WO2022161125A1 - 化学强化微晶玻璃及其制备方法和电子设备 - Google Patents

化学强化微晶玻璃及其制备方法和电子设备 Download PDF

Info

Publication number
WO2022161125A1
WO2022161125A1 PCT/CN2022/070288 CN2022070288W WO2022161125A1 WO 2022161125 A1 WO2022161125 A1 WO 2022161125A1 CN 2022070288 W CN2022070288 W CN 2022070288W WO 2022161125 A1 WO2022161125 A1 WO 2022161125A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramic
chemically strengthened
temperature
strengthened glass
Prior art date
Application number
PCT/CN2022/070288
Other languages
English (en)
French (fr)
Inventor
陈石峰
黄义宏
许文彬
曾洲
林耿
陈杰杰
朱广祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22745003.8A priority Critical patent/EP4257564A4/en
Priority to CN202280007562.1A priority patent/CN116583490A/zh
Publication of WO2022161125A1 publication Critical patent/WO2022161125A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0066Re-forming shaped glass by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • C03B25/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • H04M1/185Improving the rigidity of the casing or resistance to shocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0217Mechanical details of casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the embodiments of the present application relate to the technical field of glass-ceramics, and in particular, to chemically strengthened glass-ceramics, preparation methods thereof, and electronic devices.
  • a first aspect of the embodiments of the present application provides a chemically strengthened glass-ceramic, wherein two opposite sides of the chemically strengthened glass-ceramic are respectively formed with strengthening layers, and the strengthening layers extend from the surface of the chemically strengthened glass-ceramic to the inside It includes a potassium strengthening layer and a sodium strengthening layer in sequence, the depth of the potassium strengthening layer is 0.01 ⁇ m-5 ⁇ m, the depth of the sodium strengthening layer is ⁇ 0.1t, and the t is the thickness of the chemically strengthened glass-ceramic.
  • the chemically strengthened glass-ceramic has suitable depth of potassium strengthening layer and sodium strengthening layer, and has excellent drop resistance, impact resistance and weather resistance (high temperature and high humidity environment resistance), and can be used in electronic equipment to improve electronic equipment. reliability and service life in hot and humid environments, and ultimately enhance the market competitiveness of electronic equipment.
  • the average tensile stress of the chemically strengthened glass-ceramic is 35MPa-85MPa. Appropriate average tensile stress can ensure that the glass has high strength and at the same time prevent the fragments from being too small after the glass fails.
  • the total mass content of the crystal phase is ⁇ 50%.
  • the Vickers hardness of the chemically strengthened glass-ceramic is ⁇ 650kgf/mm 2 ; the impact strength of the chemically strengthened glass-ceramic is ⁇ 0.07J.
  • the higher Vickers hardness can effectively inhibit the expansion of cracks and improve the impact resistance and drop resistance. Higher impact strength can improve product reliability.
  • a second aspect of the embodiments of the present application provides a method for preparing the above chemically strengthened glass-ceramic, comprising:
  • the glass-ceramic raw material is accommodated in a forming mold, and the preheating process, the forming process, the crystallization process and the annealing and cooling process are sequentially performed to obtain the 3D glass-ceramic to be strengthened; the crystallinity of the glass-ceramic raw material is is 5%-75%; the temperature of the crystallization process is greater than or equal to the temperature of the molding process.
  • the Vickers hardness of the 3D glass-ceramic is ⁇ 650kgf/mm 2 ; the process capability index CPK of the 3D glass-ceramic with a length and width dimension tolerance within ⁇ 0.1 mm is greater than or equal to 0.8.
  • the 3D glass-ceramic includes the following components:
  • the 3D glass-ceramic includes a glass phase and a crystal phase, and the total mass content of the crystal phase in the 3D glass-ceramic is ⁇ 50%.
  • the embodiment of the present application further provides a glass cover plate, and the glass cover plate is made of the chemically strengthened glass-ceramics described in the first aspect and/or the 3D glass-ceramics described in the third aspect.
  • the glass cover can be a display cover, a back cover or a camera protection cover of an electronic device.
  • the housing includes a display screen cover plate assembled on the front side of the electronic device, and the display screen cover plate includes the glass-ceramic.
  • the housing includes a rear cover assembled on the rear side of the electronic device, and the rear cover adopts the glass-ceramic.
  • the electronic device further includes a camera assembly inside the casing, the casing includes a camera protection cover, the camera protection cover is covered on the camera assembly, and the camera protects The cover plate adopts the glass-ceramic.
  • part of the outer shell may be made of glass-ceramic, or all of the outer shell may be made of glass-ceramic.
  • the electronic device in the present application may be one or more of a display screen cover, a rear cover, and a camera protection cover using the above-mentioned glass-ceramics.
  • FIG. 1 is a schematic structural diagram of a front side of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a rear structure of an electronic device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the distribution of exchange ions of the strengthening layer of the chemically strengthened glass-ceramic provided in the embodiment of the present application;
  • FIG. 5 is a stress curve diagram of the chemically strengthened glass-ceramic in an embodiment of the application and the existing Al-Si-strong glass and Li-Al-Si 2-strong glass;
  • FIG. 6 is a temperature curve diagram of the hot bending process of 3D glass-ceramic in the embodiment of the application.
  • FIG. 7 is a schematic diagram of the crystal phase change inside the glass at different heat treatment stages during the hot bending process of the 3D glass-ceramic in the embodiment of the present application.
  • an embodiment of the present application provides an electronic device 100.
  • the electronic device 100 may be an electronic product such as a mobile phone, a tablet computer, a smart wearable device, etc.
  • the electronic device 100 includes an electronic device assembled outside the electronic device.
  • the casing, and components such as circuit boards and batteries located inside the casing, the casing includes a display screen cover 101 assembled on the front side and a rear cover 102 assembled on the rear side, and the display screen cover 101 is covered on the display module.
  • the display screen cover 101 and/or the rear cover 102 are made of glass-ceramic.
  • the display screen cover plate 101 and the rear cover 102 may be all made of glass-ceramic, or only partially made of glass-ceramic.
  • the electronic device 100 further includes a camera assembly 2 located inside the casing, and the casing may include a camera protection cover 103 , and the camera protection cover 103 is covered on the camera assembly 2 for protection
  • the camera protection cover 103 is made of glass-ceramic.
  • the camera protection cover 103 may be partially made of glass-ceramic, or may be entirely made of glass-ceramic.
  • the installation position of the camera protection cover 103 is determined according to the installation position of the camera assembly 2 .
  • the camera protection cover 103 may be a separate structure from the display cover 101 or the back cover 102 .
  • the camera protection cover plate 103 may also be an integral structure with the display screen cover plate 101 or the back cover 102.
  • the display screen cover 101 , the rear cover 102 , and the camera protection cover 103 in the electronic device 100 may be made of glass-ceramic for any one of the three, or glass-ceramic for any two of them. Glass, or glass-ceramic can be used for all three.
  • the above-mentioned glass-ceramic used in the electronic device 100 is chemically strengthened glass-ceramic 10 , and strengthening layers 11 are respectively formed on opposite sides of the chemically-strengthened glass-ceramic 10 , and the strengthening layer 11 is formed from the surface of the chemically strengthened glass-ceramic It includes a potassium strengthening layer 111 and a sodium strengthening layer 112 in sequence, the depth of the potassium strengthening layer 111 is 0.01 ⁇ m-5 ⁇ m, and the depth of the sodium strengthening layer 112 is ⁇ 0.1t, where t is the thickness of the chemically strengthened glass-ceramic.
  • the chemically strengthened glass-ceramic 10 in the embodiment of the present application is obtained by chemically strengthening the glass-ceramic to be strengthened. As shown in FIG. Layer 11.
  • the strengthening layer 11 is obtained from the glass-ceramic to be strengthened through two-step ion exchange, and the part of the intermediate layer 113 that does not participate in the ion-exchange has the same composition as the glass-ceramic to be chemically strengthened. Referring to FIG.
  • the sodium strengthening layer 112 of the inner layer is formed by the first step of ion exchange, the first step of ion exchange is Na+-Li+ exchange, and the first step of ion exchange introduces sodium ions into the glass-ceramic; and the outer layer
  • the potassium reinforced layer 111 is formed by the joint action of the first step ion exchange and the second step ion exchange, the second step ion exchange includes K+-Na+, Na+-Li+ exchange, and the second step ion exchange introduces potassium into the glass-ceramic at the same time. ions and lithium ions.
  • the potassium-strengthened layer 111 and the sodium-strengthened layer 112 with suitable depths enable the glass to have both excellent drop resistance and weather resistance.
  • Figure 4 only illustrates the introduction of K, Na, and Li into the glass by the two-step ion exchange.
  • the distribution position and quantity of each component are not limited to those shown in Figure 4.
  • the Li introduced in the second step of ion exchange can be It is not limited to being introduced only to the potassium strengthening layer, but can also be introduced to the sodium strengthening layer.
  • the depth of the potassium strengthening layer and the sodium strengthening layer refers to the dimension from the glass surface inward to the boundary of the corresponding layer.
  • the depth of the potassium strengthening layer 111 is 0.1 ⁇ m-3 ⁇ m; in some embodiments, the depth of the potassium strengthening layer 111 is 0.5 ⁇ m-2.5 ⁇ m; in other embodiments, the depth of the potassium strengthening layer 111 is 1.0 ⁇ m -2.0 ⁇ m; in other embodiments, the depth of the potassium strengthening layer 111 is 1.2 ⁇ m-1.8 ⁇ m; in other embodiments, the depth of the potassium strengthening layer 111 is 1.5 ⁇ m-1.6 ⁇ m. Controlling the depth of the potassium strengthening layer to a suitable thickness can maintain the good impact resistance of the glass while obtaining excellent drop resistance and weather resistance.
  • the main principle of chemical strengthening is to form a layer of compressive stress on the surface through the "crowding effect" by exchanging ions with a larger radius (such as K+) in the molten salt with ions with a smaller radius (such as Na + ) in the glass, And form a strengthening layer with a certain depth.
  • the depth of the strengthening layer refers to the depth of the strengthening layer on one side of the glass, that is, the depth from the glass surface to the point where the internal compressive stress is 0.
  • the strengthening layer is the ion exchange layer, that is, the compressive stress layer. A certain compressive stress can be obtained on the glass surface through ion exchange.
  • the compressive stress on the surface needs to be offset first, and then the glass is in a state of tension, so the strength of the glass is significantly improved after chemical strengthening; on the other hand , because ion exchange forms a certain depth of compressive stress layer on the glass surface, so even if external force forms cracks on the glass surface, the formed ion exchange layer will effectively prevent the further expansion of cracks, thus greatly improving the resistance of the glass to external forces.
  • the depth of the reinforcement layer 11 is greater than or equal to 80 ⁇ m. In some embodiments, the depth of the reinforcement layer 11 is greater than or equal to 90 ⁇ m.
  • the depth of the reinforcement layer 11 is greater than or equal to 100 ⁇ m. In other embodiments, the depth of the strengthening layer 11 is greater than or equal to 105 ⁇ m. In other embodiments, the depth of the strengthening layer 11 is greater than or equal to 110 ⁇ m.
  • the strengthening layer 11 has a large depth, and the chemically strengthened glass-ceramic has better anti-drop performance, which can improve the reliability of electronic equipment.
  • CS50 > 100 MPa.
  • the strengthening layer 11 constitutes a compressive stress layer
  • the chemically strengthened glass-ceramic also has a tensile stress layer corresponding to the compressive stress layer.
  • the average tensile stress of the chemically strengthened glass-ceramic 10 is 35 MPa to 85 MPa.
  • the average tensile stress may be, for example, 35 MPa, 39 MPa, 45 MPa, 60 MPa, 70 MPa, and 85 MPa. If the average tensile stress is too small, the strength performance of the glass is poor; if the average tensile stress is too high, the fragments will be too small ( ⁇ 2mm) after the glass fails, which is not suitable for use in electronic equipment.
  • Appropriate average tensile stress can ensure that the glass has high strength and at the same time prevent the fragments from being too small after the glass fails.
  • the size of the chemically strengthened glass-ceramics in the examples of the present application after failure is greater than 2 mm.
  • the falling ball impact strength of the chemically strengthened glass-ceramic 10 is greater than or equal to 0.07J. In some embodiments, the falling ball impact strength of the chemically strengthened glass-ceramic 10 is greater than or equal to 0.10J. In other embodiments, the falling ball impact strength of the chemically strengthened glass-ceramic 10 is greater than or equal to 0.15J.
  • Falling ball that is, the steel ball hits the glass surface with a certain height in free fall motion.
  • the impact strength of the falling ball refers to the ability of the glass to be smashed to the surface by a steel ball in a certain height of free fall motion and remain undamaged.
  • the sodium element concentration decreases monotonically. That is, from the surface of the chemically strengthened glass-ceramic to the inner depth of 0.01t to the depth of 0.1t, the concentration of sodium element decreases monotonically.
  • the distribution of sodium element is beneficial to the glass to obtain better anti-drop performance and weather resistance.
  • the chemically strengthened glass-ceramic 10 has good heat and humidity resistance. No white sodium-containing compounds are precipitated, that is, no "white” corrosion marks will appear on the surface of the chemically strengthened glass-ceramic 10 .
  • the chemically strengthened glass-ceramic 10 is kept at a temperature of 85° C. and a humidity of 85% for more than or equal to 180 hours, and no white sodium-containing compound is precipitated on the surface.
  • the chemically strengthened glass-ceramic 10 is kept at a temperature of 85° C. and a humidity of 85% for more than or equal to 240 hours, and no white sodium-containing compound is precipitated on the surface. Chemically strengthened glass-ceramic has good resistance to heat and humidity, which can improve the adaptability of electronic equipment to use in hot and humid scenarios and prolong the service life of electronic equipment.
  • the depth of the strengthening layer, the compressive stress CS50 at a depth of 50 ⁇ m of the strengthening layer, and the average tensile stress can be obtained by testing with a glass stress meter (eg, SLP2000, FSM6000).
  • a glass stress meter eg, SLP2000, FSM6000.
  • the chemically strengthened glass-ceramics in the examples of this application were tested for the stress of the potassium-strengthened layer by using a glass stress meter, and there were no stress stripes.
  • the drop resistance height of the chemically strengthened glass-ceramic 10 is greater than or equal to 1.5m.
  • the test method for the anti-drop height is to attach chemically strengthened glass-ceramic 10 to a 200g electronic device model, drop the glass downwards horizontally onto a marble board with 180# sandpaper on the surface, and take the highest glass that does not break. The point is the anti-drop height.
  • the glass-ceramic to be strengthened is a lithium-containing glass-ceramic, and the glass-ceramic to be strengthened may include the following components in molar percentage:
  • SiO 2 is the main oxide constituting the glass network, and provides the glass with network structure strength.
  • the content of SiO 2 may be 60%-72%, and further may be 65%-70%.
  • Higher SiO2 content can enhance the connectivity of the glass network structure and improve the glass density and mechanical properties.
  • Li 2 O and Na 2 O are the main components of ion exchange, wherein lithium ion is the key exchange ion for the first step of ion exchange to form a sodium exchange layer.
  • Li 2 O content With a higher Li 2 O content, a deeper strengthening layer depth can be obtained through the first step of ion exchange, and a higher surface compressive stress can also be obtained, thereby improving the anti-crack generation ability and improving the anti-drop performance of the glass, but the Li 2 O content is too high
  • the thermal expansion coefficient of the glass will increase, the thermal shock resistance will decrease, and the network structure will be destroyed. Therefore, the content of Li 2 O is controlled within the range of 10%-25% in the examples of the present application.
  • the content of Li 2 O is controlled in the range of 18%-23%. In other embodiments, the content of Li 2 O is controlled within the range of 20%-22%.
  • Sodium ion is the key exchange ion to form the outer potassium strengthening layer, and the existence of K 2 O can reduce the viscosity at high temperature and reduce the difficulty of smelting, but excessive K 2 O will reduce the ion exchange rate. Therefore, in the examples of the present application, the total content of Na 2 O and K 2 O is controlled within the range of 3%-5%. In some embodiments, the total content of Na 2 O and K 2 O is controlled at 3.5%-4.5%. In the embodiment of the present application, only Na 2 O may be included, or both K 2 O and Na 2 O may be included.
  • the aluminum ion (Al 3+ ) is basically in the form of a tetrahedron Participating in the network structure of the glass, with the increase of Al 2 O 3 content, the strength of the glass increases, and the mechanical properties develop in a good direction. Moreover, due to the large volume of the [AlO 4 ] tetrahedron, the network voids can be enlarged, so that the Exchange ions move more easily, so ion exchange performance can be improved. In some embodiments of the present application, the content of Al 2 O 3 may be 2%-8%.
  • the glass component further includes one or more of P 2 O 5 , ZrO 2 and TiO 2 .
  • P 2 O 5 , ZrO 2 and TiO 2 exist as nucleating agents, which can crystallize inside the glass to make the glass microcrystalline, thereby enhancing the strength of the glass.
  • the mechanical strength of the glass will decrease, especially the surface hardness , which will cause the glass to be easily scratched. reduce. Therefore, in the embodiments of the present application, the total content of P 2 O 5 , ZrO 2 and TiO 2 is controlled within the range of 2%-10%.
  • the glass component may further include one or more of MgO, CaO, and ZnO.
  • the total mass content of MgO, CaO and ZnO may be 1%-3%, or 2%-2.5%.
  • MgO as a network intermediate, can improve the Young's modulus of the glass and the toughness of the glass body, which is beneficial to improve the drop performance of the whole electronic product; it can also improve the ion exchange performance of the glass and reduce the high temperature viscosity of the glass.
  • CaO can have an effect on the glass melting temperature and can make the glass network denser.
  • ZnO is an effective component to reduce the viscosity of glass at low temperature, but excessive ZnO will lead to phase separation of glass and reduce devitrification resistance.
  • the glass component may further include B 2 O 3 .
  • B 2 O 3 has a good fluxing effect, but excessive B 2 O 3 will destroy the main network structure of the glass and reduce water resistance and mechanical properties. strength. Therefore, in the embodiment of the present application, the content of B 2 O 3 is controlled within the range of 0%-5%. In some embodiments, the content of B 2 O 3 is controlled in the range of 1%-4%. In other embodiments, the content of B 2 O 3 is controlled within the range of 2%-3%.
  • the glass-ceramic to be strengthened includes a glass phase and a crystal phase, wherein the crystal phase includes at least one of lithium feldspar, lithium silicate, and lithium disilicate.
  • the total mass content of the crystal phase is ⁇ 50%.
  • the crystal phase content represents the crystallinity of chemically strengthened glass-ceramics.
  • the total mass content of the crystalline phase is greater than or equal to 60%.
  • the total mass content of the crystalline phase is greater than or equal to 70%.
  • the total mass content of the crystalline phase is 70%-90%.
  • the total mass content of the crystalline phase is 80%-88%.
  • the content of crystal phase can be detected by X-ray diffraction (XRD) method.
  • the thickness of the chemically strengthened glass-ceramic 10 may be ⁇ 0.03 mm. In some embodiments, the thickness of the chemically strengthened glass-ceramic 10 may be ⁇ 0.04 mm. The specifics may be determined according to application requirements. In some embodiments, the thickness of the chemically strengthened glass-ceramic 10 may be 0.4 mm-1.5 mm. Specifically, the thickness of the chemically strengthened glass-ceramic 10 can be, for example, but not limited to, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm , 1.5mm.
  • the suitable thickness can not only ensure high strength, but also meet the ultra-thin requirements of cover products.
  • the chemically strengthened glass-ceramic may be 2D chemically strengthened glass-ceramic, 2.5D chemically strengthened glass-ceramic or 3D chemically strengthened glass-ceramic.
  • the chemically strengthened glass-ceramic 10 has excellent optical properties, high transmittance and low haze. Moreover, when the chemically strengthened glass-ceramic is 3D chemically strengthened glass-ceramic, it also has excellent optical properties. Specifically, the average transmittance of the chemically strengthened glass-ceramic in the light wavelength range of 400nm-700nm is ⁇ 85%; the Lab color and chromaticity index b value is ⁇ -2.0; and the haze is ⁇ 0.25%.
  • the average transmittance of chemically strengthened glass-ceramic with a thickness of ⁇ 0.4 mm in the light wavelength range of 400nm-700nm is ⁇ 85%; the Lab color and chromaticity index b value is ⁇ -2.0; and the haze is ⁇ 0.25%.
  • the average transmittance of the chemically strengthened glass-ceramic in the light wavelength range of 400nm-700nm is ⁇ 90%.
  • the Lab color chromaticity index b value of the chemically strengthened glass-ceramic 10 is greater than or equal to -1.5; in some embodiments, the Lab color and chromaticity index b value of the chemically strengthened glass-ceramic 10 is greater than or equal to -0.4.
  • the haze of the chemically strengthened glass-ceramic 10 is ⁇ 0.2%. In some embodiments, the haze of the chemically strengthened glass-ceramic 10 is ⁇ 0.15%.
  • the chemically strengthened glass-ceramic has high dimensional stability, the length and width dimensional tolerances are within ⁇ 0.1 mm, and the CPK (Process Capability Index) is greater than or equal to 0.8. In some embodiments, the length and width dimension tolerance is within ⁇ 0.1mm, and CPK ⁇ 0.9. In some embodiments, the length and width dimension tolerance is within ⁇ 0.1mm, and CPK ⁇ 1.0.
  • the Vickers hardness of the chemically strengthened glass-ceramic is ⁇ 650 kgf/mm 2 . In some embodiments, the Vickers hardness of the chemically strengthened glass-ceramic is ⁇ 720 kgf/mm 2 . In other embodiments, the Vickers hardness of the chemically strengthened glass-ceramic is ⁇ 730 kgf/mm 2 .
  • the chemically strengthened glass-ceramics of the embodiments of the present application have good weather resistance and good drop resistance, while maintaining good optical properties, and can meet the display and display requirements of electronic device display screen covers, back covers and camera protection covers.
  • the optical requirements of shooting can also be adapted to extreme humid and hot use environments, and it can also improve the reliability of electronic equipment.
  • the embodiments of the present application provide a method for preparing the above chemically strengthened glass-ceramic, including:
  • Step S101 placing the glass-ceramic to be strengthened in a first salt bath to perform the first step of ion exchange, wherein the strengthening salt of the first salt bath includes sodium salt with a mass fraction of ⁇ 30%;
  • Step S102 placing the glass-ceramic to be strengthened after the first-step ion-exchange in a second salt bath for the second-step ion-exchange to obtain a chemically strengthened glass-ceramic; wherein, the strengthening salt of the second salt bath includes a mass of Potassium salts with a fraction greater than or equal to 85%, and lithium salts with a mass fraction of 0.005% to 1%.
  • the above chemical strengthening process is used to strengthen the glass-ceramic, and the depth of the potassium strengthening layer is controlled at 0.01 ⁇ m-5 ⁇ m, which can make the glass have good resistance to humidity and heat environment and anti-rough ground drop performance at the same time.
  • Impact strength Specifically, an appropriate amount of lithium salt is added to the salt bath of the second step of ion exchange, and the presence of lithium salt in the salt bath can introduce an appropriate amount of lithium ions into the glass during the second step of ion exchange, and lithium ions are relatively sodium ions. It has a greater accumulation effect and enters the glass network, making the glass network more stable and forming a denser structure.
  • the presence of lithium salts can also inhibit the ion exchange of the crystal phase in the glass and improve the weather resistance of the glass.
  • the depth of the potassium strengthening layer is controlled at 0.01 ⁇ m-5 ⁇ m.
  • FIG. 5 shows the chemically strengthened glass-ceramic in an embodiment of the application, and the prior art alumino-silicon-strong glass (primary chemically strengthened alumino-silicon non-ceramic glass) and lithium-alumina-silicon double-strength glass ( That is, the stress curve of the secondary chemically strengthened lithium aluminum silicon non-ceramic glass). It can be known from FIG.
  • the first step of ion exchange is the first step of strengthening.
  • the first salt bath is a pure sodium salt salt bath or a mixed salt bath of sodium salt and potassium salt.
  • the mass fraction of sodium salt is not limited, such as but not limited to 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%.
  • the temperature of the first ion exchange may be 380°C-490°C. In other embodiments, the temperature of the first ion exchange may be 400°C to 480°C. In some embodiments, the time of the first ion exchange can be 3h-24h. In other embodiments, the time of the first ion exchange can be 6h-20h.
  • the average transmittance of the 3D glass-ceramic to be strengthened in the light wavelength range of 400nm-700nm is ⁇ 90%.
  • the Lab color chromaticity index b value of the 3D glass-ceramic to be strengthened is greater than or equal to -1.5; in some embodiments, the Lab color and chromaticity index b value of the 3D glass-ceramic to be strengthened is greater than or equal to -0.4.
  • the haze of the 3D glass-ceramic to be strengthened is ⁇ 0.2%. In some embodiments, the haze of the 3D glass-ceramic to be strengthened is ⁇ 0.15%.
  • the Vickers hardness of the 3D glass-ceramic to be strengthened is ⁇ 650 kgf/mm 2 .
  • the crystallization process is to pass the forming mold containing the glass-ceramic raw material through the crystallization station of the hot bending equipment.
  • the temperature of the crystallizing station is greater than or equal to the temperature of the forming station.
  • the temperature of the crystallization station is greater than or equal to the temperature of the forming station, which can further crystallize the glass-ceramic raw material during the crystallization process, and finally obtain the 3D glass-ceramic to be strengthened with high crystallinity.
  • the temperature of the crystallization step is in the range of 700°C to 900°C.
  • the preparation method of the 3D glass-ceramic in the embodiment of the present application is to use the glass-ceramic raw material of medium crystallinity (5%-75%) to carry out 3D hot bending forming, and introduce a crystallization process after the forming process to prepare the 3D micro-ceramic. Crystallized glass can finally obtain glass-ceramics with high crystallinity, which has both excellent optical properties and good drop resistance, and can improve the efficiency of 3D molding, improve the product yield of 3D molding, and obtain good dimensional stability. .
  • the strengthened glass cover plate of the mobile phone obtained by the chemical strengthening process provided in the examples of the present application can achieve a high degree of chemical strengthening.
  • the drop resistance height of the whole machine under the scene of 200g, 180# sandpaper is ⁇ 1.5m.
  • the glass cover of the mobile phone of Examples 1-6 has a falling ball impact strength>0.15J.
  • the mobile phone glass cover sheets of Examples 1-6 have strong weather resistance, and can be stored for 240 hours in a humid and hot environment with a temperature of 85° C./85% humidity, and no corrosion residues will appear.
  • the furnace water for the first step of strengthening contains 40wt%-100wt% NaNO 3 and 0-60wt% KNO 3 , The strengthening temperature is 380-490 °C, and the strengthening time is 3-24 hours; the furnace water of the second step strengthening adopts the strengthening salt containing ⁇ 85wt% KNO 3 and 0.005wt% ⁇ 1wt% LiNO 3 , the strengthening temperature is 370-450 °C, and the strengthening Time 2-240min.
  • the furnace water for the first step of strengthening contains 40wt%-100wt% NaNO 3 and 0-60wt% KNO 3 , The strengthening temperature is 380-490 °C, and the strengthening time is 3-24 hours; the furnace water of the second step strengthening adopts the strengthening salt containing ⁇ 85wt% KNO 3 and 0.005wt% ⁇ 1wt% LiNO 3 , the strengthening temperature is 370-450 °C, and the strengthening Time 2-240min.
  • Example 9 The only difference from Example 9 is that the temperature regime during hot bending in step (3) is different, see Table 2 for details.
  • Example 7 The only difference from Example 7 is that the process parameters such as temperature and time of step (1) and step (2) are adjusted to obtain glass-ceramic raw materials with different crystallinity.
  • Example 7 The only difference from Example 7 is that the glass-ceramic raw material with a crystallinity greater than 85% is used to undergo the hot bending treatment process in Table 2.
  • Example 9 The only difference from Example 9 is that the glass-ceramic raw material with a crystallinity of 0% was used to undergo the hot bending treatment process in Table 2, and then placed in a crystallization furnace and subjected to a heat preservation treatment at 650 °C for 4 hours to obtain a crystallized glass-ceramic raw material. glass sample.
  • the hot bending fragmentation rate can be reduced, and at the same time, the excessive growth of the crystal grains can be prevented, and good optical performance can be obtained; On the other hand, it can also ensure the dimensional stability of hot bending forming and obtain the desired main crystal phase.
  • the glass by introducing the crystallization process in the hot bending process, the glass enters the high temperature crystallization process after the hot bending process is completed, which can improve the crystallinity of the glass and obtain good anti-drop performance.
  • the hot bending forming process has lower requirements on hot bending equipment, high hot bending yield and high hot bending efficiency.
  • high-crystallinity glass raw materials are used for hot bending.
  • a higher preheating temperature is required.
  • the glass turns blue, and the optical properties deteriorate; and the nano-crystals grow, the micro-cracks increase, and the crystallinity increases.
  • Example 11 and Example 14 It can also be known from Example 11 and Example 14 that when a glass-ceramic raw material with a crystallinity of less than 5% is selected for hot bending by the hot bending process of the embodiment of the present application, the dimensional stability of the glass cover product is poor; When the glass-ceramic raw material with a crystallinity higher than 75% is subjected to hot bending by the hot bending process of the embodiment of the present application, the optical properties of the glass cover product are obviously deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种化学强化微晶玻璃,相对两侧分别形成有强化层,强化层自化学强化微晶玻璃表面向内部依次包括钾强化层和钠强化层,钾强化层的深度为0.01μm-5μm,钠强化层的深度≥0.1t, t为化学强化微晶玻璃的厚度。将微晶玻璃原材收容于成型模具内,依次经过预热工序、成型工序、晶化工序和退火冷却工序,得到待强化的3D微晶玻璃;微晶玻璃原材的结晶度为5%-75%;晶化工序的温度大于或等于成型工序的温度。3D微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。

Description

化学强化微晶玻璃及其制备方法和电子设备
本申请要求于2021年1月30日提交中国专利局、申请号为202110139590.6、申请名称为“化学强化微晶玻璃及其制备方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及微晶玻璃技术领域,特别是涉及化学强化微晶玻璃及其制备方法和电子设备。
背景技术
与传统铝硅玻璃相比,微晶玻璃具备更高的杨氏模量能够抵抗冲击变形,具备更高的断裂韧性能够抑制裂纹扩展;同时微晶玻璃能够进一步进行化学强化提升其强度,从而使得其在手机玻璃盖板领域的应用备受业界关注。然而现有通常采用传统铝硅玻璃的强化工艺对微晶玻璃进行强化,强化后的微晶玻璃难以在保持优异抗冲击性能和抗跌落性能的同时保持良好的耐候性。另外,微晶玻璃在应用于3D盖板领域时,受现有热弯工艺的限制会存在光学性能变差、热弯效率低、尺寸不稳定等问题。
发明内容
鉴于此,本申请实施例提供一种化学强化微晶玻璃,其在具有优异的抗冲击性能和抗跌落性能的同时,具有良好的耐候性。
具体地,本申请实施例第一方面提供一种化学强化微晶玻璃,所述化学强化微晶玻璃相对两侧分别形成有强化层,所述强化层自所述化学强化微晶玻璃表面向内部依次包括钾强化层和钠强化层,所述钾强化层的深度为0.01μm-5μm,所述钠强化层的深度≥0.1t,所述t为所述化学强化微晶玻璃的厚度。该化学强化微晶玻璃具有适合的钾强化层和钠强化层深度,兼具优异的抗跌落性能、抗冲击性能和耐候性(抗高温高湿环境性能),可应用于电子设备,提升电子设备的可靠性和在湿热环境中的使用寿命,最终提升电子设备的市场竞争力。
本申请实施方式中,所述强化层的深度大于或等于80μm。较大的强化层深度,可以使化学强化微晶玻璃具有更高的抗跌落性能,提升电子设备的可靠性。
本申请实施方式中,所述化学强化微晶玻璃在所述强化层深度为50μm处的压应力CS50≥50MPa。较高CS50值可以保证微晶玻璃具有较高的强度。
本申请实施方式中,所述化学强化微晶玻璃的平均张应力为35MPa-85MPa。适合的平均张应力可以保证玻璃具有较高强度的同时,防止玻璃失效破片后碎片过小。
本申请实施方式中,所述化学强化微晶玻璃自表面向内部的0.01t-0.1t厚度范围内,钠元素浓度单调递减。该分布特征有利于提高玻璃的力学性能。
本申请实施方式中,所述化学强化微晶玻璃在温度为85℃、湿度为85%的条件下保持大于或等于120小时,表面不析出白色含钠的化合物。优异的耐候性能可以提高玻璃在高温高湿条件下使用的适应性。
本申请实施方式中,所述化学强化微晶玻璃由待强化的微晶玻璃经化学强化得到,以摩尔百分比计,所述待强化的微晶玻璃包括如下组分:
Li 2O:10%-25%,
SiO 2:58%-72%,
Na 2O和K 2O:3%-7%,
Al 2O 3:2%-8%,
P 2O 5+ZrO 2+TiO 2:2%-13%,
MgO+CaO+ZnO:0-3%,
B 2O 3:0-5%。
本申请实施方式中,所述待强化的微晶玻璃包括玻璃相和晶体相,所述晶体相包含透锂长石、硅酸锂、二硅酸锂中的至少一种。
本申请实施方式中,所述待强化的微晶玻璃中,所述晶体相的总质量含量≥50%。
本申请实施方式中,所述化学强化微晶玻璃包括2D化学强化微晶玻璃、2.5D化学强化微晶玻璃或3D化学强化微晶玻璃。
本申请实施方式中,所述化学强化微晶玻璃的厚度≥0.03mm。具体的厚度可以根据实际应用需求进行选择。
本申请实施方式中,所述化学强化微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。化学强化微晶玻璃具有优异的光学性能能够更好地满足电子设备盖板的应用需求。
本申请实施方式中,所述3D微晶玻璃长宽尺寸公差在±0.1mm以内的过程能力指数CPK≥0.8。
本申请实施方式中,所述化学强化微晶玻璃的维氏硬度≥650kgf/mm 2;所述化学强化微晶玻璃的抗冲击强度≥0.07J。较高的维氏硬度,可有效抑制裂纹的扩展,提升抗冲击、抗跌落性能。较高的抗冲击强度可以提高产品的可靠性。
本申请实施例第二方面提供一种上述化学强化微晶玻璃的制备方法,包括:
将待强化的微晶玻璃置于第一盐浴中进行第一步离子交换,所述第一盐浴的强化盐包括质量分数≥30%的钠盐;
将经所述第一步离子交换后的待强化的微晶玻璃置于第二盐浴中进行第二步离子交换,得到所述化学强化微晶玻璃,所述第二盐浴的强化盐包括质量分数大于或等于85%的钾盐,以及质量分数为0.005%~1%的锂盐。
本申请实施方式中,所述第一步离子交换的温度为380℃-490℃,时间为3h-24h;所述第二步离子交换的温度为370℃-450℃,时间为2min-240min。
本申请实施方式中,所述待强化的微晶玻璃包括待强化的3D微晶玻璃,所述待强化的3D微晶玻璃采用如下方式制备得到:
将微晶玻璃原材收容于成型模具内,依次经过预热工序、成型工序、晶化工序和退火冷却工序,得到所述待强化的3D微晶玻璃;所述微晶玻璃原材的结晶度为5%-75%;所述晶化工序的温度大于或等于所述成型工序的温度。
本申请实施方式中,所述预热工序的温度在0℃~780℃范围内;所述成型工序的温度在600℃~800℃范围内,成型压力在0MPa-0.9MPa范围内;所述晶化工序的温度在700℃~900℃范围内;所述退火冷却工序的温度在0℃~800℃范围内。
微晶玻璃的晶相和非晶相两者都存在着和外界离子交换的可能性。这种离子交换特点,尤其是晶相组分参与离子交换导致晶相结构被破坏,形成稳定性较差的非晶成分,将会导致离子交换后的玻璃耐候性能降低。本申请实施例提供的化学强化微晶玻璃的制备方法,通过采用两步离子交换,并在第二步离子交换的盐浴中加入适量的锂盐,获得了兼具优异的抗跌落性能、抗冲击性能和耐候性的强化微晶玻璃,其中,盐浴中锂盐的存在可以在第二步离子交换过程中向玻璃中引入适量锂离子,锂相对钠具有更大的积聚作用,进入玻璃网络,可使玻璃的网络更稳定,抑制微晶玻璃高温高湿环境中钠盐析出导致玻璃被腐蚀,锂盐的存在也能够对离子交换产生一定抑制,减少玻璃晶相中的组分发生离子交换,提升玻璃耐候性。
本申请实施例第三方面提供一种3D微晶玻璃,所述3D微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。
本申请实施方式中,所述3D微晶玻璃的维氏硬度≥650kgf/mm 2;所述3D微晶玻璃长宽尺寸公差在±0.1mm以内的过程能力指数CPK≥0.8。
本申请实施方式中,以摩尔百分比计,所述3D微晶玻璃包括如下组分:
Li 2O:10%-25%,
SiO 2:58%-72%,
Na 2O和K 2O:3%-7%,
Al 2O 3:2%-8%,
P 2O 5+ZrO 2+TiO 2:2%-13%,
MgO+CaO+ZnO:0-3%,
B 2O 3:0-5%。
本申请实施方式中,所述3D微晶玻璃包括玻璃相和晶体相,所述晶体相在所述3D微晶玻璃中的总质量含量≥50%。
本申请实施方式中,所述3D微晶玻璃包括化学强化3D微晶玻璃,所述化学强化3D微晶玻璃表面具有压应力层。
本申请实施方式中,所述3D微晶玻璃的厚度≥0.03mm。
本申请实施例第四方面还提供一种3D微晶玻璃的制备方法,包括:
将微晶玻璃原材收容于成型模具内,依次经过预热工序、成型工序、晶化工序和退火冷却工序,得到所述3D微晶玻璃;所述微晶玻璃原材的结晶度为5%-75%;所述晶化工序的温度大于或等于所述成型工序的温度。
本申请实施方式中,所述预热工序的温度在0℃~780℃范围内;所述成型工序的温度在600℃~800℃范围内,成型压力在0MPa-0.9MPa范围内;所述晶化工序的温度在700℃~900℃范围内;所述退火冷却工序的温度在0℃~800℃范围内。
本申请实施例的3D微晶玻璃的制备方法,通过采用中等结晶度(5%-75%)的微晶玻璃原材进行3D热弯成型,并在成型工序后引入晶化工序,制备3D微晶玻璃,可以最终获得具有较高结晶度的微晶玻璃,兼具优异的光学性能和较好的抗跌落性能,同时可以提升3D成型效率,提高3D成型的产品良率,获得良好尺寸稳定性。
本申请实施例还提供一种玻璃盖板,所述玻璃盖板采用第一方面所述的化学强化微晶玻璃和/或第三方面所述的3D微晶玻璃制成。该玻璃盖板可以是电子设备的显示屏盖板、后盖或摄像头保护盖板。
本申请实施例还提供一种电子设备,包括组装在所述电子设备外侧的外壳,以及位于所 述外壳内部的电路板,所述外壳采用微晶玻璃,所述微晶玻璃包括本申请实施例第一方面所述的化学强化微晶玻璃和/或本申请实施例第三方面所述的3D微晶玻璃。
本申请一些实施方式中,所述外壳包括组装在所述电子设备前侧的显示屏盖板,所述显示屏盖板包括所述微晶玻璃。本申请另一些实施方式中,所述外壳包括组装在所述电子设备后侧的后盖,所述后盖采用所述微晶玻璃。本申请一些实施方式中,所述电子设备还包括位于所述外壳内部的摄像头组件,所述外壳包括摄像头保护盖板,所述摄像头保护盖板盖设在所述摄像头组件上,所述摄像头保护盖板采用所述微晶玻璃。本申请实施方式中,外壳可以是部分采用微晶玻璃,也可以是全部采用微晶玻璃。本申请中的电子设备,可以是显示屏盖板、后盖、摄像头保护盖板中的一种或多种采用上述微晶玻璃。
附图说明
图1为本申请实施例提供的电子设备的前侧结构示意图;
图2为本申请实施例提供的电子设备的后侧结构示意图;
图3为本申请实施例提供的化学强化微晶玻璃的结构示意图;
图4为本申请实施例提供的化学强化微晶玻璃的强化层的交换离子分布示意图;
图5为本申请一实施例中的化学强化微晶玻璃与现有铝硅一强玻璃和锂铝硅二强玻璃的应力曲线图;
图6为本申请实施例中3D微晶玻璃的热弯成型过程的温度曲线图;
图7为本申请实施例中3D微晶玻璃在热弯成型过程中的不同热处理阶段玻璃内部晶体相变化示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行说明。
参见图1和图2,本申请实施例提供了一种电子设备100,该电子设备100可以是手机、也可以是平板电脑、智能穿戴设备等电子产品,电子设备100包括组装在电子设备外侧的外壳,以及位于外壳内部的电路板、电池等元器件,外壳包括组装在前侧的显示屏盖板101和组装在后侧的后盖102,显示屏盖板101盖设于显示模组上,其中,显示屏盖板101和/或后盖102采用微晶玻璃制成。本申请实施例中,显示屏盖板101和后盖102可以是全部采用微晶玻璃,也可以只是局部采用微晶玻璃。本申请实施方式中,显示屏200可以是触摸显示屏,显示屏盖板101可以是设置于触摸显示屏上的保护盖板。本申请实施方式中,后盖102可以是仅覆盖电子设备100的后侧(及背离显示屏的一侧),也可以是同时覆盖电子设备100的后侧和侧边框,可选地,后盖102可以是覆盖电子设备四周的所有侧边框,也可以是覆盖部分侧边框。
本申请一些实施方式中,如图2所示,电子设备100还包括位于外壳内部的摄像头组件2,外壳可以包括摄像头保护盖板103,摄像头保护盖板103盖设在摄像头组件2上用于保护摄像头组件2,摄像头保护盖板103采用微晶玻璃。本申请实施方式中,摄像头保护盖板103可以是部分采用微晶玻璃,也可以是全部采用微晶玻璃。本申请实施方式中,摄像头保护盖板103的设置位置根据摄像头组件2的设置位置而定,可以是位于电子设备100前侧,也可以是位于电子设备100的后侧。本申请一些实施方式中,摄像头保护盖板103可以是与显示屏盖板101或后盖102为分体结构。本申请另一些实施方式中,摄像头保护盖板103也可以 是与显示屏盖板101或后盖102为一体结构。
本申请实施方式中,电子设备100中的显示屏盖板101、后盖102、摄像头保护盖板103,可以是三者中任意一者采用微晶玻璃,也可以是其中任意两者采用微晶玻璃,还可以是三者都采用微晶玻璃。
请参见图3,电子设备100中采用的上述微晶玻璃为化学强化微晶玻璃10,该化学强化微晶玻璃10相对两侧分别形成有强化层11,强化层11自化学强化微晶玻璃表面向内部依次包括钾强化层111和钠强化层112,钾强化层111的深度为0.01μm-5μm,钠强化层112的深度≥0.1t,其中,t为化学强化微晶玻璃的厚度。
本申请实施例的化学强化微晶玻璃10,是由待强化的微晶玻璃经化学强化得到,如图3所示,化学强化微晶玻璃10包括中间层113和位于中间层113两侧的强化层11,强化层11由待强化的微晶玻璃经两步离子交换获得,中间层113未参与离子交换的部分与待化学强化的微晶玻璃的组成相同。参见图4,其中,内层的钠强化层112通过第一步离子交换形成,第一步离子交换为Na+-Li+交换,第一步离子交换向微晶玻璃中引入了钠离子;而外层的钾强化层111通过第一步离子交换和第二步离子交换共同作用形成,第二步离子交换包括K+-Na+、Na+-Li+交换,第二步离子交换向微晶玻璃中同时引入了钾离子和锂离子。适合深度的钾强化层111和钠强化层112使得玻璃兼具优异的抗跌落性能和耐候性。需要说明的是,图4只是示意两步离子交换向玻璃中引入了K、Na、Li,各组分的分布位置、数量等不限于图4所示,例如第二步离子交换引入的Li可以不限于只引入至钾强化层,还可引入至钠强化层。钾强化层和钠强化层的深度是指从玻璃表面向内至相应层边界的尺寸。一些实施方式中,钾强化层111的深度为0.1μm-3μm;一些实施方式中,钾强化层111的深度为0.5μm-2.5μm;另一些实施方式中,钾强化层111的深度为1.0μm-2.0μm;其他一些实施方式中,钾强化层111的深度为1.2μm-1.8μm;另一些实施方式中,钾强化层111的深度为1.5μm-1.6μm。将钾强化层的深度控制在适合厚度,可以在获得优异抗跌落性能和耐候性时,保持玻璃良好的抗冲击性能。
化学强化的主要原理是通过将熔盐中半径较大的离子(如K+)与玻璃中半径较小的离子(如Na +)进行交换,通过“挤塞效应”在表面形成一层压缩应力,并形成具有一定深度的强化层。本申请实施方式中,强化层深度是指的玻璃单面的强化层深度,即从玻璃表面向内压应力为0处的深度。强化层即离子交换层,也即压应力层。通过离子交换可以使玻璃表面获得一定的压缩应力,当玻璃受到外力作用时,首先需要抵消掉表面的压应力,然后使玻璃处于张力状态,因此经化学强化后玻璃强度得到明显提高;另一方面,由于离子交换在玻璃表面形成一定深度的压应力层,这样,即便是外力在玻璃表面形成裂纹,所形成的离子交换层也会有效地阻止裂纹的进一步扩展,因此大大提高了玻璃抵抗外力的能力,使玻璃强度明显提高。一些实施方式中,强化层11的深度大于或等于80μm。一些实施方式中,强化层11的深度大于或等于90μm。一些实施方式中,强化层11的深度大于或等于100μm。另一些实施方式中,强化层11的深度大于或等于105μm。其他一些实施方式中,强化层11的深度大于或等于110μm。强化层11深度大,化学强化微晶玻璃具有较佳的抗跌落性能,可以提升电子设备的可靠性。
本申请实施方式中,化学强化微晶玻璃10在强化层深度为50μm处的压应力CS50≥50MPa。即化学强化微晶玻璃内部距离微晶玻璃表面50μm处的压应力≥50MPa,这样可以保证微晶玻璃具有较高的强度。CS50值越大,玻璃抗跌落性能更优。具体地,一些实施方式中, CS50≥65MPa。一些实施方式中,CS50≥100MPa。另一些实施方式中,CS50≥130MPa。其他一些实施方式中,CS50≥170MPa。
本申请实施方式中,强化层11构成压应力层,同时,化学强化微晶玻璃内部还具有与压应力层相对应的张应力层。本申请实施方式中,化学强化微晶玻璃10的平均张应力为35MPa-85MPa。具体地,平均张应力例如可以是35MPa、39MPa、45MPa、60MPa、70MPa、85MPa。平均张应力太小,玻璃强度性能较差;平均张应力太高,玻璃失效破片后碎片会过小(≤2mm),不适于用在电子设备中。适合的平均张应力可以保证玻璃具有较高强度的同时,防止玻璃失效破片后碎片过小。本申请实施例的化学强化微晶玻璃失效破片后碎片尺寸大于2mm。
本申请实施方式中,化学强化微晶玻璃10的抗落球冲击强度≥0.07J。一些实施方式中,化学强化微晶玻璃10的抗落球冲击强度≥0.10J。另一些实施方式中,化学强化微晶玻璃10的抗落球冲击强度≥0.15J。落球,即钢球以一定高度自由落体运动砸到玻璃表面。抗落球冲击强度是指玻璃被一定高度自由落体运动钢球砸到表面,保持不破坏的能力。
本申请实施方式中,化学强化微晶玻璃10自表面向内部的0.01t-0.1t厚度范围内,钠元素浓度单调递减。即从化学强化微晶玻璃表面向内部的0.01t深度处至0.1t深度处,钠元素浓度单调递减。该钠元素分布特征有利于玻璃获得较佳的抗跌落性能和耐候性。
本申请实施方式中,化学强化微晶玻璃10具有较好的耐湿热性能,具体地,化学强化微晶玻璃10在温度为85℃、湿度为85%的条件下保持大于或等于120小时,表面不析出白色含钠的化合物,即化学强化微晶玻璃10表面不会出现“发白”的腐蚀痕迹。一些实施方式中,化学强化微晶玻璃10在温度为85℃、湿度为85%的条件下保持大于或等于180小时,表面不析出白色含钠的化合物。一些实施方式中,化学强化微晶玻璃10在温度为85℃、湿度为85%的条件下保持大于或等于240小时,表面不析出白色含钠的化合物。化学强化微晶玻璃具有较好的耐湿热性能,可以提高电子设备在湿热场景下使用的适应性,延长电子设备使用寿命。
本申请实施方式中,强化层深度、强化层深度50μm处压应力CS50、以及平均张应力可以采用玻璃应力仪(如SLP2000、FSM6000)测试获得。本申请实施例化学强化微晶玻璃采用玻璃应力仪测试钾强化层应力,无应力条纹。
本申请实施方式中,化学强化微晶玻璃10的整机抗跌落高度大于或等于1.5m。抗跌落高度的测试方法为,将化学强化微晶玻璃10与200g重的电子设备模型贴附在一起,玻璃朝下水平跌落至表面附有180#砂纸的大理石板上,取玻璃不破碎的最高点为抗跌落高度。
本申请实施方式中,待强化的微晶玻璃为含锂微晶玻璃,以摩尔百分比计,待强化的微晶玻璃可以是包括如下组分:
Li 2O:10%-25%,
SiO 2:58%-72%,
Na 2O和K 2O:3%-7%,
Al 2O 3:2%-8%,
P 2O 5+ZrO 2+TiO 2:2%-13%,
MgO+CaO+ZnO:0-3%,
B 2O 3:0-5%。
本申请实施方式中,SiO 2为构成玻璃网络的主要氧化物,为玻璃提供网络结构强度。其 中,SiO 2的含量可为60%-72%,进一步地可为65%-70%。较高的SiO 2含量,可以增强玻璃网络结构的连通性,提高玻璃密度和机械性能。
本申请实施方式中,Li 2O和Na 2O是离子交换的主要成分,其中,锂离子是进行第一步离子交换,形成钠交换层的关键交换离子。较高Li 2O含量,可以通过第一步离子交换获得较深的强化层深度,也可以获得较高表面压应力,从而提高抗裂纹生成能力,提升玻璃抗跌性能,但Li 2O含量太高会导致玻璃热膨胀系数增大,耐热冲击性降低,破坏网络结构,因此本申请实施例将Li 2O的含量控制在10%-25%范围内。一些实施方式中,将Li 2O的含量控制在18%-23%范围内。另一些实施方式中,将Li 2O的含量控制在20%-22%范围内。钠离子是形成外层钾强化层的关键交换离子,而K 2O的存在可以降低高温粘度,降低熔炼难度,但过量的K 2O会降低离子交换速率。因此,本申请实施例中,将Na 2O和K 2O的总含量控制在3%-5%的范围内。一些实施方式中,将Na 2O和K 2O的总含量控制在3.5%-4.5%。本申请实施方式中,可以是仅包括Na 2O,还可以是同时包括K 2O和Na 2O。
本申请实施方式中,由于碱金属R(R为Li,Na,K等)的氧化物R 2O/Al 2O 3>1(mol%),铝离子(Al 3+)基本以四面体形式参与到玻璃的网络结构当中,随着Al 2O 3含量的增加,玻璃的强度提高,机械性能向好的方向发展,而且由于[AlO 4]四面体的体积大,能够增大网络空隙,使交换离子更容易移动,因此可以提高离子交换性能。本申请一些实施方式中,Al 2O 3的含量可为2%-8%。另一些实施方式中,Al 2O 3的含量可为3%-6%;其他一些实施方式中,Al 2O 3的含量可为4%-5%。本申请一些实施方式中,SiO 2与Al 2O 3两者的总摩尔占比大于或等于70%,可更好地保证玻璃网络结构的稳定性,提高玻璃本体强度。
本申请实施方式中,玻璃组分还包括P 2O 5、ZrO 2和TiO 2中的一种或多种。P 2O 5、ZrO 2和TiO 2作为成核剂存在,可以在玻璃内部析晶,使玻璃微晶化,从而使玻璃强度得到增强。但由于过量的P 2O 5会导致玻璃机械强度下降,尤其是表面硬度,导致玻璃极易划伤;过量的ZrO 2会导致耐失透性降低,过量的TiO 2会导致玻璃耐失透性降低。因此,本申请实施例将P 2O 5、ZrO 2、TiO 2三者的总含量控制在2%-10%范围内。
本申请一些实施方式中,玻璃组分还可以进一步包括MgO、CaO、ZnO中的一种或多种。MgO、CaO、ZnO三者的总质量含量可以是1%-3%,也可以是2%-2.5%。其中,MgO作为网络中间体,可提高玻璃的杨氏模量,提高玻璃本体韧性,这有益于提高电子产品整机跌落性能;而且可提高玻璃离子交换性能,降低玻璃的高温粘度。CaO可以对玻璃熔化温度产生影响,而且可以使玻璃网络更致密。ZnO是降低玻璃低温粘度的有效成分,但过量的ZnO会导致玻璃分相,耐失透性降低。
本申请一些实施方式中,玻璃组分还可以进一步包括B 2O 3,B 2O 3具有良好的助熔效果,但由于过量的B 2O 3会破坏玻璃主体网络结构,降低耐水性和机械强度。因此,本申请实施方式中,B 2O 3的含量控制在0%-5%的范围内。一些实施方式中,B 2O 3的含量控制在1%-4%的范围内。另一些实施方式中,B 2O 3的含量控制在2%-3%的范围内。
本申请实施方式中,待强化的微晶玻璃包括玻璃相和晶体相,其中,晶体相包含透锂长石、硅酸锂、二硅酸锂中的至少一种。
本申请实施方式中,待强化的微晶玻璃中,晶体相的总质量含量≥50%。晶体相含量即表示化学强化微晶玻璃的结晶度。一些实施方式中,晶体相的总质量含量≥60%。一些实施方式中,晶体相的总质量含量≥70%。一些实施方式中,晶体相的总质量含量为70%-90%。一些实施方式中,晶体相的总质量含量为80%-88%。晶体相的含量可通过X射线衍射(X-ray  diffraction,XRD)法检测得到。
本申请实施方式中,化学强化微晶玻璃10的厚度可以为≥0.03mm。一些实施方式中,化学强化微晶玻璃10的厚度可以为≥0.04mm。具体可根据应用需求而定,一些实施方式中,化学强化微晶玻璃10的厚度可以为0.4mm-1.5mm。具体地,化学强化微晶玻璃10的厚度例如可以是但不限于是0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm。适合的厚度既能够保证较高的强度,又能满足盖板产品的超薄化需求。该化学强化微晶玻璃可以是2D化学强化微晶玻璃、2.5D化学强化微晶玻璃或3D化学强化微晶玻璃。
本申请实施方式中,化学强化微晶玻璃10具有优异的光学性能,具有高透过率、低雾度。而且化学强化微晶玻璃为3D化学强化微晶玻璃时,也具有优异的光学性能。具体地,化学强化微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。一些实施方式中,≥0.4mm厚度的化学强化微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。一些实施方式中,化学强化微晶玻璃在400nm-700nm光波长范围的平均透过率≥90%。一些实施方式中,化学强化微晶玻璃10的Lab颜色色度指标b值≥-1.5;一些实施方式中,化学强化微晶玻璃10的Lab颜色色度指标b值≥-0.4。一些实施方式中,化学强化微晶玻璃10的雾度≤0.2%。一些实施方式中,化学强化微晶玻璃10的雾度≤0.15%。
本申请实施方式中,化学强化微晶玻璃具有较高的尺寸稳定性,长宽尺寸公差在±0.1mm以内,CPK(Process Capability Index,过程能力指数)≥0.8。一些实施方式中,长宽尺寸公差在±0.1mm以内,CPK≥0.9。一些实施方式中,长宽尺寸公差在±0.1mm以内,CPK≥1.0。
本申请实施方式中,化学强化微晶玻璃的维氏硬度≥650kgf/mm 2。一些实施方式中,化学强化微晶玻璃的维氏硬度≥720kgf/mm 2。另一些实施方式中,化学强化微晶玻璃的维氏硬度≥730kgf/mm 2
本申请实施例的化学强化微晶玻璃具有良好的耐候性和较好的抗跌落性能,同时保持有良好的光学性能,能够满足电子设备显示屏盖板、后盖和摄像头保护盖板的显示和拍摄的光学需求,也能适应极端湿热使用环境,还能提升电子设备可靠性。
相应地,本申请实施例提供了一种上述化学强化微晶玻璃的制备方法,包括:
步骤S101、将待强化的微晶玻璃置于第一盐浴中进行第一步离子交换,其中,第一盐浴的强化盐包括质量分数≥30%的钠盐;
步骤S102、将经第一步离子交换后的待强化的微晶玻璃置于第二盐浴中进行第二步离子交换,得到化学强化微晶玻璃;其中,第二盐浴的强化盐包括质量分数大于或等于85%的钾盐,以及质量分数为0.005%~1%的锂盐。
采用上述化学强化工艺对微晶玻璃进行强化,并将钾强化层的深度控制在0.01μm-5μm,能够在使玻璃具备良好的耐湿热环境性能及抗粗糙地面跌落性能的同时,维持较好的抗冲击强度。具体地,其中,在第二步离子交换的盐浴中加入适量的锂盐,盐浴中锂盐的存在可以在第二步离子交换过程中向玻璃中引入适量锂离子,锂离子相对钠离子具有更大的积聚作用,进入玻璃网络,使得玻璃网络更稳定,形成更致密的结构,同时锂盐的存在也能一定抑制玻璃中晶体相发生离子交换,提升玻璃耐候性。采用上述强化工艺,当使钾强化层的深度提高至5μm以上时,对玻璃的抗冲击强度不利,会导致抗冲击强度下降,因此将钾强化层的深度控制在0.01μm-5μm。
请参见图5,图5为本申请一实施例中的化学强化微晶玻璃与现有技术中的铝硅一强玻璃(一次化学强化铝硅非微晶玻璃)和锂铝硅二强玻璃(即二次化学强化锂铝硅非微晶玻璃)的应力曲线图。从图5可以获知:本申请实施例化学强化微晶玻璃的钾强化层与钠强化层没有明显的应力拐点出现,无传统二次强化的铝硅玻璃的钾强化层特征,但强化层深度较深,且压应力整体保持在较高水平。
第一步离子交换即第一步强化。上述制备方法S101中,第一盐浴为纯钠盐盐浴或钠盐与钾盐的混合盐浴。钠盐与钾盐的混合盐浴中,钠盐的质量分数不限,例如可以是但不限于是30%、40%、50%、60%、70%、80%、90%、95%、99%。
一些实施方式中,第一步离子交换的温度可以是380℃-490℃。另一些实施方式中,第一步离子交换的温度可以是400℃-480℃。一些实施方式中,第一步离子交换的时间可以是3h-24h。另一些实施方式中,第一步离子交换的时间可以是6h-20h。
第二步离子交换即第二步强化。上述制备方法S102中,第二盐浴为钾盐与锂盐的混合盐浴,或为钾盐、锂盐与钠盐的混合盐浴。一些实施方式中,第二盐浴中锂盐的质量分数为0.1%-0.5%,另一些实施方式中,第二盐浴中锂盐的质量分数为0.55%-1%。其他一些实施方式中,第二盐浴中锂盐的质量分数为0.6%-1%。锂盐的浓度相对高一些能够更好地进入玻璃网络,提升玻璃致密度,提高玻璃耐湿热性能。锂盐的添加配合钾的离子交换,有助于在微晶玻璃表面形成一层稳定的保护层,抑制强化后的微晶玻璃高温高湿过程中钠盐析出导致玻璃被腐蚀。其中LiNO 3含量0.005%-1%具有重要作用,含量太低对钠盐抑制效果差,含量太高会导致应力下降太多,抗冲击强度下降。第二盐浴中钾盐的质量分数例如可以但不限于是85%、90%、95%、99%。锂盐例如可以是LiNO 3
一些实施方式中,第二步离子交换的温度可以是370℃-450℃。另一些实施方式中,第二步离子交换的温度可以是380℃-420℃。一些实施方式中,第二步离子交换的时间可以是2min-240min。另一些实施方式中,第二步离子交换的时间可以是10min-200min。
本申请一些实施方式中,上述制备方法还包括:
在将待强化的微晶玻璃置于第一盐浴中进行第一步离子交换之前,先将待强化的微晶玻璃于150℃-480℃下预热5min-300min。强化之前的预热操作可以提高后续的强化效果。
本申请一些实施方式中,上述制备方法还包括:
在将所述待强化的微晶玻璃进行所述第一步离子交换之后,以及进行所述第二步离子交换之前,先将经所述第一步离子交换的待强化的微晶玻璃置于30℃-60℃热水中浸泡10min-60min,或者置于废弃的所述第二盐浴中浸泡1min-60min。该操作可以避免微晶玻璃表面第一盐浴成分残留给第二盐浴的离子浓度造成的影响。
一般地,对微晶玻璃的化学强化是在成型之后进行。本申请实施方式中,待强化的微晶玻璃可以是待强化的2D微晶玻璃、待强化的2.5D微晶玻璃或待强化的3D微晶玻璃。
本申请实施方式中,待强化的3D微晶玻璃可以是采用如下方式制备得到:
将微晶玻璃原材收容于成型模具内,依次经过预热工序、成型工序、晶化工序和退火冷却工序,得到待强化的3D微晶玻璃;其中,微晶玻璃原材的结晶度为5%-75%;晶化工序的温度大于或等于成型工序的温度。
本申请实施例通过采用中等结晶度(5%-75%)的微晶玻璃原材进行3D热弯成型,并在热弯成型过程中引入晶化工序实现玻璃的进一步晶化,最终完成部分或完全晶化,可以最终制备获得具有较高结晶度的待强化的3D微晶玻璃,使3D微晶玻璃兼具优异的光学性能和较 好的抗跌落性能,同时提升3D成型效率,提高3D成型的产品良率,获得良好尺寸稳定性。
本申请实施例制备得到的待强化的3D微晶玻璃具有较高结晶度,含有≥50%的晶体相,即结晶度≥50%。具体的结晶度可以根据实际需要进行控制。一些实施方式中,晶体相的总质量含量≥60%。一些实施方式中,晶体相的总质量含量≥70%。一些实施方式中,晶体相的总质量含量为70%-90%。一些实施方式中,晶体相的总质量含量为80%-88%。本申请实施例的待强化3D微晶玻璃具有优异的光学性能,可见光透过率高,雾度低。具体地,待强化的3D微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。一些实施方式中,≥0.4mm厚度的待强化的3D微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。一些实施方式中,待强化的3D微晶玻璃在400nm-700nm光波长范围的平均透过率≥90%。一些实施方式中,待强化的3D微晶玻璃的Lab颜色色度指标b值≥-1.5;一些实施方式中,待强化的3D微晶玻璃的Lab颜色色度指标b值≥-0.4。一些实施方式中,待强化的3D微晶玻璃的雾度≤0.2%。一些实施方式中,待强化的3D微晶玻璃的雾度≤0.15%。本申请实施方式中,待强化的3D微晶玻璃的维氏硬度≥650kgf/mm 2
采用上述热弯工艺获得的3D微晶玻璃盖板,具有较高的尺寸稳定性,长宽尺寸公差在±0.1mm以内,CPK(Process Capability Index,过程能力指数)≥0.8,可达到普通锂铝硅玻璃水平。一些实施方式中,长宽尺寸公差在±0.1mm以内,CPK≥0.9。一些实施方式中,长宽尺寸公差在±0.1mm以内,CPK≥1.0。
本申请实施方式中,微晶玻璃原材的结晶度为5%-75%。采用中等结晶度的微晶玻璃原材既能防止玻璃因结晶度过高难以热弯导致破片,也能防止晶体过分生长导致光学性能降低,还能避免结晶度过低导致尺寸稳定性不佳、抗跌性能不佳的问题。本申请一些实施方式中,微晶玻璃原材的结晶度可以是5%-65%;另一些实施方式中,微晶玻璃原材的结晶度可以是10%-50%;其他一些实施方式中,微晶玻璃原材的结晶度可以是15%-40%、20%-30%。微晶玻璃原材的结晶度太低体积收缩效应大不利于提高尺寸稳定性,结晶度太高会增加破片风险,也会因为晶体过分生长导致光学性能变差。
本申请实施方式中,微晶玻璃原材为平板微晶玻璃原材。微晶玻璃原材可以是采用压延法、浇铸法等方法制备得到。微晶玻璃原材的组成成分与前述待强化的微晶玻璃相同。微晶玻璃原材的成分可采用电子探针微区分析或者扫描电镜配合X射线能谱分析(EDS,Energy Dispersive Spectrometer)获得。微晶玻璃原材的厚度具体可根据应用需求而选择。
上述的预热工序、成型工序、晶化工序和退火冷却工序均在热弯设备中完成。
本申请实施方式中,预热工序是将收容微晶玻璃原材的成型模具经过热弯设备的预热工站。预热工序经过的预热工站可以是多个。预热工序过程中的温度在0℃~780℃范围内。也可以是在0℃~680℃范围内。其中,先经过的预热工站的温度小于或等于后经过的预热工站的温度。一些实施方式中,各预热工站具有不同温度,各预热工站按先后经过的次序温度逐渐升高。逐渐升高可以是梯度升高,也可以是非梯度升高。每个预热工站的停留时间可以是20s~200s。一些实施方式中,预热工序经过至少四个预热工站。本申请一实施方式中,预热工序是将收容微晶玻璃原材的成型模具先后依次经过第一预热工站、第二预热工站、第三预热工站、第四预热工站、第五预热工站和第六预热工站。其中,第一预热工站、第二预热工站、第三预热工站、第四预热工站、第五预热工站的温度在300-700℃范围内,第六预热工站的温度在650~780℃范围内。
本申请实施方式中,成型工序是将收容微晶玻璃原材的成型模具经过热弯设备的成型工站。成型工序经过的成型工站可以是一个或多个。成型工序的温度在600℃~850℃范围内。一些实施方式中,成型工站的温度在700℃~850℃范围内。其中,先经过的成型工站的温度小于或等于后经过的成型工站的温度。一些实施方式中,各成型工站的温度可以是相同,也可以是不同。每个成型工站的停留时间可以是20s~100s。一些实施方式中,成型工序经过至少两个成型工站。成型工序过程中的成型压力为0MPa-0.9MPa。成型压力是指当收容微晶玻璃原材的成型模具置于成型工站时,对成型模具施加的压力。一些实施方式中,成型工站的成型压力可以是0.001~0.9Mpa。另一些实施方式中,成型工站的成型压力可以是0.1~0.9Mpa。本申请一具体实施方式中,成型工序先后经过两个成型工站。本申请另一具体实施方式中,成型工序先后经过三个成型工站。
本申请实施方式中,晶化工序是将收容微晶玻璃原材的成型模具经过热弯设备的晶化工站。晶化工序经过的晶化工站可以是一个或多个。晶化工站的温度大于或等于成型工站的温度。晶化工站的温度大于或等于成型工站的温度,可以使微晶玻璃原材在晶化工序过程中实现进一步晶化,最终获得具有高结晶度的待强化3D微晶玻璃。晶化工序的温度在700℃~900℃范围内。微晶玻璃原材在每个晶化工站停留的时间可以是20s~100s。晶化工序过程中也可以施加一定压力。一些实施方式中,晶化工序经过至少两个晶化工站。本申请实施方式中,微晶玻璃原材后经过的晶化工站的温度可以是小于或等于先经过的晶化工站的温度。这样有利于过渡到下一步的退火冷却工序。
本申请实施方式中,退火冷却工序是将收容微晶玻璃原材的成型模具经过热弯设备的退火冷却工站。退火冷却工序经过的退火冷却工站可以是一个或多个。退火冷却工序的温度可以是在0℃~800℃范围内。一些实施方式中,退火冷却工序经过至少两个退火冷却工站。其中,先经过的退火冷却工站的温度可以是大于或等于后经过的退火冷却工站的温度。微晶玻璃原材在每个退火冷却工站的停留时间可以是20s~200s。一些实施方式中,多个退火冷却工站具有不同温度,具体地可以是按照按先后经过的次序温度逐渐降低。逐渐降低可以是梯度降低,也可以是非梯度降低。本申请一具体实施方式中,退火冷却工序先后经过四个退火冷却工站,其中,先经过的三个退火冷却工站的温度在300℃~700℃范围内,最后一个退火冷却工站的温度为室温~500℃。本申请实施方式中,各冷却工站可以采用水冷,也可以是采用风冷,即空气冷却。一具体实施方式中,先经过的三个退火冷却工站采用水冷,每个冷却工站停留20-200秒;第四冷却工站采用风冷,在第四冷却工站停留时间≥100秒。
图6为本申请一实施例中将收容微晶玻璃原材的成型模具依次经过热弯设备的预热工站、成型工站、晶化工站和退火冷却工站四类热弯工站的温度曲线图。图7为本申请实施例中微晶玻璃原材在热弯成型过程中的不同热处理阶段玻璃内部晶体相变化示意图。从图中可以获知,在热弯成型过程的晶化工序完成后,玻璃内部晶体相已经得到很好的生长。
本申请上述的制备工艺对热弯设备要求较低,一次热弯成型过程即可获得优异力学性能、光学性能、高结晶度、尺寸优良的3D微晶玻璃,在微晶玻璃热弯良率,效率等方面具有较大优势。本申请实施例通过采用中等结晶度(5%-75%)的微晶玻璃原材进行3D热弯成型,并在成型工序后引入晶化工序,制备3D微晶玻璃,可以最终获得具有较高结晶度的微晶玻璃,兼具优异的光学性能和较好的抗跌落性能,同时可以提升3D成型效率,提高3D成型的产品良率,获得良好尺寸稳定性。
本申请一些实施方式中,电子设备100中采用的微晶玻璃为3D微晶玻璃,一些实施方 式中,该3D微晶玻璃即为本申请前文所述待强化的3D微晶玻璃,此处不再赘述。该3D微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%3D微晶玻璃长宽尺寸公差在±0.1mm以内的过程能力指数CPK≥0.8。3D微晶玻璃具有优异的光学性能,可见光透过率高,雾度低,同时具有较高的尺寸稳定性,产品良率高。
本申请实施方式中,3D微晶玻璃包括化学强化3D微晶玻璃,化学强化3D微晶玻璃表面具有压应力层。一些实施方式中,化学强化3D微晶玻璃即为本申请前述的化学强化微晶玻璃。另一些实施方式中,化学强化3D微晶玻璃的压应力层可以是与本申请前述的化学强化微晶玻璃的强化层不同。
本申请实施例还提供了3D微晶玻璃的制备方法,包括:
将微晶玻璃原材收容于成型模具内,依次经过预热工序、成型工序、晶化工序和退火冷却工序,得到3D微晶玻璃;微晶玻璃原材的结晶度为5%-75%;晶化工序的温度大于或等于成型工序的温度。具体如前文的待强化的3D微晶玻璃的制备工艺,此处不再赘述。本申请实施例的3D微晶玻璃的制备方法,通过采用中等结晶度(5%-75%)的微晶玻璃原材进行3D热弯成型,并在成型工序后引入晶化工序,制备3D微晶玻璃,可以最终获得具有较高结晶度的微晶玻璃,兼具优异的光学性能和较好的抗跌落性能,同时可以提升3D成型效率,提高3D成型的产品良率,获得良好尺寸稳定性。
本申请实施方式中,当3D微晶玻璃为化学强化3D微晶玻璃时,上述制备方法还进一步包括:在退火冷却后,采用强化工艺进行强化。强化工艺可以是如前文所述,也可以是采用其他可用的强化工艺。
下面以制备手机玻璃盖板为例,分多个实施例对本申请实施例进行进一步的说明。
实施例1
1)采用熔融冷却法在1500℃-1700℃保温2-24h制备玻璃原材,玻璃原材的成分组成为:15%Li 2O-8%Al 2O 3-72%SiO 2-0.5%ZrO 2-1.5%P 2O 5-1%Na 2O-2%K 2O;
2)将上述制备得到的玻璃原材依次在400-520℃保温0.5-10小时,520-640℃保温0.5-10小时,640-750℃保温0.1-10小时,再退火处理制备得到微晶玻璃原材,微晶玻璃原材的摩尔组成为15%Li 2O-8%Al 2O 3-72%SiO 2-0.5%ZrO 2-1.5%P 2O 5-1%Na 2O-2%K 2O,晶体相包括硅酸锂和石英,结晶度为50%;
3)将得到的微晶玻璃原材采用金刚线切割,再采用研磨工艺双面磨亮至厚度为0.65mm,再采用手机盖板加工工艺制备得到所需形状尺寸的手机玻璃盖板;
4)将所得手机玻璃盖板进行化学强化,得到强化后的手机玻璃盖板,第一步强化的炉水含50%NaNO 3-50%KNO 3的强化盐,强化温度380-490℃,强化时间3h-24h;第二步强化的炉水采用含85%KNO 3-14%NaNO 3-1%LiNO 3的强化盐,强化温度370-450℃,强化时间2min-240min。
实施例2
与实施例1的区别仅在于,该实施例的玻璃原材的组分为:25%Li 2O-2%Al 2O 3-60%SiO 2-2%ZrO 2-3%P 2O 5-4%Na 2O-1%K 2O-5%B 2O 3。微晶玻璃基质的摩尔组成为25%Li 2O-2%Al 2O 3-60%SiO 2-2%ZrO 2-3%P 2O 5-4%Na 2O-1%K 2O-5%B 2O 3,晶体相包括二硅酸锂和透锂长石,结晶度为75%。该实施例采用的化学强化工艺不同,具体请参见表1。
实施例3
与实施例1的区别仅在于,采用的化学强化工艺不同,具体请参见表1。
实施例4
与实施例2的区别仅在于,采用的化学强化工艺不同,具体请参见表1。
实施例5
与实施例1的区别仅在于,该实施例的玻璃原材的组分为:20%Li 2O-3%Al 2O 3-60%SiO 2-6%ZrO 2-3%P 2O 5-1TiO 2-3%Na 2O-1%K 2O-1%MgO-1%CaO-1%ZnO。微晶玻璃基质的摩尔组成为20%Li 2O-3%Al 2O 3-60%SiO 2-6%ZrO 2-3%P 2O 5-1TiO 2-3%Na 2O-1%K 2O-1%MgO-1%CaO-1%ZnO;晶体相包括二硅酸锂和透锂长石,结晶度为90%。该实施例采用的化学强化工艺不同,具体请参见表1。
实施例6
与实施例5的区别仅在于,采用的化学强化工艺不同,具体请参见表1。
对比例1
与实施例1的区别仅在于,采用的化学强化工艺不同,具体请参见表1。
对比例2
与实施例2的区别仅在于,采用的化学强化工艺不同,具体请参见表1。
采用玻璃应力测试仪对实施例1-6和对比例1-2制备得到的手机玻璃盖板进行应力测试,测试结果参见表1。
表1实施例1-6与对比例1-2的强化工艺参数和玻璃应力及性能测试结果
Figure PCTCN2022070288-appb-000001
从表1的结果可以获知,采用本申请实施例提供的化学强化工艺获得的强化后手机玻璃盖板,能实现高程度的化学强化,强化后CS50≥50Mpa,强化层深度Doc≥90μm,从而具有较 高强度,可获得较高的抗跌高度。采用实施例1-6的手机玻璃盖板,200g、180#砂纸场景下的整机抗跌落高度≥1.5m。实施例1-6的手机玻璃盖板,抗落球冲击强度>0.15J。同时,实施例1-6的手机玻璃盖板具有较强的耐候性,在85℃温度/85%湿度的湿热环境下存储240h,不会出现腐蚀残留印迹。本申请实施例1-6在第二步强化的炉水中引入了0.005%~1%的LiNO 3的强化盐,并将钾强化层厚度控制在0.01~5μm;能够使微晶玻璃在具有优异的抗高温高湿环境性能的同时,保持优异的抗冲击能力和抗跌落性能。
实施例7
1)采用熔融冷却法在1500-1700℃保温2-24h制备玻璃原材,玻璃成分组成如下:20%Li 2O-2%Al 2O 3-58%SiO 2-5%ZrO 2-8%P 2O 5-5%Na 2O-2%K 2O;
2)将上述制备的玻璃原材依次在400-520℃保温0.5-1h,580-640℃保温5h,获得结晶度为65%,晶相为硅酸锂和透锂长石的微晶玻璃原材;
3)将所得微晶玻璃原材采用金刚线切割,再采用研磨工艺研磨至0.65mm厚度,双面磨亮;然后采用表2所列的温度制度进行热弯获得所需的3D微晶玻璃手机盖板;
4)将所得3D微晶玻璃手机盖板进行化学强化,得到强化后的3D微晶玻璃手机盖板,第一步强化的炉水含40wt%~100wt%NaNO 3和0~60wt%KNO 3,强化温度380-490℃,强化时间3-24小时;第二步强化的炉水采用含≥85wt%KNO 3及0.005wt%~1wt%的LiNO 3的强化盐,强化温度370-450℃,强化时间2-240min。
实施例8
与实施例7的区别仅在于,步骤(3)中进行热弯时的温度制度不同,具体请参见表2。
实施例9
1)采用熔融冷却法在1500-1700℃保温2-24h制备玻璃原材,玻璃成分组成如下:20%Li 2O-2%Al 2O 3-58%SiO 2-5%ZrO 2-8%P 2O 5-5%Na 2O-2%K 2O;
2)将上述制备的玻璃原材在400-520℃保温0.5-1h,获得结晶度为5%,晶相为硅酸锂/透锂长石的微晶玻璃原材;
3)将所得微晶玻璃原材采用金刚线切割,再采用研磨工艺研磨至0.65mm厚度,双面磨亮;然后采用表2所列的温度制度进行热弯获得所需的3D微晶玻璃手机盖板;
4)将所得3D微晶玻璃手机盖板进行化学强化,得到强化后的3D微晶玻璃手机盖板,第一步强化的炉水含40wt%~100wt%NaNO 3和0~60wt%KNO 3,强化温度380-490℃,强化时间3-24小时;第二步强化的炉水采用含≥85wt%KNO 3及0.005wt%~1wt%的LiNO 3的强化盐,强化温度370-450℃,强化时间2-240min。
实施例10
与实施例9的区别仅在于,步骤(3)中进行热弯时的温度制度不同,具体请参见表2。
实施例11-14
与实施例7的区别仅在于,调整步骤(1)和步骤(2)的温度、时间等工艺参数获得不同结晶度的微晶玻璃原材,具体结晶度参见表3中的原材结晶度。
对比例3
与实施例7的区别仅在于,采用结晶度大于85%的微晶玻璃原材经表2的热弯处理工艺。
对比例4
与实施例9的区别仅在于,采用结晶度为0%的微晶玻璃原材经表2的热弯处理工艺后, 再置于晶化炉中经过650℃保温处理4h,获得晶化后的玻璃样品。
表2实施例7-10和对比例3-4的热弯温度/压力制度
Figure PCTCN2022070288-appb-000002
将实施例7-14和对比例3-4制备得到的3D微晶玻璃手机盖板进行光学性能、硬度、尺寸稳定性、结晶度测试,结果请参见表3。其中CPK尺寸数据为收集对应玻璃样品32片样品的测试数据。
表3实施例7-14和对比例3-4的玻璃样品的性能测试结果
Figure PCTCN2022070288-appb-000003
Figure PCTCN2022070288-appb-000004
从表3中可以获知,采用本申请实施例提供的3D热弯成型工艺,能实现高程度的结晶度(结晶度≥70%),获得优异的光学性能和良好的尺寸稳定性。3D微晶玻璃盖板的在400-700nm光波长范围平均透过率≥85%,Lab颜色色度指标b值≥-1.5,雾度≤0.25%。3D微晶玻璃盖板长宽尺寸公差±0.1mm,CPK≥0.8。本申请实施例提供的3D热弯成型工艺,在原材上通过采用中等结晶度的微晶玻璃原材,一方面可降低热弯破片率,同时防止晶粒过分长大,获得良好的光学性能;另一方面也可保证热弯成型尺寸稳定性,获得所需主晶相。而在工艺上通过在热弯过程中引入晶化工艺,使玻璃在热弯成型完成后,进入高温晶化过程,可提升玻璃结晶度,获得良好抗跌性能。另外,该热弯成型工艺对热弯设备要求较低,热弯良率高,热弯效率高。而对比例3采用高结晶度的玻璃原材进行热弯,为达到适应热弯的粘度,需要较高的预热温度,而在高温预热过程中,微晶玻璃内部微晶生长,易造成玻璃发蓝,光学性能变差;而且纳米微晶体生长,微裂纹增大,结晶度变高,玻璃在热弯过程中容易破片,损坏模具,良率低;另外,热弯设备内部温度越高,温场空间分布不均匀,造成同一片玻璃不同位置晶粒大小不一,有色差。而对比例4选用较低结晶度的微晶玻璃原材,在热弯完成后,再进行晶化操作,该方案成型与晶化是分开进行,效率较低。另外,晶化过程存在较大体积收缩,且热弯模具与3D玻璃存在间隙,晶化过程必然引起尺寸不稳定。而且,该方案对晶化炉需求高,需要有保护气氛与加压力装置,设备技术门槛高,成本高。
从实施例11和实施例14也可以获知,当选择结晶度低于5%的微晶玻璃原材采用本申请实施例热弯工艺进行热弯时,玻璃盖板产品的尺寸稳定性差;而采用结晶度高于75%的微晶玻璃原材采用本申请实施例热弯工艺进行热弯时,玻璃盖板产品的光学性能明显变差。

Claims (29)

  1. 一种化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃相对两侧分别形成有强化层,所述强化层自所述化学强化微晶玻璃表面向内部依次包括钾强化层和钠强化层,所述钾强化层的深度为0.01μm-5μm,所述钠强化层的深度≥0.1t,所述t为所述化学强化微晶玻璃的厚度。
  2. 如权利要求1所述的化学强化微晶玻璃,其特征在于,所述强化层的深度大于或等于80μm。
  3. 如权利要求1或2所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃在所述强化层深度为50μm处的压应力CS50≥50MPa。
  4. 如权利要求1-3任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃的平均张应力为35MPa-85MPa。
  5. 如权利要求1-4任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃自表面向内部的0.01t-0.1t厚度范围内,钠元素浓度单调递减。
  6. 如权利要求1-5任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃在温度为85℃、湿度为85%的条件下保持大于或等于120小时,表面不析出白色含钠的化合物。
  7. 如权利要求1-6任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃由待强化的微晶玻璃经化学强化得到,以摩尔百分比计,所述待强化的微晶玻璃包括如下组分:
    Li 2O:10%-25%,
    SiO 2:58%-72%,
    Na 2O和K 2O:3%-7%,
    Al 2O 3:2%-8%,
    P 2O 5+ZrO 2+TiO 2:2%-13%,
    MgO+CaO+ZnO:0-3%,
    B 2O 3:0-5%。
  8. 如权利要求7所述的化学强化微晶玻璃,其特征在于,所述待强化的微晶玻璃包括玻璃相和晶体相,所述晶体相包含透锂长石、硅酸锂、二硅酸锂中的至少一种。
  9. 如权利要求8所述的化学强化微晶玻璃,其特征在于,所述待强化的微晶玻璃中,所述晶体相的总质量含量≥50%。
  10. 如权利要求1-9任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃包括2D化学强化微晶玻璃、2.5D化学强化微晶玻璃或3D化学强化微晶玻璃。
  11. 如权利要求1-10任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃的厚度≥0.03mm。
  12. 如权利要求1-11任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%;所述3D微晶玻璃长宽尺寸公差在±0.1mm以内的过程能力指数CPK≥0.8。
  13. 如权利要求1-12任一项所述的化学强化微晶玻璃,其特征在于,所述化学强化微晶玻璃的维氏硬度≥650kgf/mm 2;所述化学强化微晶玻璃的抗冲击强度≥0.07J。
  14. 一种如权利要求1-13任一项所述的化学强化微晶玻璃的制备方法,其特征在于,包 括:
    将待强化的微晶玻璃置于第一盐浴中进行第一步离子交换,所述第一盐浴的强化盐包括质量分数≥30%的钠盐;
    将经所述第一步离子交换后的待强化的微晶玻璃置于第二盐浴中进行第二步离子交换,得到所述化学强化微晶玻璃,所述第二盐浴的强化盐包括质量分数大于或等于85%的钾盐,以及质量分数为0.005%~1%的锂盐。
  15. 如权利要求14所述的制备方法,其特征在于,所述第一步离子交换的温度为380℃-490℃,时间为3h-24h;所述第二步离子交换的温度为370℃-450℃,时间为2min-240min。
  16. 如权利要求14或15所述的制备方法,其特征在于,所述待强化的微晶玻璃包括待强化的3D微晶玻璃,所述待强化的3D微晶玻璃采用如下方式制备得到:
    将微晶玻璃原材收容于成型模具内,依次经过预热工序、成型工序、晶化工序和退火冷却工序,得到所述待强化的3D微晶玻璃;所述微晶玻璃原材的结晶度为5%-75%;所述晶化工序的温度大于或等于所述成型工序的温度。
  17. 如权利要求16所述的制备方法,其特征在于,所述预热工序的温度在0℃~780℃范围内;所述成型工序的温度在600℃~800℃范围内,成型压力在0MPa-0.9MPa范围内;所述晶化工序的温度在700℃~900℃范围内;所述退火冷却工序的温度在0℃~800℃范围内。
  18. 一种3D微晶玻璃,其特征在于,所述3D微晶玻璃在400nm-700nm光波长范围的平均透过率≥85%;Lab颜色色度指标b值≥-2.0;雾度≤0.25%。
  19. 如权利要求18所述的3D微晶玻璃,其特征在于,所述3D微晶玻璃的维氏硬度≥650kgf/mm 2;所述3D微晶玻璃长宽尺寸公差在±0.1mm以内的过程能力指数CPK≥0.8。
  20. 如权利要求18或19所述的3D微晶玻璃,其特征在于,以摩尔百分比计,所述3D微晶玻璃包括如下组分:
    Li 2O:10%-25%,
    SiO 2:58%-72%,
    Na 2O和K 2O:3%-7%,
    Al 2O 3:2%-8%,
    P 2O 5+ZrO 2+TiO 2:2%-13%,
    MgO+CaO+ZnO:0-3%,
    B 2O 3:0-5%。
  21. 如权利要求18-20任一项所述的3D微晶玻璃,其特征在于,所述3D微晶玻璃包括玻璃相和晶体相,所述晶体相在所述3D微晶玻璃中的总质量含量≥50%。
  22. 如权利要求18-21任一项所述的3D微晶玻璃,其特征在于,所述3D微晶玻璃包括化学强化3D微晶玻璃,所述化学强化3D微晶玻璃表面具有压应力层。
  23. 一种3D微晶玻璃的制备方法,其特征在于,包括:
    将微晶玻璃原材收容于成型模具内,依次经过预热工序、成型工序、晶化工序和退火冷却工序,得到所述3D微晶玻璃;所述微晶玻璃原材的结晶度为5%-75%;所述晶化工序的温度大于或等于所述成型工序的温度。
  24. 如权利要求23所述的制备方法,其特征在于,所述预热工序的温度在0℃~780℃ 范围内;所述成型工序的温度在600℃~800℃范围内,成型压力在0MPa-0.9MPa范围内;所述晶化工序的温度在700℃~900℃范围内;所述退火冷却工序的温度在0℃~800℃范围内。
  25. 一种玻璃盖板,其特征在于,所述玻璃盖板采用如权利要求1-13任一项所述的化学强化微晶玻璃或如权利要求18-22任一项所述的3D微晶玻璃制成。
  26. 一种电子设备,其特征在于,包括组装在所述电子设备外侧的外壳,以及位于所述外壳内部的电路板,所述外壳采用微晶玻璃,所述微晶玻璃包括如权利要求1-13任一项所述的化学强化微晶玻璃或如权利要求18-22任一项所述的3D微晶玻璃。
  27. 如权利要求26所述的电子设备,其特征在于,所述外壳包括组装在所述电子设备前侧的显示屏盖板,所述显示屏盖板包括所述微晶玻璃。
  28. 如权利要求26或27所述的电子设备,其特征在于,所述外壳包括组装在所述电子设备后侧的后盖,所述后盖采用所述微晶玻璃。
  29. 如权利要求26-28任一项所述的电子设备,其特征在于,所述电子设备还包括位于所述外壳内部的摄像头组件,所述外壳包括摄像头保护盖板,所述摄像头保护盖板盖设在所述摄像头组件上,所述摄像头保护盖板采用所述微晶玻璃。
PCT/CN2022/070288 2021-01-30 2022-01-05 化学强化微晶玻璃及其制备方法和电子设备 WO2022161125A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22745003.8A EP4257564A4 (en) 2021-01-30 2022-01-05 CHEMICALLY STRENGTHENED GLASS-CERAMIC, PRODUCTION METHOD THEREFOR AND ELECTRONIC DEVICE
CN202280007562.1A CN116583490A (zh) 2021-01-30 2022-01-05 化学强化微晶玻璃及其制备方法和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110139590.6A CN114835400B (zh) 2021-01-30 2021-01-30 化学强化微晶玻璃及其制备方法和电子设备
CN202110139590.6 2021-01-30

Publications (1)

Publication Number Publication Date
WO2022161125A1 true WO2022161125A1 (zh) 2022-08-04

Family

ID=82560844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070288 WO2022161125A1 (zh) 2021-01-30 2022-01-05 化学强化微晶玻璃及其制备方法和电子设备

Country Status (3)

Country Link
EP (1) EP4257564A4 (zh)
CN (3) CN116553830B (zh)
WO (1) WO2022161125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432945A (zh) * 2022-09-30 2022-12-06 成都光明光电股份有限公司 一种改善纳米微晶玻璃耐候性的化学强化方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115872622B (zh) * 2022-11-22 2024-05-10 湖南旗滨新材料有限公司 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃
CN116023044A (zh) * 2023-03-02 2023-04-28 咸宁南玻光电玻璃有限公司 化学强化方法、化学强化玻璃、含玻璃的制品及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372216A (zh) * 2018-04-12 2019-10-25 深圳市东丽华科技有限公司 平面玻璃、钢化玻璃、3d曲面微晶玻璃及其制备工艺
CN110872175A (zh) * 2018-08-31 2020-03-10 深圳市东丽华科技有限公司 一种微晶玻璃及利用其制成的具有复合压应力的玻璃基板
CN110894137A (zh) * 2018-09-13 2020-03-20 深圳市东丽华科技有限公司 钢化玻璃、3d微晶玻璃及其制备方法
CN110981206A (zh) * 2019-12-20 2020-04-10 深圳市东丽华科技有限公司 一种多晶核复合透明玻璃陶瓷及其制备方法
CN111018356A (zh) * 2019-12-30 2020-04-17 深圳市东丽华科技有限公司 一种高晶体含量的微晶玻璃及其制备方法
CN111087174A (zh) * 2019-12-19 2020-05-01 深圳市东丽华科技有限公司 一种具有高弹性模量的玻璃陶瓷、强化玻璃陶瓷及其制备方法
CN111348834A (zh) * 2020-03-16 2020-06-30 科立视材料科技有限公司 一种3d微晶玻璃及其制备方法
CN111847885A (zh) * 2020-06-09 2020-10-30 科立视材料科技有限公司 一种具有深层高压应力的强化微晶玻璃及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1837314B1 (de) * 2006-03-20 2009-08-12 Schott AG Transparente, farblose Lithium-Aluminosilikat-Glaskeramikplatte mit blickdichter, farbiger Unterseitenbeschichtung
DE102012202697A1 (de) * 2012-02-22 2013-08-22 Schott Ag Transparente farbarme Lithiumaluminiumsilikat-Glaskeramik und deren Verwendung
KR102294910B1 (ko) * 2018-10-26 2021-08-27 시디지엠 글라스 컴퍼니 리미티드 전자기기 커버판 용 결정화 유리 제품 및 결정화 유리
US11554976B2 (en) * 2018-11-05 2023-01-17 Corning Incorporated Methods of making three dimensional glass ceramic articles
EP3752470B1 (en) * 2018-11-13 2023-08-30 Corning Incorporated Chemically strengthened lithium disilicate-petalite glass- ceramics
CN111087175B (zh) * 2019-12-17 2021-06-11 重庆鑫景特种玻璃有限公司 一种稀土掺杂的强化玻璃陶瓷及其制备方法与应用
CN111635138B (zh) * 2020-04-28 2022-02-25 重庆鑫景特种玻璃有限公司 一种透过率接近玻璃前驱体的玻璃陶瓷及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372216A (zh) * 2018-04-12 2019-10-25 深圳市东丽华科技有限公司 平面玻璃、钢化玻璃、3d曲面微晶玻璃及其制备工艺
CN110872175A (zh) * 2018-08-31 2020-03-10 深圳市东丽华科技有限公司 一种微晶玻璃及利用其制成的具有复合压应力的玻璃基板
CN110894137A (zh) * 2018-09-13 2020-03-20 深圳市东丽华科技有限公司 钢化玻璃、3d微晶玻璃及其制备方法
CN111087174A (zh) * 2019-12-19 2020-05-01 深圳市东丽华科技有限公司 一种具有高弹性模量的玻璃陶瓷、强化玻璃陶瓷及其制备方法
CN110981206A (zh) * 2019-12-20 2020-04-10 深圳市东丽华科技有限公司 一种多晶核复合透明玻璃陶瓷及其制备方法
CN111018356A (zh) * 2019-12-30 2020-04-17 深圳市东丽华科技有限公司 一种高晶体含量的微晶玻璃及其制备方法
CN111348834A (zh) * 2020-03-16 2020-06-30 科立视材料科技有限公司 一种3d微晶玻璃及其制备方法
CN111847885A (zh) * 2020-06-09 2020-10-30 科立视材料科技有限公司 一种具有深层高压应力的强化微晶玻璃及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257564A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432945A (zh) * 2022-09-30 2022-12-06 成都光明光电股份有限公司 一种改善纳米微晶玻璃耐候性的化学强化方法
CN115432945B (zh) * 2022-09-30 2023-08-18 成都光明光电股份有限公司 一种改善纳米微晶玻璃耐候性的化学强化方法

Also Published As

Publication number Publication date
CN116553830A (zh) 2023-08-08
EP4257564A1 (en) 2023-10-11
CN116553830B (zh) 2024-01-30
CN114835400A (zh) 2022-08-02
EP4257564A4 (en) 2024-07-03
CN116583490A (zh) 2023-08-11
CN114835400B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2022161125A1 (zh) 化学强化微晶玻璃及其制备方法和电子设备
CN110217994B (zh) 化学强化用微晶玻璃、化学强化玻璃、其应用及电子设备
JP6879215B2 (ja) 光学ガラス
WO2020192486A1 (zh) 微晶玻璃及其制备方法和终端
JP3187321B2 (ja) 化学強化用ガラス組成物および化学強化ガラス物品
WO2019230889A1 (ja) 強化ガラス及び強化用ガラス
WO2020161949A1 (ja) 結晶化ガラス、化学強化ガラスおよび半導体支持基板
KR20010082735A (ko) 음극선관용 유리, 강화 유리, 그 제조방법 및 그 용도
WO2020121888A1 (ja) 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
CN102898023A (zh) 强化玻璃及其制造方法
KR20240023615A (ko) 휨이 작은 강화된 미결정 유리, 그 제조 방법 및 용도
WO2024088186A1 (zh) 一种微晶玻璃、微晶玻璃前驱体及其制备方法
WO2023082935A1 (zh) 一种结晶玻璃、强化结晶玻璃及其制备方法
JP2001348245A (ja) 強化ガラス、その製造方法およびディスプレイ用ガラス
WO2023082936A1 (zh) 一种结晶玻璃、强化结晶玻璃及其制备方法
JP2001302278A (ja) 陰極線管用ガラス、陰極線管用ガラスパネル、及び陰極線管、並びにそれらの製造方法
JP2023083562A (ja) カバーガラス
CN114772936A (zh) 一种可化学强化的微晶玻璃及其制备方法与化学强化玻璃
WO2021215307A1 (ja) 結晶化ガラス
CN116924683B (zh) 一种具有高透明高强度的镁铝硅微晶玻璃及制备方法
WO2023032935A1 (ja) 結晶化ガラス、化学強化ガラス及び電子デバイス
WO2023032936A1 (ja) 結晶化ガラス、化学強化ガラス及び電子デバイス
WO2023090177A1 (ja) 結晶化ガラス
WO2024130984A1 (zh) 一种具有高耐划伤性的透明微晶玻璃
US20230406763A1 (en) Chemically-strengthened glass containing glass ceramic, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007562.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18263385

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022745003

Country of ref document: EP

Effective date: 20230707

NENP Non-entry into the national phase

Ref country code: DE