WO2022173019A1 - Transparent conductive active energy ray-curable composition and manufacturing method therefor - Google Patents

Transparent conductive active energy ray-curable composition and manufacturing method therefor Download PDF

Info

Publication number
WO2022173019A1
WO2022173019A1 PCT/JP2022/005491 JP2022005491W WO2022173019A1 WO 2022173019 A1 WO2022173019 A1 WO 2022173019A1 JP 2022005491 W JP2022005491 W JP 2022005491W WO 2022173019 A1 WO2022173019 A1 WO 2022173019A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
mass
fine particles
meth
Prior art date
Application number
PCT/JP2022/005491
Other languages
French (fr)
Japanese (ja)
Inventor
勝也 魚留
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to JP2022580695A priority Critical patent/JPWO2022173019A1/ja
Publication of WO2022173019A1 publication Critical patent/WO2022173019A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material

Definitions

  • the present invention relates to a transparent conductive active energy ray-curable composition, a method for producing the same, and a cured film obtained by curing the transparent conductive active energy ray-curable composition.
  • Patent Document 1 discloses a composition for forming a conductive film containing conductive inorganic particles, a dispersant, a resin and a solvent.
  • Patent Documents 2 to 4 each disclose a solvent-free coating composition containing a conductive material such as conductive fine particles or powder and a resin.
  • solvent-based conductive paints use a solvent as a diluent. After coating the article to be treated, the solvent contained in the coating film must be removed by drying, etc., and there are issues in terms of work efficiency and the need for large-scale drying equipment and equipment for recovering volatile solvents. can occur. Moreover, when an organic solvent is used as the solvent, it is necessary to consider environmental problems such as VOC countermeasures. On the other hand, solvent-free conductive paints can solve the above problems in solvent-based conductive paints, but the solid content concentration is limited in order to ensure coatability, and a sufficient amount of conductive material is used. is difficult to blend, and there is a problem in improving electrical properties.
  • An object of the present invention is to provide a solvent-free transparent conductive active energy ray-curable composition capable of forming a conductive film having sufficiently high antistatic performance while having excellent coatability.
  • the present invention provides the following preferred aspects.
  • Active energy ray-curable compounds include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 3-methyl -1,5-pentanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate and (meth)acrylic acid 2-(2-) The transparent conductive active energy ray curing according to [1] or [2] above, containing at least one selected from the group consisting of vinyloxyethoxy)ethyl and 2-(allyloxymethyl)(meth)methyl acryl
  • the transparent conductive material according to any one of [1] to [5], wherein the content of the polymerization initiator is 8 parts by mass or more and 27 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable compound.
  • Active energy ray-curable composition [7]
  • the inorganic conductive fine particles are selected from the group consisting of tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), silver nanoparticles, silver nanowires and copper nanoparticles.
  • the transparent conductive active energy ray-curable composition according to any one of [1] to [6], comprising at least one of the above.
  • ATO antimony-doped tin oxide
  • the dispersant is a polymer having an acid value of 100 mgKOH/g or more.
  • the dispersant is a polymer containing a structural unit having at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a phosphonic acid group, a phosphoric acid group and a hydroxyl group, above [1] to [9].
  • the transparent conductive active energy ray-curable composition according to any one of the above.
  • a solvent-free transparent conductive active energy ray-curable composition capable of forming a conductive film having sufficiently high antistatic performance while having excellent coatability.
  • the transparent conductive active energy ray-curable composition of the present invention (hereinafter also simply referred to as “conductive composition” or “conductive composition of the present invention”) contains inorganic conductive fine particles. By including the inorganic conductive fine particles, desired electrical properties can be imparted to the cured film obtained from the conductive composition.
  • the inorganic conductive fine particles include aggregated particles, and that the inorganic conductive fine particles mainly exist as aggregated particles.
  • aggregated particles refer to secondary particles formed by contacting a plurality of primary particles of inorganic conductive fine particles with each other.
  • the surface electrical resistance of the cured film obtained with a smaller amount compared to the case where the fine particles are present as primary particles can be made equal to or lower than the surface electrical resistance of the conductive composition. It becomes easy to adjust to a desired surface electrical resistance value while ensuring good coatability.
  • the shape of the aggregated particles may be spherical, ellipsoidal, flat, or any other shape formed by aggregation of the primary particles of the inorganic conductive fine particles, preferably spherical.
  • "mainly present as aggregated particles” means that more than 50% by mass of the inorganic conductive fine particles are present as aggregated particles with respect to the total mass of the inorganic conductive fine particles.
  • Conductive fine particles exist as aggregated particles.
  • the average aggregate particle diameter of the aggregate particles of the inorganic conductive fine particles is 90 nm or more and 180 nm or less.
  • the average aggregate particle size of the inorganic conductive fine particles is 90 nm or more, a conductive path is easily formed in the aggregate particles, and the electrical resistance between the particles is reduced. Electrical characteristics can be obtained. This makes it possible to obtain a conductive composition capable of imparting high antistatic performance to a cured film to be formed, and achieve both excellent coatability and good antistatic performance.
  • the average aggregated particle size of the inorganic conductive fine particles is preferably 92 nm or more, more preferably 100 nm or more, and still more preferably 105 nm or more. It is particularly preferably 110 nm or more, preferably 175 nm or less, more preferably 165 nm or less, still more preferably 155 nm or less, and particularly preferably 150 nm or less.
  • the average aggregate particle size of the inorganic conductive fine particles is the average particle size of aggregate particles measurable by a dynamic light scattering method, and means the median particle size ( D50 ) in the volume particle size distribution.
  • a general measuring instrument capable of measuring the average particle size by the dynamic light scattering method can be used.
  • An instrument for measuring aggregated particles in the conductive composition of the invention must be able to measure the particle size of the inorganic conductive fine particles dispersed as aggregated particles regardless of whether the sample is diluted or not.
  • Examples of such measuring equipment include a concentrated particle size analyzer manufactured by Otsuka Electronics Co., Ltd., a multi-sample nanoparticle size measuring system, a particle size distribution measuring device manufactured by Microtrac, and a laser diffraction type particle size manufactured by Shimadzu Corporation.
  • a distribution measuring device, a laser diffraction/scattering particle size distribution measuring device manufactured by Horiba, Ltd., or the like can be employed.
  • diluting it is necessary to select a solvent that does not change the aggregation state of the inorganic conductive fine particles. More specifically, the average aggregate particle size of the inorganic conductive fine particles can be measured, for example, according to the method described in Examples below.
  • the average aggregate particle size of the inorganic conductive fine particles is determined, for example, by the type of the active energy ray-curable compound constituting the conductive composition, the type and amount of the dispersant, and the dispersion treatment conditions of the inorganic conductive fine particles (for example, inorganic conductive It is possible to control within a desired range by adjusting the concentration of the fine particles, the treatment time, the treatment temperature, the material and diameter of the beads, the speed, the filling rate, etc.).
  • the average primary particle size of the inorganic conductive fine particles is usually 10 nm or more and 50 nm or less, preferably 10 nm or more and 30 nm or less.
  • the average primary particle size of the inorganic conductive fine particles is within the above range, it becomes easier to control the average aggregate particle size of the inorganic conductive fine particles within the range specified in the present invention.
  • the average primary particle size of the inorganic conductive fine particles is an average particle size that can be measured by a laser diffraction measurement method or a dynamic light scattering method, and the median particle size (D 50 ) in the volume particle size distribution is means.
  • the amount of the inorganic conductive fine particles present as primary particles is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less, relative to the total mass of the inorganic conductive fine particles. , particularly preferably 5% by mass or less.
  • the components (materials) of the inorganic conductive fine particles are not particularly limited as long as they are conductive particles, and components known as conductive particles can be used.
  • conductive metal oxide particles such as tin oxide and zinc oxide; conductive nitride particles; one or more metal oxides selected from the group consisting of indium oxide, tin oxide, zinc oxide and cadmium oxide
  • Conductive metal oxide particles which are mainly composed of a substance and further doped with tin, antimony, phosphorus, aluminum, and gallium, such as antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), and phosphorus-doped tin oxide (PTO) , aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), etc.
  • conductive carbon particles coated with a conductive material
  • the inorganic conductive fine particles are tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO ), preferably contains at least one selected from the group consisting of silver nanoparticles, silver nanowires and copper nanoparticles, more preferably contains at least one selected from tin oxide and antimony-doped tin oxide (ATO) More preferably, it contains antimony-doped tin oxide (ATO).
  • ITO tin-doped indium oxide
  • ATO antimony-doped tin oxide
  • PTO phosphorus-doped tin oxide
  • ATO antimony-doped tin oxide
  • the content of the inorganic conductive fine particles in the conductive composition is 40% by mass or more and 60% by mass or less with respect to the total mass of the conductive composition. If the content of the inorganic conductive fine particles is less than 40% by mass, it may be difficult to impart sufficient antistatic performance to the resulting cured film. On the other hand, if the content exceeds 60% by mass, the viscosity of the composition tends to increase due to the inclusion of the inorganic conductive fine particles, which may result in deterioration of coatability.
  • the content of the inorganic conductive fine particles, relative to the total mass of the conductive composition preferably 42 % by mass or more, more preferably 45% by mass or more, and preferably 58% by mass or less, more preferably 55% by mass or less.
  • the conductive composition of the present invention contains an active energy ray-curable compound.
  • the active energy ray-curable compound is a component that functions as a dispersion medium for the inorganic conductive fine particles and forms a matrix resin that disperses and fixes the inorganic conductive fine particles in the resulting cured film.
  • An active energy ray-curable compound is a component that has the property of being polymerized and cured by irradiation with an active energy ray such as ultraviolet rays, and includes polymerizable compounds that have at least one reactive group in the molecule.
  • the reactive group includes, for example, a group that can participate in a polymerization reaction by an active radical generated from a polymerization initiator or an acid, and specifically, a vinyl group, a (meth)acryloyl group, an oxiranyl group, and an oxetanyl group. etc.
  • a radically polymerizable group is preferred, a vinyl group and a (meth)acryloyl group are more preferred, and a (meth)acryloyl group is even more preferred.
  • (meth)acryloyl represents both or one of acryloyl and methacryloyl, and hereinafter, the same applies to "(meth)acrylate” and the like.
  • Any of a monomer, a prepolymer, and an oligomer may be sufficient as an active-energy-ray-curable compound.
  • the active energy ray-curable compound may be used alone or in combination of two or more.
  • the active energy ray-curable compound is not particularly limited as long as it can function as a dispersion medium for inorganic conductive fine particles and can be cured by an active energy ray.
  • a wide variety of polymerizable compounds and the like can be used. Since it has excellent reactivity and tends to impart appropriate strength and hardness to the resulting cured film, in one embodiment of the present invention, the conductive composition contains at least two active energy ray-curable compounds. It preferably contains an active energy ray-curable compound having a reactive group (hereinafter also referred to as a "polyfunctional active energy ray-curable compound").
  • active energy ray-curable compounds having at least two reactive groups include Linear or branched alkylene glycol di(meth)acrylate having 10 to 25 carbon atoms or 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 2-nbutyl-2-ethyl-1,3-propanediol di(meth)acrylate Acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate , dipropylene glycol di(meth)acrylate
  • Vinyl ether group-containing (meth)acrylic acid esters such as 2-(2-vinyloxyethoxy)ethyl (meth)acrylate; Allyl group-containing (meth)acrylic acid esters such as 2-(allyloxymethyl)(meth)methyl acrylate; Bifunctional or higher amino acrylates such as amino (meth) acrylate, amine-modified polyether (meth) acrylate, amine-modified polyester (meth) acrylate, amine-modified epoxy (meth) acrylate, amine-modified urethane (meth) acrylate, etc. mentioned.
  • the composition contains a polyfunctional (meth)acrylate compound having at least two (meth)acryloyl groups (hereinafter also referred to as a "polyfunctional (meth)acrylate compound").
  • bifunctional (meth)acrylate compound having two (meth)acryloyl groups in the molecule
  • bifunctional (meth)acrylate compound 1,3-butane Diol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, neopentyl glycol Di(meth)acrylate, dipropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate and 2-(2-vinyloxyethoxy)ethyl (meth)acrylate, 2-(allyloxymethyl)(meth)acrylate More preferably, it contains at least one selected from the group consisting of methyl acrylate, and particularly preferably contains 1,6-hexanediol di(meth)acrylate, and particularly preferably contains 1,6-hexanediol
  • the conductive composition of the present invention contains an active energy ray-curable compound having one reactive group in the molecule (hereinafter also referred to as a "monofunctional active energy ray-curable compound") as an active energy ray-curable compound.
  • an active energy ray-curable compound having one reactive group in the molecule
  • monofunctional active energy ray-curable compounds include monofunctional ethylenically unsaturated monomers having one ethylenic double bond in the molecule.
  • Alkyl (meth)acrylates having a branched alkyl group (meth)acrylates having a cyclic structure such as an alicyclic structure, an aromatic ring structure or a heterocyclic structure in the molecule, and (meth)acrylamides and N-vinyllactams Nitrogen atom-containing monofunctional ethylenically unsaturated monomers such as
  • Examples of the monofunctional active energy ray-curable compound include 2-phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, diethylene glycol methyl ether (meth) acrylate, 2-( 2-ethoxyethoxy)ethyl (meth)acrylate, stearyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, lauryl (meth)acrylate, isodecyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, isooctyl (meth)acrylate, octyl (meth)acrylate, decyl (meth)acrylate, tridecyl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, alkoxylated tetrahydrofurfuryl (meth)acryl
  • an active energy ray-curable compound having a single viscosity of 150 mPa s or less at 25°C is used as the active energy ray-curable compound.
  • curable compound hereinafter also referred to as "active energy ray-curable low-viscosity compound"
  • the single viscosity at 25° C. of the active energy ray-curable low-viscosity compound is more preferably 60 mPa ⁇ s or less, still more preferably 30 mPa ⁇ s or less. The single viscosity at 25° C.
  • the unit viscosity of the active energy ray-curable compound is usually 1 mPa ⁇ s or more.
  • the unit viscosity of the active energy ray-curable compound is the unit viscosity of a monomer, and can be measured, for example, with an E-type viscometer TVE-22 manufactured by Toki Sangyo Co., Ltd.
  • the content of the active energy ray-curable compound in the conductive composition is preferably 25% by mass or more, more preferably 30% by mass or more, and still more preferably 35% by mass or more, relative to the total mass of the conductive composition. and is preferably 60% by mass or less, more preferably 55% by mass or less, and even more preferably 50% by mass or less.
  • the content of the active energy ray-curable compound is within the above range, it is possible to obtain a conductive composition having excellent coatability while being excellent in the dispersibility of the inorganic conductive fine particles.
  • the ratio of the polyfunctional active energy ray-curable compound to the total amount of active energy ray-curable compounds contained in the conductive composition is preferably 70% by mass or more, more preferably 80% by mass. % by mass or more, more preferably 85% by mass or more, particularly preferably 90% by mass or more, and all active energy ray-curable compounds contained in the conductive composition are polyfunctional active energy ray-curable compounds.
  • the ratio of the polyfunctional (meth)acrylate compound to the total amount of the polyfunctional active energy ray-curable compounds contained in the conductive composition is preferably 80% by mass or more, more preferably 90% by mass or more.
  • the polyfunctional active energy ray-curable compounds may be polyfunctional (meth)acrylate compounds.
  • the ratio of the bifunctional (meth)acrylate compound to the total amount of the polyfunctional active energy ray-curable compounds contained in the conductive composition is preferably 60% by mass or more, more preferably 70% by mass or more. , more preferably 80% by mass or more, particularly preferably 90% by mass or more, and all of the polyfunctional active energy ray-curable compounds may be bifunctional (meth)acrylate compounds.
  • the proportion of the polyfunctional active energy ray-curable composition in the conductive composition and the proportion of the polyfunctional or bifunctional (meth)acrylate compound in the polyfunctional active energy ray-curable compound are at least the above lower limits, active energy ray curing
  • the strength and hardness of the resulting cured film are likely to be improved while maintaining good dispersibility and coatability due to the addition of the curable compound.
  • the ratio of the monofunctional active energy ray-curable compound to the total amount of active energy ray-curable compounds contained in the conductive composition may be, for example, 70% by mass or more, preferably is 80% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more, and all active energy ray-curable compounds contained in the conductive composition are monofunctional active energy ray-curable compounds may be Further, the ratio of the monofunctional (meth)acrylate compound to the total amount of monofunctional active energy ray-curable compounds contained in the conductive composition is preferably 80% by mass or more, more preferably 90% by mass or more.
  • all of the monofunctional active energy ray-curable compounds may be monofunctional (meth)acrylate compounds.
  • the ratio of the monofunctional active energy ray-curable composition in the conductive composition and the ratio of the monofunctional (meth)acrylate compound in the monofunctional active energy ray-curable compound are within the above ranges, the dispersibility of the inorganic conductive fine particles is improved. While being excellent, it is easy to ensure good coatability of the composition.
  • the content when the conductive composition contains a polyfunctional active energy ray-curable compound and further contains a monofunctional active energy ray-curable compound, the content is For example, it may be preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less, relative to the total mass.
  • the active energy ray-curable compound when the content of the monofunctional active energy ray-curable compound is equal to or less than the above upper limit, the reactivity may be improved, and the strength of the resulting cured film may be more likely to be improved.
  • an active energy ray-curable compound (active energy ray-curable
  • the proportion of the low-viscosity compound) is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 85% by mass or more, and particularly preferably 90% by mass or more. All active energy ray-curable compounds contained may be active energy ray-curable low-viscosity compounds.
  • the conductive composition of the present invention contains a polymerization initiator.
  • a polymerization initiator is a compound capable of initiating a polymerization reaction of an active energy ray-curable compound.
  • a photopolymerization initiator that generates active radicals or acids by the action of light is preferable in that the polymerization reaction can be initiated under lower temperature conditions, and a photopolymerization initiator that generates radicals by the action of light is more preferred. preferable.
  • the polymerization initiator only one type may be used, or two or more types may be used in combination.
  • a known polymerization initiator can be used as the polymerization initiator.
  • examples include acylphosphine oxide compounds, ⁇ -aminoalkylphenone compounds, ⁇ -hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds and ketal compounds. Among them, it is preferable to contain an ⁇ -aminoalkylphenone compound as a polymerization initiator.
  • acylphosphine oxide compounds include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide.
  • acylphosphine oxide compounds include 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoyldiphenylphosphine oxide, 4-methylbenzoyldiphenylphosphine oxide, 4-ethylbenzoyldiphenylphosphine oxide, 4-isopropylbenzoyl diphenylphosphine oxide, 1-methylcyclohexanoylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphine acid methyl ester, 2 , 4,6-trimethylbenzoylphenylphosphinic acid isopropyl ester, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide and the like. These may be used singly or in combination.
  • ⁇ -aminoalkylphenone compounds include 2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl)butanone-1,2-methyl-1-[4-(methoxythio)-phenyl]-2-morpholinopropan-2-one and the like. These may be used singly or in combination. Examples of commercially available ⁇ -aminoalkylphenone compounds include "IRGACURE 369" and "IRGACURE 907" manufactured by BASF.
  • ⁇ -hydroxyquinone compound examples include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1- ⁇ 4-[4- (2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl- 1-propan-1-one and the like. These may be used singly or in combination.
  • Commercially available ⁇ -hydroxyquinone compounds include "IRGACURE 184", “DAROCURE 1173”, “IRGACURE 2959”, and "IRGACURE 127".
  • thioxanthone compounds include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used singly or in combination.
  • Commercially available thioxanthone compounds include, for example, "MKAYACURE DETX-S” manufactured by Nippon Kayaku Co., Ltd., and "Chivacure ITX” manufactured by Double Bond Chemical.
  • benzoin compounds include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
  • anthraquinone compound examples include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, and 2-amylanthraquinone.
  • ketal compounds include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, etc.], benzophenone compounds having 13 to 21 carbon atoms [for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 '-bismethylaminobenzophenone and the like.
  • the content of the polymerization initiator is preferably 8 parts by mass or more and 27 parts by mass or less, more preferably 8.5 parts by mass or more, and still more preferably 9 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound. More preferably 25 parts by mass or less, more preferably 20 parts by mass or less.
  • the content of the polymerization initiator is at least the above lower limit, the curability of the conductive composition can be sufficiently enhanced. can be reduced.
  • the content of the polymerization initiator is too low, the resulting cured film may have too high a surface electrical resistance, failing to obtain antistatic performance.
  • the amount of the polymerization initiator is too large, the polymerization initiator becomes difficult to dissolve sufficiently in the conductive composition.
  • the conductive composition of the present invention contains a dispersant.
  • the dispersant here means a dispersant for dispersing the inorganic conductive fine particles described above, and the conductive composition of the present invention contains at least Contains one dispersant.
  • the structure of the dispersant improves the dispersibility of particles and prevents sedimentation, as long as the inorganic conductive fine particles can be dispersed as aggregated particles having a desired average aggregated particle size in the active energy ray-curable compound serving as a dispersion medium.
  • a variety of dispersants used for this purpose can be employed.
  • dispersants examples include modified acrylic (co)polymers, acrylic (co)polymers, salts of high molecular weight (co)polymers having acid groups, hydroxyl group-containing carboxylic acid esters, alkylolamino Examples include amides, unsaturated polycarboxylic acid polyaminoamides, and alkylammonium salts or phosphate ester salts of polymer copolymers. Only one dispersant may be used, or two or more dispersants may be used in combination.
  • the conductive composition preferably contains a polymer having an acid value of 100 mgKOH/g or more as a dispersant.
  • a polymer having an acid value of 100 mgKOH/g or more it becomes easier for the inorganic conductive fine particles to be present in the composition as aggregated particles having an average aggregated particle size within the range specified in the present invention, and the conductive composition is improved. It becomes easier to control the viscosity in a suitable range for good coatability.
  • hydroxyl groups are often present on the surface of the inorganic conductive fine particles, and when the acid value increases, the apparent pH decreases, and the hydroxyl groups present on the surface of the inorganic conductive fine particles are positively charged.
  • the acid groups of the dispersant are more likely to be adsorbed, leading to improved dispersibility.
  • the upper limit of the acid value of the dispersant is not particularly limited, it is usually 200 mgKOH/g or less, preferably 150 mgKOH/g or less, from the viewpoint of the length of the molecular chain per acidic group.
  • the acid value means the number of mg of KOH required to neutralize 1 g of the solid content of the dispersing agent, and can be determined according to JIS K 0070, for example, by potentiometric titration.
  • the amine value of the dispersant is preferably 90 mgKOH/g or less, more preferably 80 mgKOH/g or less, and may be 0 mgKOH/g.
  • the amine value means the number of mg of KOH equivalent to the amount of HCl required to neutralize 1 g of the solid content of the dispersant, and is measured according to JIS K 7237, for example, by potentiometric titration. be able to.
  • the dispersant is preferably a polymer that includes a structural unit having at least one acid group.
  • acid groups in structural units having acid groups include carboxyl groups, sulfonic acid groups, phosphonic acid groups, phosphoric acid groups, hydroxyl groups, and thiol groups. Among them, it is preferable to have at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a phosphonic acid group, a phosphoric acid group and a hydroxyl group, and it is selected from the group consisting of a carboxyl group, a sulfonic acid group and a phosphoric acid group. More preferably have at least one, and more preferably have a phosphate group.
  • the weight average molecular weight of the dispersant is preferably 800 or more, more preferably 1,000 or more, and preferably 30,000 or less, more preferably 10,000 or less.
  • the weight average molecular weight can be determined as a styrene-equivalent molecular weight by general gel permeation chromatography (GPC).
  • a commercially available product may be used as a dispersant.
  • examples of such commercially available dispersants include DISPERBYK-102, DISPERBYK-106, DISPERBYK-145, DISPERBYK-111, DISPERBYK-180, BYK-P105 and TEGODisper655 manufactured by BYK-Chemie.
  • the content of the dispersant in the conductive composition of the present invention is preferably 8 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the inorganic conductive fine particles.
  • amount of the dispersant is at least the above lower limit, it becomes easier to control the viscosity of the conductive composition within a viscosity range suitable for good coatability.
  • amount of the dispersing agent is equal to or less than the above upper limit, it becomes easier to control the average aggregated particle size of the inorganic conductive fine particles within a desired range.
  • the content of the dispersant is more preferably 9 parts by mass or more, still more preferably 10 parts by mass or more, and more preferably 100 parts by mass of the inorganic conductive fine particles. is 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 15 parts by mass or less.
  • the conductive composition of the present invention is a so-called solventless composition.
  • the solvent-free system means that the content of the organic solvent and water in the conductive composition (when the organic solvent and water are included, or when multiple types of organic solvents are included, the total amount) is It means that it is 5% by mass or less with respect to the total mass of the conductive composition.
  • the content of the organic solvent and water is preferably 3% by mass or less, more preferably 1% by mass or less, and in one embodiment of the present invention, the conductive composition of the present invention is Contains no organic solvents and water.
  • the conductive composition of the present invention is a transparent conductive composition.
  • transparent conductive composition means a conductive composition capable of forming a conductive film having translucency through which light, particularly visible light, can be transmitted. is 60 or more.
  • the total light transmittance can be measured according to JIS K 7361, for example.
  • the electrically conductive composition of the present invention contains inorganic electrically conductive fine particles, an active energy ray-curable compound, a polymerization initiator and a dispersant, as long as the effects of the present invention are not impaired.
  • Additives and the like that can be generally blended may also be included. Examples of such additives include storage stabilizers, surface conditioners, antioxidants, light stabilizers, polymerization inhibitors, chain transfer agents, photosensitizers and the like. Each of these may be used alone or in combination of two or more.
  • a surface modifier makes it easier to control the surface tension of the conductive composition within an appropriate range, making it easier to improve coatability.
  • surface conditioners include silicone compounds having a polydimethylsiloxane structure such as polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane, and fluorine-based surface conditioners.
  • the content thereof is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and still more preferably It is 0.05% by mass or more, preferably 3% by mass or less, more preferably 2% by mass or less, and even more preferably 1.5% by mass or less.
  • the conductive composition of the present invention usually does not contain a coloring agent, but may be colored by containing a small amount of pigment and/or dye such as a bluing agent, for example, as long as it is transparent. Therefore, the content of the coloring agent in the conductive composition of the present invention is usually 0.3% by mass or less, preferably 0.1% by mass or less, more preferably 0.1% by mass or less, based on the total mass of the conductive composition. It is 0.05% by mass or less, and the lower limit is 0% by mass.
  • the conductive composition of the present invention preferably has a viscosity of 20 mPa ⁇ s to 150 mPa ⁇ s at 25°C. From the viewpoint of ensuring better coatability, the viscosity at 25° C. is preferably 20 to 100 mPa ⁇ s, more preferably 20 to 60 mPa ⁇ s.
  • the measurement of the viscosity can be performed using, for example, an E-type viscometer in accordance with JIS K5600-2-3.
  • the viscosity of the conductive composition can be controlled by adjusting the type and amount of active energy ray-curable compound, the amount of inorganic conductive fine particles, the type and amount of dispersant, and the like.
  • the conductive composition of the present invention is, for example, a step of mixing inorganic conductive fine particles, an active energy ray-curable compound and a dispersant to obtain a mixture (hereinafter also referred to as a “mixing step”); A step of subjecting the mixture to a dispersion treatment so that the average aggregate particle diameter of the aggregated particles contained in the inorganic conductive fine particles is 90 nm or more and 180 nm or less (hereinafter also referred to as a "dispersion treatment step"). It can be produced by a method comprising
  • the raw material inorganic conductive fine particles (hereinafter referred to as “raw material inorganic conductive It is a step of mixing the raw material inorganic conductive fine particles with a dispersant for dispersing the raw material inorganic conductive fine particles and an active energy ray-curable compound as a dispersion medium to obtain a mixture of these.
  • the average (aggregated) particle size of the raw material inorganic conductive fine particles used to obtain the aggregated particles of the inorganic conductive fine particles constituting the conductive composition of the present invention is not particularly limited. It may have a particle size about 10 to 50 times larger than the average aggregate particle size of the inorganic conductive fine particles.
  • a raw material inorganic conductive fine particles present as particles or aggregates having a particle size moderately larger than the average aggregate particle size of the finally desired inorganic conductive fine particles the specific range desired in the present invention It is possible to efficiently obtain aggregated particles of inorganic conductive fine particles having an average aggregated particle diameter.
  • the input amount of the raw material inorganic conductive fine particles is appropriately determined according to the composition of the desired conductive composition, the type of the inorganic conductive fine particles, the type of the dispersant, the type of the active energy ray-curable compound, and the like. obtain.
  • the amount of raw material inorganic conductive fine particles blended in the mixing step should be adjusted to the inorganic conductive fine particles to constitute the final conductive composition. More specifically, for example, it is preferably about 5 to 10% by mass.
  • the amounts of raw material inorganic conductive fine particles blended in the mixing step are: raw material inorganic conductive fine particles, an active energy ray-curable compound and a dispersant, and , preferably 43% by mass or more and 65% by mass or less, more preferably 45% by mass or more, relative to the total mass of the mixture obtained by mixing other components (e.g., polymerization initiator, etc.) as necessary , more preferably 47% by mass or more, more preferably 63% by mass or less, and still more preferably 60% by mass or less.
  • the ratio (concentration) of the starting inorganic conductive fine particles in the mixture is within the above range, the conditions for dispersing the starting inorganic conductive fine particles are efficient.
  • the mixing conditions for the raw material inorganic conductive fine particles, the active energy ray-curable compound, and the dispersant are not particularly limited, and the (aggregated) particle size and concentration of the raw inorganic conductive fine particles, the concentration of the active energy ray-curable compound, and Depending on the type, equipment and facilities used for mixing, etc., it may be appropriately determined so as to obtain a homogeneous mixture.
  • a dissolver, a butterfly mixer, or the like may be used as the stirrer.
  • the dispersion treatment step is a step of dispersing raw inorganic conductive fine particles into aggregated particles having an average aggregated particle size of 90 nm or more and 180 nm or less.
  • more than 50% by mass, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass, based on the total mass of the inorganic conductive fine particles obtained % or more of the inorganic conductive fine particles are dispersed so as to form aggregated particles having an average aggregated particle size of 90 nm or more and 180 nm or less.
  • Dispersion of raw material inorganic conductive fine particles can be carried out using a known dispersing device such as a ball mill, bead mill, sand mill, pico mill, paint conditioner, roll mill, jet mill, ultrasonic disperser, homogenizer, disper, and the like.
  • a mechanical dispersing machine with media intervening is preferable, and a bead mill is more preferable.
  • These devices may be used in combination as necessary.
  • the material of the media is not particularly limited, and for example glass, alumina, ceramics, titania, zirconia, steel, etc. can be used.
  • the bead diameter (diameter) is preferably 0.2 to 1 mm, more preferably 0.2 to 0.5 mm, from the viewpoint of easily shortening the dispersion treatment time and more efficiently dispersing the particles into the desired aggregated particles. is more preferable.
  • the filling rate of the media in the dispersion processor is not particularly limited, but from the viewpoint of easily suppressing deformation during dispersion, it is preferably 50 to 95%, more preferably 70 to 90%.
  • the dispersion treatment time may be appropriately determined according to the particle size of the starting inorganic conductive fine particles, the type of dispersion treatment equipment used, etc. so that the desired average aggregate particle size can be obtained, but it is usually 1 to 120 minutes. It is preferably 10 to 60 minutes.
  • the dispersion treatment time is not particularly limited, and may be appropriately determined according to the (aggregated) particle size and concentration of the raw material inorganic conductive fine particles, the type of the active energy ray-curable compound, the equipment and equipment used for mixing, etc. good. Usually, the longer the dispersion treatment time, the smaller the average aggregated particle size of the inorganic conductive fine particles.
  • the viscosity of the dispersion liquid of the inorganic conductive fine particles obtained through the dispersion treatment step for example, in the range of 20 to 400 mPa s, the aggregation state of the inorganic conductive fine particles is not affected. It becomes easier to control the viscosity of the final conductive composition in a suitable range for obtaining good coatability.
  • the viscosity can be measured according to JIS K5600-2-3, for example, using an E-type viscometer.
  • the conductive composition of the present invention can be obtained.
  • a conductive film By irradiating the conductive composition of the present invention with active energy rays, a conductive film can be obtained as a cured film thereof.
  • the conductive composition of the present invention is applied on a substrate to form a coating film, and then the coating film is irradiated with an active energy ray to form a conductive composition as a cured film of the conductive composition.
  • membranes can be obtained.
  • the substrate for forming the coating film of the conductive composition is not particularly limited, and examples thereof include glass substrates, ceramic substrates, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, and cellulose.
  • Cellulose-based resins such as triacetate, amide-based resins such as nylon and aramid, polyether-based resins such as polyphenylene ether and polysulfone ether, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, polyamide-imide-based resins, aromatic polyamide-based resins , transparent resin film substrates composed of resin materials such as cycloolefin polymers, polyvinyl chloride, and polyacrylic resins.
  • the coating method and coating method of the conductive composition on the substrate are not particularly limited, for example, gravure roll method, micro gravure roll method, slit die coating method, spray method, spin method, reverse roll method, A dipping method, a bar coating method, an inkjet method, and the like can be mentioned.
  • the active energy ray can be appropriately selected according to the type of curable compound used, the type of polymerization initiator and their amount. Specific examples thereof include ultraviolet light, X-rays, ⁇ -rays, ⁇ -rays and ⁇ -rays. Among them, ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction of the curable compound, and because a photopolymerization apparatus widely used in the field can be used.
  • Examples of light sources for active energy rays include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excimer lasers, and a wavelength range of 380.
  • LED light sources, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, etc., that emit light of up to 440 nm can be used.
  • the active energy ray irradiation conditions are appropriately determined depending on the composition of the conductive composition, and are not particularly limited.
  • the irradiation intensity , the number of times of irradiation, or The irradiation time can be determined as appropriate.
  • the cured film made of the conductive composition of the present invention should have a surface electrical resistance value of 1 ⁇ 10 6 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less. It is preferably 5 ⁇ 10 6 ⁇ / ⁇ or more, still more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more, particularly preferably 5 ⁇ 10 7 ⁇ / ⁇ or more, and more preferably 5 ⁇ 10 10 ⁇ or more. / ⁇ or less, particularly preferably 1 ⁇ 10 10 ⁇ / ⁇ or less.
  • the surface electrical resistance value can be controlled by adjusting the type, amount and average aggregate particle size of the inorganic conductive fine particles in the conductive composition, the type and amount of the active energy ray-curable compound, and the like.
  • the surface electrical resistance value can be measured using a surface electrical resistance measuring instrument. Specifically, it can be measured, for example, by the method described in Examples below.
  • the total light transmittance of the cured film made of the conductive composition of the present invention is preferably 60% or higher, more preferably 65% or higher, still more preferably 70% or higher, and particularly preferably 75% or higher.
  • the upper limit of total light transmittance is 100%.
  • the haze of the cured film made of the conductive composition of the present invention is preferably 4% or less, more preferably 3% or less, still more preferably 2.5% or less. If the total light transmittance and haze are within the above ranges, the conductive film will have more excellent transparency.
  • the total light transmittance and haze of the cured film can be measured according to JIS K 7361, for example.
  • the conductive film formed from the conductive composition of the present invention is excellent in antistatic performance and has high transparency. , antistatic films for window glass, packaging films for semiconductor products, plastic antistatic sheets for facility covers, and the like.
  • the solvent-free conductive composition of the present invention is superior to conventional solvent-based conductive paints in terms of VOC countermeasures, simplification of coating equipment, work efficiency, etc., and is environmentally friendly technology.
  • SDGs Sustainable Development Goals
  • Example 1 (i) Preparation of Dispersion of Inorganic Conductive Fine Particles According to the composition shown in Table 1, an active energy ray-curable compound, an inorganic Conductive fine particles and a dispersing agent were added and dispersed for 20 minutes using a paint shaker (manufactured by Toyo Seiki Seisakusho). After the dispersion treatment, the beads were removed to obtain a dispersion liquid of inorganic conductive fine particles.
  • a paint shaker manufactured by Toyo Seiki Seisakusho
  • Example 2-11 and Comparative Examples 1-6 The amounts of the active energy ray-curable compound, the inorganic conductive fine particles and the dispersing agent, the type of the dispersing agent, and the dispersing conditions were determined according to Table 1 (Examples 2 to 11) or Table 2 (Comparative Examples 1 to 6). A dispersion of inorganic conductive fine particles was obtained in the same manner as in Example 1, except for the change. A polymerization initiator and a surface control agent were added to the resulting dispersion of inorganic conductive fine particles according to the compositions shown in Table 1 (Examples 2 to 11) or Table 2 (Comparative Examples 1 to 6). A conductive composition was prepared in the same manner.
  • Examples 12-16 A dispersion of inorganic conductive fine particles was obtained in the same manner as in Example 1, except that the type and amount of the active energy ray-curable compound and the blending amounts of the inorganic conductive fine particles and the dispersant were changed according to Table 3. .
  • a conductive composition was prepared in the same manner as in Example 1 by adding a polymerization initiator and a surface conditioner according to the composition shown in Table 3 to the obtained dispersion of inorganic conductive fine particles. In all the conductive compositions of Examples 1 to 16, 80% by mass or more of the inorganic conductive fine particles were present as aggregated particles with respect to the total mass of the inorganic conductive fine particles.
  • Inorganic conductive fine particles ATO particles, SN-100P (manufactured by Ishihara Sangyo), average primary particle size: 10 to 30 nm)
  • ⁇ Active energy ray-curable compound-1 1,6-hexanediol diacrylate (HDDA, Viscoat #230: manufactured by Osaka Organic Chemical Industry), bifunctional, unit viscosity at 25 ° C.: 6 mPa s
  • Active energy ray-curable compound-2 Dipropylene glycol diacrylate (Sartomer SR508NS: manufactured by Arkema), bifunctional, unit viscosity at 25 ° C.: 10 mPa s
  • Active energy ray-curable compound-3 propoxylated (2) neopentyl glycol diacrylate (Sartomer SR9003NS: manufactured by Arkema), bifunctional, unit viscosity at 25 ° C.: 15 mPa

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to a transparent conductive active energy ray-curable composition, the composition comprising (A) inorganic conductive fine particles, (B) an active energy ray-curable compound, (C) a polymerization initiator, and (D) a dispersant, wherein: with respect to the total mass of the transparent conductive active energy ray-curable composition, the content of the inorganic conductive fine particles is 40 mass% to 60 mass%, and the content of organic solvent and water is at most 5 mass%; the inorganic conductive fine particles include aggregated particles; and the average aggregated particle diameter of the aggregated particles is 90 nm to 180 nm.

Description

透明導電性活性エネルギー線硬化性組成物およびその製造方法Transparent conductive active energy ray-curable composition and method for producing the same
 本発明は、透明導電性活性エネルギー線硬化性組成物およびその製造方法、並びに、前記透明導電性活性エネルギー線硬化性組成物を硬化してなる硬化膜に関する。 The present invention relates to a transparent conductive active energy ray-curable composition, a method for producing the same, and a cured film obtained by curing the transparent conductive active energy ray-curable composition.
 従来、プラスチック製物品などの表面に対して帯電防止処理を施すために、導電材料を含んでなる導電性塗料が広く用いられている。そのような導電性塗料として、例えば、特許文献1には、導電性無機粒子、分散剤、樹脂および溶剤を含む導電膜形成用組成物が開示されている。また、特許文献2~4には、それぞれ、導電性微粒子や粉末などの導電材料と樹脂とを含む無溶剤系の塗料組成物が開示されている。 Conventionally, conductive paints containing conductive materials have been widely used to perform antistatic treatment on the surfaces of plastic articles. As such a conductive paint, for example, Patent Document 1 discloses a composition for forming a conductive film containing conductive inorganic particles, a dispersant, a resin and a solvent. Further, Patent Documents 2 to 4 each disclose a solvent-free coating composition containing a conductive material such as conductive fine particles or powder and a resin.
特開2016-79275号公報JP 2016-79275 A 特開2010-53242号公報JP-A-2010-53242 特開平8-27405号公報JP-A-8-27405 特開平6-157964号公報JP-A-6-157964
 従来用いられている溶剤系の導電性塗料は、溶剤を希釈剤として使用するものであるため、導電材料を多く含む塗膜を作製する際にも塗工性に優れる点で有利である一方、処理を施す物品に塗工した後、塗膜に含まれる溶剤を乾燥等によって除去しなければならず、大型乾燥設備や揮発溶剤を回収するための設備の必要性および作業効率の点で課題が生じ得る。また、溶剤として有機溶剤を使用する場合には、VOC対策を要するなど環境上の問題にも配慮が必要となる。これに対して無溶剤系の導電性塗料は、溶剤系の導電性塗料における前記課題は解消し得るものの、塗工性を確保するためにその固形分濃度が制限され、十分な量の導電材料を配合することが難しく、電気特性の向上に対する課題が存在する。 Conventional solvent-based conductive paints use a solvent as a diluent. After coating the article to be treated, the solvent contained in the coating film must be removed by drying, etc., and there are issues in terms of work efficiency and the need for large-scale drying equipment and equipment for recovering volatile solvents. can occur. Moreover, when an organic solvent is used as the solvent, it is necessary to consider environmental problems such as VOC countermeasures. On the other hand, solvent-free conductive paints can solve the above problems in solvent-based conductive paints, but the solid content concentration is limited in order to ensure coatability, and a sufficient amount of conductive material is used. is difficult to blend, and there is a problem in improving electrical properties.
 本発明は、塗工性に優れながら、十分に高い帯電防止性能を有する導電膜を形成し得る、無溶剤系の透明導電性活性エネルギー線硬化性組成物を提供することを目的とする。 An object of the present invention is to provide a solvent-free transparent conductive active energy ray-curable composition capable of forming a conductive film having sufficiently high antistatic performance while having excellent coatability.
 本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の好適な態様を提供するものである。
[1](A)無機導電性微粒子、
(B)活性エネルギー線硬化性化合物、
(C)重合開始剤、および、
(D)分散剤
を含む透明導電性活性エネルギー線硬化性組成物であって、
 透明導電性活性エネルギー線硬化性組成物の総質量に対して、
 前記無機導電性微粒子の含有量が40質量%以上60質量%以下であり、
 有機溶剤および水の含有量が5質量%以下であり、
 前記無機導電性微粒子が凝集粒子を含み、該凝集粒子の平均凝集粒子径が90nm以上180nm以下である、透明導電性活性エネルギー線硬化性組成物。
[2]活性エネルギー線硬化性化合物は、少なくとも2個の反応性基を有する活性エネルギー線硬化性化合物を含む、前記[1]に記載の透明導電性活性エネルギー線硬化性組成物。
[3]活性エネルギー線硬化性化合物は、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートおよび(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、2-(アリルオキシメチル)(メタ)アクリル酸メチルからなる群から選択される少なくとも1種を含む、前記[1]または[2]に記載の透明導電性活性エネルギー線硬化性組成物。
[4]活性エネルギー線硬化性化合物は、1,6-ヘキサンジオールジ(メタ)アクリレートを含む、前記[1]~[3]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[5]活性エネルギー線硬化性化合物は、25℃における粘度が150mPa・s以下である活性エネルギー線硬化性化合物を含む、前記[1]~[4]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[6]重合開始剤の含有量は、活性エネルギー線硬化性化合物100質量部に対して8質量部以上27質量部以下である、前記[1]~[5]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[7]無機導電性微粒子は、酸化スズ、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、銀ナノ粒子、銀ナノワイヤおよび銅ナノ粒子からなる群から選択される少なくとも1種を含む、前記[1]~[6]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[8]無機導電性微粒子はアンチモンドープ酸化スズ(ATO)を含む、前記[1]~[7]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[9]分散剤は、100mgKOH/g以上の酸価を有するポリマーである、前記[1]~[8]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[10]分散剤は、カルボキシル基、スルホン酸基、ホスホン酸基、リン酸基および水酸基からなる群から選択される少なくとも1つを有する構造単位を含むポリマーである、前記[1]~[9]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[11]分散剤の含有量は、無機導電性微粒子100質量部に対して8質量部以上25質量部以下である、前記[1]~[10]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[12]25℃における粘度は20~150mPa・sである、前記[1]~[11]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。
[13]前記[1]~[12]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物を硬化してなる硬化膜。
[14]表面電気抵抗値は1×10Ω/□以上1×1011Ω/□以下である、前記[13]に記載の硬化膜。
[15]基材と、前記基材上に前記[1]~[12]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物を硬化してなる硬化膜とを備える積層体。
[16]前記[1]~[12]のいずれかに記載の透明導電性活性エネルギー線硬化性組成物の製造方法であって、
 無機導電性微粒子、活性エネルギー線硬化性化合物および分散剤を混合して混合物を得る工程、および、
 無機導電性微粒子に含まれる凝集粒子の平均凝集粒子径が90nm以上180nm以下となるよう前記混合物に分散処理を施す工程
を含む方法。
[17]混合工程における無機導電性微粒子の配合量は、該混合工程で得られる混合物の総質量に対して43質量%以上65質量%以下である、前記[16]に記載の方法。
The inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems. That is, the present invention provides the following preferred aspects.
[1] (A) inorganic conductive fine particles,
(B) an active energy ray-curable compound,
(C) a polymerization initiator, and
(D) A transparent conductive active energy ray-curable composition containing a dispersant,
With respect to the total mass of the transparent conductive active energy ray-curable composition,
The content of the inorganic conductive fine particles is 40% by mass or more and 60% by mass or less,
The content of the organic solvent and water is 5% by mass or less,
A transparent conductive active energy ray-curable composition, wherein the inorganic conductive fine particles contain aggregated particles, and the average aggregated particle size of the aggregated particles is 90 nm or more and 180 nm or less.
[2] The transparent conductive active energy ray-curable composition according to [1] above, wherein the active energy ray-curable compound contains an active energy ray-curable compound having at least two reactive groups.
[3] Active energy ray-curable compounds include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 3-methyl -1,5-pentanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate and (meth)acrylic acid 2-(2-) The transparent conductive active energy ray curing according to [1] or [2] above, containing at least one selected from the group consisting of vinyloxyethoxy)ethyl and 2-(allyloxymethyl)(meth)methyl acrylate. sex composition.
[4] The transparent conductive active energy ray-curable composition according to any one of [1] to [3], wherein the active energy ray-curable compound contains 1,6-hexanediol di(meth)acrylate.
[5] The transparent conductive active energy according to any one of [1] to [4] above, wherein the active energy ray-curable compound contains an active energy ray-curable compound having a viscosity of 150 mPa·s or less at 25°C. A radiation-curable composition.
[6] The transparent conductive material according to any one of [1] to [5], wherein the content of the polymerization initiator is 8 parts by mass or more and 27 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable compound. Active energy ray-curable composition.
[7] The inorganic conductive fine particles are selected from the group consisting of tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), silver nanoparticles, silver nanowires and copper nanoparticles. The transparent conductive active energy ray-curable composition according to any one of [1] to [6], comprising at least one of the above.
[8] The transparent conductive active energy ray-curable composition according to any one of [1] to [7], wherein the inorganic conductive fine particles contain antimony-doped tin oxide (ATO).
[9] The transparent conductive active energy ray-curable composition according to any one of [1] to [8], wherein the dispersant is a polymer having an acid value of 100 mgKOH/g or more.
[10] The dispersant is a polymer containing a structural unit having at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a phosphonic acid group, a phosphoric acid group and a hydroxyl group, above [1] to [9]. ] The transparent conductive active energy ray-curable composition according to any one of the above.
[11] The transparent conductive active energy according to any one of [1] to [10], wherein the content of the dispersant is 8 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the inorganic conductive fine particles. A radiation-curable composition.
[12] The transparent conductive active energy ray-curable composition according to any one of [1] to [11], which has a viscosity of 20 to 150 mPa·s at 25°C.
[13] A cured film obtained by curing the transparent conductive active energy ray-curable composition according to any one of [1] to [12].
[14] The cured film according to [13] above, which has a surface electrical resistance value of 1×10 6 Ω/□ or more and 1×10 11 Ω/□ or less.
[15] A laminate comprising a substrate and a cured film obtained by curing the transparent conductive active energy ray-curable composition according to any one of [1] to [12] on the substrate.
[16] A method for producing the transparent conductive active energy ray-curable composition according to any one of [1] to [12],
a step of mixing inorganic conductive fine particles, an active energy ray-curable compound and a dispersant to obtain a mixture;
A method comprising the step of subjecting the mixture to a dispersion treatment so that the average aggregate particle size of the aggregate particles contained in the inorganic conductive fine particles is 90 nm or more and 180 nm or less.
[17] The method according to [16] above, wherein the mixing amount of the inorganic conductive fine particles in the mixing step is 43% by mass or more and 65% by mass or less with respect to the total mass of the mixture obtained in the mixing step.
 本発明によれば、塗工性に優れながら、十分に高い帯電防止性能を有する導電膜を形成し得る、無溶剤系の透明導電性活性エネルギー線硬化性組成物を提供することができる。 According to the present invention, it is possible to provide a solvent-free transparent conductive active energy ray-curable composition capable of forming a conductive film having sufficiently high antistatic performance while having excellent coatability.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the gist of the present invention.
 <無機導電性微粒子>
 本発明の透明導電性活性エネルギー線硬化性組成物(以下、単に「導電性組成物」または「本発明の導電性組成物」ともいう)は、無機導電性微粒子を含む。無機導電性微粒子を含むことにより、該導電性組成物から得られる硬化膜に所望の電気特性を付与し得る。
<Inorganic conductive fine particles>
The transparent conductive active energy ray-curable composition of the present invention (hereinafter also simply referred to as "conductive composition" or "conductive composition of the present invention") contains inorganic conductive fine particles. By including the inorganic conductive fine particles, desired electrical properties can be imparted to the cured film obtained from the conductive composition.
 本発明の導電性組成物において、無機導電性微粒子は凝集粒子を含み、無機導電性微粒子が主に凝集粒子として存在することが好ましい。本明細書において凝集粒子とは、無機導電性微粒子の一次粒子が複数互いに接触して形成された二次粒子をいう。無機導電性微粒子が凝集粒子として存在すると、一次粒子として存在する場合と比較してより少ない配合量で得られる硬化膜の表面電気抵抗値を同等以下とすることができるため、導電性組成物の良好な塗工性を確保しながら、所望の表面電気抵抗値への調整がしやすくなる。凝集粒子の形状は、球状、楕円体状、扁平状など無機導電性微粒子の一次粒子が凝集して形成されるいかなる形状であってもよいが、好ましくは球状である。
 なお、本明細書において、「主に凝集粒子として存在する」とは、無機導電性微粒子の総質量に対して50質量%を超える無機導電性微粒子が凝集粒子として存在することを意味する。本発明の一態様において、無機導電性微粒子の総質量に対して、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上の無機導電性微粒子が凝集粒子として存在する。
In the conductive composition of the present invention, it is preferable that the inorganic conductive fine particles include aggregated particles, and that the inorganic conductive fine particles mainly exist as aggregated particles. In the present specification, aggregated particles refer to secondary particles formed by contacting a plurality of primary particles of inorganic conductive fine particles with each other. When the inorganic conductive fine particles are present as aggregated particles, the surface electrical resistance of the cured film obtained with a smaller amount compared to the case where the fine particles are present as primary particles can be made equal to or lower than the surface electrical resistance of the conductive composition. It becomes easy to adjust to a desired surface electrical resistance value while ensuring good coatability. The shape of the aggregated particles may be spherical, ellipsoidal, flat, or any other shape formed by aggregation of the primary particles of the inorganic conductive fine particles, preferably spherical.
In the present specification, "mainly present as aggregated particles" means that more than 50% by mass of the inorganic conductive fine particles are present as aggregated particles with respect to the total mass of the inorganic conductive fine particles. In one aspect of the present invention, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more of the inorganic conductive fine particles, relative to the total mass of the inorganic conductive fine particles Conductive fine particles exist as aggregated particles.
 本発明において、上記無機導電性微粒子の凝集粒子の平均凝集粒子径は90nm以上180nm以下である。無機導電性微粒子の平均凝集粒子径が90nm以上であると、凝集粒子内に導電経路が形成されやすくなり、粒子間の電気抵抗が少なくなるため、比較的少量の無機導電性微粒子の配合によって高い電気特性を得ることができる。これにより、形成される硬化膜に高い帯電防止性能を付与し得る導電性組成物となり、優れた塗工性と良好な帯電防止性能とを両立することができる。また、平均凝集粒子径は180nm以下であると、無機導電性微粒子が必要以上に凝集した状態にならず、分散性や均一性を高めやすく、可視光の散乱や回折が起こりにくいため、ヘイズ値が低く、透明性に優れる導電膜を得るための導電性組成物としても有利である。平均凝集粒子径を特定の範囲に制御することによる上記効果をより得やすい観点から、無機導電性微粒子の平均凝集粒子径は、好ましくは92nm以上、より好ましくは100nm以上、さらに好ましくは105nm以上、特に好ましくは110nm以上であり、また、好ましくは175nm以下、より好ましくは165nm以下、さらに好ましくは155nm以下、特に好ましくは150nm以下である。 In the present invention, the average aggregate particle diameter of the aggregate particles of the inorganic conductive fine particles is 90 nm or more and 180 nm or less. When the average aggregate particle size of the inorganic conductive fine particles is 90 nm or more, a conductive path is easily formed in the aggregate particles, and the electrical resistance between the particles is reduced. Electrical characteristics can be obtained. This makes it possible to obtain a conductive composition capable of imparting high antistatic performance to a cured film to be formed, and achieve both excellent coatability and good antistatic performance. In addition, when the average aggregate particle diameter is 180 nm or less, the inorganic conductive fine particles are not aggregated more than necessary, and it is easy to improve dispersibility and uniformity, and scattering and diffraction of visible light are difficult to occur. It is also advantageous as a conductive composition for obtaining a conductive film having a low viscosity and excellent transparency. From the viewpoint of more easily obtaining the above effect by controlling the average aggregated particle size within a specific range, the average aggregated particle size of the inorganic conductive fine particles is preferably 92 nm or more, more preferably 100 nm or more, and still more preferably 105 nm or more. It is particularly preferably 110 nm or more, preferably 175 nm or less, more preferably 165 nm or less, still more preferably 155 nm or less, and particularly preferably 150 nm or less.
 本発明において、無機導電性微粒子の平均凝集粒子径は、動的光散乱法にて測定可能な凝集粒子の平均粒子径であり、体積粒度分布における中心粒径(D50)を意味する。無機導電性微粒子の平均凝集粒子径の測定には、動的光散乱法による平均粒子径を測定し得る一般的な測定機器を用いることができるが、無溶剤系の導電性組成物である本発明の導電性組成物における凝集粒子の測定機器としては、試料の希釈有無に関わらず、凝集粒子として分散した状態の無機導電性微粒子の粒子径を測定できる必要がある。そのような測定機器としては、例えば、大塚電子株式会社製の濃厚系粒径アナライザー、多検体ナノ粒子径測定システム、マイクロトラック社製の粒子径分布測定装置、島津製作所社製レーザー回折式粒子径分布測定装置、堀場製作所社製レーザー回折/散乱式粒子径分布測定装置等を採用し得る。なお希釈する場合には、無機導電性微粒子の凝集状態を変化させない溶媒を選択する必要がある。より詳細には、無機導電性微粒子の平均凝集粒子径は、例えば後述する実施例に記載の方法に従い測定できる。 In the present invention, the average aggregate particle size of the inorganic conductive fine particles is the average particle size of aggregate particles measurable by a dynamic light scattering method, and means the median particle size ( D50 ) in the volume particle size distribution. For the measurement of the average aggregate particle size of the inorganic conductive fine particles, a general measuring instrument capable of measuring the average particle size by the dynamic light scattering method can be used. An instrument for measuring aggregated particles in the conductive composition of the invention must be able to measure the particle size of the inorganic conductive fine particles dispersed as aggregated particles regardless of whether the sample is diluted or not. Examples of such measuring equipment include a concentrated particle size analyzer manufactured by Otsuka Electronics Co., Ltd., a multi-sample nanoparticle size measuring system, a particle size distribution measuring device manufactured by Microtrac, and a laser diffraction type particle size manufactured by Shimadzu Corporation. A distribution measuring device, a laser diffraction/scattering particle size distribution measuring device manufactured by Horiba, Ltd., or the like can be employed. When diluting, it is necessary to select a solvent that does not change the aggregation state of the inorganic conductive fine particles. More specifically, the average aggregate particle size of the inorganic conductive fine particles can be measured, for example, according to the method described in Examples below.
 無機導電性微粒子の平均凝集粒子径は、例えば、導電性組成物を構成する活性エネルギー線硬化性化合物の種類、分散剤の種類やその量、無機導電性微粒子の分散処理条件(例えば、無機導電性微粒子濃度、処理時間、処理温度、ビーズの材質やビーズ径、速度や充填率など)等を調整することにより、所望の範囲に制御することができる。 The average aggregate particle size of the inorganic conductive fine particles is determined, for example, by the type of the active energy ray-curable compound constituting the conductive composition, the type and amount of the dispersant, and the dispersion treatment conditions of the inorganic conductive fine particles (for example, inorganic conductive It is possible to control within a desired range by adjusting the concentration of the fine particles, the treatment time, the treatment temperature, the material and diameter of the beads, the speed, the filling rate, etc.).
 本発明において、無機導電性微粒子の平均一次粒子径は、通常、10nm以上50nm以下であり、好ましくは10nm以上30nm以下である。無機導電性微粒子の平均一次粒子径が上記範囲内であると、無機導電性微粒子の平均凝集粒子径を本発明において特定される範囲に制御しやすくなる。
 なお、本明細書において無機導電性微粒子の平均一次粒子径は、レーザー回折測定法または動的光散乱法にて測定可能な平均粒子径であり、体積粒度分布における中心粒径(D50)を意味する。
In the present invention, the average primary particle size of the inorganic conductive fine particles is usually 10 nm or more and 50 nm or less, preferably 10 nm or more and 30 nm or less. When the average primary particle size of the inorganic conductive fine particles is within the above range, it becomes easier to control the average aggregate particle size of the inorganic conductive fine particles within the range specified in the present invention.
In this specification, the average primary particle size of the inorganic conductive fine particles is an average particle size that can be measured by a laser diffraction measurement method or a dynamic light scattering method, and the median particle size (D 50 ) in the volume particle size distribution is means.
 本発明において、一次粒子として存在する無機導電性微粒子の量は、無機導電性微粒子の総質量に対して、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、特に好ましくは5質量%以下である。 In the present invention, the amount of the inorganic conductive fine particles present as primary particles is preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less, relative to the total mass of the inorganic conductive fine particles. , particularly preferably 5% by mass or less.
 本発明において、無機導電性微粒子は、導電性を有する粒子であればその成分(材料)は特に限定されず、導電性粒子として公知の成分を用いることができる。具体的には、例えば、酸化スズ、酸化亜鉛等の導電性金属酸化物粒子;導電性窒化物粒子;酸化インジウム、酸化スズ、酸化亜鉛および酸化カドミウムからなる群から選ばれる1種類以上の金属酸化物を主成分として、さらにスズ、アンチモン、リン、アルミニウム、ガリウムがドープされた導電性金属酸化物粒子、例えば、アンチモンドープ酸化スズ(ATO)、スズドープ酸化インジウム(ITO)、リンドープ酸化スズ(PTO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)等;銀ナノ粒子;銀ナノワイヤ;および銅ナノ粒子;導電性カーボン;導電材を被覆したコアシェル粒子、例えば酸化チタンの表面をATOなどの導電材料で被覆した粒子;等が挙げられる。無機導電性微粒子として、1種を用いても、2種以上を組み合わせて用いてもよい。中でも、導電性、透明性、熱安定性、光安定性等に優れることから、無機導電性微粒子は、酸化スズ、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、銀ナノ粒子、銀ナノワイヤおよび銅ナノ粒子からなる群から選択される少なくとも1種を含むことが好ましく、酸化スズおよびアンチモンドープ酸化スズ(ATO)から選択される少なくとも1種を含むことがより好ましく、アンチモンドープ酸化スズ(ATO)を含むことがさらに好ましい。 In the present invention, the components (materials) of the inorganic conductive fine particles are not particularly limited as long as they are conductive particles, and components known as conductive particles can be used. Specifically, for example, conductive metal oxide particles such as tin oxide and zinc oxide; conductive nitride particles; one or more metal oxides selected from the group consisting of indium oxide, tin oxide, zinc oxide and cadmium oxide Conductive metal oxide particles, which are mainly composed of a substance and further doped with tin, antimony, phosphorus, aluminum, and gallium, such as antimony-doped tin oxide (ATO), tin-doped indium oxide (ITO), and phosphorus-doped tin oxide (PTO) , aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), etc.; silver nanoparticles; silver nanowires; and copper nanoparticles; conductive carbon; particles coated with a conductive material; As the inorganic conductive fine particles, one type may be used, or two or more types may be used in combination. Among them, since it is excellent in conductivity, transparency, thermal stability, light stability, etc., the inorganic conductive fine particles are tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO ), preferably contains at least one selected from the group consisting of silver nanoparticles, silver nanowires and copper nanoparticles, more preferably contains at least one selected from tin oxide and antimony-doped tin oxide (ATO) More preferably, it contains antimony-doped tin oxide (ATO).
 導電性組成物中の無機導電性微粒子の含有量は、導電性組成物の総質量に対して40質量%以上60質量%以下である。無機導電性微粒子の含有量が40質量%未満であると、得られる硬化膜に十分な帯電防止性能を付与することが困難となり得る。また、含有量が60質量%を超えると、無機導電性微粒子を含むことに起因して組成物の粘度が上昇しやすく、塗工性の低下を生じ得る。優れた塗工性を確保しながら、得られる硬化膜に良好な帯電防止性能を付与し得る観点から、無機導電性微粒子の含有量は、導電性組成物の総質量に対して、好ましくは42質量%以上、より好ましくは45質量%以上であり、また、好ましくは58質量%以下、より好ましくは55質量%以下である。 The content of the inorganic conductive fine particles in the conductive composition is 40% by mass or more and 60% by mass or less with respect to the total mass of the conductive composition. If the content of the inorganic conductive fine particles is less than 40% by mass, it may be difficult to impart sufficient antistatic performance to the resulting cured film. On the other hand, if the content exceeds 60% by mass, the viscosity of the composition tends to increase due to the inclusion of the inorganic conductive fine particles, which may result in deterioration of coatability. While ensuring excellent coatability, from the viewpoint of imparting good antistatic performance to the resulting cured film, the content of the inorganic conductive fine particles, relative to the total mass of the conductive composition, preferably 42 % by mass or more, more preferably 45% by mass or more, and preferably 58% by mass or less, more preferably 55% by mass or less.
 <活性エネルギー線硬化性化合物>
 本発明の導電性組成物は、活性エネルギー線硬化性化合物を含む。活性エネルギー線硬化性化合物は、無機導電性微粒子の分散媒として機能し、得られる硬化膜中に無機導電性微粒子を分散固定するマトリックス樹脂を形成する成分である。
<Active energy ray-curable compound>
The conductive composition of the present invention contains an active energy ray-curable compound. The active energy ray-curable compound is a component that functions as a dispersion medium for the inorganic conductive fine particles and forms a matrix resin that disperses and fixes the inorganic conductive fine particles in the resulting cured film.
 活性エネルギー線硬化性化合物は、紫外線等の活性エネルギー線の照射により重合して硬化する特性を有する成分であり、分子中に少なくとも1つの反応性基を有する重合性化合物などが挙げられる。反応性基としては、例えば、重合開始剤から発生する活性ラジカルや酸などによって重合反応に関与し得る基が挙げられ、具体的には、ビニル基、(メタ)アクリロイル基、オキシラニル基、オキセタニル基等が挙げられる。中でも、ラジカル重合性基が好ましく、ビニル基、(メタ)アクリロイル基がより好ましく、(メタ)アクリロイル基がさらに好ましい。なお、本明細書において「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルの双方またはいずれかを表し、以下、「(メタ)アクリレート」等においても同様である。活性エネルギー線硬化性化合物は、モノマー、プレポリマー、オリゴマーのいずれであってもよい。活性エネルギー線硬化性化合物は、1種のみを用いても、2種以上を組み合わせて用いてもよい。 An active energy ray-curable compound is a component that has the property of being polymerized and cured by irradiation with an active energy ray such as ultraviolet rays, and includes polymerizable compounds that have at least one reactive group in the molecule. The reactive group includes, for example, a group that can participate in a polymerization reaction by an active radical generated from a polymerization initiator or an acid, and specifically, a vinyl group, a (meth)acryloyl group, an oxiranyl group, and an oxetanyl group. etc. Among them, a radically polymerizable group is preferred, a vinyl group and a (meth)acryloyl group are more preferred, and a (meth)acryloyl group is even more preferred. In this specification, "(meth)acryloyl" represents both or one of acryloyl and methacryloyl, and hereinafter, the same applies to "(meth)acrylate" and the like. Any of a monomer, a prepolymer, and an oligomer may be sufficient as an active-energy-ray-curable compound. The active energy ray-curable compound may be used alone or in combination of two or more.
 本発明において、活性エネルギー線硬化性化合物としては、無機導電性微粒子の分散媒として機能することができ、活性エネルギー線により硬化し得る化合物であれば特に制限されるものでなく、当該分野で従来用いられている重合性化合物等を広く採用し得る。反応性に優れ、得られる硬化膜に適度な強度や硬度を付与しやすい傾向にあることから、本発明の一実施態様において、導電性組成物は活性エネルギー線硬化性化合物として、少なくとも2個の反応性基を有する活性エネルギー線硬化性化合物(以下、「多官能活性エネルギー線硬化性化合物」ともいう)を含むことが好ましい。 In the present invention, the active energy ray-curable compound is not particularly limited as long as it can function as a dispersion medium for inorganic conductive fine particles and can be cured by an active energy ray. A wide variety of polymerizable compounds and the like can be used. Since it has excellent reactivity and tends to impart appropriate strength and hardness to the resulting cured film, in one embodiment of the present invention, the conductive composition contains at least two active energy ray-curable compounds. It preferably contains an active energy ray-curable compound having a reactive group (hereinafter also referred to as a "polyfunctional active energy ray-curable compound").
 少なくとも2個の反応性基を有する活性エネルギー線硬化性化合物としては、例えば、
 炭素数10~25の直鎖または分岐のアルキレングリコールジ(メタ)アクリレートまたはとして、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-nブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、アルコキシ化ヘキサンジオールジ(メタ)アクリレート、ドデカンジ(メタ)アクリレート等;
 炭素数10~30の環状構造含有ジ(メタ)アクリレートまたはトリ(メタ)アクリレートとして、シクロヘキサンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート等、
 (メタ)アクリル酸2-(2-ビニロキシエトキシ)エチルなどのビニルエーテル基含有(メタ)アクリル酸エステル類;
 2-(アリルオキシメチル)(メタ)アクリル酸メチルなどのアリル基含有(メタ)アクリル酸エステル類;
 アミノ(メタ)アクリレート、アミン変性ポリエーテル(メタ)アクリレート、アミン変性ポリエステル(メタ)アクリレート、アミン変性エポキシ(メタ)アクリレート、アミン変性ウレタン(メタ)アクリレート等の2官能以上のアミノアクリレート類等、が挙げられる。
Examples of active energy ray-curable compounds having at least two reactive groups include
Linear or branched alkylene glycol di(meth)acrylate having 10 to 25 carbon atoms or 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexane Diol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 2-nbutyl-2-ethyl-1,3-propanediol di(meth)acrylate Acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate , dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, propoxylated neopentyl glycol di(meth)acrylate, hydroxypivalic acid Neopentyl glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, glycerin propoxy tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate ) acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, alkoxylated hexanediol di(meth)acrylate, dodecane di(meth)acrylate, etc.;
Cyclohexanedimethanol di(meth)acrylate, dimethyloltricyclodecane di(meth)acrylate, bisphenol A ethylene oxide adduct di( meth)acrylate, bisphenol A propylene oxide adduct di(meth)acrylate, etc.
Vinyl ether group-containing (meth)acrylic acid esters such as 2-(2-vinyloxyethoxy)ethyl (meth)acrylate;
Allyl group-containing (meth)acrylic acid esters such as 2-(allyloxymethyl)(meth)methyl acrylate;
Bifunctional or higher amino acrylates such as amino (meth) acrylate, amine-modified polyether (meth) acrylate, amine-modified polyester (meth) acrylate, amine-modified epoxy (meth) acrylate, amine-modified urethane (meth) acrylate, etc. mentioned.
 中でも、組成物の硬化性が向上しやすい観点から、少なくとも2個の(メタ)アクリロイル基を有する多官能(メタ)アクリレート化合物(以下、「多官能(メタ)アクリレート化合物」ともいう)を含むことが好ましく、分子内に2個の(メタ)アクリロイル基を有する2官能(メタ)アクリレート化合物(以下、「2官能(メタ)アクリレート化合物」ともいう)を含むことがより好ましく、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートおよび(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、2-(アリルオキシメチル)(メタ)アクリル酸メチルからなる群から選択される少なくとも1種を含むことがさらに好ましく、1,6-ヘキサンジオールジ(メタ)アクリレートをふくむことが特に好ましい。これらの化合物は、前記無機導電性微粒子の分散媒として優れた機能を果たし、無機導電性微粒子の平均凝集粒子径や粘度を所望の範囲に制御しやすい点においても有利である。 Among them, from the viewpoint of easily improving the curability of the composition, it contains a polyfunctional (meth)acrylate compound having at least two (meth)acryloyl groups (hereinafter also referred to as a "polyfunctional (meth)acrylate compound"). is preferred, and more preferably contains a bifunctional (meth)acrylate compound having two (meth)acryloyl groups in the molecule (hereinafter also referred to as "bifunctional (meth)acrylate compound"), 1,3-butane Diol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, neopentyl glycol Di(meth)acrylate, dipropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate and 2-(2-vinyloxyethoxy)ethyl (meth)acrylate, 2-(allyloxymethyl)(meth)acrylate More preferably, it contains at least one selected from the group consisting of methyl acrylate, and particularly preferably contains 1,6-hexanediol di(meth)acrylate. These compounds have an excellent function as a dispersion medium for the inorganic conductive fine particles, and are advantageous in that the average aggregate particle size and viscosity of the inorganic conductive fine particles can be easily controlled within a desired range.
 本発明の導電性組成物は、活性エネルギー線硬化性化合物として分子内に1個の反応性基を有する活性エネルギー線硬化性化合物(以下、「単官能活性エネルギー線硬化性化合物」ともいう)を含んでいてもよい。単官能活性エネルギー線硬化性化合物としては、例えば、分子内にエチレン性二重結合を1つ有する単官能エチレン性不飽和単量体が挙げられ、具体的には、例えば、直鎖状または分枝状のアルキル基を有するアルキル(メタ)アクリレート、分子内に、脂環式構造、芳香環構造または複素環構造等の環状構造を有する(メタ)アクリレート、ならびに(メタ)アクリルアミドおよびN-ビニルラクタム類などの窒素原子を含有する単官能エチレン性不飽和単量体等が挙げられる。 The conductive composition of the present invention contains an active energy ray-curable compound having one reactive group in the molecule (hereinafter also referred to as a "monofunctional active energy ray-curable compound") as an active energy ray-curable compound. may contain. Examples of monofunctional active energy ray-curable compounds include monofunctional ethylenically unsaturated monomers having one ethylenic double bond in the molecule. Alkyl (meth)acrylates having a branched alkyl group, (meth)acrylates having a cyclic structure such as an alicyclic structure, an aromatic ring structure or a heterocyclic structure in the molecule, and (meth)acrylamides and N-vinyllactams Nitrogen atom-containing monofunctional ethylenically unsaturated monomers such as
 上記単官能活性エネルギー線硬化性化合物としては、例えば、2-フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ジエチレングリコールメチルエーテル(メタ)アクリレート、2-(2-エトキシエトキシ)エチル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、トリデシル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、アルコキシ化テトラヒドロフルフリル(メタ)アクリレート、2-tert-ブチルシクロヘキサノール(メタ)アクリレート、4-tert-ブチルシクロへキシル(メタ)アクリレート等が挙げられる。 Examples of the monofunctional active energy ray-curable compound include 2-phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, diethylene glycol methyl ether (meth) acrylate, 2-( 2-ethoxyethoxy)ethyl (meth)acrylate, stearyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, lauryl (meth)acrylate, isodecyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, isooctyl (meth)acrylate, octyl (meth)acrylate, decyl (meth)acrylate, tridecyl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, alkoxylated tetrahydrofurfuryl (meth)acrylate, 2-tert-butyl cyclohexanol (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate and the like.
 無機導電性微粒子の分散性に優れながら、組成物の良好な塗工性を確保しやすい観点から、活性エネルギー線硬化性化合物として、25℃における単体粘度が150mPa・s以下である活性エネルギー線硬化性化合物(以下、「活性エネルギー線硬化性低粘度化合物」ともいう)を含むことが好ましい。本発明の一実施態様において、活性エネルギー線硬化性低粘度化合物の25℃における単体粘度は、より好ましくは60mPa・s以下、さらに好ましくは30mPa・s以下である。活性エネルギー線硬化性低粘度化合物の25℃における単体粘度は、通常、1mPa・s以上である。
 なお、前記活性エネルギー線硬化性化合物の単体粘度は、単量体(モノマー)の単体粘度であり、例えば、東機産業社製E型粘度計TVE-22により測定できる。
From the viewpoint of easily ensuring good coating properties of the composition while having excellent dispersibility of the inorganic conductive fine particles, an active energy ray-curable compound having a single viscosity of 150 mPa s or less at 25°C is used as the active energy ray-curable compound. curable compound (hereinafter also referred to as "active energy ray-curable low-viscosity compound"). In one embodiment of the present invention, the single viscosity at 25° C. of the active energy ray-curable low-viscosity compound is more preferably 60 mPa·s or less, still more preferably 30 mPa·s or less. The single viscosity at 25° C. of the active energy ray-curable low-viscosity compound is usually 1 mPa·s or more.
The unit viscosity of the active energy ray-curable compound is the unit viscosity of a monomer, and can be measured, for example, with an E-type viscometer TVE-22 manufactured by Toki Sangyo Co., Ltd.
 導電性組成物中の活性エネルギー線硬化性化合物の含有量は、導電性組成物の総質量に対して、好ましくは25質量%以上、より好ましくは30質量%以上、さらに好ましくは35質量%以上であり、また、好ましくは60質量%以下、より好ましくは55質量%以下、さらに好ましくは50質量%以下である。活性エネルギー線硬化性化合物の含有量が上記範囲内であると、無機導電性微粒子の分散性に優れながら良好な塗工性を有する導電性組成物を得ることができる。 The content of the active energy ray-curable compound in the conductive composition is preferably 25% by mass or more, more preferably 30% by mass or more, and still more preferably 35% by mass or more, relative to the total mass of the conductive composition. and is preferably 60% by mass or less, more preferably 55% by mass or less, and even more preferably 50% by mass or less. When the content of the active energy ray-curable compound is within the above range, it is possible to obtain a conductive composition having excellent coatability while being excellent in the dispersibility of the inorganic conductive fine particles.
 本発明の一実施態様において、導電性組成物に含まれる活性エネルギー線硬化性化合物の総量に占める多官能活性エネルギー線硬化性化合物の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは85質量%以上、特に好ましくは90質量%以上であり、導電性組成物に含まれる全ての活性エネルギー線硬化性化合物が多官能活性エネルギー線硬化性化合物であってもよい。また、導電性組成物に含まれる多官能活性エネルギー線硬化性化合物の総量に占める多官能(メタ)アクリレート化合物の割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、多官能活性エネルギー線硬化性化合物が全て多官能(メタ)アクリレート化合物であってもよい。さらに、導電性組成物に含まれる多官能活性エネルギー線硬化性化合物の総量に占める2官能(メタ)アクリレート化合物の割合は、好ましくは60質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上であり、特に好ましくは90質量%以上であり、多官能活性エネルギー線硬化性化合物が全て2官能(メタ)アクリレート化合物であってもよい。導電性組成物における多官能活性エネルギー線硬化性組成物の割合、多官能活性エネルギー線硬化性化合物における多官能または2官能(メタ)アクリレート化合物の割合が上記下限以上であると、活性エネルギー線硬化性化合物を配合することによる良好な分散性および塗工性を維持したまま、得られる硬化膜の強度や硬度が向上しやすい。 In one embodiment of the present invention, the ratio of the polyfunctional active energy ray-curable compound to the total amount of active energy ray-curable compounds contained in the conductive composition is preferably 70% by mass or more, more preferably 80% by mass. % by mass or more, more preferably 85% by mass or more, particularly preferably 90% by mass or more, and all active energy ray-curable compounds contained in the conductive composition are polyfunctional active energy ray-curable compounds. may In addition, the ratio of the polyfunctional (meth)acrylate compound to the total amount of the polyfunctional active energy ray-curable compounds contained in the conductive composition is preferably 80% by mass or more, more preferably 90% by mass or more. , more preferably 95% by mass or more, and all of the polyfunctional active energy ray-curable compounds may be polyfunctional (meth)acrylate compounds. Furthermore, the ratio of the bifunctional (meth)acrylate compound to the total amount of the polyfunctional active energy ray-curable compounds contained in the conductive composition is preferably 60% by mass or more, more preferably 70% by mass or more. , more preferably 80% by mass or more, particularly preferably 90% by mass or more, and all of the polyfunctional active energy ray-curable compounds may be bifunctional (meth)acrylate compounds. When the proportion of the polyfunctional active energy ray-curable composition in the conductive composition and the proportion of the polyfunctional or bifunctional (meth)acrylate compound in the polyfunctional active energy ray-curable compound are at least the above lower limits, active energy ray curing The strength and hardness of the resulting cured film are likely to be improved while maintaining good dispersibility and coatability due to the addition of the curable compound.
 本発明の別の一実施態様において、導電性組成物に含まれる活性エネルギー線硬化性化合物の総量に占める単官能活性エネルギー線硬化性化合物の割合は、例えば70質量%以上であってよく、好ましくは80質量%以上であり、より好ましくは85質量%以上、さらに好ましくは90質量%以上であり、導電性組成物に含まれる全ての活性エネルギー線硬化性化合物が単官能活性エネルギー線硬化性化合物であってもよい。また、導電性組成物に含まれる単官能活性エネルギー線硬化性化合物の総量に占める単官能(メタ)アクリレート化合物の割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、単官能活性エネルギー線硬化性化合物が全て単官能(メタ)アクリレート化合物であってもよい。導電性組成物における単官能活性エネルギー線硬化性組成物の割合、単官能活性エネルギー線硬化性化合物における単官能(メタ)アクリレート化合物の割合が上記範囲であると、無機導電性微粒子の分散性に優れながら、組成物の良好な塗工性を確保しやすい。 In another embodiment of the present invention, the ratio of the monofunctional active energy ray-curable compound to the total amount of active energy ray-curable compounds contained in the conductive composition may be, for example, 70% by mass or more, preferably is 80% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more, and all active energy ray-curable compounds contained in the conductive composition are monofunctional active energy ray-curable compounds may be Further, the ratio of the monofunctional (meth)acrylate compound to the total amount of monofunctional active energy ray-curable compounds contained in the conductive composition is preferably 80% by mass or more, more preferably 90% by mass or more. , more preferably 95% by mass or more, and all of the monofunctional active energy ray-curable compounds may be monofunctional (meth)acrylate compounds. When the ratio of the monofunctional active energy ray-curable composition in the conductive composition and the ratio of the monofunctional (meth)acrylate compound in the monofunctional active energy ray-curable compound are within the above ranges, the dispersibility of the inorganic conductive fine particles is improved. While being excellent, it is easy to ensure good coatability of the composition.
 さらに本発明の別の一実施態様において、導電性組成物が多官能活性エネルギー線硬化性化合物を含み、さらに単官能活性エネルギー線硬化性化合物を含む場合、その含有量は、導電性組成物の総質量に対して、例えば、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下であり得る。活性エネルギー線硬化性化合物として、単官能活性エネルギー線硬化性化合物の含有量が上記上限以下であると、反応性が良好になり、得られる硬化膜の強度がより向上しやすい場合がある。 In yet another embodiment of the present invention, when the conductive composition contains a polyfunctional active energy ray-curable compound and further contains a monofunctional active energy ray-curable compound, the content is For example, it may be preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less, relative to the total mass. As the active energy ray-curable compound, when the content of the monofunctional active energy ray-curable compound is equal to or less than the above upper limit, the reactivity may be improved, and the strength of the resulting cured film may be more likely to be improved.
 本発明の一実施態様において、導電性組成物に含まれる活性エネルギー線硬化性化合物の総量に占める、25℃における単体粘度が150mPa・s以下である活性エネルギー線硬化性化合物(活性エネルギー線硬化性低粘度化合物)の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは85質量%以上、特に好ましくは90質量%以上であり、導電性組成物に含まれる全ての活性エネルギー線硬化性化合物が活性エネルギー線硬化性低粘度化合物であってもよい。 In one embodiment of the present invention, an active energy ray-curable compound (active energy ray-curable The proportion of the low-viscosity compound) is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 85% by mass or more, and particularly preferably 90% by mass or more. All active energy ray-curable compounds contained may be active energy ray-curable low-viscosity compounds.
 <重合開始剤>
 本発明の導電性組成物は、重合開始剤を含む。重合開始剤は、活性エネルギー線硬化性化合物の重合反応を開始し得る化合物である。重合開始剤としては、より低温条件下で重合反応を開始できる点において光の作用により活性ラジカルまたは酸を発生する光重合開始剤が好ましく、光の作用によりラジカルを発生する光重合開始剤がより好ましい。重合開始剤として、1種のみを用いても、2種以上を組合せて用いてもよい。
<Polymerization initiator>
The conductive composition of the present invention contains a polymerization initiator. A polymerization initiator is a compound capable of initiating a polymerization reaction of an active energy ray-curable compound. As the polymerization initiator, a photopolymerization initiator that generates active radicals or acids by the action of light is preferable in that the polymerization reaction can be initiated under lower temperature conditions, and a photopolymerization initiator that generates radicals by the action of light is more preferred. preferable. As the polymerization initiator, only one type may be used, or two or more types may be used in combination.
 重合開始剤としては、公知の重合開始剤を用いることができる。例えば、アシルフォスフィンオキサイド化合物、α-アミノアルキルフェノン化合物、α-ヒドロキシキノン化合物、チオキサントン化合物、ベンゾイン化合物、アントラキノン化合物およびケタール化合物等が挙げられる。中でも、重合開始剤として、α-アミノアルキルフェノン化合物を含むことが好ましい。 A known polymerization initiator can be used as the polymerization initiator. Examples include acylphosphine oxide compounds, α-aminoalkylphenone compounds, α-hydroxyquinone compounds, thioxanthone compounds, benzoin compounds, anthraquinone compounds and ketal compounds. Among them, it is preferable to contain an α-aminoalkylphenone compound as a polymerization initiator.
 上記アシルフォスフィンオキサイド化合物としては、具体的には、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルフォスフィンオキサイド、2,6-ジメチルベンゾイルジフェニルフォスフィンオキサイド、4-メチルベンゾイルジフェニルフォスフィンオキサイド、4-エチルベンゾイルジフェニルフォスフィンオキサイド、4-イソプロピルベンゾイルジフェニルフォスフィンオキサイド、1-メチルシクロヘキサノイルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸イソプロピルエステル、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等が挙げられる。これらは単独でまたは複数混合して使用してもよい。市場で入手可能なアシルフォスフィンオキサイド化合物としては、例えば、BASF社製の“DAROCURE TPO”等が挙げられる。 Specific examples of the acylphosphine oxide compounds include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, and 2,6-dichlorobenzoyldiphenylphosphine oxide. , 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, 2,6-dimethylbenzoyldiphenylphosphine oxide, 4-methylbenzoyldiphenylphosphine oxide, 4-ethylbenzoyldiphenylphosphine oxide, 4-isopropylbenzoyl diphenylphosphine oxide, 1-methylcyclohexanoylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphine acid methyl ester, 2 , 4,6-trimethylbenzoylphenylphosphinic acid isopropyl ester, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide and the like. These may be used singly or in combination. Commercially available acylphosphine oxide compounds include, for example, "DAROCURE TPO" manufactured by BASF.
 上記α-アミノアルキルフェノン化合物としては、具体的には、例えば、2-メチル-1[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン-1、2-メチル-1-[4-(メトキシチオ)-フェニル]-2-モルホリノプロパン-2-オン等が挙げられる。これらは単独でまたは複数混合して使用してもよい。市場で入手可能なα-アミノアルキルフェノン化合物としては、例えば、BASF社製の“IRGACURE 369”、“IRGACURE 907”等が挙げられる。 Specific examples of the α-aminoalkylphenone compounds include 2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-morpholinophenyl)butanone-1,2-methyl-1-[4-(methoxythio)-phenyl]-2-morpholinopropan-2-one and the like. These may be used singly or in combination. Examples of commercially available α-aminoalkylphenone compounds include "IRGACURE 369" and "IRGACURE 907" manufactured by BASF.
 上記α-ヒドロキシキノン化合物としては、具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチループロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ2-メチル-1-プロパン1-オン等が挙げられる。これらは単独でまたは複数混合して使用してもよい。市場で入手可能なα-ヒドロキシキノン化合物としては“IRGACURE 184”、“DAROCURE 1173”“IRGACURE 2959”、“IRGACURE 127”等が挙げられる。 Specific examples of the α-hydroxyquinone compound include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-phenylpropan-1-one, 2-hydroxy-1-{4-[4- (2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl- 1-propan-1-one and the like. These may be used singly or in combination. Commercially available α-hydroxyquinone compounds include "IRGACURE 184", "DAROCURE 1173", "IRGACURE 2959", and "IRGACURE 127".
 上記チオキサントン化合物としては、具体的には、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられる。これらは単独でまたは複数混合して使用してもよい。市場で入手可能なチオキサントン化合物としては、例えば、日本化薬社製の“MKAYACURE DETX-S”、ダブルボンドケミカル社製の“Chivacure ITX”等が挙げられる。 Specific examples of the thioxanthone compounds include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 -diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like. These may be used singly or in combination. Commercially available thioxanthone compounds include, for example, "MKAYACURE DETX-S" manufactured by Nippon Kayaku Co., Ltd., and "Chivacure ITX" manufactured by Double Bond Chemical.
上記ベンゾイン化合物としては、具体的には、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。 Specific examples of the benzoin compounds include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether.
上記アントラキノン化合物としては、具体的には、例えば、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等が挙げられる。 Specific examples of the anthraquinone compound include 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, and 2-amylanthraquinone.
上記ケタール化合物としては、具体的には、例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタール等〕、炭素数13~21のベンゾフェノン化合物〔例えば、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノン等が挙げられる。 Specific examples of the ketal compounds include, for example, acetophenone dimethyl ketal, benzyl dimethyl ketal, etc.], benzophenone compounds having 13 to 21 carbon atoms [for example, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4 '-bismethylaminobenzophenone and the like.
 重合開始剤の含有量は、活性エネルギー線硬化性化合物100質量部に対して、好ましくは8質量部以上27質量部以下であり、より好ましくは8.5質量部以上、さらに好ましくは9質量部以上であり、また、より好ましくは25質量部以下、さらに好ましくは20質量部以下である。重合開始剤の含有量が上記下限以上であると、導電性組成物の硬化性を十分に高めることができ、上記上限以下であると、未硬化のまま残存する活性エネルギー線硬化性化合物の量を低減することができる。一方、重合開始剤の含有量が少なすぎると、得られる硬化膜の表面電気抵抗値が高くなり過ぎて帯電防止性能を得られないことがある。また、重合開始剤の量が多すぎると、導電性組成物中で重合開始剤が十分に溶解し難くなる。 The content of the polymerization initiator is preferably 8 parts by mass or more and 27 parts by mass or less, more preferably 8.5 parts by mass or more, and still more preferably 9 parts by mass with respect to 100 parts by mass of the active energy ray-curable compound. more preferably 25 parts by mass or less, more preferably 20 parts by mass or less. When the content of the polymerization initiator is at least the above lower limit, the curability of the conductive composition can be sufficiently enhanced. can be reduced. On the other hand, if the content of the polymerization initiator is too low, the resulting cured film may have too high a surface electrical resistance, failing to obtain antistatic performance. Moreover, when the amount of the polymerization initiator is too large, the polymerization initiator becomes difficult to dissolve sufficiently in the conductive composition.
 <分散剤>
 本発明の導電性組成物は分散剤を含む。ここでいう分散剤は、上述した無機導電性微粒子を分散させるための分散剤を意味し、本発明の導電性組成物は、導電性組成物に含まれる無機導電性微粒子を分散させるための少なくとも1種の分散剤を含む。該分散剤の構造は、分散媒となる活性エネルギー線硬化性化合物中に、無機導電性微粒子を所望の平均凝集粒子径を有する凝集粒子として分散させ得る限り、粒子の分散性向上や沈降防止などを目的として用いられる種々の分散剤を採用し得る。そのような分散剤としては、例えば、変性アクリル系(共)重合体、アクリル系(共)重合体、酸基を有する高分子(共)重合体の塩、水酸基含有カルボン酸エステル、アルキロールアミノアマイド、不飽和ポリカルボン酸ポリアミノアマイド、高分子共重合体のアルキルアンモニウム塩またはリン酸エステル塩等が挙げられる。分散剤は、1種のみを用いても、2種以上を組み合わせて用いてもよい。
<Dispersant>
The conductive composition of the present invention contains a dispersant. The dispersant here means a dispersant for dispersing the inorganic conductive fine particles described above, and the conductive composition of the present invention contains at least Contains one dispersant. The structure of the dispersant improves the dispersibility of particles and prevents sedimentation, as long as the inorganic conductive fine particles can be dispersed as aggregated particles having a desired average aggregated particle size in the active energy ray-curable compound serving as a dispersion medium. A variety of dispersants used for this purpose can be employed. Examples of such dispersants include modified acrylic (co)polymers, acrylic (co)polymers, salts of high molecular weight (co)polymers having acid groups, hydroxyl group-containing carboxylic acid esters, alkylolamino Examples include amides, unsaturated polycarboxylic acid polyaminoamides, and alkylammonium salts or phosphate ester salts of polymer copolymers. Only one dispersant may be used, or two or more dispersants may be used in combination.
 本発明の一実施態様において導電性組成物は、100mgKOH/g以上の酸価を有するポリマーを分散剤として含むことが好ましい。100mgKOH/g以上の酸価を有するポリマーを用いる場合、本発明において特定する範囲の平均凝集粒子径を有する凝集粒子として、組成物中に無機導電性微粒子を存在させやすくなり、導電性組成物の粘度を、良好な塗工性に適切な範囲に制御しやすくなる。この理由は明らかではないが、無機導電性微粒子表面には水酸基が存在することが多く、酸価が高くなると見かけ上のpHが低下し、無機導電性微粒子表面に存在する水酸基がプラスに荷電するため、分散剤が有する酸基が吸着しやすくなって、分散性の向上につながると推測される。分散剤の酸価の上限値は特に限定されるものではないが、酸性基一個当たりの分子鎖の長さの観点から、通常200mgKOH/g以下であり、好ましくは150mgKOH/g以下である。なお、前記酸価は、分散剤固形分1gを中和するのに必要なKOHのmg数を意味し、JIS K 0070に準じて、例えば電位差滴定法によって求めることができる。 In one embodiment of the present invention, the conductive composition preferably contains a polymer having an acid value of 100 mgKOH/g or more as a dispersant. When a polymer having an acid value of 100 mgKOH/g or more is used, it becomes easier for the inorganic conductive fine particles to be present in the composition as aggregated particles having an average aggregated particle size within the range specified in the present invention, and the conductive composition is improved. It becomes easier to control the viscosity in a suitable range for good coatability. Although the reason for this is not clear, hydroxyl groups are often present on the surface of the inorganic conductive fine particles, and when the acid value increases, the apparent pH decreases, and the hydroxyl groups present on the surface of the inorganic conductive fine particles are positively charged. Therefore, it is presumed that the acid groups of the dispersant are more likely to be adsorbed, leading to improved dispersibility. Although the upper limit of the acid value of the dispersant is not particularly limited, it is usually 200 mgKOH/g or less, preferably 150 mgKOH/g or less, from the viewpoint of the length of the molecular chain per acidic group. The acid value means the number of mg of KOH required to neutralize 1 g of the solid content of the dispersing agent, and can be determined according to JIS K 0070, for example, by potentiometric titration.
 また、分散剤のアミン価は90mgKOH/g以下であることが好ましく、80mgKOH/g以下であることがより好ましく、アミン価は0mgKOH/gであってもよい。アミン価が上記上限以下であると、無機導電性微粒子の分散性や塗工性がより向上しやすくなる。なお、前記アミン価は、分散剤固形分1gを中和するのに必要なHCl量に対して当量となるKOHのmg数を意味し、JIS K 7237に準じて、例えば電位差滴定法により測定することができる。 Also, the amine value of the dispersant is preferably 90 mgKOH/g or less, more preferably 80 mgKOH/g or less, and may be 0 mgKOH/g. When the amine value is equal to or less than the above upper limit, the dispersibility and coatability of the inorganic conductive fine particles are likely to be improved. The amine value means the number of mg of KOH equivalent to the amount of HCl required to neutralize 1 g of the solid content of the dispersant, and is measured according to JIS K 7237, for example, by potentiometric titration. be able to.
 上記所望の酸価を有しやすい構造として、分散剤が少なくとも1種の酸基を有する構造単位を含んで構成されるポリマーであることが好ましい。酸基を有する構造単位における酸基としては、例えば、カルボキシル基、スルホン酸基、ホスホン酸基、リン酸基、水酸基、チオール基等が挙げられる。中でも、カルボキシル基、スルホン酸基、ホスホン酸基、リン酸基および水酸基からなる群から選択される少なくとも1つを有することが好ましく、カルボキシル基、スルホン酸基およびリン酸基からなる群から選択される少なくとも1つを有することがより好ましく、リン酸基を有することがさらに好ましい。 As the structure that tends to have the desired acid value, the dispersant is preferably a polymer that includes a structural unit having at least one acid group. Examples of acid groups in structural units having acid groups include carboxyl groups, sulfonic acid groups, phosphonic acid groups, phosphoric acid groups, hydroxyl groups, and thiol groups. Among them, it is preferable to have at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a phosphonic acid group, a phosphoric acid group and a hydroxyl group, and it is selected from the group consisting of a carboxyl group, a sulfonic acid group and a phosphoric acid group. more preferably have at least one, and more preferably have a phosphate group.
 分散剤の重量平均分子量は、好ましくは800以上、より好ましくは1000以上であり、また、好ましくは30000以下、より好ましくは10000以下である。分散剤の重量平均分子量が上記下限以上であると、分散剤による良好な分散安定性が得られやすく、上記上限以下であると、粘度の過度の上昇を抑え、導電性組成物の塗工性が向上し得る。
 なお、前記重量平均分子量は、一般的なゲル浸透クロマトグラフィー(GPC)によりスチレン換算分子量として求めることができる。
The weight average molecular weight of the dispersant is preferably 800 or more, more preferably 1,000 or more, and preferably 30,000 or less, more preferably 10,000 or less. When the weight-average molecular weight of the dispersant is at least the above lower limit, good dispersion stability due to the dispersant is likely to be obtained, and when it is at most the above upper limit, an excessive increase in viscosity is suppressed, and the coating properties of the conductive composition are improved. can improve.
The weight average molecular weight can be determined as a styrene-equivalent molecular weight by general gel permeation chromatography (GPC).
 分散剤として、市販の製品を用いてもよい。そのような市販の分散剤としては、例えば、ビックケミー社製のDISPERBYK-102、DISPERBYK-106、DISPERBYK-145、DISPERBYK-111、DISPERBYK-180、BYK-P105、TEGO Disper655等が挙げられる。 A commercially available product may be used as a dispersant. Examples of such commercially available dispersants include DISPERBYK-102, DISPERBYK-106, DISPERBYK-145, DISPERBYK-111, DISPERBYK-180, BYK-P105 and TEGODisper655 manufactured by BYK-Chemie.
 本発明の導電性組成物における分散剤の含有量は、無機導電性微粒子100質量部に対して、好ましくは8質量部以上25質量部以下である。分散剤の量が上記下限以上であると導電性組成物の粘度を、良好な塗工性に適する粘度範囲に制御しやすくなる。また、分散剤の量が上記上限以下であると、無機導電性微粒子の平均凝集粒子径を所望の範囲に制御しやすくなる。分散性および塗工性の観点から、分散剤の含有量は、無機導電性微粒子100質量部に対して、より好ましくは9質量部以上、さらに好ましくは10質量部以上であり、また、より好ましくは20質量部以下、さらに好ましくは18質量部以下、特に好ましくは15質量部以下である。 The content of the dispersant in the conductive composition of the present invention is preferably 8 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the inorganic conductive fine particles. When the amount of the dispersant is at least the above lower limit, it becomes easier to control the viscosity of the conductive composition within a viscosity range suitable for good coatability. Moreover, when the amount of the dispersing agent is equal to or less than the above upper limit, it becomes easier to control the average aggregated particle size of the inorganic conductive fine particles within a desired range. From the viewpoint of dispersibility and coatability, the content of the dispersant is more preferably 9 parts by mass or more, still more preferably 10 parts by mass or more, and more preferably 100 parts by mass of the inorganic conductive fine particles. is 20 parts by mass or less, more preferably 18 parts by mass or less, and particularly preferably 15 parts by mass or less.
 本発明の導電性組成物は、いわゆる無溶剤系の組成物である。本明細書において、無溶剤系とは、導電性組成物における有機溶剤および水の含有量(有機溶剤および水を含む場合、または、複数種の有機溶剤を含む場合にはその合計量)が、導電性組成物の総質量に対して、5質量%以下であることをいう。本発明の導電性組成物において、有機溶剤および水の含有量は、好ましくは3質量%以下、より好ましくは1質量%以下であり、本発明の一実施態様において本発明の導電性組成物は有機溶剤および水を含まない。 The conductive composition of the present invention is a so-called solventless composition. In the present specification, the solvent-free system means that the content of the organic solvent and water in the conductive composition (when the organic solvent and water are included, or when multiple types of organic solvents are included, the total amount) is It means that it is 5% by mass or less with respect to the total mass of the conductive composition. In the conductive composition of the present invention, the content of the organic solvent and water is preferably 3% by mass or less, more preferably 1% by mass or less, and in one embodiment of the present invention, the conductive composition of the present invention is Contains no organic solvents and water.
 本発明の導電性組成物は、透明導電性組成物である。本明細書において、透明導電性組成物とは、光、特に可視光を透過し得る透光性を有する導電膜を形成し得る導電性組成物を意味し、具体的には、全光線透過率が60以上になる特性をいう。なお、全光線透過率は、例えば、JIS K 7361に従い測定できる。 The conductive composition of the present invention is a transparent conductive composition. As used herein, the term “transparent conductive composition” means a conductive composition capable of forming a conductive film having translucency through which light, particularly visible light, can be transmitted. is 60 or more. In addition, the total light transmittance can be measured according to JIS K 7361, for example.
 本発明の導電性組成物は、本発明の効果を阻害しない範囲で、無機導電性微粒子、活性エネルギー線硬化性化合物、重合開始剤および分散剤に加えて、必要により、透明導電性組成物に一般に配合し得る添加剤等を含んでいてもよい。そのような添加剤としては、例えば、保存安定化剤、表面調整剤、酸化防止剤、光安定剤、重合禁止剤、連鎖移動剤、光増感剤等が挙げられる。これらは、それぞれ、1種のみを用いても、2種以上を組み合わせて用いてもよい。 The electrically conductive composition of the present invention contains inorganic electrically conductive fine particles, an active energy ray-curable compound, a polymerization initiator and a dispersant, as long as the effects of the present invention are not impaired. Additives and the like that can be generally blended may also be included. Examples of such additives include storage stabilizers, surface conditioners, antioxidants, light stabilizers, polymerization inhibitors, chain transfer agents, photosensitizers and the like. Each of these may be used alone or in combination of two or more.
 例えば、表面調整剤を含むことにより、導電性組成物の表面張力を適切な範囲に制御しやすくなり、塗工性がより向上しやすくなる。表面調整剤としては、例えば、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリアラルキル変性ポリジメチルシロキサン等のポリジメチルシロキサン構造を有するシリコーン系化合物、フッ素系表面調整剤等が挙げられる。 For example, the inclusion of a surface modifier makes it easier to control the surface tension of the conductive composition within an appropriate range, making it easier to improve coatability. Examples of surface conditioners include silicone compounds having a polydimethylsiloxane structure such as polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, and polyaralkyl-modified polydimethylsiloxane, and fluorine-based surface conditioners.
 導電性組成物が表面調整剤を含む場合、その含有量は、導電性組成物の総質量に対して、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.05質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下、さらに好ましくは1.5質量%以下である。 When the conductive composition contains a surface conditioner, the content thereof is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and still more preferably It is 0.05% by mass or more, preferably 3% by mass or less, more preferably 2% by mass or less, and even more preferably 1.5% by mass or less.
 本発明の導電性組成物は、通常、着色剤を含まないが、透明である限り、例えばブルーイング剤等の顔料および/または染料を少量含むことによって着色されていてもよい。したがって、本発明の導電性組成物における着色剤の含有量は、導電性組成物の総質量に基づいて、通常0.3質量%以下であり、好ましくは0.1質量%以下、より好ましくは0.05質量%以下であり、その下限は0質量%である。 The conductive composition of the present invention usually does not contain a coloring agent, but may be colored by containing a small amount of pigment and/or dye such as a bluing agent, for example, as long as it is transparent. Therefore, the content of the coloring agent in the conductive composition of the present invention is usually 0.3% by mass or less, preferably 0.1% by mass or less, more preferably 0.1% by mass or less, based on the total mass of the conductive composition. It is 0.05% by mass or less, and the lower limit is 0% by mass.
 本発明の導電性組成物は、25℃で20mPa・s~150mPa・sの粘度を有することが好ましい。より良好な塗工性を確保し得る観点から、25℃における粘度は、好ましくは20~100mPa・sであり、より好ましくは20~60mPa・sである。上記粘度の測定は、JIS K5600-2-3に準拠し、例えば、E型粘度計を用いて行うことができる。導電性組成物の粘度は、活性エネルギー線硬化性化合物の種類およびその配合量、無機導電性微粒子の配合量、分散剤の種類およびその添加量等を調整することにより制御することができる。 The conductive composition of the present invention preferably has a viscosity of 20 mPa·s to 150 mPa·s at 25°C. From the viewpoint of ensuring better coatability, the viscosity at 25° C. is preferably 20 to 100 mPa·s, more preferably 20 to 60 mPa·s. The measurement of the viscosity can be performed using, for example, an E-type viscometer in accordance with JIS K5600-2-3. The viscosity of the conductive composition can be controlled by adjusting the type and amount of active energy ray-curable compound, the amount of inorganic conductive fine particles, the type and amount of dispersant, and the like.
 <導電性組成物の製造方法>
 本発明の導電性組成物は、例えば、
 無機導電性微粒子、活性エネルギー線硬化性化合物および分散剤を混合して混合物を得る工程(以下、「混合工程」ともいう)、および、
 無機導電性微粒子に含まれる凝集粒子の平均凝集粒子径が90nm以上180nm以下となるよう前記混合物に分散処理を施す工程(以下、「分散処理工程」ともいう)
を含む方法
により製造することができる。
<Method for producing conductive composition>
The conductive composition of the present invention is, for example,
a step of mixing inorganic conductive fine particles, an active energy ray-curable compound and a dispersant to obtain a mixture (hereinafter also referred to as a “mixing step”);
A step of subjecting the mixture to a dispersion treatment so that the average aggregate particle diameter of the aggregated particles contained in the inorganic conductive fine particles is 90 nm or more and 180 nm or less (hereinafter also referred to as a "dispersion treatment step").
It can be produced by a method comprising
 本発明の導電性組成物を調製する際に、導電性組成物を構成する全ての成分を同時に混合、撹拌することもできるが、無機導電性微粒子の平均凝集粒子径を本発明の特定の範囲に制御しやすくするために、無機導電性微粒子、活性エネルギー線硬化性化合物および分散剤の3成分を予め混合することが好ましい。かかる混合工程は、例えば、最終的に所望する無機導電性微粒子の平均凝集粒子径よりも大きな粒子径を有する粒子または凝集体として存在する、原料となる無機導電性微粒子(以下、「原料無機導電性微粒子」ともいう)を、該原料無機導電性微粒子を分散させるための分散剤と、分散媒である活性エネルギー線硬化性化合物と混合してこれらの混合物を得る工程である。 When preparing the conductive composition of the present invention, all components constituting the conductive composition can be mixed and stirred at the same time. In order to facilitate the control, it is preferable to previously mix the three components of the inorganic conductive fine particles, the active energy ray-curable compound and the dispersant. In such a mixing step, for example, the raw material inorganic conductive fine particles (hereinafter referred to as “raw material inorganic conductive It is a step of mixing the raw material inorganic conductive fine particles with a dispersant for dispersing the raw material inorganic conductive fine particles and an active energy ray-curable compound as a dispersion medium to obtain a mixture of these.
 本発明の導電性組成物を構成する無機導電性微粒子の凝集粒子を得るために用いる原料無機導電性微粒子の平均(凝集)粒子径は特に限定されるものではなく、例えば、最終的に所望する無機導電性微粒子の平均凝集粒子径よりも10~50倍程度大きな粒子径を有していてもよい。最終的に所望する無機導電性微粒子の平均凝集粒子径よりも適度に大きな粒子径を有する粒子または凝集体として存在する無機導電性微粒子を原料とすることで、本発明において所望する特定の範囲の平均凝集粒子径を有する無機導電性微粒子の凝集粒子を効率的に得ることができる。 The average (aggregated) particle size of the raw material inorganic conductive fine particles used to obtain the aggregated particles of the inorganic conductive fine particles constituting the conductive composition of the present invention is not particularly limited. It may have a particle size about 10 to 50 times larger than the average aggregate particle size of the inorganic conductive fine particles. By using as a raw material inorganic conductive fine particles present as particles or aggregates having a particle size moderately larger than the average aggregate particle size of the finally desired inorganic conductive fine particles, the specific range desired in the present invention It is possible to efficiently obtain aggregated particles of inorganic conductive fine particles having an average aggregated particle diameter.
 混合工程において、原料無機導電性微粒子の投入量は、所望の導電性組成物の組成、無機導電性微粒子の種類、分散剤の種類、活性エネルギー線硬化性化合物の種類等に応じて適宜決定し得る。後述する分散処理の過程以降における無機導電性微粒子の減少量を考慮して、混合工程で配合される原料無機導電性微粒子の量は、最終的な導電性組成物を構成すべき無機導電性微粒子の量より多い、具体的には、例えば5~10質量%程度多いことが好ましい。したがって、本発明の一実施態様において導電性組成物の製造方法において、混合工程で配合される原料無機導電性微粒子の量は、原料無機導電性微粒子、活性エネルギー線硬化性化合物および分散剤、並びに、必要に応じて他の成分(例えば、重合開始剤等)を混合して得られる混合物の総質量に対して、好ましくは43質量%以上65質量%以下であり、より好ましくは45質量%以上、さらに好ましくは47質量%以上であり、また、より好ましくは63質量%以下、さらに好ましくは60質量%以下である。混合物中の原料無機導電性微粒子の割合(濃度)が上記範囲内であると、原料無機導電性微粒子を分散処理する条件において効率がよい。 In the mixing step, the input amount of the raw material inorganic conductive fine particles is appropriately determined according to the composition of the desired conductive composition, the type of the inorganic conductive fine particles, the type of the dispersant, the type of the active energy ray-curable compound, and the like. obtain. Considering the amount of decrease in the amount of inorganic conductive fine particles after the process of dispersion treatment, which will be described later, the amount of raw material inorganic conductive fine particles blended in the mixing step should be adjusted to the inorganic conductive fine particles to constitute the final conductive composition. More specifically, for example, it is preferably about 5 to 10% by mass. Therefore, in one embodiment of the present invention, in the method for producing a conductive composition, the amounts of raw material inorganic conductive fine particles blended in the mixing step are: raw material inorganic conductive fine particles, an active energy ray-curable compound and a dispersant, and , preferably 43% by mass or more and 65% by mass or less, more preferably 45% by mass or more, relative to the total mass of the mixture obtained by mixing other components (e.g., polymerization initiator, etc.) as necessary , more preferably 47% by mass or more, more preferably 63% by mass or less, and still more preferably 60% by mass or less. When the ratio (concentration) of the starting inorganic conductive fine particles in the mixture is within the above range, the conditions for dispersing the starting inorganic conductive fine particles are efficient.
 原料無機導電性微粒子と活性エネルギー線硬化性化合物と分散剤との混合条件は、特に限定されるものではなく、原料無機導電性微粒子の(凝集)粒子径、濃度、活性エネルギー線硬化性化合物の種類、混合に用いる機器や設備等に応じて、均一な混合物が得られるよう適宜決定すればよい。例えば、撹拌機として、ディソルバーやバタフライミキサー等を用いてもよい。 The mixing conditions for the raw material inorganic conductive fine particles, the active energy ray-curable compound, and the dispersant are not particularly limited, and the (aggregated) particle size and concentration of the raw inorganic conductive fine particles, the concentration of the active energy ray-curable compound, and Depending on the type, equipment and facilities used for mixing, etc., it may be appropriately determined so as to obtain a homogeneous mixture. For example, a dissolver, a butterfly mixer, or the like may be used as the stirrer.
 分散処理工程は、原料無機導電性微粒子を平均凝集粒子径90nm以上180nm以下の凝集粒子へ分散させる工程である。該工程において、得られる無機導電性微粒子の総質量に対して50質量%を超える、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上の無機導電性微粒子が、90nm以上180nm以下の平均凝集粒子径を有する凝集粒子となるよう分散される。
 原料無機導電性微粒子の分散は、ボールミル、ビーズミル、サンドミル、ピコミル、ペイントコンディショナー、ロールミル、ジェットミル、超音波分散機、ホモジナイザー、ディスパー等の公知の分散処理用機器を用いて行うことができる。中でも、短時間で効率的に所望の粒子径を有する凝集粒子を得やすい観点から、メディアを介在させた機械的分散処理機が好ましく、ビーズミルを用いることがより好ましい。これらの機器は、必要に応じて組み合わせて用いてもよい。
The dispersion treatment step is a step of dispersing raw inorganic conductive fine particles into aggregated particles having an average aggregated particle size of 90 nm or more and 180 nm or less. In the step, more than 50% by mass, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass, based on the total mass of the inorganic conductive fine particles obtained % or more of the inorganic conductive fine particles are dispersed so as to form aggregated particles having an average aggregated particle size of 90 nm or more and 180 nm or less.
Dispersion of raw material inorganic conductive fine particles can be carried out using a known dispersing device such as a ball mill, bead mill, sand mill, pico mill, paint conditioner, roll mill, jet mill, ultrasonic disperser, homogenizer, disper, and the like. Among them, from the viewpoint of easily obtaining aggregated particles having a desired particle size in a short period of time, a mechanical dispersing machine with media intervening is preferable, and a bead mill is more preferable. These devices may be used in combination as necessary.
 分散処理においてボールミルやビーズミルを使用する場合、そのメディア(ボールまたはビーズ)の材質は、特に限定されず、例えばガラス、アルミナ、セラミックス、チタニア、ジルコニア、スチールなどを使用することができる。分散処理時間を短縮しやすく、所望の凝集粒子への分散化をより効率的に行い得る観点から、ビーズ径(直径)は0.2~1mmであることが好ましく、0.2~0.5mmであることがより好ましい。分散処理機へのメディアの充填率は特に限定されないが、分散時の異型化を抑制しやすい観点から、好ましくは50~95%であり、より好ましくは70~90%である。分散処理時間は、所望の平均凝集粒子径となり得るよう、原料無機導電性微粒子の粒子径や用いる分散処理機器の種類等に応じて適宜決定すればよいが、通常、1~120分であり、好ましくは10~60分である。 When using a ball mill or bead mill for dispersion treatment, the material of the media (balls or beads) is not particularly limited, and for example glass, alumina, ceramics, titania, zirconia, steel, etc. can be used. The bead diameter (diameter) is preferably 0.2 to 1 mm, more preferably 0.2 to 0.5 mm, from the viewpoint of easily shortening the dispersion treatment time and more efficiently dispersing the particles into the desired aggregated particles. is more preferable. The filling rate of the media in the dispersion processor is not particularly limited, but from the viewpoint of easily suppressing deformation during dispersion, it is preferably 50 to 95%, more preferably 70 to 90%. The dispersion treatment time may be appropriately determined according to the particle size of the starting inorganic conductive fine particles, the type of dispersion treatment equipment used, etc. so that the desired average aggregate particle size can be obtained, but it is usually 1 to 120 minutes. It is preferably 10 to 60 minutes.
 分散処理時間は、特に限定されるものではなく、原料無機導電性微粒子の(凝集)粒子径、濃度、活性エネルギー線硬化性化合物の種類、混合に用いる機器や設備等に応じて適宜決定すればよい。通常、分散処理時間が長いほど、無機導電性微粒子の平均凝集粒子径は小さくなる。 The dispersion treatment time is not particularly limited, and may be appropriately determined according to the (aggregated) particle size and concentration of the raw material inorganic conductive fine particles, the type of the active energy ray-curable compound, the equipment and equipment used for mixing, etc. good. Usually, the longer the dispersion treatment time, the smaller the average aggregated particle size of the inorganic conductive fine particles.
 分散処理工程を経て得られる無機導電性微粒子の分散液の粘度が、例えば20~400mPa・sの範囲になるよう制御しておくことにより、無機導電性微粒子の凝集状態に影響を与えることなく、最終的な導電性組成物の粘度を良好な塗工性を得るのに適した範囲に制御しやすくなる。上記粘度の測定は、JIS K5600-2-3に準拠し、例えば、E型粘度計を用いて行うことができる。 By controlling the viscosity of the dispersion liquid of the inorganic conductive fine particles obtained through the dispersion treatment step, for example, in the range of 20 to 400 mPa s, the aggregation state of the inorganic conductive fine particles is not affected. It becomes easier to control the viscosity of the final conductive composition in a suitable range for obtaining good coatability. The viscosity can be measured according to JIS K5600-2-3, for example, using an E-type viscometer.
 分散処理工程により得られた無機導電性微粒子、活性エネルギー線硬化性化合物および分散剤の混合物に対して、重合開始剤等の導電性組成物を構成する残りの成分を加えて、混合することにより、本発明の導電性組成物を得ることができる。 By adding the remaining components constituting the conductive composition such as the polymerization initiator to the mixture of the inorganic conductive fine particles, the active energy ray-curable compound, and the dispersant obtained by the dispersion treatment step, and mixing , the conductive composition of the present invention can be obtained.
 <導電性組成物の硬化膜>
 本発明の導電性組成物に活性エネルギー線を照射することにより、その硬化膜として導電膜を得ることができる。具体的には、例えば、基材上に本発明の導電性組成物を塗布して塗膜を形成した後、該塗膜に活性エネルギー線を照射することにより導電性組成物の硬化膜として導電膜を得ることができる。
<Cured film of conductive composition>
By irradiating the conductive composition of the present invention with active energy rays, a conductive film can be obtained as a cured film thereof. Specifically, for example, the conductive composition of the present invention is applied on a substrate to form a coating film, and then the coating film is irradiated with an active energy ray to form a conductive composition as a cured film of the conductive composition. membranes can be obtained.
 導電性組成物の塗膜を形成するための基材は、特に限定されるものではなく、例えば、ガラス基材、セラミック基材、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリオレフィン類、セルローストリアセテート等のセルロース系樹脂、ナイロン、アラミド等のアミド系樹脂、ポリフェニレンエーテル、ポリスルホンエーテル等のポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、芳香族ポリアミド系樹脂、シクロオレフィンポリマー類、ポリ塩化ビニル、ポリアクリル樹脂等の樹脂材料から構成される透明樹脂フィルム基材などが挙げられる。 The substrate for forming the coating film of the conductive composition is not particularly limited, and examples thereof include glass substrates, ceramic substrates, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, and cellulose. Cellulose-based resins such as triacetate, amide-based resins such as nylon and aramid, polyether-based resins such as polyphenylene ether and polysulfone ether, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, polyamide-imide-based resins, aromatic polyamide-based resins , transparent resin film substrates composed of resin materials such as cycloolefin polymers, polyvinyl chloride, and polyacrylic resins.
 基材上への導電性組成物の塗布方法と塗布方法は、特に限定されるものではなく、例えば、グラビアロール法、マイクログラビアロール法、スリットダイコート法、スプレー法、スピン法、リバースロール法、ディップ法、バーコート法、インクジェット法等が挙げられる。 The coating method and coating method of the conductive composition on the substrate are not particularly limited, for example, gravure roll method, micro gravure roll method, slit die coating method, spray method, spin method, reverse roll method, A dipping method, a bar coating method, an inkjet method, and the like can be mentioned.
 活性エネルギー線は、用いる硬化性化合物の種類、重合開始剤の種類およびそれらの量等に応じて適宜選択し得る。その具体例としては、紫外光、X線、α線、β線およびγ線等が挙げられる。中でも、硬化性化合物の重合反応の進行を制御しやすい点や、光重合装置として当該分野で広範に用いられているものを使用し得る点で、紫外光が好ましい。 The active energy ray can be appropriately selected according to the type of curable compound used, the type of polymerization initiator and their amount. Specific examples thereof include ultraviolet light, X-rays, α-rays, β-rays and γ-rays. Among them, ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction of the curable compound, and because a photopolymerization apparatus widely used in the field can be used.
 活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 Examples of light sources for active energy rays include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excimer lasers, and a wavelength range of 380. LED light sources, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, etc., that emit light of up to 440 nm can be used.
 活性エネルギー線照射条件は、導電性組成物の組成によって適宜決定され、特に限定されるものではない。例えば、積算光量が、好ましくは10~3,000mJ/cm、より好ましくは50~2,000mJ/cm、さらに好ましくは100~1,000mJ/cmとなるよう、照射強度、照射回数や照射時間を適宜決定することができる。 The active energy ray irradiation conditions are appropriately determined depending on the composition of the conductive composition, and are not particularly limited. For example, the irradiation intensity , the number of times of irradiation, or The irradiation time can be determined as appropriate.
 本発明の導電性組成物からなる硬化膜は、良好な帯電防止性能を確保する観点から、その表面電気抵抗値が1×10Ω/□以上1×1011Ω/□以下であることが好ましく、より好ましくは5×10Ω/□以上、さらに好ましくは1×10Ω/□以上、特に好ましくは5×10Ω/□以上であり、また、より好ましくは5×1010Ω/□以下、特に好ましくは1×1010Ω/□以下である。表面電気抵抗値は、導電性組成物における無機導電性微粒子の種類、その量および平均凝集粒子径、活性エネルギー線硬化性化合物の種類およびその量等を調整することにより制御できる。
 なお、表面電気抵抗値は、表面電気抵抗測定器を用いて測定することができる。詳細には、例えば、後述する実施例に記載の方法により測定できる。
From the viewpoint of ensuring good antistatic performance, the cured film made of the conductive composition of the present invention should have a surface electrical resistance value of 1×10 6 Ω/□ or more and 1×10 11 Ω/□ or less. It is preferably 5×10 6 Ω/□ or more, still more preferably 1×10 7 Ω/□ or more, particularly preferably 5×10 7 Ω/□ or more, and more preferably 5×10 10 Ω or more. /□ or less, particularly preferably 1×10 10 Ω/□ or less. The surface electrical resistance value can be controlled by adjusting the type, amount and average aggregate particle size of the inorganic conductive fine particles in the conductive composition, the type and amount of the active energy ray-curable compound, and the like.
The surface electrical resistance value can be measured using a surface electrical resistance measuring instrument. Specifically, it can be measured, for example, by the method described in Examples below.
 本発明の導電性組成物からなる硬化膜における全光線透過率は、好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上、特に好ましくは75%以上である。全光線透過率の上限は、100%である。また、本発明の導電性組成物からなる硬化膜におけるヘイズは、好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2.5%以下である。全光線透過率およびヘイズが上記範囲にあると、より透明性に優れる導電膜となる。
 なお、硬化膜の全光線透過率およびヘイズは、例えば、JIS K 7361に従い測定できる。
The total light transmittance of the cured film made of the conductive composition of the present invention is preferably 60% or higher, more preferably 65% or higher, still more preferably 70% or higher, and particularly preferably 75% or higher. The upper limit of total light transmittance is 100%. In addition, the haze of the cured film made of the conductive composition of the present invention is preferably 4% or less, more preferably 3% or less, still more preferably 2.5% or less. If the total light transmittance and haze are within the above ranges, the conductive film will have more excellent transparency.
The total light transmittance and haze of the cured film can be measured according to JIS K 7361, for example.
 本発明の導電性組成物から形成される導電膜は、帯電防止性能に優れ、高い透明性を有するため、基材上に導電膜を備えた積層体として、例えば、プラスチック製品用の帯電防止フィルム、窓ガラス用の帯電防止フィルム、半導体製品の包装フィルム、設備カバー用プラスチック帯電防止シート等の用途に好適である。 The conductive film formed from the conductive composition of the present invention is excellent in antistatic performance and has high transparency. , antistatic films for window glass, packaging films for semiconductor products, plastic antistatic sheets for facility covers, and the like.
 本発明の無溶剤系導電性組成物は、従来用いられている溶剤系の導電性塗料よりも、VOC対策や塗工設備の簡易化、作業効率の点等に優れ、環境に配慮した技術を提供し得ることにより、国連の提唱する持続可能な開発目標(SDGs)における、例えば、目標9「産業と技術革新の基盤をつくろう」、および、目標12「つくる責任 使う責任」等に資する。 The solvent-free conductive composition of the present invention is superior to conventional solvent-based conductive paints in terms of VOC countermeasures, simplification of coating equipment, work efficiency, etc., and is environmentally friendly technology. By being able to provide it, we will contribute to the Sustainable Development Goals (SDGs) advocated by the United Nations, such as Goal 9 "Industry, innovation and infrastructure" and Goal 12 "Responsible consumption and production".
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」および「部」は、特記ない限り、質量%および質量部である。 The present invention will be described in more detail below with reference to examples. Unless otherwise specified, "%" and "parts" in the examples are % by mass and parts by mass.
1.導電性組成物の調製
(1)実施例1
 (i)無機導電性微粒子の分散液の調製
 直径0.1mmの粒径を有するジルコニアビーズ(250g)を入れた250mlのプラスチック製容器に、表1の組成に従い、活性エネルギー線硬化性化合物、無機導電性微粒子および分散剤を投入し、ペイントシェーカー(東洋精機製作所製)で20分間分散処理した。分散処理後、ビーズを除去して無機導電性微粒子の分散液を得た。
1. Preparation of conductive composition (1) Example 1
(i) Preparation of Dispersion of Inorganic Conductive Fine Particles According to the composition shown in Table 1, an active energy ray-curable compound, an inorganic Conductive fine particles and a dispersing agent were added and dispersed for 20 minutes using a paint shaker (manufactured by Toyo Seiki Seisakusho). After the dispersion treatment, the beads were removed to obtain a dispersion liquid of inorganic conductive fine particles.
 (ii)導電性組成物の調製
 上記(i)で得られた無機導電性微粒子の分散液に、表1の組成に従い、重合開始剤および表面調整剤を投入し、スターラーを用いて30分間撹拌することにより、導電性組成物を調製した。
(ii) Preparation of conductive composition A polymerization initiator and a surface control agent are added according to the composition shown in Table 1 to the dispersion of inorganic conductive fine particles obtained in (i) above, and stirred for 30 minutes using a stirrer. By doing so, a conductive composition was prepared.
(2)実施例2~11および比較例1~6
 活性エネルギー線硬化性化合物、無機導電性微粒子および分散剤の配合量、分散剤の種類および、分散条件を、表1(実施例2~11)または表2(比較例1~6)の記載に従い変更した以外は、実施例1と同様にして無機導電性微粒子の分散液を得た。得られた無機導電性微粒子の分散液に、表1(実施例2~11)または表2(比較例1~6)の組成に従い、重合開始剤および表面調整剤を投入し、実施例1と同様にして導電性組成物を調製した。
(2) Examples 2-11 and Comparative Examples 1-6
The amounts of the active energy ray-curable compound, the inorganic conductive fine particles and the dispersing agent, the type of the dispersing agent, and the dispersing conditions were determined according to Table 1 (Examples 2 to 11) or Table 2 (Comparative Examples 1 to 6). A dispersion of inorganic conductive fine particles was obtained in the same manner as in Example 1, except for the change. A polymerization initiator and a surface control agent were added to the resulting dispersion of inorganic conductive fine particles according to the compositions shown in Table 1 (Examples 2 to 11) or Table 2 (Comparative Examples 1 to 6). A conductive composition was prepared in the same manner.
(3)実施例12~16
 活性エネルギー線硬化性化合物の種類および量、無機導電性微粒子および分散剤の配合量を、表3の記載に従い変更した以外は、実施例1と同様にして無機導電性微粒子の分散液を得た。得られた無機導電性微粒子の分散液に、表3の組成に従い、重合開始剤および表面調整剤を投入し、実施例1と同様にして導電性組成物を調製した。
 なお、実施例1~16の全ての導電性組成物において、無機導電性微粒子の総質量に対して80質量%以上の無機導電性微粒子が凝集粒子として存在していた。
(3) Examples 12-16
A dispersion of inorganic conductive fine particles was obtained in the same manner as in Example 1, except that the type and amount of the active energy ray-curable compound and the blending amounts of the inorganic conductive fine particles and the dispersant were changed according to Table 3. . A conductive composition was prepared in the same manner as in Example 1 by adding a polymerization initiator and a surface conditioner according to the composition shown in Table 3 to the obtained dispersion of inorganic conductive fine particles.
In all the conductive compositions of Examples 1 to 16, 80% by mass or more of the inorganic conductive fine particles were present as aggregated particles with respect to the total mass of the inorganic conductive fine particles.
(4)導電性組成物の物性
 (i)無機導電性微粒子の分散液および導電性組成物の粘度
 無機導電性微粒子の分散液および導電性組成物の粘度は、それぞれ、E型粘度計、TV22形コーンタイプ(東機産業社製)を用いて、測定温度25℃にて測定した。結果を表1および表2に示す。
(4) Physical properties of the conductive composition (i) Viscosity of the inorganic conductive fine particle dispersion and the conductive composition It was measured at a measurement temperature of 25° C. using a cone type (manufactured by Toki Sangyo Co., Ltd.). Results are shown in Tables 1 and 2.
 (ii)無機導電性微粒子の平均凝集粒子径
 無機導電性微粒子の分散液および導電性組成物における無機導電性微粒子の平均凝集粒子径は、それぞれ、濃厚系粒径アナライザー FPAR-1000(大塚電子社製)を用いて測定した。測定は、測定対象とする無機導電性微粒子の分散液または導電性組成物をジプロピレングリコールモノメチルエーテルアセテート(DPMA)で光量が10000~50000cpsになるように希釈した測定用組成物を用いて、測定温度25℃にて行った。結果を表1および表2に示す。
(ii) Average aggregate particle size of inorganic conductive fine particles The average aggregate particle size of the inorganic conductive fine particles in the dispersion liquid of the inorganic conductive fine particles and the conductive composition was measured using a concentrated particle size analyzer FPAR-1000 (Otsuka Electronics Co., Ltd.). (manufactured). Measurement is carried out using a measurement composition obtained by diluting a dispersion of inorganic conductive fine particles or a conductive composition to be measured with dipropylene glycol monomethyl ether acetate (DPMA) so that the light intensity is 10000 to 50000 cps. It was carried out at a temperature of 25°C. Results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~表3中に記載の各成分の詳細は以下の通りである。
・無機導電性微粒子:ATO粒子、SN-100P(石原産業製)、平均一次粒子径:10~30nm)
・活性エネルギー線硬化性化合物-1:1,6-ヘキサンジオールジアクリレート(HDDA、ビスコート#230:大阪有機化学工業製)、二官能、25℃における単体粘度:6mPa・s
・活性エネルギー線硬化性化合物-2:ジプロピレングリコールジアクリレート(サートマーSR508NS:アルケマ社製)、二官能、25℃における単体粘度:10mPa・s
・活性エネルギー線硬化性化合物-3:プロポキシ化(2)ネオペンチルグリコールジアクリレート(サートマーSR9003NS:アルケマ社製)、二官能、25℃における単体粘度:15mPa・s
・活性エネルギー線硬化性化合物-4:環状トリメチロールプロパンフォルマルアクリレート(サートマーSR531NS:アルケマ社製)、単官能、25℃における単体粘度:15mPa・s
・活性エネルギー線硬化性化合物-5:アクリル酸4-tert-ブチルシクロヘキシル(サートマーSR217NS:アルケマ社製)、単官能、25℃における単体粘度:9mPa・s
・活性エネルギー線硬化性化合物-6:2-(アリルオキシメチル)アクリル酸メチル(AOMA:日本触媒)、二官能、25℃における単体粘度:2mPa・s
・分散剤-1:BYK-106(ビックケミージャパン製)、リン酸基を有するポリマーの塩、酸価:132mgKOH/g、アミン価:74mgKOH/g
・分散剤-2:BYK-102(ビックケミージャパン製)、酸性基を有するコポリマー、酸価:101mgKOH/g
・分散剤-3:BYK-180(ビックケミージャパン製)、酸基を含む共重合物のアルキロールアミン塩、酸価:94mgKOH/g、アミン価:94mgKOH/g
・重合開始剤:2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルフォリニル)-1-プロパノン(Omnirad 907、IGM Resins B.V.製)
・表面調整剤:アクリル基含有ポリエーテル変性ポリジメルシロキサン(BYK-UV3500、ビックケミージャパン製)
Details of each component described in Tables 1 to 3 are as follows.
・ Inorganic conductive fine particles: ATO particles, SN-100P (manufactured by Ishihara Sangyo), average primary particle size: 10 to 30 nm)
・Active energy ray-curable compound-1: 1,6-hexanediol diacrylate (HDDA, Viscoat #230: manufactured by Osaka Organic Chemical Industry), bifunctional, unit viscosity at 25 ° C.: 6 mPa s
・Active energy ray-curable compound-2: Dipropylene glycol diacrylate (Sartomer SR508NS: manufactured by Arkema), bifunctional, unit viscosity at 25 ° C.: 10 mPa s
Active energy ray-curable compound-3: propoxylated (2) neopentyl glycol diacrylate (Sartomer SR9003NS: manufactured by Arkema), bifunctional, unit viscosity at 25 ° C.: 15 mPa s
・Active energy ray-curable compound-4: Cyclic trimethylolpropane formal acrylate (Sartomer SR531NS: manufactured by Arkema), monofunctional, unit viscosity at 25 ° C.: 15 mPa s
・Active energy ray-curable compound-5: 4-tert-butylcyclohexyl acrylate (Sartomer SR217NS: manufactured by Arkema), monofunctional, unit viscosity at 25 ° C.: 9 mPa s
・Active energy ray-curable compound-6: 2-(allyloxymethyl) methyl acrylate (AOMA: Nippon Shokubai), bifunctional, unit viscosity at 25 ° C.: 2 mPa s
Dispersant-1: BYK-106 (manufactured by BYK Chemie Japan), salt of polymer having phosphoric acid group, acid value: 132 mgKOH/g, amine value: 74 mgKOH/g
・ Dispersant-2: BYK-102 (manufactured by BYK Chemie Japan), a copolymer having an acidic group, acid value: 101 mgKOH / g
Dispersant-3: BYK-180 (manufactured by BYK Chemie Japan), alkylol amine salt of a copolymer containing an acid group, acid value: 94 mg KOH / g, amine value: 94 mg KOH / g
- Polymerization initiator: 2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpholinyl)-1-propanone (Omnirad 907, manufactured by IGM Resins B.V.)
・Surface conditioner: acrylic group-containing polyether-modified polydimersiloxane (BYK-UV3500, manufactured by BYK-Chemie Japan)
2.硬化膜(導電膜)の特性評価
(1)硬化膜の作製
 透明なポリ塩化ビニル(PVC)シート上に、上記で調製した導電性組成物を、バーコーターPI-1210(テスター産業社製)を用いて塗布し、ウェット膜厚3μmの塗膜を形成した。次いで、UVランプECS-1511S(アイグラフィックス社製、高圧水銀ランプ)を用いて500mJ/cmの紫外光を、窒素雰囲気下で照射することにより、硬化膜を得た。なお、比較例2、5および6で調製した組成物は、無機導電性微粒子を分散できなかったため、また、比較例4で調製した組成物は、重合開始剤が一部溶解しなかったため硬化膜を作製できなかった。
2. Characterization of cured film (conductive film) (1) Preparation of cured film On a transparent polyvinyl chloride (PVC) sheet, the conductive composition prepared above is coated with a bar coater PI-1210 (manufactured by Tester Sangyo Co., Ltd.). to form a coating film with a wet film thickness of 3 μm. Then, UV lamp ECS-1511S (manufactured by Eyegraphics, high-pressure mercury lamp) was used to irradiate ultraviolet light at 500 mJ/cm 2 in a nitrogen atmosphere to obtain a cured film. In the compositions prepared in Comparative Examples 2, 5 and 6, the inorganic conductive fine particles could not be dispersed. could not be produced.
(2)硬化膜の特性評価
 (i)表面電気抵抗値
 硬化膜の表面電気抵抗値は、ハイレスタ(三菱ケミカル社製)、URSプローブを用いて印可電圧を測定しうる最大電圧にて測定した。結果を表4に示す。
(2) Characteristic Evaluation of Cured Film (i) Surface Electric Resistance Value The surface electric resistance value of the cured film was measured using Hiresta (manufactured by Mitsubishi Chemical Corporation) and a URS probe at the maximum voltage that can be applied. Table 4 shows the results.
 (ii)全光線透過率およびヘイズ
 硬化膜の全光線透過率およびヘイズは、ヘイズメーターNDH-2000(日本電色工業製)を用いて、「ホウホウ3」のモードで測定した。結果を表4に示す。
(ii) Total Light Transmittance and Haze The total light transmittance and haze of the cured film were measured using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.) in "HOHO 3" mode. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明に従う実施例1~16の導電性組成物は、塗工性に優れ、かつ、良好な帯電防止性能を有することが確認された。 It was confirmed that the conductive compositions of Examples 1 to 16 according to the present invention had excellent coatability and good antistatic performance.

Claims (17)

  1.  (A)無機導電性微粒子、
    (B)活性エネルギー線硬化性化合物、
    (C)重合開始剤、および、
    (D)分散剤
    を含む透明導電性活性エネルギー線硬化性組成物であって、
     透明導電性活性エネルギー線硬化性組成物の総質量に対して、
     前記無機導電性微粒子の含有量が40質量%以上60質量%以下であり、
     有機溶剤および水の含有量が5質量%以下であり、
     前記無機導電性微粒子が凝集粒子を含み、該凝集粒子の平均凝集粒子径が90nm以上180nm以下である、透明導電性活性エネルギー線硬化性組成物。
    (A) inorganic conductive fine particles,
    (B) an active energy ray-curable compound,
    (C) a polymerization initiator, and
    (D) A transparent conductive active energy ray-curable composition containing a dispersant,
    With respect to the total mass of the transparent conductive active energy ray-curable composition,
    The content of the inorganic conductive fine particles is 40% by mass or more and 60% by mass or less,
    The content of the organic solvent and water is 5% by mass or less,
    A transparent conductive active energy ray-curable composition, wherein the inorganic conductive fine particles contain aggregated particles, and the average aggregated particle size of the aggregated particles is 90 nm or more and 180 nm or less.
  2.  活性エネルギー線硬化性化合物は、少なくとも2個の反応性基を有する活性エネルギー線硬化性化合物を含む、請求項1に記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable composition according to claim 1, wherein the active energy ray-curable compound contains an active energy ray-curable compound having at least two reactive groups.
  3.  活性エネルギー線硬化性化合物は、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートおよび(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、2-(アリルオキシメチル)(メタ)アクリル酸メチルからなる群から選択される少なくとも1種を含む、請求項1または2に記載の透明導電性活性エネルギー線硬化性組成物。 Active energy ray-curable compounds include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 3-methyl-1, 5-pentanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate and 2-(2-vinyloxyethoxy) (meth)acrylic acid ) ethyl, 2-(allyloxymethyl)(meth)methyl (meth)acrylate.
  4.  活性エネルギー線硬化性化合物は、1,6-ヘキサンジオールジ(メタ)アクリレートを含む、請求項1~3のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable composition according to any one of claims 1 to 3, wherein the active energy ray-curable compound contains 1,6-hexanediol di(meth)acrylate.
  5.  活性エネルギー線硬化性化合物は、25℃における粘度が150mPa・s以下である活性エネルギー線硬化性化合物を含む、請求項1~4のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable composition according to any one of claims 1 to 4, wherein the active energy ray-curable compound contains an active energy ray-curable compound having a viscosity of 150 mPa·s or less at 25°C.
  6.  重合開始剤の含有量は、活性エネルギー線硬化性化合物100質量部に対して8質量部以上27質量部以下である、請求項1~5のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable according to any one of claims 1 to 5, wherein the content of the polymerization initiator is 8 parts by mass or more and 27 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable compound. Composition.
  7.  無機導電性微粒子は、酸化スズ、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、銀ナノ粒子、銀ナノワイヤおよび銅ナノ粒子からなる群から選択される少なくとも1種を含む、請求項1~6のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The inorganic conductive fine particles are at least one selected from the group consisting of tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), silver nanoparticles, silver nanowires and copper nanoparticles. The transparent conductive active energy ray-curable composition according to any one of claims 1 to 6, comprising seeds.
  8.  無機導電性微粒子はアンチモンドープ酸化スズ(ATO)である、請求項1~7のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable composition according to any one of claims 1 to 7, wherein the inorganic conductive fine particles are antimony-doped tin oxide (ATO).
  9.  分散剤は、100mgKOH/g以上の酸価を有するポリマーを含む、請求項1~8のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable composition according to any one of claims 1 to 8, wherein the dispersant contains a polymer having an acid value of 100 mgKOH/g or more.
  10.  分散剤は、カルボキシル基、スルホン酸基、ホスホン酸基、リン酸基および水酸基からなる群から選択される少なくとも1つを有する構造単位を含むポリマーである、請求項1~9のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 Dispersant according to any one of claims 1 to 9, wherein the dispersant is a polymer containing a structural unit having at least one selected from the group consisting of a carboxyl group, a sulfonic acid group, a phosphonic acid group, a phosphoric acid group and a hydroxyl group. transparent conductive active energy ray-curable composition.
  11.  分散剤の含有量は、無機導電性微粒子100質量部に対して8質量部以上25質量部以下である、請求項1~10のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable composition according to any one of claims 1 to 10, wherein the content of the dispersant is 8 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the inorganic conductive fine particles.
  12.  25℃における粘度は20~150mPa・sである、請求項1~11のいずれかに記載の透明導電性活性エネルギー線硬化性組成物。 The transparent conductive active energy ray-curable composition according to any one of claims 1 to 11, which has a viscosity of 20 to 150 mPa·s at 25°C.
  13.  請求項1~12のいずれかに記載の透明導電性活性エネルギー線硬化性組成物を硬化してなる硬化膜。 A cured film obtained by curing the transparent conductive active energy ray-curable composition according to any one of claims 1 to 12.
  14.  表面電気抵抗値は1×10Ω/□以上1×1011Ω/□以下である、請求項13に記載の硬化膜。 14. The cured film according to claim 13, wherein the surface electric resistance value is 1*10< 6 > [Omega]/square or more and 1*10< 11 > [Omega]/square or less.
  15.  基材と、前記基材上に請求項1~12のいずれかに記載の透明導電性活性エネルギー線硬化性組成物を硬化してなる硬化膜とを備える積層体。 A laminate comprising a substrate and a cured film obtained by curing the transparent conductive active energy ray-curable composition according to any one of claims 1 to 12 on the substrate.
  16.  請求項1~12のいずれかに記載の透明導電性活性エネルギー線硬化性組成物の製造方法であって、
     無機導電性微粒子、活性エネルギー線硬化性化合物および分散剤を混合して混合物を得る工程、および、
     無機導電性微粒子に含まれる凝集粒子の平均凝集粒子径が90nm以上180nm以下となるよう前記混合物に分散処理を施す工程
    を含む方法。
    A method for producing a transparent conductive active energy ray-curable composition according to any one of claims 1 to 12,
    a step of mixing inorganic conductive fine particles, an active energy ray-curable compound and a dispersant to obtain a mixture;
    A method comprising the step of subjecting the mixture to a dispersion treatment so that the average aggregate particle size of the aggregate particles contained in the inorganic conductive fine particles is 90 nm or more and 180 nm or less.
  17.  混合工程における無機導電性微粒子の配合量は、該混合工程で得られる混合物の総質量に対して43質量%以上65質量%以下である、請求項16に記載の方法。 The method according to claim 16, wherein the blending amount of the inorganic conductive fine particles in the mixing step is 43% by mass or more and 65% by mass or less with respect to the total mass of the mixture obtained in the mixing step.
PCT/JP2022/005491 2021-02-12 2022-02-10 Transparent conductive active energy ray-curable composition and manufacturing method therefor WO2022173019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022580695A JPWO2022173019A1 (en) 2021-02-12 2022-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021044 2021-02-12
JP2021021044 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022173019A1 true WO2022173019A1 (en) 2022-08-18

Family

ID=82838335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005491 WO2022173019A1 (en) 2021-02-12 2022-02-10 Transparent conductive active energy ray-curable composition and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2022173019A1 (en)
WO (1) WO2022173019A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263873A (en) * 1989-04-03 1990-10-26 Dainippon Toryo Co Ltd Ultraviolet-curable coating
JPH0827405A (en) * 1994-07-15 1996-01-30 Sumitomo Osaka Cement Co Ltd Clear and electrically conductive coating
JP2006143878A (en) * 2004-11-19 2006-06-08 Toyo Ink Mfg Co Ltd Coating composition and method for producing the same
JP2008115252A (en) * 2006-11-02 2008-05-22 Toyo Ink Mfg Co Ltd Information-recording medium
JP2012031249A (en) * 2010-07-29 2012-02-16 Sekisui Chem Co Ltd Optical curing type conductive coating composition and transparency antistatic laminate
JP2012058506A (en) * 2010-09-09 2012-03-22 Sumitomo Osaka Cement Co Ltd Optical material, tin oxide fine particle dispersion, tin oxide fine particle dispersion coating material, method for manufacturing optical material, high refractive index film, and antistatic film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263873A (en) * 1989-04-03 1990-10-26 Dainippon Toryo Co Ltd Ultraviolet-curable coating
JPH0827405A (en) * 1994-07-15 1996-01-30 Sumitomo Osaka Cement Co Ltd Clear and electrically conductive coating
JP2006143878A (en) * 2004-11-19 2006-06-08 Toyo Ink Mfg Co Ltd Coating composition and method for producing the same
JP2008115252A (en) * 2006-11-02 2008-05-22 Toyo Ink Mfg Co Ltd Information-recording medium
JP2012031249A (en) * 2010-07-29 2012-02-16 Sekisui Chem Co Ltd Optical curing type conductive coating composition and transparency antistatic laminate
JP2012058506A (en) * 2010-09-09 2012-03-22 Sumitomo Osaka Cement Co Ltd Optical material, tin oxide fine particle dispersion, tin oxide fine particle dispersion coating material, method for manufacturing optical material, high refractive index film, and antistatic film

Also Published As

Publication number Publication date
JPWO2022173019A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
JP5043226B1 (en) Photocurable conductive ink composition
JP2010540404A (en) Nanoparticle dispersion in organic solvent
WO2018131666A1 (en) Active energy ray-curable ink composition for offset printing and method for producing printed material using same
JP2014173070A (en) Active energy ray-curable offset printing ink composition
JP2013108009A (en) Active energy ray-curable resin composition, method for producing active energy ray-curable resin composition, coating material, coating film, and film
JP2009155570A (en) Composition containing carbon nanotube, complex with coating film comprising the same, and its manufacturing method
JP2007063481A (en) Carbon nano tube-containing curable composition and composite having cured coated film of the same
JP6176431B2 (en) Active energy ray-curable coating composition and coating agent
JP2014152080A (en) Active energy ray-curable nanocarbon dispersion, method for manufacturing the same, and active energy ray-curable coating agent using the same
JP2024038177A (en) Energy ray curable inkjet ink composition
JP2009018231A (en) Photocatalytic laminated film
WO2004044063A1 (en) Ultraviolet-curable antistatic hard coating resin composition
JP4765300B2 (en) Coating composition and method for producing the same.
KR102112598B1 (en) Antistatic photho-curable resin composition, antistactic plastic sheet prepared by using this and manufacturing method for the sames
JP2015120781A (en) Active energy ray-curable coating agent composition
JP6019056B2 (en) SUBSTRATE WITH LAMINATED COATING AND COATING COMPOSITION FOR FORMING PRIMER LAYER FOR FORMING THE LAMINATED COATING
JP2008056765A (en) Carbon nanotube-containing structure and its manufacturing method
WO2013151001A1 (en) Active energy ray-curable composition, and metal base having cured film and method for producing same
JP2011201930A (en) Composition for hardcoat and base material coated therewith
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
JP6339383B2 (en) Active energy ray-curable ink composition for offset printing and method for producing printed matter using the same
WO2022173019A1 (en) Transparent conductive active energy ray-curable composition and manufacturing method therefor
US10427388B2 (en) Emulsion composition and production method thereof, and laminate and production method thereof
CN112142994A (en) Nonaqueous dispersions of polytetrafluoroethylene
JP2011084663A (en) Aqueous coating composition and method of coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022580695

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752841

Country of ref document: EP

Kind code of ref document: A1