WO2022193353A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2022193353A1
WO2022193353A1 PCT/CN2021/083313 CN2021083313W WO2022193353A1 WO 2022193353 A1 WO2022193353 A1 WO 2022193353A1 CN 2021083313 W CN2021083313 W CN 2021083313W WO 2022193353 A1 WO2022193353 A1 WO 2022193353A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
signal line
disposed
adhesive layer
Prior art date
Application number
PCT/CN2021/083313
Other languages
English (en)
French (fr)
Inventor
张允题
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/296,216 priority Critical patent/US20230060896A1/en
Publication of WO2022193353A1 publication Critical patent/WO2022193353A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a display device.
  • OLED display panels have the advantages of self-luminescence, high contrast, thin thickness, wide viewing angle and fast response speed. respected.
  • the binding area is set on the display panel, and the external flexible circuit board (Flexible Print Circuit, FPC) is bound to the bonding pad of the binding area to provide an external driving power signal for the display panel.
  • the bonding pad is usually formed by patterning the metal conductive layer in the touch layer, and is overlapped with the metal circuit in the array substrate, so as to realize the signal conduction between the FPC and the display panel.
  • the touch layer can use DOT (Direct on-cell touch, the touch screen is directly embedded on the display screen) technology to directly form a metal conductive layer on the surface of the packaging layer to form a touch circuit.
  • DOT Direct on-cell touch, the touch screen is directly embedded on the display screen
  • the inorganic layer of DOT is in direct contact with the organic layer on the array substrate.
  • the material of the organic layer is generally Organic matter, while the material of the inorganic layer is generally inorganic. Due to the difference in the interface characteristics of the film layer and the interface pollution caused by switching process equipment and transport, when the display panel is bound to the FPC, it is easy to cause the organic layer and the inorganic layer in the binding area to occur. Poor peeling, which in turn causes the flexible circuit board to fall off after bonding with the bonding pad, greatly reduces the yield of the display panel.
  • the present application provides a display panel and a display device, so as to alleviate the technical problem that the film layer is easily peeled off when the display panel is bound to the FPC in the prior art.
  • An embodiment of the present application provides a display panel, which has a display area and a non-display area located on one side of the display area, a binding area is provided in the non-display area, and the display panel includes a binding area in the binding area.
  • the signal line pattern is disposed on the base substrate.
  • the insulating protection layer is disposed on the signal line pattern, and an opening is disposed at a position corresponding to the signal line pattern, and the opening exposes at least part of the signal line pattern.
  • the binding terminal is disposed on the insulating protection layer, and is electrically connected to the signal line pattern through a portion in the opening.
  • the insulating protection layer includes an adhesive layer, an organic layer and an inorganic layer disposed on opposite sides of the adhesive layer, and the surface roughness of the adhesive layer material is larger than that of the organic layer material and the inorganic layer. The surface roughness of the material.
  • a surface of the organic layer or the inorganic layer in contact with the adhesive layer is provided with a plurality of concave-convex structures.
  • the surfaces of the organic layer and the inorganic layer in contact with the adhesive layer are provided with a plurality of concave-convex structures
  • the concave-convex structure of the organic layer and the concave-convex structure of the inorganic layer are arranged alternately.
  • the cross-sectional shape of the convex-concave structure includes at least one of a rectangle, a square, a triangle, a trapezoid, an arc, and a convex shape.
  • the organic layer is disposed on a side of the adhesive layer facing the signal line pattern, and the inorganic layer is disposed on a side of the adhesive layer away from the signal line pattern side.
  • the thickness of the adhesive layer is smaller than that of the organic layer and the inorganic layer.
  • the material of the adhesive layer includes amorphous silicon.
  • the display panel further includes a driving circuit functional layer disposed on the base substrate, and the driving circuit functional layer in the display area includes a stacked active layer, A gate insulating layer, a gate, a first interlayer insulating layer, a first source and drain layer, a second interlayer insulating layer, and a second source and drain layer.
  • the signal line pattern includes a first metal pattern arranged in the same layer as the gate electrode, a second metal pattern arranged in the same layer as the first source and drain layer, and a second metal pattern arranged in the same layer as the first source and drain layers.
  • the second source and drain layers are in the same layer as the third metal pattern, and the first metal pattern, the second metal pattern, and the third metal pattern are in contact with each other.
  • the cross-sectional shape of the opening of the insulating protection layer includes an inverted trapezoid.
  • An embodiment of the present application further provides a display device, which includes a display panel and a driving device, the display panel has a display area and a non-display area on one side of the display area, and a binding area is set in the non-display area , the display panel includes in the binding area:
  • an insulating protection layer disposed on the signal line pattern, and provided with an opening at a position corresponding to the signal line pattern, and the opening exposes at least part of the signal line pattern;
  • a binding terminal disposed on the insulating protection layer, and electrically connected to the signal line pattern through a portion in the opening;
  • the insulating protection layer includes an adhesive layer, an organic layer and an inorganic layer disposed on opposite sides of the adhesive layer, and the surface roughness of the adhesive layer material is larger than that of the organic layer material and the inorganic layer. the surface roughness of the material; the driving device includes a plurality of connection terminals, and the connection terminals are electrically connected with the binding terminals.
  • the display device further includes a conductive glue, and the connection terminal is electrically connected to the binding terminal through the conductive glue.
  • the conductive adhesive includes an anisotropic conductive film.
  • a surface of the organic layer or the inorganic layer in contact with the adhesive layer is provided with a plurality of concave-convex structures.
  • the surfaces of the organic layer and the inorganic layer in contact with the adhesive layer are provided with a plurality of concave-convex structures.
  • the concave-convex structure of the organic layer and the concave-convex structure of the inorganic layer are arranged alternately.
  • the organic layer is disposed on a side of the adhesive layer facing the signal line pattern, and the inorganic layer is disposed on a side of the adhesive layer away from the signal line pattern side.
  • the thickness of the adhesive layer is smaller than that of the organic layer and the inorganic layer.
  • the material of the adhesive layer includes amorphous silicon.
  • an adhesive layer is arranged between the organic layer and the inorganic layer, and the adhesive layer is formed of amorphous silicon with relatively large surface roughness, so as to enhance the bonding between the organic layer and the inorganic layer force.
  • a plurality of concave-convex structures can be arranged on the surface of the organic layer and/or the inorganic layer in contact with the adhesive layer, so as to increase the contact area of the interface and prevent the mutual slippage between the film layers, which further enhances the bonding of the interface. It solves the problem that the flexible circuit board and the bonding pad fall off after being bound due to poor peeling of the organic layer and the inorganic layer in the binding area, thereby greatly improving the yield of the display panel.
  • FIG. 1 is a schematic top-view structure diagram of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first film layer structure of a binding area of a display panel according to an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of a display panel according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second film layer structure of the binding region provided by the embodiment of the present application.
  • FIG. 5 is an enlarged schematic view of M in FIG. 4 .
  • FIG. 6 is a partial cross-sectional structural schematic diagram of a display device provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for manufacturing a display device according to an embodiment of the present application.
  • FIG. 8 to FIG. 11 are schematic diagrams of the structures of the film layers prepared in each step of the method for manufacturing a display device provided in an embodiment of the present application.
  • FIG. 1 is a schematic top-view structure diagram of a display panel provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a first film layer structure of a binding area of the display panel provided by an embodiment of the application.
  • the display panel 100 has a display area AA and a non-display area NA located on one side of the display area AA, and a binding area BA is disposed in the non-display area NA.
  • the display panel 100 includes a base substrate 10 in the bonding area BA, a signal line pattern 20 sequentially stacked on the base substrate 10 , an insulating protective layer, and a bonding terminal 60 .
  • the signal line pattern 20 is disposed on the base substrate 10 .
  • the insulating protection layer is disposed on the signal line pattern 20 , and is provided with an opening at a position corresponding to the signal line pattern 20 , and the opening exposes at least part of the signal line pattern 20 .
  • the binding terminal 60 is disposed on the insulating protection layer, and is electrically connected to the signal line pattern 20 through a portion in the opening.
  • the insulating protective layer includes an adhesive layer 40 and an organic layer 30 and an inorganic layer 50 arranged on opposite sides of the adhesive layer. The surface roughness of the adhesive layer 40 material is greater than that of the organic layer 30 material and all the materials. the surface roughness of the inorganic layer 50 material.
  • the organic layer 30 of the insulating protective layer is disposed on the side of the adhesive layer 40 facing the signal line pattern 20
  • the inorganic layer 50 is disposed on the adhesive layer 40 away from the One side of the signal line pattern 20
  • the organic layer 30 is a planarization layer, such as a planarization layer formed of organic photoresist, etc.
  • the inorganic layer is a passivation layer, such as a passivation layer formed of silicon nitride (SiNx) or the like.
  • the thickness of the adhesive layer 40 is smaller than that of the organic layer 30 and the inorganic layer 50 .
  • the cross-sectional shape of the opening of the insulating protection layer includes an inverted trapezoid, etc., and the opening is formed by the organic layer 30 , the adhesive layer 40 and the inorganic layer 50 .
  • the organic layer 30 is disposed on the signal line pattern 20
  • a female opening is formed at a position corresponding to the signal line pattern 20
  • the female opening exposes the signal line pattern 20 .
  • the adhesive layer 40 is disposed on the organic layer 30 and in the female opening, but does not cover the signal line pattern 20 at the bottom of the female opening.
  • the inorganic layer 50 is disposed on the adhesive layer 40 and covers the adhesive layer 40 in the mother opening to form the opening of the insulating protection layer.
  • the binding terminal 60 is disposed on the inorganic layer 50 and is electrically connected to the signal line pattern 20 through the portion in the opening, and the portion in the opening refers to the setting of the binding terminal 60 the portion inside the opening.
  • FIG. 3 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the present application.
  • the display panel 100 includes a base substrate 10 , a driving circuit function layer 1 , a light emitting device layer 2 , an encapsulation layer 3 and a touch function layer 4 sequentially arranged on the base substrate 10 .
  • the base substrate 10 may be a rigid substrate or a flexible substrate.
  • the base substrate 10 may include a rigid substrate such as a glass substrate; when the base substrate 10 is a flexible substrate, it may include polyamide Flexible substrates such as polyimide (PI) films and ultra-thin glass films.
  • PI polyimide
  • the driving circuit functional layer 1 is disposed on the base substrate 10 .
  • a buffer layer (not shown) is also disposed between the driving circuit functional layer 1 and the base substrate 10 .
  • the layers can prevent undesired impurities or contaminants (eg, moisture, oxygen, etc.) from diffusing from the base substrate 10 into devices that may be damaged by these impurities or contaminants, while also providing a flat top surface.
  • the portion of the driving circuit functional layer 1 in the display area AA includes an active layer 11, a gate insulating layer 12, a gate 13, a first interlayer insulating layer 14, a gate insulating layer 12, a gate 13, a first interlayer insulating layer 14, The first source-drain layer 15 , the second interlayer insulating layer 16 , the second source-drain layer 17 , and the organic layer 30 .
  • the first source and drain layers 15 are connected to the active layer 11 through the via holes of the first interlayer insulating layer 14
  • the second source and drain layers 17 are connected through the second interlayer insulating layer 16
  • the via holes are connected to the first source and drain layers 15
  • the material of the organic layer 30 includes organic materials such as organic photoresist.
  • the portion of the driving circuit functional layer 1 in the bonding area BA includes a signal line pattern 20 disposed on the buffer layer.
  • the signal line pattern 20 includes a first metal pattern 21 disposed in the same layer as the gate electrode 13 , a second metal pattern 22 disposed in the same layer as the first source and drain layer 15 , and the second source and drain layers.
  • the third metal pattern 23 provided on the same layer of the pole layer 17, the first metal pattern 21, the second metal pattern 22, and the third metal pattern 23 are in contact with each other.
  • the binding area BA further includes an adhesive layer 40, the adhesive layer 40 is located on the surface of the organic layer 30 and in the parent opening formed by the organic layer, but does not cover the bottom of the parent opening
  • the exposed signal line pattern 20 The material of the adhesive layer 40 includes amorphous silicon and the like. The surface roughness of the amorphous silicon is relatively large and covers the surface of the organic layer 30, so that the organic layer 30 and the adhesive layer 40 are formed. It has strong interfacial bonding force.
  • the surface roughness of the adhesive layer in this application refers to the characteristics of the material of the adhesive layer itself, for example, the interface state of the amorphous silicon is relatively rough, while the interface state of the organic layer is relatively smooth , so the surface roughness of the adhesive layer is greater than that of the organic layer.
  • the "same layer arrangement" in this application means that in the preparation process, the film layer formed of the same material is patterned to obtain at least two different features, then the at least two different features are the same.
  • the second metal pattern 22 and the first source-drain layer 15 in this embodiment are obtained by patterning the same conductive film layer, and the second metal pattern 22 and the first source-drain layer 15 are disposed in the same layer.
  • the film structure of the driving circuit functional layer 1 is not limited to the top gate structure shown in FIG. 3 , and the film structure of the driving circuit functional layer 1 may also adopt a bottom gate structure or other etching barrier type. structure.
  • the gate 13 is not limited to the single-gate structure shown in FIG. 3 , and the gate 13 of the present application may also adopt a double-gate structure.
  • the source and drain layers are not limited to the two-layer source and drain layers shown in FIG. 3 , and a single-layer source and drain layer may also be used in other embodiments, which will not be repeated here.
  • the light-emitting device layer 2 is disposed on the driving circuit functional layer 1, the light-emitting device layer 2 is not disposed in the binding area BA, and the portion of the light-emitting device layer 2 located in the display area AA includes pixel electrodes 26.
  • the pixel electrode 26 is connected to the second source-drain layer 17 through the via hole of the organic layer 30
  • the pixel definition layer 27 is disposed on the pixel electrode 26 and the organic layer 30
  • the The pixel definition layer 27 is patterned to form pixel openings, and the pixel openings expose a portion of the pixel electrodes 26 to define a region where the luminescent material is disposed.
  • the luminescent material layer 28 is formed of luminescent material printed in the pixel openings of the pixel definition layer 27 , and the cathode layer 29 covers the luminescent material layer 28 and the pixel definition layer 27 .
  • the light-emitting material layer 28 emits light under the combined action of the pixel electrode 26 and the cathode layer 29 , thereby realizing pixel display of the display panel 100 .
  • the pixel electrode 26 may be a transparent electrode or a reflective electrode. If the pixel electrode 26 is a transparent electrode, the pixel electrode 26 may be formed of, for example, indium tin oxide (ITO), indium zinc oxide (IZO), ZnO, or In 2 O 3 . If the pixel electrode 26 is a reflective electrode, the pixel electrode 26 may include, for example, a reflective layer formed of Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a combination thereof, and a reflective layer formed of ITO , IZO, ZnO or In 2 O 3 layers. However, the pixel electrode 26 is not limited thereto, and the pixel electrode 26 may be formed of various materials, and may also be formed in a single-layer or multi-layer structure.
  • the cathode layer 29 is formed of a transparent conductive material to improve the light transmittance of the luminescent material layer 28.
  • the cathode layer 29 can be made of a metal with low work function (such as Li, Ca, LiF/Ca, LiF/Al, Al, Ag, Mg, or a combination thereof) and a transparent conductive layer formed of ITO, IZO, ZnO, or In 2 O 3 .
  • the pixel electrode 26 is a reflective electrode, the light utilization rate of the light-emitting material layer 28 can be further improved.
  • the light-emitting device layer 2 may further include a hole injection layer (HIL) and a hole transport layer (HTL) disposed between the light-emitting material layer 28 and the pixel electrode 26; An electron injection layer (EIL) and an electron transport layer (ETL) between the luminescent material layer 28 and the cathode layer 29 .
  • HIL hole injection layer
  • HTL hole transport layer
  • EIL electron injection layer
  • ETL electron transport layer
  • the encapsulation layer 3 is arranged on the light-emitting device layer 2, and the encapsulation layer 3 can be encapsulated by a thin film, and the thin film encapsulation can be a three-layer film consisting of a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer.
  • the laminated structure or the laminated structure formed by stacking in sequence is used to protect the light-emitting material layer 28 of the light-emitting device layer 2 , and prevent the light-emitting material layer 28 from failing due to the invasion of water and oxygen.
  • the touch function layer 4 is disposed on the package layer 3 and adopts the DOT touch control scheme to realize the touch function.
  • the portion of the touch function layer 4 located in the display area AA includes an inorganic layer 50 disposed on the encapsulation layer 3 and a touch electrode 42 disposed on the inorganic layer 50 .
  • the touch electrodes 42 may include driving electrodes and sensing electrodes, and mutual capacitive touch is adopted, and the driving electrodes and the sensing electrodes may be arranged in the same layer or in layers.
  • the present application is not limited to this, and the touch electrodes 42 of the present application may also adopt self-capacitive touch.
  • the portion of the touch function layer 4 located in the binding area BA includes an inorganic layer 50 disposed on the adhesive layer 40 and a binding terminal 60 disposed on the inorganic layer 50 .
  • the binding terminal 60 and the touch electrodes 42 are arranged in the same layer.
  • the inorganic layer 50 covers the surface of the adhesive layer 40, but does not cover the exposed signal line pattern 20 at the bottom of the mother opening.
  • the material of the inorganic layer 50 includes silicon oxide, silicon nitride, etc. inorganic materials.
  • the material of the adhesive layer 40 includes amorphous silicon and the like.
  • the interface state of the amorphous silicon is relatively rough, while the interface state of the inorganic layer is relatively flat, so the surface roughness of the adhesive layer 40 is greater than that of the The surface roughness of the inorganic layer 50, covering the inorganic layer 50 on the surface of the adhesive layer 40 can make the inorganic layer 50 and the adhesive layer 40 have a strong interface bonding force, and then can The bonding force between the organic layer 30 and the inorganic layer 50 of the bonding area BA is increased.
  • the binding terminals 60 are disposed on the surface of the inorganic layer 50 and in the openings of the insulating protection layer, so that the binding terminals 60 are electrically connected to the signal line patterns 20 exposed by the openings. .
  • the binding area BA includes a plurality of binding terminals 60, the binding terminals 60 are electrically connected with the signal line pattern 20, and various signals can be input to the display panel 100, and each binding terminal 60 is electrically connected to the signal line pattern 20.
  • the fixed terminal 60 can input a signal, such as a gate scan signal, a data signal, and the like, to the display panel.
  • the surface roughness of the adhesive layer 40 is greater than that of the organic layer 30 and the inorganic layer 50 .
  • the surface roughness enhances the bonding force between the organic layer 30 and the inorganic layer 50 , solves the problem of peeling of the organic layer 30 and the inorganic layer 50 in the binding area BA, thereby greatly improving the yield of the display panel 100 .
  • FIG. 4 is a schematic diagram of the second film layer structure of the binding area provided by the embodiment of the present application
  • FIG. 5 is an enlarged schematic diagram of M in FIG. 4 .
  • the binding area film of this embodiment The difference between the layer structure and the film layer structure of the binding area in FIG. 2 is that the surfaces of the organic layer 30 and the inorganic layer 50 in contact with the adhesive layer 40 are provided with a plurality of concave-convex structures 41.
  • the adhesive layer 40 is covered on the organic layer 30, and the surface of the organic layer 30 is provided with a concave-convex structure 41, then the surface of the adhesive layer 40 in contact with the organic layer 30 also has a surface undulating concave-convex structure;
  • the inorganic layer 50 is covered on the adhesive layer 40, and the surface of the adhesive layer 40 in contact with the inorganic layer 50 is provided with the concave-convex structure 41, then the inorganic layer 50 is bonded to the inorganic layer 50.
  • the surface contacted by the layer 40 also has an uneven surface structure.
  • one film layer (such as the organic layer 30 ) has a convex structure in the concavo-convex structure provided on the surface and the other film layer (such as the adhesive layer 40 ) has a groove structure in the concave-convex structure.
  • the concave-convex structure 41 of the organic layer 30 and the concave-convex structure 41 of the inorganic layer 50 are arranged alternately. As shown in FIG. 5 , the convex structure in the concave-convex structure 41 of the organic layer 30 It is arranged alternately with the convex structure in the concave-convex structure of the inorganic layer 50 , that is, the convex structure in the concave-convex structure 41 of the organic layer 30 and the convex structure in the concave-convex structure of the inorganic layer 50 .
  • the groove structures are arranged opposite to each other, so that the thickness consistency of the adhesive layer between the organic layer and the inorganic layer can be ensured, and the uneven thickness of the adhesive layer can be avoided. Insufficient interface adhesion.
  • the specific number of the concave-convex structures 41 can be set according to requirements. If a greater bonding force between the organic layer 30 and the inorganic layer 50 is to be achieved, more concave-convex structures 41 are provided.
  • the concave-convex structure 41 can increase the contact area between the organic layer 30 and the inorganic layer 50 and the adhesive layer 40 , avoid mutual slippage between the film layers, and further enhance the bonding force of the film layer interface.
  • the cross-sectional shape of the concave-convex structure 41 may include regular shapes such as rectangles, squares, triangles, trapezoids, arcs, etc., or other irregular shapes. As shown in FIG. 5 , the cross-sectional shape of the concave-convex structure 41 is a “convex”-shaped structure composed of two rectangles of different sizes, and the size of the upper part of the concave-convex structure 41 is larger than the size of the lower part. Setting the concave-convex structure 41 in a "convex" shape can better avoid mutual slippage between the film layers, and better enhance the bonding force of the film layer interface. However, the present application is not limited thereto, and the cross-sectional shape of the concave-convex structure 41 of the organic layer 30 may also be different from the cross-sectional shape of the concave-convex structure 41 of the adhesive layer 40 .
  • the concave-convex structure 41 of the present application is not limited to being provided on the surface of the organic layer 30 in contact with the adhesive layer 40 and the surface of the inorganic layer 50 in contact with the adhesive layer 40 at the same time.
  • the concave-convex structure 41 can also be only provided on the surface of the organic layer 30 in contact with the adhesive layer 40 or the surface of the inorganic layer 50 in contact with the adhesive layer 40, so that the organic layer can also be enlarged.
  • the bonding force between the inorganic layer 30 and the inorganic layer 50 please refer to the above-mentioned embodiments, which will not be repeated here.
  • FIG. 6 is a schematic partial cross-sectional structural diagram of a display device according to an embodiment of the present application.
  • the display device includes the display panel 100 according to one of the foregoing embodiments, and a driving device 80 bound in the binding area BA of the display panel 100 , wherein the driving device 80 includes a plurality of connection terminals 82 , The connection terminal 82 is electrically connected to the binding terminal 60 .
  • the driving device 80 may be a flexible circuit board, the flexible circuit board is electrically connected to the binding terminal 60 of the binding area BA, and the binding terminal 60 is connected to the signal line pattern 20 to Driving electrical signals are provided to corresponding signal lines in the display panel 100 .
  • the driving device 80 is a flexible circuit board, and may include a flexible circuit board body 81 , a connection terminal 82 disposed on the flexible circuit board body 81 for electrical connection with the binding terminal 60 and bound on the flexible circuit board body driver chip (integrated circuit, IC) (not shown).
  • the driving signal on the driving chip is transmitted to the corresponding signal line in the display panel 100 through the connection terminal 82 , the binding terminal 60 and the signal line pattern 20 .
  • the electrical connection between the connecting terminal 82 and the binding terminal 60 may be achieved by disposing a conductive adhesive 70 therebetween, and the conductive adhesive 70 includes an anisotropic conductive film (anisotropic conductive film, ACF) or the like Conductive adhesive film, anisotropic conductive film has the characteristics of unidirectional vertical conduction and lateral insulation.
  • the conductive adhesive 70 includes an adhesive material 72 and conductive particles 71 distributed in the adhesive material 72 .
  • the connection terminals 82 and the binding terminals 60 can be made through the conductive particles 71 in the adhesive material 72 . electrical connection.
  • the display device of the present application may further include a polarizer, a cover plate, and a support structure such as a polarizer and a cover plate disposed on the touch function layer, and a back plate disposed on the lower surface of the base substrate. Repeat.
  • the adhesive layer 40 is formed of amorphous silicon with a relatively large surface roughness, so as to strengthen the connection between the organic layer 30 and the inorganic layer 50.
  • the bonding force between the layers 50 solves the problem of peeling off of the flexible circuit board and the bonding pad caused by poor peeling of the organic layer 30 and the inorganic layer 50 in the bonding area BA, thereby greatly improving the display panel's performance. Yield.
  • FIG. 7 is a schematic flowchart of a method for manufacturing a display device provided by an embodiment of the present application
  • FIGS. 8 to 11 are films obtained by each step of the method for manufacturing a display device provided by an embodiment of the present application.
  • the preparation method of the display device includes the following steps:
  • S201 Provide a base substrate 10, the base substrate 10 is divided into a display area AA and a non-display area NA, the non-display area NA has a binding area BA, and a driving circuit functional layer is prepared on the base substrate 10 1.
  • the portion of the driving circuit functional layer 1 located in the bonding area BA includes a signal line pattern 20 and an organic layer 30 located on the signal line pattern 20 .
  • the base substrate 10 includes polyimide or the like, and the driving circuit functional layer 1 is prepared on the base substrate 10 .
  • a layer is deposited on the base substrate 10 first.
  • the inorganic buffer layer is used to protect the device prepared on the base substrate 10 .
  • the portion of the driving circuit functional layer 1 in the display area AA includes an active layer 11, a gate insulating layer 12, a gate 13, a first interlayer insulating layer 14, a gate insulating layer 12, a gate 13, a first interlayer insulating layer 14, The first source-drain layer 15 , the second interlayer insulating layer 16 , the second source-drain layer 17 , the organic layer 30 , the pixel electrode 26 and the pixel definition layer 27 .
  • the portion of the driving circuit functional layer 1 in the bonding area BA includes a signal line pattern 20 provided on the buffer layer and an organic layer 30 provided on the signal line pattern 20 .
  • the signal line pattern 20 includes a first metal pattern 21 disposed in the same layer as the gate electrode 13 , a second metal pattern 22 disposed in the same layer as the first source and drain layer 15 , and the second source and drain layers.
  • the third metal pattern 23 provided on the same layer of the pole layer 17, the first metal pattern 21, the second metal pattern 22, and the third metal pattern 23 are in contact with each other.
  • a first opening 31 is formed on the organic layer 30 of the display area AA by a yellow light process, and at the same time, a first opening 31 is formed on the organic layer 30 of the binding area BA
  • the female opening 32 and the concave-convex structure 41, the cross-sectional shape of the concave-convex structure 41 is a "convex" shape structure composed of two rectangles of different sizes, and the size of the upper part of the concave-convex structure 41 is larger than the size of the lower part.
  • the first opening 31 of the display area AA exposes part of the second source and drain layers 17
  • the mother opening 32 of the bonding area BA exposes the signal line pattern 20 .
  • S203 Disposing an adhesive layer 40 on the organic layer 30 and in the female opening 32, the adhesive layer 40 does not cover the signal line pattern 20 in the female opening 32, and the adhesive layer 40 does not cover the signal line pattern 20 in the female opening 32.
  • the surface roughness of the junction layer 40 is greater than that of the organic layer 30 .
  • a material with relatively large surface roughness such as an amorphous silicon film is deposited on the organic layer 30 to form an adhesive layer 40 , and the adhesive layer 40 is patterned to remove the binding
  • the adhesive layer 40 at the bottom of the female hole 32 in the area BA exposes the signal line pattern 20 .
  • a concave-convex structure 41 is formed on the adhesive layer 40.
  • the cross-sectional shape of the concave-convex structure 41 is a "convex" shape structure composed of two rectangles of different sizes.
  • the size of the upper part of the concave-convex structure 41 is larger than that of the lower part. part size.
  • the adhesive layer 40 may be formed only in the binding area BA to increase the binding force with the organic layer 30 in the binding area BA.
  • S204 Prepare a light emitting device layer 2, an encapsulation layer 3 and a touch functional layer 4 in sequence on the driving circuit functional layer 1, wherein the part of the touch functional layer 4 located in the binding area BA includes the inorganic layer 50 and the touch functional layer 4.
  • a binding terminal 60, the inorganic layer 50 is located on the adhesive layer 40 to form an insulating protective layer, the surface roughness of the adhesive layer 40 is greater than that of the inorganic layer 50, and the binding terminal 60 is located on the inorganic layer 50 , and the bonding terminal 60 is electrically connected to the signal line pattern 20 through a portion in the opening of the insulating protection layer.
  • a light emitting device layer 2 , an encapsulation layer 3 and a touch function layer 4 are sequentially prepared on the driving circuit functional layer 1 .
  • the portion of the light emitting device layer 2 located in the display area AA includes a pixel electrode 26 , a pixel definition layer 27 , a light emitting material layer 28 , and a cathode layer 29 , and the binding area BA is not provided with the light emitting device layer 2 .
  • the encapsulation layer 3 can be encapsulated by a thin film, and the thin film encapsulation can be a laminated structure or a laminated structure formed by successively stacking three films of a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer.
  • the touch function layer 4 adopts the DOT touch control scheme, and is directly disposed on the package layer 3 to realize the touch function.
  • the portion of the touch function layer 4 located in the display area AA includes an inorganic layer 50 disposed on the encapsulation layer 3 and a touch electrode 42 disposed on the inorganic layer 50 .
  • the portion of the touch function layer 4 located in the binding area BA includes an inorganic layer 50 disposed on the adhesive layer 40 and a binding terminal 60 disposed on the inorganic layer 50 .
  • the binding terminal 60 and the touch electrodes 42 are arranged in the same layer.
  • the inorganic layer 50 covers the surface of the adhesive layer 40, but does not cover the exposed signal line pattern 20 at the bottom of the mother opening.
  • the inorganic layer 50, the adhesive layer 40 and the The organic layer 30 forms the insulating protection layer together, the binding terminal 60 is located on the inorganic layer 50 , and the binding terminal 60 is connected to the signal line pattern through the portion in the opening of the insulating protection layer. 20 electrical connections.
  • the inorganic layer 50 is covered on the adhesive layer 40. Since the surface roughness of the adhesive layer 40 is greater than that of the inorganic layer, the gap between the adhesive layer 40 and the inorganic layer 50 can be increased. Therefore, the interface bonding force between the organic layer 30 and the inorganic layer 50 is increased.
  • the adhesive layer 40 is also provided with a concave-convex structure, and the inorganic layer 50 is covered on the adhesive layer 40, so the surface of the inorganic layer 50 in contact with the adhesive layer 40 also has undulating concavities and convexities.
  • the concave-convex structure of the inorganic layer 50 and the concave-convex structure of the organic layer 30 are arranged alternately, which can further enhance the bonding force of the interface and ensure the adhesion between the organic layer 30 and the inorganic layer 50
  • the thickness of the layer 40 is uniform while preventing mutual slippage between the film layers.
  • S205 Provide a driving device 80 , where the driving device 80 includes a connection terminal 82 , and the connection terminal 82 is electrically connected to the binding terminal 60 through the conductive glue 70 .
  • a conductive adhesive 70 is disposed on the binding terminal 60 of the binding area BA.
  • the conductive adhesive 70 may be an anisotropic conductive film.
  • the conductive adhesive 70 includes an adhesive material 72 and is distributed on the adhesive.
  • the conductive particles 71 in the material 72 are formed.
  • a driving device 80 is provided, and the driving device 80 may be a flexible circuit board, which includes a flexible circuit board body 81 , a connection terminal 82 provided on the flexible circuit board body 81 for electrical connection with the binding terminal 60 , and a connection terminal 82 bound on the flexible circuit board body 81 .
  • the driver chip on the flexible circuit board body 81 .
  • the driving device 80 is bound to the binding area BA through the conductive adhesive 70 by a hot pressing process, so that the connecting terminal 82 of the driving device 80 is bound to the binding area BA through the conductive particles 71 of the conductive adhesive 70 .
  • the binding terminals 60 of the fixed area BA are electrically connected.
  • the display device manufacturing method of the present application may further include attaching a polarizer and a cover plate on the touch functional layer, and attaching a support structure such as a back plate to the lower surface of the base substrate, which will not be repeated here.
  • the concave-convex structure 41 is simultaneously disposed on the surface of the organic layer 30 in contact with the adhesive layer 40 and the surface of the inorganic layer 50 in contact with the adhesive layer 40 It is described as an example, but the present application is not limited thereto.
  • the concave-convex structure 41 of the present application may also be provided only on the surface of the organic layer 30 in contact with the adhesive layer 40 or the inorganic layer 50 and the adhesive layer 40 . contact surface.
  • the method for manufacturing a display device of the present application can be used to manufacture any display device in the above-mentioned embodiments.
  • the present application provides a display panel, a display device and a manufacturing method thereof; the display panel has a display area and a non-display area located on one side of the display area, a binding area is provided in the non-display area, and the display panel
  • the binding area includes an organic layer, an inorganic layer and an adhesive layer located on the base substrate, and the adhesive layer has a surface roughness greater than that of the organic layer and the inorganic layer. The surface roughness of the inorganic layer thereby enhances the bonding force between the organic layer and the inorganic layer.
  • a plurality of concave-convex structures can be arranged on the surface of the organic layer and/or the inorganic layer in contact with the adhesive layer, so as to increase the contact area of the interface and prevent the mutual slippage between the film layers, which further enhances the bonding of the interface. It solves the problem that the flexible circuit board and the bonding pad fall off after being bound due to poor peeling of the organic layer and the inorganic layer in the binding area, thereby greatly improving the yield of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(100)和显示装置;显示面板(100)绑定区(BA)的有机层(30)和无机层(50)之间设置有粘结层(40),粘结层(40)材料的表面粗糙度大于有机层(30)材料和无机层(50)材料的表面粗糙度。同时在有机层(30)和/或无机层(50)与粘结层(40)接触的表面设置多个凹凸结构(41)来增强界面结合力,以缓解在显示面板(100)绑定FPC时容易发生膜层剥离的问题。

Description

显示面板和显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板和显示装置。
背景技术
有机电致发光二极管(Organic light-emitting diodes,OLED)显示面板具备自发光、对比度高、厚度薄、视角广和反应速度快等优点,是新一代平面显示技术的代表,越来越受到业界的推崇。通常显示面板上会设置绑定区,而外部柔性电路板(Flexible Print Circuit,FPC)与绑定区的绑定焊盘绑定,为显示面板提供外部驱动电源信号。绑定焊盘通常由触控层中的金属导电层图案化形成,并与阵列基板中的金属线路搭接,以实现FPC与显示面板的信号导通。
触控层可采用DOT(Direct on-cell touch,触控屏直接嵌入到显示屏上)技术直接在封装层表面制作金属导电层形成触控线路。然而,绑定区的金属导电层与阵列基板的金属线路之间存在无机膜层和有机膜层的直接接触,如DOT的无机层与阵列基板上的有机层直接接触,有机层的材料一般为有机物,而无机层的材料一般为无机物,由于膜层界面特性差异及切换制程设备、转运所致的界面污染,在显示面板绑定FPC时,容易导致绑定区的有机层与无机层发生剥离(Peeling)不良,进而导致柔性电路板与绑定焊盘绑定后发生脱落,从而大大降低了显示面板的良率。
因此,现有技术在显示面板绑定FPC时容易发生膜层剥离的问题需要解决。
技术问题
本申请提供一种显示面板和显示装置,以缓解现有技术在显示面板绑定FPC时容易发生膜层剥离的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种显示面板,其具有显示区以及位于所述显示区一侧的非显示区,所述非显示区内设置有绑定区,所述显示面板在所述绑定区包括衬底基板、信号线图案、绝缘保护层以及绑定端子。所述信号线图案设置于所述衬底基板上。所述绝缘保护层设置于所述信号线图案上,且在对应所述信号线图案的位置设置有开孔,所述开孔裸露出至少部分所述信号线图案。所述绑定端子设置于所述绝缘保护层上,且通过所述开孔内的部分与所述信号线图案电连接。其中,所述绝缘保护层包括粘结层以及设置于所述粘结层相对两侧的有机层和无机层,所述粘结层材料的表面粗糙度大于所述有机层材料和所述无机层材料的表面粗糙度。
在本申请实施例提供的显示面板中,所述有机层或所述无机层与所述粘结层接触的表面设置有多个凹凸结构。
在本申请实施例提供的显示面板中,所述有机层和所述无机层与所述粘结层接触的表面设置有多个凹凸结构,
在本申请实施例提供的显示面板中,所述有机层的所述凹凸结构与所述无机层的所述凹凸结构交错设置。
在本申请实施例提供的显示面板中,所述凸凹结构的截面形状包括矩形、方形、三角形、梯形、圆弧、凸字形中的至少一种。
在本申请实施例提供的显示面板中,所述有机层设置于所述粘结层面向所述信号线图案的一侧,所述无机层设置于所述粘结层背离所述信号线图案的一侧。
在本申请实施例提供的显示面板中,所述粘结层的厚度小于所述有机层和所述无机层。
在本申请实施例提供的显示面板中,所述粘结层的材料包括非晶硅。
在本申请实施例提供的显示面板中,所述显示面板还包括设置于所述衬底基板上的驱动电路功能层,所述驱动电路功能层在所述显示区包括层叠设置的有源层、栅极绝缘层、栅极、第一层间绝缘层、第一源漏极层、第二层间绝缘层、第二源漏极层。
在本申请实施例提供的显示面板中,所述信号线图案包括与所述栅极同层设置的第一金属图案、与所述第一源漏极层同层设置的第二金属图案以及与所述第二源漏极层同层设置的第三金属图案,所述第一金属图案、所述第二金属图案、所述第三金属图案接触在一起。
在本申请实施例提供的显示面板中,所述绝缘保护层的所述开孔的截面形状包括倒梯形。
本申请实施例还提供一种显示装置,其包括显示面板和驱动器件,所述显示面板具有显示区以及位于所述显示区一侧的非显示区,所述非显示区内设置有绑定区,所述显示面板在所述绑定区包括:
衬底基板;
信号线图案,设置于所述衬底基板上;
绝缘保护层,设置于所述信号线图案上,且在对应所述信号线图案的位置设置有开孔,所述开孔裸露出至少部分所述信号线图案;以及
绑定端子,设置于所述绝缘保护层上,且通过所述开孔内的部分与所述信号线图案电连接;
其中,所述绝缘保护层包括粘结层以及设置于所述粘结层相对两侧的有机层和无机层,所述粘结层材料的表面粗糙度大于所述有机层材料和所述无机层材料的表面粗糙度;所述驱动器件包括多个连接端子,所述连接端子与所述绑定端子电连接。
在本申请实施例提供的显示装置中,所述显示装置还包括导电胶,所述连接端子通过所述导电胶与所述绑定端子电连接。
在本申请实施例提供的显示装置中,所述导电胶包括异方性导电膜。
在本申请实施例提供的显示装置中,所述有机层或所述无机层与所述粘结层接触的表面设置有多个凹凸结构。
在本申请实施例提供的显示装置中,所述有机层和所述无机层与所述粘结层接触的表面设置有多个凹凸结构。
在本申请实施例提供的显示装置中,所述有机层的所述凹凸结构与所述无机层的所述凹凸结构交错设置。
在本申请实施例提供的显示装置中,所述有机层设置于所述粘结层面向所述信号线图案的一侧,所述无机层设置于所述粘结层背离所述信号线图案的一侧。
在本申请实施例提供的显示装置中,所述粘结层的厚度小于所述有机层和所述无机层。
在本申请实施例提供的显示装置中,所述粘结层的材料包括非晶硅。
有益效果
本申请提供的显示面板和显示装置中在有机层和无机层之间设置粘结层,粘结层由表面粗糙度较大的非晶硅形成,以此增强有机层与无机层之间的结合力。同时可在有机层和/或所述无机层与粘结层接触的表面设置多个凹凸结构,以增大界面的接触面积同时可防止膜层之间的相互滑移,进一步增强了界面的结合力,解决了绑定区的有机层与无机层发生剥离不良导致的柔性电路板与绑定焊盘绑定后发生脱落的问题,从而大大提高了显示面板的良率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示面板的俯视结构示意图。
图2为本申请实施例提供的显示面板的绑定区的第一种膜层结构示意图。
图3为本申请实施例提供的显示面板的剖面结构示意图。
图4为本申请实施例提供的绑定区的第二种膜层结构示意图。
图5为图4中M处的放大示意图。
图6为本申请实施例提供的显示装置的部分剖面结构示意图。
图7为本申请实施例提供的显示装置制备方法的流程示意图。
图8至图11为本申请实施例提供的显示装置制备方法中各步骤制得的膜层结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。在附图中,为了清晰理解和便于描述,夸大了一些层和区域的厚度。即附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
请参照图1和图2,图1为本申请实施例提供的显示面板的俯视结构示意图,图2为本申请实施例提供的显示面板的绑定区的第一种膜层结构示意图。所述显示面板100具有显示区AA以及位于所述显示区AA一侧的非显示区NA,所述非显示区NA内设置有绑定区BA。所述显示面板100在所述绑定区BA包括衬底基板10、依次层叠设置在所述衬底基板10上的信号线图案20、绝缘保护层以及绑定端子60。所述信号线图案20设置于所述衬底基板10上。所述绝缘保护层设置于所述信号线图案20上,且在对应所述信号线图案20的位置设置有开孔,所述开孔裸露出至少部分所述信号线图案20。所述绑定端子60设置于所述绝缘保护层上,且通过所述开孔内的部分与所述信号线图案20电连接。所述绝缘保护层包括粘结层40以及设置于所述粘结层相对两侧的有机层30和无机层50,所述粘结层40材料的表面粗糙度大于所述有机层30材料和所述无机层50材料的表面粗糙度。
可选地,所述绝缘保护层的所述有机层30设置于所述粘结层40面向所述信号线图案20的一侧,所述无机层50设置于所述粘结层40背离所述信号线图案20的一侧。所述有机层30为平坦化层,例如可以为由有机光阻等形成的平坦化层,所述无机层为钝化层,例如可以为由氮化硅(SiNx)等形成的钝化层。其中所述粘结层40的厚度小于所述有机层30和所述无机层50的厚度。
可选地,所述绝缘保护层的所述开孔的截面形状包括倒梯形等,且所述开孔由所述有机层30、所述粘结层40以及所述无机层50一块形成。具体地,所述有机层30设置于所述信号线图案20上,且在对应所述信号线图案20的位置设置有母开孔,所述母开孔裸露出所述信号线图案20。所述粘结层40设置于所述有机层30上以及所述母开孔内,但未覆盖所述母开孔底部的所述信号线图案20。所述无机层50设置于所述粘结层40上以及覆盖所述母开孔内的所述粘结层40,以形成所述绝缘保护层的所述开孔。所述绑定端子60设置于所述无机层50上,且通过所述开孔内的部分与所述信号线图案20电连接,所述开孔内的部分是指所述绑定端子60设置在所述开孔内的部分。
下面将具体阐述所述显示面板的各膜层结构及功能。
具体地,请参照图3,图3为本申请实施例提供的显示面板的剖面结构示意图。所述显示面板100包括衬底基板10、依次设置在衬底基板10上的驱动电路功能层1、发光器件层2、封装层3以及触控功能层4。
所述衬底基板10可以为刚性衬底或柔性衬底,所述衬底基板10为刚性基板时,可包括玻璃基板等硬性基板;所述衬底基板10为柔性基板时,可包括聚酰亚胺(Polyimide,PI)薄膜、超薄玻璃薄膜等柔性基板。
所述驱动电路功能层1设置于所述衬底基板10上,当然的,所述驱动电路功能层1和所述衬底基板10之间还设置有缓冲层(图未示),所述缓冲层可以防止不期望的杂质或污染物(例如湿气、氧气等)从所述衬底基板10扩散至可能因这些杂质或污染物而受损的器件中,同时还可以提供平坦的顶表面。
所述驱动电路功能层1位于所述显示区AA内的部分包括依次层叠设置在所述缓冲层上的有源层11、栅极绝缘层12、栅极13、第一层间绝缘层14、第一源漏极层15、第二层间绝缘层16、第二源漏极层17、有机层30。所述第一源漏极层15通过所述第一层间绝缘层14的过孔与所述有源层11连接,所述第二源漏极层17通过所述第二层间绝缘层16的过孔与所述第一源漏极层15连接,所述有机层30的材料包括有机光阻等有机材料。
请继续参照图2和图3,所述驱动电路功能层1位于所述绑定区BA内的部分包括设置在缓冲层上的信号线图案20。所述信号线图案20包括与所述栅极13同层设置的第一金属图案21、与所述第一源漏极层15同层设置的第二金属图案22以及与所述第二源漏极层17同层设置的第三金属图案23,所述第一金属图案21、所述第二金属图案22、所述第三金属图案23接触在一起。
所述绑定区BA还包括粘结层40,所述粘结层40位于所述有机层30的表面上以及所述有机层形成的母开孔内,但并未覆盖所述母开孔底部裸露出的信号线图案20。所述粘结层40的材料包括非晶硅等,所述非晶硅的表面粗糙度较大,覆盖在所述有机层30的表面上,使所述有机层30和所述粘结层40具有较强的界面结合力。其中,本申请中所述粘结层的表面粗糙度是指所述粘结层的材料本身具有的特性,例如所述非晶硅的界面状态较粗糙,而所述有机层的界面状态较平整,因此所述粘结层的表面粗糙度大于所述有机层的表面粗糙度。
可以理解的是,本申请中的“同层设置”是指在制备工艺中,将相同材料形成的膜层进行图案化处理得到至少两个不同的特征,则所述至少两个不同的特征同层设置。比如,本实施例的第二金属图案22与第一源漏极层15由同一导电膜层进行图案化处理后得到,则第二金属图案22与第一源漏极层15同层设置。
需要说明的是,所述驱动电路功能层1的膜层结构不限于图3示出的顶栅结构,所述驱动电路功能层1的膜层结构也可采用底栅结构或其他刻蚀阻挡型结构。而且栅极13也不限于图3示出的单栅结构,本申请的栅极13也可以采用双栅结构。当然的,源漏极层也不限于图3示出的采用两层源漏极层,在其他实施例中也可采用单层源漏极层,在此不再赘述。
所述发光器件层2设置于所述驱动电路功能层1上,所述发光器件层2未设置在所述绑定区BA,所述发光器件层2位于所述显示区AA的部分包括像素电极26、像素定义层27、发光材料层28、阴极层29。所述像素电极26通过所述有机层30的过孔与所述第二源漏极层17连接,所述像素定义层27设置于所述像素电极26以及所述有机层30上,且所述像素定义层27图案化形成有像素开口,所述像素开口裸露出部分所述像素电极26,以定义出发光材料的设置区域。所述发光材料层28是由打印在所述像素定义层27的像素开口内的发光材料形成,所述阴极层29覆盖所述发光材料层28以及所述像素定义层27。所述发光材料层28在所述像素电极26和所述阴极层29的共同作用下发光,进而实现显示面板100的像素显示。
所述像素电极26可以是透明电极或反射电极。如果所述像素电极26是透明电极,则所述像素电极26可以由例如氧化铟锡(ITO)、氧化铟锌(IZO)、ZnO或In 2O 3形成。如果所述像素电极26是反射电极,则所述像素电极26例如可以包括由Ag、 Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr或它们的组合形成的反射层以及由 ITO、IZO、ZnO或In 2O 3形成的层。然而,像素电极26不限于此,像素电极26可以由各种材料形成,并且也可以形成为单层或多层结构。
所述阴极层29采用透明导电材料形成,以提高所述发光材料层28的光的透过率,例如所述阴极层29可以由逸出功低的金属(如Li、Ca、LiF/Ca、LiF/Al、 Al、Ag、Mg或它们的组合)形成的层以及由ITO、IZO、ZnO或In 2O 3形成的透明导电层。所述像素电极26为反射电极时,可进一步提高所述发光材料层28的光的利用率。
当然的,所述发光器件层2还可包括设置于所述发光材料层28与所述像素电极26之间的空穴注入层(HIL)、空穴传输层(HTL);以及设置于所述发光材料层28与所述阴极层29之间的电子注入层(EIL)、电子传输层(ETL)。
所述封装层3设置于所述发光器件层2上,所述封装层3可以采用薄膜封装,所述薄膜封装可以为由第一无机封装层、有机封装层、第二无机封装层三层薄膜依次层叠形成的叠层结构或更多层的叠层结构,用于保护所述发光器件层2的发光材料层28,避免水氧入侵导致发光材料层28失效。
所述触控功能层4设置在所述封装层3上,采用DOT触控方案,以实现触控功能。所述触控功能层4位于所述显示区AA的部分包括设置在所述封装层3上的无机层50以及设置在所述无机层50上的触控电极42。所述触控电极42可以包括驱动电极和感应电极,采用互容式触控,驱动电极和感应电极可以同层或分层设置。当然的,本申请不限于此,本申请的触控电极42也可以采用自容式触控。
所述触控功能层4位于所述绑定区BA的部分包括设置在所述粘结层40上的无机层50以及设置在所述无机层50上的绑定端子60,所述绑定端子60和所述触控电极42同层设置。所述无机层50覆盖在所述粘结层40的表面上,但并未覆盖所述母开孔底部裸露出的信号线图案20,所述无机层50的材料包括氧化硅、氮化硅等无机材料。所述粘结层40的材料包括非晶硅等,所述非晶硅的界面状态较粗糙,而所述无机层的界面状态较平整,因此所述粘结层40的表面粗糙度大于所述无机层50的表面粗糙度,把所述无机层50覆盖在所述粘结层40的表面上,可使所述无机层50和所述粘结层40具有较强的界面结合力,进而可增大绑定区BA的所述有机层30和所述无机层50之间的结合力。所述绑定端子60设置在所述无机层50的表面上以及所述绝缘保护层的所述开孔内,使所述绑定端子60与所述开孔裸露出的信号线图案20电连接。
需要说明的是,所述绑定区BA包括多个绑定端子60,所述绑定端子60与所述信号线图案20电连接,可以向所述显示面板100输入各种信号,每个绑定端子60可以向所述显示面板输入一种信号,例如栅极扫描信号、数据信号等。
在本实施例的显示面板100中,通过在有机层30和无机层50之间设置粘结层40,所述粘结层40的表面粗糙度大于所述有机层30和所述无机层50的表面粗糙度,以此增强有机层30与无机层50之间的结合力,解决了绑定区BA的有机层30与无机层50发生剥离的问题,从而大大提高了显示面板100的良率。
请结合参照图4和图5,图4为本申请实施例提供的绑定区的第二种膜层结构示意图,图5为图4中M处的放大示意图,本实施例的绑定区膜层结构与图2中绑定区膜层结构的区别为所述有机层30和所述无机层50与所述粘结层40接触的表面设置有多个凹凸结构41,可以理解的,所述粘结层40覆于所述有机层30上,所述有机层30的表面设置有凹凸结构41,则所述粘结层40与所述有机层30接触的表面也呈表面起伏的凹凸结构;同样的,所述无机层50覆于所述粘结层40上,所述粘结层40与所述无机层50接触的表面设置有凹凸结构41,则所述无机层50与所述粘结层40接触的表面也呈表面起伏的凹凸结构。而且,相互接触的两个膜层,其中一个膜层(如有机层30)的表面设置的凹凸结构中的凸起结构与另一个膜层(如粘结层40)的凹凸结构中凹槽结构相对应。
另外,所述有机层30的所述凹凸结构41与所述无机层50的所述凹凸结构41交错设置,如图5所示,所述有机层30的所述凹凸结构41中的凸起结构与所述无机层50的所述凹凸结构中的凸起结构交错设置,也即所述有机层30的所述凹凸结构41中的凸起结构与所述无机层50的所述凹凸结构中的凹槽结构相对设置,如此可保证所述有机层和所述无机层之间的粘结层的厚度一致性,避免出现粘结层厚度不均导致所述有机层和所述无机层之间的界面结合力不足。
具体地,所述凹凸结构41的具体数量可根据需求进行设置,如要实现所述有机层30与所述无机层50之间更大的结合力,就设置更多的凹凸结构41。凹凸结构41能够增大所述有机层30和所述无机层50与所述粘结层40接触面积,避免膜层间发生相互滑移,进一步增强了膜层界面的结合力。
所述凹凸结构41的截面形状可以包括矩形、方形、三角形、梯形、圆弧等规则形状或其他不规则形状。如图5示出的,所述凹凸结构41的截面形状为由两个大小不同的矩形组成的“凸”字型结构,所述凹凸结构41上面部分的尺寸大于下面部分的尺寸。把所述凹凸结构41设置成“凸”字型能够更好地避免膜层间发生相互滑移,更好地增强膜层界面的结合力。但本申请不限于此,所述有机层30的凹凸结构41的截面形状也可以与所述粘结层40的凹凸结构41的截面形状不同。
可以理解的是,本申请的凹凸结构41不限于同时设置在所述有机层30与所述粘结层40接触的表面以及所述无机层50与所述粘结层40接触的表面,本申请的凹凸结构41也可以只设置在所述有机层30与所述粘结层40接触的表面或者所述无机层50与所述粘结层40接触的表面,如此同样可以增大所述有机层30与所述无机层50之间的结合力。其他说明请参照上述实施例,在此不再赘述。
请参照图6,图6为本申请实施例提供的显示装置的部分剖面结构示意图。所述显示装置包括前述实施例其中之一的显示面板100,以及绑定在所述显示面板100的所述绑定区BA的驱动器件80,其中所述驱动器件80包括多个连接端子82,所述连接端子82与所述绑定端子60电连接。
具体地,所述驱动器件80可以为柔性电路板,所述柔性电路板与所述绑定区BA的绑定端子60电连接,所述绑定端子60与所述信号线图案20连接,以给所述显示面板100内对应的信号线提供驱动电信号。所述驱动器件80为柔性电路板上,可包括柔性电路板本体81、设置在柔性电路板本体81上的用于与绑定端子60电连接的连接端子82以及绑定在柔性电路板本体上的驱动芯片(integrated circuit,IC)(图未示)。驱动芯片上的驱动信号通过连接端子82、绑定端子60以及信号线图案20传输给所述显示面板100内对应的信号线。
进一步地,所述连接端子82与所述绑定端子60电连接可以通过在两者之间设置导电胶70来实现,所述导电胶70包括异方性导电膜(anisotropic conductive film,ACF)等可导电的胶膜,异方性导电膜具有单向垂直导通,横向绝缘的特性。如图6示出的导电胶70包括胶材72以及分布在所述胶材72中的导电粒子71,通过胶材72中的导电粒子71可使所述连接端子82和所述绑定端子60电连接。
可以理解的是,本申请的显示装置还可包括设置在所述触控功能层上的偏光片、盖板,以及设置在所述衬底基板下表面的背板等支撑结构,在此不再赘述。
在本实施例的显示装置中,通过在有机层30和无机层50之间设置粘结层40,粘结层40由表面粗糙度较大的非晶硅形成,以此增强有机层30与无机层50之间的结合力,解决了绑定区BA的有机层30与无机层50发生剥离不良导致的柔性电路板与绑定焊盘绑定后发生脱落的问题,从而大大提高了显示面板的良率。
请参照图7至图11,其中图7为本申请实施例提供的显示装置制备方法的流程示意图,图8至图11为本申请实施例提供的显示装置制备方法中各步骤制得的膜层结构示意图。所述显示装置制备方法包括以下步骤:
S201:提供衬底基板10,所述衬底基板10划分为显示区AA和非显示区NA,所述非显示区NA具有绑定区BA,在所述衬底基板10上制备驱动电路功能层1,所述驱动电路功能层1位于所述绑定区BA的部分包括信号线图案20以及位于所述信号线图案20上的有机层30。
具体地,请参照图8,所述衬底基板10包括聚酰亚胺等,在所述衬底基板10上制备驱动电路功能层1,通常所述衬底基板10上还会先沉积一层无机缓冲层,用于保护所述衬底基板10上制备的器件。所述驱动电路功能层1位于所述显示区AA内的部分包括依次层叠沉积在所述缓冲层上的有源层11、栅极绝缘层12、栅极13、第一层间绝缘层14、第一源漏极层15、第二层间绝缘层16、第二源漏极层17、有机层30、像素电极26及像素定义层27。所述驱动电路功能层1位于所述绑定区BA内的部分包括设置在缓冲层上的信号线图案20以及设置在所述信号线图案20上的有机层30。所述信号线图案20包括与所述栅极13同层设置的第一金属图案21、与所述第一源漏极层15同层设置的第二金属图案22以及与所述第二源漏极层17同层设置的第三金属图案23,所述第一金属图案21、所述第二金属图案22、所述第三金属图案23接触在一起。
S202:图案化所述有机层30以在所述显示区AA形成第一开孔31,在所述绑定区BA形成母开孔32,所述母开孔32裸露所述信号线图案20。
具体地,请继续参照图8,通过黄光工艺在所述显示区AA的所述有机层30上形成第一开孔31,并同时在所述绑定区BA的所述有机层30上形成母开孔32和凹凸结构41,所述凹凸结构41的截面形状为由两个大小不同的矩形组成的“凸”字型结构,所述凹凸结构41上面部分的尺寸大于下面部分的尺寸。所述显示区AA的第一开孔31裸露出部分所述第二源漏极层17,所述绑定区BA的母开孔32裸露出所述信号线图案20。
S203:在所述有机层30上以及所述母开孔32内设置粘结层40,所述粘结层40未覆盖所述母开孔32内的所述信号线图案20,且所述粘结层40的表面粗糙度大于所述有机层30的表面粗糙度。
具体地,请参照图9,在所述有机层30上沉积非晶硅薄膜等表面粗糙度较大的材料以形成粘结层40,图案化所述粘结层40,以去除所述绑定区BA的母开孔32底部的粘结层40,裸露出所述信号线图案20。同时在所述粘结层40上形成凹凸结构41,所述凹凸结构41的截面形状为由两个大小不同的矩形组成的“凸”字型结构,所述凹凸结构41上面部分的尺寸大于下面部分的尺寸。需要说明的是,所述粘结层40可以仅形成在所述绑定区BA,用于增大与所述绑定区BA的所述有机层30之间的结合力。
S204:在所述驱动电路功能层1上依次制备发光器件层2、封装层3以及触控功能层4,其中所述触控功能层4位于所述绑定区BA的部分包括无机层50和绑定端子60,所述无机层50位于所述粘结层40上以形成绝缘保护层,所述粘结层40的表面粗糙度大于所述无机层50的表面粗糙度,所述绑定端子60位于所述无机层50上,且所述绑定端子60通过所述绝缘保护层的开孔内的部分与所述信号线图案20电连接。
具体地,请参照图10,在所述驱动电路功能层1上依次制备发光器件层2、封装层3以及触控功能层4。所述发光器件层2位于所述显示区AA的部分包括像素电极26、像素定义层27、发光材料层28、阴极层29,所述绑定区BA未设置所述发光器件层2。所述封装层3可以采用薄膜封装,所述薄膜封装可以为由第一无机封装层、有机封装层、第二无机封装层三层薄膜依次层叠形成的叠层结构或更多层的叠层结构。所述触控功能层4采用DOT触控方案,直接设置在所述封装层3上,以实现触控功能。所述触控功能层4位于所述显示区AA的部分包括设置在所述封装层3上的无机层50以及设置在所述无机层50上的触控电极42。所述触控功能层4位于所述绑定区BA的部分包括设置在所述粘结层40上的无机层50以及设置在所述无机层50上的绑定端子60,所述绑定端子60和所述触控电极42同层设置。所述无机层50覆盖在所述粘结层40的表面上,但并未覆盖所述母开孔底部裸露出的信号线图案20,所述无机层50、所述粘结层40以及所述有机层30一块形成所述绝缘保护层,所述绑定端子60位于所述无机层50上,且所述绑定端子60通过所述绝缘保护层的开孔内的部分与所述信号线图案20电连接。
所述无机层50覆于所述粘结层40上,因粘结层40的表面粗糙度大于所述无机层的表面粗糙度,因此可以增大粘结层40与所述无机层50之间的界面结合力,从而增大了所述有机层30与所述无机层50之间的界面结合力。同时所述粘结层40上还设置有凹凸结构,所述无机层50覆于所述粘结层40上,则所述无机层50与所述粘结层40接触的表面也呈起伏的凹凸结构,且所述无机层50的凹凸结构与所述有机层30的凹凸结构交错设置,如此可进一步增强界面的结合力,并保证所述有机层30和所述无机层50之间的粘结层40的厚度一致性,同时可防止膜层之间的相互滑移。
S205:提供驱动器件80,所述驱动器件80包括连接端子82,所述连接端子82通过导电胶70与所述绑定端子60电连接。
具体地,请参照图11,在绑定区BA的绑定端子60上设置导电胶70,所述导电胶70可以为异方性导电膜,导电胶70包括胶材72以及分布在所述胶材72中的导电粒子71。提供驱动器件80,所述驱动器件80可以为柔性电路板,其包括柔性电路板本体81、设置在柔性电路板本体81上的用于与绑定端子60电连接的连接端子82以及绑定在柔性电路板本体81上的驱动芯片。利用热压工艺将所述驱动器件80通过所述导电胶70绑定在所述绑定区BA,使所述驱动器件80的连接端子82通过所述导电胶70的导电粒子71与所述绑定区BA的绑定端子60电连接。
可以理解的是,本申请的显示装置制备方法还可包括在触控功能层上贴附偏光片、盖板,以及在衬底基板下表面贴附背板等支撑结构,在此不再赘述。
需要说明的是,本申请的显示装置制备方法以凹凸结构41同时设置在所述有机层30与所述粘结层40接触的表面以及所述无机层50与所述粘结层40接触的表面为例说明,但本申请不限于此,本申请的凹凸结构41也可以只设置在所述有机层30与所述粘结层40接触的表面或者所述无机层50与所述粘结层40接触的表面。且本申请的显示装置制备方法可以用于制备上述实施例中的任一显示装置。
根据上述实施例可知:
本申请提供一种显示面板、显示装置及其制备方法;该显示面板具有显示区以及位于所述显示区一侧的非显示区,所述非显示区内设置有绑定区,所述显示面板在所述绑定区包括设置在衬底基板上的有机层、无机层以及位于有机层和无机层之间的粘结层,所述粘结层的表面粗糙度大于所述有机层和所述无机层的表面粗糙度以此增强有机层与无机层之间的结合力。同时可在有机层和/或所述无机层与粘结层接触的表面设置多个凹凸结构,以增大界面的接触面积同时可防止膜层之间的相互滑移,进一步增强了界面的结合力,解决了绑定区的有机层与无机层发生剥离不良导致的柔性电路板与绑定焊盘绑定后发生脱落的问题,从而大大提高了显示面板的良率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其具有显示区以及位于所述显示区一侧的非显示区,所述非显示区内设置有绑定区,所述显示面板在所述绑定区包括:
    衬底基板;
    信号线图案,设置于所述衬底基板上;
    绝缘保护层,设置于所述信号线图案上,且在对应所述信号线图案的位置设置有开孔,所述开孔裸露出至少部分所述信号线图案;以及
    绑定端子,设置于所述绝缘保护层上,且通过所述开孔内的部分与所述信号线图案电连接;
    其中,所述绝缘保护层包括粘结层以及设置于所述粘结层相对两侧的有机层和无机层,所述粘结层材料的表面粗糙度大于所述有机层材料和所述无机层材料的表面粗糙度。
  2. 根据权利要求1所述的显示面板,其中,所述有机层或所述无机层与所述粘结层接触的表面设置有多个凹凸结构。
  3. 根据权利要求1所述的显示面板,其中,所述有机层和所述无机层与所述粘结层接触的表面设置有多个凹凸结构。
  4. 根据权利要求3所述的显示面板,其中,所述有机层的所述凹凸结构与所述无机层的所述凹凸结构交错设置。
  5. 根据权利要求3所述的显示面板,其中,所述凸凹结构的截面形状包括矩形、方形、三角形、梯形、圆弧、凸字形中的至少一种。
  6. 根据权利要求1所述的显示面板,其中,所述有机层设置于所述粘结层面向所述信号线图案的一侧,所述无机层设置于所述粘结层背离所述信号线图案的一侧。
  7. 根据权利要求1所述的显示面板,其中,所述粘结层的厚度小于所述有机层和所述无机层。
  8. 根据权利要求1所述的显示面板,其中,所述粘结层的材料包括非晶硅。
  9. 根据权利要求1所述的显示面板,其中,所述显示面板还包括设置于所述衬底基板上的驱动电路功能层,所述驱动电路功能层在所述显示区包括层叠设置的有源层、栅极绝缘层、栅极、第一层间绝缘层、第一源漏极层、第二层间绝缘层、第二源漏极层。
  10. 根据权利要求9所述的显示面板,其中,所述信号线图案包括与所述栅极同层设置的第一金属图案、与所述第一源漏极层同层设置的第二金属图案以及与所述第二源漏极层同层设置的第三金属图案,所述第一金属图案、所述第二金属图案、所述第三金属图案接触在一起。
  11. 根据权利要求1所述的显示面板,其中,所述绝缘保护层的所述开孔的截面形状包括倒梯形。
  12. 一种显示装置,其包括显示面板和驱动器件,所述显示面板具有显示区以及位于所述显示区一侧的非显示区,所述非显示区内设置有绑定区,所述显示面板在所述绑定区包括:
    衬底基板;
    信号线图案,设置于所述衬底基板上;
    绝缘保护层,设置于所述信号线图案上,且在对应所述信号线图案的位置设置有开孔,所述开孔裸露出至少部分所述信号线图案;以及
    绑定端子,设置于所述绝缘保护层上,且通过所述开孔内的部分与所述信号线图案电连接;
    其中,所述绝缘保护层包括粘结层以及设置于所述粘结层相对两侧的有机层和无机层,所述粘结层材料的表面粗糙度大于所述有机层材料和所述无机层材料的表面粗糙度;所述驱动器件包括多个连接端子,所述连接端子与所述绑定端子电连接。
  13. 根据权利要求12所述的显示装置,其中,还包括导电胶,所述连接端子通过所述导电胶与所述绑定端子电连接。
  14. 根据权利要求13所述的显示装置,其中,所述导电胶包括异方性导电膜。
  15. 根据权利要求12所述的显示装置,其中,所述有机层或所述无机层与所述粘结层接触的表面设置有多个凹凸结构。
  16. 根据权利要求12所述的显示装置,其中,所述有机层和所述无机层与所述粘结层接触的表面设置有多个凹凸结构。
  17. 根据权利要求16所述的显示装置,其中,所述有机层的所述凹凸结构与所述无机层的所述凹凸结构交错设置。
  18. 根据权利要求12所述的显示装置,其中,所述有机层设置于所述粘结层面向所述信号线图案的一侧,所述无机层设置于所述粘结层背离所述信号线图案的一侧。
  19. 根据权利要求12所述的显示装置,其中,所述粘结层的厚度小于所述有机层和所述无机层。
  20. 根据权利要求12所述的显示装置,其中,所述粘结层的材料包括非晶硅。
PCT/CN2021/083313 2021-03-15 2021-03-26 显示面板和显示装置 WO2022193353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/296,216 US20230060896A1 (en) 2021-03-15 2021-03-26 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110273994.4 2021-03-15
CN202110273994.4A CN113053923A (zh) 2021-03-15 2021-03-15 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2022193353A1 true WO2022193353A1 (zh) 2022-09-22

Family

ID=76512019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083313 WO2022193353A1 (zh) 2021-03-15 2021-03-26 显示面板和显示装置

Country Status (3)

Country Link
US (1) US20230060896A1 (zh)
CN (1) CN113053923A (zh)
WO (1) WO2022193353A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530474A (zh) * 2020-10-30 2022-05-24 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制造方法
CN116897613A (zh) * 2022-01-29 2023-10-17 京东方科技集团股份有限公司 触控显示面板、触控显示装置、触控显示母板
CN114639310B (zh) * 2022-03-11 2024-02-20 武汉华星光电半导体显示技术有限公司 显示模组及移动终端
CN114784204A (zh) * 2022-04-11 2022-07-22 深圳市华星光电半导体显示技术有限公司 Oled显示面板和oled显示装置
CN114975506A (zh) * 2022-05-24 2022-08-30 深圳市华星光电半导体显示技术有限公司 背板及其制备方法、背光模组、显示面板、显示终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935633A (zh) * 2017-05-23 2017-07-07 上海天马微电子有限公司 显示面板和显示面板的制造方法
CN107302014A (zh) * 2017-07-17 2017-10-27 上海天马有机发光显示技术有限公司 一种有机发光显示面板,其显示装置及其制作方法
CN109273507A (zh) * 2018-09-30 2019-01-25 霸州市云谷电子科技有限公司 一种显示面板
US10347862B2 (en) * 2015-04-09 2019-07-09 Sharp Kabushiki Kaisha EL display device and method for manufacturing EL display device
CN110473835A (zh) * 2019-08-30 2019-11-19 上海中航光电子有限公司 一种显示面板及其制备方法、显示装置
CN111987127A (zh) * 2020-08-24 2020-11-24 合肥维信诺科技有限公司 一种显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766969B (zh) * 2020-06-08 2023-04-07 武汉华星光电半导体显示技术有限公司 一种触控显示面板及其制作方法
CN111755463A (zh) * 2020-06-24 2020-10-09 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347862B2 (en) * 2015-04-09 2019-07-09 Sharp Kabushiki Kaisha EL display device and method for manufacturing EL display device
CN106935633A (zh) * 2017-05-23 2017-07-07 上海天马微电子有限公司 显示面板和显示面板的制造方法
CN107302014A (zh) * 2017-07-17 2017-10-27 上海天马有机发光显示技术有限公司 一种有机发光显示面板,其显示装置及其制作方法
CN109273507A (zh) * 2018-09-30 2019-01-25 霸州市云谷电子科技有限公司 一种显示面板
CN110473835A (zh) * 2019-08-30 2019-11-19 上海中航光电子有限公司 一种显示面板及其制备方法、显示装置
CN111987127A (zh) * 2020-08-24 2020-11-24 合肥维信诺科技有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
US20230060896A1 (en) 2023-03-02
CN113053923A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2022193353A1 (zh) 显示面板和显示装置
US10707292B2 (en) Organic light emitting display device
US20210193777A1 (en) Display substrate and display device
US9991465B2 (en) Display device having crack prevention portion
CN113838994B (zh) 显示面板、柔性显示屏和电子设备及显示面板的制备方法
WO2021218395A1 (zh) 显示面板及显示装置
WO2022017026A1 (zh) 可拉伸显示面板及其制造方法、显示装置
WO2021022635A1 (zh) 显示装置及其制备方法
US20240038773A1 (en) Display panel and display device
KR20200143563A (ko) 표시 장치
KR20210050235A (ko) 플렉서블 표시 장치
CN113724590A (zh) 可拉伸显示面板
WO2021121095A1 (zh) 阵列基板、显示面板及显示装置
JP7469943B2 (ja) 表示装置及び表示装置の製造方法
KR20210083970A (ko) 플렉서블 표시 장치
CN211125656U (zh) 显示母板、显示基板和显示装置
CN112670300A (zh) 显示模组、制备方法以及显示装置
WO2021169568A1 (zh) 显示母板及其制备方法、显示基板和显示装置
US11903298B2 (en) Display panel and display device
WO2023019646A1 (zh) 显示面板和电子装置
KR20210080811A (ko) 유기발광 표시장치
US11903292B2 (en) Organic light emitting display device and method for manufacturing the same
JP7491978B2 (ja) 一体型タッチディスプレイ装置およびその製造方法
CN111682050B (zh) 触控显示装置及其制造方法
US20220238627A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930941

Country of ref document: EP

Kind code of ref document: A1