WO2022180875A1 - 回転電機および駆動装置 - Google Patents

回転電機および駆動装置 Download PDF

Info

Publication number
WO2022180875A1
WO2022180875A1 PCT/JP2021/022349 JP2021022349W WO2022180875A1 WO 2022180875 A1 WO2022180875 A1 WO 2022180875A1 JP 2021022349 W JP2021022349 W JP 2021022349W WO 2022180875 A1 WO2022180875 A1 WO 2022180875A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
electric machine
threaded portion
rotor
rotating
Prior art date
Application number
PCT/JP2021/022349
Other languages
English (en)
French (fr)
Inventor
亮磨 佐々木
茂 前田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2022180875A1 publication Critical patent/WO2022180875A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a rotating electric machine and a driving device.
  • An electric motor that includes a rotor having a rotating shaft and a stator in which the rotor is arranged and that rotates the rotor by a rotating magnetic field (see, for example, Patent Document 1).
  • the rotor of the electric motor described in Patent Document 1 has a hollow rotating shaft. By circulating a coolant such as cooling oil in the rotating shaft, it is possible to suppress the temperature rise of the rotor.
  • An object of the present invention is to provide a rotating electric machine and a driving device that improve cooling efficiency for the rotor and stator.
  • a rotor having a shaft in which a coolant can flow and rotatable around the shaft; a stator positioned radially outward of the rotor,
  • the shaft is a cylindrical shaft body having a first threaded portion provided on an inner peripheral surface and a plurality of first side holes penetrating in a radial direction;
  • a cylindrical body having a second threaded portion provided on the outer peripheral surface and a plurality of second side holes penetrating in the radial direction, By rotating the second threaded portion to fit the first threaded portion, the plurality of second side holes are aligned with the plurality of second side holes in a mounting state in which the cylindrical body is mounted on one side of the shaft body in the axial direction.
  • the plurality of first side holes and the plurality of second side holes are connected via between the first screw portion and the second screw portion, and function as a flow path through which the refrigerant can pass.
  • One aspect of the drive device of the present invention is a drive device that is mounted on a vehicle and rotates an axle, The rotating electrical machine described above; a transmission device that is connected to the rotating electrical machine and that transmits rotation of the rotor to the axle; a housing that accommodates the rotating electric machine and the transmission device; and a coolant passage provided in the housing for supplying a coolant to the shaft and the stator of the rotating electric machine.
  • cooling efficiency for the rotor and stator is improved.
  • FIG. 1 is a schematic configuration diagram schematically showing a driving device according to one embodiment.
  • FIG. 2 is a longitudinal sectional view of a shaft that the rotor has.
  • FIG. 3 is an enlarged vertical cross-sectional view of a shaft that the rotor has.
  • FIG. 4 is an enlarged view of a region [A] surrounded by a dashed line in FIG.
  • FIG. 5 is a longitudinal sectional view showing the positional relationship between the shaft body and the cylindrical body in the rotor.
  • FIG. 6 is a longitudinal sectional view showing the positional relationship between the shaft body and the cylindrical body in the rotor.
  • FIG. 7 is a vertical cross-sectional perspective view of the shaft body.
  • FIG. 8 is a vertical cross-sectional perspective view of a cylindrical body.
  • the central axis J shown in the drawing as appropriate is a virtual axis extending in a direction intersecting the vertical direction.
  • the direction parallel to the central axis J is simply referred to as the "axial direction”
  • the radial direction about the central axis J is simply referred to as the "radial direction”
  • the circumferential direction about the central axis J is sometimes simply referred to as the "circumferential direction”.
  • the vertical direction, the horizontal direction, the upper side, and the lower side are names for simply explaining the relative positional relationship of each part, and the actual positional relationship, etc. are the positions indicated by these names. A layout relationship other than the relationship may be used.
  • the left side is called “upstream side” and the right side is called “downstream side”.
  • the “upstream side” corresponds to “one side in the axial (central axis J) direction”
  • the “downstream side” corresponds to “the other side in the axial (central axis J) direction”.
  • a driving device 100 of the present embodiment shown in FIG. 1 is mounted on a vehicle and rotates an axle 64 .
  • a vehicle in which drive device 100 is mounted is a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), or the like.
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • EV electric vehicle
  • drive device 100 includes rotary electric machine 10 , housing 80 , transmission device 60 , and coolant channel 90 .
  • the rotary electric machine 10 includes a rotor 30 rotatable around a central axis (axis) J and a stator 40 located radially outside the rotor 30 .
  • the housing 80 accommodates the rotary electric machine 10 and the transmission device 60 .
  • Housing 80 has a motor housing 81 and a gear housing 82 .
  • Motor housing 81 is a housing that accommodates rotor 30 and stator 40 therein.
  • the motor housing 81 is connected to the right side of the gear housing 82 .
  • the motor housing 81 has a peripheral wall portion 81a, a partition wall portion 81b, and a lid portion 81c.
  • the peripheral wall portion 81a and the partition wall portion 81b are, for example, part of the same single member.
  • the lid portion 81c is separate from, for example, the peripheral wall portion 81a and the partition wall portion 81b.
  • the peripheral wall portion 81a has a tubular shape surrounding the central axis J and opening on the right side.
  • the partition wall portion 81b is connected to the left end portion of the peripheral wall portion 81a.
  • the partition wall portion 81b separates the interior of the motor housing 81 and the interior of the gear housing 82 in the axial direction.
  • the partition wall portion 81 b has a partition wall opening 81 d that connects the inside of the motor housing 81 and the inside of the gear housing 82 .
  • a bearing 34 is held in the partition portion 81b.
  • the lid portion 81c is fixed to the right end of the peripheral wall portion 81a.
  • the lid portion 81c closes the opening on the right side of the peripheral wall portion 81a.
  • a bearing 35 is held in the lid portion 81c.
  • the gear housing 82 accommodates the reduction gear 62 and the differential gear 63 of the transmission device 60 and the oil O inside.
  • the oil O is stored in the lower area inside the gear housing 82 .
  • the oil O circulates inside the coolant flow path 90 .
  • Oil O is used as a coolant for cooling rotating electric machine 10 .
  • the oil O is used as a lubricating oil for the reduction gear 62 and the differential gear 63 .
  • the oil O for example, it is preferable to use an oil equivalent to automatic transmission fluid (ATF), which has a relatively low viscosity, in order to function as a refrigerant and a lubricating oil.
  • ATF automatic transmission fluid
  • the transmission device 60 is connected to the rotating electric machine 10 and transmits the rotation of the rotor 30 to the axle 64 of the vehicle.
  • a transmission device 60 of the present embodiment has a reduction gear 62 connected to the rotating electric machine 10 and a differential gear 63 connected to the reduction gear 62 .
  • the differential gear 63 has a ring gear 63a. Torque output from the rotary electric machine 10 is transmitted to the ring gear 63 a via the reduction gear 62 .
  • a lower end portion of the ring gear 63 a is immersed in the oil O stored in the gear housing 82 .
  • the oil O is scooped up by the rotation of the ring gear 63a.
  • the scooped-up oil O is supplied as lubricating oil to, for example, the reduction gear 62 and the differential gear 63 .
  • the rotating electrical machine 10 is a part that drives the driving device 100 .
  • the rotating electrical machine 10 is positioned, for example, on the right side of the transmission device 60 .
  • the rotating electric machine 10 is a motor.
  • Torque of rotor 30 of rotating electric machine 10 is transmitted to transmission device 60 .
  • the rotor 30 has a shaft 1 extending axially around a central axis J and a rotor body 32 fixed to the shaft 1 .
  • the rotor main body 32 is composed of, for example, a plurality of rotor core portions fixed to the outer peripheral surface of the shaft 1 and arranged in the axial direction, and magnets and the like held in each rotor core portion.
  • the shaft 1 is rotatable around the central axis J. Thereby, the rotor 30 can rotate around the shaft 1 .
  • the shaft 1 is rotatably supported by bearings 34 and 35 .
  • the shaft 1 is a hollow shaft.
  • the shaft 1 has a cylindrical shape through which oil O as a coolant can flow.
  • the shaft 1 extends across the interior of the motor housing 81 and the interior of the gear housing 82 .
  • the left end of the shaft 1 protrudes inside the gear housing 82 .
  • a reduction gear 62 is connected to the left end of the shaft 1 .
  • the stator 40 is positioned radially outwardly of the rotor 30 with a gap therebetween.
  • the stator 40 surrounds the rotor 30 from the radially outer side along the entire circumference.
  • the stator 40 is fixed inside the motor housing 81 .
  • Stator 40 has a stator core 41 and a coil assembly 42 .
  • the stator core 41 has an annular shape surrounding the central axis J of the rotary electric machine 10 .
  • the stator core 41 is configured, for example, by laminating a plurality of plate members such as electromagnetic steel plates in the axial direction.
  • the coil assembly 42 has a plurality of coils 42c attached to the stator core 41 along the circumferential direction.
  • the plurality of coils 42c are attached to respective teeth (not shown) of the stator core 41 via insulators (not shown).
  • a plurality of coils 42c are arranged along the circumferential direction.
  • Coil 42c has a portion protruding from stator core 41 in the axial direction.
  • the coolant channel 90 is provided inside the housing 80 . Oil O as a coolant flows through the coolant channel 90 .
  • the coolant flow path 90 is provided across the inside of the motor housing 81 and the inside of the gear housing 82 .
  • the coolant flow path 90 is a path through which the oil O stored in the gear housing 82 is supplied to the rotating electric machine 10 in the motor housing 81 and returns to the gear housing 82 again.
  • a pump 71 and a cooler 72 are provided in the coolant channel 90 .
  • the coolant channel 90 includes a first channel portion 91 , a second channel portion 92 , a third channel portion 93 , a stator coolant supply portion 50 , a shaft channel portion 95 , and a connection channel portion 94 . , a radial channel portion 96 , an axial channel portion 98 , and a guide channel portion 97 .
  • the first flow path part 91, the second flow path part 92, and the third flow path part 93 are provided on the wall of the gear housing 82, for example.
  • the first flow path portion 91 connects a portion of the gear housing 82 where the oil O is stored and the pump 71 .
  • the second channel portion 92 connects the pump 71 and the cooler 72 .
  • the third flow path portion 93 connects the cooler 72 and the stator coolant supply portion 50 .
  • the third flow path portion 93 is connected to the left end portion of the stator coolant supply portion 50 , that is, the upstream portion of the stator coolant supply portion 50 .
  • a stator coolant supply unit 50 supplies oil O to the stator 40 .
  • the stator coolant supply portion 50 has a tubular shape extending in the axial direction.
  • the stator coolant supply portion 50 is a pipe extending in the axial direction. Both axial end portions of the stator coolant supply portion 50 are supported by the motor housing 81 .
  • a left end portion of the stator coolant supply portion 50 is supported by, for example, the partition portion 81b.
  • a right end portion of the stator coolant supply portion 50 is supported by, for example, the lid portion 81c.
  • the stator coolant supply portion 50 is positioned radially outward of the stator 40 .
  • the stator coolant supply section 50 is positioned above the stator 40 .
  • the stator coolant supply section 50 has a supply port 50a for supplying the oil O to the stator 40 .
  • the supply port 50 a is an injection port that injects part of the oil O that has flowed into the stator coolant supply portion 50 to the outside of the stator coolant supply portion 50 .
  • the supply port 50a is formed by a hole penetrating the wall portion of the stator coolant supply portion 50 from the inner peripheral surface to the outer peripheral surface.
  • a plurality of supply ports 50 a are provided in the stator coolant supply portion 50 .
  • the plurality of supply ports 50a are spaced apart from each other, for example, in the axial direction or the circumferential direction.
  • the shaft channel portion 95 is arranged inside the shaft 1 . Thereby, the oil O can be supplied into the shaft 1 .
  • the connection channel portion 94 connects the inside of the stator coolant supply portion 50 and the inside of the shaft 1 .
  • the connection channel portion 94 connects the right end portion of the stator coolant supply portion 50 , that is, the downstream portion, and the right end portion of the shaft channel portion 95 , that is, the upstream portion.
  • the connection channel portion 94 is provided, for example, in the lid portion 81c. According to this embodiment, it is possible to stably cool the stator 40 and the rotor 30 while simplifying the configuration of the coolant flow path 90 .
  • the axial channel portion 98 connects the radial channel portion 96 and the guide channel portion 97 .
  • the axial channel portion 98 is arranged over the interior of the plurality of rotor core portions.
  • the oil O stored in the gear housing 82 is sucked up through the first flow passage portion 91 and then through the second flow passage portion 92 into the cooler 72. flow into The oil O that has flowed into the cooler 72 is cooled in the cooler 72 and then flows through the third flow path portion 93 to the stator coolant supply portion 50 . A portion of the oil O that has flowed into the stator coolant supply portion 50 is injected from the supply port 50 a and supplied to the stator 40 . Another part of the oil O that has flowed into the stator coolant supply portion 50 flows into the shaft flow channel portion 95 through the connection flow channel portion 94 .
  • Another part of the oil O that has flowed into the shaft flow path portion 95 is discharged into the gear housing 82 through the left opening of the shaft 1 and is stored in the gear housing 82 again.
  • the oil O supplied to the stator 40 from the supply port 50 a takes heat from the stator 40
  • the oil O supplied to the rotor 30 and stator 40 from within the shaft 1 takes heat from the rotor 30 and stator 40 .
  • the oil O that has cooled the stator 40 and the rotor 30 drops downward and accumulates in the lower area inside the motor housing 81 .
  • the oil O accumulated in the lower region inside the motor housing 81 returns into the gear housing 82 through the partition wall opening 81d provided in the partition wall portion 81b.
  • coolant flow path 90 supplies oil O stored in gear housing 82 to rotor 30 and stator 40 .
  • the oil O can flow through the shaft 1. Then, when the rotor 30 rotates over a predetermined number of revolutions, the oil O is preferentially discharged from the coolant supply hole 33 by centrifugal force. At this time, in the shaft 1, the flow of the oil O along the direction of the central axis J is not ensured on the downstream side of the coolant supply hole 33, the cooling efficiency for the rotor 30 is lowered, and the lubricating oil for the bearing 35 is The amount of oil O supplied may decrease. Therefore, the rotating electric machine 10 is configured to be able to eliminate such problems. This configuration and operation will be described below.
  • the shaft 1 includes a shaft body 2 and a cylindrical body 5 inserted into the shaft body 2.
  • the shaft main body 2 is composed of a cylindrical member whose total length is longer than that of the cylindrical body 5.
  • the shaft body 2 has a first screw portion 21 and a first side hole 22.
  • the first threaded portion 21 is a female thread provided on the upstream side portion of the inner peripheral surface 231 of the shaft body 2 .
  • the first threaded portion 21 is provided from the opening on the upstream side of the shaft body 2 halfway in the central axis J direction.
  • the first side hole 22 is a through hole penetrating through the shaft body 2 in the radial direction. Further, the first side hole 22 opens to the first screw portion 21 inside the shaft body 2 . Also, a plurality of first side holes 22 are provided. Although the number of the first side holes 22 arranged is eight in this embodiment, it is not limited to this, and may be, for example, two to seven or nine or more. The eight first side holes 22 are arranged at equal angular intervals around the central axis J and at the same position in the central axis J direction.
  • the shaft body 2 has an outer diameter that varies along the direction of the central axis J, an upstream small-diameter portion 233 , a downstream small-diameter portion 234 , and a large diameter between the small-diameter portions 233 and 234 . and a diameter portion 235 .
  • a cylindrical body 5 is inserted into the upstream side of the shaft body 2 .
  • the cylindrical body 5 has a second screw portion 51 and a second side hole 52.
  • the second screw portion 51 is a male screw provided on the outer peripheral surface 501 .
  • the second side hole 52 is a through hole penetrating through the cylindrical body 5 in the radial direction. Also, the second side hole 52 opens to the second screw portion 51 on the outside of the cylindrical body 5 .
  • a plurality of second side holes 52 are provided. In the present embodiment, the number of the second side holes 52 arranged is eight, which is the same number as the number of the first side holes 22 arranged.
  • the eight second side holes 52 are arranged at equal angular intervals around the central axis J and at the same position in the central axis J direction.
  • the cylindrical body 5 has, on the outer peripheral surface 501, a flange portion 53 that protrudes radially outward, that is, has an enlarged outer diameter.
  • the flange portion 53 is located at the upstream end of the cylindrical body 5 .
  • the second threaded portion 51 By rotating the cylindrical body 5 (second threaded portion 51) configured as described above about the central axis J with respect to the shaft body 2, the second threaded portion 51 is rotated as shown in FIGS. 1 threaded portion 21 to fit the threaded portions together.
  • the cylindrical body 5 can be attached to the upstream side of the shaft body 2 (one side in the central axis J direction).
  • the screwing amount (rotation amount) of the second threaded portion 51 with respect to the first threaded portion 21 is appropriately adjusted according to various conditions such as the type of the rotary electric machine 10 on which the shaft 1 is mounted, for example (see FIG. 5, see Figure 6). Further, the adjustment of the amount of screwing facilitates the positioning of the cylindrical body 5 with respect to the shaft body 2 .
  • the cylindrical body 5 creates a gap GP between the flange portion 53 and the end surface 202 of the shaft body 2 until the flange portion 53 comes into contact with the end surface 202 of the shaft body 2 . It is screwed into the shaft body 2 to an extent.
  • the separation distance SD between the second side hole 52 and the first side hole 22 in the direction of the central axis J can be set larger than the separation distance SD in the attached state shown in FIG.
  • the plurality of second side holes 52 are located upstream of the plurality of first side holes 22 regardless of the amount of screwing.
  • the plurality of first side holes 22 and the plurality of second side holes 52 are connected via the first threaded portion 21 and the second threaded portion 51 .
  • the flow path 12 is the coolant supply hole 33 .
  • the oil O flowing into the shaft 1 from the opening 201 includes the oil O1 that flows directly downstream beyond the second side hole 52 and the oil O1 that flows toward the flow path 12 via the second side hole 52. O2 is present. In this state, when the rotor 30 rotates over a predetermined number of revolutions, the oil O is likely to be preferentially discharged from the second side holes 52 due to centrifugal force.
  • the second side holes 52 and the first side holes 22 are displaced in the direction of the central axis J, the flow of the oil O2 toward the flow path 12 is suppressed. Since the flow of the oil O2 is suppressed, the flow of the oil O1 can be sufficiently secured. As a result, regardless of the rotational speed of the rotor 30, the cooling efficiency of the stator 40 can be improved by the oil O2, and the cooling efficiency of the rotor 30 can be sufficiently improved by the oil O1. Also, the oil O1 can sufficiently function as a lubricating oil for the bearings 35 .
  • the rotation direction of the shaft 1 and the screw directions of the first threaded portion 21 and the second threaded portion 51 are the same.
  • the screw directions of the first threaded portion 21 and the second threaded portion 51 are right-handed. This allows the oil O2 to smoothly pass from the second side hole 52 to the first side hole 22 .
  • the outer diameter ⁇ D51 of the second screw 51 male screw
  • the outer diameter ⁇ D51 of the second screw 51 is preferably 80% or more and 95% or less of the root diameter ⁇ D21 of the first screw 21 (female screw). More preferably, it is 90% or less.
  • the space between the first threaded portion 21 and the second threaded portion 51 is widened as much as possible while the fitting state between the first threaded portion 21 and the second threaded portion 51 is sufficiently maintained, thereby facilitating the flow of the oil O2. can be passed to
  • the thread ridge 511 of the second screw 51 (male screw) and the screw groove 211 of the first screw 21 (female screw) have at least one size or shape in side view when viewed from the radial direction. different.
  • both the shape of the thread 511 and the shape of the thread groove 211 are triangular, but the thread 511 is smaller than the thread groove 211 .
  • This also widens the space between the first threaded portion 21 and the second threaded portion 51 as much as possible, contributing to easy passage of the oil O2.
  • the flow rate of the oil O2 can be adjusted by appropriately changing the design of at least one of the size and shape of each screw.
  • the separation distance SD between the first side hole 22 and the second side hole 52 can be adjusted by changing the amount of screwing of the second threaded portion 51 into the first threaded portion 21 .
  • the smaller the separation distance SD the more the flow rate of the oil O from the second side hole 52 to the first side hole 22 can be increased.
  • the larger the clearance SD is, the more the flow rate of the oil O2 from the second side hole 52 to the first side hole 22 can be reduced. Therefore, the flow rate of the oil O2 can also be adjusted depending on the distance SD.
  • the materials for the shaft body 2 and the cylindrical body 5 are not particularly limited, and for example, hard materials such as metal materials and resin materials can be used.
  • the rotating electric machine and the drive device of the present invention have been described with reference to the illustrated embodiments, but the present invention is not limited to this, and each part constituting the rotating electric machine and the drive device performs the same function. can be substituted with any configuration available. Moreover, arbitrary components may be added. Also, a plurality of types of cylindrical bodies 5 having different arrangement positions and numbers of the second side holes 52 in the direction of the central axis J may be prepared in advance. In this case, an appropriate cylindrical body 5 can be selected from a plurality of types of cylindrical bodies 5 and attached to the shaft main body 2 according to various conditions such as the type of the rotating electric machine 10 on which the shaft 1 is mounted. . Further, the cylindrical body 5 is composed of one continuous member, but is not limited to this, and for example, has a configuration including a divided body divided into at least two along the direction of the central axis J. may

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

ロータおよびステータに対する冷却効率が向上する回転電機および駆動装置を提供すること。回転電機10は、シャフト1を有するロータ30と、ロータ30の径方向外側に位置するステータとを備える。シャフト1は、内周面231に設けられた第1ネジ部21と、径方向に貫通する複数の第1側孔22とを有する円筒状のシャフト本体2と、外周面501に設けられた第2ネジ部51と、径方向に貫通する複数の第2側孔52とを有する円筒体5とを備える。第2ネジ部51を回転により第1ネジ部21に嵌め合わせることにより、円筒体5をシャフト本体2の軸J方向一方側に取り付けた取付状態で、複数の第2側孔52が複数の第1側孔22より軸J方向一方側に位置する。複数の第1側孔22と複数の第2側孔52とが、第1ネジ部21と第2ネジ部51との間を介して繋がり、オイルOが通過可能な流路12として機能する。

Description

回転電機および駆動装置
 本発明は、回転電機および駆動装置に関する。
 回転軸を有する回転子と、回転子が内側に配置され、回転磁場により回転子を回転駆動させる固定子とを備える電動機が知られている(例えば、特許文献1参照)。 特許文献1に記載の電動機の回転子は、回転軸が中空に構成される。そして、回転軸内に冷却オイル等の冷媒を流通させることにより、回転子の温度上昇を抑制することができる。
特開2003-235210号公報
 しかしながら、特許文献1に記載の電動機では、冷媒が回転軸内を通過するため、回転子の温度上昇を抑制することができるが、固定子の温度上昇までも抑制するのが困難である。すなわち、特許文献1に記載の電動機では、回転子および固定子の双方に対する冷却効率が低い。 本発明の目的は、ロータおよびステータに対する冷却効率が向上する回転電機および駆動装置を提供することにある。
 本発明の回転電機の一つの態様は、内部に冷媒が流通可能なシャフトを有し、該シャフトを回転中心として回転可能なロータと、
 該ロータの径方向外側に位置するステータとを備え、
 前記シャフトは、
 内周面に設けられた第1ネジ部と、径方向に貫通する複数の第1側孔とを有する円筒状のシャフト本体と、
 外周面に設けられた第2ネジ部と、径方向に貫通する複数の第2側孔とを有する円筒体とを備え、
 前記第2ネジ部を回転により前記第1ネジ部に嵌め合わせることにより、前記円筒体を前記シャフト本体の軸方向一方側に取り付けた取付状態で、前記複数の第2側孔が前記複数の第1側孔より軸方向一方側に位置し、
 前記複数の第1側孔と前記複数の第2側孔とが、前記第1ネジ部と前記第2ネジ部との間を介して繋がり、前記冷媒が通過可能な流路として機能することを特徴とする。
 本発明の駆動装置の一つの態様は、車両に搭載され、車軸を回転させる駆動装置であって、
 上記に記載の回転電機と、
 前記回転電機に接続され、前記ロータの回転を前記車軸に伝達する伝達装置と、
 前記回転電機および前記伝達装置を収容するハウジングと、
 前記ハウジング内に設けられ、前記回転電機の前記シャフト内および前記ステータに冷媒を供給する冷媒流路とを備えることを特徴とする。
 本発明によれば、ロータおよびステータに対する冷却効率が向上する。
図1は、一実施形態の駆動装置を模式的に示す概略構成図である。 図2は、ロータが有するシャフトの縦断面図である。 図3は、ロータが有するシャフトの拡大縦断面図である。 図4は、図3中の一点鎖線で囲まれた領域[A]の拡大図である。 図5は、ロータにおけるシャフト本体と円筒体との位置関係を示す縦断面図である。 図6は、ロータにおけるシャフト本体と円筒体との位置関係を示す縦断面図である。 図7は、シャフト本体の縦断面斜視図である。 図8は、円筒体の縦断面斜視図である。
 以下、図1~図8を参照して、本発明の回転電機および駆動装置を添付図面に示す好適な実施形態に基づいて詳細に説明する。  以下の説明では、本実施形態の駆動装置が水平な路面上に位置する車両に搭載された場合を一例としている。 また、適宜図に示す中心軸Jは、鉛直方向と交差する方向に延びる仮想軸である。以下の説明では、中心軸Jに平行な方向を単に「軸方向」と、中心軸Jを中心とする径方向を単に「径方向」と、中心軸Jを中心とする周方向(中心軸Jの軸回り)を単に「周方向」と呼ぶ場合がある。
 また、本明細書中において、上下方向、水平方向、上側および下側とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 なお、図2~図8中、左側を「上流側」、右側を「下流側」と言う。また、図示の構成では、「上流側」が「軸(中心軸J)方向一方側」に、「下流側」が「軸(中心軸J)方向他方側」に相当する。
 図1に示す本実施形態の駆動装置100は、車両に搭載され、車軸64を回転させる駆動装置である。駆動装置100が搭載される車両は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等のモータを動力源とする車両である。図1に示すように、駆動装置100は、回転電機10と、ハウジング80と、伝達装置60と、冷媒流路90とを備える。回転電機10は、中心軸(軸)Jを中心として回転可能なロータ30と、ロータ30の径方向外側に位置するステータ40とを備える。
 ハウジング80は、回転電機10および伝達装置60を収容する。ハウジング80は、モータハウジング81と、ギヤハウジング82と、を有する。モータハウジング81は、ロータ30およびステータ40を内部に収容するハウジングである。モータハウジング81は、ギヤハウジング82の右側に繋がっている。モータハウジング81は、周壁部81aと、隔壁部81bと、蓋部81cとを有する。周壁部81aと隔壁部81bとは、例えば、同一の単一部材の一部である。蓋部81cは、例えば、周壁部81aおよび隔壁部81bとは別体である。
 周壁部81aは、中心軸Jを囲み、右側に開口する筒状である。隔壁部81bは、周壁部81aの左側の端部に繋がっている。隔壁部81bは、モータハウジング81の内部とギヤハウジング82の内部とを軸方向に隔てている。隔壁部81bは、モータハウジング81の内部とギヤハウジング82の内部とを繋ぐ隔壁開口81dを有する。隔壁部81bには、ベアリング34が保持されている。蓋部81cは、周壁部81aの右側の端部に固定されている。蓋部81cは、周壁部81aの右側の開口を塞いでいる。蓋部81cには、ベアリング35が保持されている。
 ギヤハウジング82は、伝達装置60の減速装置62および差動装置63と、オイルOとを内部に収容している。オイルOは、ギヤハウジング82内の下部領域に貯留されている。オイルOは、冷媒流路90内を循環する。オイルOは、回転電機10を冷却する冷媒として使用される。また、オイルOは、減速装置62および差動装置63に対して潤滑油として使用される。オイルOとしては、例えば、冷媒および潤滑油の機能を奏するために、比較的粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。
 伝達装置60は、回転電機10に接続され、ロータ30の回転を車両の車軸64に伝達する。本実施形態の伝達装置60は、回転電機10に接続される減速装置62と、減速装置62に接続される差動装置63とを有する。 差動装置63は、リングギヤ63aを有する。リングギヤ63aには、回転電機10から出力されるトルクが減速装置62を介して伝えられる。リングギヤ63aの下側の端部は、ギヤハウジング82内に貯留されたオイルOに浸漬している。リングギヤ63aが回転することで、オイルOがかき上げられる。かき上げられたオイルOは、例えば、減速装置62および差動装置63に潤滑油として供給される。
 回転電機10は、駆動装置100を駆動する部分である。回転電機10は、例えば、伝達装置60の右側に位置する。本実施形態において回転電機10は、モータである。回転電機10のロータ30のトルクは、伝達装置60に伝達される。ロータ30は、中心軸Jを中心として軸方向に延びるシャフト1と、シャフト1に固定されるロータ本体32と、を有する。ロータ本体32は、例えば、シャフト1の外周面に固定され軸方向に並ぶ複数のロータコア部と、各ロータコア部にそれぞれ保持されるマグネット等で構成される。
 図1に示すように、シャフト1は、中心軸Jを中心として回転可能である。これにより、ロータ30は、シャフト1を回転中心として回転することができる。シャフト1は、ベアリング34、ベアリング35によって回転可能に支持されている。本実施形態においてシャフト1は、中空シャフトである。シャフト1は、内部に冷媒としてのオイルOが流通可能な筒状である。シャフト1は、モータハウジング81の内部とギヤハウジング82の内部とに跨って延びている。シャフト1の左側の端部は、ギヤハウジング82の内部に突出している。シャフト1の左側の端部には、減速装置62が接続されている。
 ステータ40は、ロータ30と径方向外側に隙間を介して位置する。ステータ40は、ロータ30を径方向外側から周方向全周にわたって囲う。ステータ40は、モータハウジング81の内部に固定される。ステータ40は、ステータコア41と、コイルアセンブリ42とを有する。
 ステータコア41は、回転電機10の中心軸Jを囲む環状である。ステータコア41は、例えば、電磁鋼板などの板部材が軸方向に複数積層されて構成されている。コイルアンブリ42は、周方向に沿ってステータコア41に取り付けられる複数のコイル42cを有する。複数のコイル42cは、インシュレータ(図示省略)を介してステータコア41の各ティース(図示省略)にそれぞれ装着されている。複数のコイル42cは、周方向に沿って配置されている。コイル42cは、ステータコア41から軸方向に突出する部分を有する。
 冷媒流路90は、ハウジング80内に設けられる。冷媒流路90には、冷媒としてのオイルOが流れる。冷媒流路90は、モータハウジング81の内部とギヤハウジング82の内部とに跨って設けられている。冷媒流路90は、ギヤハウジング82内に貯留されたオイルOがモータハウジング81内の回転電機10に供給されて再びギヤハウジング82内に戻る経路である。冷媒流路90には、ポンプ71と、クーラ72とが設けられている。冷媒流路90は、第1流路部91と、第2流路部92と、第3流路部93と、ステータ冷媒供給部50と、シャフト流路部95と、接続流路部94と、径方向流路部96と、軸方向流路部98と、ガイド流路部97とを有する。
 第1流路部91、第2流路部92、および第3流路部93は、例えば、ギヤハウジング82の壁部に設けられている。第1流路部91は、ギヤハウジング82の内部のうちオイルOが貯留されている部分とポンプ71とを繋いでいる。第2流路部92は、ポンプ71とクーラ72とを繋いでいる。第3流路部93は、クーラ72とステータ冷媒供給部50とを繋いでいる。本実施形態において第3流路部93は、ステータ冷媒供給部50の左側の端部すなわちステータ冷媒供給部50の上流側部分に繋がっている。
 ステータ冷媒供給部50は、ステータ40にオイルOを供給する。本実施形態においてステータ冷媒供給部50は、軸方向に延びる管状である。言い換えれば、本実施形態においてステータ冷媒供給部50は、軸方向に延びるパイプである。ステータ冷媒供給部50の軸方向両端部は、モータハウジング81に支持されている。ステータ冷媒供給部50の左側の端部は、例えば、隔壁部81bに支持されている。ステータ冷媒供給部50の右側の端部は、例えば、蓋部81cに支持されている。ステータ冷媒供給部50は、ステータ40の径方向外側に位置する。本実施形態においてステータ冷媒供給部50は、ステータ40の上側に位置する。
 ステータ冷媒供給部50は、ステータ40にオイルOを供給する供給口50aを有する。本実施形態において供給口50aは、ステータ冷媒供給部50内に流入したオイルOの一部をステータ冷媒供給部50の外部に噴射させる噴射口である。供給口50aは、ステータ冷媒供給部50の壁部を内周面から外周面まで貫通する孔によって構成されている。供給口50aは、ステータ冷媒供給部50に複数設けられている。複数の供給口50aは、例えば、軸方向または周方向に互いに間隔をあけて配置される。
 シャフト流路部95は、シャフト1内に配置される。これにより、シャフト1内にオイルOを供給することができる。 また、接続流路部94は、ステータ冷媒供給部50の内部とシャフト1の内部とを繋いでいる。接続流路部94は、ステータ冷媒供給部50の右側の端部つまり下流側部分と、シャフト流路部95の右側の端部つまり上流側部分と、を接続する。接続流路部94は、例えば、蓋部81cに設けられている。本実施形態によれば、冷媒流路90の構成を簡素化しつつ、ステータ40およびロータ30を安定して冷却できる。 軸方向流路部98は、径方向流路部96とガイド流路部97とを繋ぐ。軸方向流路部98は、複数のロータコア部の内部にわたって配置される。
 図1に示すように、ポンプ71が駆動されると、ギヤハウジング82内に貯留されたオイルOが第1流路部91を通って吸い上げられ、第2流路部92を通ってクーラ72内に流入する。クーラ72内に流入したオイルOは、クーラ72内で冷却された後、第3流路部93を通って、ステータ冷媒供給部50へと流れる。ステータ冷媒供給部50内に流入したオイルOの一部は、供給口50aから噴射されて、ステータ40に供給される。ステータ冷媒供給部50内に流入したオイルOの他の一部は、接続流路部94を通ってシャフト流路部95に流入する。シャフト流路部95を流れるオイルOの一部は、冷媒供給孔33から径方向流路部96、軸方向流路部98およびガイド流路部97を流れて、ステータ40に飛散する。シャフト流路部95に流入したオイルOの他の一部は、シャフト1の左側の開口からギヤハウジング82の内部に排出され、再びギヤハウジング82内に貯留される。
 供給口50aからステータ40に供給されたオイルOは、ステータ40から熱を奪い、シャフト1内からロータ30およびステータ40に供給されたオイルOは、ロータ30およびステータ40から熱を奪う。ステータ40およびロータ30を冷却したオイルOは、下側に落下して、モータハウジング81内の下部領域に溜まる。モータハウジング81内の下部領域に溜ったオイルOは、隔壁部81bに設けられた隔壁開口81dを介してギヤハウジング82内に戻る。以上のようにして、冷媒流路90は、ギヤハウジング82内に貯留されたオイルOをロータ30およびステータ40に供給する。
 前述したように、オイルOは、シャフト1内を流通することができる。そして、ロータ30が所定の回転数を超えて回転した場合、オイルOは、遠心力によって優先的に冷媒供給孔33から排出されることとなる。このとき、シャフト1内では、冷媒供給孔33より下流側において中心軸J方向に沿ったオイルOの流れが確保されず、ロータ30に対する冷却効率が低下したり、ベアリング35への潤滑油としてのオイルOの供給量が減少するおそれがある。 そこで、回転電機10では、このような不具合を解消可能に構成される。以下、この構成および作用について説明する。
 図2、図3に示すように、シャフト1は、シャフト本体2と、シャフト本体2に挿入される円筒体5とを備える。 シャフト本体2は、全長が円筒体5よりも長い円筒状の部材で構成される。 図7に示すように、シャフト本体2は、第1ネジ部21と、第1側孔22とを有する。 第1ネジ部21は、シャフト本体2の内周面231の上流側の部分に設けられた雌ネジである。本実施形態では、第1ネジ部21は、シャフト本体2の上流側の開口部から、中心軸J方向の途中まで設けられる。
 第1側孔22は、シャフト本体2の径方向に貫通する貫通孔である。また、第1側孔22は、シャフト本体2の内側では、第1ネジ部21に開口する。 また、第1側孔22は、複数設けられる。第1側孔22の配置数は、本実施形態では8つであるが、これに限定されず、例えば、2つ~7つまたは9つ以上であってもよい。 8つの第1側孔22は、中心軸J回りに等角度間隔に配置されるとともに、中心軸J方向では同じ位置に配置される。 また、シャフト本体2は、外径が中心軸J方向に沿って変化しており、上流側の小径部233と、下流側の小径部234と、小径部233と小径部234との間の大径部235とを有する。
 シャフト本体2の上流側には、円筒体5が挿入される。 図8に示すように、円筒体5は、第2ネジ部51と、第2側孔52とを有する。 第2ネジ部51は、外周面501に設けられた雄ネジである。 第2側孔52は、円筒体5の径方向に貫通する貫通孔である。また、第2側孔52は、円筒体5の外側では、第2ネジ部51に開口する。 また、第2側孔52は、複数設けられる。第2側孔52の配置数は、本実施形態では第1側孔22の配置数と同数の8つであるが、これに限定されず、例えば、2つ~7つまたは9つ以上であってもよい。 8つの第2側孔52は、中心軸J回りに等角度間隔に配置されるとともに、中心軸J方向では同じ位置に配置される。 円筒体5は、径方向外側に向かって突出する、すなわち、外径が拡径したフランジ部53を外周面501に有する。フランジ部53は、円筒体5の上流側の端部に位置する。
 以上のような構成の円筒体5(第2ネジ部51)をシャフト本体2に対して中心軸J回りに回転させることにより、図2、図3に示すように、第2ネジ部51を第1ネジ部21に捩じ込んで、ネジ部同士を嵌め合わせることができる。これにより、円筒体5をシャフト本体2の上流側(中心軸J方向一方側)に取り付けた取付状態とすることができる。 なお、第1ネジ部21に対する第2ネジ部51の捩じ込み量(回転量)は、例えばシャフト1が搭載される回転電機10の種類等の諸条件に応じて、適宜調整される(図5、図6参照)。また、捩じ込み量の調整により、シャフト本体2に対する円筒体5の位置決めが容易となる。 図5(図2、図3についても同様)に示す取付状態では、円筒体5は、フランジ部53がシャフト本体2の上流側の端面202に接触するまで、シャフト本体2に捩じ込まれている。これにより、第1ネジ部21と第2ネジ部51との捩じ込み限界(嵌め合わせ限界)を規制して、第1ネジ部21と第2ネジ部51との過剰な捩じ込みを防止することができる。
 図6に示す取付状態では、円筒体5は、フランジ部53がシャフト本体2の端面202に接触に至る前まで、すなわち、フランジ部53がシャフト本体2の端面202と間に間隙GPを生じさせる程度にシャフト本体2に捩じ込まれている。これにより、第2側孔52と第1側孔22との中心軸J方向における離間距離SDを、図5に示す取付状態での離間距離SDよりも大きく設定することができる。 また、図5、図6に示すように、取付状態では、捩じ込み量の大小に関わらず、複数の第2側孔52が複数の第1側孔22より上流側に位置する。
 図3に示すように、複数の第1側孔22と複数の第2側孔52とは、第1ネジ部21と第2ネジ部51との間を介して繋がる。これにより、オイルOが通過可能な流路12が確保される。流路12は、冷媒供給孔33である。 また、シャフト1の開口部201から内部に流入したオイルOには、第2側孔52を超えて、そのまま下流側に向かうオイルO1と、第2側孔52を介して流路12に向かうオイルO2とが存在する。そして、この状態でロータ30が所定の回転数を超えて回転した際、オイルOは、遠心力によって優先的に各第2側孔52から排出されそうになる。
 しかしながら、各第2側孔52と各第1側孔22とが中心軸J方向にズレて配置されているため、流路12に向かうオイルO2の流れが抑制される。そして、オイルO2の流れが抑制された分、オイルO1の流れを十分に確保することができる。これにより、ロータ30の回転数の大小に関わらず、オイルO2でステータ40に対する冷却効率を向上させつつ、オイルO1でロータ30に対する冷却効率も十分に向上させることができる。また、オイルO1をベアリング35の潤滑油として十分に機能させることもできる。
 また、上流側から見たとき、シャフト1の回転方向と、第1ネジ部21および第2ネジ部51のネジ方向とが同一である。例えば、上流側から見たとき、シャフト1の回転方向が時計回り(右回り)の場合、第1ネジ部21および第2ネジ部51のネジ方向は、右ネジの方向となる。これにより、オイルO2が第2側孔52から第1側孔22へ円滑に通過することができる。 図4に示すように、第2ネジ51(雄ネジ)の外径φD51は、第1ネジ21(雌ネジ)の谷の径φD21の80%以上95%以下であるのが好ましく、80%以上90%以下であるのがより好ましい。これにより、第1ネジ部21と第2ネジ部51との嵌め合い状態を十分に維持しつつ、第1ネジ部21と第2ネジ部51との間をできる限り広げて、オイルO2を容易に通過させることができる。
 また、第2ネジ51(雄ネジ)のネジ山511と第1ネジ21(雌ネジ)のネジ溝211とは、径方向から見たときの側面視で、大きさまたは形状のうち少なくとも1つが異なる。本実施形態では、ネジ山511の形状およびネジ溝211の形状は、いずれも、三角形であるが、ネジ山511の方が、ネジ溝211よりも小さい。これによっても、第1ネジ部21と第2ネジ部51との間をできるだけ広げて、オイルO2の容易な通過に寄与する。このように、各ネジの大きさまたは形状のうち少なくとも1つを適宜設計変更することにより、オイルO2の流量を調整することができる。
 前述したように、第2ネジ部51の第1ネジ部21に対する捩じ込み量を変更することにより、第1側孔22と第2側孔52との離間距離SDを調整することができる。離間距離SDが小さければ小さいほど、第2側孔52から第1側孔22へのオイルOの流量を増加させることができる。反対に、離間距離SDが大きければ大きいほど、第2側孔52から第1側孔22へのオイルO2の流量を減少させることができる。従って、離間距離SDの大小によっても、オイルO2の流量を調整することができる。 なお、シャフト本体2および円筒体5の構成材料としては、特に限定されず、例えば、金属材料や樹脂材料等の硬質材料を用いることができる。
 以上、本発明の回転電機および駆動装置を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、回転電機および駆動装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。 また、第2側孔52の中心軸J方向における配置位置や配置数が異なる複数種の円筒体5を予め用意してもよい。この場合、例えばシャフト1が搭載される回転電機10の種類等の諸条件に応じて、適当な円筒体5を複数種の円筒体5の中から選択して、シャフト本体2に取り付けることができる。 また、円筒体5は、連続した1つの部材で構成されているが、これに限定されず、例えば、中心軸J方向に沿って、少なくとも2つに分割された分割体を含む構成となっていてもよい。
 1    シャフト 2    シャフト本体 201  開口部 202  端面 21   第1ネジ部 211  ネジ山 22   第1側孔 231  内周面 233  小径部 234  小径部 235  大径部 5    円筒体 501  外周面 51   第2ネジ部 511  ネジ溝 52   2側孔 53   フランジ部 10   回転電機 12   流路 30   ロータ 32   ロータ本体 33   冷媒供給孔 34   ベアリング 35   ベアリング 40   ステータ 41   ステータコア 42   コイルアセンブリ 42c  コイル 50   ステータ冷媒供給部 50a  供給口 60   伝達装置 62   減速装置 63   差動装置 63a  リングギヤ 64   車軸 71   ポンプ 72   クーラ 80   ハウジング 81   モータハウジング 81a  周壁部 81b  隔壁部 81c  蓋部 81d  隔壁開口 82   ヤハウジング 90   冷媒流路 91   第1流路部 92   第2流路部 93   第3流路部 94   接続流路部 95   シャフト流路部 96   径方向流路部 97   ガイド流路部 98   軸方向流路部 100  駆動装置 φD21 径 φD51 外径 J    中心軸(軸) SD   離間距離 O    オイル O1   オイル O2   オイル

Claims (7)

  1.  内部に冷媒が流通可能なシャフトを有し、該シャフトを回転中心として回転可能なロータと、
     該ロータの径方向外側に位置するステータとを備え、
     前記シャフトは、
     内周面に設けられた第1ネジ部と、径方向に貫通する複数の第1側孔とを有する円筒状のシャフト本体と、
     外周面に設けられた第2ネジ部と、径方向に貫通する複数の第2側孔とを有する円筒体とを備え、
     前記第2ネジ部を回転により前記第1ネジ部に嵌め合わせることにより、前記円筒体を前記シャフト本体の軸方向一方側に取り付けた取付状態で、前記複数の第2側孔が前記複数の第1側孔より軸方向一方側に位置し、
     前記複数の第1側孔と前記複数の第2側孔とが、前記第1ネジ部と前記第2ネジ部との間を介して繋がり、前記冷媒が通過可能な流路として機能することを特徴とする回転電機。
  2.  前記円筒体は、その軸方向一方側の端部に位置し、径方向外側に向かって突出するフランジ部であって、前記取付状態で、前記シャフト本体に接触するフランジ部を有する請求項1に記載の回転電機。
  3.  前記第1ネジ部は、雌ネジであり、前記第2ネジ部は、雄ネジであり、
     前記雄ネジの外径は、前記雌ネジの谷の径の80%以上95%以下である請求項1または2に記載の回転電機。
  4.  前記第1ネジ部は、雌ネジであり、前記第2ネジ部は、雄ネジであり、
     前記雄ネジのネジ山と前記雌ネジのネジ溝とは、径方向から見たときの大きさまたは形状のうち少なくとも1つが異なる請求項1~3のいずれか1項に記載の回転電機。
  5.  軸方向一方側から見たとき、前記シャフトの回転方向と、前記第1ネジ部および前記第2ネジ部のネジ方向とが同一である請求項1~4のいずれか1項に記載の回転電機。
  6.  前記第2ネジ部の前記第1ネジ部に対する回転量を変更することにより、前記第2側孔と前記第1側孔との軸方向における離間距離が調整可能である請求項1~5のいずれか1項に記載の回転電機。
  7.  車両に搭載され、車軸を回転させる駆動装置であって、
     請求項1~6のいずれか1項に記載の回転電機と、
     前記回転電機に接続され、前記ロータの回転を前記車軸に伝達する伝達装置と、
     前記回転電機および前記伝達装置を収容するハウジングと、
     前記ハウジング内に設けられ、前記回転電機の前記シャフト内および前記ステータに冷媒を供給する冷媒流路とを備えることを特徴とする駆動装置。
PCT/JP2021/022349 2021-02-24 2021-06-11 回転電機および駆動装置 WO2022180875A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-027133 2021-02-24
JP2021027133 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022180875A1 true WO2022180875A1 (ja) 2022-09-01

Family

ID=83048757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022349 WO2022180875A1 (ja) 2021-02-24 2021-06-11 回転電機および駆動装置

Country Status (1)

Country Link
WO (1) WO2022180875A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386414A (en) * 1976-11-30 1978-07-29 Sp K Buyuro Enerugohimumashi Electric machine which is cooled by lowwtemperature fluid
WO2011132784A1 (ja) * 2010-04-23 2011-10-27 株式会社Ihi 回転機
JP2013051805A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp 回転電機の冷却構造
JP2015226363A (ja) * 2014-05-27 2015-12-14 富士重工業株式会社 電動モータの冷却装置
JP2016014445A (ja) * 2014-07-03 2016-01-28 Ntn株式会社 インホイールモータ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386414A (en) * 1976-11-30 1978-07-29 Sp K Buyuro Enerugohimumashi Electric machine which is cooled by lowwtemperature fluid
WO2011132784A1 (ja) * 2010-04-23 2011-10-27 株式会社Ihi 回転機
JP2013051805A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp 回転電機の冷却構造
JP2015226363A (ja) * 2014-05-27 2015-12-14 富士重工業株式会社 電動モータの冷却装置
JP2016014445A (ja) * 2014-07-03 2016-01-28 Ntn株式会社 インホイールモータ駆動装置

Similar Documents

Publication Publication Date Title
US11502579B2 (en) Motor unit comprising oil flow passages
DE102016216685A1 (de) Rotor für eine elektrische Maschine
WO2019098166A1 (ja) モータユニット
JP7347074B2 (ja) モータユニット
JP2018057243A (ja) 車両用駆動装置
US11496023B2 (en) Drive apparatus
TWI792763B (zh) 動力傳遞裝置、馬達單元以及車輛
US11777364B2 (en) Drive device and vehicle
US11598410B2 (en) Drive device
JP7456382B2 (ja) モータユニット
US11519490B2 (en) Oil supply unit
JP7351167B2 (ja) 駆動装置
CN105637741B (zh) 电动机
US20220305892A1 (en) Drive device and vehicle
WO2022180875A1 (ja) 回転電機および駆動装置
US20230067898A1 (en) Drive apparatus
US20230069613A1 (en) Drive apparatus
WO2022180876A1 (ja) 回転電機および駆動装置
CN115706465A (zh) 驱动装置
CN113206578A (zh) 驱动装置
JP2022081379A (ja) 駆動装置、及び車両
CN111033969B (zh) 驱动装置
JP2022128745A (ja) 回転電機および駆動装置
WO2019208082A1 (ja) モータユニット
WO2022176225A1 (ja) 回転電機、および駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP