WO2022185514A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2022185514A1
WO2022185514A1 PCT/JP2021/008609 JP2021008609W WO2022185514A1 WO 2022185514 A1 WO2022185514 A1 WO 2022185514A1 JP 2021008609 W JP2021008609 W JP 2021008609W WO 2022185514 A1 WO2022185514 A1 WO 2022185514A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical path
light source
sensor
shielding
Prior art date
Application number
PCT/JP2021/008609
Other languages
English (en)
French (fr)
Inventor
孝一郎 古田
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2021/008609 priority Critical patent/WO2022185514A1/ja
Priority to CN202180088206.2A priority patent/CN116648836A/zh
Priority to JP2023503311A priority patent/JP7445083B2/ja
Publication of WO2022185514A1 publication Critical patent/WO2022185514A1/ja
Priority to US18/208,653 priority patent/US20230327060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources

Definitions

  • the present invention relates to a light source device.
  • the amount of light emitted by the light source in the light source device changes due to temperature changes and the like.
  • a light source device is known that feedback-controls the light intensity of a light source in order to make the light intensity of output light output from the light source device constant regardless of the influence of temperature changes (see, for example, Patent Document 1. ).
  • the light source device of Patent Document 1 includes a white light source, a laser light source, a dichroic mirror that synthesizes the optical path of the white light and the optical path of the laser light, a sensor that detects the light amount of the laser light, and a control unit.
  • the section controls the amount of current input to the laser light source based on the amount of light detected by the sensor.
  • the dichroic mirror reflects most of the laser light to synthesize the optical path of the laser light with the optical path of the white light, and the sensor detects the amount of laser light transmitted through the dichroic mirror.
  • the light emitted from the light source undergoes not only a change in the amount of light but also a change in the spectrum such as a shift in the peak wavelength due to temperature changes and the like.
  • a change in the spectrum causes a change in the amount of light reflected by the dichroic mirror and a change in the amount of light detected by the sensor. Therefore, in the case of the configuration of Patent Document 1, the correlation between the light intensity of the laser light detected by the sensor and the light intensity of the output light output from the light source device changes as the spectrum changes. As a result, the accuracy of adjusting the amount of output light is lowered.
  • the accuracy of color adjustment of the output light is reduced.
  • One aspect of the present invention provides a first light source that emits first light, and a second light source that emits second light, and the spectrum of the second light is different from the spectrum of the first light.
  • a light source an optical path conversion element for guiding the first light and the second light respectively to a common optical path, a first sensor for detecting the light quantity of the first light, and a light quantity for the second light. and a light amount of the first light from the first light source and the light amount of the second light based on the light amount detected by the first sensor and the light amount detected by the second sensor.
  • a control unit configured to control the amount of light of the second light from a light source, wherein the optical path changing element reflects the first light to guide the first light to the common optical path; is a light source device arranged on the common optical path.
  • the first light emitted from the first light source and the second light emitted from the second light source are each guided to the common optical path by the optical path changing element, and the first light traveling along the common optical path
  • the light and the second light are output as output light to the outside of the light source device from an exit arranged on the common optical path or an extension of the common optical path.
  • the light quantity emitted from each light source is feedback-controlled by the control device. be.
  • the first sensor detects the amount of the first light after being reflected by the optical path changing element. Therefore, the detected light amount of the first light is equal to or close to the light amount of the first light contained in the output light, regardless of the spectrum change of the first light due to the influence of temperature change or the like. Based on such a detected light amount, the light amount and color of the output light can be controlled with high precision regardless of the spectral change of the first light emitted from the light source.
  • a restricting member disposed on the common optical path, and a second light source disposed between the first light source and the restricting member for converting the first light into parallel light having a first diameter.
  • a collimating element, and a second collimating element disposed between the second light source and the restricting member for converting the second light into parallel light having a second diameter;
  • said restricting member has an opening having a diameter smaller than said first diameter and said second diameter and restricts passage of said first light and said second light only to said opening;
  • the first sensor detects a portion of the first light that does not pass through the opening, and the second sensor detects a portion of the second light that does not pass through the opening.
  • the sensor detects a portion of the light emitted from each light source that is not used as the output light. This makes it possible to detect the light intensity of each light while preventing the light intensity of the output light from decreasing.
  • the optical path changing element may guide the second light to the common optical path by allowing the second light to pass therethrough, and the second sensor may be arranged on the common optical path.
  • the second sensor detects the light amount of the second light after passing through the optical path changing element. Therefore, the detected light amount of the second light is equal to or close to the light amount of the second light contained in the output light, regardless of the spectrum change of the second light due to the influence of temperature change or the like. Based on such a detected light amount, the light amount and color of the output light can be controlled with higher accuracy regardless of the spectral change of the second light emitted by the light source.
  • a first shielding member disposed between the first light source and the optical path changing element for shielding a first shielding area that is a partial area of the first light
  • a second shielding member disposed between the second light source and the optical path changing element and shielding a second shielding area that is a partial area of the second light
  • a sensor may be arranged in the second shielded area and the second sensor may be arranged in the first shielded area.
  • the controller can control the amount of light of the first light source with higher accuracy.
  • the second sensor is arranged in the first shielding area where the first light does not enter, it is possible to more accurately detect the amount of the second light. Therefore, the controller can control the amount of light from the second light source with higher accuracy.
  • a third light source that emits third light, the spectrum of the third light being different from the spectrum of the first light and the spectrum of the second light, and a third sensor arranged to detect the amount of the third light; and a third sensor arranged between the third light source and the optical path changing element and being a partial region of the third light.
  • the optical path changing element guides the third light to the common optical path by transmitting the third light
  • the first sensor is arranged in an area where all shielded areas other than the first shielded area overlap
  • the second sensor is arranged in an area where all shielded areas other than the second shielded area overlap
  • the third sensors may be placed in an area where all shielded areas other than the third shielded area overlap.
  • the third light is output as the output light in addition to the first light and the second light.
  • the first sensor is arranged in an area where the second and third lights do not enter
  • the second sensor is arranged in an area where the first and third lights do not enter
  • the third sensor are placed in areas where the first and second lights do not enter. This allows each sensor to more accurately detect the light intensity of the corresponding light.
  • each of the first collimating element and the second collimating element may be a lens.
  • a lens can convert divergent light emitted from a light source into parallel light in spite of its small size. Therefore, the size of the light source device can be reduced by using the lens as the collimating element.
  • each of the first shielding member and the second shielding member is an annular member
  • the first shielding member includes an annular or partially annular shielding portion and a portion of the first shielding member. and a passing portion that is provided in a portion in the circumferential direction and that allows the first light to pass therethrough
  • the second shielding member includes an annular or partially annular shielding portion and a portion of the second shielding member in the circumferential direction. and a passing portion that is provided in and passes the second light.
  • the present invention it is possible to control the amount and color of the output light with high precision regardless of the spectral change of the light emitted by the light source.
  • FIG. 1 is an overall configuration diagram of a light source device according to a first embodiment
  • FIG. 2 is a diagram explaining a spectrum change of light emitted from an LED of the light source device of FIG. 1
  • 2 is a diagram showing reflection characteristics of an optical path changing element of the light source device of FIG. 1
  • FIG. 10 is an overall configuration diagram of a light source device according to a second embodiment
  • It is the figure which looked at several shielding members of the light source device of FIG. 5 from each incident side.
  • a light source device 10 As shown in FIG. 1, a light source device 10 according to this embodiment generates output light L having a desired color and spectrum by synthesizing a plurality of lights emitted from a plurality of light sources. is output to the outside of the light source device 10 from the output port 10a.
  • the light source device 10 is connected to the endoscope 30 and the output light L is used as illumination light for illuminating the field of view of the endoscope 30 .
  • the number of light sources may be any number equal to or greater than two.
  • the light source device 10 guides the five light sources 11, 12, 13, 14 and 15 and the lights L1, L2, L3, L4 and L5 respectively emitted from the light sources 11, 12, 13, 14 and 15 to the common optical path P.
  • the common optical path P is an optical path along which all five lights L1, L2, L3, L4, and L5 pass, that is, an optical path along which the output light L passes. It is Arbitrary optical elements such as a lens 40 for converting the output light L into converging light and a filter for cutting light of a specific wavelength may be arranged in the common optical path P.
  • the light sources 11, 12, 13, 14 and 15 are LED (light-emitting diode) light sources, and emit violet, blue, green, amber and red light L1, L2, L3, L4 and L5, respectively.
  • the light sources 11, 12, 13, 14 and 15 are hereinafter referred to as V-LED, B-LED, G-LED, A-LED and R-LED.
  • the optical path changing elements 21, 22, 23, and 24 are dichroic mirrors, and transmit or reflect the incident lights L1, L2, L3, L4, and L5, thereby changing the optical paths of the five lights L1, L2, L3, L4, and L5.
  • P1, P2, P3, P4 and P5 are combined and light L1, L2, L3, L4 and L5 are led to the common optical path P.
  • the optical axes of the four LEDs 12 , 13 , 14 , 15 are parallel to each other and intersect the optical axis A of the V-LED 11 .
  • the four LEDs 12 , 13 , 14 , 15 are arranged in order of wavelength, and the B-LED 12 with the shorter wavelength is arranged closer to the V-LED 11 .
  • the optical path conversion element 21 is arranged at a position where the optical axis A and the optical axis of the B-LED 12 intersect, and transmits the violet light L1 along the optical axis A, and transmits the blue light L2 along the optical axis A. reflect.
  • the optical path conversion element 22 is arranged at a position where the optical axis A and the optical axis of the G-LED 13 intersect, and transmits the violet and blue lights L1 and L2 along the optical axis A, and the green light L3. Reflect along A.
  • the optical path conversion element 23 is arranged at a position where the optical axis A and the optical axis of the A-LED 14 intersect, and transmits the violet, blue, and green lights L1, L2, and L3 along the optical axis A, and the amber light. Reflect L4 along optical axis A;
  • the optical path conversion element 24 is arranged at a position where the optical axis A and the optical axis of the R-LED 15 intersect, and transmits the violet, blue, green, and amber lights L1, L2, L3, and L4 along the optical axis A. , reflects the red light L5 along the optical axis A. Therefore, the common optical path P is an optical path between the optical path changing element 24 and the output port 10a.
  • the aperture stop 31 is an annular member, and includes an aperture 3a arranged on the optical axis of the common optical path P and allowing the output light L to pass therethrough, and an aperture 3a surrounding the aperture 3a to shield the output light L. and an annular shielding portion 3b. Aperture stop 31 restricts passage of output light L to aperture 3a only.
  • the collimating elements 41, 42, 43, 44, 45 are arranged between the corresponding light sources 11, 12, 13, 14, 15 and the aperture stop 31, respectively.
  • the lights L1, L2, L3, L4, and L5 emitted by the LEDs 11, 12, 13, 14, and 15 are divergent lights.
  • the collimating elements 41, 42, 43, 44, 45 convert the lights L1, L2, L3, L4, L5 into parallel lights having a diameter larger than the diameter of the aperture 3a, respectively.
  • the parallel light diameters of the lights L1, L2, L3, L4, and L5 may be the same or different. Therefore, as shown in FIG.
  • the central portion of the light beam passing through the opening 3a forms the output light
  • the radially outer side corresponding to the shielding portion 3b forms the output light.
  • a portion does not pass through the aperture 3a and is not used for output light.
  • the collimating element 41 is arranged on the optical path P1 between the V-LED 11 and the optical path changing element 21, and converts the violet light L1 into parallel light.
  • the collimating element 42 is arranged on the optical path P2 between the B-LED 12 and the optical path changing element 21, and converts the blue light L2 into parallel light.
  • the collimating element 43 is arranged on the optical path P3 between the G-LED 13 and the optical path changing element 22, and converts the green light L3 into parallel light.
  • a collimating element 44 is arranged in the optical path P4 between the A-LED 14 and the optical path changing element 23 and converts the amber light L4 into parallel light.
  • the collimating element 45 is arranged on the optical path P5 between the R-LED 15 and the optical path changing element 24, and converts the red light L5 into parallel light.
  • Each collimating element 41, 42, 43, 44, 45 is preferably a lens.
  • Each of the collimating elements 41, 42, 43, 44, 45 of FIG. 1 consists of a single convex lens.
  • a lens can convert divergent light into parallel light while being compact. Therefore, by using lenses as the collimating elements 41, 42, 43, 44, and 45, the size of the light source device 10 can be reduced.
  • Each collimating element 41, 42, 43, 44, 45 may be an optical element other than a convex lens, and may be, for example, a tapered rod. Also, each of the collimating elements 41, 42, 43, 44, 45 may be composed of a combination of a plurality of optical elements.
  • the sensors 51, 52, 53, 54, and 55 are arbitrary sensors capable of detecting the amount of light, such as photodiodes. Sensors 51, 52, 53, 54 and 55 detect the amounts of light L1, L2, L3, L4 and L5 emitted from corresponding light sources 11, 12, 13, 14 and 15, respectively.
  • the lights L2, L3, L4, and L5 are reflected by the optical path changing elements 21, 22, 23, and 24, respectively.
  • the sensors 52, 53, 54, 55 are arranged on the output side (common optical path P side) of the optical path changing elements 21, 22, 23, 24 that reflect the light L2, L3, L4, L5 to be detected, respectively.
  • the amount of light L2, L3, L4, and L5 is detected. Since the violet light L1 passes through all the optical path changing elements 21, 22, 23, 24, the sensor 51 is placed somewhere between the V-LED 11 and the output port 10a.
  • the sensors 51, 52, 53, 54, and 55 are arranged at positions for detecting the amounts of light of the portions of the light L1, L2, L3, L4, and L5 that do not pass through the opening 3a of the aperture stop 31. . Specifically, the sensors 51, 52, 53, 54, and 55 are arranged at positions where radially outer portions corresponding to the shielding portion 3b of the lights L1, L2, L3, L4, and L5 are incident. .
  • each aperture stop 32, 33, 34, 35 has the same configuration as the aperture stop 31, and has an opening 3a and a shielding portion 3b.
  • the aperture stops 32, 33, 34, 35 are arranged on the incident side (V-LED 11 side) of the optical path changing elements 21, 22, 23, 24, respectively.
  • V-LED 11 side the incident side of the optical path changing elements 21, 22, 23, 24, respectively.
  • the sensors 51, 52, 53, 54 and 55 are arranged on the incident sides of the aperture stops 32, 33, 34, 35 and 31, respectively. , L2, L3, L4, and L5 are incident. Therefore, the sensors 51, 52, 53, 54, 55 can be sensors sensitive to a wide range of wavelengths.
  • the sensors 51, 52, 53, 54, and 55 may be fixed to the incident side surfaces of the aperture stops 32, 33, 34, 35, and 31, respectively.
  • the aperture diaphragms 32, 33, 34, and 35 may be omitted, and the sensors 51, 52, 53, 54, and 55 may be arranged at arbitrary positions where the radially outer portions of the light L1, L2, L3, L4, and L5 to be detected are incident.
  • the control board 6 is connected to the LEDs 11, 12, 13, 14, and 15 via the drive boards 71, 72, 73, 74, and 75, and is connected to the sensors 51, 52, 53, 54, and 55 via the detection board 8. is connected with The control board 6 controls the LED 11 via the driving boards 71, 72, 73, 74, and 75 based on the light amounts of the lights L1, L2, L3, L4, and L5 detected by the sensors 51, 52, 53, 54, and 55. , 12, 13, 14 and 15 are controlled.
  • the control board 6 stores target light amounts corresponding to the respective LEDs 11 , 12 , 13 , 14 and 15 .
  • the drive substrates 71, 72, 73, 74 and 75 supply currents to the LEDs 11, 12, 13, 14 and 15 for causing the LEDs 11, 12, 13, 14 and 15 to emit light.
  • the control board 6 controls the amount of current supplied to the LEDs 11, 12, 13, 14, 15 by the drive boards 71, 72, 73, 74, 75 based on the amount of detected light. 15 is feedback-controlled to match the detected light quantity with the target light quantity.
  • Such control is realized by a control circuit formed on the control board 6, for example.
  • the lights L1, L2, L3, L4, and L5 emitted from the LEDs 11, 12, 13, 14, and 15 are combined into one common It is directed to an optical path P and forms an output light L in a common optical path P.
  • FIG. The output light L traveling along the common optical path P is output to the outside of the light source device 10 from the output port 10a.
  • the light intensities of the lights L1, L2, L3, L4, and L5 are detected by sensors 51, 52, 53, 54, and 55, respectively, and the detected light intensities of the lights L1, L2, L3, L4, and L5 are It is transmitted to the control board 6 via the detection board 8 .
  • the control board 6 compares the detected light intensity of each of the lights L1, L2, L3, L4, and L5 with the corresponding target light intensity, and controls the LEDs 11, 12, 13, 14, and 15 based on the difference between the detected light intensity and the target light intensity. feedback control.
  • the light intensity of each of the lights L1, L2, L3, L4, and L5 contained in the output light L is controlled to a predetermined target light intensity, and the light intensity, color, and spectrum of the output light L are adjusted to the predetermined light intensity, color, and spectrum. controlled.
  • FIG. 3 shows an example of changes in the emission spectrum of the R-LED 15 when the room temperature is changed from 10° C. to 50° C. while supplying a constant current to the R-LED 15 .
  • the peak wavelength shifts to longer wavelengths and the peak intensity decreases.
  • the reflection characteristics of the optical path changers 21, 22, 23, and 24 have wavelength dependence.
  • the optical path changing element 24 shows an example of reflection characteristics of a dichroic mirror as the optical path changing element 24 when light is incident on the dichroic mirror within a range of 45° ⁇ 10°.
  • the peak wavelength of the red light L5 incident on the dichroic mirror changes from 630 nm to 640 nm
  • the reflectance of the light L5 by the dichroic mirror changes significantly. Therefore, the light amounts of the lights L2, L3, L4, and L5 reflected by the optical path changing elements 21, 22, 23, and 24 also change as the spectra of the lights L1, L2, L3, L4, and L5 change.
  • the light amount of the light L1, L2, L3, L4, and L5 emitted by the LEDs 11, 12, 13, 14, and 15 and the light L1, L2, L3, L4, and L5 contained in the output light L changes in the correlation between the amount of light in the
  • the sensors 52, 53, 54, and 55 are arranged on the output sides of the optical path changing elements 21, 22, 23, and 24, respectively, and detect the light reflected by the optical path changing elements 21, 22, 23, and 24.
  • the light intensities of L2, L3, L4 and L5 are respectively detected. Therefore, detected light amounts closer to the light amounts of the lights L2, L3, L4, and L5 included in the output light L can be obtained.
  • the light intensity of each of the LEDs 11, 12, 13, 14, and 15 can be feedback-controlled with high accuracy, and the light intensity and color of the output light L can be controlled to a predetermined light intensity and color with high accuracy. be able to. Therefore, when the output light L is used as illumination light for the endoscope 30, the field of view can be illuminated with illumination light of constant brightness and color regardless of the influence of temperature changes and the like.
  • each of the sensors 51, 52, 53, 54, and 55 detects that the light L1, L2, L3, L4, and L5 emitted from the corresponding LEDs 11, 12, 13, 14, and 15 does not pass through the aperture diaphragm 31.
  • the light quantity of the portion not used as the output light L is detected.
  • the light intensity of each light L1, L2, L3, L4, and L5 can be detected while preventing the light intensity of the output light L from decreasing.
  • the LEDs 11, 12, 13, 14, and 15 are arranged so that the shorter the wavelength, the farther they are from the common optical path P.
  • the LEDs 11, 12, 13, 14, and 15 may be arranged in any order without being limited to this.
  • the magnitude of spectral change differs for each of the lights L1, L2, L3, L4, and L5.
  • the transmission characteristics of the optical path changing elements 21, 22, 23, and 24 have wavelength dependence, like the reflection characteristics. Therefore, in order to reduce the number of times that light with large spectral changes is transmitted through the optical path rotator, it is preferable to arrange the LEDs that emit light with large spectral changes closer to the common optical path P.
  • FIG. For example, if the peak wavelength shifts of the amber and red lights L4, L5 are greater than the peak wavelength shifts of the violet, blue and green lights L1, L2, L3, then the arrangement of FIG. 1 is effective.
  • the light source device 20 includes shielding members 91, 92, 93, 94, and 95 instead of the aperture stops 32, 33, 34, and 35, and all sensors 51, 52, 53, 54 and 55 are arranged on the common optical path P, which is different from the light source device 10 of the first embodiment.
  • the same reference numerals are given to the configurations that are common to the first embodiment, and the description thereof is omitted.
  • the light source device 20 includes LEDs 11, 12, 13, 14, and 15, optical path conversion elements 21, 22, 23, and 24, an aperture stop 31, collimating elements 41, 42, 43, 44, and 45, and sensors 51 and 52. , 53, 54, 55, a control board 6, and five shielding members 91, 92, 93, 94, 95.
  • FIG. 6 is a diagram of shielding members 91, 92, 93, 94, and 95 viewed from their incident sides (LEDs 11, 12, 13, 14, and 15).
  • each shielding member 91, 92, 93, 94, 95 is a partially annular (C-shaped) flat plate member in which a part in the circumferential direction is notched, and the light L1, L2, L3. , L4 and L5, and a passage portion 9b made up of notches and passing the lights L1, L2, L3, L4 and L5.
  • a passage portion 9b of any shape may be provided in a portion of the complete annular shielding portion 9a in the circumferential direction.
  • the shielding members 91, 92, 93, 94 and 95 are arranged on the output sides of the collimating elements 41, 42, 43, 44 and 45 on the optical paths P1, P2, P3, P4 and P5, respectively.
  • the inner diameter of the shielding portion 9a is smaller than the diameter of the parallel rays of the lights L1, L2, L3, L4, and L5. Therefore, some of the lights L1, L2, L3, L4, and L5 incident on the shielding members 91, 92, 93, 94, and 95 pass through the inside of the shielding portion 9a and the passage portion 9b, and the other portions pass through the passage portion 9b. It is shielded by the shielding part 9a.
  • the cross-hatched areas represent shielded areas S1, S2, S3, S4, and S5 shielded by the shielding portion 9a.
  • the passing portions 9b of all the shielding members 91, 92, 93, 94, 95 are arranged at mutually different positions in the circumferential direction. Further, when the shielding members 91, 92, 93, 94, and 95 are superimposed on each other in the direction along the optical axis, the shielding member 91 , 92, 93, 94, 95 overlap. As a result, as shown in FIG. 7, regions T1, T2, T3, T4, and T5 are formed in the common optical path P where all the shielded regions other than one shielded region overlap.
  • the area T1 is an area where the four shielded areas S2, S3, S4, and S5 other than the shielded area S1 overlap. That is, each region T1, T2, T3, T4, T5 is a region irradiated with only one light L1, L2, L3, L4 or L5.
  • the sensors 51, 52, 53, 54, 55 are arranged in the regions T1, T2, T3, T4, T5, respectively.
  • the sensors 51 , 52 , 53 , 54 and 55 are fixed to the incident side surface of the aperture stop 31 . Therefore, the sensors 51, 52, 53, 54, 55 that are sensitive to a wide range of wavelengths can be used to accurately detect the amount of each light L1, L2, L3, L4, L5.
  • the light source device 20 of the present embodiment similarly to the light source device 10, the light beams L1, L2, L3, L4, and L5 emitted from the LEDs 11, 12, 13, 14, and 15 are output in the common optical path P.
  • the output light L is output to the outside of the light source device 10 from the output port 10a.
  • the light amounts of the lights L1, L2, L3, L4, and L5 are detected by sensors 51, 52, 53, 54, and 55, respectively. Feedback control of the LEDs 11, 12, 13, 14, and 15 is performed based on the difference between the detected light amount of the lights L1, L2, L3, L4, and L5 and the target light amount.
  • the light intensity of each of the lights L1, L2, L3, L4, and L5 contained in the output light L is controlled to a predetermined target light intensity, and the light intensity, color, and spectrum of the output light L are adjusted to the predetermined light intensity, color, and spectrum. controlled.
  • the transmission characteristics of the optical path changers 21, 22, 23, and 24 have wavelength dependence. Therefore, the light amounts of the lights L1, L2, L3, and L4 that have passed through the optical path changing elements 21, 22, 23, and 24 also change as the spectra of the lights L1, L2, L3, L4, and L5 change. That is, with the spectrum change, the light amount of the light L1, L2, L3, L4, and L5 emitted by the LEDs 11, 12, 13, 14, and 15 and the light L1, L2, L3, L4, and L5 contained in the output light L changes in the correlation between the amount of light in the
  • the sensors 51, 52, 53, 54, 55 are arranged in the common optical path P after all the optical path conversion elements 21, 22, 23, 24, and the optical path conversion elements 21, 22, 23 , 24 and transmitted through the optical path changing elements 21, 22, 23, 24, respectively. Therefore, compared with the first embodiment, detected light amounts closer to the light amounts of the lights L1, L2, L3, L4, and L5 included in the output light L can be obtained. Based on such detected light intensity, the light intensity of each of the LEDs 11, 12, 13, 14, and 15 can be feedback-controlled with higher accuracy, and the light intensity and color of the output light L can be adjusted to the predetermined light intensity and color with higher accuracy. can be controlled. Therefore, when the output light L is used as the illumination light for the endoscope 30, the field of view can be illuminated with the illumination light of even more constant brightness and color regardless of the influence of temperature changes and the like.
  • each of the sensors 51, 52, 53, 54, and 55 detects that the light L1, L2, L3, L4, and L5 emitted from the corresponding LEDs 11, 12, 13, 14, and 15 does not pass through the aperture diaphragm 31.
  • the light quantity of the portion not used as the output light L is detected.
  • the light intensity of each light L1, L2, L3, L4, and L5 can be detected while preventing the light intensity of the output light L from decreasing.
  • the shielding member 91, 92, 93, 94, 95 may be omitted.
  • the sensors 51, 52, 53, 54, and 55 may be arranged at arbitrary positions on the common optical path P where the radially outer portions of the light L1, L2, L3, L4, and L5 to be detected are incident. good.
  • the plurality of light sources are LED light sources that emit monochromatic light.
  • the light source may be any type of light source.
  • the plurality of light sources may include lamp light sources and may include laser light sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光源装置(10)は、第1の光(L5)および第2の光(L4)をそれぞれ出射し、第2の光(L)のスペクトルが第1の光(L1)のスペクトルとは異なる、第1の光源(15)および第2の光源(14)と、第1の光(L5)および第2の光(L4)をそれぞれ共通光路(P)へ導く光路変換素子(24)と、第1の光(L5)および第2の光(L4)の光量をそれぞれ検出する第1のセンサ(55)および第2のセンサ(54)と、センサ(55,54)によって検出された光量に基づいて光源(15,14)の光量を制御する制御部(6)と、を備え、光路変換素子(24)が、第1の光(L5)を反射することによって第1の光(L5)を共通光路(P)へ導き、第1のセンサ(55)が、共通光路(P)上に配置される。

Description

光源装置
 本発明は、光源装置に関するものである。
 光源装置内の光源が出射する光の光量は、温度変化等の影響によって変化する。温度変化等の影響に関わらず、光源装置から外部に出力される出力光の光量を一定にするために、光源の光量をフィードバック制御する光源装置が知られている(例えば、特許文献1参照。)。
 特許文献1の光源装置は、白色光源と、レーザ光源と、白色光の光路とレーザ光の光路とを合成するダイクロイックミラーと、レーザ光の光量を検出するセンサと、制御部とを備え、制御部は、センサによって検出された光量に基づいて、レーザ光源に入力する電流量を制御する。
特許第4476036号公報
 特許文献1において、ダイクロイックミラーは、レーザ光のほとんどを反射することによってレーザ光の光路を白色光の光路と合成し、センサは、ダイクロイックミラーを透過したレーザ光の光量を検出する。
 光源が出射する光には、温度変化等の影響によって、光量の変化のみならず、ピーク波長のシフト等のスペクトルの変化が生じる。スペクトルの変化によって、ダイクロイックミラーによって反射される光の光量が変化し、センサによって検出される光量も変化する。したがって、特許文献1の構成の場合、センサによって検出されるレーザ光の光量と、光源装置から外部に出力される出力光の光量との間の相関が、スペクトル変化に伴って変化する。その結果、出力光の光量の調整精度が低下する。また、複数の光源が出射する複数色の光から出力光を形成する場合、出力光の色の調整精度が低下する。
 本発明は、上述した事情に鑑みてなされたものであって、光源が出射する光のスペクトル変化に関わらず、出力光の光量および色を高精度に制御することができる光源装置を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、第1の光を出射する第1の光源と、第2の光を出射し、該第2の光のスペクトルが前記第1の光のスペクトルとは異なる、第2の光源と、前記第1の光および前記第2の光をそれぞれ共通光路へ導く光路変換素子と、前記第1の光の光量を検出する第1のセンサと、前記第2の光の光量を検出する第2のセンサと、前記第1のセンサによって検出された光量および前記第2のセンサによって検出された光量に基づいて、前記第1の光源の前記第1の光の光量および前記第2の光源の前記第2の光の光量を制御する制御部と、を備え、前記光路変換素子が、前記第1の光を反射することによって前記第1の光を前記共通光路へ導き、前記第1のセンサが、前記共通光路上に配置される光源装置である。
 本態様によれば、第1の光源から出射された第1の光および第2の光源から出射された第2の光は光路変換素子によってそれぞれ共通光路へ導かれ、共通光路を進む第1の光および第2の光は、共通光路上または共通光路の延長上に配置された出口から光源装置の外部へ出力光として出力される。
 また、第1のセンサによって検出された第1の光の光量および第2のセンサによって検出された第2の光の光量に基づいて、各光源が出射する光の光量が制御装置によってフィードバック制御される。
 この場合において、第1のセンサは、光路変換素子によって反射された後の第1の光の光量を検出する。したがって、第1の光の検出光量は、温度変化等の影響による第1の光のスペクトル変化に関わらず、出力光に含まれる第1の光の光量と等しいまたは近いものとなる。このような検出光量に基づき、光源が出射する第1の光のスペクトル変化に関わらず、出力光の光量および色を高精度に制御することができる。
 上記態様において、前記共通光路上に配置された制限部材と、前記第1の光源と前記制限部材との間に配置され、前記第1の光を第1の直径を有する平行光に変換する第1のコリメート素子と、前記第2の光源と前記制限部材との間に配置され、前記第2の光を第2の直径を有する平行光に変換する第2のコリメート素子と、をさらに備え、前記制限部材は、前記第1の直径および前記第2の直径よりも小さい直径を有する開口部を有し、前記第1の光および前記第2の光の通過を前記開口部のみに制限し、前記第1のセンサは、前記第1の光の内、前記開口部を通過しない部分の光量を検出し、前記第2のセンサは、前記第2の光の内、前記開口部を通過しない部分の光量を検出してもよい。
 この構成によれば、各光源から出射された光の内、出力光として使用されない部分の光がセンサによって検出される。これにより、出力光の光量の低下を防ぎながら、各光の光量を検出することができる。
 上記態様において、前記光路変換素子が、前記第2の光を透過させることによって前記第2の光を前記共通光路へ導き、前記第2のセンサが、前記共通光路上に配置されてもよい。
 この構成によれば、第2のセンサは、光路変換素子を透過した後の第2の光の光量を検出する。したがって、第2の光の検出光量は、温度変化等の影響による第2の光のスペクトル変化に関わらず、出力光に含まれる第2の光の光量と等しいまたは近いものとなる。このような検出光量に基づき、光源が出射する第2の光のスペクトル変化に関わらず、出力光の光量および色をより高精度に制御することができる。
 上記態様において、前記第1の光源と前記光路変換素子との間に配置され、前記第1の光の一部の領域である第1の遮蔽領域を遮蔽する第1の遮蔽部材と、前記第2の光源と前記光路変換素子との間に配置され、前記第2の光の一部の領域である第2の遮蔽領域を遮蔽する第2の遮蔽部材と、をさらに備え、前記第1のセンサが、前記第2の遮蔽領域に配置され、前記第2のセンサが、前記第1の遮蔽領域に配置されてもよい。
 この構成によれば、第1のセンサは、第2の光が入射しない第2の遮蔽領域に配置されるので、第1の光の光量をより正確に検出することができる。したがって、制御部は、第1の光源の光量をより高精度に制御することができる。また、第2のセンサは、第1の光が入射しない第1の遮蔽領域に配置されるので、第2の光の光量をより正確に検出することができる。したがって、制御部は、第2の光源の光量をより高精度に制御することができる。
 上記態様において、第3の光を出射し、該第3の光のスペクトルが前記第1の光のスペクトルおよび前記第2の光のスペクトルとは異なる、第3の光源と、前記共通光路上に配置され、前記第3の光の光量を検出する第3のセンサと、前記第3の光源と前記光路変換素子との間に配置され、前記第3の光の一部の領域である第3の遮蔽領域を遮蔽する第3の遮蔽部材と、をさらに備え、前記光路変換素子が、前記第3の光を透過させることによって前記第3の光を前記共通光路へ導き、前記第1のセンサは、前記第1の遮蔽領域以外の全ての遮蔽領域が重なり合う領域に配置され、前記第2のセンサは、前記第2の遮蔽領域以外の全ての遮蔽領域が重なり合う領域に配置され、前記第3のセンサは、前記第3の遮蔽領域以外の全ての遮蔽領域が重なり合う領域に配置されてもよい。
 この構成によれば、第1の光および第2の光に加えて第3の光が出力光として出力される。この場合に、第1のセンサは、第2および第3の光が入射しない領域に配置され、第2のセンサは、第1および第3の光が入射しない領域に配置され、第3のセンサは、第1および第2の光が入射しない領域に配置される。これにより、各センサによって、対応する光の光量をより正確に検出することができる。
 上記態様において、前記第1のコリメート素子および前記第2のコリメート素子がそれぞれ、レンズであってもよい。
 レンズは、小型でありながら、光源から出射された発散光を平行光に変換することができる。したがって、コリメート素子としてレンズを使用することによって、光源装置の小型化を図ることができる。
 上記態様において、前記第1の遮蔽部材および前記第2の遮蔽部材がそれぞれ、環状の部材であり、前記第1の遮蔽部材は、環状または部分環状の遮蔽部と、前記第1の遮蔽部材の周方向の一部分に設けられ前記第1の光を通過させる通過部とを有し、前記第2の遮蔽部材は、環状または部分環状の遮蔽部と、前記第2の遮蔽部材の周方向の一部分に設けられ前記第2の光を通過させる通過部とを有していてもよい。
 この構成によれば、環状または部分環状の遮蔽部材の内側を通る光束を出力光として使用し、出力光として使用されない径方向外側の領域に遮蔽領域を設けることができる。また、通過部を通過し出力光として使用されない光をセンサによって検出することによって、出力光の光量の低下を防ぎながら、各光の光量を検出することができる。
 本発明によれば、光源が出射する光のスペクトル変化に関わらず、出力光の光量および色を高精度に制御することができるという効果を奏する。
第1の実施形態に係る光源装置の全体構成図である。 図1の光源装置の共通光路上の開口絞りを入射側から見た図である。 図1の光源装置のLEDが出射する光のスペクトル変化を説明する図である。 図1の光源装置の光路変換素子の反射特性を示す図である。 第2の実施形態に係る光源装置の全体構成図である。 図5の光源装置の複数の遮蔽部材を各々の入射側から見た図である。 図5の光源装置の共通光路上の開口絞りおよびセンサを入射側から見た図である。
(第1の実施形態)
 本発明の第1の実施形態に係る光源装置について図面を参照して説明する。
 図1に示されるように、本実施形態に係る光源装置10は、複数の光源から出射される複数の光を合成することによって所望の色およびスペクトルを有する出力光Lを生成し、出力光Lを出力口10aから光源装置10の外部に出力するものである。例えば、光源装置10は内視鏡30と接続され、出力光Lは内視鏡30の視野を照明する照明光として使用される。
 本実施形態において、5つの光源11,12,13,14,15を備える場合について説明するが、光源の数は2以上の任意の数であってもよい。
 光源装置10は、5つの光源11,12,13,14,15と、光源11,12,13,14,15からそれぞれ出射される光L1,L2,L3,L4,L5を共通光路Pへ導く光路変換素子21,22,23,24と、共通光路P上に配置された開口絞り(制限部材)31と、光L1,L2,L3,L4,L5を平行光にそれぞれ変換する5つのコリメート素子41,42,43,44,45と、光L1,L2,L3,L4,L5の光量をそれぞれ検出する5つのセンサ51,52,53,54,55と、光源11,12,13,14,15を制御する制御基板(制御部)6とを備える。
 共通光路Pは、5つの光L1,L2,L3,L4,L5の全てが通る光路、すなわち出力光Lが通る光路であり、共通光路P上または共通光路Pの延長上に出力口10aが設けられている。共通光路Pには、出力光Lを集束光に変換するレンズ40および特定の波長の光をカットするフィルタ等の任意の光学素子が配置されていてもよい。
 光源11,12,13,14,15は、LED(light-emitting diode)光源であり、紫、青、緑、琥珀および赤の光L1,L2,L3,L4,L5をそれぞれ出射する。以下、光源11,12,13,14,15を、V-LED、B-LED、G-LED、A-LED、R-LEDと言う。
 光路変換素子21,22,23,24は、ダイクロイックミラーであり、入射した光L1,L2,L3,L4,L5を透過または反射させることによって5つの光L1,L2,L3,L4,L5の光路P1,P2,P3,P4,P5を合成し、光L1,L2,L3,L4,L5を共通光路Pへ導く。
 具体的には、4つのLED12,13,14,15の光軸は、相互に並列であり、V-LED11の光軸Aと交差している。4つのLED12,13,14,15は、波長の順に並び、波長が短いB-LED12がV-LED11に近い側に配置されている。
 光路変換素子21は、光軸AとB-LED12の光軸とが交差する位置に配置され、紫の光L1を光軸Aに沿って透過させ、青の光L2を光軸Aに沿って反射させる。
 光路変換素子22は、光軸AとG-LED13の光軸とが交差する位置に配置され、紫および青の光L1,L2を光軸Aに沿って透過させ、緑の光L3を光軸Aに沿って反射させる。
 光路変換素子23は、光軸AとA-LED14の光軸とが交差する位置に配置され、紫、青および緑の光L1,L2,L3を光軸Aに沿って透過させ、琥珀の光L4を光軸Aに沿って反射させる。
 光路変換素子24は、光軸AとR-LED15の光軸とが交差する位置に配置され、紫、青、緑および琥珀の光L1,L2,L3,L4を光軸Aに沿って透過させ、赤の光L5を光軸Aに沿って反射させる。
 したがって、共通光路Pは、光路変換素子24と出力口10aとの間の光路である。
 開口絞り31は、図2に示されるように、環状の部材であり、共通光路Pの光軸上に配置され出力光Lを通過させる開口部3aと、開口部3aを囲み出力光Lを遮蔽する環状の遮蔽部3bとを有する。開口絞り31は、出力光Lの通過を開口部3aのみに制限する。
 コリメート素子41,42,43,44,45は、対応する光源11,12,13,14,15と開口絞り31との間にそれぞれ配置されている。LED11,12,13,14,15が出射する光L1,L2,L3,L4,L5は、発散光である。コリメート素子41,42,43,44,45は、光L1,L2,L3,L4,L5を、開口部3aの直径よりも大きい直径を有する平行光にそれぞれ変換する。光L1,L2,L3,L4,L5の平行光の直径は、相互に同一であってもよく、相互に異なっていてもよい。したがって、図2に示されるように、各光L1,L2,L3,L4,L5の内、開口部3aを通過する中央部分の光束が出力光を形成し、遮蔽部3bに対応する径方向外側部分は、開口部3aを通過せず出力光に使用されない。
 具体的には、コリメート素子41は、V-LED11と光路変換素子21との間の光路P1に配置され、紫の光L1を平行光に変換する。
 コリメート素子42は、B-LED12と光路変換素子21との間の光路P2に配置され、青の光L2を平行光に変換する。
 コリメート素子43は、G-LED13と光路変換素子22との間の光路P3に配置され、緑の光L3を平行光に変換する。
 コリメート素子44は、A-LED14と光路変換素子23との間の光路P4に配置され、琥珀の光L4を平行光に変換する。
 コリメート素子45は、R-LED15と光路変換素子24との間の光路P5に配置され、赤の光L5を平行光に変換する。
 各コリメート素子41,42,43,44,45は、レンズであることが好ましい。図1のコリメート素子41,42,43,44,45はそれぞれ、単一の凸レンズから構成されている。レンズは、小型でありながら、発散光を平行光に変換することができる。したがって、コリメート素子41,42,43,44,45としてレンズを使用することによって、光源装置10の小型化を図ることができる。
 各コリメート素子41,42,43,44,45は、凸レンズ以外の光学素子であってもよく、例えばテーパロッドであってもよい。また、各コリメート素子41,42,43,44,45は、複数の光学素子の組み合わせから構成されていてもよい。
 センサ51,52,53,54,55は、光の光量を検出することができる任意のセンサであり、例えば、フォトダイオードである。センサ51,52,53,54,55は、対応する光源11,12,13,14,15から出射された光L1,L2,L3,L4,L5の光量をそれぞれ検出する。
 ここで、光L2,L3,L4,L5は、光路変換素子21,22,23,24によってそれぞれ反射される。センサ52,53,54,55は、検出対象の光L2,L3,L4,L5を反射する光路変換素子21,22,23,24の出射側(共通光路P側)にそれぞれ配置され、反射された光L2,L3,L4,L5の光量をそれぞれ検出する。紫の光L1は、全ての光路変換素子21,22,23,24を透過するので、センサ51は、V-LED11と出力口10aとの間のいずれかの位置に配置される。
 また、センサ51,52,53,54,55は、光L1,L2,L3,L4,L5の内、開口絞り31の開口部3aを通過しない部分の光量をそれぞれ検出する位置に配置されている。具体的には、センサ51,52,53,54,55は、光L1,L2,L3,L4,L5の内、遮蔽部3bに相当する径方向外側部分が入射する位置にそれぞれ配置されている。
 図1において、開口絞り31に加えて、さらに4つの開口絞り32,33,34,35が設けられている。各開口絞り32,33,34,35は、開口絞り31と同一の構成を有し、開口部3aおよび遮蔽部3bを有する。開口絞り32,33,34,35は、光路変換素子21,22,23,24の入射側(V-LED11側)にそれぞれ配置されている。これにより、開口絞り32の遮蔽部3bには紫の光L1のみが入射し、開口絞り33の遮蔽部3bには青の光L2のみが入射し、開口絞り34の遮蔽部3bには緑の光L3のみが入射し、開口絞り35の遮蔽部3bには琥珀の光L4のみが入射し、開口絞り31の遮蔽部3bには赤の光L1のみが入射する。
 センサ51,52,53,54,55は、開口絞り32,33,34,35,31の入射側にそれぞれ配置され、各センサ51,52,53,54,55には、検出対象の光L1,L2,L3,L4,L5のみ入射する。したがって、センサ51,52,53,54,55として、広範囲の波長に対して感度を有するセンサを使用することができる。センサ51,52,53,54,55は、開口絞り32,33,34,35,31の入射側の面にそれぞれ固定されていてもよい。
 センサ51,52,53,54,55として、検出対象の光L1,L2,L3,L4,L5の波長域に対してのみ感度を有するセンサを使用する場合、開口絞り32,33,34,35を省略し、センサ51,52,53,54,55を、検出対象の光L1,L2,L3,L4,L5の径方向外側部分が入射する任意の位置に配置してもよい。
 制御基板6は、駆動基板71,72,73,74,75を経由してLED11,12,13,14,15と接続され、検出基板8を経由してセンサ51,52,53,54,55と接続されている。制御基板6は、センサ51,52,53,54,55によって検出された光L1,L2,L3,L4,L5の光量に基づき、駆動基板71,72,73,74,75を経由してLED11,12,13,14,15の光量を制御する。
 具体的には、センサ51,52,53,54,55が検出した光量(検出光量)の情報は、検出基板8を経由して制御基板6に入力される。制御基板6は、各LED11,12,13,14,15に対応する目標光量を記憶している。駆動基板71,72,73,74,75は、LED11,12,13,14,15を発光させるための電流をLED11,12,13,14,15にそれぞれ供給する。制御基板6は、検出光量に基づき、駆動基板71,72,73,74,75がLED11,12,13,14,15に供給する電流量を制御することによって、LED11,12,13,14,15の光量をフィードバック制御し、検出光量を目標光量に一致させる。このような制御は、例えば、制御基板6に形成された制御回路によって実現される。
 次に、光源装置10の作用について説明する。
 本実施形態の光源装置10によれば、LED11,12,13,14,15から出射された光L1,L2,L3,L4,L5は、光路変換素子21,22,23,24によって1つの共通光路Pに導かれ、共通光路Pにおいて出力光Lを形成する。共通光路Pを進む出力光Lは、出力口10aから光源装置10の外部に出力される。
 光源装置10の内部では、光L1,L2,L3,L4,L5の光量がセンサ51,52,53,54,55によってそれぞれ検出され、各光L1,L2,L3,L4,L5の検出光量が検出基板8を経由して制御基板6に送信される。制御基板6は、各光L1,L2,L3,L4,L5の検出光量を、対応する目標光量と比較し、検出光量と目標光量との差に基づいてLED11,12,13,14,15をフィードバック制御する。これにより、出力光Lに含まれる光L1,L2,L3,L4,L5の各々の光量が所定の目標光量に制御され、出力光Lの光量、色およびスペクトルが所定の光量、色およびスペクトルに制御される。
 この場合に、図3に示されるように、温度変化等の影響によって、各LED11,12,13,14,15が出射する光L1,L2,L3,L4,L5には、ピーク波長のシフト等のスペクトル変化が生じることがある。図3は、R-LED15に一定の電流を供給しながら室温を10℃から50℃まで変化させたときの、R-LED15の発光スペクトルの変化の一例を示している。温度が高くなるにつれて、ピーク波長が長波長側にシフトし、かつ、ピーク強度が低下する。また、図4に示されるように、光路変換素子21,22,23,24の反射特性は波長依存性を有する。図4は、光路変換素子24としてのダイクロイックミラーに45°±10°の範囲で光を入射したときの、ダイクロイックミラーの反射特性の一例を示している。例えば、ダイクロイックミラーに入射する赤の光L5のピーク波長が630nmから640nmに変化したとき、ダイクロイックミラーによる光L5の反射率は大きく変化する。
 したがって、光L1,L2,L3,L4,L5のスペクトル変化に伴い、光路変換素子21,22,23,24によって反射された光L2,L3,L4,L5の光量も変化する。すなわち、スペクトル変化に伴って、LED11,12,13,14,15が出射する光L1,L2,L3,L4,L5の光量と、出力光Lに含まれる光L1,L2,L3,L4,L5の光量との間の相関関係が変化する。
 本実施形態によれば、センサ52,53,54,55は、光路変換素子21,22,23,24の出射側にそれぞれ配置され、光路変換素子21,22,23,24によって反射された光L2,L3,L4,L5の光量をそれぞれ検出する。したがって、出力光Lに含まれる光L2,L3,L4,L5の光量により近い検出光量が得られる。このような検出光量に基づき、各LED11,12,13,14,15の光量を高精度にフィードバック制御することができ、出力光Lの光量および色を所定の光量および色に高精度に制御することができる。したがって、出力光Lを内視鏡30用の照明光として使用する場合には、温度変化等の影響に関わらず明るさおよび色が一定の照明光で視野を照明することができる。
 また、各センサ51,52,53,54,55は、対応するLED11,12,13,14,15から出射された光L1,L2,L3,L4,L5の内、開口絞り31を通過せず出力光Lとして使用されない部分の光量を検出する。これにより、出力光Lの光量の低下を防ぎながら、各光L1,L2,L3,L4,L5の光量を検出することができる。
 本実施形態において、波長が短い程、共通光路Pから遠くなるように、LED11,12,13,14,15が配置されていることとしたが、LED11,12,13,14,15の配置はこれに限定されるものではなく、任意の順番でLED11,12,13,14,15が配置されてもよい。
 スペクトル変化の大きさは、光L1,L2,L3,L4,L5毎に異なる。また、光路変換素子21,22,23,24の透過特性は、反射特性と同様に、波長依存性を有する。したがって、スペクトル変化が大きい光が光路変換素子を透過する回数を低減するために、スペクトル変化が大きい光を出射するLEDが、共通光路Pにより近い位置に配置されることが好ましい。例えば、琥珀および赤の光L4,L5のピーク波長のシフトが、紫、青および緑の光L1,L2,L3のピーク波長のシフトよりも大きい場合、図1の配置が効果的である。
(第2の実施形態)
 次に、本発明の第2の実施形態に係る光源装置について図面を参照して説明する。
 図5に示されるように、本実施形態に係る光源装置20は、開口絞り32,33,34,35に代えて遮蔽部材91,92,93,94,95を備える点、および、全てのセンサ51,52,53,54,55が共通光路P上に配置されている点において、第1の実施形態の光源装置10と相違する。図5において、5つのセンサ51,52,53,54,55の内、センサ53,55のみが図示されている。本実施形態において、第1の実施形態と共通する構成については、同一の符号を付して説明を省略する。
 光源装置20は、LED11,12,13,14,15と、光路変換素子21,22,23,24と、開口絞り31と、コリメート素子41,42,43,44,45と、センサ51,52,53,54,55と、制御基板6と、5つの遮蔽部材91,92,93,94,95とを備える。
 図6は、遮蔽部材91,92,93,94,95を各々の入射側(LED11,12,13,14,15側)から見た図である。図6に示されるように、各遮蔽部材91,92,93,94,95は、周方向の一部分が切り欠かれた部分環状(C字状)の平板部材であり、光L1,L2,L3,L4,L5を遮蔽する部分環状の遮蔽部9aと、切欠部分からなり光L1,L2,L3,L4,L5を通過させる通過部9bと、を有する。完全な環状の遮蔽部9aの周方向の一部分に、任意の形状の通過部9bが設けられていてもよい。
 遮蔽部材91,92,93,94,95は、光路P1,P2,P3,P4,P5上において、コリメート素子41,42,43,44,45の出射側にそれぞれ配置されている。遮蔽部9aの内径は、光L1,L2,L3,L4,L5の平行光の直径よりも小さい。したがって、遮蔽部材91,92,93,94,95にそれぞれ入射した光L1,L2,L3,L4,L5の内、一部は遮蔽部9aの内側および通過部9bを通過し、他の部分は遮蔽部9aによって遮蔽される。図6において、クロスハッチングの領域が、遮蔽部9aによって遮蔽される遮蔽領域S1,S2,S3,S4,S5を表している。
 図6に示されるように、全ての遮蔽部材91,92,93,94,95の通過部9bは、周方向に相互に異なる位置に配置されている。また、遮蔽部材91,92,93,94,95を光軸に沿う方向に相互に重ね合わせた場合に、遮蔽部材91,92,93,94,95の一の通過部9bにおいて、遮蔽部材91,92,93,94,95の他の全ての遮蔽部9aが重なり合う。これにより、図7に示されるように、共通光路Pにおいて、1つの遮蔽領域以外の全ての遮蔽領域が重なり合う領域T1,T2,T3,T4,T5が形成される。例えば、領域T1は、遮蔽領域S1以外の4つの遮蔽領域S2,S3,S4,S5が重なり合う領域である。すなわち、各領域T1,T2,T3,T4,T5は、1つの光L1、L2、L3、L4またはL5のみが照射される領域である。
 センサ51,52,53,54,55は、領域T1,T2,T3,T4,T5にそれぞれ配置される。例えば、センサ51,52,53,54,55は、開口絞り31の入射側の面に固定されている。したがって、広範囲の波長に対して感度を有するセンサ51,52,53,54,55を使用して、各光L1,L2,L3,L4,L5の光量を正確に検出することができる。
 次に、光源装置20の作用について説明する。
 本実施形態の光源装置20によれば、光源装置10と同様に、LED11,12,13,14,15から出射された光L1,L2,L3,L4,L5は共通光路Pにおいて出力光Lを形成し、出力光Lは出力口10aから光源装置10の外部に出力される。また、光源装置20の内部では、光源装置10と同様に、光L1,L2,L3,L4,L5の光量がセンサ51,52,53,54,55によってそれぞれ検出され、制御基板6は、各光L1,L2,L3,L4,L5の検出光量と目標光量との差に基づいてLED11,12,13,14,15をフィードバック制御する。これにより、出力光Lに含まれる光L1,L2,L3,L4,L5の各々の光量が所定の目標光量に制御され、出力光Lの光量、色およびスペクトルが所定の光量、色およびスペクトルに制御される。
 この場合に、前述したように、光路変換素子21,22,23,24の透過特性は、波長依存性を有する。したがって、光L1,L2,L3,L4,L5のスペクトル変化に伴い、光路変換素子21,22,23,24を透過した光L1,L2,L3,L4の光量も変化する。すなわち、スペクトル変化に伴って、LED11,12,13,14,15が出射する光L1,L2,L3,L4,L5の光量と、出力光Lに含まれる光L1,L2,L3,L4,L5の光量との間の相関関係が変化する。
 本実施形態によれば、センサ51,52,53,54,55は、全ての光路変換素子21,22,23,24よりも後段の共通光路Pに配置され、光路変換素子21,22,23,24によって反射され、かつ、光路変換素子21,22,23,24を透過した光L1,L2,L3,L4,L5の光量をそれぞれ検出する。したがって、第1の実施形態と比較して、出力光Lに含まれる光L1,L2,L3,L4,L5の光量にさらに近い検出光量が得られる。このような検出光量に基づき、各LED11,12,13,14,15の光量をさらに高精度にフィードバック制御することができ、出力光Lの光量および色を所定の光量および色にさらに高精度に制御することができる。したがって、出力光Lを内視鏡30用の照明光として使用する場合には、温度変化等の影響に関わらず明るさおよび色がさらに一定の照明光で視野を照明することができる。
 また、各センサ51,52,53,54,55は、対応するLED11,12,13,14,15から出射された光L1,L2,L3,L4,L5の内、開口絞り31を通過せず出力光Lとして使用されない部分の光量を検出する。これにより、出力光Lの光量の低下を防ぎながら、各光L1,L2,L3,L4,L5の光量を検出することができる。
 本実施形態において、センサ51,52,53,54,55として、検出対象の光L1,L2,L3,L4,L5の波長域に対してのみ感度を有するセンサを使用する場合、遮蔽部材91,92,93,94,95が省略されてもよい。この場合、センサ51,52,53,54,55は、共通光路P上において、検出対象の光L1,L2,L3,L4,L5の径方向外側部分が入射する任意の位置に配置されてもよい。
 上記第1および第2の実施形態において、複数の光源が、単色の光を出射するLED光源であることとしたが、複数の光源が相互に異なるスペクトルを有する光を出力する限りにおいて、複数の光源は、任意の種類の光源であってもよい。例えば、複数の光源は、ランプ光源を含んでいてもよく、レーザ光源を含んでいてもよい。
10,20 光源装置
11,12,13 光源、LED(第3光源)
14 光源、LED(第2光源)
15 光源、LED(第1光源)
21,22,23,24 光路変換素子
31 開口絞り(制限部材)
3a 開口部
3b 遮蔽部
32,33,34,35 開口絞り
41,42,43 コリメート素子(第3のコリメート素子)
44 コリメート素子(第2のコリメート素子)
45 コリメート素子(第1のコリメート素子)
51,52,53 センサ(第3のセンサ)
54 センサ(第2のセンサ)
55 センサ(第1のセンサ)
6 制御基板(制御部)
71,72,73,74,75 駆動基板
8 検出基板
91,92,93 遮蔽部材(第3の遮光部材)
94 遮蔽部材(第2の遮光部材)
95 遮蔽部材(第1の遮光部材)
9a 遮蔽部
9b 通過部
30 内視鏡
A 光軸
L1,L2,L3 光(第3の光)
L4 光(第2の光)
L5 光(第1の光)
P 共通光路
S1,S2,S3 遮蔽領域(第3の遮蔽領域)
S4 遮蔽領域(第2の遮蔽領域)
S5 遮蔽領域(第1の遮蔽領域)

Claims (7)

  1.  第1の光を出射する第1の光源と、
     第2の光を出射し、該第2の光のスペクトルが前記第1の光のスペクトルとは異なる、第2の光源と、
     前記第1の光および前記第2の光をそれぞれ共通光路へ導く光路変換素子と、
     前記第1の光の光量を検出する第1のセンサと、
     前記第2の光の光量を検出する第2のセンサと、
     前記第1のセンサによって検出された光量および前記第2のセンサによって検出された光量に基づいて、前記第1の光源の前記第1の光の光量および前記第2の光源の前記第2の光の光量を制御する制御部と、を備え、
     前記光路変換素子が、前記第1の光を反射することによって前記第1の光を前記共通光路へ導き、
     前記第1のセンサが、前記共通光路上に配置される光源装置。
  2.  前記共通光路上に配置された制限部材と、
     前記第1の光源と前記制限部材との間に配置され、前記第1の光を第1の直径を有する平行光に変換する第1のコリメート素子と、
     前記第2の光源と前記制限部材との間に配置され、前記第2の光を第2の直径を有する平行光に変換する第2のコリメート素子と、をさらに備え、
     前記制限部材は、前記第1の直径および前記第2の直径よりも小さい直径を有する開口部を有し、前記第1の光および前記第2の光の通過を前記開口部のみに制限し、
     前記第1のセンサは、前記第1の光の内、前記開口部を通過しない部分の光量を検出し、
     前記第2のセンサは、前記第2の光の内、前記開口部を通過しない部分の光量を検出する、請求項1に記載の光源装置。
  3.  前記光路変換素子が、前記第2の光を透過させることによって前記第2の光を前記共通光路へ導き、
     前記第2のセンサが、前記共通光路上に配置される請求項1に記載の光源装置。
  4.  前記第1の光源と前記光路変換素子との間に配置され、前記第1の光の一部の領域である第1の遮蔽領域を遮蔽する第1の遮蔽部材と、
     前記第2の光源と前記光路変換素子との間に配置され、前記第2の光の一部の領域である第2の遮蔽領域を遮蔽する第2の遮蔽部材と、をさらに備え、
     前記第1のセンサが、前記第2の遮蔽領域に配置され、
     前記第2のセンサが、前記第1の遮蔽領域に配置される、請求項1に記載の光源装置。
  5.  第3の光を出射し、該第3の光のスペクトルが前記第1の光のスペクトルおよび前記第2の光のスペクトルとは異なる、第3の光源と、
     前記共通光路上に配置され、前記第3の光の光量を検出する第3のセンサと、
     前記第3の光源と前記光路変換素子との間に配置され、前記第3の光の一部の領域である第3の遮蔽領域を遮蔽する第3の遮蔽部材と、をさらに備え、
     前記光路変換素子が、前記第3の光を透過させることによって前記第3の光を前記共通光路へ導き、
     前記第1のセンサは、前記第1の遮蔽領域以外の全ての遮蔽領域が重なり合う領域に配置され、
     前記第2のセンサは、前記第2の遮蔽領域以外の全ての遮蔽領域が重なり合う領域に配置され、
     前記第3のセンサは、前記第3の遮蔽領域以外の全ての遮蔽領域が重なり合う領域に配置される、請求項3に記載の光源装置。
  6.  前記第1のコリメート素子および前記第2のコリメート素子がそれぞれ、レンズである請求項2に記載の光源装置。
  7.  前記第1の遮蔽部材および前記第2の遮蔽部材がそれぞれ、環状の部材であり、
     前記第1の遮蔽部材は、環状または部分環状の遮蔽部と、前記第1の遮蔽部材の周方向の一部分に設けられ前記第1の光を通過させる通過部とを有し、
     前記第2の遮蔽部材は、環状または部分環状の遮蔽部と、前記第2の遮蔽部材の周方向の一部分に設けられ前記第2の光を通過させる通過部とを有する、請求項4に記載の光源装置。
PCT/JP2021/008609 2021-03-05 2021-03-05 光源装置 WO2022185514A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/008609 WO2022185514A1 (ja) 2021-03-05 2021-03-05 光源装置
CN202180088206.2A CN116648836A (zh) 2021-03-05 2021-03-05 光源装置
JP2023503311A JP7445083B2 (ja) 2021-03-05 2021-03-05 光源装置
US18/208,653 US20230327060A1 (en) 2021-03-05 2023-06-12 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008609 WO2022185514A1 (ja) 2021-03-05 2021-03-05 光源装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/208,653 Continuation US20230327060A1 (en) 2021-03-05 2023-06-12 Light source device

Publications (1)

Publication Number Publication Date
WO2022185514A1 true WO2022185514A1 (ja) 2022-09-09

Family

ID=83154061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008609 WO2022185514A1 (ja) 2021-03-05 2021-03-05 光源装置

Country Status (4)

Country Link
US (1) US20230327060A1 (ja)
JP (1) JP7445083B2 (ja)
CN (1) CN116648836A (ja)
WO (1) WO2022185514A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258523A (ja) * 1998-03-13 1999-09-24 Fuji Photo Optical Co Ltd 内視鏡用光源装置
JP2006006803A (ja) * 2004-06-29 2006-01-12 Pentax Corp 電子内視鏡の絞り制御機構
JP2012125492A (ja) * 2010-12-17 2012-07-05 Fujifilm Corp 内視鏡用光源装置及び内視鏡システム
JP2015169691A (ja) * 2014-03-05 2015-09-28 日本精機株式会社 走査型表示装置
WO2016056459A1 (ja) * 2014-10-10 2016-04-14 オリンパス株式会社 光源装置及び光源装置の制御方法
JP2018000228A (ja) * 2016-06-27 2018-01-11 ソニー株式会社 照明装置、照明装置の制御方法、および撮像システム
US20190280458A1 (en) * 2018-03-09 2019-09-12 North Inc. Alignment methods for laser diodes
WO2020115807A1 (ja) * 2018-12-04 2020-06-11 オリンパス株式会社 光源装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258523A (ja) * 1998-03-13 1999-09-24 Fuji Photo Optical Co Ltd 内視鏡用光源装置
JP2006006803A (ja) * 2004-06-29 2006-01-12 Pentax Corp 電子内視鏡の絞り制御機構
JP2012125492A (ja) * 2010-12-17 2012-07-05 Fujifilm Corp 内視鏡用光源装置及び内視鏡システム
JP2015169691A (ja) * 2014-03-05 2015-09-28 日本精機株式会社 走査型表示装置
WO2016056459A1 (ja) * 2014-10-10 2016-04-14 オリンパス株式会社 光源装置及び光源装置の制御方法
JP2018000228A (ja) * 2016-06-27 2018-01-11 ソニー株式会社 照明装置、照明装置の制御方法、および撮像システム
US20190280458A1 (en) * 2018-03-09 2019-09-12 North Inc. Alignment methods for laser diodes
WO2020115807A1 (ja) * 2018-12-04 2020-06-11 オリンパス株式会社 光源装置

Also Published As

Publication number Publication date
JPWO2022185514A1 (ja) 2022-09-09
JP7445083B2 (ja) 2024-03-06
US20230327060A1 (en) 2023-10-12
CN116648836A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
JP6479946B2 (ja) 光源システム及び関連する投影システム
US11060917B2 (en) Confocal displacement measurement device and a confocal thickness measurement device
JP5350251B2 (ja) 発光クラスタを有する光源
US20120162614A1 (en) Light Source Device
JP5863987B2 (ja) 可動支持部に発光体を備えた照明装置
JP2005183378A (ja) 強度監視システムを有する発光ダイオード照明システム
JP2007052441A (ja) 波長依存開口絞りを有する撮像光学器械
US20110286212A1 (en) Illumination device
CA2615706A1 (en) Apparatus and method for collecting and detecting light emitted by a lighting apparatus
US9291314B2 (en) Luminaire emitting light of different colours
US8210728B2 (en) LED illumination apparatus with feedback control means
US20140321114A1 (en) Illumination Apparatus
WO2022185514A1 (ja) 光源装置
JP2006017689A (ja) 光源装置
WO2011142123A1 (ja) 光源、照明光学系、及び反射特性測定装置
JPH08247935A (ja) 光学装置および検出装置
WO2023042274A1 (ja) 光源装置及びそれを備えた内視鏡システム
CN113109986A (zh) 投影装置
JP2005070021A (ja) 検査用光源装置
US20080259460A1 (en) Light-pipe integrator with mask for uniform irradiance
JP2005088512A (ja) 照明装置
JP2005164261A (ja) 同軸反射型光電センサ
JP2009129687A (ja) 発光ダイオード照明器具
TWI683073B (zh) 燈箱結構
JP2016128871A (ja) 光源装置および投写型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180088206.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929086

Country of ref document: EP

Kind code of ref document: A1