WO2022176412A1 - 窒化物半導体エピタキシャル基板、その製造方法、及び、窒化物半導体装置 - Google Patents

窒化物半導体エピタキシャル基板、その製造方法、及び、窒化物半導体装置 Download PDF

Info

Publication number
WO2022176412A1
WO2022176412A1 PCT/JP2022/000030 JP2022000030W WO2022176412A1 WO 2022176412 A1 WO2022176412 A1 WO 2022176412A1 JP 2022000030 W JP2022000030 W JP 2022000030W WO 2022176412 A1 WO2022176412 A1 WO 2022176412A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
layer
concentration
substrate
mixed crystal
Prior art date
Application number
PCT/JP2022/000030
Other languages
English (en)
French (fr)
Inventor
尚慶 松尾
英之 大来
正洋 引田
康裕 上本
学 柳原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/264,202 priority Critical patent/US20240112909A1/en
Priority to JP2023500600A priority patent/JPWO2022176412A1/ja
Publication of WO2022176412A1 publication Critical patent/WO2022176412A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Definitions

  • the present disclosure relates to a nitride semiconductor epitaxial substrate using a Si substrate, a manufacturing method thereof, and a nitride semiconductor device typified by a field effect transistor manufactured using the nitride semiconductor epitaxial substrate.
  • Nitride semiconductors have a larger bandgap than Si semiconductors or compound semiconductors such as GaAs, and have high dielectric breakdown electric field and saturation lift speed. has been applied.
  • Si substrates are used as substrates for growing nitride semiconductors applied to electronic devices.
  • Si substrates have established technology for manufacturing large-diameter substrates, and are excellent in cost. Therefore, it is most advantageous for mass production.
  • the Si substrate has a large lattice mismatch and thermal expansion coefficient difference with the nitride semiconductor compared to other substrates, it is difficult to form a nitride semiconductor epitaxial layer with excellent crystallinity on the Si substrate.
  • Patent Documents 1 and 2 Regarding the formation of the nitride semiconductor epitaxial layer above the Si substrate, the nitride semiconductor layer structure and the introduction of the buffer layer are being studied.
  • Patent Documents 1 and 2 an initial layer of a nitride semiconductor epitaxial layer formed above a Si substrate is heavily doped with C or Fe to reduce leakage current and improve high-frequency characteristics. Improvements have been made.
  • Patent Document 3 crystallinity of the nitride semiconductor epitaxial layer is improved by forming the nitride semiconductor epitaxial layer above the semiconductor substrate having a single crystal SiC film formed on the surface of the Si substrate.
  • the crystallinity of the nitride semiconductor epitaxial layer is about the same or lower than when the initial layer of the nitride semiconductor epitaxial layer is not doped with C or Fe. become. In other words, there remains a problem in improving the quality of the nitride semiconductor epitaxial layer.
  • the present disclosure realizes a nitride semiconductor epitaxial substrate including a layer formed above a Si substrate and having excellent crystallinity, a method for manufacturing the same, and a nitride semiconductor device using the nitride semiconductor epitaxial substrate. for the purpose.
  • a nitride semiconductor epitaxial substrate includes a Si substrate, a nitride semiconductor epitaxial layer formed above the Si substrate, the Si substrate and the nitride semiconductor. and a mixed crystal layer of Si and a group III metal element containing high concentration of C and disposed between the epitaxial layer, wherein the mixed crystal layer has a C concentration of 1.0 ⁇ 10 +21 cm ⁇ 3 or more. and the transition metal element concentration in the mixed crystal layer is 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • a nitride semiconductor epitaxial substrate includes a Si substrate, a heterostructure epitaxial layer including a nitride semiconductor epitaxial layer formed above the Si substrate, the Si substrate and the nitride semiconductor.
  • a nitride semiconductor device is formed using the nitride semiconductor epitaxial substrate.
  • a method for manufacturing a nitride semiconductor epitaxial substrate includes steps of raising the temperature of a Si substrate to 500° C. or higher, supplying a C raw material to the surface of the Si substrate, crystal growth of a first nitride semiconductor layer above a substrate; a step of diffusing a group metal element into the Si substrate; and a step of crystal-growing a second nitride semiconductor layer above the first nitride semiconductor layer.
  • the present disclosure provides a nitride semiconductor epitaxial substrate, etc., which is formed above a Si substrate and has a layer with excellent crystallinity.
  • FIG. 1 is a cross-sectional view of a nitride semiconductor epitaxial substrate according to Embodiment 1 of the present disclosure; Schematic diagram of C concentration, Fe concentration, and Si concentration in each component according to Embodiment 1 of the present disclosure
  • FIG. 4 is a diagram showing the results of evaluation of the dependence of the C concentration in the mixed crystal layer and the Fe concentration, which is a transition metal element, on the crystallinity of the AlN layer.
  • FIG. 1 A diagram showing secondary ion mass spectrometry results of C concentration and Si concentration in each component according to Embodiment 1 of the present disclosure
  • Sectional view of a nitride semiconductor epitaxial substrate according to Modification 1 of Embodiment 1 of the present disclosure Schematic diagram of C concentration and Si concentration in each component according to Modification 1 of Embodiment 1 of the present disclosure
  • Sectional view of a nitride semiconductor epitaxial substrate according to Modification 2 of Embodiment 1 of the present disclosure Cross-sectional view of a nitride semiconductor heterostructure epitaxial substrate according to Embodiment 2 of the present disclosure
  • FIG. 4 is a graph showing the evaluation results of the effects of the C concentration in the mixed crystal layer and the C concentration in the heterostructure epitaxial layer on the crystallinity of the GaN channel layer.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
  • the term “upward” does not refer to the upward direction (vertically upward) in absolute spatial recognition.
  • the term “above” is used not only when two components are spaced apart from each other and there is another component between the two components, but also when two components are in close contact with each other. It also applies when placed and two components touch.
  • FIG. 1 is a cross-sectional view of a nitride semiconductor epitaxial substrate 100 according to Embodiment 1 of the present disclosure.
  • a nitride semiconductor epitaxial layer For example, an AlN layer 103 is epitaxially grown.
  • the nitride semiconductor epitaxial substrate 100 according to the present embodiment includes a Si substrate 101, a mixed crystal layer 102 provided above the Si substrate 101, and a nitride semiconductor epitaxial layer provided above the mixed crystal layer 102. (AlN layer 103 here). That is, the mixed crystal layer 102 is arranged between the Si substrate 101 and the AlN layer 103 and in contact with the Si substrate 101 and the AlN layer 103 .
  • the Si substrate 101 is a substrate made of Si.
  • the mixed crystal layer 102 is a layer containing a Group III metal element (here, Al) and Si, and a layer containing C at a high concentration. Further, the above-mentioned “main component” means that in the mixed crystal layer 102, the ratio of the total element amount of the group III metal element and Si and C to the total element amount of the mixed crystal layer 102 is, for example, 50% or more. means that Note that the ratio may mean 90% or more.
  • the constituent element of the mixed crystal layer 102 is not limited to Al, which is an example of the group III metal element, and the constituent element of the mixed crystal layer 102 may be other group III metal elements (for example, Ga and In), or may be composed of one or more of these.
  • the mixed crystal layer 102 is a polycrystalline layer containing Al, Si and C as main components, and the lattice constant of the mixed crystal layer 102 is closer to that of AlN than that of Si. Therefore, by epitaxially growing the AlN layer 103 above the mixed crystal layer 102 using this polycrystalline layer (mixed crystal layer 102) as a buffer layer, a nitride semiconductor epitaxial layer (a nitride semiconductor epitaxial layer) having excellent crystallinity as compared with the conventional one can be obtained. AlN layer 103) can be realized.
  • the mixed crystal layer 102 is formed in a growth furnace for forming the AlN layer 103, which is a nitride semiconductor epitaxial layer. Therefore, the group III metal element as a constituent element of the mixed crystal layer 102 is preferably the same as one or more group III metal elements as a constituent element of the nitride semiconductor epitaxial layer formed thereabove. That is, in this embodiment, the group III metal element of the mixed crystal layer 102 is the same as the group III metal element of the nitride semiconductor epitaxial layer. Thereby, the nitride semiconductor epitaxial substrate 100 according to the present embodiment can be realized without greatly increasing the number of steps.
  • the group III metal element of the AlN layer 103 which is a nitride semiconductor epitaxial layer, is not limited to Al, and other group III metal elements (eg, Ga and In) may be used in place of Al. You may be comprised by 1 type or multiple. However, in order to prevent abnormal growth due to reaction between Ga and Si, the group III metal element in the portion of the AlN layer 103 in contact with the mixed crystal layer 102 is preferably Al only. Note that the mixed crystal layer 102 may contain N or O present on the surface of the Si substrate 101 as a constituent element of the oxide film or nitride film.
  • FIG. 2 is a schematic diagram of C concentration, Fe concentration, and Si concentration in each component according to Embodiment 1 of the present disclosure.
  • the mixed crystal layer 102 has a C concentration of 1.0 ⁇ 10 +21 cm ⁇ 3 or more and an Fe concentration of 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • the C concentration contained in the mixed crystal layer 102 is 1.0 ⁇ 10 +22 cm ⁇ 3 or less.
  • the C concentration contained in the mixed crystal layer 102 is defined as the highest value in the mixed crystal layer 102 .
  • the mixed crystal layer 102 contains C at a high concentration.
  • “high concentration” means that the C concentration is 1.0 ⁇ 10 +21 cm ⁇ 3 or more as described above.
  • the mixed crystal layer 102 contains the Group III metal element (here, Al), Si, C, and transition metal element (here, Fe). Also, the transition metal element contained in the mixed crystal layer 102 may be referred to as the transition metal element in the mixed crystal layer 102 .
  • the transition metal element contained in the mixed crystal layer 102 is not limited to Fe.
  • the transition metal elements contained in the mixed crystal layer 102 include Cr, Cu, Ni, Mn, and Co, which are transition metal elements that may be mixed in an MOCVD furnace, which is an example of a growth furnace for forming the AlN layer 103. It is good to be either.
  • MOCVD means Metal Organic Chemical Vapor Deposition.
  • the transition metal element included in the mixed crystal layer 102 is at least one of Fe, Cr, Cu, Ni, Mn, and Co
  • the concentration of any of the transition metal elements is 5.0 ⁇ 10 +16 cm ⁇
  • the stability of the crystallinity of the AlN layer 103 can be further ensured.
  • the mixed crystal layer 102 according to the present embodiment contains the above-described Fe and Cr, which is a transition metal element
  • the Fe concentration is 5.0 ⁇ 10 +16 cm ⁇ 3 or less
  • the Cr concentration is also 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • the concentration of the one transition metal element is 5.0 ⁇ 10 +16 cm ⁇ 3 or less
  • the mixed crystal layer 102 contains two transition metal elements.
  • each of the concentrations of the two or more transition metal elements is 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • the transition metal element in the mixed crystal layer 102 is at least one of Fe, Cr, Cu, Ni, Mn, and Co, and the element concentration of each transition metal element is 5.0 ⁇ 10 +16 cm ⁇ 3 . It is below. Thereby, the stability of the crystallinity of the AlN layer 103 can be further ensured.
  • the definition of the values of the C concentration and the transition metal elements including Fe in the mixed crystal layer 102 will be described below.
  • FIG. 3 is a graph showing the results of evaluating the dependence of the C concentration in the mixed crystal layer and the Fe concentration, which is a transition metal element, on the crystallinity of the AlN layer.
  • samples 1, 2 and 3 were evaluated for crystallinity.
  • Sample 1 is the nitride semiconductor epitaxial substrate according to Comparative Example 1.
  • Sample 1 has the same configuration as the nitride semiconductor epitaxial substrate 100 according to this embodiment, except that the C concentration in the mixed crystal layer included in Sample 1 is different from the C concentration in the mixed crystal layer 102 according to this embodiment. have.
  • Sample 2 is the nitride semiconductor epitaxial substrate according to Comparative Example 2.
  • Sample 2 has the same configuration as the nitride semiconductor epitaxial substrate 100 according to this embodiment, except that the Fe concentration in the mixed crystal layer included in Sample 2 is different from the Fe concentration in the mixed crystal layer 102 according to this embodiment. have.
  • Sample 3 means the nitride semiconductor epitaxial substrate 100 according to this embodiment.
  • the crystallinity of the AlN layers of Samples 1 and 2 and the AlN layer 103 of Sample 3 was evaluated by the half width of the XRD rocking curve of the (0002) plane.
  • XRD means X-ray diffraction.
  • the evaluation results of Sample 1 and Sample 2 in FIG. 3 are examples of evaluation results of C concentration dependence in the mixed crystal layer 102 . That is, by comparing Sample 1 and Sample 2 in FIG. 3, the effect of the C concentration in the mixed crystal layer on the crystallinity of the AlN layer is evaluated.
  • the C concentration in the mixed crystal layer of sample 1 is 1.5 ⁇ 10 +18 cm ⁇ 3
  • the C concentration in the mixed crystal layer of sample 2 is 1.8 ⁇ 10 +21 cm ⁇ 3
  • the half width of AlN (0002) was 1750 arcsec, which was the same as the conventional one, but in sample 2, the half width of AlN (0002) was 1400 arcsec, which was improved.
  • a sample 3 was produced in order to confirm the dependence of the Fe concentration in the mixed crystal layer.
  • the Fe concentration in the mixed crystal layer of Sample 2 is 1.0 ⁇ 10 +17 cm ⁇ 3
  • the Fe concentration in the mixed crystal layer 102 of Sample 3 is 2.0 ⁇ 10 +16 cm ⁇ 3 .
  • sample 3 in comparison with samples 1 and 2, sample 3 was found to have an AlN (0002) half-value width of 1020 arcsec, which was greatly improved.
  • the mixed crystal layer 102 has a C concentration of 1.0 ⁇ 10 +21 cm ⁇ 3 or more and a transition metal element concentration of 5.0 ⁇ 10 +16 cm ⁇ 3 or less. , a remarkable improvement in the crystallinity of the AlN layer 103 could be confirmed.
  • the C concentration in the mixed crystal layer 102 is 1.0 ⁇ 10 +21 cm ⁇ 3 or more, and the transition metal element concentration in the mixed crystal layer 102 is 5.0 ⁇ 10 +16 cm ⁇ 3 . 3 or less. Accordingly, the AlN layer 103 provided above the mixed crystal layer 102 has excellent crystallinity.
  • a nitride semiconductor epitaxial substrate 100 according to this embodiment includes a Si substrate 101 and such an AlN layer 103 (an example of a nitride semiconductor epitaxial layer) above the Si substrate 101 . In other words, as shown in this embodiment, a nitride semiconductor epitaxial substrate 100 having a layer formed above the Si substrate 101 and having excellent crystallinity is realized.
  • the amount of the transition metal element in the mixed crystal layer 102 here is the total amount of intentional doping using the dopant material and automatic doping from the furnace environment.
  • the mixed crystal layer 102 is polycrystalline Al—Si—C that realizes a nitride semiconductor epitaxial layer with excellent crystallinity, and contains Al, Si and C as main components. Therefore, the C concentration in the mixed crystal layer 102 is a value smaller than the C concentration of single crystal SiC, 4.0 ⁇ 10 +22 cm ⁇ 3 .
  • FIG. 4 is a diagram showing secondary ion mass spectrometry (SIMS) results of C concentration and Si concentration in each component according to Embodiment 1 of the present disclosure.
  • the mixed crystal layer 102 is formed by supplying a C raw material to the surface of the Si substrate 101 and diffusing C toward the Si substrate 101 by thermal diffusion. Therefore, as shown in FIG. 4, in the C concentration distribution in the mixed crystal layer 102, the C concentration is highest near the interface between the mixed crystal layer 102 and the AlN layer 103, and the C concentration is continuous toward the Si substrate 101 side.
  • the C concentration distribution that decreases to The vicinity of the interface between the mixed crystal layer 102 and the AlN layer 103 means, for example, a region of the mixed crystal layer 102 within 20 nm from the interface. That is, the C concentration distribution in the mixed crystal layer 102 is such that the C concentration is high on the nitride semiconductor epitaxial layer (AlN layer 103) side and continuously decreases so that the C concentration is low on the Si substrate 101 side. . Note that only when describing the C concentration distribution in the mixed crystal layer 102 in this way, the "C concentration" means the C concentration at the location, unlike the above. For other explanations, the C concentration in the mixed crystal layer 102 is defined as the highest value in the mixed crystal layer 102 as described above.
  • the film thickness of the mixed crystal layer 102 is defined as a range in which the C concentration is 1.0 ⁇ 10 +21 cm ⁇ 3 or more.
  • the C concentration in the mixed crystal layer 102 is 1.8 ⁇ 10 +21 cm ⁇ 3 and the thickness of the mixed crystal layer 102 is 40 nm.
  • the thickness of the mixed crystal layer 102 can be controlled by the diffusion amount of C, for example, the thermal diffusion temperature or the thermal diffusion time. From the viewpoint of the stability of the crystallinity of the AlN layer 103, which is a nitride semiconductor epitaxial layer, it is preferable that the thickness of the mixed crystal layer 102 is 50 nm or less. That is, in the present embodiment, the thickness of the mixed crystal layer 102 is 50 nm or less, thereby ensuring further stability of the crystallinity of the AlN layer 103, which is a nitride semiconductor epitaxial layer.
  • the transition metal element in the mixed crystal layer 102 also has a similar concentration distribution (that is, the transition metal element concentration is high on the AlN layer 103 side, and the transition metal element concentration is low on the Si substrate 101 side. concentration distribution).
  • the "transition metal element concentration” means the transition metal element concentration at the location.
  • the highest value in the mixed crystal layer 102 is defined as the transition metal element concentration in the mixed crystal layer 102 . Since the Group III metal element in the mixed crystal layer 102 is also supplied by thermal diffusion in the same manner as C, the Group III metal element concentration is highest near the interface with the AlN layer 103 and decreases toward the Si substrate 101 side. concentration distribution. By forming the mixed crystal layer 102 by thermal diffusion in this manner, the process can be simplified.
  • Si substrate 101 is set in a metal organic chemical vapor deposition (MOCVD) furnace, and the temperature of Si substrate 101 is raised to 500° C. or higher.
  • the C raw material and the Al raw material are supplied to the surface of the Si substrate 101 at a temperature of 500° C. or higher.
  • C raw materials include trimethylaluminum (TMA), triethylaluminum (TEA), carbon tetrabromide (CBr 4 ), and propane (C 3 H 8 ), which are organometallic raw materials. can be used. These are raw materials provided in the MOCVD furnace as a group III element supply source or dopant supply source, and the process can be simplified. TMA or TEA is used as the Al raw material.
  • H 2 , N 2 , or a mixture thereof is used as a carrier gas to supply the above-described C raw material and Al raw material to the surface of the Si substrate 101 .
  • C and Al separated by the thermal decomposition reaction on the surface of the Si substrate 101 are adsorbed on the surface of the Si substrate 101 .
  • the temperature of the Si substrate 101 is maintained at 900° C. or higher in an atmosphere in which NH 3 and a carrier gas are supplied, so that C and Al supplied to the surface of the Si substrate 101 are transferred from the surface to the back surface of the Si substrate 101. Diffusion of heat.
  • a mixed crystal layer 102 containing Al, Si and C as main components is formed.
  • the mixed crystal layer 102 is formed by thermal diffusion of C and Al adsorbed on the surface of the Si substrate 101, so that the C concentration distribution and the Al concentration distribution in the mixed crystal layer 102 are different from each other at the interface with the AlN layer 103.
  • the distribution is such that the concentration is highest in the vicinity and decreases toward the Si substrate 101 side.
  • the highest C concentration in the mixed crystal layer 102 can be controlled by the supply amount of the C raw material.
  • the transition metal element in the mixed crystal layer 102 for example, in addition to intentional doping control by the supply amount of Cp 2 Fe, which is the Fe raw material, autodoping by the atmosphere in the reaction furnace such as the growth temperature, growth pressure, and carrier gas flow rate is performed. By controlling, it is possible to control the transition metal element concentration.
  • Cp 2 Fe means ferrocene.
  • the temperature of the Si substrate 101 is raised to the growth temperature of the AlN layer 103, for example, 1000° C. or higher.
  • TMA or TEA as an Al source, NH 3 as an N source, and H 2 , N 2 , or a mixture thereof as a carrier gas are supplied.
  • an AlN layer 103 is formed as a nitride semiconductor epitaxial layer.
  • Embodiment 1 that is, the nitride semiconductor epitaxial substrate 100
  • the nitride semiconductor epitaxial substrate 100 can be manufactured. Further, by continuously forming the mixed crystal layer 102 and the nitride semiconductor epitaxial layer (for example, the AlN layer 103) in the MOCVD furnace, the nitride semiconductor epitaxial substrate 100 according to Embodiment 1 can be manufactured without greatly increasing the number of man-hours. can be realized.
  • nitride semiconductor epitaxial substrate 500 is the same as the nitride semiconductor according to the first embodiment, except that the structure of the AlN layer 503, which is an example of the nitride semiconductor epitaxial layer, differs from the AlN layer 103 according to the first embodiment. It has the same configuration as the epitaxial substrate 100 .
  • FIG. 5 is a cross-sectional view of a nitride semiconductor epitaxial substrate 500 according to Modification 1 of Embodiment 1 of the present disclosure.
  • an AlN layer 503 which is an example of a nitride semiconductor epitaxial layer, is epitaxially grown above a Si substrate 501 via a mixed crystal layer 502 containing Al, Si and C as main components.
  • the C concentration contained in the mixed crystal layer 502 is 1.0 ⁇ 10 +21 cm ⁇ 3 or more, and the Fe concentration is 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • the AlN layer 503 consists of a first AlN layer 504 and a second AlN layer 505 .
  • the C concentration of the first AlN layer 504 is characterized by being higher than the C concentration of the second AlN layer 505 .
  • Both the C concentration of the first AlN layer 504 and the C concentration of the second AlN layer 505 are 1.0 ⁇ 10 +21 cm ⁇ 3 or more.
  • the nitride semiconductor epitaxial layer (AlN layer 503) is the first nitride semiconductor layer (first AlN layer 504) and the second nitride semiconductor layer (second AlN layer 505). consists of Furthermore, the C concentration of the first nitride semiconductor layer is higher than the C concentration of the second nitride semiconductor layer. Further, in this modification, the nitride semiconductor epitaxial layer (AlN layer 503) has an AlN layer (first AlN layer 504) on the mixed crystal layer 502 side.
  • FIG. 6A is a schematic diagram of C concentration and Si concentration in each component according to Modification 1 of Embodiment 1 of the present disclosure.
  • the C concentration of the first AlN layer 504 is 1.0 ⁇ 10 +19 cm ⁇ 3 and the C concentration of the second AlN layer 505 is 1.0 ⁇ 10 +16 cm ⁇ 3 .
  • the first AlN layer 504 and the second AlN layer 505 are grown at a low temperature and the second AlN layer 505 is grown at a high temperature. This is achieved through growth.
  • the initial layer of the AlN layer 503 (that is, the first AlN layer 504) is composed of AlN with a high C concentration.
  • This provides nitride semiconductor epitaxial substrate 500 in which the formation of a low resistance layer at the interface between AlN layer 503 (more specifically, first AlN layer 504) and mixed crystal layer 502 is suppressed. be.
  • a power transistor fabricated using this nitride semiconductor epitaxial substrate 500 can reduce leakage current.
  • by growing the initial layer of the AlN layer 503 at a low temperature it is possible to realize the nitride semiconductor epitaxial substrate 500 with high reproducibility and excellent productivity.
  • a Si substrate 501 is set in an MOCVD furnace and heated to 500° C. or higher. This is the step of raising the temperature of the Si substrate 501 to 500° C. or higher. After that, a step of supplying a C raw material to the surface of the Si substrate 501 is performed. More specifically, the C raw material and the Al raw material are supplied to the surface of the Si substrate 501 at a temperature of 500° C. or higher.
  • a C source TMA, TEA , CBr4 or C3H8 can be used as an example. TMA or TEA is used as the Al raw material.
  • the first AlN layer 504 is formed using TMA or TEA as the Al source, NH 3 as the N source, and H 2 , N 2 or a mixture thereof as the carrier gas. This is the step of crystal-growing the first nitride semiconductor layer above the Si substrate 501 . After that, the temperature of the Si substrate 501 is maintained at 900° C. or higher in an atmosphere in which NH 3 and a carrier gas are supplied, so that C and Al supplied to the surface of the Si substrate 501 are removed from the surface of the Si substrate 501 in the direction of the back surface. heat diffusion.
  • a mixed crystal layer 502 containing Al, Si and C as main components is formed.
  • the formation of the first AlN layer 504 is preferably performed before the thermal diffusion process at 900° C. or higher for surface stabilization, and is preferably performed at a temperature that is at least 100° C. lower than the thermal diffusion temperature. .
  • the film thickness of the first AlN layer 504 is preferably 10 nm or less.
  • the highest value of the C concentration in the mixed crystal layer 502 can be controlled by the supply amount of the C raw material.
  • the transition metal element in the mixed crystal layer 502 in addition to intentional doping control by the supply amount of Cp 2 Fe, which is the Fe raw material, for example, autodoping is performed by the atmosphere in the reaction furnace such as the growth temperature, growth pressure, and carrier gas flow rate. By controlling, it is possible to control the transition metal element concentration.
  • the Si substrate 501 is heated to the growth temperature of the second AlN layer 505, for example, 1000° C. or higher, and TMA or TEA is used as the Al source, NH 3 is used as the N source, and H 2 , N 2 or a mixture thereof is used. Supplied as carrier gas.
  • This is the step of crystal-growing the second nitride semiconductor layer (nitride semiconductor epitaxial layer) above the first nitride semiconductor layer. Thereby, a second AlN layer 505 is formed.
  • the structure of the nitride semiconductor epitaxial substrate 500 according to Modification 1 of Embodiment 1 can be manufactured.
  • a nitride semiconductor epitaxial substrate 500 according to this embodiment includes a Si substrate 501 and such an AlN layer 503 (an example of a nitride semiconductor epitaxial layer) above the Si substrate 501 .
  • a method for manufacturing a nitride semiconductor epitaxial substrate 500 having a layer formed above the Si substrate 501 and having excellent crystallinity is realized.
  • a nitride semiconductor epitaxial substrate 500a according to Modification 2 of Embodiment 1 will be described with reference to FIG. 6B.
  • a nitride semiconductor epitaxial substrate 500a has the same structure as that of the nitride semiconductor according to Modification 1, except that the structure of an AlN layer 503a, which is an example of a nitride semiconductor epitaxial layer, differs from that of the AlN layer 503 according to Modification 1. It has the same configuration as the epitaxial substrate 500 .
  • FIG. 6B is a cross-sectional view of a nitride semiconductor epitaxial substrate 500a according to Modification 2 of Embodiment 1 of the present disclosure.
  • an AlN layer 503a which is an example of a nitride semiconductor epitaxial layer, is epitaxially grown above a Si substrate 501 via a mixed crystal layer 502 mainly composed of Al, Si and C.
  • the C concentration contained in the mixed crystal layer 502 is 1.0 ⁇ 10 +21 cm ⁇ 3 or more, and the Fe concentration is 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • the AlN layer 503a is composed of a first AlN layer 504a and a second AlN layer 505a.
  • the C concentration of the first AlN layer 504a is higher than the C concentration of the second AlN layer 505a.
  • the C concentration distribution of the first AlN layer 504a is a distribution in which the C concentration continuously decreases from the mixed crystal layer 502 toward the second AlN layer 505a in the first AlN layer 504a.
  • the concentration of C contained in the first AlN layer 504a is 1.0 ⁇ 10 +19 cm ⁇ 3
  • the concentration of C contained in the second AlN layer 505a is 1.0 ⁇ 10 +19 cm ⁇ 3
  • the concentration is 1.0 ⁇ 10 +16 cm ⁇ 3 .
  • the initial layer of the AlN layer 503a (that is, the first AlN layer 504a) is composed of AlN with a high C concentration, and the AlN layer with a low C concentration (the first AlN layer) above the mixed crystal layer 502 is formed.
  • 2 AlN layer 505a) is changed continuously.
  • a low-resistance layer is not formed at the interface between the AlN layer 503a (more specifically, the first AlN layer 504a) and the mixed crystal layer 502, and the surface has excellent flatness and the number of defects is small.
  • a nitride semiconductor epitaxial substrate 500a is provided.
  • a power transistor manufactured using this nitride semiconductor epitaxial substrate 500a has a reduced leak current, and the number of defects can be reduced to improve the yield. Further, by growing the initial layer of the AlN layer 503a at a low temperature, it is possible to realize the nitride semiconductor epitaxial substrate 500a with high reproducibility and excellent productivity.
  • a Si substrate 501 is set in an MOCVD furnace and heated to 500° C. or higher. After that, the C raw material and the Al raw material are supplied to the surface of the Si substrate 501 at a temperature of 500° C. or higher.
  • a C source TMA, TEA , CBr4 or C3H8 can be used as an example.
  • TMA or TEA is used as the Al raw material.
  • H 2 , N 2 , or a mixture thereof is used as a carrier gas to supply the above-described C raw material and Al raw material to the surface of the Si substrate 501 .
  • TMA or TEA is used as the Al source
  • NH 3 is used as the N source
  • H 2 , N 2 or a mixture thereof is used as the carrier gas to form the first AlN layer 504a.
  • the temperature of the Si substrate 501 is raised and maintained at 900° C. or higher, so that the C and Al supplied to the surface of the Si substrate 501 are thermally diffused from the surface of the Si substrate 501 toward the back surface.
  • a mixed crystal layer 502 containing Al, Si and C as main components is formed.
  • the supply of NH3 , TMA or TEA, and carrier gas is continued.
  • the thermal diffusion process can be performed without interrupting the formation of the first AlN layer 504a.
  • the highest value of the C concentration in the mixed crystal layer 502 can be controlled by the supply amount of the C raw material.
  • the transition metal element in the mixed crystal layer 502 in addition to intentional doping control by the supply amount of Cp 2 Fe, which is the Fe raw material, for example, autodoping is performed by the atmosphere in the reaction furnace such as the growth temperature, growth pressure, and carrier gas flow rate. By controlling, it is possible to control the transition metal element concentration.
  • the Si substrate 501 is heated to the growth temperature of the second AlN layer 505a, for example, 1000° C. or higher, and TMA or TEA is used as the Al source, NH 3 is used as the N source, and H 2 , N 2 or a mixture thereof is used. Supplied as carrier gas. Thereby, a second AlN layer 505a is formed.
  • the structure of the nitride semiconductor epitaxial substrate 500a according to Modification 2 of Embodiment 1 can be manufactured.
  • a nitride semiconductor epitaxial substrate including a heterostructure epitaxial layer is specifically referred to as a nitride semiconductor heterostructure epitaxial substrate.
  • a nitride semiconductor heterostructure epitaxial substrate 700 according to Embodiment 2 which is an example of a nitride semiconductor epitaxial substrate, will be described with reference to FIG.
  • FIG. 7 is a cross-sectional view of a nitride semiconductor heterostructure epitaxial substrate 700 according to Embodiment 2 of the present disclosure.
  • a nitride semiconductor heterostructure epitaxial substrate 700 according to the present embodiment includes a Si substrate 701 having the same configuration as the Si substrate 101 according to the first embodiment.
  • the nitride semiconductor heterostructure epitaxial substrate 700 includes a mixed crystal layer 702 that differs from the mixed crystal layer 102 according to the first embodiment only in the C concentration.
  • a buffer layer 706, a GaN channel layer 707, and an AlGaN barrier layer 708 consisting of a single layer or multiple layers (0 ⁇ x ⁇ 1) are formed by epitaxial growth as a heterostructure.
  • the heterostructure epitaxial layer 720 included in the nitride semiconductor heterostructure epitaxial substrate 700 includes the AlN layer 703 , the buffer layer 706 , the GaN channel layer 707 and the AlGaN barrier layer 708 . Furthermore, the heterostructure epitaxial layer 720 is disposed above and in contact with the mixed crystal layer 702, and is constructed by stacking an AlN layer 703, a buffer layer 706, a GaN channel layer 707 and an AlGaN barrier layer 708 in this order. there is In addition, when the buffer layer 706 is composed of multiple layers of Al x Ga 1-x N (0 ⁇ x ⁇ 1), the value of x may be different for each layer.
  • the GaN channel layer 707 is an example of a third nitride semiconductor layer formed above the nitride semiconductor epitaxial layer (AlN layer 703).
  • the AlGaN barrier layer 708 is an example of a fourth nitride semiconductor layer formed above the third nitride semiconductor layer (GaN channel layer 707).
  • a high-concentration two-dimensional electron gas is formed due to the effects of piezoelectric polarization and spontaneous polarization.
  • the nitride semiconductor heterostructure epitaxial substrate 700 has a two-dimensional electron gas at the interface between the third nitride semiconductor layer and the fourth nitride semiconductor layer.
  • the buffer layer 706 is doped with C up to 1.0 ⁇ 10 +20 cm ⁇ 3 at the maximum to increase the resistance of the buffer layer 706 .
  • the C concentration of buffer layer 706 described above is the maximum C concentration in heterostructure epitaxial layer 720 .
  • the C concentration of the mixed crystal layer 702 is higher than the C concentration of each layer included in the heterostructure epitaxial layer 720 .
  • the layers included in heterostructure epitaxial layer 720 are AlN layer 703 , buffer layer 706 , GaN channel layer 707 and AlGaN barrier layer 708 . That is, the C concentration of the mixed crystal layer 702 is higher than the C concentration of any of the AlN layer 703 , the buffer layer 706 , the GaN channel layer 707 and the AlGaN barrier layer 708 .
  • the C concentration of each of the AlN layer 703, buffer layer 706, GaN channel layer 707 and AlGaN barrier layer 708 is defined as the highest value in each layer.
  • FIG. 8 is a graph showing the evaluation results of the effects of the C concentration in the mixed crystal layer 702 and the C concentration in the heterostructure epitaxial layer 720 on the crystallinity of the GaN channel layer 707 .
  • Sample A is a nitride semiconductor heterostructure epitaxial substrate according to Comparative Example 1.
  • Sample A is the same as the nitride semiconductor heterostructure epitaxial substrate 700 according to this embodiment, except that the C concentration in the mixed crystal layer included in Sample A is different from the C concentration in the mixed crystal layer 702 according to this embodiment. have a configuration.
  • Sample B means the nitride semiconductor heterostructure epitaxial substrate 700 according to this embodiment.
  • both the (0002) plane FWHM and the (10-11) plane FWHM are greatly improvement was confirmed.
  • the buffer layer 706 is heavily doped with C in order to increase the resistance of the buffer layer 706, but the C concentration is lower than this for applications that do not require the buffer layer 706 to have a high resistance. It can be a value.
  • the crystallinity of the GaN channel layer 707 tends to improve when the C concentration of the buffer layer 706 is low. Therefore, if the C concentration in the mixed crystal layer 702 is higher than the C concentration in the buffer layer 706, the crystallinity of the GaN channel layer 707 is effectively improved. Also in this embodiment, the transition metal element concentration contained in the mixed crystal layer 702 is 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • the heterostructure epitaxial layer 720 By forming the heterostructure epitaxial layer 720 using the mixed crystal layer 702 mainly composed of Al, Si and C as a buffer layer in this manner, the active layer (here, the GaN channel layer 707) has excellent crystallinity.
  • the active layer here, the GaN channel layer 707
  • a nitride semiconductor heterostructure epitaxial substrate 700 can be realized.
  • the nitride semiconductor heterostructure epitaxial substrate 700 is an example of a nitride semiconductor epitaxial substrate. Furthermore, the C concentration in the mixed crystal layer 702 is higher than the C concentration of each layer included in the heterostructure epitaxial layer 720, and the transition metal element concentration in the mixed crystal layer 702 is 5.0 ⁇ 10 +16 cm ⁇ 3 or less. Thereby, the active layer (here, GaN channel layer 707) provided above the mixed crystal layer 702 has excellent crystallinity. In other words, as shown in this embodiment, a nitride semiconductor epitaxial substrate (nitride semiconductor heterostructure epitaxial substrate 700) having a layer formed above the Si substrate 701 and having excellent crystallinity is realized.
  • a power transistor using the nitride semiconductor heterostructure epitaxial substrate 700 with excellent crystallinity device breakdown caused by crystal defects is suppressed, and a nitride semiconductor device with excellent reliability is realized. can do.
  • Nitride semiconductor device 900 is an example of a semiconductor device including a nitride semiconductor heterostructure epitaxial substrate.
  • FIG. 9 is a cross-sectional view of a nitride semiconductor device 900 according to Embodiment 3 of the present disclosure.
  • a nitride semiconductor device 900 according to the present embodiment includes a Si substrate 901 and a mixed crystal layer 902 having the same configurations as the Si substrate 701 and the mixed crystal layer 702 according to the second embodiment.
  • an AlN layer 903 and an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer are formed above the Si substrate 901 via a mixed crystal layer 902 containing Al, Si, and C as main components.
  • a buffer layer 906 consisting of a single layer or multiple layers, a GaN channel layer 907 and an AlGaN barrier layer 908 are formed by epitaxial growth as a heterostructure. That is, the heterostructure epitaxial layer 920 included in the nitride semiconductor device 900 according to this embodiment includes the AlN layer 903 , the buffer layer 906 , the GaN channel layer 907 and the AlGaN barrier layer 908 .
  • the heterostructure epitaxial layer 920 is disposed above and in contact with the mixed crystal layer 902, and is constructed by laminating an AlN layer 903, a buffer layer 906, a GaN channel layer 907 and an AlGaN barrier layer 908 in this order.
  • the buffer layer 906 is composed of a plurality of layers of Al x Ga 1-x N (0 ⁇ x ⁇ 1), the value of x may be different for each layer.
  • the GaN channel layer 907 and the AlGaN barrier layer 908 At the interface between the GaN channel layer 907 and the AlGaN barrier layer 908, a high-concentration two-dimensional electron gas is formed due to the effects of piezoelectric polarization and spontaneous polarization.
  • Mixed crystal layer 902 has a higher concentration of C than any layer in heterostructure epitaxial layer 920 .
  • the C concentration of the mixed crystal layer 902 according to this embodiment is higher than the C concentration of each layer included in the heterostructure epitaxial layer 920 .
  • the buffer layer 906 is doped with C at a maximum of 1.0 ⁇ 10 +20 cm ⁇ 3 , and the C concentration contained in the mixed crystal layer 902 is 1.0 ⁇ 10 +21 cm ⁇ 3 or higher.
  • the metal element concentration is 5.0 ⁇ 10 +16 cm ⁇ 3 or less.
  • the nitride semiconductor device 900 includes a gate electrode 911 , a source electrode 909 and a drain electrode 910 . More specifically, a source electrode 909 and a drain electrode 910 are formed above the AlGaN barrier layer 908 so as to be spaced apart on the left and right sides of the gate electrode 911 . That is, the nitride semiconductor device 900 according to this embodiment is a semiconductor device using a nitride semiconductor epitaxial substrate having a layer formed above the Si substrate 901 and having excellent crystallinity.
  • a power transistor using a nitride semiconductor heterostructure epitaxial substrate with excellent crystallinity, device breakdown caused by crystal defects is suppressed, and a nitride semiconductor device with excellent reliability is provided. 900 can be realized.
  • the present disclosure can realize a high-quality nitride semiconductor epitaxial substrate, improve the device performance of a nitride semiconductor device using the same, and achieve a longer device life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)

Abstract

窒化物半導体エピタキシャル基板(100)は、Si基板(101)と、Si基板(101)の上方に形成された窒化物半導体エピタキシャル層と、Si基板(101)と窒化物半導体エピタキシャル層との間に配置され、高濃度にCを含むSiとIII族金属元素との混晶層(102)と、を備え、混晶層(102)におけるC濃度が1.0×10+21cm-3以上であり、混晶層(102)における遷移金属元素濃度が5.0×10+16cm-3以下である。

Description

窒化物半導体エピタキシャル基板、その製造方法、及び、窒化物半導体装置
 本開示は、Si基板を用いた窒化物半導体エピタキシャル基板、その製造方法、及び、窒化物半導体エピタキシャル基板を用いて製造された電界効果トランジスタに代表される窒化物半導体装置に関する。
 窒化物半導体は、Si半導体又はGaAsなどの化合物半導体に比べてバンドギャップが大きく、高い絶縁破壊電解及び飽和度リフト速度を有しており、高耐圧パワーデバイス及び高速高出力トランジスタなどの電子デバイスへの応用がなされている。
 電子デバイスに応用される窒化物半導体を成長させる基板としては、サファイア基板、SiC基板及びSi基板などが用いられるが、Si基板は、大口径基板の製造技術が確立されており、コストにも優れているため、量産に向けては最も有利である。
 しかしながら、Si基板は、その他の基板と比較して窒化物半導体との格子不整合及び熱膨張係数差が大きいため、Si基板の上方に結晶性に優れた窒化物半導体エピタキシャル層を形成することが困難である。窒化物半導体エピタキシャル層の結晶性は、電子デバイスの特性及び信頼性に大きく影響するため、Si基板の上方へ結晶性に優れた窒化物半導体エピタキシャル層を形成することが大きな課題である。
 Si基板の上方への窒化物半導体エピタキシャル層の形成については、窒化物半導体層構造及びバッファ層の導入などが検討されている。例えば、特許文献1及び特許文献2では、Si基板の上方へ形成された窒化物半導体エピタキシャル層の初期層に、高濃度にC又はFeがドープされることで、リーク電流の低減及び高周波特性の改善が実現されている。特許文献3では、Si基板の表面に単結晶SiC膜を形成した半導体基板の上方に窒化物半導体エピタキシャル層を形成することで、窒化物半導体エピタキシャル層の結晶性が改善されている。
特開2018-46207号公報 特開2011-166067号公報 特許第6156833号公報
 しかしながら、特許文献1及び特許文献2で記載された半導体基板では、窒化物半導体エピタキシャル層の初期層にC又はFeをドープしない場合と比較して、窒化物半導体エピタキシャル層の結晶性は同程度以下になる。つまり、窒化物半導体エピタキシャル層の高品質化に課題が残る。
 特許文献3で記載された半導体基板では、Si基板の上方への単結晶SiCの高品質化が困難であり、またコストが大きく増加してしまうという課題がある。
 本開示は、上記課題に鑑み、Si基板上方に形成され結晶性に優れた層を備える窒化物半導体エピタキシャル基板、その製造方法、及び上記窒化物半導体エピタキシャル基板を用いた窒化物半導体装置を実現することを目的とする。
 上記課題を解決するために、本開示の一態様に係る窒化物半導体エピタキシャル基板は、Si基板と、前記Si基板の上方に形成された窒化物半導体エピタキシャル層と、前記Si基板と前記窒化物半導体エピタキシャル層との間に配置され、高濃度にCを含むSiとIII族金属元素との混晶層と、を備え、前記混晶層におけるC濃度が1.0×10+21cm-3以上であり、前記混晶層における遷移金属元素濃度が5.0×10+16cm-3以下である。
 また、本開示の一態様に係る窒化物半導体エピタキシャル基板は、Si基板と、前記Si基板の上方に形成された窒化物半導体エピタキシャル層を含むヘテロ構造エピタキシャル層と、前記Si基板と前記窒化物半導体エピタキシャル層との間に配置され、高濃度にCを含むSiとIII族金属元素との混晶層と、を備え、前記混晶層におけるC濃度が前記ヘテロ構造エピタキシャル層が含む層のそれぞれのC濃度よりも高く、前記混晶層における遷移金属元素濃度が5.0×10+16cm-3以下である。
 また、本開示の一態様に係る窒化物半導体装置は、上記窒化物半導体エピタキシャル基板を用いて形成される。
 また、本開示の一態様に係る窒化物半導体エピタキシャル基板の製造方法は、Si基板の温度を500℃以上に昇温する工程と、前記Si基板の表面にC原料を供給する工程と、前記Si基板の上方へ第1の窒化物半導体層を結晶成長させる工程と、前記Si基板及び前記第1の窒化物半導体層の温度を900℃以上に保持して前記第1の窒化物半導体層からIII族金属元素を前記Si基板へ拡散する工程と、前記第1の窒化物半導体層の上方に第2の窒化物半導体層を結晶成長する工程とを含む。
 本開示により、Si基板上方に形成され結晶性に優れた層を備える窒化物半導体エピタキシャル基板などを提供する。
本開示の実施形態1に係る窒化物半導体エピタキシャル基板の断面図 本開示の実施形態1に係る各構成要素におけるC濃度、Fe濃度及びSi濃度の模式図 混晶層中のC濃度と遷移金属元素であるFe濃度とのAlN層の結晶性への依存性を評価した結果を示す図 本開示の実施形態1に係る各構成要素におけるC濃度及びSi濃度の2次イオン質量分析結果を示す図 本開示の実施形態1の変形例1に係る窒化物半導体エピタキシャル基板の断面図 本開示の実施形態1の変形例1に係る各構成要素におけるC濃度及びSi濃度の模式図 本開示の実施形態1の変形例2に係る窒化物半導体エピタキシャル基板の断面図 本開示の実施形態2に係る窒化物半導体ヘテロ構造エピタキシャル基板の断面図 混晶層中のC濃度とヘテロ構造エピタキシャル層中のC濃度とがGaNチャネル層の結晶性に与える影響を評価した結果を示す図 本開示の実施形態3に係る窒化物半導体装置の断面図
 以下、本開示の実施形態について図面を参照して詳細に説明する。なお、以下説明する実施形態はいずれも包括的又は具体的な例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本開示を限定する主旨ではない。また、本開示の実施形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略又は簡略化される場合がある。
 また、以下の実施形態において、「上方」という用語は、絶対的な空間認識における上方向(鉛直上方)を指すものではない。また、「上方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 (実施形態1)
 [構成]
 まずは、本実施形態に係る窒化物半導体エピタキシャル基板100の構成について説明する。
 図1は、本開示の実施形態1に係る窒化物半導体エピタキシャル基板100の断面図である。図1に示すように、本実施形態に係る窒化物半導体エピタキシャル基板100では、Si基板101の上方にAl、Si及びCを主成分とする混晶層102を介して、窒化物半導体エピタキシャル層、例えばAlN層103がエピタキシャル成長されている。つまり、本実施形態に係る窒化物半導体エピタキシャル基板100は、Si基板101、Si基板101の上方に設けられた混晶層102、及び、混晶層102の上方に設けられた窒化物半導体エピタキシャル層(ここではAlN層103)、を備えている。つまり、混晶層102は、Si基板101とAlN層103との間に、Si基板101とAlN層103とに接して配置されている。
 Si基板101は、Siによって構成されている基板である。
 混晶層102は、III族金属元素(ここではAl)とSiとを含む層であり、さらに、高濃度にCを含む層である。また、上記の「主成分」とは、混晶層102において、混晶層102の全ての元素量に対するIII族金属元素とSiとCとの合計の元素量の比率が、例えば、50%以上であることを意味する。なお当該比率は、90%以上であることを意味してもよい。
 ここで、混晶層102の構成元素は、III族金属元素の一例であるAlに限定されず、混晶層102の構成元素は、Alに替えて他のIII族金属元素(例えば、Ga及びIn)でもよく、これらのうちの1種又は複数で構成されてもよい。
 混晶層102は、Al、Si及びCを主成分とする多結晶層であり、混晶層102の格子定数がSiの格子定数よりもAlNの格子定数に近い。このため、この多結晶層(混晶層102)をバッファ層として、混晶層102の上方にAlN層103をエピタキシャル成長させることで、従来と比較して結晶性に優れた窒化物半導体エピタキシャル層(AlN層103)を実現することができる。
 なお、混晶層102は、窒化物半導体エピタキシャル層であるAlN層103を形成する成長炉内で形成される。そのため、混晶層102の構成元素としてのIII族金属元素は、その上方に形成する窒化物半導体エピタキシャル層の構成元素としてのIII族金属元素のうちの1種又は複数と同一であるとよい。つまり、本実施形態においては、混晶層102のIII族金属元素が窒化物半導体エピタキシャル層のIII族金属元素と同一である。これにより、大きく工程を増加させることなく本実施形態に係る窒化物半導体エピタキシャル基板100を実現することができる。
 窒化物半導体エピタキシャル層であるAlN層103のIII族金属元素は、Alに限定されるものではなく、Alに替えて他のIII族金属元素(例えば、Ga及びIn)でもよく、これらのうちの1種又は複数で構成されてもよい。しかし、GaとSiとの反応による異常成長を防ぐために、AlN層103のうち混晶層102と接する部分のIII族金属元素はAlのみであるとよい。なお、混晶層102には、Si基板101表面に酸化膜又は窒化膜の構成元素として存在するN又はOが含まれても構わない。
 図2は、本開示の実施形態1に係る各構成要素におけるC濃度、Fe濃度及びSi濃度の模式図である。図2に示すように、混晶層102に含まれるC濃度は1.0×10+21cm-3以上、Fe濃度は5.0×10+16cm-3以下である。また、混晶層102に含まれるC濃度は1.0×10+22cm-3以下である。なお、混晶層102に含まれるC濃度は、混晶層102中で最も高い値と定義される。また、本実施形態では、混晶層102は、高濃度にCを含む。ここで「高濃度」とは、上記の通りC濃度が1.0×10+21cm-3以上であることを意味する。このように、本実施形態に係る混晶層102は、上記のIII族金属元素(ここではAl)とSiとCと、さらに遷移金属元素(ここではFe)とを含む。また、混晶層102が含む遷移金属元素を、混晶層102における遷移金属元素と記載する場合がある。
 混晶層102に含まれる遷移金属元素は、Feに限定されない。混晶層102に含まれる遷移金属元素は、AlN層103を形成する成長炉の一例であるMOCVD炉内にて混入の可能性のある遷移金属元素であるCr、Cu、Ni、Mn及びCoのいずれかであるとよい。なお、MOCVDとは、Metal Organic Chemical Vapor Depositionを意味する。混晶層102がこのように構成されることでAlN層103の結晶性の安定性が確保できる。つまり、本実施形態では、混晶層102における遷移金属元素がFe、Cr、Cu、Ni、Mn及びCoのうち少なくとも1種であることで、AlN層103の結晶性の安定性が確保できる。
 また、混晶層102が含む遷移金属元素がFe、Cr、Cu、Ni、Mn及びCoのうち少なくとも1種である場合に、当該遷移金属元素のいずれの濃度も5.0×10+16cm-3以下にすることで、更にAlN層103の結晶性の安定性が確保できる。一例として、本実施形態に係る混晶層102が、上記のFeと、さらに遷移金属元素であるCrとを含む場合に、Fe濃度は5.0×10+16cm-3以下であり、かつ、Cr濃度も5.0×10+16cm-3以下である。つまり、混晶層102における遷移金属元素が1種である場合、当該1種の遷移金属元素の濃度が5.0×10+16cm-3以下であり、混晶層102における遷移金属元素が2種以上である場合、当該2種以上の遷移金属元素の濃度のそれぞれが5.0×10+16cm-3以下である。このように混晶層102における遷移金属元素がFe、Cr、Cu、Ni、Mn及びCoのうち少なくとも1種であり、当該遷移金属元素のそれぞれの元素濃度が5.0×10+16cm-3以下である。これにより、更にAlN層103の結晶性の安定性が確保できる。以下に混晶層102中のC濃度とFeを含む遷移金属元素の数値の規定について説明する。
 混晶層102は、Si基板101の表面へC原料及びAl原料が供給されて形成されるため、これらの供給が不足するとバッファ層として十分に寄与しないことが予測される。また、AlN層103の結晶品質には混晶層102中に含まれる遷移金属元素の濃度も影響すると考えられる。そこで、この影響について図3を用いて説明する。図3は、混晶層中のC濃度と遷移金属元素であるFe濃度とのAlN層の結晶性への依存性を評価した結果を示す図である。ここでは、サンプル1、2及び3について結晶性が評価された。
 サンプル1とは、比較例1に係る窒化物半導体エピタキシャル基板である。サンプル1は、サンプル1が備える混晶層におけるC濃度が本実施形態に係る混晶層102におけるC濃度とは異なる点を除いて、本実施形態に係る窒化物半導体エピタキシャル基板100と同じ構成を有する。同様に、サンプル2とは、比較例2に係る窒化物半導体エピタキシャル基板である。サンプル2は、サンプル2が備える混晶層におけるFe濃度が本実施形態に係る混晶層102におけるFe濃度とは異なる点を除いて、本実施形態に係る窒化物半導体エピタキシャル基板100と同じ構成を有する。サンプル3とは、本実施形態に係る窒化物半導体エピタキシャル基板100を意味する。
 サンプル1及びサンプル2のAlN層及びサンプル3のAlN層103の結晶性は、(0002)面のXRDロッキングカーブの半値幅により評価された。なお、XRDは、X線回折(X-ray Diffraction)を意味する。図3のサンプル1とサンプル2との評価結果とは、混晶層102中のC濃度依存を評価した結果の一例である。つまり、図3のサンプル1とサンプル2とが比較されることで、混晶層中のC濃度がAlN層の結晶性へ与える影響が評価される。
 サンプル1の混晶層中のC濃度は1.5×10+18cm-3、サンプル2の混晶層中のC濃度は1.8×10+21cm-3である。サンプル1では、AlN(0002)半値幅が1750arcsecであり従来とかわらないが、サンプル2ではAlN(0002)半値幅が1400arcsecであり改善がみられた。さらに混晶層中のFe濃度の依存性を確認するために、サンプル3が作製された。サンプル2の混晶層中のFe濃度は1.0×10+17cm-3、サンプル3の混晶層102中のFe濃度は2.0×10+16cm-3である。図3からわかるように、サンプル1及びサンプル2に比べて、サンプル3ではAlN(0002)半値幅が1020arcsecと大幅な改善が確認できた。このようにAlN(0002)半値幅が評価された結果、混晶層102中のC濃度が1.0×10+21cm-3以上、遷移金属元素濃度が5.0×10+16cm-3以下で、AlN層103の顕著な結晶性の改善を確認することができた。
 以上のように、本実施形態においては、混晶層102におけるC濃度が1.0×10+21cm-3以上であり、混晶層102における遷移金属元素濃度が5.0×10+16cm-3以下である。これにより、混晶層102の上方に設けられているAlN層103は、結晶性に優れている。本実施形態に係る窒化物半導体エピタキシャル基板100は、Si基板101と、Si基板101の上方にこのようなAlN層103(窒化物半導体エピタキシャル層の一例)とを備える。つまりは、本実施形態が示すように、Si基板101上方に形成され結晶性に優れた層を備える窒化物半導体エピタキシャル基板100が実現される。
 なお、ここでの混晶層102中の遷移金属元素の量は、ドーパント材料が用いられた意図的なドープと、炉内環境からの自動的なドープとの合計の量である。なお、混晶層102は、結晶性に優れた窒化物半導体エピタキシャル層を実現する多結晶Al-Si-Cであり、Al、Si及びCを主成分とする。そのため、混晶層102中のC濃度は、単結晶SiCのC濃度である4.0×10+22cm-3と比べて小さい値となる。
 以下で、混晶層102中のC濃度の数値について説明する。図4は、本開示の実施形態1に係る各構成要素におけるC濃度及びSi濃度の2次イオン質量分析(SIMS(Secondary Ion Mass Spectrometry))結果を示す図である。混晶層102は、Si基板101の表面にC原料が供給され熱拡散によりCがSi基板101側に拡散されることにより形成される。そのため、図4に示すように混晶層102中におけるC濃度分布は、混晶層102とAlN層103との界面付近でC濃度が最も高く、Si基板101側に向けてC濃度が連続的に減少する分布となる。なお、混晶層102とAlN層103との界面付近とは、例えば当該界面から20nm以内の混晶層102の領域を意味する。つまり、混晶層102中のC濃度分布は、窒化物半導体エピタキシャル層(AlN層103)側でC濃度が高く、Si基板101側でC濃度が低くなるように連続的に減少する分布である。なお、このように混晶層102中のC濃度分布について説明する場合のみ、「C濃度」は上記とは異なり当該場所でのC濃度を意味する。なお、その他の説明については、混晶層102中のC濃度は、上記の通り、混晶層102中で最も高い値と定義される。また、混晶層102の膜厚はC濃度が1.0×10+21cm-3以上の範囲と定義する。例えば本実施形態では、混晶層102中のC濃度は1.8×10+21cm-3、混晶層102の膜厚は40nmとなる。混晶層102の厚さはCの拡散量で制御されることが可能であり、例えば熱拡散温度又は熱拡散時間などで制御されることができる。混晶層102の厚さが50nm以下となることが窒化物半導体エピタキシャル層であるAlN層103の結晶性の安定性の観点からはよい。つまり、本実施形態では混晶層102の厚さが50nm以下であり、これにより、窒化物半導体エピタキシャル層であるAlN層103の結晶性の更なる安定性が確保できる。
 なお、混晶層102中の遷移金属元素も同様の濃度分布(つまり、AlN層103側で遷移金属元素濃度が高く、Si基板101側で遷移金属元素濃度が低くなるように連続的に減少する濃度分布)である。なお、このように混晶層102中の遷移金属元素濃度分布について説明する場合のみ、「遷移金属元素濃度」は当該場所での遷移金属元素濃度を意味する。また、その他の説明については、混晶層102中の最も高い値を混晶層102中の遷移金属元素濃度と定義する。なお、混晶層102中のIII族金属元素もCと同様に熱拡散により供給するため、III族金属元素濃度は、AlN層103との界面付近で最も高く、Si基板101側に向けて減少する濃度分布となる。このように混晶層102の形成が熱拡散で行われることで、工程を簡略化できる。
 [製造方法]
 さらにここで、実施形態1に係る窒化物半導体エピタキシャル基板100に関わる製造方法について図1を用いて具体的に説明する。
 Si基板101が有機金属気相成長(MOCVD)炉にセッティングされて、Si基板101の温度が500℃以上に昇温される。この後、500℃以上の温度においてSi基板101の表面にC原料及びAl原料が供給される。C原料としては、一例として、有機金属原料であるトリメチルアルミニウム(TMA(Trimethylaluminium))、もしくは、トリエチルアルミニウム(TEA(Triethylaluminium))、四臭化炭素(CBr)又はプロパン(C)が使用されることができる。これらは、III族元素の供給源又はドーパント供給源としてMOCVD炉に備えられている原料であり、工程が簡略化できる。Al原料としてはTMA又はTEAが使用される。キャリアガスとしてH、N、又はその混合が用いられて、上記のC原料とAl原料とがSi基板101表面に供給される。これにより、Si基板101の表面での熱分解反応により分離したC及びAlがSi基板101の表面に吸着する。その後NH及びキャリアガスが供給された雰囲気で、Si基板101の温度を900℃以上に保持することにより、Si基板101の表面に供給されたC及びAlをSi基板101の表面から裏面方向に熱拡散させる。これにより、Al、Si及びCを主成分とする混晶層102が形成される。このように混晶層102は、Si基板101表面に吸着したC及びAlが熱拡散されて形成されるために、混晶層102中のC濃度分布及びAl濃度分布はAlN層103との界面付近で濃度が最も高く、Si基板101側に向けて濃度が減少する分布となる。混晶層102中のC濃度の最も高い値は、C原料の供給量により制御されることが可能である。混晶層102中の遷移金属元素については、例えばFe原料であるCpFeの供給量による意図的なドープ制御に加え、成長温度、成長圧力及びキャリアガス流量などの反応炉内雰囲気によるオートドープ制御によって、遷移金属元素濃度の制御が可能である。なお、CpFeとは、フェロセン(Ferrocene)を意味する。
 その後、Si基板101がAlN層103の成長温度、例えば1000℃以上に昇温される。そして、Al原料としてTMA又はTEAが、N原料としてNHが、H、N、又はその混合がキャリアガスとして供給される。この工程により、窒化物半導体エピタキシャル層としてAlN層103が形成される。
 このようにして実施形態1の構造(つまりは窒化物半導体エピタキシャル基板100)を製造することができる。また、MOCVD炉内で混晶層102及び窒化物半導体エピタキシャル層(例えば、AlN層103)を連続して形成することにより工数を大きく増加することなく実施形態1に係る窒化物半導体エピタキシャル基板100を実現することができる。
 (実施形態1の変形例1)
 次に、実施形態1の変形例1に係る窒化物半導体エピタキシャル基板500について、図5を用いて説明する。窒化物半導体エピタキシャル基板500は、主に、窒化物半導体エピタキシャル層の一例であるAlN層503の構造が実施形態1に係るAlN層103と異なる点を除いては、実施形態1に係る窒化物半導体エピタキシャル基板100と同じ構成を備える。
 [構成]
 図5は、本開示の実施形態1の変形例1に係る窒化物半導体エピタキシャル基板500の断面図である。図5に示すように、本変形例では、Si基板501の上方にAl、Si及びCを主成分とする混晶層502を介して、窒化物半導体エピタキシャル層の一例であるAlN層503がエピタキシャル成長されている。実施形態1に係る混晶層102と同じく、混晶層502に含まれるC濃度は1.0×10+21cm-3以上、Fe濃度は5.0×10+16cm-3以下である。AlN層503は、第1のAlN層504と第2のAlN層505とからなる。第1のAlN層504のC濃度は、第2のAlN層505のC濃度よりも高いことを特徴とする。なお、第1のAlN層504のC濃度、及び、第2のAlN層505のC濃度はいずれも、1.0×10+21cm-3以上である。
 つまり、本変形例では、窒化物半導体エピタキシャル層(AlN層503)が第1の窒化物半導体層(第1のAlN層504)と第2の窒化物半導体層(第2のAlN層505)とからなる。さらに、第1の窒化物半導体層のC濃度が第2の窒化物半導体層のC濃度より高い。また、本変形例では、窒化物半導体エピタキシャル層(AlN層503)は、混晶層502側にAlN層(第1のAlN層504)を有する。
 図6Aは、本開示の実施形態1の変形例1に係る各構成要素におけるC濃度及びSi濃度の模式図である。図6Aに示すように、第1のAlN層504のC濃度は1.0×10+19cm-3、第2のAlN層505のC濃度は1.0×10+16cm-3である。第1のAlN層504、及び第2のAlN層505のC濃度を上記の濃度にするための制御は、例えば第1のAlN層504を低温で成長させ、第2のAlN層505を高温で成長させることで実現される。
 このように本変形例では、AlN層503の初期層(つまりは第1のAlN層504)がC濃度の高いAlNで構成されている。これにより、AlN層503(より具体的には、第1のAlN層504)と混晶層502との界面に低抵抗層が形成されることが抑制された窒化物半導体エピタキシャル基板500が提供される。また、この窒化物半導体エピタキシャル基板500が用いられて作製されたパワートランジスタは、リーク電流を低減することができる。また、AlN層503の初期層を低温で成長させることにより、再現性が高く生産性に優れた窒化物半導体エピタキシャル基板500を実現することができる。
 [製造方法]
 さらにここで、実施形態1の変形例1に係る窒化物半導体エピタキシャル基板500に関わる製造方法について図5を用いて具体的に説明する。
 Si基板501がMOCVD炉にセッティングされて500℃以上に昇温される。これがSi基板501の温度を500℃以上に昇温する工程である。この後、Si基板501の表面にC原料を供給する工程が行われる。より具体的には、500℃以上の温度においてSi基板501の表面にC原料及びAl原料が供給される。C原料としては、一例として、TMA、TEA、CBr又はCが使用されることができる。Al原料としてはTMA又はTEAが使用される。キャリアガスとしてH、N、又はその混合が用いられて、上記のC原料とAl原料とがSi基板501表面に供給される。さらに、Al原料としてTMA又はTEAが、N原料としてNHが、キャリアガスとしてH、N又はその混合が用いられて、第1のAlN層504が形成される。これがSi基板501の上方へ第1の窒化物半導体層を結晶成長させる工程である。その後、NH及びキャリアガスが供給された雰囲気で、Si基板501の温度を900℃以上に保持することにより、Si基板501の表面に供給されたC及びAlをSi基板501の表面から裏面方向に熱拡散させる。これが、Si基板501及び第1の窒化物半導体層の温度を900℃以上に保持して第1の窒化物半導体層からIII族金属元素をSi基板501へ拡散する工程である。これにより、Al、Si及びCを主成分とする混晶層502が形成される。第1のAlN層504の形成は、表面の安定化のために、900℃以上の熱拡散工程の前に行われるとよく、熱拡散温度よりも少なくとも100℃以上低温の温度で行われるとよい。また、第1のAlN層504の膜厚は、10nm以下であることが結晶性改善の観点からはよい。混晶層502中のC濃度の最も高い値は、C原料の供給量により制御されることが可能である。混晶層502中の遷移金属元素については、例えばFe原料であるCpFeの供給量による意図的なドープ制御に加え、成長温度、成長圧力及びキャリアガス流量などの反応炉内雰囲気によるオートドープ制御によって、遷移金属元素濃度の制御が可能である。
 その後、Si基板501が第2のAlN層505の成長温度、たとえば1000℃以上に昇温され、Al原料としてはTMA又はTEAが、N原料としてNHが、H、N又はその混合がキャリアガスとして供給される。これが第1の窒化物半導体層の上方に第2の窒化物半導体層(窒化物半導体エピタキシャル層)を結晶成長する工程である。これにより、第2のAlN層505が形成される。
 このようにして実施形態1の変形例1に係る窒化物半導体エピタキシャル基板500の構造を製造することができる。
 以上のように、本実施形態に係る窒化物半導体エピタキシャル基板500の製造方法によれば、結晶性に優れているAlN層503が実現される。本実施形態に係る窒化物半導体エピタキシャル基板500は、Si基板501と、Si基板501の上方にこのようなAlN層503(窒化物半導体エピタキシャル層の一例)とを備える。つまりは、本実施形態が示すように、Si基板501上方に形成され結晶性に優れた層を備える窒化物半導体エピタキシャル基板500の製造方法が実現される。
 (実施形態1の変形例2)
 次に、実施形態1の変形例2に係る窒化物半導体エピタキシャル基板500aについて、図6Bを用いて説明する。窒化物半導体エピタキシャル基板500aは、主に、窒化物半導体エピタキシャル層の一例であるAlN層503aの構造が変形例1に係るAlN層503と異なる点を除いては、変形例1に係る窒化物半導体エピタキシャル基板500と同じ構成を備える。
 [構成]
 図6Bは、本開示の実施形態1の変形例2に係る窒化物半導体エピタキシャル基板500aの断面図である。図6Bに示すように、本変形例では、Si基板501の上方にAl、Si及びCを主成分とする混晶層502を介して、窒化物半導体エピタキシャル層の一例であるAlN層503aがエピタキシャル成長されている。実施形態1に係る混晶層102と同じく、混晶層502に含まれるC濃度は1.0×10+21cm-3以上、Fe濃度は5.0×10+16cm-3以下である。AlN層503aは、第1のAlN層504aと第2のAlN層505aとからなる。第1のAlN層504aのC濃度は、第2のAlN層505aのC濃度よりも高い。さらに、第1のAlN層504aのC濃度分布は、第1のAlN層504a中で混晶層502から第2のAlN層505aに向かってC濃度が連続的に減少する分布であることを特徴とする。
 実施形態1の変形例1と同様に、例えば成長温度の制御により、第1のAlN層504aに含まれるC濃度は1.0×10+19cm-3、第2のAlN層505aに含まれるC濃度は1.0×10+16cm-3である。ここで、第1のAlN層504aの成長中に成長を中断させずにかつ、成長条件が変更されることにより、第1のAlN層504a中のC濃度が連続的に減少する濃度分布が実現される。
 このように本変形例では、AlN層503aの初期層(つまりは第1のAlN層504a)をC濃度の高いAlNで構成し、混晶層502からその上方のC濃度の低いAlN層(第2のAlN層505a)へ向けてC濃度を連続的に変化させる。これにより、AlN層503a(より具体的には、第1のAlN層504a)と混晶層502との界面に低抵抗層が形成されることがない表面の平坦性に優れた欠陥数の少ない窒化物半導体エピタキシャル基板500aが提供される。
 また、この窒化物半導体エピタキシャル基板500aが用いられて作製されたパワートランジスタはリーク電流を低減し、欠陥数の低減による歩留りの改善を実現することができる。また、AlN層503aの初期層を低温で成長することにより、再現性が高く生産性に優れた窒化物半導体エピタキシャル基板500aを実現することができる。
 [製造方法]
 さらにここで、実施形態1の変形例2に係る窒化物半導体エピタキシャル基板500aに関わる製造方法について図6Bを用いて具体的に説明する。
 Si基板501がMOCVD炉にセッティングされて500℃以上に昇温される。この後、500℃以上の温度においてSi基板501の表面にC原料及びAl原料が供給される。C原料としては、一例として、TMA、TEA、CBr又はCが使用されることができる。Al原料としてはTMA又はTEAが使用される。キャリアガスとしてH、N、又はその混合が用いられて、上記のC原料とAl原料とがSi基板501表面に供給される。さらに、Al原料としてTMA又はTEAが、N原料としてNHが、キャリアガスとしてH、N又はその混合が用いられて、第1のAlN層504aが形成される。その後、Si基板501の温度を900℃以上に昇温、保持することにより、Si基板501の表面に供給されたC及びAlをSi基板501の表面から裏面方向に熱拡散させる。これにより、Al、Si及びCを主成分とする混晶層502が形成される。この熱拡散工程の際に、NHと、TMA又はTEAと、キャリアガスとの供給が継続される。これにより第1のAlN層504aの形成が中断されることなく、熱拡散工程を実施することができる。よって、第1のAlN層504a中の混晶層502側から第2のAlN層505a側に向けてC濃度が連続的に減少するC濃度分布を実現することができる。混晶層502中のC濃度の最も高い値は、C原料の供給量により制御されることが可能である。混晶層502中の遷移金属元素については、例えばFe原料であるCpFeの供給量による意図的なドープ制御に加え、成長温度、成長圧力及びキャリアガス流量などの反応炉内雰囲気によるオートドープ制御によって、遷移金属元素濃度の制御が可能である。
 その後、Si基板501が第2のAlN層505aの成長温度、たとえば1000℃以上に昇温され、Al原料としてはTMA又はTEAが、N原料としてNHが、H、N又はその混合がキャリアガスとして供給される。これにより、第2のAlN層505aが形成される。このようにして実施形態1の変形例2に係る窒化物半導体エピタキシャル基板500aの構造を製造することができる。
 (実施形態2)
 結晶性に優れた窒化物半導体エピタキシャル基板を半導体装置として活用するためには、当該窒化物半導体エピタキシャル基板の上方に目的に応じたヘテロ構造エピタキシャル層を形成することが必要となる。本開示では、ヘテロ構造エピタキシャル層を備える窒化物半導体エピタキシャル基板を、特に窒化物半導体ヘテロ構造エピタキシャル基板と呼ぶ。以下で、パワートランジスタに活用する窒化物半導体ヘテロ構造エピタキシャル基板の具体例について説明する。ここでは、窒化物半導体エピタキシャル基板の一例である実施形態2に係る窒化物半導体ヘテロ構造エピタキシャル基板700について、図7を用いて説明する。
 図7は、本開示の実施形態2に係る窒化物半導体ヘテロ構造エピタキシャル基板700の断面図である。
 本実施形態に係る窒化物半導体ヘテロ構造エピタキシャル基板700は、実施形態1に係るSi基板101と同じ構成である、Si基板701を備える。また、窒化物半導体ヘテロ構造エピタキシャル基板700は、実施形態1に係る混晶層102とはC濃度のみが異なる構成である、混晶層702を備える。さらに、本実施形態では、Si基板701上方にAl、Si及びCを主成分とする混晶層702を介して、窒化物半導体エピタキシャル層の一例であるAlN層703、AlGa1-xN(0≦x≦1)の単層又は複数層からなるバッファ層706、GaNチャネル層707及びAlGaNバリア層708がヘテロ構造としてエピタキシャル成長により形成されている。つまり、本実施形態に係る窒化物半導体ヘテロ構造エピタキシャル基板700が備えるヘテロ構造エピタキシャル層720は、AlN層703、バッファ層706、GaNチャネル層707及びAlGaNバリア層708を含む。さらに、ヘテロ構造エピタキシャル層720は、混晶層702に上方に接して配置されており、AlN層703、バッファ層706、GaNチャネル層707及びAlGaNバリア層708の順に積層されることによって構成されている。また、バッファ層706がAlGa1-xN(0≦x≦1)の複数層によって構成されている場合、層毎にxの値は異なっていてもよい。なお、本実施形態では、GaNチャネル層707は、窒化物半導体エピタキシャル層(AlN層703)の上方に形成された第3の窒化物半導体層の一例である。また、AlGaNバリア層708層は、第3の窒化物半導体層(GaNチャネル層707)の上方に形成された第4の窒化物半導体層の一例である。さらに、GaNチャネル層707及びAlGaNバリア層708の界面においては、ピエゾ分極と自発分極との効果により高濃度の2次元電子ガスが形成されている。つまり、本実施形態に係る窒化物半導体ヘテロ構造エピタキシャル基板700は、第3の窒化物半導体層と第4の窒化物半導体層との界面に2次元電子ガスを有する。バッファ層706中には、最大で1.0×10+20cm-3のCがドープされて、バッファ層706は、高抵抗化している。上記のバッファ層706のC濃度が、ヘテロ構造エピタキシャル層720中で最大のC濃度である。
 本実施形態に係る混晶層702のC濃度は、ヘテロ構造エピタキシャル層720が含む層のそれぞれのC濃度よりも高い。上記の通り、ヘテロ構造エピタキシャル層720が含む層とは、AlN層703、バッファ層706、GaNチャネル層707及びAlGaNバリア層708である。つまり、混晶層702のC濃度は、AlN層703、バッファ層706、GaNチャネル層707及びAlGaNバリア層708のどの層のC濃度よりも高い。なお、AlN層703、バッファ層706、GaNチャネル層707及びAlGaNバリア層708のそれぞれのC濃度とは、それぞれの層中で最も高い値と定義されている。
 以下で、混晶層702中のC濃度とバッファ層706中のC濃度の最も高い値との関係が、GaNチャネル層707の結晶性に与える影響を検討した結果を説明する。GaNチャネル層707の結晶性は、(0002)面及び(10-11)面のXRDロッキングカーブの半値幅により評価された。その結果を図8に示す。図8は、混晶層702中のC濃度とヘテロ構造エピタキシャル層720中のC濃度とがGaNチャネル層707の結晶性に与える影響を評価した結果を示す図である。ここでは、バッファ層706中のC濃度の最大値を1.0×10+20cm-3とし、混晶層702中のC濃度をそれぞれ1.5×10+18cm-3及び1.8×10+21cm-3としたサンプルA及びサンプルBの結晶性評価結果を図8に示す。より具体的には、サンプルAとは、比較例1に係る窒化物半導体ヘテロ構造エピタキシャル基板である。サンプルAは、サンプルAが備える混晶層におけるC濃度が本実施形態に係る混晶層702におけるC濃度とは異なる点を除いて、本実施形態に係る窒化物半導体ヘテロ構造エピタキシャル基板700と同じ構成を有する。サンプルBとは、本実施形態に係る窒化物半導体ヘテロ構造エピタキシャル基板700を意味する。
 図8からわかるように、混晶層702中のC濃度がバッファ層706中のC濃度と比較して十分に大きいサンプルBにおいて(0002)面半値幅及び(10-11)面半値幅ともに大幅な改善が確認できた。本実施形態ではバッファ層706の高抵抗化のためバッファ層706に高濃度にCがドープされているが、バッファ層706の高抵抗化を必要としない用途においては、C濃度はこれよりも低い値であっても構わない。
 バッファ層706のC濃度が低ければ、GaNチャネル層707の結晶性は、改善する傾向がある。そのため、混晶層702中のC濃度はバッファ層706のC濃度と比較して高い値であれば、GaNチャネル層707の結晶性改善に効果がある。なお、本実施形態においても、混晶層702中に含まれる遷移金属元素濃度は5.0×10+16cm-3以下である。
 このようにAl、Si及びCを主成分とする混晶層702をバッファ層としてヘテロ構造エピタキシャル層720が形成されることにより、能動層(ここでは、GaNチャネル層707)の結晶性に優れた窒化物半導体ヘテロ構造エピタキシャル基板700を実現することができる。
 以上まとめると、窒化物半導体ヘテロ構造エピタキシャル基板700は、窒化物半導体エピタキシャル基板の一例である。さらに、混晶層702におけるC濃度がヘテロ構造エピタキシャル層720が含む層のそれぞれのC濃度よりも高く、混晶層702における遷移金属元素濃度が5.0×10+16cm-3以下である。これにより、混晶層702の上方に設けられている能動層(ここでは、GaNチャネル層707)は、結晶性に優れている。つまりは、本実施形態が示すように、Si基板701上方に形成され結晶性に優れた層を備える窒化物半導体エピタキシャル基板(窒化物半導体ヘテロ構造エピタキシャル基板700)が実現される。
 また結晶性に優れた窒化物半導体ヘテロ構造エピタキシャル基板700を用いてパワートランジスタを形成することにより、結晶欠陥を起因として発生するデバイスの破壊を抑制し、信頼性に優れた窒化物半導体装置を実現することができる。
 (実施形態3)
 次に、実施形態3に係る窒化物半導体装置900について、図9を用いて説明する。窒化物半導体装置900は、窒化物半導体ヘテロ構造エピタキシャル基板を備える半導体装置の一例である。
 図9は、本開示の実施形態3に係る窒化物半導体装置900の断面図である。本実施形態に係る窒化物半導体装置900は、実施形態2に係るSi基板701及び混晶層702と同じ構成である、Si基板901及び混晶層902を備える。
 さらに、本実施形態では、Si基板901の上方にAl、Si及びCを主成分とする混晶層902を介して、AlN層903、AlGa1-xN(0≦x≦1)の単層又は複数層からなるバッファ層906、GaNチャネル層907及びAlGaNバリア層908がヘテロ構造としてエピタキシャル成長により形成されている。つまり、本実施形態に係る窒化物半導体装置900が備えるヘテロ構造エピタキシャル層920は、AlN層903、バッファ層906、GaNチャネル層907及びAlGaNバリア層908を含む。さらに、ヘテロ構造エピタキシャル層920は、混晶層902に上方に接して配置されており、AlN層903、バッファ層906、GaNチャネル層907及びAlGaNバリア層908の順に積層されることによって構成されている。また、バッファ層906がAlGa1-xN(0≦x≦1)の複数層によって構成されている場合、層毎にxの値は異なっていてもよい。GaNチャネル層907及びAlGaNバリア層908の界面においては、ピエゾ分極と自発分極との効果により高濃度の2次元電子ガスが形成されている。混晶層902は、ヘテロ構造エピタキシャル層920のどの層よりも高い濃度のCを有する。つまり、本実施形態に係る混晶層902のC濃度は、ヘテロ構造エピタキシャル層920が含む層のそれぞれのC濃度よりも高い。例えば、バッファ層906中には最大で1.0×10+20cm-3のCがドープされており、混晶層902中に含まれるC濃度は1.0×10+21cm-3以上、遷移金属元素濃度は5.0×10+16cm-3以下である。
 さらに、本実施形態に係る窒化物半導体装置900は、ゲート電極911、ソース電極909及びドレイン電極910を備える。より具体的には、AlGaNバリア層908の上方にはゲート電極911の左右に離間してソース電極909及びドレイン電極910が形成される。つまり、本実施形態に係る窒化物半導体装置900は、Si基板901上方に形成され結晶性に優れた層を備える窒化物半導体エピタキシャル基板を用いた半導体装置である。
 このように、結晶性に優れた窒化物半導体ヘテロ構造エピタキシャル基板を用いてパワートランジスタを形成することにより、結晶欠陥を起因として発生するデバイスの破壊を抑制し、信頼性に優れた窒化物半導体装置900を実現することができる。
 (その他の実施形態)
 以上、実施形態について説明したが、本開示は、上記実施形態に限定されるものではない。
 その他、各実施形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本開示の趣旨を逸脱しない範囲で各実施形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示は、高品質な窒化物半導体エピタキシャル基板を実現し、これを用いた窒化物半導体装置のデバイス性能の向上、デバイス長寿命化を実現することができる。
100、500、500a 窒化物半導体エピタキシャル基板
101、501、701、901 Si基板
102、502、702、902 混晶層
103、503、503a、703、903 AlN層
504、504a 第1のAlN層
505、505a 第2のAlN層
700 窒化物半導体ヘテロ構造エピタキシャル基板
706、906 バッファ層
707、907 GaNチャネル層
708、908 AlGaNバリア層
720、920 ヘテロ構造エピタキシャル層
900 窒化物半導体装置
909 ソース電極
910 ドレイン電極
911 ゲート電極

Claims (14)

  1.  Si基板と、
     前記Si基板の上方に形成された窒化物半導体エピタキシャル層と、
     前記Si基板と前記窒化物半導体エピタキシャル層との間に配置され、高濃度にCを含むSiとIII族金属元素との混晶層と、を備え、
     前記混晶層におけるC濃度が1.0×10+21cm-3以上であり、
     前記混晶層における遷移金属元素濃度が5.0×10+16cm-3以下である
     窒化物半導体エピタキシャル基板。
  2.  前記遷移金属元素がFe、Cr、Cu、Ni、Mn及びCoのうち少なくとも1種である
     請求項1に記載の窒化物半導体エピタキシャル基板。
  3.  前記遷移金属元素がFe、Cr、Cu、Ni、Mn及びCoのうち少なくとも1種であり、
     前記遷移金属元素のそれぞれの元素濃度が5.0×10+16cm-3以下である
     請求項1又は2に記載の窒化物半導体エピタキシャル基板。
  4.  前記III族金属元素が前記窒化物半導体エピタキシャル層のIII族金属元素と同一である
     請求項1から3のいずれかの1項に記載の窒化物半導体エピタキシャル基板。
  5.  前記混晶層中のC濃度分布は、前記窒化物半導体エピタキシャル層側でC濃度が高く、前記Si基板側でC濃度が低くなるように連続的に減少する分布である
     請求項1から4のいずれか1項に記載の窒化物半導体エピタキシャル基板。
  6.  前記混晶層の厚さが50nm以下である
     請求項1から5のいずれか1項に記載の窒化物半導体エピタキシャル基板。
  7.  前記混晶層中のC濃度が1.0×10+22cm-3以下である
     請求項1から6のいずれか1項に記載の窒化物半導体エピタキシャル基板。
  8.  前記窒化物半導体エピタキシャル層は、前記混晶層側にAlN層を有する
     請求項1から7のいずれか1項に記載の窒化物半導体エピタキシャル基板。
  9.  前記窒化物半導体エピタキシャル層が第1の窒化物半導体層と第2の窒化物半導体層とからなり、
     前記第1の窒化物半導体層のC濃度が前記第2の窒化物半導体層のC濃度より高い
     請求項1から8のいずれか1項に記載の窒化物半導体エピタキシャル基板。
  10.  Si基板と、
     前記Si基板の上方に形成された窒化物半導体エピタキシャル層を含むヘテロ構造エピタキシャル層と、
     前記Si基板と前記窒化物半導体エピタキシャル層との間に配置され、高濃度にCを含むSiとIII族金属元素との混晶層と、を備え、
     前記混晶層におけるC濃度が前記ヘテロ構造エピタキシャル層が含む層のそれぞれのC濃度よりも高く、
     前記混晶層における遷移金属元素濃度が5.0×10+16cm-3以下である
     窒化物半導体エピタキシャル基板。
  11.  前記窒化物半導体エピタキシャル層の上方に形成された第3の窒化物半導体層と、
     前記第3の窒化物半導体層の上方に形成された第4の窒化物半導体層と、
    をさらに備え、
     前記第3の窒化物半導体層と前記第4の窒化物半導体層との界面に2次元電子ガスを有する
     請求項1から10のいずれか1項に記載の窒化物半導体エピタキシャル基板。
  12.  請求項11に記載の窒化物半導体エピタキシャル基板を用いて形成された
     窒化物半導体装置。
  13.  Si基板の温度を500℃以上に昇温する工程と、
     前記Si基板の表面にC原料を供給する工程と、
     前記Si基板の上方へ第1の窒化物半導体層を結晶成長させる工程と、
     前記Si基板及び前記第1の窒化物半導体層の温度を900℃以上に保持して前記第1の窒化物半導体層からIII族金属元素を前記Si基板へ拡散する工程と、
     前記第1の窒化物半導体層の上方に第2の窒化物半導体層を結晶成長する工程とを含む
     窒化物半導体エピタキシャル基板の製造方法。
  14.  前記C原料は、トリメチルアルミニウム、トリエチルアルミニウム、四臭化炭素、又はプロパンである
     請求項13に記載の窒化物半導体エピタキシャル基板の製造方法。
PCT/JP2022/000030 2021-02-22 2022-01-04 窒化物半導体エピタキシャル基板、その製造方法、及び、窒化物半導体装置 WO2022176412A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/264,202 US20240112909A1 (en) 2021-02-22 2022-01-04 Nitride semiconductor epitaxial substrate, method for producing same, and nitride semiconductor device
JP2023500600A JPWO2022176412A1 (ja) 2021-02-22 2022-01-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025907 2021-02-22
JP2021-025907 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022176412A1 true WO2022176412A1 (ja) 2022-08-25

Family

ID=82930703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000030 WO2022176412A1 (ja) 2021-02-22 2022-01-04 窒化物半導体エピタキシャル基板、その製造方法、及び、窒化物半導体装置

Country Status (3)

Country Link
US (1) US20240112909A1 (ja)
JP (1) JPWO2022176412A1 (ja)
WO (1) WO2022176412A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069156A (ja) * 2001-08-29 2003-03-07 Sharp Corp 窒素化合物半導体積層物、発光素子、光ピックアップシステム、および窒素化合物半導体積層物の製造方法。
JP2010030877A (ja) * 2008-07-03 2010-02-12 Furukawa Co Ltd Iii族窒化物半導体基板およびその製造方法
JP2011082494A (ja) * 2009-09-14 2011-04-21 Covalent Materials Corp 化合物半導体基板
JP2012151401A (ja) * 2011-01-21 2012-08-09 Sumco Corp 半導体基板及びその製造方法
WO2017002317A1 (ja) * 2015-06-29 2017-01-05 サンケン電気株式会社 半導体デバイス用基板、半導体デバイス、並びに半導体デバイスの製造方法
JP2018113358A (ja) * 2017-01-12 2018-07-19 三菱電機株式会社 高電子移動度トランジスタの製造方法、高電子移動度トランジスタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069156A (ja) * 2001-08-29 2003-03-07 Sharp Corp 窒素化合物半導体積層物、発光素子、光ピックアップシステム、および窒素化合物半導体積層物の製造方法。
JP2010030877A (ja) * 2008-07-03 2010-02-12 Furukawa Co Ltd Iii族窒化物半導体基板およびその製造方法
JP2011082494A (ja) * 2009-09-14 2011-04-21 Covalent Materials Corp 化合物半導体基板
JP2012151401A (ja) * 2011-01-21 2012-08-09 Sumco Corp 半導体基板及びその製造方法
WO2017002317A1 (ja) * 2015-06-29 2017-01-05 サンケン電気株式会社 半導体デバイス用基板、半導体デバイス、並びに半導体デバイスの製造方法
JP2018113358A (ja) * 2017-01-12 2018-07-19 三菱電機株式会社 高電子移動度トランジスタの製造方法、高電子移動度トランジスタ

Also Published As

Publication number Publication date
JPWO2022176412A1 (ja) 2022-08-25
US20240112909A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
JP5543076B2 (ja) 電界効果トランジスタ用エピタキシャル基板
CN111540781B (zh) 在异质基底上的第III族氮化物缓冲层结构的p型掺杂
US9312341B2 (en) Compound semiconductor device, power source device and high frequency amplifier and method for manufacturing the same
CN108695385B (zh) 一种基于Si衬底的GaN基射频器件外延结构及其制造方法
EP2290696B1 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
US8785942B2 (en) Nitride semiconductor substrate and method of manufacturing the same
KR102293962B1 (ko) 반도체 장치의 제조 방법, 반도체 장치
US20160079370A1 (en) Semiconductor device, semiconductor wafer, and semiconductor device manufacturing method
US10211297B2 (en) Semiconductor heterostructures and methods for forming same
JP4468744B2 (ja) 窒化物半導体薄膜の作製方法
WO2023024549A1 (zh) GaN基HEMT器件、器件外延结构及其制备方法
CN113889402A (zh) 一种用于制备GaN基电子器件的方法
CN114250510A (zh) 一种用于氮化镓基射频器件的外延结构及其制备方法
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
JP6652042B2 (ja) Iii−v族窒化物半導体エピタキシャルウェハの製造方法
JP5746927B2 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
JP2007123824A (ja) Iii族窒化物系化合物半導体を用いた電子装置
WO2022176412A1 (ja) 窒化物半導体エピタキシャル基板、その製造方法、及び、窒化物半導体装置
JP5119644B2 (ja) Iii−v族化合物半導体エピタキシャルウェハ
CN111009579A (zh) 半导体异质结构及半导体器件
JP2019165156A (ja) 半導体発光素子およびその製造方法
US20220020871A1 (en) Stacked buffer in transistors
KR100413523B1 (ko) 이차원 전자가스의 전자밀도가 증가된 고전자이동도트랜지스터의 제조방법
JP2005191477A (ja) 高電子移動度トランジスタ用エピタキシャルウェハ
CN116936631B (zh) 一种氮化镓基晶体管的外延结构及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500600

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18264202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755738

Country of ref document: EP

Kind code of ref document: A1