WO2022188255A1 - 一种少模块数的串联mmc变流器拓扑结构 - Google Patents

一种少模块数的串联mmc变流器拓扑结构 Download PDF

Info

Publication number
WO2022188255A1
WO2022188255A1 PCT/CN2021/092111 CN2021092111W WO2022188255A1 WO 2022188255 A1 WO2022188255 A1 WO 2022188255A1 CN 2021092111 W CN2021092111 W CN 2021092111W WO 2022188255 A1 WO2022188255 A1 WO 2022188255A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
bridge
bridge circuit
voltage
series
Prior art date
Application number
PCT/CN2021/092111
Other languages
English (en)
French (fr)
Inventor
陈武
舒良才
金浩哲
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/640,603 priority Critical patent/US11909214B2/en
Publication of WO2022188255A1 publication Critical patent/WO2022188255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to the field of power systems, in particular to a topology structure of a series MMC converter with a small number of modules.
  • MMC converters have been widely used in high-voltage DC power transmission, AC-DC power grid interconnection and other occasions, which can realize the interconnection and energy exchange of medium and low voltage DC and medium and high voltage AC power grids.
  • the existing MMC converter topology can only support the bus voltage on the AC and DC sides by increasing the number of sub-modules, but this leads to an increase in the cost of the MMC system. High, volume increases, power density drops significantly, and reliability decreases.
  • the purpose of the present invention is to provide a series MMC converter topology with a small number of modules, which solves the problems of large number of MMC converter modules, bulky volume and low power density.
  • a topology structure of a series MMC converter with a small number of modules is composed of a three-phase bridge circuit, a half-bridge valve string, a three-phase filter inductor, and a three-phase power frequency transformer;
  • the three-phase bridge circuit is composed of an A-phase bridge circuit, a B-phase bridge circuit, and a C-phase bridge circuit. Combined with the second high-voltage switch string, the first high-voltage switch string and the second high-voltage switch string are connected in series with each other, and then formed in parallel with the high-voltage DC capacitor;
  • the half-bridge valve string is composed of a group of half-bridge sub-modules in series, or is composed of a full-bridge sub-module or a half-bridge/full-bridge hybrid sub-module;
  • the other terminal of the three-phase filter inductor is respectively connected to the primary winding terminal of the three-phase power frequency transformer, the secondary winding terminal of the three-phase power frequency transformer constitutes a high-voltage AC port, and the connection mode of the three-phase power frequency transformer adopts Y/Y, ⁇ One of /Y, ⁇ / ⁇ , and Y/ ⁇ structures.
  • any one phase of the bridge circuit adopts a three-level structure.
  • the lower terminal of the first high-voltage switch string and the upper terminal of the second high-voltage switch string are the intermediate points of the AC output of the phase bridge circuit, and the positive electrode of the capacitor of the A-phase bridge circuit and the negative electrode of the capacitor of the C-phase bridge circuit are formed. HVDC port.
  • the high-voltage switch string in the bridge circuit of each phase may be composed of a group of series-connected semiconductor switches, or may be composed of a group of series-connected half-bridge modules, wherein any half-bridge module includes two semiconductor switches and one Piezoelectric capacitor composition.
  • the middle point of the AC output of the A-phase bridge circuit is connected to the positive pole of the half-bridge valve string 1, and the negative pole of the half-bridge valve string 1 is connected to the A-phase filter inductor;
  • the AC output intermediate point of the C-phase bridge circuit is connected to the negative electrode of the half-bridge valve string 2, and the positive electrode of the half-bridge valve string 2 is connected to the C-phase filter inductor;
  • the middle point of the AC output of the B-phase bridge circuit is directly connected to the B-phase filter inductor.
  • all switch tubes in the three-phase bridge circuit are controlled by a 50% duty cycle, and the driving signals of the first switch tube and the second switch tube in each phase bridge circuit are opposite.
  • the first switch tube drive signal vSA1 and the A-phase modulation wave vA have the same phase;
  • the first switch tube driving signal vSB1 and the B-phase modulation wave vB have the same phase;
  • the first switch tube driving signal vSC1 and the C-phase modulation wave vc have the same phase.
  • the modulated wave signal of the first group of half-bridge valve string 1 connected to the middle point of the A-phase bridge circuit is (vSA1-vSB1) ⁇ (2/3 ⁇ VM)/(N ⁇ VSM)-(vA -vB), VM is the high-voltage DC port voltage, N is the number of sub-modules of a group of half-bridge valve strings, and VSM is the capacitor voltage of the half-bridge valve string sub-modules;
  • the modulated wave signal of the second group of half-bridge valve string 2 connected to the middle point of the C-phase bridge circuit is (vSB1-vSC1) ⁇ (2/3 ⁇ VM)/(N ⁇ VSM)-(vB-vC) , the three-phase modulation waves vA, vB, vC are obtained by the closed-loop capacitor voltage of the valve string sub-module and the AC side voltage or current control.
  • the topology structure of the series MMC converter with a small number of modules designed by the present invention only needs two sets of half-bridge valve strings. Compared with the traditional MMC structure, the number of valve strings is greatly reduced. Under the conditions, the power density of the MMC converter can be improved, the stable output of the three-phase AC port voltage can be achieved, and the capacitor voltage of the sub-modules in the two groups of half-bridge valve strings can be balanced;
  • the topology designed by the present invention can save nearly 2/3 of the number of sub-modules, and has a larger AC/DC voltage transmission ratio, which is beneficial to reduce the cost of the MMC converter and reduce the number of devices. volume, improve power density.
  • FIG. 1 is a schematic diagram of the topology structure of a series MMC converter with a small number of modules of the present invention
  • FIG. 2 is a schematic diagram of a high-voltage switch string driving waveform and a half-bridge valve string modulation waveform of a series MMC converter with a small number of modules according to the present invention
  • FIG. 3 is a schematic diagram of the working waveform of the high-voltage AC port under the inverter state of the series MMC converter with a small number of modules according to the present invention
  • FIG. 4 is a schematic diagram of a three-phase sub-module voltage working waveform in the inverter state of a series MMC converter with a small number of modules according to the present invention
  • FIG. 5 is a schematic topology diagram of another three-level series MMC converter with a small number of modules according to the present invention.
  • a series MMC converter topology structure with a small number of modules consists of a three-phase bridge circuit, a half-bridge valve string, a three-phase filter inductor, and a three-phase power frequency transformer;
  • Three-phase bridge circuit consists of A-phase bridge circuit, B-phase bridge circuit and C-phase bridge circuit.
  • the combination of two high-voltage switch strings is formed.
  • the first high-voltage switch string and the second high-voltage switch string are connected in series with each other, and then formed in parallel with a high-voltage DC capacitor.
  • the lower terminal of the first high-voltage switch string and the upper terminal of the second high-voltage switch string are the AC output intermediate points of the phase bridge circuit.
  • the high-voltage switch string in the bridge circuit of each phase can be composed of a group of series-connected semiconductor switches or a group of series-connected half-bridge modules, wherein any half-bridge module includes two semiconductor switches and a small-capacitance equalizer. Piezoelectric capacitor composition.
  • the half-bridge valve string is composed of a group of half-bridge sub-modules in series, or a full-bridge sub-module or a half-bridge/full-bridge hybrid sub-module can be used.
  • the AC output intermediate point of the A-phase bridge circuit is connected to the positive pole of the half-bridge valve string 1, and the negative pole of the half-bridge valve string 1 is connected to the A-phase filter inductor;
  • the middle point of the AC output of the C-phase bridge circuit is connected to the negative pole of the half-bridge valve string 2, and the positive pole of the half-bridge valve string 2 is connected to the C-phase filter inductor;
  • the middle point of the AC output of the B-phase bridge circuit is directly connected to the B-phase filter inductor.
  • the other terminal of the three-phase filter inductor is connected to the primary winding terminal of the three-phase power frequency transformer, and the secondary winding terminal of the three-phase power frequency transformer constitutes a high-voltage AC port.
  • the connection mode of the three-phase power frequency transformer can be Y/Y, ⁇ / One of Y, ⁇ / ⁇ , and Y/ ⁇ structures.
  • a basic control method for the topology of a series MMC converter with a small number of modules All switches in a three-phase bridge circuit are controlled by a 50% duty cycle.
  • the first switch and the second switch in each phase bridge circuit are The tube drive signal is opposite.
  • the first switch drive signal vSA1 has the same phase as the A-phase modulation wave vA; in the B-phase bridge circuit, the first switch drive signal vSB1 has the same phase as the B-phase modulation wave vB; In the bridge circuit, the first switch tube driving signal vSC1 has the same phase as the C-phase modulation wave vc.
  • the modulated wave signal of the first group of half-bridge valve string 1 connected to the middle point of the A-phase bridge circuit is (vSA1-vSB1) ⁇ (2/3 ⁇ VM)/(N ⁇ VSM)-(vA-vB), where , VM is the high-voltage DC port voltage, N is the number of sub-modules in a group of half-bridge valve strings, and VSM is the capacitor voltage of the half-bridge valve string sub-modules;
  • the modulated wave signal of the second group of half-bridge valve string 2 connected to the middle point of the C-phase bridge circuit is (vSB1-vSC1) ⁇ (2/3 ⁇ VM)/(N ⁇ VSM)-(vB-vC), where , the three-phase modulation wave vA, vB, vC can be obtained by the closed-loop capacitor voltage of the valve string sub-module and the AC side voltage or current control.
  • the working waveform of the high-voltage AC port of the series MMC converter with a small number of modules can achieve stable output of the three-phase AC port voltage under the aforementioned control method.
  • the working waveform of the capacitor voltage of the sub-modules in the half-bridge valve string of the series MMC converter with a small number of modules can realize the balance of the capacitor voltage of the sub-modules in the two groups of half-bridge valve strings.
  • the topology proposed by the invention can save nearly 2/3 of the number of sub-modules, and has a larger AC/DC voltage transmission ratio, which is beneficial to reduce the cost of the MMC converter and reduce the size of the device , improve the power density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及电力***领域,具体的是一种少模块数的串联MMC变流器拓扑结构,所述拓扑结构由三相桥式电路、半桥阀串、三相滤波电感、三相工频变压器组成。本发明设计的少模块数的串联式MMC变流器拓扑结构,仅需要两组半桥阀串,相比于传统MMC结构大大减少了阀串的数量,在实现相同高压直流电压输出的条件下,可提升MMC变流器功率密度,可实现三相交流端口电压的稳定输出,也可实现两组半桥阀串内子模块电容电压的均衡;本发明设计的拓扑结构相对于传统MMC拓扑结构,可节省近2/3的子模块数量,且具有更大的交直流电压传输比,有利于降低MMC变流器的成本,减小装置体积,提升功率密度。

Description

一种少模块数的串联MMC变流器拓扑结构 技术领域
本发明涉及电力***领域,具体的是一种少模块数的串联MMC变流器拓扑结构。
背景技术
近年来,MMC变流器已经广泛应用于高压直流输电、交直流电网互联等场合,可实现中低压直流与中高压交流电网互联与能量交换。而随着电压等级的不断提升,受限于目前商用半导体器件耐压水平,现有MMC变流器拓扑只能通过增加子模块数量,支撑交直流侧的母线电压,但这导致MMC***成本升高、体积增大、功率密度显著下降、可靠性降低。因此,如何在不增加开关器件与直流储能电容耐压要求的条件下,通过改变MMC变流器拓扑结构,从而减小MMC变流器模块数量,降低装置体积,提升功率密度是目前亟需解决的一个问题。
发明内容
为解决上述背景技术中提到的不足,本发明的目的在于提供一种少模块数的串联MMC变流器拓扑结构,解决了MMC变流器模块数量庞大,体积庞大与功率密度低的问题。
本发明的目的可以通过以下技术方案实现:
一种少模块数的串联MMC变流器拓扑结构,所述拓扑结构由三相桥式电路、半桥阀串、三相滤波电感、三相工频变压器组成;
所述三相桥式电路由A相桥式电路、B相桥式电路和C相桥式电路三相桥 式电路串联组成,任意一相桥式电路均由高压直流电容、第一高压开关串与第二高压开关串组合组成,第一高压开关串和第二高压开关串相互串联后,与高压直流电容并联组成;
所述半桥阀串由一组半桥子模块串联组成,或者使用全桥子模块或半桥/全桥混合子模块组成;
所述三相滤波电感另一端子分别连接至三相工频变压器原边绕组端子,三相工频变压器副边绕组端子构成高压交流端口,三相工频变压器的连接方式采用Y/Y、Δ/Y、Δ/Δ、Y/Δ结构中的一种。
进一步地,任意一相所述桥式电路采用三电平结构。
进一步地,所述第一高压开关串下端子与第二高压开关串上端子为该相桥式电路的交流输出中间点,A相桥式电路的电容正极与C相桥式电路的电容负极构成高压直流端口。
进一步地,每相所述桥式电路中的高压开关串可由一组串联的半导体开关组成,也可以由一组串联的半桥模块组成,其中任意半桥模块内包含两个半导体开关和一个均压电容组成。
进一步地,所述A相桥式电路的交流输出中间点连接至半桥阀串1的正极,半桥阀串1的负极连接A相滤波电感;
所述C相桥式电路的交流输出中间点连接至半桥阀串2的负极,半桥阀串2的正极连接C相滤波电感;
所述B相桥式电路的交流输出中间点直接连接B相滤波电感。
进一步地,所述三相桥式电路中所有开关管均采用50%占空比控制,每相桥式电路中第一开关管与第二开关管驱动信号相反。
进一步地,所述A相桥式电路中,第一开关管驱动信号vSA1与A相调制 波vA的相位相同;
所述B相桥式电路中,第一开关管驱动信号vSB1与B相调制波vB的相位相同;
所述C相桥式电路中,第一开关管驱动信号vSC1与C相调制波vc的相位相同。
进一步地,与所述A相桥式电路中间点连接的第一组半桥阀串1的调制波信号为(vSA1-vSB1)×(2/3×VM)/(N×VSM)-(vA-vB),VM为高压直流端口电压,N为一组半桥阀串的子模块个数,VSM为半桥阀串子模块的电容电压;
与所述C相桥式电路中间点连接的第二组半桥阀串2的调制波信号为(vSB1-vSC1)×(2/3×VM)/(N×VSM)-(vB-vC),三相调制波vA、vB、vC采用对阀串子模块电容电压闭环与交流侧电压或电流控制得到。
本发明的有益效果:
1、本发明设计的少模块数的串联式MMC变流器拓扑结构,仅需要两组半桥阀串,相比于传统MMC结构大大减少了阀串的数量,在实现相同高压直流电压输出的条件下,可提升MMC变流器功率密度,可实现三相交流端口电压的稳定输出,也可实现两组半桥阀串内子模块电容电压的均衡;
2、本发明设计的拓扑结构相对于传统MMC拓扑结构,可节省近2/3的子模块数量,且具有更大的交直流电压传输比,有利于降低MMC变流器的成本,减小装置体积,提升功率密度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获 得其他的附图;
图1是本发明少模块数的串联MMC变流器拓扑结构示意图;
图2是本发明少模块数的串联MMC变流器的高压开关串驱动波形与半桥阀串调制波形示意图;
图3是本发明少模块数的串联MMC变流器逆变状态下高压交流端口工作波形示意图;
图4是本发明少模块数的串联MMC变流器逆变状态下三相子模块电压工作波形示意图;
图5是本发明少模块数的另一种三电平型串联MMC变流器的拓扑示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种少模块数的串联MMC变流器拓扑结构,如图1所示,由三相桥式电路、半桥阀串、三相滤波电感、三相工频变压器组成;
三相桥式电路由A相桥式电路、B相桥式电路和C相桥式电路三相桥式电路串联组成,任意一相桥式电路均由高压直流电容、第一高压开关串与第二高压开关串组合组成,第一高压开关串和第二高压开关串相互串联后,与高压直流电容并联组成。第一高压开关串下端子与第二高压开关串上端子为该相桥式电路的交流输出中间点,A相桥式电路的电容正极与C相桥式电路的电容负极构成高压直流端口。
每相桥式电路中的高压开关串可由一组串联的半导体开关组成,也可以由 一组串联的半桥模块组成,其中任意半桥模块内包含两个半导体开关和一个容值较小的均压电容组成。
半桥阀串由一组半桥子模块串联组成,也可以使用全桥子模块或半桥/全桥混合子模块组成。
A相桥式电路的交流输出中间点连接至半桥阀串1的正极,半桥阀串1的负极连接A相滤波电感;
C相桥式电路的交流输出中间点连接至半桥阀串2的负极,半桥阀串2的正极连接C相滤波电感;
B相桥式电路的交流输出中间点直接连接B相滤波电感。
三相滤波电感另一端子分别连接至三相工频变压器原边绕组端子,三相工频变压器副边绕组端子构成高压交流端口,三相工频变压器的连接方式可采用Y/Y、Δ/Y、Δ/Δ、Y/Δ结构中的一种。
一种少模块数的串联MMC变流器拓扑结构的基本控制方法,三相桥式电路中所有开关管均采用50%占空比控制,每相桥式电路中第一开关管与第二开关管驱动信号相反。
A相桥式电路中,第一开关管驱动信号vSA1与A相调制波vA的相位相同;B相桥式电路中,第一开关管驱动信号vSB1与B相调制波vB的相位相同;C相桥式电路中,第一开关管驱动信号vSC1与C相调制波vc的相位相同。
与A相桥式电路中间点连接的第一组半桥阀串1的调制波信号为(vSA1-vSB1)×(2/3×VM)/(N×VSM)-(vA-vB),其中,VM为高压直流端口电压,N为一组半桥阀串的子模块个数,VSM为半桥阀串子模块的电容电压;
与C相桥式电路中间点连接的第二组半桥阀串2的调制波信号为(vSB1-vSC1)×(2/3×VM)/(N×VSM)-(vB-vC),其中,三相调制波vA、vB、vC 可采用对阀串子模块电容电压闭环与交流侧电压或电流控制得到。
如图3所示,少模块数的串联式MMC变流器高压交流端口工作波形,在前述控制方法下,可实现三相交流端口电压的稳定输出。
如图4所示,少模块数的串联式MMC变流器的半桥阀串内子模块电容电压工作波形,可实现两组半桥阀串内子模块电容电压的均衡。
如图5所示,为另一种三电平型串联式MMC变流器拓扑结构,高压直流端口侧的三相桥式电路采用三电平结构,可利用较低耐压的开关器件形成高压端口。
本发明所提出的拓扑结构相对于传统MMC拓扑结构,可节省近2/3的子模块数量,且具有更大的交直流电压传输比,有利于降低MMC变流器的成本,减小装置体积,提升功率密度。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (8)

  1. 一种少模块数的串联MMC变流器拓扑结构,其特征在于,所述拓扑结构由三相桥式电路、半桥阀串、三相滤波电感、三相工频变压器组成;
    所述三相桥式电路由A相桥式电路、B相桥式电路和C相桥式电路三相桥式电路串联组成,任意一相桥式电路均由高压直流电容、第一高压开关串与第二高压开关串组合组成,第一高压开关串和第二高压开关串相互串联后,与高压直流电容并联组成;
    所述半桥阀串由一组半桥子模块串联组成,或者使用全桥子模块或半桥/全桥混合子模块组成;
    所述三相滤波电感另一端子分别连接至三相工频变压器原边绕组端子,三相工频变压器副边绕组端子构成高压交流端口,三相工频变压器的连接方式采用Y/Y、Δ/Y、Δ/Δ、Y/Δ结构中的一种。
  2. 根据权利要求1所述的一种少模块数的串联MMC变流器拓扑结构,其特征在于,任意一相所述桥式电路采用三电平结构。
  3. 根据权利要求1所述的一种少模块数的串联MMC变流器拓扑结构,其特征在于,所述第一高压开关串下端子与第二高压开关串上端子为该相桥式电路的交流输出中间点,A相桥式电路的电容正极与C相桥式电路的电容负极构成高压直流端口。
  4. 根据权利要求1所述的一种少模块数的串联MMC变流器拓扑结构,其特征在于,每相所述桥式电路中的高压开关串可由一组串联的半导体开关组成,也可以由一组串联的半桥模块组成,其中任意半桥模块内包含两个半导体开关和一个均压电容组成。
  5. 根据权利要求1所述的一种少模块数的串联MMC变流器拓扑结构,其 特征在于,所述A相桥式电路的交流输出中间点连接至半桥阀串1的正极,半桥阀串1的负极连接A相滤波电感;
    所述C相桥式电路的交流输出中间点连接至半桥阀串2的负极,半桥阀串2的正极连接C相滤波电感;
    所述B相桥式电路的交流输出中间点直接连接B相滤波电感。
  6. 根据权利要求1所述的一种少模块数的串联MMC变流器拓扑结构,其特征在于,所述三相桥式电路中所有开关管均采用50%占空比控制,每相桥式电路中第一开关管与第二开关管驱动信号相反。
  7. 根据权利要求1或6所述的一种少模块数的串联MMC变流器拓扑结构,其特征在于,所述A相桥式电路中,第一开关管驱动信号vSA1与A相调制波vA的相位相同;
    所述B相桥式电路中,第一开关管驱动信号vSB1与B相调制波vB的相位相同;
    所述C相桥式电路中,第一开关管驱动信号vSC1与C相调制波vc的相位相同。
  8. 根据权利要求7所述的一种少模块数的串联MMC变流器拓扑结构,其特征在于,与所述A相桥式电路中间点连接的第一组半桥阀串1的调制波信号为(vSA1-vSB1)×(2/3×VM)/(N×VSM)-(vA-vB),VM为高压直流端口电压,N为一组半桥阀串的子模块个数,VSM为半桥阀串子模块的电容电压;
    与所述C相桥式电路中间点连接的第二组半桥阀串2的调制波信号为(vSB1-vSC1)×(2/3×VM)/(N×VSM)-(vB-vC),三相调制波vA、vB、vC采用对阀串子模块电容电压闭环与交流侧电压或电流控制得到。
PCT/CN2021/092111 2021-03-08 2021-05-07 一种少模块数的串联mmc变流器拓扑结构 WO2022188255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/640,603 US11909214B2 (en) 2021-03-08 2021-05-07 Topology of series-connected MMC with a small number of modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110251640.XA CN113054861B (zh) 2021-03-08 2021-03-08 一种少模块数的串联mmc变流器拓扑结构
CN202110251640.X 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022188255A1 true WO2022188255A1 (zh) 2022-09-15

Family

ID=76510317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092111 WO2022188255A1 (zh) 2021-03-08 2021-05-07 一种少模块数的串联mmc变流器拓扑结构

Country Status (3)

Country Link
US (1) US11909214B2 (zh)
CN (1) CN113054861B (zh)
WO (1) WO2022188255A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872459B (zh) * 2021-09-22 2022-12-02 国网江苏省电力有限公司扬州供电分公司 一种串联式mmc拓扑结构的控制方法
CN113992053B (zh) * 2021-10-29 2024-01-23 国网江苏省电力有限公司扬州供电分公司 一种三相串联混合式mmc拓扑结构及控制方法
US20240055996A1 (en) * 2022-08-12 2024-02-15 Virginia Tech Intellectual Properties, Inc. Electronic transformer for current sharing and load-independent voltage gain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305843A (zh) * 2015-10-13 2016-02-03 国网山东省电力公司聊城供电公司 一种三相串联半h桥型模块化多电平直流换流器及其控制方法
EP3223419A1 (en) * 2016-03-22 2017-09-27 GE Energy Power Conversion Technology Ltd Direct ac-ac converter assembly and conversion system using same
CN112271746A (zh) * 2020-09-11 2021-01-26 燕山大学 一种高频链互联的无电解电容mmc拓扑结构及控制策略

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795057B (zh) * 2010-04-07 2012-06-27 浙江大学 无需辅助直流电源的三相模块化多电平换流器启动方法
CN102522913A (zh) * 2011-12-04 2012-06-27 中国科学院电工研究所 基于h全桥子单元的混合多电平变流拓扑及其控制方法
JP6111671B2 (ja) * 2013-01-10 2017-04-12 富士電機株式会社 駆動信号絶縁回路を用いた電力変換装置
JP2015233394A (ja) * 2014-06-10 2015-12-24 株式会社東芝 車両用電力変換装置
US10256745B2 (en) * 2014-07-22 2019-04-09 Abb Schweiz Ag Multilevel converter with reduced AC fault handling rating
JP6293379B2 (ja) * 2014-12-22 2018-03-14 アーベーベー シュヴァイツ アクツィエンゲゼルシャフト サイリスタバルブを伴うモジュラーマルチレベル変換器
CN109391161A (zh) * 2017-08-10 2019-02-26 台达电子企业管理(上海)有限公司 电力电子变换单元及***
CN108306517B (zh) * 2018-01-16 2020-05-05 东南大学 两级式多端口电力电子变压器的拓扑结构及其控制方法
CN111404409A (zh) * 2019-01-03 2020-07-10 南京南瑞继保工程技术有限公司 基于mmc的多端口电力电子变压器拓扑及其控制方法
EP3726722A1 (en) * 2019-04-18 2020-10-21 Siemens Aktiengesellschaft Interleaved power converter
CN110165896B (zh) * 2019-04-30 2020-05-05 东南大学 一种基于集中式多绕组变压器的直流变压器及控制方法
CN110492514A (zh) * 2019-07-04 2019-11-22 上海交通大学 应用于交直流混合配电网的固态变压器拓扑族及设计方法
CN110445400B (zh) * 2019-07-26 2020-08-18 上海交通大学 多端口直流潮流控制的模块化多电平变流器及控制方法
CN210693795U (zh) * 2019-11-26 2020-06-05 浙江大学 一种组合型模块化多电平换流拓扑
EP3913786A1 (de) * 2020-05-18 2021-11-24 Siemens Aktiengesellschaft Stromrichteranordnung mit einem netzgeführten stromrichter sowie verfahren zum anfahren der stromrichteranordnung
CN111864785B (zh) * 2020-08-14 2021-12-03 华中科技大学 耐交直流故障的交流侧级联型混合mmc拓扑的控制方法
CN112152464A (zh) * 2020-09-04 2020-12-29 东南大学 具备故障阻断能力的器件串联式直流变压器及其控制方法
CN112421959B (zh) * 2020-11-18 2022-02-01 东南大学 一种直流变压器拓扑及其控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305843A (zh) * 2015-10-13 2016-02-03 国网山东省电力公司聊城供电公司 一种三相串联半h桥型模块化多电平直流换流器及其控制方法
EP3223419A1 (en) * 2016-03-22 2017-09-27 GE Energy Power Conversion Technology Ltd Direct ac-ac converter assembly and conversion system using same
CN112271746A (zh) * 2020-09-11 2021-01-26 燕山大学 一种高频链互联的无电解电容mmc拓扑结构及控制策略

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, HEYA: "Topology Derivation and Control Strategy of Modular Multilevel Converters", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE (ELECTRONIC JOURNAL), 15 January 2021 (2021-01-15), pages 1 - 136, XP055966527, [retrieved on 20220929] *

Also Published As

Publication number Publication date
CN113054861B (zh) 2022-03-29
US20230017288A1 (en) 2023-01-19
US11909214B2 (en) 2024-02-20
CN113054861A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2022188255A1 (zh) 一种少模块数的串联mmc变流器拓扑结构
WO2017128499A1 (zh) 基于混合型模块化多电平变换器的四端口电力电子变压器
CN105978376B (zh) 并网逆变电路及其控制方法
CN101917133A (zh) 一种五电平逆变器
CN110920422B (zh) 一种基于电流源的大功率电动汽车充电装置及控制方法
CN104578881A (zh) 一种新型z源并网变流器
CN110572063B (zh) 不对称输入多电平变流装置及控制方法
CN106169885A (zh) 一种级联式六开关多电平逆变器
CN102403920B (zh) 三电平半桥光伏并网逆变器
CN106712523A (zh) 一种升压三电平全桥变换器及其控制方法
CN207638580U (zh) 四电平三相并网逆变器和发电***
CN206023611U (zh) 高频隔离式五电平逆变器
CN113078829A (zh) 一种上下桥臂子模块高频链互联的mmc拓扑及控制方法
CN201198066Y (zh) 一种逆变埋弧焊电源主电路拓扑结构
US11757370B2 (en) Energy storage MMC topology avoiding microcirculation of battery and method for controlling the same
CN108390583B (zh) 一种十开关箝位型三相非隔离光伏逆变器拓扑结构
CN116317499A (zh) 基于飞跨电容型三电平boost的单相逆变器及控制方法
CN201966809U (zh) 一种基于简易pfc的电力电子变压器
CN204578378U (zh) 一种单相半桥多电平交-直-交变换器
CN203883678U (zh) 一种全桥dc-dc变换器
CN102938620A (zh) 单级三相大升压比级联电压型准阻抗源逆变器
CN203057066U (zh) 一种前馈补偿节能控制变换装置
CN105846705B (zh) 高频隔离式五电平逆变器
CN112994500A (zh) 一种单级单相非对称全桥逆变器
CN110311583A (zh) 一种用于电力变换***的四电平电路拓扑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929726

Country of ref document: EP

Kind code of ref document: A1