WO2022157976A1 - 旋削加工方法、加工システム及び加工プログラム - Google Patents

旋削加工方法、加工システム及び加工プログラム Download PDF

Info

Publication number
WO2022157976A1
WO2022157976A1 PCT/JP2021/002450 JP2021002450W WO2022157976A1 WO 2022157976 A1 WO2022157976 A1 WO 2022157976A1 JP 2021002450 W JP2021002450 W JP 2021002450W WO 2022157976 A1 WO2022157976 A1 WO 2022157976A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving device
turning
turning tool
workpiece
moving
Prior art date
Application number
PCT/JP2021/002450
Other languages
English (en)
French (fr)
Inventor
亮 長尾
健 安井
洋二 田村
Original Assignee
ヤマザキマザック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマザキマザック株式会社 filed Critical ヤマザキマザック株式会社
Priority to JP2021534192A priority Critical patent/JP7002702B1/ja
Priority to EP21921084.6A priority patent/EP4219048A4/en
Priority to CN202180091263.6A priority patent/CN116710222A/zh
Priority to PCT/JP2021/002450 priority patent/WO2022157976A1/ja
Publication of WO2022157976A1 publication Critical patent/WO2022157976A1/ja
Priority to US18/319,484 priority patent/US20230302595A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • B23Q15/02Control or regulation of feed movement according to the instantaneous size and the required size of the workpiece acted upon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B7/00Automatic or semi-automatic turning-machines with a single working-spindle, e.g. controlled by cams; Equipment therefor; Features common to automatic and semi-automatic turning-machines with one or more working-spindles
    • B23B7/12Automatic or semi-automatic machines for turning of workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2220/00Details of turning, boring or drilling processes
    • B23B2220/24Finishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/20Internally located features, machining or gripping of internal surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/22Externally located features, machining or gripping of external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2705/00Driving working spindles or feeding members carrying tools or work
    • B23Q2705/10Feeding members carrying tools or work
    • B23Q2705/102Feeding members carrying tools or work for lathes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37345Dimension of workpiece, diameter

Definitions

  • the present invention relates to a method, a machining system, and a machining program for turning a workpiece that is gripped by a spindle device and rotated around a rotation axis.
  • Patent Document 1 in the machining of a keyway, machining incorporating a mechanism that finely adjusts the distance of the tool rest with respect to the rotation axis of the main spindle so that the amount of wear can be corrected without replacing the worn tool (bite).
  • Apparatus (compound lathe) is disclosed above the cross slide slidable in the rotation axis direction of the main shaft.
  • a machine base Above the cross slide slidable in the rotation axis direction of the main shaft, a machine base is provided so as to be slidable vertically and horizontally with respect to the rotation axis direction. are arranged and fixed so as to extend in a direction perpendicular to the rotating shaft.
  • the rod-shaped tool can be statically or dynamically advanced and retracted in its longitudinal direction to finely adjust the outer diameter and roundness of the workpiece.
  • An object of the present invention is to provide a turning method, a turning program, and a turning system that can perform machining that requires narrow dimensional tolerances.
  • a turning method is a method for turning a workpiece that rotates about a rotation axis, wherein a first movement device for moving a turning tool in the radial direction of the rotation axis is driven to move the first movement in the radial direction.
  • the cutting edge of the turning tool is placed at a position in the radial direction
  • the second moving device is driven to move the turning tool in parallel with the rotation axis
  • the turning tool is moved in the opposite direction to retract the turning tool from the workpiece.
  • the machining dimensions of the workpiece are measured to calculate the error from the target dimension
  • the third moving device that relatively moves the turning tool in the radial direction of the rotary shaft with respect to the first moving device is driven to correct the error.
  • the second moving device is driven to move the turning tool parallel to the rotation axis to turn the workpiece.
  • a machining system includes a machining device for turning a workpiece, a measuring device for measuring machining dimensions of the workpiece, and a control device for controlling the driving of the machining device and the measuring device.
  • a spindle device that rotates a workpiece around a rotation axis, a first movement device that moves a turning tool in the radial direction of the rotation axis, a second movement device that moves the turning tool parallel to the rotation axis, and a radial direction of the rotation axis.
  • a workpiece machining system that controls the drive of a device to execute the above-described workpiece turning machining method.
  • a machining program includes a first moving device for moving a turning tool in a radial direction of a rotation axis of a workpiece, a second moving device for moving the turning tool parallel to the rotation axis, and a and a third moving device for relatively moving the turning tool in the radial direction of the rotating shaft.
  • Another turning method is a method for turning a workpiece that rotates about a rotation axis, in which a second moving device that moves a turning tool parallel to the rotation axis is driven to move the rotation axis.
  • the cutting edge of the turning tool is arranged at a first axial position in a direction parallel to and the first moving device that moves the turning tool in the radial direction of the rotating shaft is driven to turn the workpiece, and then move in the opposite direction.
  • a fourth moving device that moves the turning tool relative to the second moving device in parallel with the rotation axis to move the turning tool away from the work, measures the machining dimensions of the work, calculates the error from the target dimension, and moves the turning tool relative to the second moving device. locating the cutting edge of the turning tool at the second cutting axis direction position so as to correct the error, and driving the first moving device to move the turning tool in the radial direction to turn the work. processing method.
  • another machining system includes a machining device for turning a workpiece, a measuring device for measuring machining dimensions of the workpiece, and a control device for controlling the driving of the machining device and the measuring device.
  • a spindle device for rotating a workpiece around a rotation axis
  • a first movement device for moving a turning tool in the radial direction of the rotation axis
  • a second movement device for moving the turning tool parallel to the rotation axis
  • a rotation axis comprising a fourth moving device having a smaller movable range than the second moving device in a parallel direction and relatively moving the turning tool parallel to the rotation axis with respect to the second moving device; and a measuring device to execute the above-described other turning method.
  • Another machining program includes a first moving device for moving a turning tool in the radial direction of a rotation axis of a workpiece, a second moving device for moving the turning tool parallel to the rotation axis, and a second moving device. and a fourth moving device for relatively moving the turning tool in parallel with the rotation axis.
  • FIG. 1 is a side view (partial block diagram) of essential parts of one embodiment of a turning system according to the present invention; It is a flow chart showing a turning method.
  • FIG. 4 is a side view showing the placement of the cutting edge at the cutting position in the turning method. It is a side view which shows semi-finishing processing among the turning processing methods.
  • FIG. 5 is a side view showing separation of the cutting edge from the work surface in the turning method.
  • FIG. 10 is a side view showing retraction of the turning tool in the turning method; It is a side view which shows dimension measurement among the turning methods. It is a side view which shows finishing processing among the turning processing methods.
  • FIG. 4 is a side view showing the placement of the cutting edge at the cutting position in the turning method. It is a side view which shows semi-finishing processing among the turning processing methods.
  • FIG. 5 is a side view showing separation of the cutting edge from the work surface in the turning method.
  • FIG. 10 is a side view showing retraction of the turning
  • FIG. 5 is a side view showing the end of finishing machining in the turning method.
  • FIG. 4 is a cross-sectional view showing an arrangement example of a workpiece and a turning tool
  • FIG. 11 is a side view showing a state in which a steady rest is arranged in a long work
  • FIG. 10 is a side view of the essential parts of another embodiment of the turning system according to the present invention
  • FIG. 4 is a side view showing the placement of the cutting edge at the cutting position in the turning method. It is a side view which shows semi-finishing processing among the turning processing methods.
  • FIG. 5 is a side view showing separation of the cutting edge from the work surface in the turning method.
  • FIG. 10 is a side view showing retraction of the turning tool in the turning method; It is a side view which shows dimension measurement among the turning methods. It is a side view which shows finishing processing among the turning processing methods.
  • FIG. 5 is a side view showing the end of finishing machining in the turning method.
  • FIG. 1 A work turning method, a machining system, and a machining program according to the present invention will be described in detail below with reference to FIGS. 1 to 6.
  • FIG. 1 A work turning method, a machining system, and a machining program according to the present invention will be described in detail below with reference to FIGS. 1 to 6.
  • FIG. 1 A work turning method, a machining system, and a machining program according to the present invention will be described in detail below with reference to FIGS. 1 to 6.
  • the processing system 1 includes a processing machine 10 and a control device 2 that controls its operation.
  • the control device 2 can drive the processing machine 10 according to a prestored processing program 3 to automatically perform turning processing of the workpiece W.
  • a robot 20 is provided outside the processing machine 10 as a measuring device for measuring the processing dimensions of the workpiece W, and its driving is similarly controlled by the control device 2 .
  • the control device 2 may be installed at a plurality of locations and configured by control circuits connected by communication means. For example, part or all of the driving of the robot 20 may be controlled by a control circuit installed in a different location from the control circuit controlling the driving of the processing machine 10 .
  • the processing machine 10 includes a spindle device 11 that grips a workpiece W and rotates it around a rotation axis A, a tool rest 13 such as a turret to which a turning tool 12 is fixed, and a turning tool 12 together with the tool rest 13 on the rotation axis A.
  • a third moving device 15 is provided between the tool post 13 and the turning tool 12 to move the turning tool 12 relative to the tool post 13 .
  • the turning tool 12 is arranged so as to extend substantially parallel to the rotation axis A. As shown in FIG.
  • the second moving device 16 includes a carriage 8, a linear guide 7, a ball screw 6, and a servomotor 5.
  • the carriage 8 is attached to two linear guides 7 provided on the base 4 of the processing machine 10 so as to extend parallel to the rotation axis A, and is slidable along the linear guides 7.
  • a ball screw 6 extending parallel to the rotation axis A is screwed thereon.
  • the ball screw 6 is connected to a servomotor 5 and can be rotated by driving the servomotor 5 to move the carriage 8 parallel to the rotation axis A. As shown in FIG.
  • the first moving device 14 includes a tool post base 9 connected to the tool post 13 , a linear guide 19 , a ball screw 18 and a servomotor 17 .
  • the tool post base 9 is attached to two linear guides 19 provided on the carriage 8 of the second moving device 16 so as to extend in the radial direction of the rotation axis A, and is slidable along the linear guides 19. and is screwed onto a ball screw 18 extending parallel to the linear guide 19 .
  • the ball screw 18 is connected to a servomotor 17 , and is rotated by driving the servomotor 17 to move the tool post base 9 of the first moving device 14 relative to the carriage 8 of the second moving device 16 . It can be moved in the radial direction of the rotation axis A.
  • the first moving device 14 enables the turning tool 12 to move in the radial direction of the rotation axis A with respect to the workpiece W to be turned, and adjusts the radial position of its cutting edge 12a.
  • the second moving device 16 enables the turning tool 12 to move in the direction parallel to the rotation axis A with respect to the workpiece W to be turned, and adjusts the axial position of the cutting edge 12a.
  • the cutting edge 12a of the turning tool 12 can be adjusted to the cutting position and the feed in the turning process can be applied.
  • the first moving device 14 and the second moving device 16 need to secure a sufficient amount of movement corresponding to the size of the workpiece W, such as feeding accompanying such turning and retraction described later. It is possible to have the above movable range.
  • the third moving device 15 can move the turning tool 12 in the radial direction of the rotation axis A relative to the first moving device 14 .
  • the third moving device 15 preferably has higher positional accuracy than the first moving device 14 and has a smaller movable range than the first moving device 14 .
  • the third moving device 15 has a movable range capable of correcting, in the finishing process, an error in machining dimensions due to intermediate finishing of the workpiece W based on the positional accuracy of the first moving device 14, and the position of the cutting edge 12a can be adjusted to a higher position. can be determined with precision.
  • the movable range of the third moving device 15 can be set to 1 mm or less, for example.
  • the movable range of the third moving device 15 can be 1/100 or less of the movable range of the first moving device 14 .
  • the position of the cutting edge 12a adjusted by the first moving device 14 can be finely adjusted in the radial direction of the rotation axis A.
  • a driving method of the third moving device 15 for example, a method using elastic deformation of a tool holder using hydraulic pressure, a method using a linear motor, a method using a slider screwed to a ball screw rotated by a servomotor, or the like can be used. .
  • a robot 20 as a measuring device is provided with a measuring device 22 at the tip of a robot arm 21, and according to a drive command from the control device 2, inserts the tip into the processing machine 10 from the outside and grips it with the spindle device 11. It is possible to measure the machining dimensions of the workpiece W that has been processed.
  • a measuring device 22 for example, an air gauge using a pneumatic air micrometer can be preferably used.
  • the workpiece W gripped by the spindle device 11 is rotated around the rotation axis A.
  • the first moving device 14 (see FIG. 1) is driven to position the cutting edge 12a of the turning tool 12 attached to the tool rest 13 at the cutting position for intermediate finishing of the workpiece W, and positioning is performed (S1). .
  • the cutting position in the semi-finishing processing is the radial position where the positional accuracy of the first moving device 14 is taken into consideration and the finishing margin is left with respect to the target dimension of finishing in the radial direction, and the axis parallel to the rotation axis A and the axial position to start feed in turning. This axial position is adjusted using the second displacement device 16 .
  • the second moving device 16 is driven to move the turning tool 12 attached to the tool post 13 together with the first moving device 14 along a moving axis A' parallel to the rotation axis A to the spindle device. 11 in the first direction DR1 to turn the workpiece W as semi-finishing (S2).
  • the third moving device 15 is driven to separate the cutting edge 12a from the surface of the workpiece W.
  • the second moving device 16 is driven to move the tool post 13 in a second direction DR2 that is opposite to the first direction DR1 along a moving axis A' parallel to the rotation axis A,
  • the turning tool 12 is retracted from the vicinity of the work W (S3).
  • the driving of the first moving device 14 is fixed, and the tool post 13 does not move in the radial direction.
  • the third moving device 15 by driving the third moving device 15 to separate the cutting edge 12a from the surface of the work W as described above, the occurrence of the return mark can be prevented. It should be noted that it is not always necessary to prevent the occurrence of return marks, and the driving of the third moving device 15 for separating the cutting edge 12a from the surface of the work W can be omitted.
  • the machining dimensions of the workpiece W are measured (S4).
  • the robot 20 as the measuring device is driven, the robot arm 21 is inserted from the outside of the processing machine 10, and the measuring device 22 is brought close to the workpiece W to perform the measurement.
  • the measuring instrument 22 can be brought closer to the workpiece W.
  • a measuring device provided in the machine may be used, or the measurement may be manually performed by an operator.
  • the measured machining dimensions are input to the control device 2 as measurement results.
  • the control device 2 calculates the radial position of the cutting positions for the next finish machining based on the measurement results of the machining dimensions of the workpiece W (S5). Specifically, the radial position is determined so as to correct the error between the target finishing dimension and the measured machining dimension. Then, the third moving device 15 is driven to adjust the position of the turning tool 12 so that the cutting edge 12a is arranged at the determined radial position.
  • the second moving device 16 is driven to move the turning tool 12 attached to the tool rest 13 in the first direction DR1 along the movement axis A' parallel to the rotation axis A as finishing machining.
  • the workpiece W is turned (S6).
  • the third moving device 15 may be driven to separate the cutting edge 12a from the surface of the workpiece W.
  • the turning tool 12 is retracted (S7), and the finished dimensions are measured (S8).
  • the finished dimension is within the dimensional tolerance
  • the first moving device 14 and the second moving device 16 are returned to the origin, and the turning process is completed (S9; Yes).
  • a correction value may be calculated for correcting the error of the finishing dimension by the third moving device 15 and used for the next finishing machining.
  • the remaining cutting allowance is checked (S9; No). If the measured finishing dimension is smaller than the predetermined size and there is no cutting allowance left (S10; Yes), an alarm is issued and the process ends. On the other hand, if the finishing dimension is larger than the predetermined cutting allowance (S10; No), the process returns to the calculation of the cutting position for finishing (S5) and starts again.
  • the driving of the processing machine 10 and the robot 20 described above is based on commands from the control device 2 according to the processing program 3 .
  • the turning tool 12 is not moved by the first moving device 14 after positioning (S1) for semi-finishing until finishing (S6).
  • the first moving device 14 remains fixed in its position at least until finishing (S6).
  • the dimensional accuracy in the radial direction is independent of the positional accuracy of the first moving device 14 and depends on the positional accuracy of the third moving device 15 .
  • the third moving device 15 has higher positional accuracy than the first moving device 14, and turning can be performed with such high positional accuracy. For this reason, even narrow dimensional tolerance requirements of, for example, 10 ⁇ m or less can be satisfied. In other words, machining requiring narrow dimensional tolerances can be performed only by turning without grinding.
  • the first moving device 14 When a plurality of workpieces W are successively turned, the first moving device 14 is not moved, and the movement by the second moving device 16 is limited to the direction parallel to the rotation axis A, and the same correction is performed. It may also be considered to omit the dimensional measurement after semi-finishing by performing finishing using the value. However, it is also conceivable that thermal displacement of the processing machine 10 due to repeated machining and repeated movement of the second moving device 16 in the direction parallel to the rotation axis A may cause deterioration in dimensional accuracy in the radial direction. . Therefore, it is preferable that the dimension measurement (S4) after the semi-finishing is performed for each workpiece W every time.
  • thermal displacement due to continuous turning of a plurality of workpieces W may also occur in the third moving device 15 .
  • the third moving device 15 has a small movable range. Therefore, the thermal displacement occurring in the third moving device 15 is very small compared to the thermal displacement in the first moving device 14 and the second moving device 16 having a large movable range. Therefore, even if continuous machining causes thermal displacement, the above-described turning method can perform machining that requires narrow dimensional tolerances.
  • the turning tool 12 it is also preferable to arrange the turning tool 12 so as to extend substantially parallel to the rotation axis A, as shown in FIG.
  • the inside of the concave portion C formed on the circumference centered on the rotation axis A in the work W can also be turned by the above-described method. That is, the cutting edge 12a of the turning tool 12 is inserted into the recess C, and the wall surfaces of the inner and outer peripheral sides thereof are turned.
  • machining that requires narrow dimensional tolerances can be performed. It can be done automatically and continuously.
  • the processing machine 10 may be other types of processing machines such as the above-described turret lathe or multi-tasking machine.
  • the processing machine 10' is common to the processing machine 10 described above except for a part.
  • the main difference is that instead of the third moving device 15 for moving the turning tool 12 in the radial direction of the rotating axis A, a fourth moving device 15' for moving the turning tool 12' parallel to the rotating axis A is provided. be.
  • the processing machine 10' replaces the turning tool with the moving device in the tool post 13 with respect to the processing machine 10, and when the tool post 13 is a turret, the turret can be rotated. can complete this swap.
  • Others such as the first moving device 14 and the second moving device 16 are the same as those of the processing machine 10 .
  • the fourth moving device 15 ′ preferably has a smaller movable range than the second moving device 16 .
  • the fourth moving device 15' has a movable range capable of correcting, in the finishing process, errors in machining dimensions due to intermediate finishing of the workpiece W based on the positional accuracy of the second moving device 16. Position can be determined with high precision. It should be noted that the movable range of the fourth moving device 15' can be, for example, 1 mm or less. That is, the movable range of the fourth moving device 15 ′ can be set to 1/100 or less of the movable range of the second moving device 16 .
  • the workpiece W gripped by the spindle device 11 is rotated around the rotation axis A.
  • the second moving device 16 (see FIG. 7) is driven to position the cutting edge 12'a of the turning tool 12' attached to the tool post 13 at the cutting position in the semi-finishing of the workpiece W for positioning.
  • the cutting position in the semi-finishing process is the axial position in which the positional accuracy of the second moving device 16 is taken into account in the axial direction parallel to the rotation axis A, and the finishing margin is left with respect to the target dimension of the finish.
  • the radial position for starting feed in turning in the radial direction of axis A is adjusted using the first displacement device 14 .
  • the first moving device 14 is driven to move the turning tool 12' attached to the tool rest 13 along the radial movement axis R of the rotation axis A to the rotation axis A of the workpiece W.
  • the end face of the work W is turned as semi-finishing (S2).
  • the fourth moving device 15' is driven to separate the cutting edge 12'a from the surface of the workpiece W.
  • the first moving device 14 is driven to move the turning shaft attached to the tool rest 13 in a fourth direction DR4 opposite to the third direction DR3 along the radial movement axis R of the rotation axis A.
  • the tool 12' is moved to retreat from the vicinity of the work W (S3).
  • the driving of the second moving device 16 is fixed, and there is no movement in the direction parallel to the rotation axis A of the tool post 13 .
  • the fourth moving device 15' by driving the fourth moving device 15' to separate the cutting edge 12'a from the surface of the workpiece W as described above, the occurrence of the return mark can be prevented. It should be noted that it is not always necessary to prevent the occurrence of return marks, and the driving of the fourth moving device 15' for separating the cutting edge 12'a from the surface of the workpiece W can be omitted.
  • the machining dimensions of the workpiece W are measured (S4).
  • the distance between the end faces can be measured with a vernier caliper-like measuring device 22' to obtain the processing dimension.
  • the measured machining dimensions are input to the control device 2 as measurement results.
  • the control device 2 calculates the axial position among the cutting positions in the next finish machining based on the measurement results of the machining dimensions of the workpiece W (S5). Specifically, the axial position is determined to compensate for the error between the target finished dimension and the measured dimension. Then, the fourth moving device 15' is driven to adjust the position of the turning tool 12' so that the cutting edge 12'a is arranged at the determined axial position.
  • the first moving device 14 is driven to move the turning tool 12' attached to the tool post 13 in the third direction DR3 along the movement axis R in the radial direction of the rotation axis A. to turn the end face of the work W (S6).
  • the turning tool 12' is not moved by the second moving device 16 from positioning (S1) for semi-finishing to finishing (S6).
  • the second moving device 16 remains fixed in its drive at least until finishing (S6).
  • the dimensional accuracy in the direction parallel to the rotation axis A is independent of the positional accuracy of the second moving device 16 and depends on the positional accuracy of the fourth moving device 15'.
  • the fourth moving device 15' has higher positional accuracy than the second moving device 16, and can perform turning with such high positional accuracy. For this reason, even narrow dimensional tolerance requirements of, for example, 10 ⁇ m or less can be satisfied. In other words, machining requiring narrow dimensional tolerances can be performed only by turning without grinding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)
  • Machine Tool Units (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

本発明は、回転軸の周りで回転するワークを旋削加工する方法である。旋削工具を回転軸の径方向に移動させる第1移動装置を駆動させて、径方向における第1径方向位置に旋削工具の刃先を配置させ、旋削工具を回転軸と平行に移動させる第2移動装置を駆動させて、ワークを旋削加工した後に、逆方向へ移動させてワークから旋削工具を待避させ、ワークの加工寸法を測定して目標寸法との誤差を算出し、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置を駆動させ、誤差を補正するように第2径方向位置に旋削工具の刃先を配置させ、第2移動装置を駆動させて、回転軸と平行に旋削工具を移動させてワークを旋削加工する。

Description

旋削加工方法、加工システム及び加工プログラム
 本発明は、主軸装置に把持されて回転軸の周りで回転するワークを旋削加工する方法、その加工システム及び加工プログラムに関する。
 径方向の機械加工において、狭い寸法公差、例えば、10μm以下といった寸法公差を要求される場合、予め目標寸法に対して研削代を残して旋削加工した後に、研削加工と寸法測定とを繰り返し、仕上げ寸法を目標寸法に対する公差内に収めることが一般的に行われている。一方、旋削加工だけで高精度に径方向の機械加工を行うには、主軸装置と旋削工具との相対運動誤差を補正する制御を行う必要がある。
 例えば、特許文献1では、キー溝の加工において、摩耗した工具(バイト)を交換することなく摩耗分を補正できるように、主軸の回転軸に対する刃物台の距離を微調整する機構を組み込んだ加工装置(複合旋盤)を開示している。主軸の回転軸方向にスライド可能なクロススライドの上に、該回転軸方向に対して垂直且つ水平に摺動自在に装着された機台を設け、この機台上に取り付けられた刃物台に棒状の工具が該回転軸に対して垂直方向に伸びるように配置されて固定されている。かかる装置によれば、棒状の工具をその長手方向に静的又は動的に進退させて、ワークの外径寸法や真円度の微調整を行うことができるとしている。
特開昭58-137542号公報
 上記したような狭い寸法公差を要求される機械加工において、特許文献1に記載の方法では、加工後に測定した寸法が公差内に収まっていない場合、次に加工するワークのために主軸の回転軸に対する刃物台の距離を微調整する。しかしながら、加工のための動作に起因する温度上昇に伴って回転軸と刃物台との位置関係が変化する熱変位を生じるため、次の加工の際に同様の調整量で適切な距離が取れるとは限らない。さらに、加工後に測定した寸法から距離を微調整するため、最初に加工するワークを寸法公差内に収めることは難しい。これを解消するため、上記したような旋削加工のあとに研削加工が行われるものの、旋削加工に合わせて研削加工を行うには長い加工時間を必要とすることから、旋削加工のみで短時間に機械加工できることが望まれる。
 本発明の目的は、狭い寸法公差を要求される機械加工を与え得る旋削加工方法、旋削加工プログラム及び旋削加工システムを提供することにある。
 本発明による旋削加工方法は、回転軸の周りで回転するワークを旋削加工する方法であって、旋削工具を回転軸の径方向に移動させる第1移動装置を駆動させて、径方向における第1径方向位置に旋削工具の刃先を配置させ、旋削工具を回転軸と平行に移動させる第2移動装置を駆動させて、ワークを旋削加工した後に、逆方向へ移動させてワークから旋削工具を待避させ、ワークの加工寸法を測定して目標寸法との誤差を算出し、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置を駆動させ、誤差を補正するように第2径方向位置に旋削工具の刃先を配置させ、第2移動装置を駆動させて回転軸と平行に旋削工具を移動させてワークを旋削加工する、ワークの旋削加工方法である。
 また、本発明による加工システムは、ワークを旋削加工する加工装置と、ワークの加工寸法を測定する測定装置と、加工装置と測定装置の駆動を制御する制御装置と、を備え、加工装置は、ワークを回転軸周りで回転させる主軸装置と、旋削工具を回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、回転軸の径方向で第1移動装置よりも小さい可動範囲を有し、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置と、を含み、制御装置は、加工装置および測定装置の駆動を制御して、上記したワークの旋削加工方法を実行させる、ワークの加工システムである。
 また、本発明による加工プログラムは、旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、第1移動装置に対して旋削工具を回転軸の径方向に相対移動させる第3移動装置と、を含む加工装置に対して、上記した加工方法を実行させる指示を備える、加工プログラムである。
 また、本発明による他の旋削加工方法は、回転軸の周りで回転するワークを旋削加工する方法であって、旋削工具を回転軸と平行に移動させる第2移動装置を駆動させて、回転軸と平行な方向における第1軸方向位置に旋削工具の刃先を配置させ、旋削工具を回転軸の径方向に移動させる第1移動装置を駆動させて、ワークを旋削加工した後に、逆方向へ移動させてワークから旋削工具を待避させ、ワークの加工寸法を測定して目標寸法との誤差を算出し、第2移動装置に対して旋削工具を回転軸と平行に相対移動させる第4移動装置を駆動させ、誤差を補正するように第2切軸方向位置に旋削工具の刃先を配置させ、第1移動装置を駆動させて径方向に旋削工具を移動させてワークを旋削加工する、ワークの旋削加工方法である。
 また、本発明による他の加工システムは、ワークを旋削加工する加工装置と、ワークの加工寸法を測定する測定装置と、加工装置と測定装置の駆動を制御する制御装置と、を備え、加工装置は、ワークを回転軸周りで回転させる主軸装置と、旋削工具を回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、回転軸と平行な方向で第2移動 装置よりも小さい可動範囲を有し、第2移動装置に対して旋削工具を回転軸と平行に相対移動させる第4移動装置と、を含み、制御装置は、加工装置および測定装置の駆動を制御して、上記した他の旋削加工方法を実行させる、ワークの加工システムである。
 また、本発明による他の加工プログラムは、旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、旋削工具を回転軸と平行に移動させる第2移動装置と、第2移動装置に対して旋削工具を回転軸と平行に相対移動させる第4移動装置と、を含む加工装置に対して、上記した他の旋削加工方法を実行させる指示を備える、加工プログラムである。
 これら発明によれば、研削加工によらず旋削加工のみで狭い寸法公差を要求される機械加工を与え得るのである。
本発明による旋削加工システムの1つの実施例の要部の側面図(一部ブロック図)である。 旋削加工方法を示すフロー図である。 旋削加工方法のうち、切り込み位置への刃先の配置を示す側面図である。 旋削加工方法のうち、中仕上げ加工を示す側面図である。 旋削加工方法のうち、刃先のワーク表面からの離間を示す側面図である。 旋削加工方法のうち、旋削工具の待避を示す側面図である。 旋削加工方法のうち、寸法測定を示す側面図である。 旋削加工方法のうち、仕上げ加工を示す側面図である。 旋削加工方法のうち、仕上げ加工の終了を示す側面図である。 ワーク及び旋削工具の配置例を示す断面図である。 長いワークにおいて振れ止めを配置した状態を示す側面図である。 本発明による旋削加工システムの他の実施例の要部の側面図である。 旋削加工方法のうち、切り込み位置への刃先の配置を示す側面図である。 旋削加工方法のうち、中仕上げ加工を示す側面図である。 旋削加工方法のうち、刃先のワーク表面からの離間を示す側面図である。 旋削加工方法のうち、旋削工具の待避を示す側面図である。 旋削加工方法のうち、寸法測定を示す側面図である。 旋削加工方法のうち、仕上げ加工を示す側面図である。 旋削加工方法のうち、仕上げ加工の終了を示す側面図である。
 以下、本発明によるワークの旋削加工方法、加工システム及び加工プログラムについて図1乃至図6を用いて詳細に説明する。
 まず、加工システムの構成について図1を用いて説明する。
 図1に示すように、加工システム1は、加工機械10とその動作を制御する制御装置2とを含む。制御装置2は、予め格納された加工プログラム3に従って加工機械10を駆動させ、ワークWの旋削加工を自動的に行わせることができる。また、加工機械10の外部には、ワークWの加工寸法を測定するための測定装置としてのロボット20が備えられ、同様に制御装置2によってその駆動を制御される。ここで、制御装置2は複数の場所に設置され、通信手段により接続された制御回路により構成されてもよい。たとえば、ロボット20の駆動の一部または全部の制御が、加工機械10の駆動を制御する制御回路とは別の場所に設置された制御回路によって行われてもよい。
 加工機械10は、ワークWを把持して回転軸Aの周りで回転させる主軸装置11と、旋削工具12を固定されるタレットなどの刃物台13と、刃物台13とともに旋削工具12を回転軸Aの径方向に移動させて旋削工具12の刃先12aの位置を調整する第1移動装置14と、第1移動装置14及び刃物台13とともに旋削工具12を回転軸Aと平行に移動させて旋削工具12の刃先12aの位置を調整する第2移動装置16と、を含む。また、刃物台13と旋削工具12との間には刃物台13に対して旋削工具12を相対的に移動させることのできる第3移動装置15を備える。なお、旋削工具12は、回転軸Aと略平行に伸びるように配置されている。
 ここで、第2移動装置16は、キャレッジ8と、リニアガイド7と、ボールねじ6と、サーボモータ5とを備える。キャレッジ8は、加工機械10のベース4上に回転軸Aと平行に延びるように設けられた2本のリニアガイド7に取り付けられて、リニアガイド7に沿って摺動自在とされており、さらに回転軸Aと平行に延びるボールねじ6に螺合されている。ボールねじ6は、サーボモータ5に接続されており、サーボモータ5を駆動させることで回転してキャレッジ8を回転軸Aと平行に移動させることができる。
 さらに、第1移動装置14は、刃物台13に接続された刃物台ベース9と、リニアガイド19と、ボールねじ18と、サーボモータ17とを備える。刃物台ベース9は、第2移動装置16のキャレッジ8上に回転軸Aの径方向に延びるように設けられた2本のリニアガイド19に取り付けられ、リニアガイド19に沿って摺動自在とされており、さらにリニアガイド19と平行に延びるボールねじ18に螺合されている。ボールねじ18は、サーボモータ17に接続されており、サーボモータ17を駆動させることで回転して第1移動装置14の刃物台ベース9を第2移動装置16のキャレッジ8に対して相対的に回転軸Aの径方向に移動させることができる。
 第1移動装置14によって、旋削工具12は、旋削するワークWに対して回転軸Aの径方向への移動を可能とされ、その刃先12aの径方向位置を調整される。また、第2移動装置16によって、旋削工具12は、旋削するワークWに対して回転軸Aに平行な方向への移動を可能とされ、その刃先12aの軸方向位置を調整される。これによって、旋削工具12の刃先12aを切り込み位置へ調整し、旋削加工における送りを付与することができる。第1移動装置14及び第2移動装置16は、このような旋削加工に伴う送りや後述する待避など、ワークWの大きさに対応する十分な移動量を確保する必要があり、例えば、それぞれ100mm以上の可動範囲を有することとし得る。
 また、第3移動装置15は、第1移動装置14に対して相対的に回転軸Aの径方向に旋削工具12を移動させることができる。第3移動装置15は、第1移動装置14よりも位置精度が高く、第1移動装置14よりも小さい可動範囲を有することが好ましい。第3移動装置15は、第1移動装置14の位置精度に基づくワークWの中仕上げ加工による加工寸法の誤差を、仕上げ加工において補正し得る可動範囲を有するものであり、刃先12aの位置を高精度に定め得る。なお、第3移動装置15の可動範囲は、例えば1mm以下とし得る。つまり、第3移動装置15の可動範囲は、第1移動装置14の可動範囲の1/100以下とし得る。これによって、第1移動装置14で調整された刃先12aの位置を回転軸Aの径方向にさらに微調整し得る。第3移動装置15の駆動方式としては、例えば、油圧を用いた工具ホルダの弾性変形によるもの、リニアモータによるもの、サーボモータによって回転するボールねじに螺合したスライダーによるもの等を用いることができる。
 測定装置としてのロボット20は、ロボットアーム21の先端に測定器22を備えており、制御装置2からの駆動指令によって機外から加工機械10の内部にその先端を差し入れて、主軸装置11に把持されたワークWの加工寸法を測定することができる。測定器22には、例えば、空気式のエアマイクロメータを用いたエアゲージを好適に用いることができる。
 次に、加工システム1の動作として、ワークWの外周面又は内周面の旋削加工の方法について図2に沿って図3及び図4を併せて参照しつつ説明する。なお、ワークWは粗加工を終えた状態で主軸装置11に把持されているものとする。
 図2に図3Aを併せて参照すると、主軸装置11に把持されたワークWを、回転軸Aの周りに回転させる。そして、第1移動装置14(図1参照)を駆動させて、刃物台13に取り付けられた旋削工具12の刃先12aをワークWの中仕上げ加工における切り込み位置に配置させ、位置決めを行う(S1)。ここで、中仕上げ加工における切り込み位置は、径方向において第1移動装置14の位置精度を加味して仕上げの目標寸法に対して仕上げ代を残した径方向位置と、回転軸Aに平行な軸方向において旋削加工での送りを開始するための軸方向位置とで定められる。この軸方向位置は、第2移動装置16を用いて調整される。
 そして、図3Bに示すように、第2移動装置16を駆動させて第1移動装置14とともに刃物台13に取り付けられた旋削工具12を回転軸Aと平行な移動軸A’に沿って主軸装置11に向かう第1方向DR1に移動させて、中仕上げ加工としてワークWを旋削加工する(S2)。
 ここで、図3Cに示すように、所定の位置までの旋削加工の後、好ましくは、第3移動装置15を駆動させて、刃先12aをワークWの表面から離す。
 次いで図3Dに示すように、第2移動装置16を駆動させて回転軸Aと平行な移動軸A’に沿う第1方向DR1の逆方向である第2方向DR2に刃物台13を移動させ、旋削工具12をワークWの近傍から待避させる(S3)。このとき、第1移動装置14は、その駆動を固定され、刃物台13の径方向への移動はない。このような待避において、上記したように第3移動装置15を駆動させて、刃先12aをワークWの表面から離しておくことで、リターンマークの発生を防止できる。なお、リターンマークの発生については必ずしも防止せずともよく、刃先12aをワークWの表面から離すための第3移動装置15の駆動は省略し得る。
 次いで、図4Aに示すように、ワークWの加工寸法を測定する(S4)。ここでは、測定装置としてのロボット20を駆動させて、ロボットアーム21を加工機械10の外部から差し入れてワークWに測定器22を近接させることで測定を行う。上記したように旋削工具12を待避させたことで、測定器22をワークWに近接させることができる。なお、ロボット20の代わりに、機内に備えられた測定器を用いてもよく、作業者によって手作業で測定を行うこととしてもよい。測定された加工寸法は制御装置2に測定結果として入力される。
 制御装置2では、ワークWの加工寸法の測定結果を基に、次の仕上げ加工での切り込み位置のうち、径方向位置を算出する(S5)。詳細には、仕上げ寸法の目標値と測定した加工寸法との誤差を補正するように径方向位置を定める。そして、第3移動装置15を駆動させて、定めた径方向位置に刃先12aを配置させるように旋削工具12の位置を調整する。
 次いで、図4Bに示すように、仕上げ加工として、第2移動装置16を駆動させて刃物台13に取り付けられた旋削工具12を回転軸Aと平行な移動軸A’に沿う第1方向DR1に再び移動させて、ワークWを旋削加工する(S6)。
 そして、図4Cに示すように、所定の位置までの旋削加工を行って、仕上げ加工を終了する。仕上げ加工の終了後、第3移動装置15を駆動させて、刃先12aをワークWの表面から離してもよい。
 さらに、旋削工具12の待避(S7)を行って、仕上げ寸法を測定する(S8)。ここで、仕上げ寸法が寸法公差内であった場合には、第1移動装置14及び第2移動装置16を原点に復帰させて旋削加工を終了する(S9;Yes)。このとき、第3移動装置15による仕上げ寸法の誤差を補正するような補正値を算出し、次回の仕上げ加工に用いてもよい。
 仕上げ寸法が寸法公差内でなかった場合には、切削代の残りを確認する(S9;No)。測定した仕上げ寸法が所定よりも小さく切削代が残っていない場合は(S10;Yes)、アラームを出して終了する。一方、仕上げ寸法が所定よりも大きく切削代が残っている場合は(S10;No)、仕上げ加工の切り込み位置の算出(S5)に戻ってやり直す。なお、以上の加工機械10及びロボット20の駆動は、加工プログラム3に従った制御装置2からの指令によるものである。
 以上のような方法で旋削加工を行うと、中仕上げ加工の位置決め(S1)以降、仕上げ加工(S6)まで第1移動装置14による旋削工具12の移動はない。換言すれば、第1移動装置14は、少なくとも仕上げ加工(S6)までその位置を固定したままとされる。これによって、仕上げ加工において、径方向の寸法精度は第1移動装置14の位置精度とは無関係になり、第3移動装置15の位置精度に依ることになる。上記したように第3移動装置15は第1移動装置14に比べて位置精度が高く、かかる高い位置精度によって旋削加工を行うことができる。このため、例えば、10μm以下といった狭い寸法公差の要求をも満たし得る。つまり、研削加工によらず旋削加工のみで狭い寸法公差を要求される機械加工を行い得る。
 なお、複数個のワークWを連続して旋削加工する場合において、第1移動装置14の移動を行わず、第2移動装置16による回転軸Aと平行な方向のみに移動を限定し、同じ補正値を用いて仕上げ加工を行うことで中仕上げ加工の後の寸法測定を省略することも検討し得る。しかし、繰り返しの加工による加工機械10の熱変位や、第2移動装置16の回転軸Aと平行な方向への多数回の繰り返しの移動によって径方向の寸法精度の低下をもたらすことも想定される。そのため、中仕上げ加工後の寸法測定(S4)は各ワークWにおいて毎回行うことが好ましい。
 また、複数個のワークWを連続して旋削加工することによる熱変位は、第3移動装置15にも生じ得る。一方、上記したように第3移動装置15は小さな可動範囲を有する。そのため、可動範囲の大きな第1移動装置14や第2移動装置16における熱変位に比べて、第3移動装置15に生じる熱変位は非常に小さなものとなる。よって、連続加工によって熱変位の生じるような場合であっても、上記した旋削加工方法によれば、狭い寸法公差を要求される機械加工を行い得る。
 また、図5に示すように、旋削工具12を回転軸Aと略平行に伸びるように配置させることも好ましい。このような配置とすることで、ワークWにおいて回転軸Aを中心とする円周上に形成された凹部C内も上記した方法によって旋削加工することができる。つまり、凹部Cの内部に旋削工具12の刃先12aを差し入れ、その内周側及び外周側のそれぞれの壁面を旋削加工するのである。これにより、ワークの凹部内のような研削砥石を挿入させることが難しい場合や、挿入が可能であっても研削に手間を要する場合などであっても、狭い寸法公差を要求される機械加工を自動で連続して行い得る。
 図6に示すように、回転軸Aに沿った方向の寸法の長いワークWの旋削加工の場合、他の旋削加工と同様に、主軸装置11とワークWへの旋削工具12の切り込み位置との間にワークWを支持する振れ止め19を配置するとよい。このような配置であっても上記と同様な旋削加工を行うことができる。
 なお、中仕上げ加工を行わず、仕上げ加工のみを行う場合であっても、上記した加工寸法の測定(S4)から同じ方法とすることで、旋削加工のみで狭い寸法公差を要求される機械加工を行い得る。また、上記した旋削加工方法は、ワークの内周面、外周面の旋削加工に用い得る。加工機械10としては、上記したタレット旋盤や複合加工機など、他の形式の加工機械であってもよい。
 次に、ワークにおける回転軸Aに直交する面である端面の旋削加工方法について説明する。まず、加工機械の構成について説明する。
 図7に示すように、加工機械10’は上記した加工機械10と一部を除いて共通する。主として異なる点は、回転軸Aの径方向に旋削工具12を移動させる第3移動装置15の代わりに、回転軸Aと平行に旋削工具12’を移動させる第4移動装置15’を備えることである。具体的には、加工機械10’は、加工機械10に対して、刃物台13において移動装置ごと旋削工具を入れ換えており、刃物台13をタレットとした場合には、かかるタレットを回動させることでこの入れ換えを完了することができる。第1移動装置14及び第2移動装置16など、その他については加工機械10と同様である。
 第4移動装置15’についても、第3移動装置15の場合と同様に、第2移動装置16よりも高い位置精度を有している。そのため、第4移動装置15’は、第2移動装置16よりも小さい可動範囲を有することが好ましい。第4移動装置15’は、第2移動装置16の位置精度に基づくワークWの中仕上げ加工による加工寸法の誤差を、仕上げ加工において補正し得る可動範囲を有するものであり、刃先12’aの位置を高精度に定め得る。なお、第4移動装置15’の可動範囲は、例えば1mm以下とし得る。つまり、第4移動装置15’の可動範囲は、第2移動装置16の可動範囲の1/100以下とし得る。
 第4移動装置15’のその他詳細については、第3移動装置15と同様であるため、説明を省略する。
 次に、加工機械10’を用いてワークWの端面を旋削加工する方法について説明する。
 図2に図8Aを併せて参照すると、主軸装置11に把持されたワークWを、回転軸Aの周りに回転させる。そして、第2移動装置16(図7参照)を駆動させて、刃物台13に取り付けられた旋削工具12’の刃先12’aをワークWの中仕上げ加工における切り込み位置に配置させ、位置決めを行う(S1)。ここで、中仕上げ加工における切り込み位置は、回転軸Aと平行な軸方向において第2移動装置16の位置精度を加味して仕上げの目標寸法に対して仕上げ代を残した軸方向位置と、回転軸Aの径方向において旋削加工での送りを開始するための径方向位置とで定められる。この径方向位置は、第1移動装置14を用いて調整される。
 そして、図8Bに示すように、第1移動装置14を駆動させて刃物台13に取り付けられた旋削工具12’を回転軸Aの径方向の移動軸Rに沿ってワークWにおける回転軸Aの回転中心に向かう第3方向DR3へ移動させて、中仕上げ加工としてワークWの端面を旋削加工する(S2)。
 ここで、図8Cに示すように、所定の位置までの旋削加工の後、好ましくは、第4移動装置15’を駆動させて、刃先12’aをワークWの表面から離す。
 次いで図8Dに示すように、第1移動装置14を駆動させて回転軸Aの径方向の移動軸Rに沿う第3方向DR3と逆方向の第4方向DR4に刃物台13に取り付けられた旋削工具12’を移動させ、旋削工具12’をワークWの近傍から待避させる(S3)。このとき、第2移動装置16は、その駆動を固定され、刃物台13の回転軸Aと平行な方向への移動はない。このような待避において、上記したように第4移動装置15’を駆動させて、刃先12’aをワークWの表面から離しておくことで、リターンマークの発生を防止できる。なお、リターンマークの発生については必ずしも防止しなくてもよく、刃先12’aをワークWの表面から離すための第4移動装置15’の駆動は省略し得る。
 次いで、図9Aに示すように、ワークWの加工寸法を測定する(S4)。例えば、ノギス状の測定器22’で端面同士の距離を測定し加工寸法とすることができる。測定された加工寸法は制御装置2に測定結果として入力される。
 制御装置2では、ワークWの加工寸法の測定結果を基に、次の仕上げ加工での切り込み位置のうち、軸方向位置を算出する(S5)。詳細には、仕上げ寸法の目標値と測定した寸法との誤差を補正するように軸方向位置を定める。そして、第4移動装置15’を駆動させて、定めた軸方向位置に刃先12’aを配置させるように旋削工具12’の位置を調整する。
 次いで、図9Bに示すように、仕上げ加工として、第1移動装置14を駆動させて刃物台13に取り付けられた旋削工具12’を回転軸Aの径方向の移動軸Rに沿う第3方向DR3に再び移動させて、ワークWの端面を旋削加工する(S6)。
 そして、図9Cに示すように、所定の位置までの旋削加工を行って、仕上げ加工を終了する。その他は、上記した加工機械10による旋削加工方法と同様なので説明を省略する。
 以上のような方法で旋削加工を行うと、中仕上げ加工の位置決め(S1)以降、仕上げ加工(S6)まで第2移動装置16による旋削工具12’の移動はない。換言すれば、第2移動装置16は、少なくとも仕上げ加工(S6)までその駆動を固定したままとされる。これによって、仕上げ加工において、回転軸Aと平行な方向の寸法精度は第2移動装置16の位置精度とは無関係になり、第4移動装置15’の位置精度に依ることになる。上記したように、第4移動装置15’は第2移動装置16に比べて位置精度が高く、かかる高い位置精度によって旋削加工を行うことができる。このため、例えば、10μm以下といった狭い寸法公差の要求をも満たし得る。つまり、研削加工によらず旋削加工のみで狭い寸法公差を要求される機械加工を行い得る。
 以上、本発明による代表的な実施例及びこれに伴う変形例について述べたが、本発明は必ずしもこれに限定されるものではなく、適宜、当業者によって変更され得る。すなわち、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。
 1  加工システム
 2  制御装置
 3  加工プログラム
10  加工機械
11  主軸装置
12  旋削工具
12a 刃先
13  刃物台
14  第1移動装置
15  第3移動装置
15’ 第4移動装置
16  第2移動装置
20  ロボット(測定装置)
 A  回転軸
 A’ 移動軸
 W  ワーク

 

Claims (15)

  1.  回転軸の周りで回転するワークを旋削加工する方法であって、
     旋削工具を前記回転軸の径方向に移動させる第1移動装置を駆動させて、前記径方向における第1径方向位置に前記旋削工具の刃先を配置させ、
     前記旋削工具を前記回転軸と平行に移動させる第2移動装置を駆動させて、前記ワークを旋削加工した後に、逆方向へ移動させて前記ワークから前記旋削工具を待避させ、
     前記ワークの加工寸法を測定して目標寸法との誤差を算出し、
     前記第1移動装置に対して前記旋削工具を前記回転軸の径方向に相対移動させる第3移動装置を駆動させ、前記誤差を補正するように第2径方向位置に前記旋削工具の前記刃先を配置させ、
     前記第2移動装置を駆動させて、前記回転軸と平行に前記旋削工具を移動させて前記ワークを旋削加工する、ワークの旋削加工方法。
  2.  前記第1径方向位置に前記旋削工具の前記刃先を配置させ前記第1移動装置の駆動を固定させる、請求項1記載の旋削加工方法。
  3.  前記第3移動装置は、前記誤差に対応した量だけ前記第1移動装置に対して前記旋削工具を相対移動させる、請求項1または2に記載の旋削加工方法。
  4.  前記第3移動装置は、1mm以内で前記第1移動装置に対して前記旋削工具を相対移動させる、請求項1から3のいずれか1項に記載の旋削加工方法。
  5.  前記ワークの凹部内を旋削加工する、請求項1から4のいずれか1項に記載の旋削加工方法。
  6.  回転軸の周りで回転するワークを旋削加工する方法であって、
     旋削工具を前記回転軸と平行に移動させる第2移動装置を駆動させて、前記回転軸と平行な方向における第1軸方向位置に前記旋削工具の刃先を配置させ、
     前記旋削工具を前記回転軸の径方向に移動させる第1移動装置を駆動させて、前記ワークを旋削加工した後に、逆方向へ移動させて前記ワークから前記旋削工具を待避させ、
     前記ワークの加工寸法を測定して目標寸法との誤差を算出し、
     前記第2移動装置に対して前記旋削工具を前記回転軸と平行に相対移動させる第4移動装置を駆動させ、前記誤差を補正するように第2軸方向位置に前記旋削工具の前記刃先を配置させ、
     前記第1移動装置を駆動させて、前記径方向に前記旋削工具を移動させて前記ワークを旋削加工する、ワークの旋削加工方法。
  7.  前記第1軸方向位置に前記旋削工具の前記刃先を配置させ前記第2移動装置の駆動を固定させる、請求項6記載の旋削加工方法。
  8.  前記第4移動装置は、前記誤差に対応した量だけ前記第2移動装置に対して前記旋削工具を相対移動させる、請求項6または7に記載の旋削加工方法。
  9.  前記第4移動装置は、1mm以内で前記第2移動装置に対して前記旋削工具を相対移動させる、請求項6から8のいずれか1項に記載の旋削加工方法。
  10.  ワークを旋削加工する加工装置と、
     ワークの加工寸法を測定する測定装置と、
     前記加工装置と前記測定装置の駆動を制御する制御装置と、を備え、
     前記加工装置は、
      前記ワークを回転軸周りで回転させる主軸装置と、
      旋削工具を前記回転軸の径方向に移動させる第1移動装置と、
      前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
      前記回転軸の径方向で前記第1移動装置よりも小さい可動範囲を有し、前記第1移動装置に対して前記旋削工具を前記回転軸の径方向に相対移動させる第3移動装置と、を含み、
     前記制御装置は、
      前記加工装置および前記測定装置の駆動を制御して、請求項1から5のいずれかの方法を実行させる、
    ワークの加工システム。
  11.  前記第3移動装置の前記可動範囲は、前記第1移動装置の可動範囲の1/100以下である、請求項10記載の加工システム。
  12.  ワークを旋削加工する加工装置と、
     前記ワークの加工寸法を測定する測定装置と、
     前記加工装置と前記測定装置の駆動を制御する制御装置と、を備え、
     前記加工装置は、
      前記ワークを回転軸周りで回転させる主軸装置と、
      旋削工具を前記回転軸の径方向に移動させる第1移動装置と、
      前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
      前記回転軸と平行な方向で前記第2移動装置よりも小さい可動範囲を有し、前記第2移動装置に対して前記旋削工具を前記回転軸と平行に相対移動させる第4移動装置と、を含み、
     前記制御装置は、
      前記加工装置および前記測定装置の駆動を制御して、請求項6から9のいずれかの方法を実行させる、
    ワークの加工システム。
  13.  前記第4移動装置の前記可動範囲は、前記第2移動装置の可動範囲の1/100以下である、請求項12記載の加工システム。
  14.  旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、
     前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
     前記第1移動装置に対して前記旋削工具を前記回転軸の径方向に相対移動させる第3移動装置と、を含む加工装置に対して、
     請求項1から5のいずれかの方法を実行させる指示を備える、加工プログラム。
  15.  旋削工具をワークの回転軸の径方向に移動させる第1移動装置と、
     前記旋削工具を前記回転軸と平行に移動させる第2移動装置と、
     前記第2移動装置に対して前記旋削工具を前記回転軸と平行に相対移動させる第4移動装置と、を含む加工装置に対して、
     請求項6から9のいずれかの方法を実行させる指示を備える、加工プログラム。
     

     
PCT/JP2021/002450 2021-01-25 2021-01-25 旋削加工方法、加工システム及び加工プログラム WO2022157976A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021534192A JP7002702B1 (ja) 2021-01-25 2021-01-25 旋削加工方法、加工システム及び加工プログラム
EP21921084.6A EP4219048A4 (en) 2021-01-25 2021-01-25 TURNING METHOD, MACHINING SYSTEM AND MACHINING PROGRAM
CN202180091263.6A CN116710222A (zh) 2021-01-25 2021-01-25 车削加工方法、加工***以及加工程序
PCT/JP2021/002450 WO2022157976A1 (ja) 2021-01-25 2021-01-25 旋削加工方法、加工システム及び加工プログラム
US18/319,484 US20230302595A1 (en) 2021-01-25 2023-05-18 Turning method, machining system, and non-transitory computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002450 WO2022157976A1 (ja) 2021-01-25 2021-01-25 旋削加工方法、加工システム及び加工プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/319,484 Continuation US20230302595A1 (en) 2021-01-25 2023-05-18 Turning method, machining system, and non-transitory computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2022157976A1 true WO2022157976A1 (ja) 2022-07-28

Family

ID=80500322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002450 WO2022157976A1 (ja) 2021-01-25 2021-01-25 旋削加工方法、加工システム及び加工プログラム

Country Status (5)

Country Link
US (1) US20230302595A1 (ja)
EP (1) EP4219048A4 (ja)
JP (1) JP7002702B1 (ja)
CN (1) CN116710222A (ja)
WO (1) WO2022157976A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154892A (ja) * 1974-06-05 1975-12-13
JPS5155080A (ja) * 1974-11-11 1976-05-14 Toyota Motor Co Ltd Koguhasakiichihoseihoho oyobisono sochi
JP2002307202A (ja) * 2001-04-18 2002-10-23 Seibu Electric & Mach Co Ltd 工作物の板状両側端面を加工する加工装置
JP2020144729A (ja) * 2019-03-08 2020-09-10 中村留精密工業株式会社 工具交換時自動補正機能を備えた工作機械

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917726A (en) * 1993-11-18 1999-06-29 Sensor Adaptive Machines, Inc. Intelligent machining and manufacturing
JP2002052445A (ja) * 2000-08-08 2002-02-19 Mitsubishi Heavy Ind Ltd 切削装置および切削方法
JP4831386B2 (ja) * 2001-04-26 2011-12-07 エヌティーエンジニアリング株式会社 作業機械用ツールホルダの装着状態検査装置
JP6837020B2 (ja) * 2018-02-19 2021-03-03 東芝三菱電機産業システム株式会社 切削加工装置および切削加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154892A (ja) * 1974-06-05 1975-12-13
JPS5155080A (ja) * 1974-11-11 1976-05-14 Toyota Motor Co Ltd Koguhasakiichihoseihoho oyobisono sochi
JP2002307202A (ja) * 2001-04-18 2002-10-23 Seibu Electric & Mach Co Ltd 工作物の板状両側端面を加工する加工装置
JP2020144729A (ja) * 2019-03-08 2020-09-10 中村留精密工業株式会社 工具交換時自動補正機能を備えた工作機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219048A4 *

Also Published As

Publication number Publication date
EP4219048A1 (en) 2023-08-02
JPWO2022157976A1 (ja) 2022-07-28
JP7002702B1 (ja) 2022-01-20
CN116710222A (zh) 2023-09-05
US20230302595A1 (en) 2023-09-28
EP4219048A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US9760079B2 (en) Cutting tool machining method and a wire electric discharge machine
KR20020082403A (ko) 측정 장치를 사용한 공작물의 편심 원통부의 가공 방법 및가공 장치
US6732009B2 (en) Machining error correction method adapted for numerically controlled machine tool and grinding machine using the same
CA2221156A1 (en) Improvements in and relating to machine tools
KR102542333B1 (ko) 중심 공작물 영역을 지지 및 측정하기 위한 측정 스테디 레스트, 이 측정 스테디 레스트를 갖는 연삭기, 및 중심 공작물 영역을 지지 및 측정하기 위한 방법
TW201741053A (zh) 工件加工方法、主軸角度校正裝置和複合車床
KR101503616B1 (ko) 연삭 가공반 및 연삭 가공 방법
JP6168396B2 (ja) 工作機械
WO2022157976A1 (ja) 旋削加工方法、加工システム及び加工プログラム
EP1906280A2 (en) Program writing method of numerical controller, numerical controller and cutting machine controlled thereby
JPS60238258A (ja) 自動芯出し装置
JPH0248393B2 (ja)
GB2321026A (en) Control of machine tools
JPH05200649A (ja) 工具心出し装置
JP2597219B2 (ja) Nc研削盤
JP5266020B2 (ja) 工作機械及び工作機械における誤差補正方法
JP3241453B2 (ja) 研削方法
CN115365893B (zh) 一种内孔外圆对刀方式间的测量转换方法
JP7446745B2 (ja) ねじ軸の加工方法
JP2000052193A (ja) 工作物の切削加工方法及び該方法を達成する櫛刃形旋盤における刃物台装置
JP7456191B2 (ja) 歯車加工装置及び歯車加工方法
JP2542084B2 (ja) 研削砥石の研削面修正方法
JPH02284865A (ja) 内面研削装置
JPH03281146A (ja) 衝撃試験片自動加工システム及び衝撃試験片自動加工方法
JPH0732247A (ja) センタワークにおける熱変位補正方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021534192

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021921084

Country of ref document: EP

Effective date: 20230428

WWE Wipo information: entry into national phase

Ref document number: 202180091263.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE