a low-pass filter, an analog-to-digital converter, a digital signal processor (DSP), a central processing unit (CPU), and a graphics processing unit (graphics processing unit).
  • unit, GPU microprocessor (microprocessor unit, MPU), application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA), complex programmable logic device (complex programmable logic device, CPLD), coprocessor (to assist the central processing unit to complete the corresponding processing and application), microcontroller unit (MCU), signal processing unit (signal processing unit, SPU) and other processing modules one or more of the processing modules The combination.
  • DSP digital signal processor
  • CPU central processing unit
  • graphics processing unit graphics processing unit
  • unit, GPU microprocessor (microprocessor unit, MPU), application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA), complex programmable logic device (complex programmable logic device, CPLD),
  • the at least two filters include at least two of the following filters:
  • the at least two filters include a low-pass filter with a first cut-off frequency, a band-pass filter with a second cut-off frequency, and a high-pass filter with a third cut-off frequency
  • the second cut-off frequency includes The upper limit cutoff frequency and the lower limit cutoff frequency, wherein the lower limit cutoff frequency is not greater than the first cutoff frequency, and the upper limit cutoff frequency is not less than the third cutoff frequency.
  • each of the at least two filtered signals includes at least one sample point signal
  • the processing unit 1203 is specifically used for:
  • the signal index value corresponding to the first sampling point signal included in each filtered signal it is determined whether there is an interference signal in the radar echo signal.
  • processing unit 1203 is further configured to:
  • the set of signal index values corresponding to each filtered signal it is determined whether there is an interference signal in the radar echo signal.
  • processing unit 1203 is further configured to:
  • processing unit 1203 is further configured to:
  • the set of signals passing through the threshold sampling point is determined as the fusion result.
  • processing unit 1203 is further configured to:
  • the signal set passing the threshold sampling point is a non-empty set, it is determined that there is an interference signal in the radar echo signal
  • the signal set passing the threshold sampling point is an empty set, it is determined that there is no interference signal in the radar echo signal.
  • processing unit 1203 is further configured to:
  • the interference judgment threshold and determine whether there is interference signal in the radar echo signal according to the interference judgment threshold, the number of sets, and the number of filters.
  • processing unit 1203 is further configured to:
  • the ratio is not less than the interference judgment threshold, it is determined that there is an interference signal in the radar echo signal
  • the ratio is smaller than the interference judgment threshold, it is determined that there is no interference signal in the radar echo signal.
  • processing unit 1203 is further configured to:
  • the interference removal process is performed on the radar echo signal.
  • the division of multiple units or modules is only a logical division based on functions, and is not a limitation on the specific structure of the apparatus.
  • some functional modules may be subdivided into more small functional modules, and some functional modules may also be combined into one functional module, but no matter whether these functional modules are subdivided or combined, the device is in the process of detection.
  • the general process performed in is the same.
  • each unit corresponds to its own program code (or program instruction), and when the program code corresponding to each of these units runs on the processor, the unit is controlled by the processor to execute the corresponding process to realize the corresponding function.
  • FIG. 13 is a schematic structural diagram of another interference detection apparatus provided by an embodiment of the present application.
  • the interference detection apparatus 130 includes: a processor 131 , a communication interface 132 and a memory 133 .
  • the processor 131 , the communication interface 132 and the memory 133 are coupled through the bus 134 .
  • the processor 131 may be one or more central processing units (central processing units, CPUs). In the case where the processor 131 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 131 is configured to read the program stored in the memory, and cooperate with the communication interface 132 to execute part or all of the steps of the method executed by the interference detection device 130 in the above-mentioned embodiments of the present application.
  • the memory 133 includes but is not limited to random access memory (RAM), erasable programmable read-only memory (EPROM), read-only memory (ROM) or portable read-only memory (compact disc read-only memory, CD-ROM), etc., the memory 133 is used to store programs, and the processor 131 can read the programs stored in the memory 133, and execute the method shown in FIG. 6 in the above-mentioned embodiment of the present application. Each step will not be repeated here.
  • RAM random access memory
  • EPROM erasable programmable read-only memory
  • ROM read-only memory
  • portable read-only memory compact disc read-only memory
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the chip 140 may include: a processor 1401 , and one or more communication interfaces 1402 coupled to the processor 1401 . in:
  • the processor 1401 may be used to read and execute computer readable instructions.
  • the processor 1401 may mainly include a controller, an arithmetic unit, and a register.
  • the controller is mainly responsible for instruction decoding, and sends out control signals for the operations corresponding to the instructions.
  • the arithmetic unit is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logical operations, and can also perform address operations and conversions.
  • Registers are mainly responsible for saving register operands and intermediate operation results temporarily stored during instruction execution.
  • the hardware architecture of the processor 1401 may be an application specific integrated circuit (ASIC) architecture, a MIPS architecture, an ARM architecture, an NP architecture, or the like.
  • the processor 1401 may be single-core or multi-core.
  • the communication interface 1402 can be used to input data to be processed to the processor 1401, and can output the processing result of the processor 1401 to the outside.
  • the communication interface 1402 can be a general purpose input output (GPIO) interface, which can be connected to a plurality of peripheral devices (such as a display (LCD), a camera (camera), a radio frequency (RF) module, etc.) .
  • GPIO general purpose input output
  • peripheral devices such as a display (LCD), a camera (camera), a radio frequency (RF) module, etc.
  • RF radio frequency
  • the processor 1401 may be configured to call the implementation program of the interference detection method provided by one or more embodiments of this application from the memory, and execute the instructions contained in the program.
  • the communication interface 1402 can be used to output the execution result of the processor 1401 .
  • the communication interface 1402 may be specifically used to output the interference detection result of the processor 1401 .
  • processor 1401 and the communication interface 1402 can be implemented by hardware design, software design, or a combination of software and hardware, which is not limited here.
  • the principle and beneficial effect of the interference detection device provided in the embodiment of the present application for solving the problem are similar to the principle and beneficial effect of the interference detection method in the method embodiment of the present application.
  • the relationship between the various steps executed by the various related modules can also be referred to the description of the related content in the foregoing embodiment, which is not repeated here for the sake of brevity.
  • the embodiment of the present application also provides a computer storage medium, which can be used to store computer software instructions used by the interference detection apparatus 130 in the embodiment shown in FIG. program of.
  • the storage medium includes, but is not limited to, flash memory, hard disk, and solid-state disk.
  • An embodiment of the present application also provides a computer program product, which can execute the interference detection method designed for the interference detection device in the embodiment shown in FIG. 13 when the computer product is run by the interference detection device.
  • Embodiments of the present application further provide a radar system for providing a vehicle with an interference detection function. It includes at least one interference detection device mentioned in the above-mentioned embodiments of the present application. At least one interference detection device in the system can be integrated into a whole machine or device, or at least one interference detection device in the system can also be independently set as a component. or device.
  • Embodiments of the present application further provide a sensor system for providing a vehicle with an interference detection function. It includes at least one interference detection device mentioned in the above-mentioned embodiments of the present application, and at least one of other sensors such as cameras or radars. At least one sensor device in the system can be integrated into a whole machine or equipment, or the system The at least one sensor device can also be provided independently as an element or device.
  • the embodiments of the present application also provide a system, which is applied in unmanned driving or intelligent driving, and includes at least one of the interference detection devices, cameras, radars and other sensors mentioned in the above-mentioned embodiments of the present application.
  • At least one device in the system can be integrated into a whole machine or equipment, or at least one device in the system can also be independently set as a component or device.
  • any of the above systems may interact with the vehicle's central controller to provide detection and/or fusion information for decision-making or control of the vehicle's driving.
  • An embodiment of the present application further provides a terminal, where the terminal includes at least one of the interference detection apparatuses mentioned in the above embodiments of the present application or any of the above systems.
  • the above-mentioned terminal may include vehicles, cameras, drones, signal lights, speed measuring devices, etc., which are not limited herein.
  • the modules in the device embodiments of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供了一种干扰检测方法及装置,属于雷达技术领域。该方法包括:获取雷达回波信号经处理得到的数字信号。将该数字信号分别经过不同截止频率的至少两个滤波器进行处理,得到至少两个滤波信号。根据至少两个滤波信号中各滤波信号和各滤波信号对应的干扰检测门限,确定雷达回波信号中是否存在干扰信号。本申请实施例基于不同截止频率的至少两个滤波器对数字信号进行滤波,进而分别对各滤波信号进行干扰检测以实现对雷达回波信号的干扰检测,可提高干扰检测精度。进一步,该方法提升了终端在自动驾驶或者辅助驾驶中的高级驾驶辅助***ADAS能力,可以应用于车联网,如车辆外联V2X、车间通信长期演进技术LTE-V、车辆-车辆V2V等。

Description

干扰检测方法及装置
本申请要求于2021年03月24日提交中国专利局、申请号为202110314822.7,发明名称为“干扰检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及雷达技术领域,尤其涉及一种干扰检测方法及装置。
背景技术
随着社会经济的迅速发展和科技水平的显著提高,人们的生活质量也得到了极大改善。智能运输设备、智能家居设备、机器人等智能终端正在逐步进入人们的日常生活中。近些年来,随着拥有汽车的家庭逐年增多,汽车已经成为人们日常出行的主要交通工具之一。高级驾驶辅助***(advanced driver assistance system,ADAS)是集合了环境感知、决策规划、运动控制、平台执行、人机交互等诸多高新技术的综合***。其中,环境感知作为ADAS支撑智能化行驶的前提,通常需要在汽车四周安装传感器,用以提升ADAS对道路目标的检测能力。其中,车载毫米波雷达就是汽车中常用的关键传感器之一。
随着配备了雷达的车辆的数量不断增加,车辆的雷达之间的相互干扰问题已经不容忽视。当前,一般可采用能量均值法确定雷达回波信号对应的干扰检测门限,进而基于该干扰检测门限对雷达回波信号包括的各个采样点信号进行检测。如果有过门限的采样点信号,则判断该采样点信号受到了干扰(即雷达回波信号存在干扰信号)。但该方法检测精度低,适用性不强。
发明内容
本申请实施例提供一种干扰检测方法及装置,用于提高干扰检测的精度。
第一方面,本申请提供了一种干扰检测方法,该方法包括:获取对雷达回波信号处理后得到的数字信号;将上述数字信号分别经过不同截止频率的至少两个滤波器进行处理,得到至少两个滤波信号;根据上述至少两个滤波信号中各滤波信号和上述各滤波信号对应的干扰检测门限,确定上述雷达回波信号中是否存在干扰信号。可理解的,该方法可由干扰检测装置执行。示例性地,该干扰检测装置可以为雷达装置。示例性地,该雷达装置可以为毫米波雷达,雷达回波信号可以是调频连续波信号。
在本申请实施例中,通过获取雷达回波信号经处理后得到的数字信号,并将数字信号并行输入到不同截止频率的至少两个滤波器中进行处理,可得到不同频段范围的至少两个滤波信号。进一步地,基于各个滤波信号的干扰检测门限分别对各个滤波信号进行干扰检测,最后再根据各个滤波信号的干扰检测结果确定雷达回波信号中是否存在干扰信号,可提高对雷达回波信号中存在的干扰信号的检测精度。
结合第一方面,在一种可能的实施方式中,上述至少两个滤波器包括下述滤波器中的至少两个:低通滤波器,带通滤波器,高通滤波器和带阻滤波器。
结合第一方面,在一种可能的实施方式中,上述至少两个滤波器包括至少一个低通滤波器和至少一个带通滤波器;或上述至少两个滤波器包括至少一个带通滤波器和至少一个高通 滤波器;或上述至少两个滤波器包括至少一个低通滤波器和至少一个高通滤波器;或上述至少两个滤波器包括至少两个带通滤波器;或上述至少两个滤波器包括至少两个带阻滤波器;或上述至少两个滤波器包括至少一个带通滤波器和至少一个带阻滤波器。
结合第一方面,在一种可能的实施方式中,上述至少两个滤波器包括第一截止频率的低通滤波器、第二截止频率的带通滤波器和第三截止频率的高通滤波器,上述第二截止频率包括上限截止频率和下限截止频率,其中,上述下限截止频率不大于上述第一截止频率,上述上限截止频率不小于上述第三截止频率。
在本申请实施例中,通过采用上述不同截止频率的多个滤波器对数字信号进行滤波,可得到多个不同频段范围的滤波信号。进而,可有效避免对雷达回波信号中存在的干扰信号的漏检,提高对雷达回波信号中干扰信号的检测精度。
结合第一方面,在一种可能的实施方式中,上述至少两个滤波信号中每个滤波信号包括至少一个采样点信号;上述根据上述至少两个滤波信号中各滤波信号和上述各滤波信号对应的干扰检测门限,确定上述雷达回波信号中是否存在干扰信号,包括:确定上述每个滤波信号包括的至少一个采样点信号中,不小于上述每个滤波信号对应的干扰检测门限的第一采样点信号对应的信号索引值;根据上述每个滤波信号中包括的第一采样点信号对应的信号索引值,确定上述雷达回波信号中是否存在干扰信号。
在本申请实施例中,通过获取每个滤波信号包括的至少一个采样点信号中,大于或者等于该滤波信号对应的干扰检测门限的第一采样点信号,进而根据各个滤波信号中包括的第一采样点信号对应的信号索引值确定雷达回波信号中是否存在干扰信号,可提高干扰检测的粒度。
结合第一方面,在一种可能的实施方式中,上述根据上述每个滤波信号中包括的第一采样点信号对应的信号索引值,确定上述雷达回波信号中是否存在干扰信号,包括:根据上述每个滤波信号中包括的第一采样点信号对应的信号索引值生成上述每个滤波信号对应的信号索引值集合,其中一个滤波信号对应一个信号索引值集合;根据上述各滤波信号对应的信号索引值集合,确定上述雷达回波信号中是否存在干扰信号。
结合第一方面,在一种可能的实施方式中,上述根据上述各滤波信号对应的信号索引值集合,确定上述雷达回波信号中是否存在干扰信号,包括:对上述各滤波信号对应的信号索引值集合进行融合处理,得到融合结果;根据上述融合结果确定上述雷达回波信号中是否存在干扰信号。
在本申请实施例中,通过对各个滤波信号的信号索引值集合进行融合处理,进而根据融合结果确定雷达回波信号中存在的干扰信号,可检测出各种强度的干扰信号,提高检测精度。
结合第一方面,在一种可能的实施方式中,上述对上述各滤波信号对应的信号索引值集合进行融合处理,得到融合结果,包括:对上述各滤波信号对应的信号索引值集合取并集或取交集,得到过门限采样点信号集合;将上述过门限采样点信号集合确定为上述融合结果。
在本申请实施例中,通过对各滤波信号对应的信号索引值集合取并集,可增大融合结果中包括的干扰信号的数量,提高检测精度。
结合第一方面,在一种可能的实施方式中,上述根据上述融合结果确定上述雷达回波信号中是否存在干扰信号,包括:若上述过门限采样点信号集合为非空集合,则确定上述雷达回波信号中存在干扰信号;若上述过门限采样点信号集合为空集,则确定上述雷达回波信号中不存在干扰信号。
结合第一方面,在一种可能的实施方式中,上述根据上述各滤波信号对应的信号索引值 集合,确定上述雷达回波信号中是否存在干扰信号,包括:从至少两个信号索引值集合中确定出非空集合的集合数量;获取干扰判决阈值,根据上述干扰判决阈值,上述集合数量、以及滤波器数量确定上述雷达回波信号中是否存在干扰信号。
在本申请实施例中,通过n/m判决的方式判断雷达回波信号中是否存在干扰信号,使得干扰检测方式更具多样性,提高适用性。
结合第一方面,在一种可能的实施方式中,上述根据上述干扰判决阈值,上述集合数量、以及滤波器数量确定上述雷达回波信号中是否存在干扰信号,包括:确定上述集合数量与上述滤波器数量的比值;若上述比值不小于上述干扰判决阈值,则确定上述雷达回波信号中存在干扰信号;若上述比值小于上述干扰判决阈值,则确定上述雷达回波信号中不存在干扰信号。
结合第一方面,在一种可能的实施方式中,根据上述各滤波信号和上述各滤波信号对应的干扰检测门限,确定上述雷达回波信号中是否存在干扰信号之后,上述方法还包括:若确定上述雷达回波信号存在干扰信号,则对上述雷达回波信号执行去干扰处理。
在本申请实施例中,基于干扰检测的结果对雷达回波信号执行去干扰处理,可降低雷达回波信号中存在的干扰,提高干扰抑制效果。进一步地,针对去干扰处理后的雷达回波信号进行测距,测速等操作时,还可以提高测距,测速等的精度。
第二方面,本申请提供了一种干扰检测装置,该装置包括:获取单元,用于获取对雷达回波信号处理后得到的数字信号;滤波单元,用于将上述数字信号分别执行不同截止频率的滤波处理,得到至少两个滤波信号;处理单元,用于根据上述至少两个滤波信号中各滤波信号和上述各滤波信号对应的干扰检测门限,确定上述雷达回波信号中是否存在干扰信号。
结合第二方面,在一种可能的实施方式中,上述至少两个滤波器包括下述滤波器中的至少两个:低通滤波器,带通滤波器,高通滤波器和带阻滤波器。
结合第二方面,在一种可能的实施方式中,上述至少两个滤波器包括至少一个低通滤波器和至少一个带通滤波器;或上述至少两个滤波器包括至少一个带通滤波器和至少一个高通滤波器;或上述至少两个滤波器包括至少一个低通滤波器和至少一个高通滤波器;或上述至少两个滤波器包括至少两个带通滤波器;或上述至少两个滤波器包括至少两个带阻滤波器;或上述至少两个滤波器包括至少一个带通滤波器和至少一个带阻滤波器。
结合第二方面,在一种可能的实施方式中,上述至少两个滤波器包括第一截止频率的低通滤波器、第二截止频率的带通滤波器和第三截止频率的高通滤波器,上述第二截止频率包括上限截止频率和下限截止频率,其中,上述下限截止频率不大于上述第一截止频率,上述上限截止频率不小于上述第三截止频率。
结合第二方面,在一种可能的实施方式中,上述至少两个滤波信号中每个滤波信号包括至少一个采样点信号;上述处理单元具体用于:
确定上述每个滤波信号包括的至少一个采样点信号中,不小于上述每个滤波信号对应的干扰检测门限的第一采样点信号对应的信号索引值;根据上述每个滤波信号中包括的第一采样点信号对应的信号索引值,确定上述雷达回波信号中是否存在干扰信号。
结合第二方面,在一种可能的实施方式中,上述处理单元具体还用于:
根据上述每个滤波信号中包括的第一采样点信号对应的信号索引值生成上述每个滤波信号对应的信号索引值集合,其中一个滤波信号对应一个信号索引值集合;
根据上述各滤波信号对应的信号索引值集合,确定上述雷达回波信号中是否存在干扰信号。
结合第二方面,在一种可能的实施方式中,上述处理单元具体还用于:
对上述各滤波信号对应的信号索引值集合进行融合处理,得到融合结果;
根据上述融合结果确定上述雷达回波信号中是否存在干扰信号。
结合第二方面,在一种可能的实施方式中,上述处理单元具体还用于:
对上述各滤波信号对应的信号索引值集合取并集或取交集,得到过门限采样点信号集合;
将上述过门限采样点信号集合确定为上述融合结果。
结合第二方面,在一种可能的实施方式中,上述处理单元具体还用于:
若上述过门限采样点信号集合为非空集合,则确定上述雷达回波信号中存在干扰信号;
若上述过门限采样点信号集合为空集,则确定上述雷达回波信号中不存在干扰信号。
结合第二方面,在一种可能的实施方式中,上述处理单元具体还用于:
从至少两个信号索引值集合中确定出非空集合的集合数量;
获取干扰判决阈值,根据上述干扰判决阈值,上述集合数量、以及滤波器数量确定上述雷达回波信号中是否存在干扰信号。
结合第二方面,在一种可能的实施方式中,上述处理单元具体还用于:
确定上述集合数量与上述滤波器数量的比值;
若上述比值不小于上述干扰判决阈值,则确定上述雷达回波信号中存在干扰信号;
若上述比值小于上述干扰判决阈值,则确定上述雷达回波信号中不存在干扰信号。
结合第二方面,在一种可能的实施方式中,上述处理单元具体还用于:
若确定上述雷达回波信号存在干扰信号,则对上述雷达回波信号执行去干扰处理。
关于第二方面或第二方面的各种实施方式所带来的技术效果,可以参考对于第一方面或第一方面的各种实施方式的技术效果的介绍,不多赘述。
第三方面,提供一种探测装置,该探测装置可以是雷达或者用于雷达的部件(如电路或芯片),包括处理器和存储器,上述处理器和存储器相互连接,存储器用于存储一个或多个程序,处理器用于调用存储器中存储的程序,上述程序当被计算机执行时使上述计算机执行上述第一方面及其任意一种可能的实现方式中的干扰检测方法。可选的,该探测装置还包括通信接口,其中,上述通信接口用于接收和发送数据。其中,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第四方面,本申请实施例还提供一种计算机可读存储介质,该计算机存储介质上存储有计算机程序,当改计算机程序在计算机上运行时,使得该计算机执行如第一方面或第一方面的各种实施方式上述的方法。
第五方面,本申请实施例提供一种芯片,该芯片包括处理器和通信接口,上述处理器用于从该通信接口调用并运行指令,当该处理器执行上述指令时,使得该芯片执行如第一方面或第一方面的各种实施方式上述的方法。
在本申请实施例中,基于不同截止频率的至少两个滤波器,将获取到的数字信号划分为不同频段范围的至少两个滤波信号,进而对各个滤波信号进行干扰检测以实现对雷达回波信号的干扰检测,可提高干扰检测的精度。
附图说明
图1是雷达***的架构示意图;
图2是本申请实施例提供的一种毫米波雷达的结构示意图;
图3是本申请实施例提供的一种雷达之间相互干扰的示意图;
图4是一种干扰检测方法的流程示意图;
图5是基于能量均值法对不同场景下的雷达回波信号进行干扰检测的结果示意图;
图6是本申请实施例提供的一种干扰检测方法的流程示意图;
图7a是本申请实施例提供的一种滤波器选取方式的示意图;
图7b是本申请实施例提供的另一种滤波器选取方式的示意图;
图8是本申请实施例提供的数字信号经滤波器滤波后的效果示意图;
图9是本申请实施例提供的一种信号索引值示意图;
图10是本申请实施例提供的一种干扰检测的应用场景示意图;
图11是本申请实施例提供的干扰检测方法的测试结果示意图;
图12是本申请实施例提供的一种干扰检测装置的结构示意图;
图13是本申请实施例提供的另一种干扰检测装置的结构示意图;
图14是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
为了便于理解,下面先对本申请实施例中的部分用语进行解释说明。
1、雷达,或称为雷达装置,也可以称为探测器、雷达探测装置、探测装置或者雷达信号发送装置等。其工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反射信号,来探测相应的目标物体。雷达所发射的信号可以是雷达信号,相应的,所接收的经过目标物体反射的反射信号也可以是雷达信号。通常而言,雷达可向外发射多个雷达信号,并接收目标物体反射的多个回波/反射信号。进而,针对接收到的每个信号进行处理。
2、调频连续波(frequency modulated continuous wave,FMCW),也称为chirp信号,其是频率随时间变化的电磁波。
3、线性调频连续波(Linear frequency modulated continuous wave,LFMCW),频率随时间线性变化的电磁波。这里的线性变化一般是指在一个发射周期内线性变化。具体的,线性调频连续波的波形一般是锯齿波或者三角波,或者也可能存在其它可能的波形,例如线性调频步进频波形等。
4、中频(Intermediate Frequency,IF)信号,雷达本振信号与接收到的目标反射信号经过混频器处理后的信号,即为中频信号。具体来说,通过振荡器产生的调频连续波信号,一部分作为本振信号,一部分作为发射信号通过发射天线发射出去,而接收天线接收的发射信号的反射信号,会与本振信号混频,得到“中频信号”。通过中频信号,可以得到目标物体的位置信息、速度信息和角度信息中的至少一个。其中,位置信息、速度信息和角度信息可以为相对当前的雷达的相对位置、相对速度和相对角度信息。进一步,中频信号的频率为中频频率。
5、视场(field of view,FOV),视场是指可以看见的世界,也称为视野。在进行目标探测时,发射模块与目标物体之间,或者接收模块与目标物体之间的需要具有信号(例如无线电波、激光)传输不中断的视线区域(line of sight,LOS),该视线区域即可以理解为视场。在FOV内,信号可以传输到接收器或目标物体上。
在现实世界中,经常存在阻碍视线区域直接传输的障碍物,例如建筑物,树木等;对LOS造成影响,形成非视线区域(not line of sight,NLOS)。
下面对本申请实施例的***架构和业务场景进行描述。需要说明的是,本申请描述的***架构及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
请参见图1,图1是雷达***的架构示意图。如图1所示,雷达可以是安装在机动车辆、路口摄像头、无人机、轨道车、自行车、信号灯或测速装置等终端设备(简称为终端)上面的雷达。可选的,雷达也可以是安装在网络设备(如各种***中的基站)等上面的雷达,在此不做限制。可理解的,本申请实施例中提及的雷达可以为毫米波雷达、也可以为激光雷达、或超声波雷达等,在此不做限制。其中,毫米波雷达包括FMCW雷达、LFMCW雷达等,在此不做限制。可理解的,本申请实施例中的雷达能够应用于智能交通、自动驾驶、大气环境监测、地理测绘、无人机等各种领域,能够完成目标探测、距离测量、速度测量、目标跟踪、成像识别等中的一项或者多项功能。
可理解的,本申请实施例既适用于车与车之间的雷达***,也适用于车与无人机等其他装置的雷达***,或其他装置之间的雷达***等,在此不做限制。例如,雷达可以安装在智能运输设备、智能家居设备、机器人等智能终端上。其中,本申请实施例对安装雷达的终端设备类型,雷达的安装位置和雷达的功能不做限定。为便于理解,以下本申请实施例以智能终端为智能运输设备,雷达为毫米波雷达为例进行说明。
可理解的,毫米波雷达由于成本较低、技术比较成熟,率先成为无人驾驶***和辅助驾驶***的主力传感器。目前ADAS已开发出十多项功能,其中自适应巡航控制(Adaptive Cruise Control,ACC)、自动紧急制动(Autonomous Emergency Braking,AEB)、变道辅助(Lance Change Assist,LCA)、盲点监测(Blind Spot Monitoring,BSD)都离不开毫米波雷达。其中,毫米波是指波长介于1~10mm之间的电磁波,所对应的频率范围为30~300GHz。在这个频段,毫米波相关的特性使其非常适合应用于车载领域。带宽大:频域资源丰富,天线副瓣低,有利于实现成像或准成像;波长短:雷达设备体积和天线口径得以减小,重量减轻;波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多,雷达分辨率高;穿透强:相比于激光雷达和光学***,更加具有穿透烟、灰尘和雾的能力,可全天候工作。
请参见图2,图2是本申请实施例提供的一种毫米波雷达的结构示意图。如图2所示,毫米波雷达一般包括振荡器(local oscillation,LO)201、发射天线(TX)202、接收天线(RX)203、混频器(mixer)204和处理器205等。其中,处理器可以包括低通滤波器(low pass filter,LPF)、模数转换器(analog-to-digital converter,ADC)和数字信号处理器(digital signal processer,DSP)等处理装置。
其中,振荡器会产生一个频率随时间线性增加的信号,该雷达信号一般是调频连续波。该信号的一部分输出至混频器作为本振信号,一部分通过发射天线发射出去,接收天线接收发射出去的雷达信号遇到目标物体后反射回来的回波信号,混频器将回波信号与本振信号进行混频,得到中频信号。通过中频信号可以确定目标物体与该雷达***的相对距离、速度、以及角度等信息。例如,中频信号经过低通滤波器并经过放大处理后输送到处理器,处理器对接收的信号进行处理(一般是对接收的信号进行快速傅里叶变换、频谱分析等)以得到目标物体相对于该雷达***的距离、速度和角度等信息。进一步的,前述对中频信号进行处理时,一般在快时间和慢时间分别进行快速傅里叶变换。其中快时间指毫米波雷达的单个反射周期的时间维度,慢时间指毫米波雷达探测帧的时间维度(包含多个毫米波雷达的发射周期)。
此外,处理器还可以将得到的距离、速度和角度等信息输出给控制器(图中未示出),以便于控制器制定对应的决策,例如控制车辆的行为等。可选的,该控制器可以在雷达外部也可以在雷达内部。
其中,随着毫米波雷达的广泛使用,毫米波雷达所在的智能终端之间的互干扰越来越严重,这将会极大降低雷达探测概率或提升雷达探测的虚警概率,对驾驶安全或舒适性造成不可忽视的影响。举例来说,请参见图3,图3是本申请实施例提供的一种雷达之间相互干扰的示意图。如图3所示,雷达301可以向外发射探测信号、以及接收目标物体302反射的回波信号。但是,由于雷达301的视场内还有雷达303,因此在雷达301接收目标物体302反射的回波信号的过程中,其接收天线也可以接收到雷达303的发射信号或者雷达303的发射信号对应的回波信号,那么雷达301所接收的雷达303的发射信号或雷达303的发射信号对应的回波信号对于雷达301来说就是干扰信号。其中,雷达301的接收模块可以对接收信号(该接收信号包括目标物体302反射的回波信号和来自雷达303的发射信号)进行相同的信号处理操作,这样就会导致雷达303的发射信号干扰到原本的回波信号的处理。可理解的,当雷达301的接收信号中存在干扰信号时,干扰信号会增加雷达的虚警概率,或者,干扰信号也可能降低雷达检测概率。
例如,在如图3所示的场景中,雷达301在接收回波信号的时间内,可以接收目标物体302的回波信号,得到真实回波信号的中频信号。同时,雷达301还可以接收到雷达303发射的信号,雷达对该信号进行处理后,得到干扰信号的中频信号。其中,雷达通过对真实的中频信号进行处理后,可以得到前方有一个目标物体1。进一步地,雷达301对干扰信号的中频信号进行处理后,可能认为前方有一个目标物体2。但是实际上,目标物体2是不存在的,这样的情况就被称为“虚警”或者“ghost”。虚警产生后,可能会使得自动驾驶汽车(即雷达301所在的车辆)在前方并没有物体的情况下转弯避让、减速或急刹,降低了驾驶的舒适度和安全性。
此外,干扰信号还可能会对真实回波信号造成覆盖(或者说淹没真实回波信号),造成雷达信号的漏检。例如,请一并参见图3所示的场景,雷达301在接收回波信号的时间内,接收到了目标物体302的回波信号和雷达303发射的信号(或者雷达303的发射信号对应的回波信号),若雷达303的信号与雷达301的信号的频率范围相同,则雷达301对雷达303发射的信号进行处理后,可能会使得真实的回波信号不够明显,甚至覆盖真实回波信号,对检测目标物体带来困难,提升了漏检的可能性。漏检产生后会使得自动驾驶汽车在前方有物体的情况下,误以为没有物体,进而不会采取减速、避让或者刹车等操作,造成交通事故,降低车辆行驶的安全性,危及乘客的人身安全。
因此,如何提高车辆行驶的安全性已成为近年来国际的研究热点。目前,现有多数的研究工作都专注于整个防撞雷达***的实现,或者专注于舒适度的实现,雷达***之间的干扰性研究并未受到应有的重视。又由于对雷达回波信号进行干扰检测是后续进行干扰抑制、干扰避让等方法的前提,即干扰检测的精度直接影响着雷达***抗干扰的性能。因此,如何提升干扰检测精度具有十分重要的现实意义。
在一种实施方式中,可采用能量均值法进行干扰检测。请参见图4,图4是一种干扰检测方法的流程示意图。如图4所示,首先,可通过接收天线接收雷达回波信号,然后将接收到的雷达回波信号依次通过低噪声放大器、去斜处理模块、低通滤波器1以及模数转换器(analog-to-digital converter,ADC)中进行预处理,得到ADC输出的数字信号。通过对数字信号进行能量均值计算,可得到该数字信号的能量均值。然后,通过将计算得到的能量均值乘以某个固定的系数,即可得到雷达回波信号对应的干扰检测门限。最后,基于该干扰检测 门限对数字信号中包括的各个采样点信号的能量进行检测。如果有过门限的采样点信号,则判断该采样点信号受到了干扰(即雷达回波信号中存在干扰信号),进而对干扰信号进行后续处理(例如干扰抑制或信号重构等)。然而,由于雷达回波信号中可能存在不同频率的干扰信号,通常情况下,不同频率的干扰信号的信号强度不同,因此,这种采用能量均值法对很大频段范围内的雷达回波信号进行干扰检测的方式可能导致检测不到那些信号强度较弱的干扰信号,特别是在多干扰源场景下,检测精度不高。
例如,图5是基于能量均值法对不同场景下的雷达回波信号进行干扰检测的结果示意图。如图5所示,图5中的(a)是单干扰源场景下的干扰检测结果,图5中的(b)是多干扰源场景下的干扰检测结果。其中,图5中的ADC data表示雷达回波信号经处理后得到的数字信号,threshold表示干扰检测门限,Sample表示采样点,Amplitude表示振幅。可理解的,无论是单干扰源场景还是多干扰源场景,当受到干扰的采样点的占比越高,则计算出的能量均值也就越大,因此,基于相同固定系数计算出的干扰检测门限也就越大。由于在进行干扰检测时,是基于干扰检测门限进行干扰判断的,即:将能量大于干扰检测门限的采样点确定为受到干扰的采样点。因此,若计算出的干扰检测门限越大,则只能检测出部分受到强干扰的采样点,而检测不到受干扰较小的采样点,干扰检测精度低。
基于此,本申请提出了一种干扰检测方法,通过获取雷达回波信号经处理后得到的数字信号,并将数字信号并行输入到不同截止频率的至少两个滤波器中进行处理,可得到不同频段范围的至少两个滤波信号。进一步地,基于各个滤波信号的干扰检测门限分别对各个滤波信号进行干扰检测,最后再根据各个滤波信号的干扰检测结果确定雷达回波信号中是否存在干扰信号,可提高对雷达回波信号中存在的干扰信号的检测精度。
图6是本申请实施例提供的一种干扰检测方法的流程示意图。其中,该方法可以基于干扰检测装置来实现。可理解的,该干扰检测装置可以是雷达也可以部署在雷达(例如毫米波雷达或其他雷达)中,即雷达本身内部的芯片,或者,该干扰检测装置也可以部署在雷达外部,用于辅助雷达的工作等,在此不做限制。其中,上述干扰检测方法至少包括如下步骤:
S601、获取对雷达回波信号处理后得到的数字信号。
具体的,干扰检测装置可获取对雷达回波信号进行处理后得到的数字信号。其中,干扰检测装置可以为雷达或者其他具有探测功能的装置,例如干扰检测装置可以为毫米波雷达、超声波雷达、激光雷达、红外探测器以及测距装置等等中的至少一个。也就是说,该干扰检测装置可以部署在雷达(例如毫米波雷达或其他雷达)中,或该干扰检测装置是一种雷达,或者,该干扰检测装置也可以部署在雷达外部,以用于辅助雷达工作。
其中,若干扰检测装置部署在雷达中或该干扰检测装置为一种雷达,则基于雷达的接收天线接收到雷达回波信号后,可通过雷达中包括各个模块对雷达回波信号进行预处理,以得到数字信号。示例性地,请一并参见图4,当雷达基于接收天线接收到雷达回波信号后,可首先通过低噪声放大器对接收到的雷达回波信号进行处理,以降低雷达回波信号中的噪声。然后,将经过低噪声放大器处理后得到的信号依次输入到去斜处理模块,以及模拟的低通滤波器(如图4所示的低通滤波器1)中进行处理,得到基带信号。进一步地,将基带信号输入至ADC中,以得到经ADC进行数字采样后确定出的数字信号。因此,后续可针对数字信号进行进一步处理。
可选的,若干扰检测装置部署在雷达外部,干扰检测装置从雷达接收预处理得到的数字信号,以便于干扰检测装置对接收到的数字信号进行进一步处理。
可选的,若干扰检测装置部署在雷达外部,则还可以通过该干扰检测装置接收雷达回波信号,然后将接收到的雷达回波信号输入至雷达中进行预处理,以得到雷达回波信号对应的数字信号。进而,干扰检测装置再从雷达处接收数字信号,以便后续对接收到的数字信号进行进一步处理。
可理解的,本申请中的雷达回波信号可以为雷达向外发射探测信号后,所接收到的目标物体基于该探测信号返回的回波信号,和/或该雷达的视场内其他雷达发射的探测信号,和/或其他雷达的探测信号对应的回波信号等,在此不做限制。例如,如图3所示的场景,雷达301可以向外发射探测信号、以及接收目标物体302反射的回波信号。但是,由于雷达301的视场内还有雷达303,因此在雷达301接收目标物体302反射的回波信号的过程中,其接收天线也可以接收到雷达303发射的探测信号,那么,雷达301所接收到的雷达回波信号即包括了目标物体302反射的回波信号和雷达303发射的探测信号。其中,雷达301所接收的雷达303的发射信号对于雷达301来说就是干扰信号。可理解的,由于数字信号相较于模拟信号更便于存储和分析,因此,当接收到雷达回波信号后,首先需要将雷达回波信号经处理得到数字信号后再进行分析。
S602、将数字信号分别经过不同截止频率的至少两个滤波器进行处理,得到至少两个滤波信号。
在一些可行的实施方式中,将数字信号分别经过不同截止频率的至少两个滤波器进行处理,可得到至少两个滤波信号。其中,上述至少两个滤波信号的叠加/合成结果与数字信号相同。在本申请实施例中,所得到的至少两个滤波信号的叠加结果与数字信号相同可理解为滤波信号的叠加/合成结果与数字信号在一定误差范围内相同,这是因为滤波器的实际滤波效果是非理想的造成的,因此,会存在一定的误差。也就是说,本申请实施例中所选取的至少两个滤波器需满足使滤波后得到的至少两个滤波信号的叠加/合成结果与数字信号基本相同,即在一定误差范围内相同。或者说,本申请中的所选取的至少两个滤波器需满足:能够使滤波后得到的至少两个滤波信号携带上述数字信号的所有频率信息或绝大部分频率信息。
可理解的,上述至少两个滤波器可以是低通滤波器,带通滤波器,高通滤波器和带阻滤波器中的至少两个。例如,至少两个滤波器可包括至少一个低通滤波器和至少一个带通滤波器,或至少两个滤波器包括至少一个带通滤波器和至少一个高通滤波器,或至少两个滤波器包括至少一个低通滤波器和至少一个高通滤波器,或至少两个滤波器包括至少两个带通滤波器,或至少两个滤波器包括至少两个带阻滤波器,或至少两个滤波器包括至少一个带通滤波器和至少一个带阻滤波器等,具体根据实际应用场景确定,在此不做限制。可选的,所选取的至少两个滤波器还可以包括至少一个低通滤波器、至少一个带通滤波器和至少一个高通滤波器等,具体根据实际应用场景确定,在此不做限制。
其中,本申请实施例中用于处理数字信号的滤波器(即上述至少两个滤波器中的每个滤波器)可以是无限脉冲响应(infinite impulse response,IIR)滤波器、或者也可以是有限脉冲响应(finite impulse response filter,FIR)滤波器,或其它类型的滤波器等,在此不做限制。其中,滤波器的阶数、截止频率等参数设置可以根据实际应用场景、干扰源的特点以及目标物体的特性进行设置。
通常而言,通带和阻带的界限频率叫做截止频率,其中,对于幅频响应,通常把能够通过的信号频率范围叫做通带,把受阻而衰减的频率信号范围叫做阻带。可理解的,低通滤波器的特性为允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。其中,假设低通滤波器的截止频率为第一截止频率,则理想的低通滤波器应该能使所有低于第一截止频率 的信号无损通过,而所有高于第一截止频率的信号都应该被无限的衰减。相应地,带通滤波器的特性为允许一定频段范围内的信号通过,抑制低于或高于该频段的信号、干扰和噪声。其中,假设带通滤波器的截止频率为第二截止频率,其中,第二截止频率包括上限截止频率和下限截止频率,且上限截止频率大于下限截止频率,则理想的带通滤波器可允许处于下限截止频率与上限截止频率之间的所有信号无损通过,而阻止/抑制小于下限截止频率和大于上限截止频率的信号通过。相应地,高通滤波器的特性为允许信号中的高频分量通过,抑制低频或直流分量。其中,假设高通滤波器的截止频率为第三截止频率,则理想的高通滤波器可允许所有高于第三截止频率的信号无损通过,而所有低于第三截止频率的信号被无限的衰减。相应地,带阻滤波器的特性为抑制一定频段内的信号,允许该频段以外的信号通过,又称为陷波滤波器。其中,假设带阻滤波器的截止频率为第四截止频率,其中,第四截止频率包括上限截止频率和下限截止频率,且上限截止频率大于下限截止频率,则理想的带阻滤波器可允许小于下限截止频率,以及大于上限截止频率的信号无损通过,而阻止/抑制处于下限截止频率与上限截止频率之间的信号通过。
可理解的,本申请实施例中所选取的至少两个滤波器的滤波范围需满足覆盖数字信号中包括的所有频段范围的信号。举例来说,请参见图7a,图7a是本申请实施例提供的一种滤波器选取方式的示意图。如图7a所示,假设本申请实施例中所选取的至少两个滤波器为一个低通滤波器和一个高通滤波器,且该低通滤波器的截止频率为第一截止频率,该高通滤波器的截止频率为第三截止频率,则第一截止频率需大于或者等于第三截止频率。由图7a可知,当低通滤波器的第一截止频率大于或者等于高通滤波器的第三截止频率时,所选取的2个滤波器的滤波范围可满足覆盖数字信号中包括的所有频段范围的信号。
又举例来说,请参见图7b,图7b是本申请实施例提供的另一种滤波器选取方式的示意图。如图7b所示,假设本申请实施例中所选取的至少两个滤波器为一个低通滤波器、一个带通滤波器和一个高通滤波器,其中该低通滤波器的截止频率为第一截止频率,该高通滤波器的截止频率为第三截止频率,该带通滤波器的截止频率为第二截止频率,且第二截止频率包括上限频率和下限频率,则第二截止频率中的下限频率需不大于第一截止频率(即第二截止频率中的下限频率需小于或者等于第一截止频率),第二截止频率中的上限频率需不小于第三截止频率(即第二截止频率中的上限频率大于或者等于第三截止频率)。由图7b可知,当第二截止频率中的下限频率小于或者等于第一截止频率,且第二截止频率中的上限频率大于或者等于第三截止频率时,所选取的3个滤波器的滤波范围可满足覆盖数字信号中包括的所有频段范围的信号。其中,本申请所选取的至少两个滤波器还可以有其他形式的滤波器组合方式,这里不再举例说明。
可理解的,由于实际制造时,如此理想的特性是很难实现的(即滤波器是非理想的),因此即使所选取的至少两个滤波器的滤波范围满足覆盖数字信号中包括的所有频段范围的信号,其滤波效果也会存在一定的误差。例如,请参见图8,图8是本申请实施例提供的数字信号经滤波器滤波后的效果示意图。其中,以至少两个滤波器分别为一个低通滤波器,一个带通滤波器和一个高通滤波器为例。图8中的(a)为原始ADC数据(即数字信号)的示意图。如图8中的(b)为图8中的(a)中的数字信号经过低通滤波器进行滤波后得到的滤波信号的示意图,图8中的(c)为数字信号经过带通滤波器进行滤波后得到的滤波信号的示意图,图8中的(d)为数字信号经过高通滤波器进行滤波后得到的滤波信号的示意图。其中,图8中的(e)为将图8中的(b)、(c)和(d)中的滤波信号进行合成/叠加后得到的合成信号的示意图。图8中的(f)为图8中的(a)所示的数字信号与图8中的(e)所示的合成信号的 对比图。由图8中的(f)可知,将上述三个滤波器滤波后得到的滤波信号进行合成后的合成信号与原始的数字信号基本无差异,即滤波信号的叠加/合成结果与原始的数字信号在一定误差范围内相同。
S603、根据至少两个滤波信号中各滤波信号和各滤波信号对应的干扰检测门限,确定雷达回波信号中是否存在干扰信号。
在一些可行的实施方式中,可根据至少两个滤波信号中各滤波信号和各滤波信号对应的干扰检测门限,确定雷达回波信号中是否存在干扰信号。其中,针对至少两个滤波信号中的每个滤波信号对应的干扰检测门限的确定方式,可采用相同的计算方式确定出各个滤波信号对应的干扰检测门限。例如,针对至少两个滤波信号中的每个滤波信号,皆通过能量均值法计算每个滤波信号对应的干扰检测门限。其中,能量均值法的计算过程为:首先计算出滤波信号包括的各个采样点信号的能量均值,然后获取一个预设系数,以将计算出的能量均值与该预设系数的乘积确定为该滤波信号对应的干扰检测门限。
举例来说,以至少两个滤波器分别为一个低通滤波器和一个高通滤波器为例,假设经过低通滤波器后得到滤波信号为第一滤波信号,经过高通滤波器后得到滤波信号为第二滤波信号,其中,计算出的第一滤波信号的能量均值为第一能量均值,第二滤波信号的能量均值为第二能量均值,且获取到的预设系数为第一系数。因此,第一滤波信号对应的干扰检测门限等于第一能量均值和第一系数的乘积,第二滤波信号对应的干扰检测门限等于第二能量均值和第一系数的乘积。可选的,用于执行干扰检测门限计算的预设系数还可以包括第一系数和第二系数,其中,第一系数和第二系数为不同的两个系数。因此,第一滤波信号对应的干扰检测门限可以等于第一能量均值和第一系数的乘积,第二滤波信号对应的干扰检测门限可以等于第二能量均值和第二系数的乘积。
可选的,上述至少两个滤波信号中,每个滤波信号对应的干扰检测门限的确定方式也可以不同。例如,同样以至少两个滤波器分别为一个低通滤波器和一个高通滤波器为例,其中,针对基于低通滤波器滤波得到的第一滤波信号,可基于能量均值方法计算该第一滤波信号对应的干扰检测门限,针对基于高通滤波器滤波得到的第二滤波信号,可通过恒虚警(constant false alarm rate,CFAR)检测算法计算该滤波信号对应的干扰检测门限。
可理解的,经上述至少两个滤波器滤波得到的至少两个滤波信号中,每个滤波信号包括至少一个采样点信号。也可以说,每个滤波信号可由至少一个采样点信号组成的。其中,当计算出每个滤波信号对应的干扰检测门限后,可根据各滤波信号和各滤波信号对应的干扰检测门限,确定出雷达回波信号中是否存在干扰信号。
具体地,首先,可从每个滤波信号包括的至少一个采样点信号中,确定出不小于每个滤波信号对应的干扰检测门限的第一采样点信号对应的信号索引值。然后,根据每个滤波信号中包括的第一采样点信号对应的信号索引值,确定雷达回波信号中是否存在干扰信号。可理解的,一个信号索引值用于标记一个采样点信号。其中,本申请实施例中的信号索引值可以是信号位置,或者也可以是用于标识采样点信号的其他标识符等,具体根据实际应用场景确定,在此不做限制。其中,信号位置可理解为通过ADC将模拟信号转化为数字信号时,模拟信号的采样顺序。例如,请参见图9,图9是本申请实施例提供的一种信号索引值示意图。其中,如图9所示的A,B,C即为采样点信号,其中,采样点信号A,B,C的采样顺序从左往右依次为采样点信号A为第1个采样点,采样点信号B为第2个采样点,采样点信号C为第3个采样点,因此,采样点信号的信号索引值可以为该采样点信号的采样顺序(或称为采样位置)。如图9所示,采样点信号A的信号索引值为1,采样点信号B的信号索引值为2, 采样点信号C的信号索引值为3。
在一些可行的实施方式中,根据每个滤波信号中包括的第一采样点信号对应的信号索引值,确定雷达回波信号中是否存在干扰信号,可理解为:根据每个滤波信号中包括的第一采样点信号对应的信号索引值生成每个滤波信号对应的信号索引值集合,其中一个滤波信号对应一个信号索引值集合。因此,可根据各滤波信号对应的信号索引值集合,确定雷达回波信号中是否存在干扰信号。其中,根据各滤波信号对应的信号索引值集合,确定雷达回波信号中是否存在干扰信号可理解为:对各滤波信号对应的信号索引值集合进行融合处理,得到融合结果,进而根据融合结果确定雷达回波信号中是否存在干扰信号。其中,融合处理可理解为对各滤波信号对应的信号索引值集合取并集或取交集,得到过门限采样点信号集合,进而将过门限采样点信号集合确定为融合结果。可理解的,若过门限采样点信号集合为非空集合,则可确定雷达回波信号中存在干扰信号。若过门限采样点信号集合为空集,则可确定雷达回波信号中不存在干扰信号。
举例来说,以至少两个滤波器为一个低通滤波器、一个带通滤波器和一个高通滤波器为例,即滤波器数量为3。其中,假设基于第一截止频率的低通滤波器对数字信号进行滤波后,可得到第一滤波信号,基于第二截止频率的带通滤波器对数字信号进行滤波后,可得到第二滤波信号,基于第三截止频率的高通滤波器对数字信号进行滤波后,可得到第三滤波信号。其中,基于第一滤波信号确定出的干扰检测门限为第一干扰检测门限,基于第二滤波信号确定出的干扰检测门限为第二干扰检测门限,基于第三滤波信号确定出的干扰检测门限为第三干扰检测门限。可理解的,假设基于第一干扰检测门限,从第一滤波信号包括的至少一个采样点信号中确定出大于第一干扰检测门限的第一采样点的信号索引值分别为1,2,3,4,5。基于第二干扰检测门限,从第二滤波信号包括的至少一个采样点信号中确定出大于第二干扰检测门限的第一采样点的信号索引值分别6,7,8,9。基于第三干扰检测门限,从第三滤波信号包括的至少一个采样点信号中确定出大于第三干扰检测门限的第一采样点的信号索引值分别10,11,则可得到第一滤波信号对应的第一信号索引值集合S1={1,2,3,4,5},第二滤波信号对应的第二信号索引值集合S2={6,7,8,9},第三滤波信号对应的第三信号索引值集合S3={10,11}。其中,通过对各滤波信号对应的信号索引值集合进行融合处理,可得到融合结果。
可理解的,假设本申请中涉及的融合处理为对各信号索引值集合取并集,则可得到过门限采样点信号集合S=S1∪S2∪S3={1,2,3,4,5,6,7,8,9,10,11}。这里,本申请实施例以融合处理为对各信号索引值集合取并集为例进行说明。其中,由于过门限采样点信号集合S={1,2,3,4,5,6,7,8,9,10,11}为非空集合,因此,可确定雷达回波信号中存在干扰信号。
可选的,在一些可行的实施方式中,根据各滤波信号对应的信号索引值集合,确定雷达回波信号中是否存在干扰信号,还可以理解为:从至少两个信号索引值集合中确定出非空集合的集合数量。进一步地,获取干扰判决阈值,以根据干扰判决阈值,集合数量、以及滤波器数量确定雷达回波信号中是否存在干扰信号。具体地,可根据非空集合的集合数量和滤波器数量,确定出集合数量与滤波器数量的比值。若该比值不小于干扰判决阈值,则确定雷达回波信号中存在干扰信号。若该比值小于干扰判决阈值,则确定雷达回波信号中不存在干扰信号。
举例来说,同样以至少两个滤波器为一个低通滤波器、一个带通滤波器和一个高通滤波器为例,即滤波器数量为3。其中,假设基于第一截止频率的低通滤波器对数字信号进行滤 波后,可得到第一滤波信号,基于第二截止频率的带通滤波器对数字信号进行滤波后,可得到第二滤波信号,基于第三截止频率的高通滤波器对数字信号进行滤波后,可得到第三滤波信号。其中,基于第一滤波信号确定出的干扰检测门限为第一干扰检测门限,基于第二滤波信号确定出的干扰检测门限为第二干扰检测门限,基于第三滤波信号确定出的干扰检测门限为第三干扰检测门限。可理解的,假设基于第一干扰检测门限,从第一滤波信号包括的至少一个采样点信号中确定出大于第一干扰检测门限的第一采样点的信号索引值分别为1,2,3,4,5。基于第二干扰检测门限,从第二滤波信号包括的至少一个采样点信号中确定出大于第二干扰检测门限的第一采样点的信号索引值分别6,7,8,9。基于第三干扰检测门限,从第三滤波信号包括的至少一个采样点信号中确定出大于第三干扰检测门限的第一采样点的信号索引值分别10,11,则可得到第一滤波信号对应的第一信号索引值集合S1={1,2,3,4,5},第二滤波信号对应的第二信号索引值集合S2={6,7,8,9},第三滤波信号对应的第三信号索引值集合S3={10,11}。其中,由于上述3个信号索引值集合(即第一信号索引值集合S1,第二信号索引值集合S2和第三信号索引值集合S3)中,非空集合的集合数量为3,即上述3个信号索引值皆为非空集合,因此,可计算得到非空集合的集合数量与滤波器数量的比值为1,即3:3=1。假设获取到的干扰判决阈值为0.5,则由于1>0.5,即非空集合的集合数量与滤波器数量的比值大于干扰判决阈值,因此,可确定雷达回波信号中存在干扰信号。
在一些可行的实施方式中,若确定雷达回波信号存在干扰信号,则可对雷达回波信号执行去干扰处理。例如,可根据过门限采样点信号集合中包括的各个信号索引值,从数字信号中确定出存在干扰的采样点信号,以对存在干扰的采样点信号进行干扰抑制(例如,将采样值置零,或对该采样点信号进行加窗等处理)。其中,本申请实施例中过门限采样点信号集合中包括的各信号索引值所对应的各采样点信号皆可理解为存在干扰的采样点信号。可选的,还可以对进行抑制操作后的采样点信号进行信号重构以提高信噪比(signal noise ratio,SNR)。例如,可通过插值法等对该位置上的采样点信号进行信号重构等,具体根据实际应用场景确定,在此不做限制。可选的,还可以对进行干扰抑制和信号重构后得到的数字信号沿快时间维进行一维快速傅里叶变换(fast Fourier transform,FFT)操作,然后再对其沿慢时间维进行二维FFT操作等,以得到距离-多普勒图。可选的,还可以再对经过上述一系列处理得到的信号再进行CFAR等操作,在此不做限制。
可选的,在一些可行的实施方式中,若确定雷达回波信号中不存在干扰信号,则可对原始ADC数据(即数字信号)沿快时间维进行一维FFT操作,然后对其沿慢时间维进行二维FFT操作,得到距离-多普勒图。可选的,还可以对上述经二维FFT操作后得到的数据进行非相干积累或参数估计或CFAR等操作,在此不做限制。
请参见图10,图10是本申请实施例提供的一种干扰检测的应用场景示意图。假设该雷达***为车载毫米波雷达***,其中发射信号为FMCW。如图10所示,当基于接收天线收到雷达回波信号后,将雷达回波信号依次通过低噪声放大器、去斜处理模块、低通滤波器1(这里的低通滤波器1用于将去斜处理后的信号滤到基带带宽内)以及模数转换器后可得到数字信号。该数字信号经多级滤波器滤波后分别进行检测,对检测后的效果进行融合,最后输出检测的结果。可理解的,上述数字信号经多级滤波器滤波可理解为将数字信号并行输入至如图10所示的低通滤波器、带通滤波器和高通滤波器中进行滤波处理,以分别得到对应的滤波信号。根据各个滤波信号,可分别计算出各个滤波信号对应的干扰检测门限。进一步地,将各个滤波器的滤波信号分别与各自的干扰检测门限进行比较(如图10中的干扰检测门限1、干扰检测门限2、干扰检测门限3),可得到各个滤波信号中包括的过门限采样点信号(即本 申请中的第一采样点信号)所组成的集合(如图10中的信号索引值集合1、信号索引值集合2、信号索引值集合3)。将各滤波信号对应的信号索引值集合取并集,得到过门限采样点信号集合,并判断该过门限采样点信号集合是否为空集,若为非空集合,则确定雷达回波信号中存在干扰,因此可将过门限采样点信号集合内的信号索引值分别对应到数字信号中,以对数字信号内相应位置的采样点信号进行干扰抑制(如采样值置零等),然后对抑制后的采样点信号进行信号重构,以便后续进一步对信号重构后的数据沿快时间维进行一维FFT操作,然后对其沿慢时间维进行二维FFT操作,得到距离-多普勒图,然后再进行后续操作,如非相干积累、参数估计等,在此不做限制。可选的,若过门限采样点信号集合为空集,则确定雷达回波信号中不存在干扰,因此可对数字信号沿快时间维进行一维FFT操作,然后对其沿慢时间维进行二维FFT操作,然后可以进行后续操作,如非相干积累、参数估计等,在此不做限制。
本申请实施例中的干扰检测方法,通过获取雷达回波信号经处理后得到的数字信号,并将数字信号并行输入到至少两个滤波信号中进行处理,可得到不同频段范围的至少两个滤波信号。进一步地,基于各个滤波信号的干扰检测门限分别对各个滤波信号分别进行干扰检测,最后再根据各个滤波信号的干扰检测结果确定雷达回波信号中是否存在干扰信号,可提高对雷达回波信号中存在的干扰信号的检测精度。
可理解的,本申请中提供的干扰检测方法,通过将预处理得到的数字信号进行多级滤波(即,将数字信号并行输入到至少两个滤波器中分别进行滤波)后,得到不同频段范围的至少两个滤波信号,进而对各个滤波信号进行干扰检测以实现对雷达回波信号的干扰检测,可以提高干扰的检测精度。为便于理解,本申请发明人基于测试数据对本申请提供的干扰检测方法与图4所示的干扰检测方法进行了验证与比较。请参见图11,图11是本申请实施例提供的干扰检测方法的测试结果示意图。其中,为了较好地在图中展现出测试效果,本申请实施例通过将检测出的存在干扰的Sample进行置零来展现干扰检测方法的测试结果。其中,Original ADC表示雷达回波信号经预处理后得到的数字信号,Original method表示图4所示的干扰检测方法,Proposed method表示本申请提供的干扰检测方法。如图11所示,图11中的(a)为单干扰源场景下不同干扰检测方法的干扰抑制效果示意图,图11中的(b)为多干扰源场景下不同干扰检测方法的干扰抑制效果示意图。其中,图11中的(b)的多干扰源包括干扰源1和干扰源2。在本申请实施例中,为更加清楚地展示多干扰源场景下不同干扰检测方法的干扰抑制效果,如图11中的(c)示出了多干扰源场景下干扰源1位置的放大图,如图11中的(d)示出了多干扰源场景下干扰源2位置的放大图。由图11中的(a)~图11中的(d)可知,无论是单干扰源场景还是多干扰源场景,本申请所提出的干扰检测方法皆优于图4所示的干扰检测方法,即本申请提出的干扰检测方法检测出的存在干扰的Samples更多,检测精度更高。另外,相比于单干扰源场景下获得的收益,多干扰源场景下本申请所提的方法获得的收益更多,即本申请提出的干扰检测方法在多干扰源场景下的适用性更强,检测效果更好。
上述内容详细阐述了本申请提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
请参见图12,图12是本申请实施例提供的一种干扰检测装置的结构示意图。该干扰检测装置120可以包括获取单元1201、滤波单元1202和处理单元1203。该干扰检测装置120用于实现前述的干扰检测方法,例如可以用于实现图6所示的干扰检测方法。
需要说明的是,各个单元的实现还可以对应参照图6所示的方法实施例的相应描述。该干扰检测装置120可以为图6所示实施例中的干扰检测装置,或者为干扰检测装置的一个或者多个模块。
在一种可能的实施方式中,上述获取单元1201,用于获取对雷达回波信号处理后得到的数字信号;
滤波单元1202,用于将数字信号分别执行不同截止频率的滤波处理,得到至少两个滤波信号;
处理单元1203,用于根据至少两个滤波信号中各滤波信号和各滤波信号对应的干扰检测门限,确定雷达回波信号中是否存在干扰信号。
其中,上述获取单元1201具体可以为接收天线、低噪声放大器、去斜处理模块、低通滤波器、模数转换器等中的一种或者多种的组合。该滤波单元1202包括至少两个滤波器,其中,上述至少两个滤波器可包括低通滤波器、带通滤波器、高通滤波器以及带阻滤波器等中的至少两个,具体根据实际应用场景确定,在此不做限制。该处理单元1203具体可以为混频器、低通滤波器、模数转换器、数字信号处理器(digital signal processer,DSP)、中央处理器(central processing unit,CPU)、图片处理器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(application specificintegrated circuit,ASIC)、现场可编程逻辑门阵列(field programmable gate array,FPGA)、复杂可编程逻辑器件(complex programmable logic device,CPLD)、协处理器(协助中央处理器完成相应处理和应用)、微控制单元(microcontroller unit,MCU)、信号处理单元(signal processing unit,SPU)等处理模块中的一种或者多种的组合。
在又一种可能的实施方式中,至少两个滤波器包括下述滤波器中的至少两个:
低通滤波器,带通滤波器,高通滤波器和带阻滤波器。
在又一种可能的实施方式中,至少两个滤波器包括第一截止频率的低通滤波器、第二截止频率的带通滤波器和第三截止频率的高通滤波器,第二截止频率包括上限截止频率和下限截止频率,其中,下限截止频率不大于第一截止频率,上限截止频率不小于第三截止频率。
在又一种可能的实施方式中,至少两个滤波信号中每个滤波信号包括至少一个采样点信号;
处理单元1203具体用于:
确定每个滤波信号包括的至少一个采样点信号中,不小于每个滤波信号对应的干扰检测门限的第一采样点信号对应的信号索引值;
根据每个滤波信号中包括的第一采样点信号对应的信号索引值,确定雷达回波信号中是否存在干扰信号。
在又一种可能的实施方式中,处理单元1203具体还用于:
根据每个滤波信号中包括的第一采样点信号对应的信号索引值生成每个滤波信号对应的信号索引值集合,其中一个滤波信号对应一个信号索引值集合;
根据各滤波信号对应的信号索引值集合,确定雷达回波信号中是否存在干扰信号。
在又一种可能的实施方式中,处理单元1203具体还用于:
对各滤波信号对应的信号索引值集合进行融合处理,得到融合结果;
根据融合结果确定雷达回波信号中是否存在干扰信号。
在又一种可能的实施方式中,处理单元1203具体还用于:
对各滤波信号对应的信号索引值集合取并集或取交集,得到过门限采样点信号集合;
将过门限采样点信号集合确定为融合结果。
在又一种可能的实施方式中,处理单元1203具体还用于:
若过门限采样点信号集合为非空集合,则确定雷达回波信号中存在干扰信号;
若过门限采样点信号集合为空集,则确定雷达回波信号中不存在干扰信号。
在又一种可能的实施方式中,处理单元1203具体还用于:
从至少两个信号索引值集合中确定出非空集合的集合数量;
获取干扰判决阈值,根据干扰判决阈值,集合数量、以及滤波器数量确定雷达回波信号中是否存在干扰信号。
在又一种可能的实施方式中,处理单元1203具体还用于:
确定集合数量与滤波器数量的比值;
若比值不小于干扰判决阈值,则确定雷达回波信号中存在干扰信号;
若比值小于干扰判决阈值,则确定雷达回波信号中不存在干扰信号。
在又一种可能的实施方式中,处理单元1203具体还用于:
若确定雷达回波信号存在干扰信号,则对雷达回波信号执行去干扰处理。
可以理解的,本申请各个装置实施例中,对多个单元或者模块的划分仅是一种根据功能进行的逻辑划分,不作为对装置具体的结构的限定。在具体实现中,其中部分功能模块可能被细分为更多细小的功能模块,部分功能模块也可能组合成一个功能模块,但无论这些功能模块是进行了细分还是组合,装置在探测的过程中所执行的大致流程是相同的。通常,每个单元都对应有各自的程序代码(或者程序指令),这些单元各自对应的程序代码在处理器上运行时,使得该单元受处理器控制执行相应的流程从而实现相应功能。
参见图13,图13是本申请实施例提供的另一种干扰检测装置的结构示意图。如图13所示,该干扰检测装置130包括:处理器131、通信接口132和存储器133。其中,处理器131、通信接口132和存储器133通过总线134耦合。
处理器131可以是一个或多个中央处理器(central processing unit,CPU),在处理器131是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
处理器131用于读取存储器中存储的程序,与通信接口132配合执行本申请上述实施例中由干扰检测装置130执行的方法的部分或全部步骤。
存储器133包括但不限于随机存储记忆体(random access memory,RAM)、可擦除可编程只读存储器(erasable programmable rom,EPROM)、只读存储器(read-only memory,ROM)或便携式只读存储器(compact disc read-only memory,CD-ROM)等等,该存储器133用于存储程序,处理器131可以读取存储器133中存储的程序,执行本申请上述实施例中图6所示方法中的各个步骤,在此不再进行赘述。
参见图14,图14是本申请实施例提供的一种芯片的结构示意图。如图14所示,芯片140可包括:处理器1401,以及耦合于处理器1401的一个或多个通信接口1402。其中:
处理器1401可用于读取和执行计算机可读指令。具体实现中,处理器1401可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器1401的硬件架构可以是专用集成电路(application specific integrated circuits,ASIC)架构、MIPS架构、ARM架构或者NP架构等等。处理器1401可以是单核的,也可以是多核的。
通信接口1402可用于输入待处理的数据至处理器1401,并且可以向外输出处理器1401的处理结果。例如,通信接口1402可以是通用输入输出(general purpose input output,GPIO)接口,可以和多个***设备(如显示器(LCD)、摄像头(camera)、射频(radio frequency,RF)模块等等)连接。通信接口1402通过总线1403与处理器1401相连。
本申请中,处理器1401可用于从存储器中调用本申请的一个或多个实施例提供的干扰检测方法的实现程序,并执行该程序包含的指令。通信接口1402可用于输出处理器1401的执行结果。本申请中,通信接口1402可具体用于输出处理器1401的干扰检测结果。关于本申请的一个或多个实施例提供的干扰检测方法可参考前述图6所示各个实施例,这里不再赘述。
需要说明的,处理器1401、通信接口1402各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
基于同一发明构思,本申请实施例中提供的干扰检测装置解决问题的原理与有益效果与本申请方法实施例中干扰检测方法解决问题的原理和有益效果相似,可以参见方法的实施的原理和有益效果,并且,各个相关模块所执行的各个步骤之间的关系亦可参考前述实施例中相关内容的描述,为简洁描述,在这里不再赘述。
本申请实施例中还提供了一种计算机存储介质,可以用于存储图13所示实施例中干扰检测装置130所用的计算机软件指令,其包含用于执行上述实施例中为干扰检测装置所设计的程序。该存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
在本申请实施例中还提供了一种计算机程序产品,该计算机产品被干扰检测装置运行时,可以执行上述图13所示实施例中为干扰检测装置所设计的干扰检测方法。
本申请实施例还提供一种雷达***,用于为车辆提供干扰检测功能。其包含至少一个本申请上述实施例提到的干扰检测装置,该***内的至少一个干扰检测装置可以集成为一个整机或设备,或者该***内的至少一个干扰检测装置也可以独立设置为元件或装置。
本申请实施例还提供一种传感器***,用于为车辆提供干扰检测功能。其包含至少一个本申请上述实施例提到的干扰检测装置,以及,摄像头或雷达等其他传感器中的至少一个,该***内的至少一个传感器装置可以集成为一个整机或设备,或者该***内的至少一个传感器装置也可以独立设置为元件或装置。
本申请实施例还提供一种***,应用于无人驾驶或智能驾驶中,其包含至少一个本申请上述实施例提到的干扰检测装置、摄像头、雷达等传感器其他传感器中的至少一个,该***内的至少一个装置可以集成为一个整机或设备,或者该***内的至少一个装置也可以独立设置为元件或装置。
进一步,上述任一***可以与车辆的中央控制器进行交互,为所述车辆驾驶的决策或控制提供探测和/或融合信息。
本申请实施例还提供一种终端,所述终端包括至少一个本申请上述实施例提到的干扰检测装置或上述任一***。例如,上述终端可包括车辆、摄像头、无人机、信号灯和测速装置等,在此不做限制。
可理解的,本申请方法实施例中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请装置实施例中的模块可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。

Claims (26)

  1. 一种干扰检测方法,其特征在于,所述方法包括:
    获取对雷达回波信号处理后得到的数字信号;
    将所述数字信号分别经过不同截止频率的至少两个滤波器进行处理,得到至少两个滤波信号;
    根据所述至少两个滤波信号中各滤波信号和所述各滤波信号对应的干扰检测门限,确定所述雷达回波信号中是否存在干扰信号。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个滤波器包括下述滤波器中的至少两个:
    低通滤波器,带通滤波器,高通滤波器和带阻滤波器。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少两个滤波器包括第一截止频率的低通滤波器、第二截止频率的带通滤波器和第三截止频率的高通滤波器,所述第二截止频率包括上限截止频率和下限截止频率,其中,所述下限截止频率不大于所述第一截止频率,所述上限截止频率不小于所述第三截止频率。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述至少两个滤波信号中每个滤波信号包括至少一个采样点信号;
    所述根据所述至少两个滤波信号中各滤波信号和所述各滤波信号对应的干扰检测门限,确定所述雷达回波信号中是否存在干扰信号,包括:
    确定所述每个滤波信号包括的至少一个采样点信号中,不小于所述每个滤波信号对应的干扰检测门限的第一采样点信号对应的信号索引值;
    根据所述每个滤波信号中包括的第一采样点信号对应的信号索引值,确定所述雷达回波信号中是否存在干扰信号。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述每个滤波信号中包括的第一采样点信号对应的信号索引值,确定所述雷达回波信号中是否存在干扰信号,包括:
    根据所述每个滤波信号中包括的第一采样点信号对应的信号索引值生成所述每个滤波信号对应的信号索引值集合,其中一个滤波信号对应一个信号索引值集合;
    根据所述各滤波信号对应的信号索引值集合,确定所述雷达回波信号中是否存在干扰信号。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述各滤波信号对应的信号索引值集合,确定所述雷达回波信号中是否存在干扰信号,包括:
    对所述各滤波信号对应的信号索引值集合进行融合处理,得到融合结果;
    根据所述融合结果确定所述雷达回波信号中是否存在干扰信号。
  7. 根据权利要求6所述的方法,其特征在于,所述对所述各滤波信号对应的信号索引值集合进行融合处理,得到融合结果,包括:
    对所述各滤波信号对应的信号索引值集合取并集或取交集,得到过门限采样点信号集合;
    将所述过门限采样点信号集合确定为所述融合结果。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述融合结果确定所述雷达回波信号中是否存在干扰信号,包括:
    若所述过门限采样点信号集合为非空集合,则确定所述雷达回波信号中存在干扰信号;
    若所述过门限采样点信号集合为空集,则确定所述雷达回波信号中不存在干扰信号。
  9. 根据权利要求5所述的方法,其特征在于,所述根据所述各滤波信号对应的信号索引值集合,确定所述雷达回波信号中是否存在干扰信号,包括:
    从至少两个信号索引值集合中确定出非空集合的集合数量;
    获取干扰判决阈值,根据所述干扰判决阈值,所述集合数量、以及滤波器数量确定所述雷达回波信号中是否存在干扰信号。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述干扰判决阈值,所述集合数量、以及滤波器数量确定所述雷达回波信号中是否存在干扰信号,包括:
    确定所述集合数量与所述滤波器数量的比值;
    若所述比值不小于所述干扰判决阈值,则确定所述雷达回波信号中存在干扰信号;
    若所述比值小于所述干扰判决阈值,则确定所述雷达回波信号中不存在干扰信号。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述根据所述各滤波信号和所述各滤波信号对应的干扰检测门限,确定所述雷达回波信号中是否存在干扰信号之后,所述方法还包括:
    若确定所述雷达回波信号存在干扰信号,则对所述雷达回波信号执行去干扰处理。
  12. 一种干扰检测装置,其特征在于,所述装置包括:
    获取单元,用于获取对雷达回波信号处理后得到的数字信号;
    滤波单元,用于将所述数字信号分别执行不同截止频率的滤波处理,得到至少两个滤波信号;
    处理单元,用于根据所述至少两个滤波信号中各滤波信号和所述各滤波信号对应的干扰检测门限,确定所述雷达回波信号中是否存在干扰信号。
  13. 根据权利要求12所述的装置,其特征在于,所述至少两个滤波器包括下述滤波器中的至少两个:
    低通滤波器,带通滤波器,高通滤波器和带阻滤波器。
  14. 根据权利要求12或13所述的装置,其特征在于,所述至少两个滤波器包括第一截止频率的低通滤波器、第二截止频率的带通滤波器和第三截止频率的高通滤波器,所述第二截止频率包括上限截止频率和下限截止频率,其中,所述下限截止频率不大于所述第一截止频率,所述上限截止频率不小于所述第三截止频率。
  15. 根据权利要求12-14任一项所述的装置,其特征在于,所述至少两个滤波信号中每个 滤波信号包括至少一个采样点信号;
    所述处理单元具体用于:
    确定所述每个滤波信号包括的至少一个采样点信号中,不小于所述每个滤波信号对应的干扰检测门限的第一采样点信号对应的信号索引值;
    根据所述每个滤波信号中包括的第一采样点信号对应的信号索引值,确定所述雷达回波信号中是否存在干扰信号。
  16. 根据权利要求15所述的装置,其特征在于,所述处理单元具体还用于:
    根据所述每个滤波信号中包括的第一采样点信号对应的信号索引值生成所述每个滤波信号对应的信号索引值集合,其中一个滤波信号对应一个信号索引值集合;
    根据所述各滤波信号对应的信号索引值集合,确定所述雷达回波信号中是否存在干扰信号。
  17. 根据权利要求16所述的装置,其特征在于,所述处理单元具体还用于:
    对所述各滤波信号对应的信号索引值集合进行融合处理,得到融合结果;
    根据所述融合结果确定所述雷达回波信号中是否存在干扰信号。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元具体还用于:
    对所述各滤波信号对应的信号索引值集合取并集或取交集,得到过门限采样点信号集合;
    将所述过门限采样点信号集合确定为所述融合结果。
  19. 根据权利要求18所述的装置,其特征在于,所述处理单元具体还用于:
    若所述过门限采样点信号集合为非空集合,则确定所述雷达回波信号中存在干扰信号;
    若所述过门限采样点信号集合为空集,则确定所述雷达回波信号中不存在干扰信号。
  20. 根据权利要求16所述的装置,其特征在于,所述处理单元具体还用于:
    从至少两个信号索引值集合中确定出非空集合的集合数量;
    获取干扰判决阈值,根据所述干扰判决阈值,所述集合数量、以及滤波器数量确定所述雷达回波信号中是否存在干扰信号。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元具体还用于:
    确定所述集合数量与所述滤波器数量的比值;
    若所述比值不小于所述干扰判决阈值,则确定所述雷达回波信号中存在干扰信号;
    若所述比值小于所述干扰判决阈值,则确定所述雷达回波信号中不存在干扰信号。
  22. 根据权利要求12-21任一项所述的装置,其特征在于,所述处理单元具体还用于:
    若确定所述雷达回波信号存在干扰信号,则对所述雷达回波信号执行去干扰处理。
  23. 一种探测装置,其特征在于,包括:处理器和存储器;所述存储器用于存储一个或多个程序,所述一个或多个程序包括计算机执行指令,当该装置运行时,所述处理器执行所述存储器存储的所述一个或多个程序以使该装置执行如权利要求1-11任一项所述的方法。
  24. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
  25. 一种芯片,其特征在于,所述芯片包括:
    处理器和通信接口,所述处理器用于从所述通信接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1-11中任一项所述的方法。
  26. 一种终端,所述终端包括如权利要求12-23中任一项所述的装置。
PCT/CN2022/081036 2021-03-24 2022-03-15 干扰检测方法及装置 WO2022199431A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22774092.5A EP4306991A1 (en) 2021-03-24 2022-03-15 Interference detection method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110314822.7A CN115128565A (zh) 2021-03-24 2021-03-24 干扰检测方法及装置
CN202110314822.7 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022199431A1 true WO2022199431A1 (zh) 2022-09-29

Family

ID=83373980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081036 WO2022199431A1 (zh) 2021-03-24 2022-03-15 干扰检测方法及装置

Country Status (3)

Country Link
EP (1) EP4306991A1 (zh)
CN (1) CN115128565A (zh)
WO (1) WO2022199431A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118091550A (zh) * 2024-04-24 2024-05-28 中国电子科技集团公司信息科学研究院 基于分布式雷达的多干扰源感知方法及装置、电子设备
CN118131165A (zh) * 2024-05-06 2024-06-04 上海几何伙伴智能驾驶有限公司 一种基于自回归模型的干扰信号恢复方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116400316B (zh) * 2023-06-02 2023-10-20 中国科学技术大学 雷达互干扰场景下的回波信号的处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405512A (zh) * 2016-09-30 2017-02-15 武汉滨湖电子有限责任公司 基于干扰谱和mtd滤波幅相特性的抗同频异步干扰方法
WO2018063770A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Method and device for radar signal detection
KR20180134012A (ko) * 2017-06-08 2018-12-18 한국전자통신연구원 레이더 시스템에서 간섭 제거를 위한 동작 방법 및 장치
CN110907899A (zh) * 2018-09-18 2020-03-24 英飞凌科技股份有限公司 用于确定雷达***中的干扰的***和方法
CN110988925A (zh) * 2019-12-17 2020-04-10 北京遥测技术研究所 一种卫星导航接收机脉冲干扰检测与参数确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405512A (zh) * 2016-09-30 2017-02-15 武汉滨湖电子有限责任公司 基于干扰谱和mtd滤波幅相特性的抗同频异步干扰方法
WO2018063770A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Method and device for radar signal detection
KR20180134012A (ko) * 2017-06-08 2018-12-18 한국전자통신연구원 레이더 시스템에서 간섭 제거를 위한 동작 방법 및 장치
CN110907899A (zh) * 2018-09-18 2020-03-24 英飞凌科技股份有限公司 用于确定雷达***中的干扰的***和方法
CN110988925A (zh) * 2019-12-17 2020-04-10 北京遥测技术研究所 一种卫星导航接收机脉冲干扰检测与参数确定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118091550A (zh) * 2024-04-24 2024-05-28 中国电子科技集团公司信息科学研究院 基于分布式雷达的多干扰源感知方法及装置、电子设备
CN118131165A (zh) * 2024-05-06 2024-06-04 上海几何伙伴智能驾驶有限公司 一种基于自回归模型的干扰信号恢复方法

Also Published As

Publication number Publication date
EP4306991A1 (en) 2024-01-17
CN115128565A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2022199431A1 (zh) 干扰检测方法及装置
JP7244188B2 (ja) 検出方法、検出装置及びシステム
US9140783B2 (en) Radar device
CN111257880B (zh) 一种雷达以及目标探测方法
US20240125891A1 (en) Interference signal detection method and apparatus, and integrated circuit, radio device and terminal
WO2021166205A1 (ja) レーダ装置、観測対象検出方法および車載装置
WO2021082148A1 (zh) 一种车载毫米波雷达的目标检测方法及其车载雷达***
JP7361804B2 (ja) 通信方法および通信装置
CN112394326A (zh) 一种信号发射方法及装置
US20210396839A1 (en) Method for Detecting Target Object by Using Radio Signal and Related Apparatus
CN112433214A (zh) 一种雷达信号发送方法及装置
JP3664671B2 (ja) ミリ波レーダ装置
CN116660847A (zh) 干扰信号检测方法及装置
WO2019223515A1 (zh) 信息测量方法及信息测量装置
CN112014800A (zh) 一种雷达信号发送方法及设备
CN116626594A (zh) 集成电路、无线电器件、终端设备、干扰检测方法和装置
WO2021170130A1 (zh) 信号发送方法及相关装置
WO2020241234A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
CN112630767A (zh) 一种信息上报、信息接收的方法及装置
CN113050041B (zh) 一种频带的状态判断方法以及相关设备
WO2022166241A1 (zh) 干扰侦听方法、装置及雷达
CN115079105A (zh) 一种干扰检测门限确定方法及装置
WO2024060726A1 (zh) 信号处理方法、存储介质、集成电路、器件和终端设备
RU223121U1 (ru) Радар высокого разрешения для обнаружения препятствий с программно-определяемыми характеристиками зондирования
EP4397998A1 (en) Electronic device, method for controlling electronic device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022774092

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022774092

Country of ref document: EP

Effective date: 20231013

NENP Non-entry into the national phase

Ref country code: DE