WO2022191164A1 - Display device, display method, control device, and computer program - Google Patents

Display device, display method, control device, and computer program Download PDF

Info

Publication number
WO2022191164A1
WO2022191164A1 PCT/JP2022/009870 JP2022009870W WO2022191164A1 WO 2022191164 A1 WO2022191164 A1 WO 2022191164A1 JP 2022009870 W JP2022009870 W JP 2022009870W WO 2022191164 A1 WO2022191164 A1 WO 2022191164A1
Authority
WO
WIPO (PCT)
Prior art keywords
score
state quantity
display
evaluation
level
Prior art date
Application number
PCT/JP2022/009870
Other languages
French (fr)
Japanese (ja)
Inventor
翔大 大野
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2023505564A priority Critical patent/JPWO2022191164A1/ja
Priority to KR1020237031548A priority patent/KR20230156071A/en
Publication of WO2022191164A1 publication Critical patent/WO2022191164A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/0272Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23174Display of parameter and several suggested values for that parameter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/23Pc programming
    • G05B2219/23177Indicate all selected devices operating currently

Definitions

  • the present invention relates to a display device, a display method, a control device and a computer program.
  • a plurality of sensors are installed on an object to be monitored such as a plant, and based on the state quantity obtained from each sensor, the operating state of the object to be monitored is monitored and controlled as necessary. It was
  • Patent Document 1 describes a plant operating state diagnostic device for intuitively providing the operating state of the plant to the operator. Based on process data, this equipment diagnoses plant conditions from the three perspectives of "operational status," “environmental conservation,” and “equipment maintenance,” allowing operators to intuitively grasp plant conditions. becomes.
  • FIG. 3 of this document shows a display screen of an operating state diagnosis device for a garbage incineration plant, which is an object to be monitored. This display screen displays nine process meters indicating process data and three fuzzy meters indicating diagnosis results obtained by diagnosis using fuzzy inference for the above three viewpoints.
  • Patent Document 2 describes a plant control and monitoring device that includes a display device and an arithmetic processing device for quickly grasping plant modulation (abnormality). This device classifies alarms into a plurality of groups according to a certain classification standard, so when an alarm occurs, it is possible to quickly ascertain which group of instrumentation equipment has an abnormality.
  • FIG. 3 of this document shows that a plant, which is an object to be monitored, is divided into three hierarchies, namely, a process, a series of a plurality of processes, and a plant of a plurality of series, and alarms are displayed.
  • the plant control and monitoring device described in Patent Document 2 merely displays alarms in a hierarchical manner. That is, since it is intended to quickly grasp alarms based on the hierarchical structure in which the plant is divided into process units, it is possible to evaluate a plurality of evaluation elements for evaluating the operating state of objects to be monitored such as plants. can't
  • the present invention makes it possible to hierarchically evaluate the operating state of an object with respect to a plurality of evaluation factors when monitoring an object from a large number of state quantities, and at the same time It is an object of the present invention to provide a display device, a display method, a control device, and a computer program capable of easily specifying the state quantity to be.
  • a display device configured to be able to display a third score to indicate is provided.
  • Scores such as “first score” and “second score” are not limited to numerical values, and may be information indicating levels, stages, or degrees.
  • a “score” includes an index.
  • the display device is configured to be able to display the first score, the second score, and the third score on the same screen.
  • the display device can further display a fourth score indicating a state quantity of a fourth element belonging to a third level from the state quantities of a third group that is a part of the first group. configured to
  • the display device is configured to be able to display the second score and the fourth score on the same second screen, and the first score, the second score, and the fourth score.
  • the second screen can be transitioned from the screen displaying the 3 scores.
  • the display device is configured to be able to display at least one of the plurality of types of state quantities.
  • the object is a plant
  • the state quantity is process data
  • the present disclosure includes a step of displaying a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantities of an object; displaying a second score indicating a state quantity of a second element belonging to a second level from the quantity; and displaying a third score indicating the state quantity of the element.
  • the present disclosure causes a display device to display a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantities of an object, and displays the first score of the first group which is a part of the plurality of types. From the state quantity, causing the display device to display a second score indicating the state quantity of a second element belonging to the second level, and from the state quantity of the second group, which is a part of the plurality of types, to the second level
  • a control device is provided for controlling the display device so as to cause the display device to display a third score indicating the state quantity of the third element to which it belongs.
  • the present disclosure causes a computer to display, on a display device, a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantities of an object, and a first score that is a part of the plurality of types.
  • a second score indicating the state quantity of a second element belonging to a second level is displayed on the display device from the state quantity of the group, and the state quantity of the second group, which is a part of the plurality of types, is calculated from the state quantity of the second group.
  • a computer program is provided for generating a control instruction for displaying a third score indicating a state quantity of a third element belonging to level 2 on a display device.
  • the present disclosure provides a monitoring method for monitoring a plant based on, for example, fifty or more process data, using an nth level hierarchy.
  • n is an integer of 4 or more.
  • This hierarchical structure belongs to a first element that evaluates the operating state of the plant and a second level that influences the first element, which includes a second element that influences the first element and a third element that influences the first element.
  • a plurality of elements in the lowest layer are monitoring items associated with process data.
  • the lowest layer is the nth level or lower.
  • the number of layers including the second element may be n
  • the number of layers including the third element may be m.
  • m is an integer satisfying m ⁇ n.
  • Each element is indexed, typically numerically.
  • An element's indexing is indexed based on the underlying elements that affect this element.
  • Elements at the same level may have different indexing methods. For example, among a plurality of elements belonging to the k-th level, the method of indexing a certain element (first method) and the method of indexing other elements (second method) may be different.
  • k is an integer less than or equal to n.
  • the method of indexing the monitoring items which are multiple elements belonging to the lowest layer, may be different.
  • the monitoring items may be indexed based on the reference value and process data values.
  • FIG. 1 is a schematic diagram showing the whole plant composition concerning one embodiment.
  • FIG. 2 is a functional block diagram of the driving assistance system according to one embodiment.
  • FIG. 3 is a functional block diagram of the scoring unit of the driving assistance system according to one embodiment.
  • FIG. 4 is a graph showing reference values and degrees of abnormality in the driving support system according to one embodiment.
  • FIG. 5 is a diagram showing the physical configuration of the driving assistance system according to one embodiment.
  • FIG. 6 is an example of a display screen of the display device of the driving support system according to one embodiment.
  • FIG. 7 is an example of a display screen of the display device of the driving assistance system according to one embodiment.
  • FIG. 8 is an example of a display screen of the display device of the driving support system according to one embodiment.
  • the present invention is applicable to objects from which multiple types of state quantities can be acquired, and is particularly suitable for processes from which multiple types of process data (an example of "state quantities") can be acquired.
  • Plants include, for example, chemical product manufacturing plants that manufacture products, petrochemical product manufacturing plants, petroleum refining plants, steel product manufacturing plants, food manufacturing plants, pulp and paper product manufacturing plants, pharmaceutical manufacturing plants, automobile manufacturing plants, and machinery products. Including various manufacturing plants such as manufacturing plants, electrical product manufacturing plants, power plants, and waste treatment plants.
  • the inventors of this application acquired more than 100 types of process data, monitored the plant, and examined the optimal method for control as necessary. Since it is the operator who monitors the plant and controls it as necessary, when an abnormality (including modulation; the same shall apply hereinafter) occurs in the plant, the operator must quickly identify the cause and take appropriate action as necessary. Countermeasures must be taken. For that purpose, the method of displaying 100 or more types of process data on the same screen as in the invention described in Patent Document 1 is not suitable.
  • the inventors of the present application specify a plurality of evaluation factors for evaluating the operating state of the plant based on specialized operating knowledge, etc., and furthermore different plural factors for evaluating each of these evaluation factors
  • a hierarchical structure for evaluating plant operating conditions was constructed by repeating the identification of evaluation factors.
  • an evaluation element of "thermal state” is set, and a plurality of different evaluation elements for evaluating the evaluation element of "thermal state” are set.
  • a plurality of evaluation elements such as “exhaust gas” and “furnace” are set as evaluation elements, and "pressure difference” and “temperature efficiency” are set as further different evaluation elements for evaluating the evaluation element "exhaust gas”.
  • a hierarchical structure (hereinafter referred to as " (Sometimes referred to as "hierarchical structure”).
  • the hierarchical structure is constructed so that the evaluation elements in the lowest layer are the monitoring items from which process data are acquired.
  • the evaluation elements in the lowest layer are monitoring items for which process data such as "pressure” and "temperature” are acquired.
  • the hierarchical structure constructed in this way may have the following usefulness.
  • Information about what multiple evaluation factors are linked to a certain evaluation factor is information that can be grasped based on specialized operational knowledge, and cannot be easily known by anyone other than a plant designer. Information. Even an operator who does not have such specialized driving knowledge, etc., can grasp the evaluation elements in the upper layers and the evaluation elements in the lower layers of the evaluation elements, so that it is possible to determine which evaluation element is the other evaluation element. It is possible to easily grasp the chain relationship of whether or not it is related to the element.
  • the evaluation elements in the lowest layer are monitoring items for which process data is acquired, it is also possible to grasp the relationship between process data and evaluation elements. Therefore, it becomes easy to identify the cause when an abnormality occurs in the plant.
  • the inventors of this application devised scoring each evaluation element. This makes it easy to grasp the driving state for each level. For example, if you want to understand the operating status of the entire plant, build a hierarchical structure with the "operating status of the entire plant" as the top layer (first level) evaluation element, and score each evaluation element to obtain the overall plant It is possible to easily grasp the operating state of the For example, when the score of the "operational state of the entire plant" is poor, by comparing the scores of multiple evaluation elements in the lower layer, it is possible to identify the lower-layer evaluation element that is the cause of the abnormality in the operating state of the entire plant. becomes easier.
  • evaluation elements that have the same degree of impact on higher-level evaluation elements, or evaluation elements that are meaningful to confirm at the same time are set as evaluation elements at the same level.
  • "operating condition of the entire plant” is set as the top layer (first level) evaluation element
  • multiple evaluation elements such as “environmental value” and “operation efficiency” are set as evaluation elements in the lower layer (second level). are scored respectively. This makes it possible to easily compare which of the "environmental value” and “operating efficiency” has a greater influence on the score of "operating state of the entire plant”.
  • evaluation factors that have similar impacts on higher-level evaluation factors need not have exactly the same impact. For example, weighting according to the degree of influence of each evaluation factor or scoring so as to have a normalized value facilitates comparison between evaluation factors at the same level. By comparing the evaluation elements, items to be prioritized for countermeasures become clear.
  • the hierarchical structure constructed for each plant may be different. By setting a different hierarchical structure for each plant, it is possible to set a hierarchical structure that considers the plant-specific configuration. For example, the basic hierarchical structure is set for the same type of plant, and the final hierarchical structure is set for each plant by adding modifications that consider the unique configuration of each plant or the operating status of each plant. may
  • the maximum value of the scores of a plurality of evaluation elements belonging to the lower layer may be directly scored as the score of the upper layer evaluation element.
  • the maximum value of the scores of a plurality of evaluation elements belonging to the lower layer may be directly scored as the score of the upper layer evaluation element.
  • the maximum value of the scores of a plurality of evaluation elements belonging to the lower layer may be directly scored as the score of the upper layer evaluation element.
  • Other evaluation factors may be scored more generally according to a mathematical algorithm based on the scores of multiple evaluation factors belonging to lower layers. In this way, it is possible to score each evaluation element by the optimum method, so it is possible to improve the evaluation accuracy.
  • the number of levels in the hierarchy may differ depending on the evaluation element. For example, the number of lower levels of multiple evaluation elements belonging to the same level may be different. Since the hierarchical structure is formed from the upper layer to the lower layer, even if the evaluation elements belong to the same level, the number of lower layers may differ.
  • the same monitoring item may be an evaluation element that evaluates multiple evaluation elements.
  • evaluation elements belonging to lower layers of multiple evaluation elements belonging to the same level may have common monitoring items.
  • FIG. 1 is a schematic diagram showing the overall configuration of a plant 1, which is an example of an object to be monitored to which the present invention is applied.
  • the plant 1 according to the present embodiment is, for example, a power plant equipped with a circulating fluidized bed type boiler that burns fuel to generate steam while circulating a circulating material such as silica sand that flows at high temperature.
  • a circulating fluidized bed type boiler that burns fuel to generate steam while circulating a circulating material such as silica sand that flows at high temperature.
  • a circulating material such as silica sand that flows at high temperature.
  • Steam generated in plant 1 is used to drive turbine 100 .
  • the plant 1 is configured to burn fuel in a furnace 2, separate a circulating material from exhaust gas by a cyclone 3 functioning as a solid-gas separator, and return the separated circulating material to the furnace 2 for circulation.
  • the separated circulating material is returned to the lower part of the furnace 2 via a circulating material recovery pipe 4 connected below the cyclone 3 .
  • the lower portion of the circulating material recovery pipe 4 and the lower portion of the furnace 2 are connected via a loop seal portion 4a having a narrowed flow path.
  • a predetermined amount of circulating material is stored in the lower portion of the circulating material recovery pipe 4 .
  • the exhaust gas from which the circulating material has been removed by the cyclone 3 is supplied to the rear flue 5 via the exhaust gas passage 3a.
  • the boiler is equipped with a furnace 2 for burning fuel and a heat exchanger for generating steam using the heat obtained by combustion.
  • a fuel supply port 2a for supplying fuel is provided in the middle part of the furnace 2, and a gas outlet 2b for discharging combustion gas is provided in the upper part of the furnace 2.
  • Fuel supplied to the furnace 2 from a fuel supply device (not shown) is supplied to the interior of the furnace 2 through a fuel supply port 2a.
  • the furnace wall of the furnace 2 is provided with furnace wall pipes 6 for heating the boiler feed water. Boiler feedwater flowing through the furnace wall tube 6 is heated by combustion in the furnace 2 .
  • solid matter containing fuel supplied from the fuel supply port 2a is fluidized by combustion/fluidizing air introduced from the lower air supply line 2c, and the fuel is fluidized at about 800 to 900, for example. °C.
  • Combustion gas generated in the furnace 2 is introduced into the cyclone 3 while entraining the circulating material.
  • the cyclone 3 separates the circulating material from the gas by centrifugal separation, returns the separated circulating material to the furnace 2 through the circulating material recovery pipe 4, and transfers the combustion gas from which the circulating material has been removed to the exhaust gas flow path 3a. to the rear flue 5.
  • furnace bed material In the furnace 2, part of the circulating material called furnace bed material stays at the bottom.
  • This bed material may contain bed material having a coarse particle size that is unsuitable for circulation and contaminants from exhaust combustion. Therefore, in the furnace 2, the in-furnace bed material is continuously or intermittently discharged to the outside from the discharge port 2d at the bottom in order to suppress poor flow.
  • the discharged bed material is supplied to the furnace 2 again or discarded as it is after removing unsuitable materials such as metals and coarse grains on a circulation line (not shown).
  • the circulating material in the furnace 2 circulates in a circulating system composed of the furnace 2 , the cyclone 3 and the circulating material recovery pipe 4 .
  • the rear flue 5 has a flow path through which the gas discharged from the cyclone 3 flows to the rear stage.
  • the rear flue 5 has a superheater 10 for generating superheated steam and an economizer 12 for preheating boiler feed water as an exhaust heat recovery section for recovering the heat of the exhaust gas.
  • the exhaust gas flowing through the rear flue 5 is cooled by heat exchange with steam and boiler feed water flowing through the superheater 10 and economizer 12 .
  • It also has a steam drum 8 in which boiler feedwater that has passed through the economizer 12 is stored, and the steam drum 8 is also connected to the furnace wall pipe 6 .
  • the economizer 12 transfers the heat of the exhaust gas to the boiler feed water to preheat the boiler feed water.
  • Economizer 12 is connected to pump 7 by pipe 21 and to steam drum 8 by pipe 22 .
  • Boiler feed water supplied from pump 7 via pipe 21 to economizer 12 and preheated by economizer 12 is fed via pipe 22 to steam drum 8 .
  • a downcomer pipe 8 a and a furnace wall pipe 6 are connected to the steam drum 8 .
  • Boiler feed water in the steam drum 8 descends down the downcomer pipe 8a, is introduced into the furnace wall pipe 6 on the lower side of the furnace 2, and flows toward the steam drum 8.
  • the boiler water supply in the furnace wall tube 6 is heated by the combustion heat generated in the furnace 2 and evaporated in the steam drum 8 to become steam.
  • a saturated steam pipe 8b is connected to the steam drum 8 for discharging the steam inside.
  • the saturated steam pipe 8 b connects the steam drum 8 and the superheater 10 .
  • the steam in the steam drum 8 is supplied to the superheater 10 via the saturated steam pipe 8b.
  • the superheater 10 uses the heat of the exhaust gas to superheat steam to generate superheated steam.
  • the superheated steam passes through the pipe 10a, is supplied to the turbine 100 outside the plant 1, and is used for power generation.
  • the pressure and temperature of the steam discharged from the turbine 100 are lower than the pressure and temperature of the steam discharged from the superheater 10.
  • the pressure of the steam supplied to the turbine 100 is about 10-17 MPa, and the temperature is about 530-570.degree.
  • the pressure of the steam discharged from the turbine 100 is about 3-5 MPa, and the temperature is about 350-400.degree.
  • a condenser 102 is provided downstream of the turbine 100 . Steam discharged from the turbine 100 is supplied to the condenser 102 , condensed in the condenser 102 and returned to saturated water, and then supplied to the pump 7 .
  • Turbine 100 is connected to a generator that converts kinetic energy obtained by rotation of turbine 100 into electrical energy.
  • the pump 7a supplies make-up water so as to keep the water level of the condenser 102 constant.
  • FIG. 1 shows a make-up water flow rate u1 (an example of "process data") supplied by the pump 7a.
  • the process data handled in the present embodiment may be any data related to the plant 1, but may be, for example, data obtained by measuring the state of the plant 1 with a sensor (an example of “process data”). may include measurements such as plant 1 temperature, pressure and flow.
  • FIG. 1 shows the boiler feedwater flow rate u2 (an example of “process data”) supplied from the pump 7 to the economizer 12 . Further, FIG. 1 shows a boiler outlet steam flow rate u3 (an example of “process data”) supplied from the superheater 10 to the turbine 100, and a saturated steam flow rate u4 (“process data”) supplied from the steam drum 8 to the superheater 10. data”).
  • the make-up water flow rate u1 may be controlled so as to follow the saturated steam flow rate u4. Further, while monitoring both the boiler outlet steam flow rate u3 (or superheated steam flow rate) and the liquid surface level of the steam drum 8, the boiler feed water flow rate u2 may be controlled to be adjusted.
  • DCS Distributed Control System, FIG. 2
  • DCS Distributed Control System, FIG. 2
  • receives process data of plant 1 such as make-up water flow rate u1, boiler feed water flow rate u2, boiler outlet steam flow rate u3 and saturated steam flow rate u4 from plant 1, and operates plant 1 Monitor the situation to see if there is any abnormality in the plant 1.
  • the monitoring device 40 evaluates process data based on alarm determination logic set for each type of abnormality, and causes the display device 50 to issue an alarm when it is determined that an abnormality has occurred.
  • the process data relating to the plant 1 may be other data.
  • the process data relating to the plant 1 may be other data such as temperature and pressure, data calculated based on a plurality of process data, or uncalculated data obtained from sensors or the like.
  • FIG. 2 is a functional block diagram of the plant 1, DCS 20 and driving support system 30 according to this embodiment.
  • the DCS 20 is a distributed control system for controlling the plant 1.
  • the DCS 20 acquires process data from sensors or the like installed in the plant 1 and supplies the plant 1 with control signals for controlling the plant 1 based on the process data.
  • the driving support system 30 includes an edge/cloud computing unit 32 that acquires process data from the DCS 20, and a monitoring device 40 that acquires process data from the edge/cloud computing unit 32 and monitors the plant 1 based on the process data. , and a display device 50 for displaying the operating status of the plant 1 for the operator.
  • the monitoring device 40 (an example of a “control device”) also functions as a control device that controls the display device 50 . Specifically, the monitoring device 40 acquires the process data, acquires the score value of the evaluation element based on the process data, and causes the display device 50 to display the score value.
  • the edge/cloud computing unit 32 includes a plurality of edge servers distributed on the periphery of the network and a cloud data server that collects process data from the plurality of edge servers and provides the monitoring device 40 with the collected process data.
  • a cloud data server that collects process data from the plurality of edge servers and provides the monitoring device 40 with the collected process data.
  • the driving assistance system 30 does not necessarily have to include the edge/cloud computing unit 32 . In that case, the driving assistance system 30 acquires process data from the DCS 20 via the network.
  • the monitoring device 40 includes a score display control section 42 and a storage section 44 .
  • the score display control unit 42 includes a process data acquisition unit 42A that acquires process data from the edge/cloud computing unit 32, and a scoring unit that scores each evaluation element based on the process data acquired by the process data acquisition unit 42A.
  • a score information display unit 42C that causes the display device 50 to display the score information acquired by the scoring unit 42B.
  • the storage unit 44 of the monitoring device stores the above-described hierarchical structure, the logic for obtaining a score based on the process data, and the score history of the past (for example, the past one year) for each evaluation element included in the hierarchical structure. .
  • a hierarchical structure consisting of three layers (levels) is constructed and the present invention is applied will be described.
  • the score may be obtained based on a plurality of process data, or may be obtained based on the scores of a plurality of lower layer evaluation elements. The latter corresponds to obtaining a score for an upper layer evaluation factor based on a plurality of process data for obtaining scores for a plurality of lower layer evaluation factors.
  • FIG. 3 shows a functional block diagram of the scoring unit 42B.
  • the scoring unit 42B acquires deviation distance information indicating the degree of deviation from the reference value based on the process data acquired by the process data acquisition unit 42A, and the deviation distance acquisition unit 42B1 acquires deviation distance information.
  • An itemized abnormality degree indexing unit 42B2 that evaluates and quantifies the divergence distance information based on specialized driving knowledge, and noise is removed from the information digitized by the itemized abnormality degree indexing unit 42B2. and a noise removal unit 42B3 that obtains a score for a monitoring item that is an evaluation element.
  • the scoring unit 42B includes a middle-level synthesis unit 42B4 that scores middle-level evaluation elements based on the scores of a plurality of monitoring items.
  • one middle-level comprehensive section 42B4 of this embodiment is configured to set the maximum value of the scores of a plurality of lower-level evaluation factors as the score of the middle-level level evaluation factor.
  • the scoring unit 42B includes an all-element synthesis unit 42B5 that acquires the scores of the upper-layer evaluation elements by a mathematical algorithm based on the scores of the multiple middle-layer evaluation elements.
  • the divergence distance acquisition unit 42B1 acquires divergence distance information indicating the degree of divergence from the reference value.
  • n divergence distance acquisition units 42B1 are provided according to the types of process data.
  • the reference value differs depending on the type of process data.
  • FIG. 4A is a scatter diagram showing an example of process data and reference values of the process data. In the figure, the horizontal axis is the pressure of the boiler, which is the process data, and the vertical axis is the temperature. is shown. In this example, the distance between the reference value and each ellipse in the radial direction corresponds to the divergence distance. Similarly, each divergence distance acquisition unit 42B1 acquires the divergence distance of each type of process data.
  • the divergence distance can be said to be information indicating the degree of divergence from the optimum driving state.
  • a threshold value may be set for process data, and in the case of process data exceeding the threshold value, the item-by-item abnormality degree indexing unit 42B2 may index the abnormal state. .
  • the itemized abnormality degree indexing unit 42B2 quantifies the divergence distance information.
  • n itemized abnormality degree indexing units 42B2 are provided according to the types of process data. Numericalization is set for each process data based on logic such as a function set based on specialized driving knowledge. For example, depending on the process data, even if the divergence distance is large, there are some that do not greatly affect the operating state of the plant 1 . On the other hand, depending on the process data, even if the divergence distance is small, there are some that greatly affect the operating state of the plant 1 . Also, the degree of influence may not be proportional to the divergence distance. Therefore, each process data is quantified based on specialized operating knowledge.
  • FIG. 4(B) is a graph in which the horizontal axis is the divergence distance and the vertical axis is a numerical value of 0 or more and 1 or less.
  • the graph is set so that the greater the divergence, the greater the numerical value. Therefore, the vertical axis may be expressed as the degree of abnormality.
  • the reference value may be predetermined, may be modifiable by the user, or may be configured to be dynamically changeable based on subsequently obtained data.
  • each itemized abnormality degree indexing unit 42B2 is normalized to a numerical value of 0 or more and 1 or less.
  • the item-by-item anomaly degree setting unit 42D sets logic for digitizing (scoring, sometimes called “indexing") the divergence distance.
  • the logic may be intuitively and subjectively set based on expert driving knowledge, or may differ for each process data.
  • the logic may be, for example, defined by a function such as the graph shown in FIG. 4B, or may be dynamically changed in consideration of changes over time.
  • the noise removal unit 42B3 removes instantaneous values generated due to noise or the like from the data digitized by the itemized abnormality degree indexing unit 42B2. Through the above process, each monitoring item, which is the evaluation element of the lowest layer, is scored. Therefore, the quantification in the itemized abnormality degree setting unit 42D corresponds to the scoring.
  • the middle-level comprehensive section 42B4 scores the middle-level evaluation elements based on the scores of the plurality of evaluation elements. Middle-tier factors are scored based on the scores of lower-tier factors (if any), and lower-tier factors are scored based on the scores of lower-level factors (if any). , the evaluation element in the lowest layer corresponds to the monitoring item from which process data is acquired. Therefore, it can be said that an evaluation element belonging to the middle hierarchy is acquired based on the process data of the monitoring items (an example of the "first group") belonging to the lower layer of the evaluation element of the middle hierarchy among all the process data.
  • the monitoring items of the first group and the monitoring items of the second group may be completely different or only partially different.
  • a case where only a part is different means a case where a certain monitoring item influences a certain evaluation element and also influences other evaluation elements.
  • the monitoring items of one group and the monitoring items of another group may be completely different or only partially different.
  • FIG. 3 shows an example of scoring middle-level evaluation elements based on scores of two evaluation elements, but is not limited to this, and is based on scores of three or more evaluation elements. It can be scored.
  • m integer of 2 ⁇ m ⁇ n
  • middle-level comprehensive units 42B4 are provided.
  • the logic for scoring the middle-level evaluation elements may be different for each middle-level comprehensive section 42B4.
  • the middle hierarchy general section 42B4 may be configured so that the score of the maximum value among the scores of the plurality of evaluation elements belonging to the lower hierarchy is used as the score of the middle hierarchy evaluation element.
  • this embodiment has three layers (levels), a plurality of evaluation elements belonging to the lower layers of the middle layer are monitoring items from which process data are acquired.
  • the all-element synthesis unit 42B5 scores the upper-layer evaluation elements using the maximum or minimum score of the lower-layer evaluation elements or a mathematical algorithm.
  • the evaluation elements in the upper layer are scored based on the scores of the evaluation elements in the lower layers, the evaluation elements in the lower layers are scored based on the scores in the evaluation elements in the lower layers, and the evaluation elements in the lowest layer are scored based on the process data acquired. This corresponds to the monitoring items that are monitored. Therefore, it can be said that the evaluation factor of the top layer is acquired based on all the process data belonging to the lower layer in principle.
  • the integration method setting unit 42E sets parameters necessary for the all-element integration unit 42B5.
  • the all-element synthesis unit 42B5 if the evaluation elements are scored by the maximum value or the minimum value, no setting is required. If so, set the weighting factor.
  • scoring by a mathematical algorithm set parameters unique to the algorithm. These weighting coefficients and model parameters are based on specialized driving knowledge, modeling the logic for making a comprehensive diagnosis based on the judgment results of each evaluation element (or monitoring item). are weighted accordingly and are set in consideration of the combination of each evaluation factor.
  • this layer corresponds to the top layer, so the evaluation elements can be called comprehensive indicators.
  • the higher the score, the more the driving state deviates from the optimum driving condition, so the score may be called the degree of abnormality or the total degree of abnormality.
  • FIG. 5 shows a physical configuration for realizing the driving support system 30 according to this embodiment.
  • the edge/cloud computing unit 32 can adopt a known physical configuration, the description is omitted. A physical configuration will be described.
  • the driving support system 30 includes a CPU (Central Processing Unit) 30A corresponding to a calculation unit, a RAM (Random Access Memory) 30B and a ROM (Read only Memory) 30C corresponding to a storage unit, a communication unit 30D, and an input unit 30E. and a display section 30F. These components are connected to each other via a bus so that data can be sent and received.
  • the driving support system 30 is composed of one computer will be described, but the driving support system 30 may be composed of a plurality of computers.
  • the display section 30F may be composed of a plurality of displays.
  • the configuration shown in FIG. 5 is merely an example, and some of these configurations may be omitted. Additionally, portions of the configuration may be provided at remote locations. For example, part of the ROM 30C may be provided at a remote location and configured to be communicable via a communication network.
  • the CPU 30A is an arithmetic unit that performs control processing, arithmetic processing, etc. included in the present disclosure by executing a computer program or the like recorded in the ROM 30C or the like.
  • the CPU 30A has a processor.
  • the CPU 30A receives various information (including process data) from the RAM 30B, the ROM 30C, the communication section 30D, the input section 30E, etc., and causes the display section 30F to display the arithmetic processing results and the like, or stores them in the RAM 30B or the ROM 30C.
  • the RAM 30B functions as primary storage such as cache memory and main memory among the storage units, and may be configured with volatile semiconductor storage elements such as SRAM and DRAM, for example.
  • the ROM 30C functions as a secondary memory in the storage unit, and may be configured by an electrically rewritable non-volatile semiconductor memory element such as a flash memory or a magnetically rewritable HDD. .
  • the ROM 30C may, for example, non-transitory store computer programs and data for executing processing including each control and each arithmetic processing shown in the present disclosure.
  • the communication unit 30D is an interface for connecting the driving support system 30 to other devices such as the DCS 20.
  • the communication unit 30D may be connected to a communication network such as the Internet.
  • the input unit 30E receives data input from the operator (including selection of important words and input of additional guide information in the present disclosure), and may include, for example, a mouse, keyboard, and touch panel.
  • the display unit 30F visually displays the calculation result by the CPU 30A, and may be composed of, for example, an LCD (Liquid Crystal Display).
  • the CPU 30A mainly reads out and executes a computer program stored in the storage unit 44 to configure the score display control unit 42 of the monitoring device 40. It is possible to realize each process. Moreover, each database constituting the storage unit 44 can be realized mainly from the ROM 30C, and the display device 50 can be realized mainly from the display unit 30F.
  • FIG. 6 shows a score (an example of a "first It is an example of a display screen (an example of a "first screen") of the display device 50 that displays a "score").
  • the display device 50 is configured to be able to display score information and the like under the control of the score display control section 42 .
  • a comprehensive score indicating the operating status of the entire plant is displayed in the area AR11 of the display screen. This score corresponds to the score of the evaluation element in the top layer scored by the all-element synthesis unit 42B5.
  • the larger the divergence the larger the numerical value. Therefore, the overall score of the entire plant may be referred to as the "total degree of abnormality" or the like.
  • the evaluation elements of the lower layers are displayed.
  • the middle hierarchy (an example of the “second level”), which is the lower layer of the operating state of the entire plant, which is the evaluation element of the top layer, includes the component quality (an example of the “second element”), It is shown that it consists of seven evaluation factors such as thermal state (an example of a "third factor”) and efficiency (an example of a "second factor").
  • a radar chart showing the score of each lower layer evaluation element is displayed.
  • the score for "member quality” is 70
  • the score for "thermal condition” is 40.
  • the score of each evaluation element may be displayed in a bar graph. Also, it is not always necessary to display the score value. This is because it is possible to compare the evaluation elements without displaying the score values, and therefore it is possible to specify the evaluation elements for which countermeasures should be taken.
  • this display screen displays the one-year score history of the comprehensive anomaly degree read from the storage unit 44 and the maximum, minimum, and average values of the comprehensive anomaly degree for the past 24 hours. Therefore, it is also possible to grasp the trend of the operating state of the entire plant.
  • FIG. 7 is an example of the display screen (an example of the "second screen") of the display device 50 that displays the score indicating the state of "material quality" belonging to the middle hierarchy.
  • the "material quality” score is displayed in the area AR21 of the display screen. This score corresponds to the score of the middle-level evaluation element scored by the middle-level comprehensive section 42B4. This score is obtained based on the scores of the underlying evaluation factors according to a predetermined logic.
  • the evaluation elements of the lower layers are displayed.
  • the lowest layer (an example of the "third level)
  • the "important item group 1” (an example of the "fourth element")
  • “important item group 2” (an example of “fourth element”).
  • "Important item group 1" is scored based on the lower monitoring items "Pressure 1 score” and "Temperature 1 score” (an example of the "third group”).
  • the score of each lower layer evaluation element (an example of the "fourth score) is displayed. Since the scores of "important item group 1" and "important item group 3" are high, the operator can presume that these are the causes of the abnormality. In addition, as shown in the figure, the score history of the evaluation elements in the lower layers may be displayed.
  • FIG. 8 shows an example of a display screen displaying the lower middle layer and the bottom layer at the same time.
  • the evaluation element of the lower middle layer is "Important item group 1".
  • the evaluation elements in the bottom layer, which is the layer below the “important item group 1" are "pressure 1" and "temperature 1".
  • the scores of "Important item group 1", “Pressure 1” and “Temperature 1” are displayed.
  • the score of "important item group 1” corresponds to the score of the middle-level evaluation element scored by the middle-level comprehensive section 42B4.
  • the scores of "pressure 1” and “temperature 1” correspond to the scores of the monitoring items, which are the lowest evaluation elements scored by the itemized abnormality degree indexing unit 42B2.
  • a scatter diagram showing the process data of the monitoring items is also displayed in the area AR32 of the display screen.
  • the display device and the display method according to the present embodiment when the plant 1, which is an object, is monitored from a large number of state quantities, for example, 100 or more, the operating state of the object etc. can be hierarchically evaluated with respect to a plurality of evaluation elements, and a state quantity that is an evaluation factor for a certain evaluation element can be easily specified.
  • the display device and display method may be configured to display and issue an alarm according to the score of each evaluation element.
  • the middle layer comprehensive section 42B4 may index the evaluation elements based on fuzzy reasoning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

A display device according to the present disclosure is configured to be able to display: a first score indicating a state quantity of a first element belonging to a first level, from a plurality of types of state quantities of an object; a second score indicating a state quantity of a second element belonging to a second level, from the state quantities in a first group, which is a part of the plurality of types; and a third score indicating a state quantity of a third element belonging to the second level, from the state quantities in a second group, which is a part of the plurality of types.

Description

表示装置、表示方法、制御装置及びコンピュータプログラムDisplay device, display method, control device and computer program
 本発明は、表示装置、表示方法、制御装置及びコンピュータプログラムに関する。 The present invention relates to a display device, a display method, a control device and a computer program.
 従来より、プラント等の監視対象物に複数個のセンサを設置して、各センサから取得される状態量に基づいて、監視対象物の運転状態を監視し、必要に応じて制御することが行われていた。 Conventionally, a plurality of sensors are installed on an object to be monitored such as a plant, and based on the state quantity obtained from each sensor, the operating state of the object to be monitored is monitored and controlled as necessary. It was
 特許文献1には、オペレータにプラントの運転状態を直感的に提供するためのプラント運転状態診断装置が記載されている。この装置は、プロセスデータに基づき、「運転状態」、「環境保全」及び「機器保守」の3つの観点からプラントの状態を診断するので、オペレータはプラントの状態を直感的に把握することが可能となる。この文献の図3には、監視対象物であるゴミ焼却プラントの運転状態診断装置による表示画面が示される。この表示画面には、プロセスデータを示す9つのプロセスメータと、上記3つの観点についてファジィ推論を用いた診断により得られた診断結果を示す3つのファジィメータとが表示されることが示される。 Patent Document 1 describes a plant operating state diagnostic device for intuitively providing the operating state of the plant to the operator. Based on process data, this equipment diagnoses plant conditions from the three perspectives of "operational status," "environmental conservation," and "equipment maintenance," allowing operators to intuitively grasp plant conditions. becomes. FIG. 3 of this document shows a display screen of an operating state diagnosis device for a garbage incineration plant, which is an object to be monitored. This display screen displays nine process meters indicating process data and three fuzzy meters indicating diagnosis results obtained by diagnosis using fuzzy inference for the above three viewpoints.
 特許文献2には、プラントの変調(異常)を迅速に把握するための表示装置と演算処理装置とを備えるプラント制御監視装置が記載されている。この装置は、アラームを一定の分類基準に応じて複数のグループに区分したので、アラームが発生した場合にどのグループに属する計装機器に異常が発生したかを迅速に把握することが可能となる。この文献の図3には、監視対象物であるプラントを、工程、複数の工程をまとめた系列、複数の系列をまとめたプラントという3階層に分けてアラームを表示することが示される。 Patent Document 2 describes a plant control and monitoring device that includes a display device and an arithmetic processing device for quickly grasping plant modulation (abnormality). This device classifies alarms into a plurality of groups according to a certain classification standard, so when an alarm occurs, it is possible to quickly ascertain which group of instrumentation equipment has an abnormality. . FIG. 3 of this document shows that a plant, which is an object to be monitored, is divided into three hierarchies, namely, a process, a series of a plurality of processes, and a plant of a plurality of series, and alarms are displayed.
特開平8-314538号公報JP-A-8-314538 特開2003-177818号公報Japanese Patent Application Laid-Open No. 2003-177818
 しかしながら、特許文献1記載のプラント運転状態診断装置は、全てのプロセスデータを一画面に表示するものであるから、多数のセンサから多数のプロセスデータ(例えば100種類以上)を取得するような監視対象物に適したものではない。 However, since the plant operating state diagnosis device described in Patent Document 1 displays all process data on one screen, a monitoring target that acquires a large number of process data (for example, 100 types or more) from a large number of sensors Not suitable for objects.
 特許文献2記載のプラント制御監視装置は、アラームを階層表示するものに過ぎない。即ち、プラントを工程単位に区分した階層構造に基づいてアラームを迅速に把握するためのものであるから、プラント等の監視対象物の運転状態を評価するための複数の評価要素について評価をすることができない。 The plant control and monitoring device described in Patent Document 2 merely displays alarms in a hierarchical manner. That is, since it is intended to quickly grasp alarms based on the hierarchical structure in which the plant is divided into process units, it is possible to evaluate a plurality of evaluation elements for evaluating the operating state of objects to be monitored such as plants. can't
 そこで本発明は、対象物を多数の状態量から監視等する場合に、その対象物の運転状態等を複数の評価要素について階層的に評価することを可能とすると共に、ある評価要素の評価要因となる状態量を容易に特定することが可能となる表示装置、表示方法、制御装置及びコンピュータプログラムを提供することを目的とする。 Therefore, the present invention makes it possible to hierarchically evaluate the operating state of an object with respect to a plurality of evaluation factors when monitoring an object from a large number of state quantities, and at the same time It is an object of the present invention to provide a display device, a display method, a control device, and a computer program capable of easily specifying the state quantity to be.
 本開示の一態様は、対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアと、前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアと、前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアと、を表示可能に構成される表示装置を提供する。 According to one aspect of the present disclosure, a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantities of an object, and the state quantity of a first group that is a part of the plurality of types Then, from the second score indicating the state quantity of the second element belonging to the second level and the state quantity of the second group which is a part of the plurality of types, the state quantity of the third element belonging to the second level A display device configured to be able to display a third score to indicate is provided.
 なお、「第1スコア」、「第2スコア」等の「スコア」は、数値だけに限られず、レベル、段階、または、程度を示す情報であってもよい。「スコア」は、指標を含む。 "Scores" such as "first score" and "second score" are not limited to numerical values, and may be information indicating levels, stages, or degrees. A "score" includes an index.
 また、本開示の一態様において表示装置は、前記第1スコアと、前記第2スコアと、前記第3スコアとを同一の画面に表示可能に構成される。 Further, in one aspect of the present disclosure, the display device is configured to be able to display the first score, the second score, and the third score on the same screen.
 また、本開示の一態様において表示装置は、前記第1グループの一部である第3グループの前記状態量から、第3レベルに属する第4要素の状態量を示す第4スコアを更に表示可能に構成される。 Further, in one aspect of the present disclosure, the display device can further display a fourth score indicating a state quantity of a fourth element belonging to a third level from the state quantities of a third group that is a part of the first group. configured to
 また、本開示の一態様において表示装置は、前記第2スコアと、前記第4スコアとを同一の第2画面に表示可能に構成され、前記第1スコアと、前記第2スコアと、前記第3スコアとを表示する前記画面から、前記第2画面に遷移可能に構成される。 Further, in one aspect of the present disclosure, the display device is configured to be able to display the second score and the fourth score on the same second screen, and the first score, the second score, and the fourth score. The second screen can be transitioned from the screen displaying the 3 scores.
 また、本開示の一態様において表示装置は、前記複数種類の状態量のうち、少なくとも一つの前記状態量を表示可能に構成される。 In addition, in one aspect of the present disclosure, the display device is configured to be able to display at least one of the plurality of types of state quantities.
 また、本開示の一態様において前記対象物は、プラントであり、前記状態量は、プロセスデータである。 Also, in one aspect of the present disclosure, the object is a plant, and the state quantity is process data.
 本開示は、対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアを表示するステップと、前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアを表示するステップと、前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアを表示するステップと、を含む表示方法を提供する。 The present disclosure includes a step of displaying a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantities of an object; displaying a second score indicating a state quantity of a second element belonging to a second level from the quantity; and displaying a third score indicating the state quantity of the element.
 本開示は、対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアを表示装置に表示させ、前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアを前記表示装置に表示させ、前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアを表示装置に表示させるように前記表示装置を制御する制御装置を提供する。 The present disclosure causes a display device to display a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantities of an object, and displays the first score of the first group which is a part of the plurality of types. From the state quantity, causing the display device to display a second score indicating the state quantity of a second element belonging to the second level, and from the state quantity of the second group, which is a part of the plurality of types, to the second level A control device is provided for controlling the display device so as to cause the display device to display a third score indicating the state quantity of the third element to which it belongs.
 本開示は、コンピュータに、対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアを表示装置に表示させ、前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアを前記表示装置に表示させ、前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアを表示装置に表示させるための制御命令を生成させるコンピュータプログラムを提供する。 The present disclosure causes a computer to display, on a display device, a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantities of an object, and a first score that is a part of the plurality of types. A second score indicating the state quantity of a second element belonging to a second level is displayed on the display device from the state quantity of the group, and the state quantity of the second group, which is a part of the plurality of types, is calculated from the state quantity of the second group. A computer program is provided for generating a control instruction for displaying a third score indicating a state quantity of a third element belonging to level 2 on a display device.
 本開示は、例えば、50以上のプロセスデータに基づいてプラントを監視する監視方法であって、第nレベルの階層構造を使用する監視方法を提供する。ここで、nは4以上の整数である。この階層構造は、プラントの運転状態を評価する第1要素と、第1要素に影響する第2要素及び第1要素に影響する第3要素を含む前記第1要素に影響する第2レベルに属する複数の要素、前記第2要素に影響する第3レベルに属する複数の要素と前記第3要素に影響する第3レベルに属する複数の要素とを含む。最下層の複数の要素は、プロセスデータに対応付けられた監視項目である。最下層は、第nレベル又はそれ以下である。例えば、第2要素を含む階層数は、nであり、第3要素を含む階層数は、mであってよい。ここでmは、m<nの整数である。各要素は、指標化されており、典型的には、数値で指標化されている。ある要素の指標化は、この要素に影響する下層の要素に基づいて指標化されている。同レベルの要素であっても、指標化の方法は、異なっていてもよい。例えば、第kレベルに属する複数の要素のうち、ある要素の指標化の方法(第1方法)と、他の要素の指標化の方法(第2方法)は異なっていてもよい。ここでkは、n以下の整数である。同様に最下層に属する複数の要素である監視項目の指標化の方法は、異なっていてもよい。監視項目は、基準値とプロセスデータの値に基づいて指標化されてもよい。ある要素の指標化された情報が表示されるとき、同一の表示画面に、その要素に影響する下層の要素の指標化された情報が同時表示されることが好ましい。 The present disclosure provides a monitoring method for monitoring a plant based on, for example, fifty or more process data, using an nth level hierarchy. Here, n is an integer of 4 or more. This hierarchical structure belongs to a first element that evaluates the operating state of the plant and a second level that influences the first element, which includes a second element that influences the first element and a third element that influences the first element. A plurality of elements, a plurality of elements belonging to a third level affecting said second element and a plurality of elements belonging to a third level affecting said third element. A plurality of elements in the lowest layer are monitoring items associated with process data. The lowest layer is the nth level or lower. For example, the number of layers including the second element may be n, and the number of layers including the third element may be m. Here, m is an integer satisfying m<n. Each element is indexed, typically numerically. An element's indexing is indexed based on the underlying elements that affect this element. Elements at the same level may have different indexing methods. For example, among a plurality of elements belonging to the k-th level, the method of indexing a certain element (first method) and the method of indexing other elements (second method) may be different. Here, k is an integer less than or equal to n. Similarly, the method of indexing the monitoring items, which are multiple elements belonging to the lowest layer, may be different. The monitoring items may be indexed based on the reference value and process data values. When the indexed information of an element is displayed, it is preferable to simultaneously display the indexed information of the underlying elements that affect that element on the same display screen.
図1は、一実施形態に係るプラントの全体構成を示す概略図である。 Drawing 1 is a schematic diagram showing the whole plant composition concerning one embodiment. 図2は、一実施形態に係る運転支援システムの機能ブロック図である。FIG. 2 is a functional block diagram of the driving assistance system according to one embodiment. 図3は、一実施形態に係る運転支援システムのスコア化部の機能ブロック図である。FIG. 3 is a functional block diagram of the scoring unit of the driving assistance system according to one embodiment. 図4は、一実施形態に係る運転支援システムにおける基準値及び異常度を示すグラフである。FIG. 4 is a graph showing reference values and degrees of abnormality in the driving support system according to one embodiment. 図5は、一実施形態に係る運転支援システムの物理構成を示す図である。FIG. 5 is a diagram showing the physical configuration of the driving assistance system according to one embodiment. 図6は、一実施形態に係る運転支援システムの表示装置の表示画面の一例である。FIG. 6 is an example of a display screen of the display device of the driving support system according to one embodiment. 図7は、一実施形態に係る運転支援システムの表示装置の表示画面の一例である。FIG. 7 is an example of a display screen of the display device of the driving assistance system according to one embodiment. 図8は、一実施形態に係る運転支援システムの表示装置の表示画面の一例である。FIG. 8 is an example of a display screen of the display device of the driving support system according to one embodiment.
 以下、本発明の実施形態について図面を用いて説明する。以下の実施形態は、本発明を説明するための例示であり、本発明をその実施形態のみに限定する趣旨ではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention only to those embodiments.
 本発明は、複数種類の状態量を取得可能な対象物に適用可能であり、特に、複数種類のプロセスデータ(「状態量」の一例)を取得可能なプロセスに好適に適用可能である。プラントは、例えば、製品の製造を行う化学製品製造プラント、石油化学製品製造プラント、石油精製プラント、鉄鋼製品製造プラント、食品製造プラント、紙パルプ製品製造プラント、医薬品製造プラント、自動車製造プラント、機械製品製造プラント、電気製品製造プラントなどの各種製造プラントまたは発電プラント、廃棄物処理プラントを含む。このようなプラントに本発明を適用することにより、以下に記載するように、プラントの運転状態等を複数の評価要素について階層的に評価することを可能とすると共に、ある評価要素の評価要因となるプロセスデータを容易に特定することが可能となる。 The present invention is applicable to objects from which multiple types of state quantities can be acquired, and is particularly suitable for processes from which multiple types of process data (an example of "state quantities") can be acquired. Plants include, for example, chemical product manufacturing plants that manufacture products, petrochemical product manufacturing plants, petroleum refining plants, steel product manufacturing plants, food manufacturing plants, pulp and paper product manufacturing plants, pharmaceutical manufacturing plants, automobile manufacturing plants, and machinery products. Including various manufacturing plants such as manufacturing plants, electrical product manufacturing plants, power plants, and waste treatment plants. By applying the present invention to such a plant, as described below, it is possible to hierarchically evaluate the operating state of the plant with respect to a plurality of evaluation factors, It is possible to easily identify the process data that becomes
 本出願の発明者らは、例えば100種類以上のプロセスデータを取得してプラントを監視し、必要に応じて制御するための最適な方法について検討した。プラントを監視し、必要に応じて制御するのはオペレータであるから、プラントの異常(変調を含む。以下同じ)が発生した際に、オペレータは、迅速に原因を特定し必要に応じて適切な対策を講じなければならない。そのためには、特許文献1記載の発明のように、同一画面に100種類以上のプロセスデータを表示する方法は適当ではない。 The inventors of this application, for example, acquired more than 100 types of process data, monitored the plant, and examined the optimal method for control as necessary. Since it is the operator who monitors the plant and controls it as necessary, when an abnormality (including modulation; the same shall apply hereinafter) occurs in the plant, the operator must quickly identify the cause and take appropriate action as necessary. Countermeasures must be taken. For that purpose, the method of displaying 100 or more types of process data on the same screen as in the invention described in Patent Document 1 is not suitable.
 一方で特許文献2記載の発明のように、プロセスデータをグループ化し、階層的に表示してアラームが発生しているプロセスデータを容易に特定する方法も適当ではない。単にアラームが発生しているプロセスデータ(閾値を越えているプロセスデータ)を特定するだけでは、そのアラームがプラントにどのような異常を生じさせているのかわからないため、適切な対策を講じることが困難なためである。加えて、複数のプロセスデータについてアラームが発生している場合に、そのアラームが同一の異常に起因しているのか、独立の異常に起因しているのかという判断ができないため、適切な対策を講じることが困難となってしまう。 On the other hand, as in the invention described in Patent Document 2, the method of grouping process data and hierarchically displaying them to easily identify the process data in which an alarm has occurred is also not suitable. It is difficult to take appropriate countermeasures simply by identifying the process data that generated the alarm (process data exceeding the threshold) because it is not possible to know what kind of abnormality the alarm is causing in the plant. It's for the sake of it. In addition, when alarms occur for multiple process data, it is not possible to determine whether the alarms are caused by the same abnormality or by independent abnormalities, so appropriate countermeasures should be taken. becomes difficult.
 そこで本出願の発明者らは、専門的な運転知識等に基づいて、プラントの運転状態を評価するための複数の評価要素を特定するとともに、それら各評価要素を評価するための更に異なる複数の評価要素を特定することを繰り返すことにより、プラントの運転状態を評価するための階層的な構造を構築した。 Therefore, the inventors of the present application specify a plurality of evaluation factors for evaluating the operating state of the plant based on specialized operating knowledge, etc., and furthermore different plural factors for evaluating each of these evaluation factors A hierarchical structure for evaluating plant operating conditions was constructed by repeating the identification of evaluation factors.
 例えば、プラントの運転状態という評価要素を評価するための複数の評価要素の一つとして、「熱状態」という評価要素を設定し、「熱状態」という評価要素を評価するための更に異なる複数の評価要素として「排気ガス」及び「火炉」等の複数の評価要素を設定し、更に「排気ガス」という評価要素を評価するための更に異なる複数の評価要素として「圧力差」及び「温度効率」等の複数の評価要素を設定し、同様に「火炉」等の複数の評価要素についてもそれぞれ評価要素を評価するための更に異なる複数の評価要素を設定する、といった階層的な構造(以下、「階層構造」という場合がある。)を専門的な運転知識等に基づいて構築し、プラントの運転状態を評価するために利用することを考案した。ここで、最下層の評価要素は、プロセスデータが取得される監視項目となるように、階層的な構造は構築されている。例えば、最下層の評価要素は、「圧力」及び「温度」等のプロセスデータが取得される監視項目である。 For example, as one of a plurality of evaluation elements for evaluating the evaluation element of the operating state of the plant, an evaluation element of "thermal state" is set, and a plurality of different evaluation elements for evaluating the evaluation element of "thermal state" are set. A plurality of evaluation elements such as "exhaust gas" and "furnace" are set as evaluation elements, and "pressure difference" and "temperature efficiency" are set as further different evaluation elements for evaluating the evaluation element "exhaust gas". A hierarchical structure (hereinafter referred to as " (Sometimes referred to as "hierarchical structure"). Here, the hierarchical structure is constructed so that the evaluation elements in the lowest layer are the monitoring items from which process data are acquired. For example, the evaluation elements in the lowest layer are monitoring items for which process data such as "pressure" and "temperature" are acquired.
 このようにして構築された階層構造は、以下のような有用性を有する場合がある。 The hierarchical structure constructed in this way may have the following usefulness.
 まず、評価要素間の関連性を把握することが可能となる。ある評価要素がどのような複数の評価要素と連鎖関係にあるのかという情報は、専門的な運転知識に基づいて把握される情報であり、プラント等の設計者でなければ容易には知り得ない情報である。このような専門的な運転知識等を有していないオペレータであっても、上層の評価要素と、その評価要素の下層の評価要素を把握することにより、どの評価要素が他のどのような評価要素に関連しているのかという連鎖関係を容易に把握することが可能となる。 First, it becomes possible to grasp the relevance between evaluation elements. Information about what multiple evaluation factors are linked to a certain evaluation factor is information that can be grasped based on specialized operational knowledge, and cannot be easily known by anyone other than a plant designer. Information. Even an operator who does not have such specialized driving knowledge, etc., can grasp the evaluation elements in the upper layers and the evaluation elements in the lower layers of the evaluation elements, so that it is possible to determine which evaluation element is the other evaluation element. It is possible to easily grasp the chain relationship of whether or not it is related to the element.
 更に、最下層の評価要素は、プロセスデータが取得される監視項目であるから、プロセスデータと評価要素との関連性を把握することも可能となる。このためプラントの異常発生時の原因特定が容易になる。 Furthermore, since the evaluation elements in the lowest layer are monitoring items for which process data is acquired, it is also possible to grasp the relationship between process data and evaluation elements. Therefore, it becomes easy to identify the cause when an abnormality occurs in the plant.
 加えて、複数のプロセスデータについてアラームが発生している場合に、そのアラームが同一の異常に起因しているものか、独立した2つの異常に起因しているかの判断をすることも容易となる。複数のプロセスデータが同一の評価要素の下層に属する場合、これらプロセスデータが上層に属する同一の評価要素の異常原因になっていると判断することが可能となる。 In addition, when alarms are generated for a plurality of process data, it becomes easy to determine whether the alarms are caused by the same abnormality or by two independent abnormalities. . When a plurality of process data belong to the lower layers of the same evaluation element, it is possible to determine that these process data cause an abnormality in the same evaluation element that belongs to the upper layer.
 更に本出願の発明者らは、各評価要素をスコア化することを考案した。このことにより、レベルごとの運転状態の把握が容易となる。例えば、プラント全体の運転状態を把握したい場合、「プラント全体の運転状態」を最上層(第1レベル)の評価要素とする階層構造を構築し、各評価要素をスコア化することにより、プラント全体の運転状態を容易に把握することが可能となる。例えば、「プラント全体の運転状態」のスコアが悪いとき、その下層の複数の評価要素のスコアを比較することにより、プラント全体の運転状態の異常原因となっている下層の評価要素を特定することが容易になる。 Furthermore, the inventors of this application devised scoring each evaluation element. This makes it easy to grasp the driving state for each level. For example, if you want to understand the operating status of the entire plant, build a hierarchical structure with the "operating status of the entire plant" as the top layer (first level) evaluation element, and score each evaluation element to obtain the overall plant It is possible to easily grasp the operating state of the For example, when the score of the "operational state of the entire plant" is poor, by comparing the scores of multiple evaluation elements in the lower layer, it is possible to identify the lower-layer evaluation element that is the cause of the abnormality in the operating state of the entire plant. becomes easier.
 更に階層構造は、上層レベルの評価要素に対する影響が同程度となるような評価要素、又は、同時に確認することが意味を有する評価要素を同じレベルの評価要素として設定されている。例えば、「プラント全体の運転状態」を最上層(第1レベル)の評価要素とし、その下層(第2レベル)の評価要素として「環境値」及び「運転効率」等の複数の評価要素を設定しそれぞれスコア化される。このことにより、「環境値」及び「運転効率」のいずれが「プラント全体の運転状態」のスコアに大きな影響を与えているのか容易に比較することが可能となる。 Furthermore, in the hierarchical structure, evaluation elements that have the same degree of impact on higher-level evaluation elements, or evaluation elements that are meaningful to confirm at the same time are set as evaluation elements at the same level. For example, "operating condition of the entire plant" is set as the top layer (first level) evaluation element, and multiple evaluation elements such as "environmental value" and "operation efficiency" are set as evaluation elements in the lower layer (second level). are scored respectively. This makes it possible to easily compare which of the "environmental value" and "operating efficiency" has a greater influence on the score of "operating state of the entire plant".
 このような構成により、例えば、「プラント全体の運転状態」のスコアが悪化したときに、下層に属するいずれの評価要素がスコアの悪化に影響しているのか容易に特定することが可能になる。同様に更に下層へと移行することを繰り返すことにより、問題となる監視項目を容易に特定することも可能となる。ただし、上層レベルの評価要素に対する影響が同程度となるような評価要素は、その影響が完全に同一である必要はない。例えば、各評価要素の影響度に応じた重み付け、または、正規化された値となるようにスコア化することにより、同レベルの評価要素間の比較が容易となる。そして評価要素間を比較することにより優先的に対策を講じるべき事項が明確となる。 With such a configuration, for example, when the score for the "operational state of the entire plant" deteriorates, it is possible to easily identify which evaluation elements belonging to the lower layers are affecting the deterioration of the score. Similarly, by repeating the transition to lower layers, it becomes possible to easily identify problematic monitoring items. However, evaluation factors that have similar impacts on higher-level evaluation factors need not have exactly the same impact. For example, weighting according to the degree of influence of each evaluation factor or scoring so as to have a normalized value facilitates comparison between evaluation factors at the same level. By comparing the evaluation elements, items to be prioritized for countermeasures become clear.
 なお、プラントごとに構築される階層構造は異なるものであってもよい。プラントごとに異なる階層構造を設定することにより、プラント特有の構成を考慮した階層構造の設定が可能となる。例えば、同種のプラントに対して基本となる階層構造を設定し、プラントごとの特有の構成、又は、プラントごとの稼働状況等を考慮した修正を加えて最終的な階層構造をプラントごとに設定してもよい。 Note that the hierarchical structure constructed for each plant may be different. By setting a different hierarchical structure for each plant, it is possible to set a hierarchical structure that considers the plant-specific configuration. For example, the basic hierarchical structure is set for the same type of plant, and the final hierarchical structure is set for each plant by adding modifications that consider the unique configuration of each plant or the operating status of each plant. may
 更に、評価要素ごとに異なる手法・ロジックによりスコア化することが好ましい。例えば、ある評価要素によっては、下層に属する複数の評価要素のスコアの最大値をそのまま上層の評価要素のスコアとしてスコア化してもよい。例えば、下層に属する複数の評価要素のいずれかが異常である場合は、上層の評価要素についても異常であるといえる関係の場合、このような手法によりスコア化することが可能である。他の評価要素によっては、下層に属する複数の評価要素のスコアに基づいて、より一般的に数学的アルゴリズムに従ってスコア化してもよい。このように評価要素ごとに最適な手法によりスコア化することが可能となるから、評価精度を向上させることが可能となる。 Furthermore, it is preferable to score using different methods and logics for each evaluation element. For example, depending on a certain evaluation element, the maximum value of the scores of a plurality of evaluation elements belonging to the lower layer may be directly scored as the score of the upper layer evaluation element. For example, if any one of a plurality of evaluation elements belonging to the lower layer is abnormal, it is possible to score by such a method in the case of a relationship that can be said to be abnormal for the evaluation elements of the upper layer as well. Other evaluation factors may be scored more generally according to a mathematical algorithm based on the scores of multiple evaluation factors belonging to lower layers. In this way, it is possible to score each evaluation element by the optimum method, so it is possible to improve the evaluation accuracy.
 なお、階層のレベル数は評価要素によって異なっていてもよい。例えば、同じレベルに属する複数の評価要素の下層のレベル数が異なっていてもよい。上層から下層に向かって階層構造は形成されているから、同じレベルに属する評価要素であっても、下層のレベル数が異なる場合がある。  The number of levels in the hierarchy may differ depending on the evaluation element. For example, the number of lower levels of multiple evaluation elements belonging to the same level may be different. Since the hierarchical structure is formed from the upper layer to the lower layer, even if the evaluation elements belong to the same level, the number of lower layers may differ.
 また、同一の監視項目が複数の評価要素を評価する評価要素となってもよい。例えば、同じレベルに属する複数の評価要素の下層に属する評価要素が、共通する監視項目を有していてもよい。 Also, the same monitoring item may be an evaluation element that evaluates multiple evaluation elements. For example, evaluation elements belonging to lower layers of multiple evaluation elements belonging to the same level may have common monitoring items.
 以下本発明の実施形態について説明する。 The embodiment of the present invention will be described below.
 [プラントの説明]
  図1は、本発明が適用される監視対象の一例であるプラント1の全体構成を示す概略図である。本実施形態に係るプラント1は、例えば、高温で流動する珪砂等の循環材を循環させながら燃料を燃焼して蒸気を発生させる循環流動層ボイラ(Circulating Fluidized Bed型)を備える発電プラントである。プラント1の燃料としては、石炭等の化石燃料の他、例えば非化石燃料(木質バイオマス、廃タイヤ、廃プラスチック、スラッジ等)を使用することができる。プラント1で発生した蒸気は、タービン100の駆動に用いられる。
[Description of the plant]
FIG. 1 is a schematic diagram showing the overall configuration of a plant 1, which is an example of an object to be monitored to which the present invention is applied. The plant 1 according to the present embodiment is, for example, a power plant equipped with a circulating fluidized bed type boiler that burns fuel to generate steam while circulating a circulating material such as silica sand that flows at high temperature. As the fuel for the plant 1, in addition to fossil fuels such as coal, for example, non-fossil fuels (woody biomass, waste tires, waste plastics, sludge, etc.) can be used. Steam generated in plant 1 is used to drive turbine 100 .
 プラント1は、火炉2内で燃料を燃焼させ、固気分離装置として機能するサイクロン3によって排ガスから循環材を分離し、分離された循環材を火炉2内に戻して循環させるように構成されている。分離された循環材は、サイクロン3の下方に接続された循環材回収管4を経由して火炉2の下部に返送される。なお、循環材回収管4の下部と火炉2の下部とは、流路が絞られたループシール部4aを介して接続されている。これにより、循環材回収管4の下部には所定量の循環材が貯められた状態となる。サイクロン3によって循環材が取り除かれた排ガスは、排ガス流路3aを経由して後部煙道5に供給される。 The plant 1 is configured to burn fuel in a furnace 2, separate a circulating material from exhaust gas by a cyclone 3 functioning as a solid-gas separator, and return the separated circulating material to the furnace 2 for circulation. there is The separated circulating material is returned to the lower part of the furnace 2 via a circulating material recovery pipe 4 connected below the cyclone 3 . The lower portion of the circulating material recovery pipe 4 and the lower portion of the furnace 2 are connected via a loop seal portion 4a having a narrowed flow path. As a result, a predetermined amount of circulating material is stored in the lower portion of the circulating material recovery pipe 4 . The exhaust gas from which the circulating material has been removed by the cyclone 3 is supplied to the rear flue 5 via the exhaust gas passage 3a.
 ボイラは、燃料を燃焼させるための火炉2と、燃焼により得られた熱を用いて水蒸気等を発生させるための熱交換器を備える。火炉2の中間部には、燃料を供給する燃料供給口2aが設けられており、火炉2の上部には、燃焼ガスを排出するガス出口2bが設けられている。図示されていない燃料供給装置から火炉2に供給される燃料は、燃料供給口2aを介して火炉2の内部に供給される。又、火炉2の炉壁には、ボイラ給水を加熱するための炉壁管6が設けられている。炉壁管6を流れるボイラ給水は、火炉2での燃焼によって加熱される。 The boiler is equipped with a furnace 2 for burning fuel and a heat exchanger for generating steam using the heat obtained by combustion. A fuel supply port 2a for supplying fuel is provided in the middle part of the furnace 2, and a gas outlet 2b for discharging combustion gas is provided in the upper part of the furnace 2. As shown in FIG. Fuel supplied to the furnace 2 from a fuel supply device (not shown) is supplied to the interior of the furnace 2 through a fuel supply port 2a. Further, the furnace wall of the furnace 2 is provided with furnace wall pipes 6 for heating the boiler feed water. Boiler feedwater flowing through the furnace wall tube 6 is heated by combustion in the furnace 2 .
 火炉2内では、下部の給気ライン2cから導入される燃焼・流動用の空気により、燃料供給口2aから供給された燃料を含む固形物が流動し、燃料は流動しながら例えば約800~900℃で燃焼する。サイクロン3には、火炉2で発生した燃焼ガスが循環材を同伴しながら導入される。サイクロン3は、遠心分離作用により循環材と気体とを分離し、循環材回収管4を介して分離された循環材を火炉2に戻すとともに、循環材が除かれた燃焼ガスを排ガス流路3aから後部煙道5へと送出する。 In the furnace 2, solid matter containing fuel supplied from the fuel supply port 2a is fluidized by combustion/fluidizing air introduced from the lower air supply line 2c, and the fuel is fluidized at about 800 to 900, for example. ℃. Combustion gas generated in the furnace 2 is introduced into the cyclone 3 while entraining the circulating material. The cyclone 3 separates the circulating material from the gas by centrifugal separation, returns the separated circulating material to the furnace 2 through the circulating material recovery pipe 4, and transfers the combustion gas from which the circulating material has been removed to the exhaust gas flow path 3a. to the rear flue 5.
 火炉2では、底部に炉内ベッド材と呼ばれる循環材の一部が滞留する。このベッド材には、循環流動に不適な粗い粒径を有するベッド材や排燃夾雑物が含まれることがあり、これらの循環材として不適なベッド材によって流動不良が発生することがある。そのため、流動不良を抑制するために、火炉2では、底部の排出口2dから炉内ベッド材が連続的又は断続的に外部に排出されている。排出されたベッド材は、図示されていない循環ライン上で金属や粗大粒径等の不適物を取り除いた後、再び火炉2に供給されるか、若しくはそのまま廃棄される。火炉2の循環材は、火炉2、サイクロン3及び循環材回収管4で構成される循環系内を循環する。 In the furnace 2, part of the circulating material called furnace bed material stays at the bottom. This bed material may contain bed material having a coarse particle size that is unsuitable for circulation and contaminants from exhaust combustion. Therefore, in the furnace 2, the in-furnace bed material is continuously or intermittently discharged to the outside from the discharge port 2d at the bottom in order to suppress poor flow. The discharged bed material is supplied to the furnace 2 again or discarded as it is after removing unsuitable materials such as metals and coarse grains on a circulation line (not shown). The circulating material in the furnace 2 circulates in a circulating system composed of the furnace 2 , the cyclone 3 and the circulating material recovery pipe 4 .
 後部煙道5は、サイクロン3から排出されたガスを後段へ流す流路を有している。後部煙道5は、排ガスの熱を回収する排熱回収部として、過熱蒸気を発生させる過熱器10と、ボイラ給水を予熱する節炭器12と、を有している。後部煙道5を流れる排ガスは、過熱器10及び節炭器12を流通する蒸気やボイラ給水と熱交換されて冷却される。又、節炭器12を通過したボイラ給水が貯留される蒸気ドラム8を有し、蒸気ドラム8は炉壁管6にも接続されている。 The rear flue 5 has a flow path through which the gas discharged from the cyclone 3 flows to the rear stage. The rear flue 5 has a superheater 10 for generating superheated steam and an economizer 12 for preheating boiler feed water as an exhaust heat recovery section for recovering the heat of the exhaust gas. The exhaust gas flowing through the rear flue 5 is cooled by heat exchange with steam and boiler feed water flowing through the superheater 10 and economizer 12 . It also has a steam drum 8 in which boiler feedwater that has passed through the economizer 12 is stored, and the steam drum 8 is also connected to the furnace wall pipe 6 .
 節炭器12は、排ガスの熱をボイラ給水に伝熱して、ボイラ給水を予熱するものである。節炭器12は、管21によってポンプ7と接続される一方、管22によって蒸気ドラム8と接続されている。ポンプ7から管21を経由して節炭器12に供給され、節炭器12によって予熱されたボイラ給水は、管22を経由して蒸気ドラム8に供給される。 The economizer 12 transfers the heat of the exhaust gas to the boiler feed water to preheat the boiler feed water. Economizer 12 is connected to pump 7 by pipe 21 and to steam drum 8 by pipe 22 . Boiler feed water supplied from pump 7 via pipe 21 to economizer 12 and preheated by economizer 12 is fed via pipe 22 to steam drum 8 .
 蒸気ドラム8には、降水管8a及び炉壁管6が接続されている。蒸気ドラム8内のボイラ給水は、降水管8aを下降し、火炉2の下部側で炉壁管6に導入されて蒸気ドラム8へ向かって流通する。炉壁管6内のボイラ給水は、火炉2内で発生する燃焼熱によって加熱されて、蒸気ドラム8内で蒸発し蒸気となる。 A downcomer pipe 8 a and a furnace wall pipe 6 are connected to the steam drum 8 . Boiler feed water in the steam drum 8 descends down the downcomer pipe 8a, is introduced into the furnace wall pipe 6 on the lower side of the furnace 2, and flows toward the steam drum 8. The boiler water supply in the furnace wall tube 6 is heated by the combustion heat generated in the furnace 2 and evaporated in the steam drum 8 to become steam.
 蒸気ドラム8には、内部の蒸気を排出する飽和蒸気管8bが接続されている。飽和蒸気管8bは、蒸気ドラム8と過熱器10とを接続している。蒸気ドラム8内の蒸気は、飽和蒸気管8bを経由して過熱器10に供給される。過熱器10は、排ガスの熱を用いて蒸気を過熱して過熱蒸気を生成するものである。過熱蒸気は、管10aを通り、プラント1外のタービン100に供給されて発電に利用される。 A saturated steam pipe 8b is connected to the steam drum 8 for discharging the steam inside. The saturated steam pipe 8 b connects the steam drum 8 and the superheater 10 . The steam in the steam drum 8 is supplied to the superheater 10 via the saturated steam pipe 8b. The superheater 10 uses the heat of the exhaust gas to superheat steam to generate superheated steam. The superheated steam passes through the pipe 10a, is supplied to the turbine 100 outside the plant 1, and is used for power generation.
 タービン100から排出された蒸気の圧力と温度は、過熱器10から排出される蒸気の圧力と温度よりも低い。特に限定されるものではないが、タービン100へ供給される蒸気の圧力は、約10~17MPa程度であり、温度は約530~570℃程度となる。タービン100から排出される蒸気の圧力は、約3~5MPa程度であり、温度は約350~400℃程度となる。 The pressure and temperature of the steam discharged from the turbine 100 are lower than the pressure and temperature of the steam discharged from the superheater 10. Although not particularly limited, the pressure of the steam supplied to the turbine 100 is about 10-17 MPa, and the temperature is about 530-570.degree. The pressure of the steam discharged from the turbine 100 is about 3-5 MPa, and the temperature is about 350-400.degree.
 タービン100の下流には復水器102が設けられている。タービン100から排出された蒸気は復水器102に供給され、復水器102において凝縮して飽和水に戻された上でポンプ7へと供給される。タービン100には、タービン100の回転により得られる運動エネルギーを電気エネルギーに変換するジェネレータが接続される。 A condenser 102 is provided downstream of the turbine 100 . Steam discharged from the turbine 100 is supplied to the condenser 102 , condensed in the condenser 102 and returned to saturated water, and then supplied to the pump 7 . Turbine 100 is connected to a generator that converts kinetic energy obtained by rotation of turbine 100 into electrical energy.
 ポンプ7aは、復水器102の水位を一定に保つように、補給水を供給する。図1では、ポンプ7aにより補給される補給水流量u1(「プロセスデータ」の一例)を示している。 The pump 7a supplies make-up water so as to keep the water level of the condenser 102 constant. FIG. 1 shows a make-up water flow rate u1 (an example of "process data") supplied by the pump 7a.
 本実施形態で取り扱うプロセスデータは、プラント1に関する任意のデータであってよいが、例えば、プラント1の状態をセンサで測定したデータ(「プロセスデータ」の一例)であってよく、より具体的には、プラント1の温度、圧力及び流量等の測定値を含んでよい。図1では、ポンプ7から節炭器12に供給されるボイラ給水流量u2(「プロセスデータ」の一例)を示している。さらに、図1では、過熱器10からタービン100に供給されるボイラ出口蒸気流量u3(「プロセスデータ」の一例)を示し、蒸気ドラム8から過熱器10に供給される飽和蒸気流量u4(「プロセスデータ」の一例)を示している。なお、補給水流量u1は、飽和蒸気流量u4に追従するように制御されてよい。又、ボイラ出口蒸気流量u3(又は過熱蒸気流量)と、蒸気ドラム8の液面レベルの双方を監視しながら、ボイラ給水流量u2を調整するように制御されてよい。 The process data handled in the present embodiment may be any data related to the plant 1, but may be, for example, data obtained by measuring the state of the plant 1 with a sensor (an example of "process data"). may include measurements such as plant 1 temperature, pressure and flow. FIG. 1 shows the boiler feedwater flow rate u2 (an example of “process data”) supplied from the pump 7 to the economizer 12 . Further, FIG. 1 shows a boiler outlet steam flow rate u3 (an example of “process data”) supplied from the superheater 10 to the turbine 100, and a saturated steam flow rate u4 (“process data”) supplied from the steam drum 8 to the superheater 10. data”). The make-up water flow rate u1 may be controlled so as to follow the saturated steam flow rate u4. Further, while monitoring both the boiler outlet steam flow rate u3 (or superheated steam flow rate) and the liquid surface level of the steam drum 8, the boiler feed water flow rate u2 may be controlled to be adjusted.
 プラント1を構成する管系統に破孔が生じた場合、補給水流量u1が上昇したり、ボイラ給水流量u2とボイラ出口蒸気流量u3の流量差が増大したりする。DCS(Distributed Control System、図2)20は、補給水流量u1、ボイラ給水流量u2、ボイラ出口蒸気流量u3及び飽和蒸気流量u4等のプラント1のプロセスデータをプラント1から受信し、プラント1の稼働状況を監視し、プラント1に異常が生じていないか監視する。後述するように、監視装置40は、異常の種類ごとに設定されるアラーム判定ロジックに基づいてプロセスデータを評価し、異常が発生したと判断した場合、表示装置50にアラームを発報させる。 If a hole occurs in the pipe system that configures the plant 1, the make-up water flow rate u1 increases, or the flow rate difference between the boiler feed water flow rate u2 and the boiler outlet steam flow rate u3 increases. DCS (Distributed Control System, FIG. 2) 20 receives process data of plant 1 such as make-up water flow rate u1, boiler feed water flow rate u2, boiler outlet steam flow rate u3 and saturated steam flow rate u4 from plant 1, and operates plant 1 Monitor the situation to see if there is any abnormality in the plant 1. As will be described later, the monitoring device 40 evaluates process data based on alarm determination logic set for each type of abnormality, and causes the display device 50 to issue an alarm when it is determined that an abnormality has occurred.
 なお、プロセスデータとして補給水流量u1、ボイラ給水流量u2、ボイラ出口蒸気流量u3及び飽和蒸気流量u4を例示したが、プラント1に関するプロセスデータは、他のデータであってもよい。プラント1に関するプロセスデータは、温度、圧力等の他のデータ、又は、複数のプロセスデータに基づいて算出されたデータであってもよいし、センサ等から取得された計算処理されていないデータであってもよい。 Although the make-up water flow rate u1, the boiler feed water flow rate u2, the boiler outlet steam flow rate u3, and the saturated steam flow rate u4 have been exemplified as process data, the process data relating to the plant 1 may be other data. The process data relating to the plant 1 may be other data such as temperature and pressure, data calculated based on a plurality of process data, or uncalculated data obtained from sensors or the like. may
 [運転支援システムの説明]
  図2は、本実施形態に係るプラント1、DCS20及び運転支援システム30の機能ブロック図である。
[Explanation of driving support system]
FIG. 2 is a functional block diagram of the plant 1, DCS 20 and driving support system 30 according to this embodiment.
 DCS20は、プラント1を制御するための分散制御システムである。DCS20は、プラント1に設置されるセンサ等からプロセスデータを取得し、これに基づいてプラント1を制御するための制御信号をプラント1に供給する。 The DCS 20 is a distributed control system for controlling the plant 1. The DCS 20 acquires process data from sensors or the like installed in the plant 1 and supplies the plant 1 with control signals for controlling the plant 1 based on the process data.
 運転支援システム30は、DCS20からプロセスデータを取得するエッジ/クラウドコンピューティング部32と、エッジ/クラウドコンピューティング部32からプロセスデータを取得し、プロセスデータに基づいてプラント1を監視する監視装置40と、運転員のためにプラント1の稼働状況を表示する表示装置50とを備える。監視装置40(「制御装置」の一例)は、表示装置50を制御する制御装置としても機能する。具体的には、監視装置40は、プロセスデータを取得しこれに基づいて評価要素のスコア値を取得し、表示装置50に表示させる。 The driving support system 30 includes an edge/cloud computing unit 32 that acquires process data from the DCS 20, and a monitoring device 40 that acquires process data from the edge/cloud computing unit 32 and monitors the plant 1 based on the process data. , and a display device 50 for displaying the operating status of the plant 1 for the operator. The monitoring device 40 (an example of a “control device”) also functions as a control device that controls the display device 50 . Specifically, the monitoring device 40 acquires the process data, acquires the score value of the evaluation element based on the process data, and causes the display device 50 to display the score value.
 エッジ/クラウドコンピューティング部32は、ネットワーク網の周縁部に分散配置された複数のエッジサーバと、複数のエッジサーバからプロセスデータを収集し監視装置40に提供するクラウドデータサーバを備える。エッジ/クラウドコンピューティング部32を備えることにより、大規模な監視装置や、複数に分散される監視装置から、好適にプロセスデータを収集することが可能である。ただし、運転支援システム30は、必ずしも、エッジ/クラウドコンピューティング部32を備えなくてもよい。その場合、運転支援システム30は、ネットワークを介して、DCS20からプロセスデータを取得する。 The edge/cloud computing unit 32 includes a plurality of edge servers distributed on the periphery of the network and a cloud data server that collects process data from the plurality of edge servers and provides the monitoring device 40 with the collected process data. By providing the edge/cloud computing unit 32, it is possible to suitably collect process data from a large-scale monitoring device or a plurality of distributed monitoring devices. However, the driving assistance system 30 does not necessarily have to include the edge/cloud computing unit 32 . In that case, the driving assistance system 30 acquires process data from the DCS 20 via the network.
 監視装置40は、スコア表示制御部42と、記憶部44とを備える。 The monitoring device 40 includes a score display control section 42 and a storage section 44 .
 スコア表示制御部42は、エッジ/クラウドコンピューティング部32からプロセスデータを取得するプロセスデータ取得部42Aと、プロセスデータ取得部42Aによって取得されたプロセスデータに基づいて各評価要素をスコア化するスコア化部42Bと、スコア化部42Bによって取得されたスコア情報を表示装置50に表示させるスコア情報表示部42Cとを備える。 The score display control unit 42 includes a process data acquisition unit 42A that acquires process data from the edge/cloud computing unit 32, and a scoring unit that scores each evaluation element based on the process data acquired by the process data acquisition unit 42A. A score information display unit 42C that causes the display device 50 to display the score information acquired by the scoring unit 42B.
 監視装置の記憶部44は、上述した階層構造と、階層構造に含まれる各評価要素について、プロセスデータに基づいてスコアを取得するためのロジック及び過去(例えば過去1年)のスコア履歴を格納する。本実施形態においては、3つの階層(レベル)からなる階層構造を構築し、本発明を適用した例について説明する。但し本発明を、4階層以上の階層構造について適用することも可能である。また、スコアは、複数のプロセスデータに基づいてスコアを取得してもよいし、下層の複数の評価要素のスコアに基づいて取得してもよい。後者は、下層の複数の評価要素のスコアを取得するための複数のプロセスデータに基づいて、上層の評価要素のスコアを取得することに相当する。 The storage unit 44 of the monitoring device stores the above-described hierarchical structure, the logic for obtaining a score based on the process data, and the score history of the past (for example, the past one year) for each evaluation element included in the hierarchical structure. . In this embodiment, an example in which a hierarchical structure consisting of three layers (levels) is constructed and the present invention is applied will be described. However, it is also possible to apply the present invention to a hierarchical structure of four or more hierarchies. Also, the score may be obtained based on a plurality of process data, or may be obtained based on the scores of a plurality of lower layer evaluation elements. The latter corresponds to obtaining a score for an upper layer evaluation factor based on a plurality of process data for obtaining scores for a plurality of lower layer evaluation factors.
 図3は、スコア化部42Bの機能ブロック図を示している。
  スコア化部42Bは、プロセスデータ取得部42Aによって取得されたプロセスデータに基づいて基準値から乖離している程度を示す乖離距離情報を取得する乖離距離取得部42B1と、乖離距離取得部42B1によって取得された乖離距離情報を専門的な運転知識に基づいて評価して数値化する項目別異常度指標化部42B2と、項目別異常度指標化部42B2によって数値化された情報からノイズを除去することにより、評価要素である監視項目についてのスコアを取得するノイズ除去部42B3とを備える。更にスコア化部42Bは、複数の監視項目のスコアに基づいて、中階層の評価要素をスコア化する中階層総合部42B4とを備える。上述したように、複数のプロセスデータに基づいてスコアを取得するためのロジックは、評価要素に応じて異なる方法を設定することが可能である。本実施形態の一つの中階層総合部42B4は、一例として、下層の複数の評価要素のスコアの最大値を中階層の評価要素のスコアとするように構成されている。
FIG. 3 shows a functional block diagram of the scoring unit 42B.
The scoring unit 42B acquires deviation distance information indicating the degree of deviation from the reference value based on the process data acquired by the process data acquisition unit 42A, and the deviation distance acquisition unit 42B1 acquires deviation distance information. An itemized abnormality degree indexing unit 42B2 that evaluates and quantifies the divergence distance information based on specialized driving knowledge, and noise is removed from the information digitized by the itemized abnormality degree indexing unit 42B2. and a noise removal unit 42B3 that obtains a score for a monitoring item that is an evaluation element. Furthermore, the scoring unit 42B includes a middle-level synthesis unit 42B4 that scores middle-level evaluation elements based on the scores of a plurality of monitoring items. As described above, the logic for obtaining scores based on multiple pieces of process data can set different methods depending on the evaluation factors. As an example, one middle-level comprehensive section 42B4 of this embodiment is configured to set the maximum value of the scores of a plurality of lower-level evaluation factors as the score of the middle-level level evaluation factor.
 更にスコア化部42Bは、複数の中階層の評価要素のスコアに基づいて、数学的アルゴリズムにより上位層の評価要素のスコアを取得する全要素総合部42B5を備える。 Furthermore, the scoring unit 42B includes an all-element synthesis unit 42B5 that acquires the scores of the upper-layer evaluation elements by a mathematical algorithm based on the scores of the multiple middle-layer evaluation elements.
 乖離距離取得部42B1は、基準値から乖離している程度を示す乖離距離情報を取得する。プロセスデータがn種類の場合、乖離距離取得部42B1は、プロセスデータの種類に応じてn個設けられる。基準値は、プロセスデータの種類に応じて異なる。図4(A)は、プロセスデータ及びそのプロセスデータの基準値の一例を示す散布図である。同図では、横軸をプロセスデータであるボイラの圧力とし、縦軸を温度としたときの基準値と、異常度が等高線のように等しくなるよう設定される、基準値を中心とした同心楕円を示している。この例では、基準値と各楕円の動径方向の距離が、乖離距離に相当する。同様に、各乖離距離取得部42B1は、各種類のプロセスデータの乖離距離を取得する。乖離距離は、最適な運転状態から乖離している度合いを示す情報と言うことができる。なお同図に示されるように、プロセスデータに閾値を設定し、閾値を越えるプロセスデータの場合、項目別異常度指標化部42B2によって異常状態を示す指標化がなされるように構成してもよい。 The divergence distance acquisition unit 42B1 acquires divergence distance information indicating the degree of divergence from the reference value. When there are n types of process data, n divergence distance acquisition units 42B1 are provided according to the types of process data. The reference value differs depending on the type of process data. FIG. 4A is a scatter diagram showing an example of process data and reference values of the process data. In the figure, the horizontal axis is the pressure of the boiler, which is the process data, and the vertical axis is the temperature. is shown. In this example, the distance between the reference value and each ellipse in the radial direction corresponds to the divergence distance. Similarly, each divergence distance acquisition unit 42B1 acquires the divergence distance of each type of process data. The divergence distance can be said to be information indicating the degree of divergence from the optimum driving state. As shown in the figure, a threshold value may be set for process data, and in the case of process data exceeding the threshold value, the item-by-item abnormality degree indexing unit 42B2 may index the abnormal state. .
 項目別異常度指標化部42B2は、乖離距離情報を数値化する。プロセスデータがn種類の場合、項目別異常度指標化部42B2は、プロセスデータの種類に応じてn個設けられる。数値化は、専門的な運転知識に基づいて設定された関数等のロジックに基づいてプロセスデータごとに設定される。例えば、プロセスデータによっては、乖離距離が大きくても、プラント1の運転状態に大きな影響を及ぼさないものもある。一方で、プロセスデータによっては、乖離距離が小さくても、プラント1の運転状態に大きな影響を及ぼすものもある。また、影響度は、乖離距離に比例しない場合もある。そこで専門的な運転知識に基づいて、プロセスデータごとに数値化がなされる。 The itemized abnormality degree indexing unit 42B2 quantifies the divergence distance information. When there are n types of process data, n itemized abnormality degree indexing units 42B2 are provided according to the types of process data. Numericalization is set for each process data based on logic such as a function set based on specialized driving knowledge. For example, depending on the process data, even if the divergence distance is large, there are some that do not greatly affect the operating state of the plant 1 . On the other hand, depending on the process data, even if the divergence distance is small, there are some that greatly affect the operating state of the plant 1 . Also, the degree of influence may not be proportional to the divergence distance. Therefore, each process data is quantified based on specialized operating knowledge.
 図4(B)は、横軸を乖離距離とし、縦軸を0以上1以下の数値とするグラフである。本実施形態では乖離が大きいほど数値が大きくなるようにグラフが設定されていることから、縦軸は、異常度と表現される場合がある。図4(A)における基準値より外れたプロセスデータについては、図4(B)における基準値(乖離距離=0)からの乖離距離に対応した異常度のグラフに基づいて数値化がなされる。基準値は、予め定められていてもよいし、ユーザによって修正可能であってもよいし、その後に得られたデータに基づいて動的に変更可能に構成されてもよい。このプロセスデータの場合、乖離距離が所定以上に大きくなると運転状態に与える影響度が大きくなることから、乖離距離の増大に応じて、グラフの傾きが大きくなっている。なお、隔離距離は楕円などの閉じた曲線だけでなく、運転知識による任意の曲線等で領域を区画して定義されてもよい。このようにスコア化するためのロジックは専門的な運転知識に基づいて設定される。なお、各項目別異常度指標化部42B2の出力は、0以上1以下の数値となるように正規化されている。 FIG. 4(B) is a graph in which the horizontal axis is the divergence distance and the vertical axis is a numerical value of 0 or more and 1 or less. In this embodiment, the graph is set so that the greater the divergence, the greater the numerical value. Therefore, the vertical axis may be expressed as the degree of abnormality. Process data deviating from the reference value in FIG. 4(A) is quantified based on the graph of the degree of abnormality corresponding to the deviation distance from the reference value (divergence distance=0) in FIG. 4(B). The reference value may be predetermined, may be modifiable by the user, or may be configured to be dynamically changeable based on subsequently obtained data. In the case of this process data, when the divergence distance becomes greater than a predetermined value, the degree of influence on the operating state increases, so the slope of the graph increases as the divergence distance increases. Note that the separation distance may be defined by partitioning an area not only by a closed curve such as an ellipse, but also by an arbitrary curve based on driving knowledge. The logic for such scoring is set based on expert driving knowledge. Note that the output of each itemized abnormality degree indexing unit 42B2 is normalized to a numerical value of 0 or more and 1 or less.
 項目別異常度設定部42Dは、乖離距離を数値化(スコア化。「指標化」と呼ばれる場合もある。)するためのロジックを設定する。ロジックは、専門的な運転知識に基づいて感覚的・主観的に設定されるものであってもよく、また、プロセスデータごとに異なるものであってもよい。ロジックは、例えば、図4(B)に示されるグラフ等の関数によって定められるものであってもよく、更に、経時変化等を考慮して動的に変更されるものであってもよい。 The item-by-item anomaly degree setting unit 42D sets logic for digitizing (scoring, sometimes called "indexing") the divergence distance. The logic may be intuitively and subjectively set based on expert driving knowledge, or may differ for each process data. The logic may be, for example, defined by a function such as the graph shown in FIG. 4B, or may be dynamically changed in consideration of changes over time.
 ノイズ除去部42B3は、項目別異常度指標化部42B2によって数値化されたデータのうち、ノイズ等に起因して発生する瞬時値などを除去する。以上のプロセスにより最下層の評価要素である各監視項目についてスコア化が行われる。このことから項目別異常度設定部42Dにおける数値化は、スコア化に相当する。 The noise removal unit 42B3 removes instantaneous values generated due to noise or the like from the data digitized by the itemized abnormality degree indexing unit 42B2. Through the above process, each monitoring item, which is the evaluation element of the lowest layer, is scored. Therefore, the quantification in the itemized abnormality degree setting unit 42D corresponds to the scoring.
 中階層総合部42B4は、複数の評価要素のスコアに基づいて、中階層の評価要素をスコア化する。中階層の評価要素は、(存在する場合)更に下層の評価要素のスコアに基づいてスコア化され、下層の評価要素は、(存在する場合)更に下層の評価要素のスコアに基づいてスコア化され、最下層の評価要素は、プロセスデータが取得される監視項目に相当する。従って中階層に属するある評価要素は、全てのプロセスデータのうち、その中階層の評価要素の下層に属する監視項目(「第1グループ」の一例)のプロセスデータに基づいて取得されているといえ、同じ中階層に属する他の評価要素は、全てのプロセスデータのうち、その中階層の評価要素の下層に属する監視項目(「第2グループ」の一例)のプロセスデータに基づいて取得されているといえる。第1グループの監視項目と、第2グループの監視項目は、完全に異なる場合と、一部のみ異なる場合がある。一部のみ異なる場合とは、ある監視項目が、ある評価要素に影響し、かつ、他の評価要素に影響する場合である。同様に、あるグループの監視項目と、他のグループの監視項目は、完全に異なる場合と、一部のみ異なる場合がある。 The middle-level comprehensive section 42B4 scores the middle-level evaluation elements based on the scores of the plurality of evaluation elements. Middle-tier factors are scored based on the scores of lower-tier factors (if any), and lower-tier factors are scored based on the scores of lower-level factors (if any). , the evaluation element in the lowest layer corresponds to the monitoring item from which process data is acquired. Therefore, it can be said that an evaluation element belonging to the middle hierarchy is acquired based on the process data of the monitoring items (an example of the "first group") belonging to the lower layer of the evaluation element of the middle hierarchy among all the process data. , other evaluation elements belonging to the same middle hierarchy are acquired based on the process data of the monitoring items (an example of the "second group") belonging to the lower layer of the evaluation elements of the middle hierarchy among all the process data It can be said. The monitoring items of the first group and the monitoring items of the second group may be completely different or only partially different. A case where only a part is different means a case where a certain monitoring item influences a certain evaluation element and also influences other evaluation elements. Similarly, the monitoring items of one group and the monitoring items of another group may be completely different or only partially different.
 図3では、2つの評価要素のスコアに基づいて、中階層の評価要素をスコア化している例が示されているが、これに限られるものではなく、3以上の評価要素のスコアに基づいてスコア化してもよい。プロセスデータがn種類の場合、中階層総合部42B4は、m個(但し、2≦m<nの整数)設けられる。中階層の評価要素をスコア化するためのロジックは、中階層総合部42B4ごとに異なるものであってもよい。例えば、下層に属する複数の評価要素のスコアのうち、最大値のスコアを中階層の評価要素のスコアとするように、中階層総合部42B4は構成されていてもよい。なお、本実施形態は、3階層(レベル)であるから、中階層の下層に属する複数の評価要素は、プロセスデータが取得される監視項目となる。 FIG. 3 shows an example of scoring middle-level evaluation elements based on scores of two evaluation elements, but is not limited to this, and is based on scores of three or more evaluation elements. It can be scored. When there are n types of process data, m (integer of 2≦m<n) middle-level comprehensive units 42B4 are provided. The logic for scoring the middle-level evaluation elements may be different for each middle-level comprehensive section 42B4. For example, the middle hierarchy general section 42B4 may be configured so that the score of the maximum value among the scores of the plurality of evaluation elements belonging to the lower hierarchy is used as the score of the middle hierarchy evaluation element. In addition, since this embodiment has three layers (levels), a plurality of evaluation elements belonging to the lower layers of the middle layer are monitoring items from which process data are acquired.
 全要素総合部42B5は、下層の評価要素のスコアの最大値や最小値、あるいは数学的なアルゴリズムを利用して上層の評価要素をスコア化する。上層の評価要素は、下層の評価要素のスコアに基づいてスコア化され、下層の評価要素は、更に下層の評価要素のスコアに基づいてスコア化され、最下層の評価要素は、プロセスデータが取得される監視項目に相当する。従って最上層の評価要素は、その下層に属する原則として全てのプロセスデータに基づいて取得されているといえる。 The all-element synthesis unit 42B5 scores the upper-layer evaluation elements using the maximum or minimum score of the lower-layer evaluation elements or a mathematical algorithm. The evaluation elements in the upper layer are scored based on the scores of the evaluation elements in the lower layers, the evaluation elements in the lower layers are scored based on the scores in the evaluation elements in the lower layers, and the evaluation elements in the lowest layer are scored based on the process data acquired. This corresponds to the monitoring items that are monitored. Therefore, it can be said that the evaluation factor of the top layer is acquired based on all the process data belonging to the lower layer in principle.
 総合化方法設定部42Eは、全要素総合部42B5に必要なパラメータを設定する。全要素総合部42B5で、評価要素を最大値や最小値によりスコア化する場合には設定は不要であるが、例えばより一般的に線形結合(最大値や最小値の一般型)によりスコア化する場合には重み付け係数を設定する。あるいは数学的なアルゴリズムによりスコア化する場合には、アルゴリズムに固有なパラメータを設定する。これらの重み付け係数やモデルパラメータは専門的な運転知識に基づいて、各評価要素(又は監視項目)の判断結果に基づき総合診断を下すロジックをモデル化したものであり、各評価要素の重要度に応じて重み付けされ、かつ、各評価要素の組み合わせを考慮して設定される。 The integration method setting unit 42E sets parameters necessary for the all-element integration unit 42B5. In the all-element synthesis unit 42B5, if the evaluation elements are scored by the maximum value or the minimum value, no setting is required. If so, set the weighting factor. Alternatively, when scoring by a mathematical algorithm, set parameters unique to the algorithm. These weighting coefficients and model parameters are based on specialized driving knowledge, modeling the logic for making a comprehensive diagnosis based on the judgment results of each evaluation element (or monitoring item). are weighted accordingly and are set in consideration of the combination of each evaluation factor.
 3層構造の場合、この層は最上層に相当するから、評価要素を総合指標等と呼んでもよい。また、本実施形態においては、スコアが高いほど最適な運転状態から乖離していることから、スコアを異常度又は総合異常度と呼んでもよい。 In the case of a three-layer structure, this layer corresponds to the top layer, so the evaluation elements can be called comprehensive indicators. Further, in the present embodiment, the higher the score, the more the driving state deviates from the optimum driving condition, so the score may be called the degree of abnormality or the total degree of abnormality.
 [物理構成]
  図5は、本実施形態に係る運転支援システム30を実現するための物理的構成を示している。但し、エッジ/クラウドコンピューティング部32は、知られた物理的構成を採用することが可能であるため、説明を省略し、以下では、エッジ/クラウドコンピューティング部32を除いた運転支援システム30の物理的構成について説明する。
[Physical configuration]
FIG. 5 shows a physical configuration for realizing the driving support system 30 according to this embodiment. However, since the edge/cloud computing unit 32 can adopt a known physical configuration, the description is omitted. A physical configuration will be described.
 運転支援システム30は、演算部に相当するCPU(Central Processing Unit)30Aと、記憶部に相当するRAM(Random Access Memory)30B及びROM(Read only Memory)30Cと、通信部30Dと、入力部30Eと、表示部30Fとを有する。これらの各構成は、バスを介して相互にデータ送受信可能に接続される。なお、本例では運転支援システム30が一台のコンピュータで構成される場合について説明するが、運転支援システム30は、複数台のコンピュータから構成されてもよい。例えば、表示部30Fは、複数台のディスプレイから構成されてもよい。また、図5で示す構成は一例に過ぎず、これらの構成のうち一部を有さなくてもよい。さらに、構成の一部が遠隔地に設けられてもよい。例えば、ROM30Cの一部を遠隔地に設け、通信ネットワークを介して通信可能に構成してもよい。 The driving support system 30 includes a CPU (Central Processing Unit) 30A corresponding to a calculation unit, a RAM (Random Access Memory) 30B and a ROM (Read only Memory) 30C corresponding to a storage unit, a communication unit 30D, and an input unit 30E. and a display section 30F. These components are connected to each other via a bus so that data can be sent and received. In this example, the case where the driving support system 30 is composed of one computer will be described, but the driving support system 30 may be composed of a plurality of computers. For example, the display section 30F may be composed of a plurality of displays. Moreover, the configuration shown in FIG. 5 is merely an example, and some of these configurations may be omitted. Additionally, portions of the configuration may be provided at remote locations. For example, part of the ROM 30C may be provided at a remote location and configured to be communicable via a communication network.
 CPU30Aは、ROM30C等に記録されたコンピュータプログラム等を実行することにより、本開示に含まれる制御処理及び演算処理等を行う演算部である。CPU30Aは、プロセッサを備える。CPU30Aは、RAM30B、ROM30C、通信部30D及び入力部30E等から種々の情報(プロセスデータを含む)を受け取り、演算処理結果等を表示部30Fに表示させたり、RAM30BまたはROM30Cに格納させたりする。 The CPU 30A is an arithmetic unit that performs control processing, arithmetic processing, etc. included in the present disclosure by executing a computer program or the like recorded in the ROM 30C or the like. The CPU 30A has a processor. The CPU 30A receives various information (including process data) from the RAM 30B, the ROM 30C, the communication section 30D, the input section 30E, etc., and causes the display section 30F to display the arithmetic processing results and the like, or stores them in the RAM 30B or the ROM 30C.
 RAM30Bは、記憶部のうちキャッシュメモリ・メインメモリ等の一次記憶として機能するものであり、例えばSRAM及びDRAM等の揮発性の半導体記憶素子で構成されてよい。ROM30Cは、記憶部のうち二次記憶として機能するものであり、例えばフラッシュメモリ等の電気的に情報を書き換え可能な不揮発性半導体記憶素子又は磁気的に情報を書き換え可能なHDDで構成されてよい。ROM30Cは、例えば、本開示に示される各制御及び各演算処理を含む処理を実行するためのコンピュータプログラム及びデータを非一時的(Non-transitory)に記憶してよい。 The RAM 30B functions as primary storage such as cache memory and main memory among the storage units, and may be configured with volatile semiconductor storage elements such as SRAM and DRAM, for example. The ROM 30C functions as a secondary memory in the storage unit, and may be configured by an electrically rewritable non-volatile semiconductor memory element such as a flash memory or a magnetically rewritable HDD. . The ROM 30C may, for example, non-transitory store computer programs and data for executing processing including each control and each arithmetic processing shown in the present disclosure.
 通信部30Dは、運転支援システム30をDCS20等の他の装置に接続するためのインターフェースである。通信部30Dは、インターネット等の通信ネットワークに接続されてよい。 The communication unit 30D is an interface for connecting the driving support system 30 to other devices such as the DCS 20. The communication unit 30D may be connected to a communication network such as the Internet.
 入力部30Eは、運転員からデータの入力等(本開示における重要ワードの選択及び追加ガイド情報の入力を含む)を受け付けるものであり、例えば、マウス、キーボード及びタッチパネルを含んでよい。 The input unit 30E receives data input from the operator (including selection of important words and input of additional guide information in the present disclosure), and may include, for example, a mouse, keyboard, and touch panel.
 表示部30Fは、CPU30Aによる演算結果を視覚的に表示するものであり、例えば、LCD(Liquid Crystal Display)から構成されてよい。 The display unit 30F visually displays the calculation result by the CPU 30A, and may be composed of, for example, an LCD (Liquid Crystal Display).
 上記のような物理的構成において、主としてCPU30Aが記憶部44に格納されるコンピュータプログラムを読み出して実行することにより監視装置40のスコア表示制御部42を構成する各機能を含む本実施形態に示される各処理を実現することが可能である。また、主としてROM30Cから記憶部44を構成する各データベースを実現することが可能であり、主として表示部30Fから表示装置50を実現することが可能である。 In the physical configuration as described above, the CPU 30A mainly reads out and executes a computer program stored in the storage unit 44 to configure the score display control unit 42 of the monitoring device 40. It is possible to realize each process. Moreover, each database constituting the storage unit 44 can be realized mainly from the ROM 30C, and the display device 50 can be realized mainly from the display unit 30F.
 [表示方法]
  以下、本実施形態に係る表示方法を含む一連のプロセスについて説明する。
[Display method]
A series of processes including the display method according to this embodiment will be described below.
 図6は、最上層(「第1レベル」の一例)に属するプラント全体(「第1要素」の一例)の運転状態(「第1要素の状態量」の一例)を示すスコア(「第1スコア」の一例)を表示する表示装置50の表示画面の一例(「第1画面」の一例)である。表示装置50は、スコア表示制御部42の制御に従ってスコア情報等を表示可能に構成される。 FIG. 6 shows a score (an example of a "first It is an example of a display screen (an example of a "first screen") of the display device 50 that displays a "score"). The display device 50 is configured to be able to display score information and the like under the control of the score display control section 42 .
 表示画面の領域AR11には、プラント全体の運転状態を示す総合的なスコアが表示される。このスコアは、全要素総合部42B5によってスコア化された最上層の評価要素のスコアに相当する。本実施形態では、実施形態では乖離が大きいほど数値が大きくなるようにスコア化されることから、プラント全体の総合的なスコアは、「総合異常度」等と呼ばれる場合がある。 A comprehensive score indicating the operating status of the entire plant is displayed in the area AR11 of the display screen. This score corresponds to the score of the evaluation element in the top layer scored by the all-element synthesis unit 42B5. In the present embodiment, the larger the divergence, the larger the numerical value. Therefore, the overall score of the entire plant may be referred to as the "total degree of abnormality" or the like.
 表示画面の領域AR12には、下層の評価要素が表示される。本実施形態に係る階層構造において、最上層の評価要素であるプラント全体の運転状態の下層である中階層(「第2レベル」の一例)は、部材品質(「第2要素」の一例)、熱状態(「第3要素」の一例)、効率(「第2要素」の一例)等の7つの評価要素から構成されることが示される。 In the area AR12 of the display screen, the evaluation elements of the lower layers are displayed. In the hierarchical structure according to the present embodiment, the middle hierarchy (an example of the “second level”), which is the lower layer of the operating state of the entire plant, which is the evaluation element of the top layer, includes the component quality (an example of the “second element”), It is shown that it consists of seven evaluation factors such as thermal state (an example of a "third factor") and efficiency (an example of a "second factor").
 表示画面の領域AR13には、下層の各評価要素のスコアを示すレーダーチャートが表示される。例えば、「部材品質」のスコア(「第2スコア」の一例)は70であり、「熱状態」のスコア(「第3スコア」の一例)は40である。表示形式は、様々なものを利用可能であり、例えば、棒グラフで各評価要素のスコアを表示してもよい。また、必ずしもスコアの値を表示しなくてもよい。スコアの値を表示しなくても評価要素間の比較が可能であり、従って、対策を講じるべき評価要素を特定することが可能だからである。 In the area AR13 of the display screen, a radar chart showing the score of each lower layer evaluation element is displayed. For example, the score for "member quality" (an example of a "second score") is 70, and the score for "thermal condition" (an example of a "third score") is 40. Various display formats are available, and for example, the score of each evaluation element may be displayed in a bar graph. Also, it is not always necessary to display the score value. This is because it is possible to compare the evaluation elements without displaying the score values, and therefore it is possible to specify the evaluation elements for which countermeasures should be taken.
 なおこの表示画面には、記憶部44から読み出された総合異常度の1年間のスコア履歴及び過去24時間の総合異常度の最大値、最小値及び平均値が表示される。従って、プラント全体の運転状態の傾向を把握することも可能となる。 Note that this display screen displays the one-year score history of the comprehensive anomaly degree read from the storage unit 44 and the maximum, minimum, and average values of the comprehensive anomaly degree for the past 24 hours. Therefore, it is also possible to grasp the trend of the operating state of the entire plant.
 総合異常度が62であることから、オペレータはこの表示画面を見ることにより、プラント1の運転状態がそれほど良い状態ではないことを把握することが可能となる。また、下層の評価要素の一つである「部材品質」のスコアが他の評価要素よりも高いことから、「部材品質」が異常の原因であると推測することが可能となる。  Since the total degree of abnormality is 62, the operator can understand that the operating condition of the plant 1 is not so good by looking at this display screen. In addition, since the score of "member quality", which is one of the evaluation elements in the lower layer, is higher than that of the other evaluation elements, it is possible to infer that "member quality" is the cause of the abnormality.
 この画面の領域AR12で「部材品質」を選択した状態で、図面の右矢印として示される遷移ボタンをオペレータが押下すると、図7で示される表示画面に遷移する。 When the operator presses the transition button shown as the right arrow in the drawing while "material quality" is selected in the area AR12 of this screen, the screen transitions to the display screen shown in FIG.
 図7は、中階層に属する「部材品質」の状態を示すスコアを表示する表示装置50の表示画面(「第2画面」の一例)の一例である。 FIG. 7 is an example of the display screen (an example of the "second screen") of the display device 50 that displays the score indicating the state of "material quality" belonging to the middle hierarchy.
 表示画面の領域AR21には、「部材品質」のスコアが表示される。このスコアは、中階層総合部42B4によってスコア化された中階層の評価要素のスコアに相当する。このスコアは、所定のロジックに従って、下層の評価要素のスコアに基づいて取得される。 The "material quality" score is displayed in the area AR21 of the display screen. This score corresponds to the score of the middle-level evaluation element scored by the middle-level comprehensive section 42B4. This score is obtained based on the scores of the underlying evaluation factors according to a predetermined logic.
 表示画面の領域AR22には、下層の評価要素が表示される。本実施形態に係る階層構造において、中階層の評価要素である部材品質の下層である最下層(「第3レベル」の一例)は、「重要項目群1」(「第4要素」の一例)、「重要項目群2」(「第4要素」の一例)等の5つの評価要素から構成されることが示される。「重要項目群1」は、更に下層の監視項目である「圧力1スコア」及び「温度1スコア」(「第3グループ」の一例)に基づいてスコア化される。 In the area AR22 of the display screen, the evaluation elements of the lower layers are displayed. In the hierarchical structure according to the present embodiment, the lowest layer (an example of the "third level"), which is the lower layer of the component quality that is the evaluation element of the middle layer, is the "important item group 1" (an example of the "fourth element") , and “important item group 2” (an example of “fourth element”). "Important item group 1" is scored based on the lower monitoring items "Pressure 1 score" and "Temperature 1 score" (an example of the "third group").
 表示画面の領域AR23には、下層の各評価要素のスコア(「第4スコア」の一例)が表示される。オペレータは、「重要項目群1」及び「重要項目群3」のスコアが高いことから、これらが異常の原因であると推測することが可能となる。なお、同図に示されるように、下層の評価要素のスコア履歴を表示可能に構成してもよい。 In the area AR23 of the display screen, the score of each lower layer evaluation element (an example of the "fourth score") is displayed. Since the scores of "important item group 1" and "important item group 3" are high, the operator can presume that these are the causes of the abnormality. In addition, as shown in the figure, the score history of the evaluation elements in the lower layers may be displayed.
 この画面の領域AR22で「重要項目群1」を選択した状態で、図面の右矢印として示される遷移ボタンをオペレータが押下すると、図8で示される表示画面に遷移する。 With "Important item group 1" selected in the area AR22 of this screen, when the operator presses the transition button indicated by the right arrow in the drawing, the screen transitions to the display screen shown in FIG.
 図8は、下層の中階層及び最下層を同時に表示した表示画面の一例を示している。下層の中階層の評価要素は、「重要項目群1」である。「重要項目群1」の下層である最下層の評価要素は、「圧力1」及び「温度1」である。 FIG. 8 shows an example of a display screen displaying the lower middle layer and the bottom layer at the same time. The evaluation element of the lower middle layer is "Important item group 1". The evaluation elements in the bottom layer, which is the layer below the "important item group 1", are "pressure 1" and "temperature 1".
 表示画面の領域AR31には、「重要項目群1」、「圧力1」及び「温度1」のスコアが表示される。「重要項目群1」のスコアは、中階層総合部42B4によってスコア化された中階層の評価要素のスコアに相当する。「圧力1」及び「温度1」のスコアは、項目別異常度指標化部42B2によってスコア化された最下層の評価要素である監視項目のスコアに相当する。 In the area AR31 of the display screen, the scores of "Important item group 1", "Pressure 1" and "Temperature 1" are displayed. The score of "important item group 1" corresponds to the score of the middle-level evaluation element scored by the middle-level comprehensive section 42B4. The scores of "pressure 1" and "temperature 1" correspond to the scores of the monitoring items, which are the lowest evaluation elements scored by the itemized abnormality degree indexing unit 42B2.
 表示画面の領域AR32には、監視項目のプロセスデータを示す散布図も表示される。 A scatter diagram showing the process data of the monitoring items is also displayed in the area AR32 of the display screen.
 なおこの表示画面には、記憶部44から読み出された「圧力1」及び「温度1」のスコア履歴が表示される。従って、これらプロセスデータの状態の傾向を把握することも可能となる。 Note that the score history of "pressure 1" and "temperature 1" read from the storage unit 44 is displayed on this display screen. Therefore, it is also possible to grasp the tendency of the state of these process data.
 以上のとおりであるから、本実施形態に係る表示装置及び表示方法によれば、対象物であるプラント1を例えば100個以上の多数の状態量から監視等する場合に、その対象物の運転状態等を複数の評価要素について階層的に評価することを可能とすると共に、ある評価要素の評価要因となる状態量を容易に特定することが可能となる。 As described above, according to the display device and the display method according to the present embodiment, when the plant 1, which is an object, is monitored from a large number of state quantities, for example, 100 or more, the operating state of the object etc. can be hierarchically evaluated with respect to a plurality of evaluation elements, and a state quantity that is an evaluation factor for a certain evaluation element can be easily specified.
 なお、表示装置及び表示方法は、各評価要素のスコアに応じて、アラームを表示及び発報するように構成されてもよい。 The display device and display method may be configured to display and issue an alarm according to the score of each evaluation element.
 その他本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。たとえば、当業者の通常の創作能力の範囲内で、実施形態における一部の構成要素を、他の知られた構成と置換することができるし、他の知られた構成を追加してもよい。例えば、中階層総合部42B4においてファジィ推論に基づいて評価要素の指標化を実施してもよい。 In addition, various modifications are possible for the present invention as long as it does not deviate from the gist thereof. For example, some components in the embodiments can be replaced with other known configurations, or other known configurations can be added, within the normal creativity of those skilled in the art. . For example, the middle layer comprehensive section 42B4 may index the evaluation elements based on fuzzy reasoning.
1      プラント
2      火炉
2a    燃料供給口
2b    ガス出口
2c    給気ライン
2d    排出口
3      サイクロン
3a    排ガス流路
4      循環材回収管
4a    ループシール部
5      後部煙道
6      炉壁管
7      ポンプ
7a    ポンプ
8      蒸気ドラム
8a    降水管
8b    飽和蒸気管
10    過熱器
12    節炭器
30    運転支援システム
30D  通信部
30E  入力部
30F  表示部
32    クラウドコンピューティング部
40    監視装置
42    スコア表示制御部
42A  プロセスデータ取得部
42B  スコア化部
42B1 乖離距離取得部
42B2 項目別異常度指標化部
42B3 ノイズ除去部
42B4 中階層総合部
42B5 全要素総合部
42C  スコア情報表示部
42D  項目別異常度設定部
42E  総合化方法設定部
44    記憶部
50    表示装置
100  タービン
102  復水器
u1    補給水流量
u2    ボイラ給水流量
u3    ボイラ出口蒸気流量
u4    飽和蒸気流量
1 Plant 2 Furnace 2a Fuel supply port 2b Gas outlet 2c Air supply line 2d Discharge port 3 Cyclone 3a Exhaust gas flow path 4 Circulation material recovery pipe 4a Loop seal 5 Rear flue 6 Furnace wall pipe 7 Pump 7a Pump 8 Steam drum 8a Precipitation Pipe 8b Saturated steam pipe 10 Superheater 12 Economizer 30 Operation support system 30D Communication unit 30E Input unit 30F Display unit 32 Cloud computing unit 40 Monitoring device 42 Score display control unit 42A Process data acquisition unit 42B Scoring unit 42B1 Deviation distance Acquisition unit 42B2 Itemized abnormality degree indexing unit 42B3 Noise removal unit 42B4 Middle layer synthesis unit 42B5 All element synthesis unit 42C Score information display unit 42D Itemized abnormality degree setting unit 42E Synthesis method setting unit 44 Storage unit 50 Display device 100 Turbine 102 Condenser u1 Make-up water flow rate u2 Boiler feed water flow rate u3 Boiler outlet steam flow rate u4 Saturated steam flow rate

Claims (10)

  1.  対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアと、
     前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアと、
     前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアと、
     を表示可能に構成される表示装置。
    a first score indicating a state quantity of a first element belonging to a first level from a plurality of types of state quantity of the object;
    a second score indicating the state quantity of a second element belonging to a second level from the state quantity of the first group that is part of the plurality of types;
    a third score indicating the state quantity of a third element belonging to the second level from the state quantity of the second group that is part of the plurality of types;
    display device configured to display
  2.  前記第1スコアと、前記第2スコアと、前記第3スコアとを同一の画面に表示可能に構成される請求項1に記載の表示装置。 The display device according to claim 1, configured to display the first score, the second score, and the third score on the same screen.
  3.  前記第1グループの一部である第3グループの前記状態量から、第3レベルに属する第4要素の状態量を示す第4スコアを更に表示可能に構成される、
     請求項1又は2に記載の表示装置。
    A fourth score indicating the state quantity of a fourth element belonging to the third level from the state quantity of the third group, which is a part of the first group, can be further displayed.
    The display device according to claim 1 or 2.
  4.  前記第2スコアと、前記第4スコアとを同一の第2画面に表示可能に構成され、
     前記第1スコアと、前記第2スコアと、前記第3スコアとを表示する前記画面から、前記第2画面に遷移可能に構成される、
     請求項2を引用する請求項3に記載の表示装置。
    configured to be able to display the second score and the fourth score on the same second screen,
    The screen displaying the first score, the second score, and the third score can be transitioned to the second screen,
    4. The display device according to claim 3, from which claim 2 is cited.
  5.  前記第1スコアは、前記第2スコア及び前記第3スコアに基づいて取得される、
     請求項1乃至4の何れか一項に記載の表示装置。
    the first score is obtained based on the second score and the third score;
    The display device according to any one of claims 1 to 4.
  6.  前記複数種類の状態量のうち、少なくとも一つの前記状態量を表示可能に構成される、
     請求項1乃至5の何れか一項に記載の表示装置。
    configured to be able to display at least one of the plurality of types of state quantities,
    The display device according to any one of claims 1 to 5.
  7.  前記対象物は、プラントであり、
     前記状態量は、プロセスデータである、
     請求項1乃至6の何れか一項に記載の表示装置。
    the object is a plant,
    The state quantity is process data,
    7. The display device according to any one of claims 1 to 6.
  8.  対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアを表示するステップと、
     前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアを表示するステップと、
     前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアを表示するステップと、
     を含む表示方法。
    a step of displaying a first score indicating a state quantity of a first element belonging to a first level from among a plurality of types of state quantity of the object;
    a step of displaying a second score indicating a state quantity of a second element belonging to a second level from the state quantity of the first group which is a part of the plurality of types;
    a step of displaying a third score indicating the state quantity of a third element belonging to the second level from the state quantity of the second group which is a part of the plurality of types;
    display method, including
  9.  対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアを表示装置に表示させ、
     前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアを前記表示装置に表示させ、
     前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアを表示装置に表示させるように前記表示装置を制御する、
     制御装置。
    causing the display device to display a first score indicating the state quantity of the first element belonging to the first level from the plurality of types of state quantity of the object;
    causing the display device to display a second score indicating the state quantity of a second element belonging to a second level from the state quantity of the first group which is a part of the plurality of types;
    controlling the display device to display a third score indicating the state quantity of a third element belonging to the second level from the state quantity of the second group, which is a part of the plurality of types, on the display device;
    Control device.
  10.  コンピュータに、
     対象物の複数種類の状態量から、第1レベルに属する第1要素の状態量を示す第1スコアを表示装置に表示させ、
     前記複数種類の一部である第1グループの前記状態量から、第2レベルに属する第2要素の状態量を示す第2スコアを前記表示装置に表示させ、
     前記複数種類の一部である第2グループの前記状態量から、前記第2レベルに属する第3要素の状態量を示す第3スコアを表示装置に表示させるための制御命令を生成させる、
     コンピュータプログラム。
    to the computer,
    causing the display device to display a first score indicating the state quantity of the first element belonging to the first level from the plurality of types of state quantity of the object;
    causing the display device to display a second score indicating the state quantity of a second element belonging to a second level from the state quantity of the first group which is a part of the plurality of types;
    generating a control instruction for displaying on a display device a third score indicating the state quantity of a third element belonging to the second level from the state quantity of the second group, which is a part of the plurality of types;
    computer program.
PCT/JP2022/009870 2021-03-12 2022-03-08 Display device, display method, control device, and computer program WO2022191164A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023505564A JPWO2022191164A1 (en) 2021-03-12 2022-03-08
KR1020237031548A KR20230156071A (en) 2021-03-12 2022-03-08 Display devices, display methods, control devices and computer programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-039950 2021-03-12
JP2021039950 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022191164A1 true WO2022191164A1 (en) 2022-09-15

Family

ID=83226748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009870 WO2022191164A1 (en) 2021-03-12 2022-03-08 Display device, display method, control device, and computer program

Country Status (4)

Country Link
JP (1) JPWO2022191164A1 (en)
KR (1) KR20230156071A (en)
TW (1) TW202236040A (en)
WO (1) WO2022191164A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209127A (en) * 2010-03-30 2011-10-20 Toshiba Corp System and method for monitoring nuclear power plant
WO2011135606A1 (en) * 2010-04-26 2011-11-03 株式会社 日立製作所 Time-series data diagnostic compression method
JP2011238148A (en) * 2010-05-13 2011-11-24 Yokogawa Electric Corp Analysis result display device and analysis result display method
JP2019016209A (en) * 2017-07-07 2019-01-31 株式会社東芝 Diagnosis device, diagnosis method, and computer program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314538A (en) 1995-05-12 1996-11-29 Hitachi Zosen Corp Plant operation state diagnostic device
JP3580793B2 (en) 2001-12-12 2004-10-27 ダイセル化学工業株式会社 Plant control monitoring equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209127A (en) * 2010-03-30 2011-10-20 Toshiba Corp System and method for monitoring nuclear power plant
WO2011135606A1 (en) * 2010-04-26 2011-11-03 株式会社 日立製作所 Time-series data diagnostic compression method
JP2011238148A (en) * 2010-05-13 2011-11-24 Yokogawa Electric Corp Analysis result display device and analysis result display method
JP2019016209A (en) * 2017-07-07 2019-01-31 株式会社東芝 Diagnosis device, diagnosis method, and computer program

Also Published As

Publication number Publication date
KR20230156071A (en) 2023-11-13
JPWO2022191164A1 (en) 2022-09-15
TW202236040A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
Chen et al. Evidential KNN-based condition monitoring and early warning method with applications in power plant
Azadeh et al. A fuzzy inference system for pump failure diagnosis to improve maintenance process: The case of a petrochemical industry
El Koujok et al. A multiagent-based methodology for known and novel faults diagnosis in industrial processes
Power et al. A two-step supervisory fault diagnosis framework
WO2022191164A1 (en) Display device, display method, control device, and computer program
TWI777331B (en) System for displaying status of factory, device for displaying status of factory, and method for displaying status of factory
WO2021241702A1 (en) Display device, evaluation method, and evaluation system
Sarwar et al. Hybrid intelligence for enhanced fault detection and diagnosis for industrial gas turbine engine
JP7423138B2 (en) equipment and systems
JP7418894B2 (en) equipment and systems
WO2022080104A1 (en) Display device, display method, control device, and computer program
WO2022102348A1 (en) Display device, display method, control device, control method, and computer program
TWI805039B (en) Display device, control device, control method and computer program
TWI808504B (en) Display device, display method, control device and computer program
JP7413012B2 (en) System and method
TWI837524B (en) Operation support system, operation support method and computer program
WO2022102349A1 (en) Display device, control device, control method, and computer program
KR20230161460A (en) Display devices, control devices, control methods and programs
TW202215181A (en) Display device, control device, control method, and computer program
JP2021105940A (en) Apparatus and system
Akhrarov et al. A novel approach to predictive condition monitoring and knowledge management in power systems
KR20220158439A (en) Advanced management system and the method for distillation process
Jamsa-Jounela et al. Industrial applications of the intelligent fault diagnosis system
Platon et al. Soft Sensor Development for Black Liquor Concentration in the Kraft Pulping Process
Tysklind et al. A Novel Data Mining Framework to Investigate Causes of Boiler Failures in Waste-to-Energy Plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505564

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2301005721

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20237031548

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202306797U

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 22767118

Country of ref document: EP

Kind code of ref document: A1