WO2022179135A1 - 转子组件、压缩机及空调 - Google Patents

转子组件、压缩机及空调 Download PDF

Info

Publication number
WO2022179135A1
WO2022179135A1 PCT/CN2021/124664 CN2021124664W WO2022179135A1 WO 2022179135 A1 WO2022179135 A1 WO 2022179135A1 CN 2021124664 W CN2021124664 W CN 2021124664W WO 2022179135 A1 WO2022179135 A1 WO 2022179135A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
shaft body
oil supply
oil
rotor assembly
Prior art date
Application number
PCT/CN2021/124664
Other languages
English (en)
French (fr)
Inventor
谭建明
刘华
张治平
武晓昆
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022179135A1 publication Critical patent/WO2022179135A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps

Definitions

  • the present disclosure relates to the technical field of compressors, and in particular, to a rotor assembly, a compressor and an air conditioner.
  • the compressor is generally arranged with a pair of parallel helical rotors which are placed within the space volume of the housing of the screw compressor. During the rotation of the pair of helical rotors, the volume of the space will increase and decrease periodically, so that the volume of the space is periodically connected and closed with the air inlet and the air outlet, and the air intake, compression and exhaust can be completed. process.
  • the traditional helical female rotor is generally connected to the rotating shaft through a connecting piece.
  • the male rotor drives the female rotor to rotate
  • the female rotating shaft drives the female rotating shaft to rotate together.
  • Support the rotating shaft reduce the frictional force of the rotating shaft during the rotation process, and balance the axial and radial forces on the rotor during the rotating process.
  • rolling bearings are used to balance radial forces
  • ball bearings are used to balance axial forces.
  • the use of the bearing increases the arrangement space, which in turn results in a larger volume required for the installation of the rotor assembly.
  • the present disclosure aims to provide a rotor assembly, a compressor and an air conditioner, which can reduce the installation space of the rotor assembly and make the structure of the rotor assembly more compact.
  • Embodiments of the present application provide a rotor assembly, which includes:
  • the first rotor is connected with the first shaft body in a sliding and rotating manner, so that the first rotor surrounds the circumferential direction of the first shaft body and follows the circumferential direction of the first shaft body Rotate by sliding.
  • a circumferential direction of the first rotor surrounding the first shaft body is provided along the At least one sliding connector that rotates in a circumferential sliding manner of the first shaft body.
  • the sliding connector is a bearing bush.
  • lubricating oil is provided between the sliding connection piece and the first rotor and/or between the sliding connection piece and the first shaft body.
  • the first rotor is made of a non-metallic material and/or the first shaft body is made of a non-metallic material.
  • one of the first rotor and the first shaft body is made of a non-metallic material, and the other is made of a metal material.
  • the non-metallic material has self-lubricating properties.
  • lubricating oil is provided in the gap between the inner surface of the first rotor and the outer surface of the first shaft.
  • lubricating oil is provided in the gap between the inner surface of the first rotor and the outer surface of the first shaft.
  • the rotor assembly further includes:
  • the second rotor can rotate together with the second shaft body along the axis of the second shaft body.
  • At least one of the second rotor and the first rotor is made of a self-lubricating non-metallic material.
  • the first rotor includes a first part and a second part that are coaxially arranged on the first shaft body, the first part and the second part have opposite screw threads ; and the second rotor includes a third part and a fourth part coaxially arranged on the second shaft body, the third part is engaged with the first part, and the fourth part is engaged with the second part Partially meshed.
  • At least one sliding connection is provided between the inner surface of the first part and the outer surface of the first shaft body, and the inner surface of the second part is connected to the first shaft body. At least one sliding connection is provided between the outer surfaces of the shaft bodies.
  • the third part or the fourth part of the second rotor is integrally formed with the second shaft body.
  • Embodiments of the present disclosure also provide a compressor, which includes the rotor assembly described in any one of the above.
  • Embodiments of the present disclosure also provide an air conditioner, which includes the compressor.
  • the first rotor is connected with the first shaft body in a sliding and rotating manner, so that the first rotor rotates around the axis of the first shaft body in a sliding manner along the circumference of the first shaft body, so that the The first shaft body does not need to be rotated, so that radial force bearings do not need to be arranged at both ends of the first shaft body, which can reduce the installation space of the rotor assembly and make the structure more compact.
  • FIG. 1 is a schematic cross-sectional view of a rotor assembly according to an embodiment of the present disclosure
  • FIG. 2 is an enlarged view of the first rotor and the first shaft in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of a rotor assembly according to another embodiment provided by the embodiments of the present disclosure.
  • FIG. 4 is an enlarged view of the first rotor and the first shaft in FIG. 3 .
  • the first rotor 21, the first part; 211, the first helical blade; 22, the second part; 221, the second helical blade; 23, the oil storage tank; 24, the oil outlet;
  • the first shaft body 31, the oil supply channel; 32, the oil supply hole; 33, the axis of the first shaft body; 34, the first end; 35, the second end; 36, the groove;
  • Embodiments of the present disclosure provide a rotor assembly 100 .
  • the rotor assembly 100 can be used in devices such as compressors and air conditioners. See Figures 1 through 4.
  • the rotor assembly 100 includes a first rotor 20 and a first shaft body 30 .
  • the first shaft body 30 is used to mount the first rotor 20 thereon.
  • the first rotor 20 is connected with the first shaft body 30 in a sliding and rotating manner, so that the first rotor 20 surrounds the first shaft body 30 in a circumferential direction of the first shaft body 30 . Rotate by sliding.
  • the first shaft body 30 may be a fixed shaft, that is, both ends of the first shaft body 30 are fixed and do not rotate.
  • the first rotor 20 and the first shaft body 30 are connected in a sliding and rotating manner, and sliding friction is formed between the first rotor 20 and the first shaft body 30 .
  • the first rotor 20 rotates, the two ends of the first shaft body 30 can be directly fixed without rotating. Therefore, the two ends of the first shaft body 30 do not need to be provided with radial force bearings, thereby making the rotor assembly possible.
  • the installation space of the 100 is reduced and the structure is more compact.
  • the first rotor 20 is a female rotor, and the first rotor 20 as a female rotor can be understood as a driven rotor.
  • the outer surface of the first rotor 20 has helical blades.
  • the first rotor 20 is provided with a shaft hole matched with the first shaft body 30 , and the first rotor 20 is sleeved on the first shaft body 30 through the shaft hole.
  • the rotor assembly 100 further includes a second rotor 50 and a second shaft 60 .
  • the second shaft body 60 is used to mount the second rotor 50 thereon.
  • the second rotor 50 is a male rotor, and the second rotor 50 as a male rotor can be understood as an active rotor.
  • the outer surface of the second rotor 50 has helical lobes.
  • the second rotor 50 is provided with a shaft hole matched with the second shaft body 60 , and the second rotor 50 is sleeved on the second shaft body 60 through the shaft hole.
  • the second rotor 50 can rotate together with the second shaft body 60 along the axis 61 of the second shaft body.
  • the second rotor 50 may be drive-connected with a driving component such as a motor (including but not limited to a permanent magnet motor), and driven to rotate by the driving component, while the second rotor 50 rotates through meshing driving.
  • the first rotor 20 rotates together.
  • the second shaft body 60 is parallel to the first shaft body 30 , and the axis 61 of the second shaft body is parallel to the axis 33 of the first shaft body.
  • the rotor assembly 100 may be a two-rotor structure or a four-rotor structure.
  • the first rotor 20 includes a first part 21 and a second part 22 coaxially disposed on the first shaft body 30 , the first part 21 and the first part 21
  • the threads of the two parts 22 have opposite directions; and the second rotor 50 includes a third part 51 and a fourth part 52 coaxially arranged on the second shaft 60 , the third part 51 and the One part 21 is engaged, and the fourth part 52 is engaged with the second part 22 .
  • the first rotor 20 includes the first part 21 and the second part 22, the first part 21 is a hollow cylindrical member, and its outer surface has a first spiral.
  • Leaf 211; the second part 22 is a hollow cylindrical member, and its outer surface has a second helical blade 221; the first helical blade 211 and the second helical
  • the rotation directions of the part 21 and the second part 22 are opposite; wherein, the number of the first helical blades 211 is at least two, and the number of the second helical blades 221 is at least two.
  • the first shaft 30 is mounted with the first part 21 and the second part 22 of the first rotor 20; the first shaft 30 has a first end 34 and a second end 35, the first The first part 21 and the second part 22 of the rotor 20 are confined between the first end 34 and the second end 35; the first part 21 and the second part 22 can be The shaft body 30 rotates around the first shaft body 30 along the axis 33 of the first shaft body.
  • the second rotor 50 includes the third part 51 and the fourth part 52, the third part 51 is a hollow cylindrical member, and its outer surface has a first Three helical blades 511; the fourth part 52 is a hollow cylindrical member, and has a fourth helical blade 521 on its outer surface; the third helical blade 511 and the fourth helical blade 521 have opposite screw threads, that is, the The direction of rotation of the third part 51 is opposite to that of the fourth part 52 , the third helical blade 511 of the third part 51 is engaged with the first helical blade 211 of the first part 21 , The fourth helical blade 521 meshes with the second helical blade 221 of the second part 22 to make the second rotor 50 and the first rotor 20 mesh with each other; wherein the number of the third helical blade 511 is at least The number of the fourth helical leaves 521 is at least two.
  • the third part 51 and the fourth part 52 of the second rotor 50 are mounted on the second shaft body 60; the second shaft body 60 has a third end 62 and a fourth end 63, the first The third portion 51 and the fourth portion 52 of the second rotor 50 are confined between the third end portion 62 and the fourth end portion 63 ; the third portion 51 and the fourth portion of the second rotor 50
  • the part 52 is drive-connected by the second shaft body 60 and the drive assembly; the drive assembly can drive the second shaft body 60 to rotate, and the second shaft body 60 can be connected with the second rotor mounted thereon
  • the third part 51 and the fourth part 52 of 50 rotate together along the axis 61 of the second shaft body.
  • the third part 51 and the fourth part 52 of the second rotor 50 are connected to the second shaft body 60 by a key, and the second shaft body 60 is driven by a motor along the second shaft body.
  • the axis 61 rotates, and drives the third part 51 and the fourth part 52 to rotate together through a key transmission.
  • the end faces of the first part 21 and the second part 22 of the first rotor 20 are adjacent to each other.
  • the end faces of the third part 51 and the fourth part 52 of the second rotor 50 may be fitted or not fitted with a small gap such as 0.1 mm, 0.2 mm, 0.3 mm and the like.
  • the end faces of the first part 21 and the second part 22 of the first rotor 20 may be spaced apart from each other to ensure that the first part 21 and the fourth part 52 do not interfere with each other, and the second part 22 and the third part 51 Do not interfere with each other.
  • an opposite axial force is generated between the third helical blade 511 and the fourth helical blade 521 of the second rotor 50, which can also be understood as An opposite axial flow is generated between the third helical blade 511 and the fourth helical blade 521 .
  • an opposite axial flow is generated between the first helical blade 211 and the second helical blade 221 of the first rotor 20 .
  • the axial force can also be understood as an opposite axial flow between the first helical vane 211 and the second helical vane 221 .
  • the opposite axial force generated between the third helical blade 511 and the fourth helical blade 521 of the second rotor 50 can almost cancel out, and the first helical blade 211 of the first rotor 20
  • the opposite axial force generated between the second helical blade 221 and the second helical blade 221 can almost cancel.
  • the third part 51 and the fourth part 52 of the second rotor 50 are formed separately, and the third part 51 and the fourth part 52 are directly sleeved on the on the second shaft body 60 .
  • the third part 51 and the fourth part 52 can be connected to the second shaft body 60 through a connecting member such as a key, so as to rotate at the same speed with the second shaft body 60 .
  • the third part 51 (or the fourth part 52 ) of the second rotor 50 is integrally formed with the second shaft body 60 to form an integrally formed This structure can reduce the number of parts and facilitate processing and installation and positioning.
  • the fourth part 52 (or the third part 51 ) is sleeved on the second shaft body 60 , and the third part 51 is adjacent to the fourth part 52 .
  • the third part 51 and the fourth part 52 may be connected by a connecting member such as a key, so that the third part 51, the fourth part 52 and the second shaft body 60 rotate together at the same speed.
  • the embodiments of the present disclosure will specifically provide three solutions for realizing the connection between the first rotor 20 and the first shaft body 30 in a sliding and rotating manner.
  • the first solution will be described in detail with reference to FIG. 1 and FIG. 2 . .
  • the at least one sliding link 70 is rotated in a circumferential sliding manner.
  • the number of the sliding connectors 70 is multiple and distributed at equal intervals along the axial direction of the first shaft body 30 .
  • the first rotor 20 when the rotor assembly 100 is a four-rotor structure, the first rotor 20 includes a first part 21 and a second part 22 , the inner surface of the first part 21 and the outer surface of the first shaft body 30 At least one sliding connection piece 70 is arranged therebetween, and at least one sliding connection piece 70 is arranged between the inner surface of the second part 22 and the outer surface of the first shaft body 30 .
  • a plurality of sliding connectors 70 are provided between the inner surface of the first part 21 and the outer surface of the first shaft body 30, they can be distributed at equal intervals along the axial direction of the first shaft body 30; When a plurality of sliding connectors 70 are provided between the inner surface of the second part 22 and the outer surface of the first shaft body 30 , they can be distributed at equal intervals along the axial direction of the first shaft body 30 .
  • the sliding connection member 70 is fastened to the first rotor 20 .
  • the The sliding connection member 70 rotates together with the first rotor 20 , so that sliding friction is generated between the sliding connection member 70 and the first shaft body 30 .
  • the sliding connection member 70 is tightly connected with the first shaft body 30 .
  • the first rotor 20 rotates around the first shaft body 30
  • the first rotor 20 is connected to the first shaft body 30 . Sliding friction is generated between the sliding connectors 70 .
  • the sliding connection member 70 is a bearing bush.
  • the bearing bush may be an integral bearing bush (also called a bushing) or a split bearing bush; the bearing bush may also have an oil groove; an oil hole may also be formed on the bearing bush to facilitate Lubricating oil passes through.
  • the female rotor In the traditional rotor assembly, the female rotor is fixed on the female rotating shaft, and when the female rotor rotates, it drives the female rotating shaft to rotate together. Therefore, both ends of the female rotating shaft need to be provided to support the rotating shaft, reduce the friction force of the rotating shaft during the rotation and balance the radial direction.
  • the first shaft body 30 is equivalent to a journal, and the sliding connection member 70 is provided between the first rotor 20 and the first shaft body 30 (such as a bearing bush), a sliding bearing structure is formed. In this structure, the first shaft body 30 does not need to be rotated, so the two ends of the first shaft body 30 can be directly fixed, and there is no need for the first shaft body.
  • Radial force bearings are provided at both ends of 30, therefore, compared with the traditional rotor assembly, the embodiment of the present disclosure reduces the installation space, makes the compressor structure more compact when used in the compressor, and reduces the wearing parts;
  • the sliding connection piece 70 (such as a bearing bush) is generally relatively wear-resistant, and the sliding connection piece 70 (such as a bearing bush) can be avoided by disposing the sliding connection piece 70 (such as a bearing bush) between the first rotor 20 and the first shaft 30 .
  • the first rotor 20 and the first shaft body 30 are directly rubbed and worn, thereby prolonging the service life.
  • Lubricating oil is provided between a rotor 20 and/or between the sliding connection member 70 and the first shaft body 30 .
  • reduce friction thereby slowing down the sliding connecting member 70.
  • the wear of the first rotor 20 and/or the first shaft body 30 prolongs the service life.
  • the lubricating oil is supplied through an oil supply pipeline to achieve continuous oil supply.
  • the oil supply pipeline includes an oil supply channel 31 and an oil supply hole 32 communicating with the oil supply channel 31 ;
  • the oil supply channel 31 is formed in the first shaft body 30 and extends along the The axial extension of the first shaft body 30 ;
  • the oil supply hole 32 is formed in the first shaft body 30 and extends along the radial direction of the first shaft body 30 , and the oil supply hole 32 and The gap between the first rotor 20 and the first shaft body 30 communicates with each other.
  • the sliding connection member 70 is provided between the first rotor 20 and the first shaft body 30 . Therefore, when the oil supply pipeline is connected to the first rotor 20 and the first shaft body 30 , since the sliding connecting piece 70 is also in the gap between the first rotor 20 and the first shaft body 30, the lubricating oil can permeate and flow to the sliding connecting piece 70 and the first rotor 20 and/or between the sliding connecting piece 70 and the first shaft body 30, so that the surfaces that generate sliding friction are separated by the lubricating oil without direct contact, it is possible to Friction loss and surface wear are reduced, and the lubricating oil also has a certain vibration absorbing ability.
  • the number of the oil supply passages 31 and the oil supply holes 32 can be adjusted according to the actual situation, which is not specifically limited in the present disclosure. It should be noted that when the rotor assembly 100 is a two-rotor structure, the first shaft body 30 is provided with at least one oil supply hole 32 corresponding to the first rotor 20 ; when the rotor assembly 100 In the case of a four-rotor structure, at least one oil supply hole 32 is provided at the first part 21 of the first shaft body 30 corresponding to the first rotor 20 ; the first shaft body 30 corresponds to the first part 21 of the first rotor 20 ; At least one of the oil supply holes 32 is provided at the second portion 22 of the rotor 20 .
  • an oil supply channel 31 and a plurality of (eg, 6) oil supply holes 32 are formed inside the first shaft body 30 , and the oil supply channel 31 is formed along the first shaft body.
  • 30 is arranged in the axial direction and extends between the first end portion 34 and the second end portion 35 , and a plurality (eg, six) of the oil supply holes 32 are along the first shaft body 30 .
  • each of the oil supply holes 32 is communicated with the oil supply passage 31, and the other end is communicated with the gap 40; wherein, the first part 21 corresponding to the first rotor 20 is provided with Half the number (eg, 3) of the oil supply holes 32 corresponds to the second part 22 of the first rotor 20 and there are half the number (eg, 3) of the oil supply holes 32 .
  • radially extending oil outlet holes 24 may be provided on the first rotor 20 , the oil outlet holes 24 penetrate through the wall of the first rotor 20 , and the outlet One end of the oil hole 24 communicates with the gap between the first rotor 20 and the first shaft body 30, and the other end communicates with the outside of the first rotor 20, so that the lubricating oil can pass from the first rotor 20 to the outside of the first rotor 20.
  • the gap between a rotor 20 and the first shaft body 30 is discharged, thereby realizing the circulating oil supply of the lubricating oil, and also lubricating the outer surface of the first rotor 20 .
  • the first shaft body 30 may further form a groove 36 at the outlet of the oil supply hole 32 , and the groove 36 extends along the first axis of the oil supply hole 32 .
  • a shaft body 30 extends axially and communicates with the oil supply hole 32 , and the cross-sectional size of the groove 36 is larger than the size of the outlet of the oil supply hole 32 .
  • the shape of the groove 36 may be a crescent shape, so as to facilitate the outflow of lubricating oil during rotation.
  • the first rotor 20 is made of non-metallic material and/or the first shaft body 30 is made of non-metallic material.
  • the first rotor 20 and/or the first shaft body 30 are made of non-metallic materials, and the first rotor 20 can be placed around the axis 33 of the first shaft body 30 along the first axis 33 of the first shaft body 30 .
  • the shaft body 30 rotates in a circumferential sliding manner, the wear between the first rotor 20 and the first shaft body 30 is reduced, and the service life is prolonged.
  • one of the first rotor 20 and the first shaft body 30 is made of a non-metallic material, and the other is made of a metal material, that is, the first rotor 20 is made of a non-metallic material and The first shaft body 30 is made of metal material, or the first rotor 20 is made of metal material and the first shaft body 30 is made of non-metallic material.
  • the overall strength of the rotor assembly 100 can be ensured, the wear between the first rotor 20 and the first shaft body 30 can be reduced, and the service life can be prolonged.
  • the non-metallic material used for the first rotor 20 means that the first part 21 and the second part 22 of the first rotor 20 are both non-metallic materials; the The metal material used for the first rotor 20 means that both the first part 21 and the second part 22 of the first rotor 20 are made of metal material.
  • the metallic material is such as a cemented carbide material.
  • the non-metallic material is self-lubricating, such as a peek material.
  • self-lubricating non-metallic materials can not only improve lubricity and reduce friction, but also save the use of lubricants. The most important thing is that under the influence of various uncontrollable factors, such as insufficient lubricating oil or oil supply failure, lubricating oil The viscosity increases due to the entry of dust, resulting in insufficient lubrication, increased friction, and direct friction between the first shaft 30 and the first rotor 20 , especially in the first rotor 20 In the high-speed rotation state, once the rotor of metal material and the rotating shaft of metal material touch and rub, the wear will be large, the service life will be shortened, and even failure will occur.
  • the wear between the first rotor 20 and the first shaft body 30 can be reduced, even if the first rotor 20 and the first shaft body 30 are lubricated.
  • the shaft body 30 will not be seriously damaged by friction even when the shaft body 30 touches, which prolongs the service life.
  • the opposite axial force generated between the third part 51 and the fourth part 52 of the second rotor 50 can be almost canceled as mentioned above, the deviation of the second rotor 50 will cause the third part of the second rotor 50 to 51 and the fourth part 52 are different in structure, and the first part 21 and the second part 22 of the first rotor 20 are different in structure.
  • the first rotor 20 and the second rotor are There is a certain difference in the fit between the It is impossible to completely cancel the axial force, so that when the first rotor 20 and the second rotor 50 mesh with each other and rotate together, the axial force is almost completely canceled to form a resultant axial force in random directions.
  • radial force bearings such as cylindrical roller bearings can be respectively provided at both ends of the second shaft body 60 to realize radial restraint, and at least one end of the second shaft body 60 can also be provided with axial direction
  • a thrust bearing also known as a thrust bearing
  • thrust bearings such as an angular contact ball bearing is used to constrain the resultant axial force; and in the case where thrust bearings are not provided at both ends of the first shaft body 30, the rotor assembly 100
  • the first part 21 and the second part 22 will hit the casing of the compressor under the action of the combined axial force, so that the casing and the first rotor 20 are damaged.
  • the assembly 100 When the assembly 100 is used in a compressor, it is actually necessary to arrange thrust bearings at both ends of the first shaft body 30 to prevent the first rotor 20 from being damaged due to contact and friction between the first rotor 20 and the casing of the compressor.
  • the first rotor 20 (or the first part 21 and the second part 22 ) adopts a non-metallic material, the first rotor 20 (or the first part 21 and the second part 22 ) 22)
  • the collision force and frictional force generated when the second part 22) touches and rubs against the casing of the compressor is small, so the casing will not be damaged.
  • To lubricate and reduce friction there is no need to arrange thrust bearings at both ends of the first shaft body 30 , which reduces the number of components and arrangement space, and reduces the volume of the compressor.
  • a gap 40 is defined between the inner surface of the first rotor 20 and the outer surface of the first shaft body 30 , and the gap 40 is filled with lubricating oil, so that lubricating oil is provided in the gap 40 between the inner surface of the first rotor 20 and the outer surface of the first shaft body 30, and then the inner surface of the first rotor 20 and the first An oil film is formed between the outer surfaces of the shaft body 30 .
  • the inner surface of the first rotor 20 and the outer surface of the first shaft body 30 that generate sliding friction can be separated by the lubricating oil without direct contact, thereby reducing friction loss and surface wear, and
  • the lubricating oil also has a certain vibration absorbing ability.
  • the female rotor In the traditional rotor assembly, the female rotor is fixed on the female rotating shaft, and when the female rotor rotates, it drives the female rotating shaft to rotate together. Therefore, both ends of the female rotating shaft need to be provided to support the rotating shaft, reduce the friction force of the rotating shaft during the rotation and balance the radial direction.
  • Force radial force bearing and in this embodiment, the first rotor 20 and/or the first shaft body 30 are made of self-lubricating non-metallic materials, and the first shaft of the first rotor 20 is The lubricating oil is filled between the bodies 30 to form an oil film, forming a structure of a sliding bearing, so that the first rotor 20 can rotate around the first shaft body 30.
  • the sliding connector 70 can be omitted in this embodiment, so that the structure of the rotor assembly 100 is simpler , reducing wearing parts.
  • the lubricating oil is supplied through an oil supply pipeline to achieve continuous oil supply.
  • the oil supply pipeline includes an oil supply channel 31 and an oil supply hole 32 communicating with the oil supply channel 31 ;
  • the oil supply channel 31 is formed in the first shaft body 30 and extends along the The axial extension of the first shaft body 30 ;
  • the oil supply hole 32 is formed in the first shaft body 30 and extends along the radial direction of the first shaft body 30 , and the oil supply hole 32 and The gap 40 between the first rotor 20 and the first shaft body 30 communicates with each other.
  • the oil supply passage 31 and the oil supply hole 32 can deliver the lubricating oil to the gap 40 to continuously supply oil to the gap 40, so that the outer surface of the first shaft body 30 and the A stable oil film is formed between the inner surfaces of the first rotor 20, so that the surfaces that generate sliding friction are separated by the lubricating oil without direct contact, which can reduce friction loss and surface wear, and ensure that the first rotor 20 can
  • the lubricating oil also has a certain vibration absorbing ability, which has been rotating smoothly on the first shaft body 30 .
  • the number of the oil supply passages 31 and the oil supply holes 32 can be adjusted according to the actual situation, which is not specifically limited in the present disclosure. It should be noted that when the rotor assembly 100 is a two-rotor structure, the first shaft body 30 is provided with at least one oil supply hole 32 corresponding to the first rotor 20 ; when the rotor assembly 100 In the case of a four-rotor structure, at least one oil supply hole 32 is provided at the first part 21 of the first shaft body 30 corresponding to the first rotor 20 ; the first shaft body 30 corresponds to the first part 21 of the first rotor 20 ; At least one of the oil supply holes 32 is provided at the second portion 22 of the rotor 20 .
  • an oil supply channel 31 and a plurality of (eg, 6) oil supply holes 32 are formed inside the first shaft body 30 , and the oil supply channel 31 is formed along the first axis.
  • a shaft body 30 is disposed in the axial direction and extends between the first end portion 34 and the second end portion 35, and a plurality (eg, six) of the oil supply holes 32 are along the first shaft.
  • the radial extension of the body 30, one end of each of the oil supply holes 32 is communicated with the oil supply passage 31, and the other end is communicated with the gap 40; wherein, corresponding to the first part 21 of the first rotor 20
  • a half number (eg, 3) of the oil supply holes 32 are provided at the position, and a half number (eg, 3) of the oil supply holes 32 are provided at the second portion 22 corresponding to the first rotor 20 .
  • the first shaft body 30 may further form a groove 36 at the outlet of the oil supply hole 32 , and the groove 36 extends along the first axis of the oil supply hole 32 .
  • a shaft body 30 extends axially and communicates with the oil supply hole 32 , and the cross-sectional size of the groove 36 is larger than the size of the outlet of the oil supply hole 32 .
  • the shape of the groove 36 may be a crescent shape, so as to facilitate the outflow of lubricating oil during rotation.
  • radially extending oil outlet holes 24 may be provided on the first rotor 20 , the oil outlet holes 24 penetrate through the wall of the first rotor 20 , and the oil outlet holes One end of the 24 communicates with the gap 40 between the first rotor 20 and the first shaft body 30, and the other end communicates with the outside of the first rotor 20, so that the lubricating oil can flow from the first The gap between the rotor 20 and the first shaft body 30 is discharged, so as to realize the circulating oil supply of the lubricating oil, and also lubricate the outer surface of the first rotor 20 .
  • the second rotor 50 may be made of a metal material or a non-metal material.
  • the metallic material such as forged steel or cast iron; the non-metallic material may be self-lubricating, such as peek material.
  • At least one of the second rotor 50 and the first rotor 20 is made of self-lubricating non-metallic materials, that is, the second rotor 50 and the first rotor 20 One is a non-metallic material and the other is a metallic material, or both the second rotor 50 and the first rotor 20 are self-lubricating non-metallic materials, so that the second rotor 50 and the first rotor When the rotor 20 is engaged, it is beneficial to increase the smoothness of the transmission and reduce vibration and noise.
  • the second rotor 50 is forged steel or cast iron, the first shaft body 30 is a self-lubricating non-metallic material, and the first rotor 20 is cemented carbide steel; or, the first shaft body 30 is cemented carbide steel, the first rotor 20 is a self-lubricating non-metallic material, and the second rotor 50 is forged steel or cast iron; or, the first shaft body 30 is a self-lubricating non-metallic material, the The first rotor 20 is made of cemented carbide steel, and the second rotor 50 is made of self-lubricating non-metallic material; or, the first shaft 30 is made of cemented carbide steel, and the first rotor 20 is made of self-lubricating non-metallic material , the second rotor 50 is a self-lubricating non-metallic material.
  • a gap 40 is defined between the inner surface of the first rotor 20 and the outer surface of the first shaft body 30, and the gap 40 is filled with lubricating oil, so that the first A lubricating oil is provided in the gap 40 between the inner surface of the rotor 20 and the outer surface of the first shaft body 30 , and then there is a gap between the inner surface of the first rotor 20 and the outer surface of the first shaft body 30 .
  • Form an oil film Form an oil film.
  • the inner surface of the first rotor 20 and the outer surface of the first shaft body 30 that generate sliding friction can be separated by the lubricating oil without direct contact, thereby reducing friction loss and surface wear , and the lubricating oil also has a certain vibration absorption capacity.
  • the lubricating oil is supplied through an oil supply pipeline to achieve continuous oil supply.
  • the oil supply pipeline includes an oil supply channel 31 and an oil supply hole 32 communicating with the oil supply channel 31 ;
  • the oil supply channel 31 is formed in the first shaft body 30 and extends along the The axial extension of the first shaft body 30 ;
  • the oil supply hole 32 is formed in the first shaft body 30 and extends along the radial direction of the first shaft body 30 , and the oil supply hole 32 and The gap 40 between the first rotor 20 and the first shaft body 30 communicates with each other.
  • the oil supply passage 31 and the oil supply hole 32 can deliver the lubricating oil to the gap 40 to continuously supply oil to the gap 40, so that the outer surface of the first shaft body 30 and the A stable oil film is formed between the inner surfaces of the first rotor 20, so that the surfaces that generate sliding friction are separated by the lubricating oil without direct contact, which can reduce friction loss and surface wear, and ensure that the first rotor 20 can
  • the lubricating oil also has a certain vibration absorbing ability, which has been rotating smoothly on the first shaft body 30 .
  • the number of the oil supply passages 31 and the oil supply holes 32 can be adjusted according to the actual situation, which is not specifically limited in the present disclosure. It should be noted that when the rotor assembly 100 is a two-rotor structure, the first shaft body 30 is provided with at least one oil supply hole 32 corresponding to the first rotor 20 ; when the rotor assembly 100 In the case of a four-rotor structure, at least one oil supply hole 32 is provided at the first part 21 of the first shaft body 30 corresponding to the first rotor 20 ; the first shaft body 30 corresponds to the first part 21 of the first rotor 20 ; At least one of the oil supply holes 32 is provided at the second portion 22 of the rotor 20 .
  • an oil supply channel 31 and a plurality of (eg, 6) oil supply holes 32 are formed inside the first shaft body 30 , and the oil supply channel 31 is formed along the first axis.
  • a shaft body 30 is disposed in the axial direction and extends between the first end portion 34 and the second end portion 35, and a plurality (eg, six) of the oil supply holes 32 are along the first shaft.
  • the radial extension of the body 30, one end of each of the oil supply holes 32 is communicated with the oil supply passage 31, and the other end is communicated with the gap 40; wherein, corresponding to the first part 21 of the first rotor 20
  • a half number (eg, 3) of the oil supply holes 32 are provided at the position, and a half number (eg, 3) of the oil supply holes 32 are provided at the second portion 22 corresponding to the first rotor 20 .
  • the first shaft body 30 may further form a groove 36 at the outlet of the oil supply hole 32 , and the groove 36 extends along the first axis of the oil supply hole 32 .
  • a shaft body 30 extends axially and communicates with the oil supply hole 32 , and the cross-sectional size of the groove 36 is larger than the size of the outlet of the oil supply hole 32 .
  • the shape of the groove 36 may be a crescent shape, so as to facilitate the outflow of lubricating oil during rotation.
  • radially extending oil outlet holes 24 may be provided on the first rotor 20 , the oil outlet holes 24 penetrate through the wall of the first rotor 20 , and the oil outlet holes One end of the 24 communicates with the gap 40 between the first rotor 20 and the first shaft body 30, and the other end communicates with the outside of the first rotor 20, so that the lubricating oil can flow from the first The gap between the rotor 20 and the first shaft body 30 is discharged, so as to realize the circulating oil supply of the lubricating oil, and also lubricate the outer surface of the first rotor 20 .
  • the first solution, the second solution and the third solution can be combined arbitrarily.
  • At least one oil storage groove 23 is further provided on the inner wall of the first rotor 20 . It should be noted that when the rotor assembly 100 is a four-rotor structure, at least one oil storage groove 23 is provided on the inner wall of the first part 21 of the first rotor 20 ; the inner wall of the second part 22 of the first rotor 20 At least one oil storage tank 23 is provided.
  • the oil storage tank 23 is formed by a depression on the inner wall of the first rotor 20 and stores lubricating oil in advance.
  • the shape of the oil storage groove 23 may be, for example, an annular groove extending along the circumferential direction of the first shaft body 30 . It should be noted that, the shape of the oil storage tank 23 can be adjusted according to requirements, and the listed shapes are only illustrative, and are not intended to limit the present disclosure.
  • the inner wall of the first part 21 is provided with three oil storage tanks 23
  • the inner wall of the second part 22 is provided with three oil storage tanks 23
  • the shape of the oil storage tanks 23 is along the The annular groove extending in the circumferential direction of the first shaft body 30 is described.
  • the rotor assembly 100 in one or more of the above embodiments may be used in compressors and air conditioners.
  • Embodiments of the present disclosure also provide a compressor including a rotor assembly 100 as defined in combination with one or more of the above embodiments.
  • Embodiments of the present disclosure further provide an air conditioner, which includes the above-mentioned compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种转子组件(100),包括:第一转子(20);第一轴体(30),安装有第一转子(20);其中第一转子(20)与第一轴体(30)以滑动旋转的方式连接,以使第一转子(20)围绕第一轴体(30)的轴线(33)以沿着第一轴体(30)周向滑动的方式旋转。

Description

转子组件、压缩机及空调
相关申请的交叉引用
本公开是以CN申请号为202110219958.X,申请日为2021年2月26日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及压缩机技术领域,尤其涉及一种转子组件、压缩机及空调。
背景技术
压缩机一般布置有一对平行的螺旋转子,该对螺旋转子置于螺杆压缩机的壳体的空间容积内。该对螺旋转子在旋转过程中,该空间容积会周期性的增加和减小,使得该空间容积与进气口和排气口周期性的连通和关闭,可以完成吸气、压缩和排气的过程。
传统螺旋阴转子一般通过连接件连接至转轴,在阳转子驱动阴转子转动时,阴转轴带动所述阴转轴一同转动,为了使阴转轴能够转动,需要在转轴的两端设置轴承,以起到支撑转轴、减小转轴在转动过程中的摩擦力以及平衡转动过程中转子所受到的轴向力和径向力等作用,如使用滚动轴承以平衡径向力,使用球轴承以平衡轴向力,但是轴承的使用会使增加布置空间,进而使得转子组件安装时所需体积较大。
发明内容
本公开旨在提供一种转子组件、压缩机及空调,可以减小转子组件的安装空间,使转子组件的结构更加紧凑。
本申请实施例提供一种转子组件,其包括:
第一转子;
第一轴体,安装有所述第一转子;
其中,所述第一转子与所述第一轴体以滑动旋转的方式连接,以使所述第一转子围绕所述第一轴体的周向以沿着所述第一轴体的周向滑动的方式旋转。
本公开一种可选实施方式中,所述第一转子的内表面与所述第一轴体的外表面之间设有使所述第一转子围绕所述第一轴体的周向沿着所述第一轴体的周向滑动的方式旋转的 至少一个滑动连接件。
本公开一种可选实施方式中,所述滑动连接件为轴瓦。
本公开一种可选实施方式中,所述滑动连接件与所述第一转子之间和/或所述滑动连接件与所述第一轴体之间设有润滑油。
本公开一种可选实施方式中,所述第一转子采用非金属材料和/或所述第一轴体采用非金属材料。
本公开一种可选实施方式中,所述第一转子和所述第一轴体中的一者采用非金属材料,另一者采用金属材料。
本公开一种可选实施方式中,所述非金属材料具有自润滑性。
本公开一种可选实施方式中,所述第一转子的内表面与所述第一轴体外表面之间的间隙内设有润滑油。
本公开一种可选实施方式中,所述第一转子的内表面与所述第一轴体外表面之间的间隙内设有润滑油。
本公开一种可选实施方式中,所述转子组件还包括:
第二转子,与所述第一转子啮合;及
第二轴体,安装有所述第二转子;
其中,所述第二转子能够与所述第二轴体一起沿所述第二轴体的轴线旋转。
本公开一种可选实施方式中,所述第二转子与所述第一转子中至少一者采用自润滑非金属材料。
本公开一种可选实施方式中,所述第一转子包括同轴设置于所述第一轴体上的第一部分和第二部分,所述第一部分与所述第二部分的螺纹旋向相反;及所述第二转子包括同轴设置于所述第二轴体上的第三部分和第四部分,所述第三部分与所述第一部分啮合,所述第四部分与所述第二部分啮合。
本公开一种可选实施方式中,所述第一部分的内表面与所述第一轴体的外表面之间设有至少一个滑动连接件,所述第二部分的内表面与所述第一轴体的外表面之间设有至少一个滑动连接件。
本公开一种可选实施方式中,所述第二转子的第三部分或第四部分与所述第二轴体一体成型。
本公开实施例还提供了一种压缩机,其包括如上任一项所述的转子组件。
本公开实施例还提供了一种空调,其包括所述压缩机。
本公开实施例采用第一转子与第一轴体以滑动旋转的方式连接,以使第一转子围绕第一轴体的轴线以沿着第一轴体的周向滑动的方式旋转,这样可以使得第一轴体无需旋转,进而无需在第一轴体的两端设置径向力轴承,这样可以减小转子组件的安装空间,使得结构更加紧凑。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更完整地理解本申请及其有益效果,下面将结合附图来进行以下说明,其中在下面的描述中相同的附图标号表示相同部分。
图1是本公开实施例提供的一实施例的转子组件的剖面示意图;
图2是图1中第一转子和第一轴体的放大图;
图3是本公开实施例提供的另一实施例的转子组件的剖面示意图;
图4是图3中第一转子和第一轴体的放大图。
附图标记说明:
100、转子组件;
20、第一转子;21、第一部分;211、第一螺旋叶;22、第二部分;221、第二螺旋叶;23、储油槽;24、出油孔;
30、第一轴体;31、供油通道;32、供油孔;33、第一轴体的轴线;34、第一端部;35、第二端部;36、凹槽;
40、间隙;
50、第二转子;51、第三部分;511、第三螺旋叶;52、第四部分;521、第四螺旋叶;
60、第二轴体;61、第二轴体的轴线;62、第三端部;63、第四端部;
70、滑动连接件。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制基于本公开中的实施例,本领域技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本公开的保护范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本公开的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本公开实施例提供一种转子组件100。所述转子组件100可以用于压缩机和空调等装置。请参阅图1至图4。所述转子组件100包括第一转子20和第一轴体30。
所述第一轴体30用于在其上安装所述第一转子20。所述第一转子20与所述第一轴体30以滑动旋转的方式连接,以使所述第一转子20围绕所述第一轴体30以沿着所述第一轴体30的周向滑动的方式旋转。所述第一轴体30可以为固定轴,即所述第一轴体30两端固定且不旋转。
本公开实施例中所述第一转子20与所述第一轴体30以滑动旋转的方式连接,在所述第一转子20与所述第一轴体30之间形成滑动摩擦,在所述第一转子20的旋转时,所述第一轴体30的两端可以直接固定而不需要转动,因此,所述第一轴体30的两端不需要设置径向力轴承,进而使得转子组件100的安装空间减小,结构更加紧凑。
所述第一转子20为阴转子,作为阴转子的所述第一转子20可以理解为从动转子。所述第一转子20外表面具有螺旋叶。所述第一转子20设有与所述第一轴体30配合的轴孔,所述第一转子20通过所述轴孔套设在所述第一轴体30上。
请继续参阅图1至图4,所述转子组件100还包括第二转子50和第二轴体60。
所述第二轴体60用于在其上安装所述第二转子50。
所述第二转子50为阳转子,作为阳转子的所述第二转子50可以理解为主动转子。所述第二转子50的外表面具有螺旋叶。所述第二转子50设有与所述第二轴体60配合的轴孔,所述第二转子50通过所述轴孔套设在所述第二轴体60上。所述第二转子50能够与所述第二轴体60一起沿所述第二轴体的轴线61旋转。示例性的,所述第二转子50可以与驱动组件诸如电机(包括但不限于永磁电机)传动连接,并由所述驱动组件驱动旋转,所述第二转子50旋转的同时通过啮合驱动所述第一转子20一起旋转。
在本公开一种可选实施例中,所述第二轴体60与所述第一轴体30平行,所述第二轴体的轴线61与所述第一轴体的轴线33平行。
本实施例中,所述转子组件100可以为两转子结构,也可以为四转子结构。当所述转子组件100为四转子结构时,所述第一转子20包括同轴设置于所述第一轴体30上的第一部分21和第二部分22,所述第一部分21与所述第二部分22的螺纹旋向相反;及所述第二转子50包括同轴设置于所述第二轴体60上的第三部分51和第四部分52,所述第三部分51与所述第一部分21啮合,所述第四部分52与所述第二部分22啮合。
示例性地,请参阅图1至图4,所述第一转子20包括所述第一部分21和所述第二部分22,所述第一部分21为空心圆柱构件,且其外表面具有第一螺旋叶211;所述第二部分22为空心圆柱构件,且其外表面具有第二螺旋叶221;所述第一螺旋叶211与所述第二螺旋叶221的螺纹旋向相反,即所述第一部分21和所述第二部分22的旋向相反;其中,所述第一螺旋叶211的个数至少为两片,所述第二螺旋叶221的个数至少为两片。所述第一轴体30上安装有所述第一转子20的第一部分21和第二部分22;所述第一轴体30具有第一端部34和第二端部35,所述第一转子20的第一部分21和第二部分22被限制在所述第一端部34和所述第二端部35之间;所述第一部分21和所述第二部分22能够在所述第一轴体30上沿所述第一轴体的轴线33围绕所述第一轴体30旋转。
示例性地,请参阅图1至图4,所述第二转子50包括所述第三部分51和所述第四部分52,所述第三部分51为空心圆柱构件,且其外表面具有第三螺旋叶511;所述第四部分52为空心圆柱构件,且其外表面具有第四螺旋叶521;所述第三螺旋叶511与所述第四螺旋叶521的螺纹旋向相反,即所述第三部分51与所述第四部分52的旋向相反,所述第三部分51的第三螺旋叶511与所述第一部分21的第一螺旋叶211啮合,所述第四部分52的第四螺旋叶521与所述第二部分22的第二螺旋叶221啮合,以使所述第二转子50和所述第一转子20相互啮合;其 中所述第三螺旋叶511的个数至少为两片;所述第四螺旋叶521的个数至少为两片。所述第二轴体60上安装有所述第二转子50的第三部分51和第四部分52;所述第二轴体60具有第三端部62和第四端部63,所述第二转子50的第三部分51和第四部分52被限制在所述第三端部62和所述第四端部63之间;所述第二转子50的第三部分51和所述第四部分52由所述第二轴体60与所述驱动组件传动连接;所述驱动组件可以驱动所述第二轴体60转动,所述第二轴体60可以与其上安装的所述第二转子50的第三部分51和第四部分52一起沿所述第二轴体的轴线61旋转。示例性的,所述第二转子50的第三部分51和所述第四部分52通过键连接所述第二轴体60,所述第二轴体60由电机驱动沿所述第二轴体的轴线61旋转,并通过键传动带动所述第三部分51和所述第四部分52一起旋转。
所述第一转子20的第一部分21和第二部分22的端面相邻。所述第二转子50的第三部分51和第四部分52的端面可以贴合,也可以不贴合而具有较小的间隙诸如0.1毫米、0.2毫米、0.3毫米等。本公开实施例中所述第一转子20的第一部分21和第二部分22的端面可以为相互间隔以确保第一部分21和第四部分52互不干涉,以及第二部分22和第三部分51互不干涉。
在所述第二转子50和所述第一转子20相互啮合旋转时,所述第二转子50的第三螺旋叶511和第四螺旋叶521之间产生相反的轴向力,也可以理解为所述第三螺旋叶511和所述第四螺旋叶521之间产生相反的轴向流,同样地,所述第一转子20的第一螺旋叶211和第二螺旋叶221之间产生相反的轴向力,也可以理解为所述第一螺旋叶211和所述第二螺旋叶221之间产生相反的轴向流。由于轴向力的对称性,所述第二转子50的第三螺旋叶511和第四螺旋叶521之间产生相反的轴向力几乎可以抵消,所述第一转子20的第一螺旋叶211和第二螺旋叶221之间产生相反的轴向力几乎可以抵消。
在本公开一可选实施例中,所述第二转子50的第三部分51和第四部分52是分别成型的,所述第三部分51和所述第四部分52直接套设于所述第二轴体60上。所述第三部分51和所述第四部分52可以通过连接件诸如键连接在所述第二轴体60上,以与所述第二轴体60一起同速旋转。在本公开其他实施例中,请继续参阅图1和图3,所述第二转子50的第三部分51(或第四部分52)与所述第二轴体60一体成型以形成一体成型的构件,此种结构可以减少部件数量,便于加工和安装定位。所述第四部分52(或第三部分51)套设在于所述第二轴体60上,且所述第三部分51与所述第四部分52相邻。所述第三部分51和所述第四部分52可以通过连接件诸如键连接,以使所述第三部分51、所述第四部分52和所述第二轴体60一 起同速旋转。
以下,本公开实施例将具体提供三种实现所述第一转子20与所述第一轴体30以滑动旋转的方式连接的方案,首先结合图1和图2对第一种方案进行详细说明。
所述第一转子20的内表面与所述第一轴体30的外表面之间设有使所述第一转子20围绕所述第一轴体30的轴线33以沿着第一轴体30的周向滑动的方式旋转的至少一个滑动连接件70。在一可选实施例中,所述滑动连接件70的数量为多个且沿所述第一轴体30轴向等间距分布。
请参阅图2,当所述转子组件100为四转子结构时,第一转子20包括第一部分21和第二部分22,所述第一部分21的内表面与所述第一轴体30的外表面之间设有至少一个滑动连接件70,所述第二部分22的内表面与所述第一轴体30的外表面之间设有至少一个滑动连接件70。当所述第一部分21的内表面与所述第一轴体30的外表面之间设有多个滑动连接件70时,可以沿所述第一轴体30轴向等间距分布;当所述第二部分22的内表面与所述第一轴体30的外表面之间设有多个滑动连接件70时,可以沿所述第一轴体30轴向等间距分布。
在本公开一实施例中,请参阅图2,所述滑动连接件70与所述第一转子20紧固连接,在所述第一转子20围绕所述第一轴体30旋转时,所述滑动连接件70与所述第一转子20一起旋转,使得所述滑动连接件70与所述第一轴体30之间产生滑动摩擦。在另一实施例中,所述滑动连接件70与所述第一轴体30紧固连接,在所述第一转子20围绕所述第一轴体30旋转时,所述第一转子20与所述滑动连接件70之间产滑动摩擦。
在本公开一实施例中,所述滑动连接件70为轴瓦。示例性的,所述轴瓦可以为整体式轴瓦(也称为轴套),也可以为剖分式轴瓦;所述轴瓦还可以具有油沟;所述轴瓦上还可以形成有油孔,以方便润滑油通过。
传统的转子组件中阴转子固定在阴转轴上,在阴转子转动时一起带动阴转轴转动,因此阴转轴两端需要设置用于支撑转轴、减小转轴在转动过程中的摩擦力并平衡径向力的径向力轴承,而本公开实施例中所述第一轴体30相当于轴颈,并在所述第一转子20与所述第一轴体30之间设置所述滑动连接件70(如轴瓦),形成了滑动轴承结构,该结构中所述第一轴体30不需要旋转,因此所述第一轴体30的两端可以直接固定,进而不需要在所述第一轴体30的两端设置径向力轴承,因此,本公开实施例与传统的转子组件相比,减小了安装空间,用于压缩机时可以使压缩机结构更加紧凑,并且减少了易损部件;此外,所述滑动 连接件70(如轴瓦)通常较为耐磨,通过在所述第一转子20与所述第一轴体30之间设置所述滑动连接件70(如轴瓦)可以避免所述第一转子20与所述第一轴体30直接摩擦而磨损,延长使用寿命。
为了减小所述滑动连接件70与所述第一转子20和/或所述滑动连接件70与所述第一轴体30之间的滑动摩擦,在所述滑动连接件70与所述第一转子20之间和/或所述滑动连接件70与所述第一轴体30之间设有润滑油。以对所述滑动连接件70与所述第一转子20之间和/或所述滑动连接件70与所述第一轴体30之间进行润滑,减小摩擦,进而减缓所述滑动连接件70、所述第一转子20和/或所述第一轴体30的磨损,延长使用寿命。
在本公开一实施例中,所述润滑油通过供油管路供给,以实现持续供油。
请参阅图2,所述供油管路包括供油通道31和与所述供油通道31连通的供油孔32;所述供油通道31形成在所述第一轴体30内,且沿所述第一轴体30的轴向延伸;所述供油孔32形成在所述第一轴体30内,且沿所述第一轴体30的径向延伸,所述供油孔32与所述第一转子20与所述第一轴体30之间的间隙相连通。
本实施例将所述滑动连接件70设在所述第一转子20与所述第一轴体30之间,因此,当供油管路向所述第一转子20与所述第一轴体30之间的间隙供油时,由于所述滑动连接件70也处于所述第一转子20与所述第一轴体30之间的间隙内,所述润滑油可以渗透流动到所述滑动连接件70与所述第一转子20之间和/或所述滑动连接件70与所述第一轴体30之间,进而使得产生滑动摩擦的表面被所述润滑油分开而不发生直接接触,可以减小摩擦损失和表面磨损,并且所述润滑油还具有一定的吸振能力。
所述供油通道31和所述供油孔32的数量可以根据实际情况进行调整,本公开不作具体限定。需要说明的是,当所述转子组件100为两转子结构时,所述第一轴体30对应于所述第一转子20处设有至少一个所述供油孔32;当所述转子组件100为四转子结构时,所述第一轴体30对应于所述第一转子20的第一部分21处设有至少一个所述供油孔32;所述第一轴体30对应于所述第一转子20的第二部分22处设有至少一个所述供油孔32。
示例性的,请参阅图2,所述第一轴体30内部形成有一个供油通道31和多个(如6个)供油孔32,所述供油通道31沿所述第一轴体30的轴向设置,并在所述第一端部34和所述第二端部35之间延伸,多个(如6个)所述供油孔32沿着所述第一轴体30的径向延伸,每个所述供油孔32的一端与所述供油通道31连通,另一端与所述间隙40相连通;其中,对应于 所述第一转子20的第一部分21处设有一半数量(如3个)的所述供油孔32,对应于所述第一转子20的第二部分22处设有一半数量(如3个)的所述供油孔32。
请参阅图2,本实施例中,在所述第一转子20上还可以设置径向延伸的出油孔24,所述出油孔24贯穿所述第一转子20的壁体,所述出油孔24的一端与所述第一转子20和所述第一轴体30之间的间隙相连通,另一端与所述第一转子20的外部相通,使得所述润滑油可以从所述第一转子20和所述第一轴体30之间的间隙排出,进而实现所述润滑油循环供油,并且还可以对所述第一转子20的外表面进行润滑。
请参阅图2,为了利于所述供油孔32出油,所述第一轴体30在所述供油孔32的出口处还可以形成凹槽36,所述凹槽36沿着所述第一轴体30的轴向延伸,并与所述供油孔32相通,所述凹槽36的截面尺寸大于所述供油孔32的出口的尺寸。所述凹槽36的形状可以为月牙形,以在转动过程中更利于润滑油的流出。
在第一种方案的上述多个实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以下将结合图3和图4对第二种方案进行详细说明。
请参阅图3和图4,所述第一转子20采用非金属材料和/或所述第一轴体30采用非金属材料。本实施例中,所述第一转子20和/或所述第一轴体30采用非金属材料,可以在所述第一转子20绕所述第一轴体30的轴线33以沿着第一轴体30周向滑动的方式旋转时减小所述第一转子20和所述第一轴体30之间的磨损,延长使用寿命。
在一可选实施例中,所述第一转子20和所述第一轴体30中的一者采用非金属材料,另一者采用金属材料,即所述第一转子20采用非金属材料且所述第一轴体30采用金属材料,或者所述第一转子20采用金属材料且所述第一轴体30采用非金属材料。这样既能够保证所述转子组件100的整体强度,又能够减小所述第一转子20和所述第一轴体30之间的磨损,延长使用寿命。
需要说明的是,所述转子组件100为四转子时,所述第一转子20采用非金属材料是指所述第一转子20的第一部分21和第二部分22均为非金属材料;所述第一转子20采用金属材料是指所述第一转子20的第一部分21和第二部分22均为金属材料。所述金属材料诸如硬质合金材料。
在一些实施例中,所述非金属材料具有自润滑性,诸如peek材料。采用自润滑非金属 材料不仅可以提高润滑性进而减小摩擦力,还可以节省润滑剂的使用,最重要的是在各种不可控因素的影响下,如润滑油不足或供油故障、润滑油进入灰尘而粘度增大,导致所述第一轴体30与所述第一转子20之间出现诸如润滑不充分、摩擦力变大、直接碰触摩擦等情况,尤其在所述第一转子20处于高速转动状态下一旦金属材料的转子和金属材料的转轴发生碰触摩擦则会磨损较大,缩短使用寿命,甚至引起故障的发生,而本实施例在采用自润滑非金属材料的所述第一转子20或所述第一轴体30的润滑作用下,则能够减小所述第一转子20和所述第一轴体30之间磨损,即便所述第一转子20和所述第一轴体30发生碰触而摩擦也不会严重受损,延长了使用寿命。
此外,虽然如前所述第二转子50的第三部分51和第四部分52之间产生相反的轴向力几乎可以抵消,但是由于造存在偏差会导致所述第二转子50的第三部分51和第四部分52的构造存在差异,以及第一转子20的第一部分21和第二部分22的构造存在差异,另一面由于组装存在公差、偏差的问题,导致第一转子20和第二转子50之间配合存在一定的差异,进而导致所述第一部分21和所述第二部分22之间的轴向力不可能完全抵消,所述第三部分51和所述第四部分52之间的轴向力不可能完全抵消,无法使得所述第一转子20和所述第二转子50相互啮合一起旋转时达到轴向力的几乎完全抵消而形成随机方向的轴向力合力。
在上述情况下,所述第二轴体60的两端可以分别设置径向力轴承诸如圆柱滚子轴承来实现径向约束,另外还可以至少在所述第二轴体60的一端设置轴向力轴承(又称为止推轴承)诸如角接触球轴承来对轴向力合力进行约束;而在所述第一轴体30的两端未设置止推轴承的情况下,将所述转子组件100用于压缩机时,所述第一部分21和所述第二部分22会在轴向力合力的作用下撞击压缩机的壳体,使得壳体和所述第一转子20损坏,因此,当转子组件100用于压缩机时,实际上需要在第一轴体30的两端布置止推轴承来防止第一转子20与压缩机的壳体之间碰触和摩擦而损毁。而本实施例中由于所述第一转子20(或所述第一部分21和所述第二部分22)采用非金属材料,在所述第一转子20(或所述第一部分21和所述第二部分22)与压缩机的壳体发生碰触摩擦时所产生的碰撞力和摩擦力较小,因此不会使壳体损毁,尤其是采用自润滑非金属材料,在摩擦和碰撞时可以进一步润滑和减小摩擦,进而无需在所述第一轴体30的两端再布置止推轴承,减少了部件数量和布置空间,缩小所述压缩机的体积。
在本公开一实施方式中,请参阅图4所示,在所述第一转子20的内表面和所述第一轴 体30的外表面之间定义有一间隙40,所述间隙40内填充有润滑油,以使所述第一转子20的内表面与所述第一轴体30外表面之间的间隙40内设有润滑油,进而所述第一转子20的内表面和所述第一轴体30的外表面之间形成油膜。通过润滑油可以使得产生滑动摩擦的所述第一转子20的内表面与所述第一轴体30外表面被所述润滑油分开而不发生直接接触,进而减小摩擦损失和表面磨损,并且所述润滑油还具有一定的吸振能力。
传统的转子组件中阴转子固定在阴转轴上,在阴转子转动时一起带动阴转轴转动,因此阴转轴两端需要设置用于支撑转轴、减小转轴在转动过程中的摩擦力并平衡径向力的径向力轴承,而本实施例中通过使所述第一转子20和/或所述第一轴体30采用自润滑非金属材料,并在所述第一转子20所述第一轴体30之间填充润滑油形成油膜,形成了滑动轴承的结构,使得所述第一转子20能够围绕所述第一轴体30旋转,由于所述第一轴体30不需要旋转,进而无需在所述第一轴体30的两端设置径向力轴承,此外,相比于第一种方案,本实施例还可以省去所述滑动连接件70,使得所述转子组件100的结构更加简单,减少了易损件。
在本公开一实施例中,所述润滑油通过供油管路供给,以实现持续供油。
请参阅图4,所述供油管路包括供油通道31和与所述供油通道31连通的供油孔32;所述供油通道31形成在所述第一轴体30内,且沿所述第一轴体30的轴向延伸;所述供油孔32形成在所述第一轴体30内,且沿所述第一轴体30的径向延伸,所述供油孔32与所述第一转子20与所述第一轴体30之间的间隙40相连通。
所述供油通道31和所述供油孔32可以将所述润滑油输送到所述间隙40,以为所述间隙40持续供油,使得在所述第一轴体30的外表面和所述第一转子20的内表面之间形成稳定的油膜,进而使得产生滑动摩擦的表面被所述润滑油分开而不发生直接接触,可以减小摩擦损失和表面磨损,保证所述第一转子20能够一直在所述第一轴体30上顺滑转动,所述润滑油还具有一定的吸振能力。
所述供油通道31和所述供油孔32的数量可以根据实际情况进行调整,本公开不作具体限定。需要说明的是,当所述转子组件100为两转子结构时,所述第一轴体30对应于所述第一转子20处设有至少一个所述供油孔32;当所述转子组件100为四转子结构时,所述第一轴体30对应于所述第一转子20的第一部分21处设有至少一个所述供油孔32;所述第一轴体30对应于所述第一转子20的第二部分22处设有至少一个所述供油孔32。
示例性的,请参阅图3和图4,所述第一轴体30内部形成有一个供油通道31和多个(如 6个)供油孔32,所述供油通道31沿所述第一轴体30的轴向设置,并在所述第一端部34和所述第二端部35之间延伸,多个(如6个)所述供油孔32沿着所述第一轴体30的径向延伸,每个所述供油孔32的一端与所述供油通道31连通,另一端与所述间隙40相连通;其中,对应于所述第一转子20的第一部分21处设有一半数量(如3个)的所述供油孔32,对应于所述第一转子20的第二部分22处设有一半数量(如3个)的所述供油孔32。
请参阅图4,为了利于所述供油孔32出油,所述第一轴体30在所述供油孔32的出口处还可以形成凹槽36,所述凹槽36沿着所述第一轴体30的轴向延伸,并与所述供油孔32相通,所述凹槽36的截面尺寸大于所述供油孔32的出口的尺寸。所述凹槽36的形状可以为月牙形,以在转动过程中更利于润滑油的流出。
请参阅图4,本实施例在所述第一转子20上还可以设置径向延伸的出油孔24,所述出油孔24贯穿所述第一转子20的壁体,所述出油孔24的一端与所述第一转子20和所述第一轴体30之间的间隙40相连通,另一端与所述第一转子20的外部相通,使所述润滑油可以从所述第一转子20和所述第一轴体30之间的间隙排出,以实现所述润滑油循环供油,并且还可以对所述第一转子20的外表面进行润滑。
本公开实施方式中,所述第二转子50可以采用金属材料或非金属材料。所述金属材料诸如锻钢或铸铁;所述非金属材料可以具有自润滑性,诸如peek材料。
本公开一种可选实施方式中,所述第二转子50与所述第一转子20中至少一者采用自润滑非金属材料,即:所述第二转子50与所述第一转子20中一者为非金属材料且另一者为金属材料,或者所述第二转子50与所述第一转子20均为自润滑非金属材料,这样能够使得所述第二转子50与所述第一转子20啮合时有利于增加传动的平顺性,降低振动和噪音。
示例性的,所述第二转子50为锻钢或铸铁,所述第一轴体30为自润滑非金属材料,所述第一转子20为硬质合金钢;或者,所述第一轴体30为硬质合金钢,所述第一转子20为自润滑非金属材料,所述第二转子50为锻钢或铸铁;或者,所述第一轴体30为自润滑非金属材料,所述第一转子20为硬质合金钢,所述第二转子50为自润滑非金属材料;或者,所述第一轴体30为硬质合金钢,所述第一转子20为自润滑非金属材料,所述第二转子50为自润滑非金属材料。
在上述第二种方案的多个实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以下将结合图3和图4对第三种方案进行详细说明。
请参阅图4所示,在所述第一转子20的内表面和所述第一轴体30的外表面之间定义有一间隙40,所述间隙40内填充有润滑油,以使所述第一转子20的内表面与所述第一轴体30外表面之间的间隙40内设有润滑油,进而所述第一转子20的内表面和所述第一轴体30的外表面之间形成油膜。通过润滑油或油膜可以使得产生滑动摩擦的所述第一转子20的内表面与所述第一轴体30外表面被所述润滑油分开而不发生直接接触,进而减小摩擦损失和表面磨损,并且所述润滑油还具有一定的吸振能力。
在本公开一实施例中,所述润滑油通过供油管路供给,以实现持续供油。
请参阅图4,所述供油管路包括供油通道31和与所述供油通道31连通的供油孔32;所述供油通道31形成在所述第一轴体30内,且沿所述第一轴体30的轴向延伸;所述供油孔32形成在所述第一轴体30内,且沿所述第一轴体30的径向延伸,所述供油孔32与所述第一转子20与所述第一轴体30之间的间隙40相连通。
所述供油通道31和所述供油孔32可以将所述润滑油输送到所述间隙40,以为所述间隙40持续供油,使得在所述第一轴体30的外表面和所述第一转子20的内表面之间形成稳定的油膜,进而使得产生滑动摩擦的表面被所述润滑油分开而不发生直接接触,可以减小摩擦损失和表面磨损,保证所述第一转子20能够一直在所述第一轴体30上顺滑转动,所述润滑油还具有一定的吸振能力。
所述供油通道31和所述供油孔32的数量可以根据实际情况进行调整,本公开不作具体限定。需要说明的是,当所述转子组件100为两转子结构时,所述第一轴体30对应于所述第一转子20处设有至少一个所述供油孔32;当所述转子组件100为四转子结构时,所述第一轴体30对应于所述第一转子20的第一部分21处设有至少一个所述供油孔32;所述第一轴体30对应于所述第一转子20的第二部分22处设有至少一个所述供油孔32。
示例性的,请参阅图3和图4,所述第一轴体30内部形成有一个供油通道31和多个(如6个)供油孔32,所述供油通道31沿所述第一轴体30的轴向设置,并在所述第一端部34和所述第二端部35之间延伸,多个(如6个)所述供油孔32沿着所述第一轴体30的径向延伸,每个所述供油孔32的一端与所述供油通道31连通,另一端与所述间隙40相连通;其中,对应于所述第一转子20的第一部分21处设有一半数量(如3个)的所述供油孔32,对应于所述第一转子20的第二部分22处设有一半数量(如3个)的所述供油孔32。
请参阅图4,为了利于所述供油孔32出油,所述第一轴体30在所述供油孔32的出口处还可以形成凹槽36,所述凹槽36沿着所述第一轴体30的轴向延伸,并与所述供油孔32相通,所述凹槽36的截面尺寸大于所述供油孔32的出口的尺寸。所述凹槽36的形状可以为月牙形,以在转动过程中更利于润滑油的流出。
请参阅图4,本实施例在所述第一转子20上还可以设置径向延伸的出油孔24,所述出油孔24贯穿所述第一转子20的壁体,所述出油孔24的一端与所述第一转子20和所述第一轴体30之间的间隙40相连通,另一端与所述第一转子20的外部相通,使所述润滑油可以从所述第一转子20和所述第一轴体30之间的间隙排出,以实现所述润滑油循环供油,并且还可以对所述第一转子20的外表面进行润滑。
以上第一种方案、第二种方案和第三种方案之间可以任意组合。
在以上第一种方案、第二种方案和第三种方案中,还可能存在开机油压不足导致润滑油没有及时输送至需要润滑之处而无油旋转的现象,这样转动几分钟就会产生不可逆的损坏。为了解决该问题,所述第一转子20的内壁还设有至少一个储油槽23。需要说明的是,当所述转子组件100为四转子结构时,所述第一转子20的第一部分21的内壁设有至少一个储油槽23;所述第一转子20的第二部分22的内壁设有至少一个储油槽23。所述储油槽23由所述第一转子20的内壁凹陷形成,并且内部预先存储润滑油。所述储油槽23的形状可以为诸如沿着所述第一轴体30周向方向延伸的环形槽。需要说明的是,所述储油槽23的形状可以根据需求来进行调整,所列举的形状仅作示例性说明,并非用以限制本公开。
请参阅图2和图4,所述第一部分21的内壁设有3个储油槽23,所述第二部分22的内壁设有3个储油槽23,所述储油槽23的形状为沿着所述第一轴体30周向方向延伸的环形槽。
以上一种或多种实施例中的转子组件100可以应用于压缩机和空调中。
本公开实施例还提供一种压缩机,该压缩机包括如上一种或多种实施例相结合所界定的转子组件100。
本公开实施例还提供一种空调,该空调包括上述压缩机。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种转子组件(100),包括:
    第一转子(20);
    第一轴体(30),其上安装有所述第一转子(20);
    其中所述第一转子(20)与所述第一轴体(30)以滑动旋转的方式连接,以使所述第一转子(20)围绕所述第一轴体(30)的轴线(33)以沿着所述第一轴体(30)周向滑动的方式旋转。
  2. 根据权利要求1所述的转子组件(100),其中所述第一转子(20)的内表面与所述第一轴体(30)的外表面之间设有使所述第一转子(20)围绕所述第一轴体(30)的轴线(33)以沿着所述第一轴体(30)周向滑动的方式旋转的至少一个滑动连接件(70)。
  3. 根据权利要求2所述的转子组件(100),其中所述滑动连接件(70)为轴瓦。
  4. 根据权利要求2或3所述的转子组件(100),其中所述滑动连接件(70)与所述第一转子(20)之间和/或所述滑动连接件(70)与所述第一轴体(30)之间有润滑油。
  5. 根据权利要求1至4任一项所述的转子组件(100),其中所述第一转子(20)采用非金属材料和/或所述第一轴体(30)采用非金属材料。
  6. 根据权利要求5所述的转子组件(100),其中所述第一转子(20)和所述第一轴体(30)中的一者采用非金属材料,另一者采用金属材料。
  7. 根据权利要求5或6所述的转子组件(100),其中所述非金属材料具有自润滑性。
  8. 根据权利要求1至7任一项所述的转子组件(100),其中所述第一转子(20)的内表面与所述第一轴体(30)外表面之间的间隙内有润滑油。
  9. 根据权利要求1-8任一项所述的转子组件(100),包括:
    第二转子(50),与所述第一转子(20)啮合;及
    第二轴体(60),其上安装有所述第二转子(50);
    其中所述第二转子(50)能够与所述第二轴体(60)一起绕所述第二轴体(60)的轴线(61)旋转。
  10. 根据权利要求9所述的转子组件(100),其中所述第二转子(50)与所述第一转子(20)中至少一者采用自润滑非金属材料。
  11. 根据权利要求9或10所述的转子组件(100),其中所述第一转子(20)包括同轴设置于所述第一轴体(30)上的第一部分(21)和第二部分(22),所述第一部分(21)与所述第二部分(22)的螺纹旋向相反;所述第二转子(50)包括同轴设置于所述第二轴体(60)上的第三部分(51)和第四部分(52),所述第三部分(51)与所述第一部分(21)啮合,所述第四部分(52)与所述第二部分(22)啮合。
  12. 根据权利要求11所述的转子组件(100),其中所述第一部分(21)的内表面与所述第一轴体(30)的外表面之间设有至少一个滑动连接件(70),所述第二部分(22)的内表面与所述第一轴体(30)的外表面之间设有至少一个滑动连接件(70)。
  13. 根据权利要求11或12所述的转子组件(100),其中所述第二转子(50)的第三部分(51)或第四部分(52)与所述第二轴体(60)一体成型。
  14. 一种压缩机,包括如权利要求1-13任一项所述转子组件(100)。
  15. 一种空调,包括如权利要求14所述的压缩机。
PCT/CN2021/124664 2021-02-26 2021-10-19 转子组件、压缩机及空调 WO2022179135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110219958.XA CN112780555A (zh) 2021-02-26 2021-02-26 转子组件、压缩机及空调
CN202110219958.X 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179135A1 true WO2022179135A1 (zh) 2022-09-01

Family

ID=75762009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124664 WO2022179135A1 (zh) 2021-02-26 2021-10-19 转子组件、压缩机及空调

Country Status (2)

Country Link
CN (1) CN112780555A (zh)
WO (1) WO2022179135A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112780555A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201288671Y (zh) * 2008-11-13 2009-08-12 张中元 双旋体内旋恒压泵
WO2016157450A1 (ja) * 2015-03-31 2016-10-06 株式会社日立産機システム ガス圧縮機
CN108757450A (zh) * 2018-05-14 2018-11-06 西安交通大学 一种采用滑动轴承的螺杆压缩机
CN112780556A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机及空调
CN112780554A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机和空调
CN112780555A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调
CN112780561A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调
CN112780552A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调
CN112797000A (zh) * 2021-02-26 2021-05-14 珠海格力电器股份有限公司 转子组件、压缩机和空调
CN113389727A (zh) * 2021-07-26 2021-09-14 珠海格力电器股份有限公司 压缩机以及空调

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201288671Y (zh) * 2008-11-13 2009-08-12 张中元 双旋体内旋恒压泵
WO2016157450A1 (ja) * 2015-03-31 2016-10-06 株式会社日立産機システム ガス圧縮機
CN108757450A (zh) * 2018-05-14 2018-11-06 西安交通大学 一种采用滑动轴承的螺杆压缩机
CN112780556A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机及空调
CN112780554A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机和空调
CN112780555A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调
CN112780561A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调
CN112780552A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调
CN112797000A (zh) * 2021-02-26 2021-05-14 珠海格力电器股份有限公司 转子组件、压缩机和空调
CN113389727A (zh) * 2021-07-26 2021-09-14 珠海格力电器股份有限公司 压缩机以及空调

Also Published As

Publication number Publication date
CN112780555A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2015111355A1 (ja) ターボ圧縮機
WO2022179135A1 (zh) 转子组件、压缩机及空调
US10260604B2 (en) Speed increaser
CN110073120A (zh) 轴承构造以及电动压缩机
JP2018168828A (ja) 遠心圧縮機
EP0933532A2 (en) Vane-type fluid machine
CN112797000A (zh) 转子组件、压缩机和空调
US20110286865A1 (en) Hermetic compressor
CN110778500A (zh) 压缩机和制冷设备
WO2022179132A1 (zh) 转子组件、压缩机及空调
CN215256791U (zh) 转子组件、压缩机及空调
JP2006144781A (ja) 空気圧縮機の潤滑装置及びこれを備えた空気圧縮機
US9400016B2 (en) Radial roller bearing, rotary machine including radial roller bearing, and method for designing radial roller bearing
CN112943614B (zh) 曲轴结构及具有其的压缩机
CN210949139U (zh) 压缩机和制冷设备
CN112943616A (zh) 压缩机及具有其的空调器
CN217712951U (zh) 压缩机的曲轴及压缩机
JP2015206410A (ja) 転がり軸受
WO2019092928A1 (ja) 回転機械、ジャーナル軸受
WO2024058105A1 (ja) 玉軸受
WO2022116566A1 (zh) 螺杆压缩机和空调***
CN205446430U (zh) 齿轮泵的滚动轴承结构及齿轮泵和内啮合齿轮泵
CN221144760U (zh) 旋转式压缩机及制冷设备
CN215256788U (zh) 转子组件、压缩机和空调
JP7341218B2 (ja) 浮動ブッシュ軸受および過給機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927559

Country of ref document: EP

Kind code of ref document: A1