WO2022156391A1 - 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法 - Google Patents

核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法 Download PDF

Info

Publication number
WO2022156391A1
WO2022156391A1 PCT/CN2021/135733 CN2021135733W WO2022156391A1 WO 2022156391 A1 WO2022156391 A1 WO 2022156391A1 CN 2021135733 W CN2021135733 W CN 2021135733W WO 2022156391 A1 WO2022156391 A1 WO 2022156391A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy particle
cadmium alloy
core
molecular sieve
silicon molecular
Prior art date
Application number
PCT/CN2021/135733
Other languages
English (en)
French (fr)
Inventor
靳满满
牛庆涛
陈军民
Original Assignee
济宁学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济宁学院 filed Critical 济宁学院
Publication of WO2022156391A1 publication Critical patent/WO2022156391A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C239/00Compounds containing nitrogen-to-halogen bonds; Hydroxylamino compounds or ethers or esters thereof
    • C07C239/08Hydroxylamino compounds or their ethers or esters
    • C07C239/10Hydroxylamino compounds or their ethers or esters having nitrogen atoms of hydroxylamino groups further bound to carbon atoms of unsubstituted hydrocarbon radicals or of hydrocarbon radicals substituted by halogen atoms or by nitro or nitroso groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/66Synthesis on support on metal supports

Definitions

  • Patent CN111909054A discloses the mixed contact reaction of diethylamine, H 2 O 2 , acetone and other solvents in a titanium-silicon-oxygen catalyst.
  • the N,N-diethylhydroxylamine reach the level of industrial application.
  • Core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst is a dual-functional catalyst with both titanium-oxygen sites and transition metal particles. At present, there is no preparation of core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst. And the public report on the preparation of N,N-diethylhydroxylamine.
  • the zinc salt is one of ZnCl 2 , Zn(NO 3 ) 2 , and Zn(CH 3 COO) 2 ;
  • the cadmium salt is CdCl 2 , Cd(NO 3 ) 2 , Cd(CH 3 COO) one of 2 ;
  • diethylamine and H The molar ratio of 2 O 2 is 0.5 to 2:1, the weight ratio of catalyst to diethylamine is 0.005 to 0.3:1, and the weight ratio of methanol to diethylamine is 3 to 8:1; the perchloric acid standard titration solution
  • the diethylamine conversion and N,N-diethylhydroxylamine selectivity were determined by titration.
  • the obtained core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst is a bifunctional catalyst with both titanium-oxygen sites and transition metal particles, and has the advantages of large pore size, large specific surface area and stable framework.
  • Ethyl orthosilicate with a volume ratio of 1:20 and the zinc-cadmium alloy particle precursor solution obtained in step 1) after the addition is completed, fully stir for 0.1 h, after mixing evenly, the temperature is raised to 60 ° C, and the volume is slowly added dropwise 1,2-bis(trimethoxysilyl)ethane, tetrabutyl titanate and isopropanol in a ratio of 10:1:1, after the addition of materials, fully stir for 1 h, and filter the final mixed solution obtained in the above process , washed the filter cake with deionized water and ethanol to neutrality, and dried at 25 °C for 12 h to obtain the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate;
  • the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate obtained in step 2) was calcined at a heating rate of 3 °C/min from room temperature to 600 °C for 2 h in an air atmosphere to remove organic matter, and then heated in N 2 was calcined at 500 °C for 0.5 h in an atmosphere, and then reduced at 600 °C for 0.5 h in a H2 atmosphere to obtain the final core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst. Its pore size and specific surface area are listed in Table 1.
  • Ethyl orthosilicate with a volume ratio of 1:40 and the zinc-cadmium alloy particle precursor solution obtained in step 1) after the addition is completed, fully stir for 0.5h, and after mixing evenly, the temperature is raised to 80 °C, and the volume is slowly added dropwise 1,2-bis(trimethoxysilyl)ethane, tetrabutyl titanate and isopropanol in a ratio of 15:1.5:1, after the addition of materials, fully stirred for 2.5h, and the final mixed solution obtained by the above process was Filtration, washing the filter cake with deionized water and ethanol to neutrality, drying at 25 °C for 16 h, to obtain the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate;
  • the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate obtained in step 2) was calcined at a heating rate of 1.5 °C/min from room temperature to 500 °C for 4 h in an air atmosphere to remove organic matter, and then heated in N After calcining at 400 °C for 2.5 h in an atmosphere of 2 , and reducing at 550 °C for 3 h in a H2 atmosphere, the final core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst was obtained. Its pore size and specific surface area are listed in Table 1.
  • Ethyl orthosilicate with a volume ratio of 1:25 and the zinc-cadmium alloy particle precursor solution obtained in step 1) after the addition is completed, fully stir for 0.3h, and after mixing evenly, the temperature is raised to 65 °C, and the volume is slowly added dropwise 1,2-bis(trimethoxysilyl)ethane, tetrabutyl titanate and isopropanol in a ratio of 12:1.3:1, after the addition of materials, fully stirred for 1.5h, and the final mixed solution obtained by the above process was Filter, wash the filter cake with deionized water and ethanol to neutrality, and dry it at 25°C for 15h to obtain the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate;
  • the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate obtained in step 2) was calcined at a heating rate of 2 °C/min from room temperature to 450 °C for 5 h in an air atmosphere to remove organic matter, and then heated in N 2 was calcined at 350 °C for 3.5 h in an atmosphere, and then reduced at 530 °C for 3.5 h in a H2 atmosphere to obtain the final core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst.
  • the pore size and specific surface area are listed in Table 1.
  • Ethyl orthosilicate with a volume ratio of 1:45 and the zinc-cadmium alloy particle precursor solution obtained in step 1) after the addition is completed, fully stir for 0.6h, after mixing uniformly, the temperature is raised to 85 °C, and the volume is slowly added dropwise 1,2-bis(trimethoxysilyl)ethane, tetrabutyl titanate and isopropanol in a ratio of 13:1.4:1, after the addition of materials, fully stirred for 3.5h, and the final mixed solution obtained by the above process was Filtration, washing the filter cake with deionized water and ethanol until neutral, drying at 25 °C for 14 h, to obtain the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate;
  • the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate obtained in step 2) was calcined at a heating rate of 2.2 °C/min from room temperature to 530 °C for 3.5 hours in an air atmosphere to remove organic matter, and then calcined at 420 °C for 2.0 h in a N2 atmosphere, and then reduced at 570 °C for 1.0 h in a H2 atmosphere to obtain the final core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst.
  • the pore size and specific surface area are listed in Table 1. .
  • Ethyl orthosilicate with a volume ratio of 1:55 and the zinc-cadmium alloy particle precursor solution obtained in step 1) after the addition is completed, fully stir for 0.85h, and after mixing evenly, the temperature is raised to 95 °C, and the volume is slowly added dropwise 1,2-bis(trimethoxysilyl)ethane, tetrabutyl titanate and isopropanol in a ratio of 18:1.9:1, after the addition of materials, fully stirred for 2.5h, and the final mixed solution obtained by the above process was Filtration, washing the filter cake with deionized water and ethanol until neutral, drying at 25 °C for 19 h, to obtain the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate;
  • the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst intermediate obtained in step 2) was calcined at a heating rate of 2.8°C/min from room temperature to 580°C for 2.5h in an air atmosphere to remove organic matter, and then calcined at 2.8°C/min.
  • the catalyst was calcined at 480 °C for 1 h in a N 2 atmosphere, and then reduced at 590 ° C for 0.7 h in a H 2 atmosphere to obtain the final core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst.
  • the pore size and specific surface area are listed in Table 1.
  • the method for preparing N,N-diethylhydroxylamine by a core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst of the present invention comprises the following steps:
  • the catalyst prepared by embodiment 1-9 is used to prepare N,N-diethylhydroxylamine successively, wherein catalyzer, diethylamine and solvent methanol are added in the closed reactor, according to the weight ratio of catalyzer and diethylamine, it is 0.15: 1.
  • the weight ratio of methanol to diethylamine is 6:1.
  • Example 4 54.9 93.4
  • Example 5 51.3 89.9
  • Example 6 52.9 92.5
  • Example 7 54.1 93.2
  • Example 8 53.7 92.7
  • Example 9 55.0 91.9
  • Example 1 Sample source Diethylamine conversion, % N,N-Diethylhydroxylamine selectivity, % Example 1 51.3 89.3 Example 2 53.6 90.6 Example 3 55.1 91.3 Example 4 54.4 93.6 Example 5 51.1 89.6 Example 6 52.5 92.1 Example 7 54.0 93.4 Example 8 53.3 92.6 Example 9 54.7 91.5
  • the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst of the present invention is used for the green oxidation reaction of diethylamine, which not only has high selectivity of N,N-diethylhydroxylamine, but also has a high recycling rate. After being used for 5 times, the activity retention is high, and the selectivity and conversion rate decrease very little, indicating that the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst alloy particles and skeleton of the present invention are stable and can be recycled many times.
  • the core-shell titanium-silicon molecular sieve-coated zinc-cadmium alloy particle catalyst of the present invention has a large pore size and a large specific surface area, which is conducive to the diffusion of reactants and products, and reduces the diffusion resistance;
  • the coexistence of the site and the transition metal particles improves the selectivity of N,N-diethylhydroxylamine; it is easy to separate from the reaction system, reduces the production cost and operation difficulty, can be recycled, and is easy for industrial application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于化工技术领域,具体涉及一种核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备N,N-二乙基羟胺的方法,该核壳型钛硅分子筛包覆锌镉合金粒子催化剂以SiO 2及其包覆的锌镉合金粒子为核,钛酸四丁酯为钛源组装为壳,并通过这种核壳型钛硅分子筛包覆锌镉合金粒子催化剂进行二乙胺绿色氧化反应制备N,N-二乙基羟胺。本发明这种核壳型钛硅分子筛包覆锌镉合金粒子催化剂兼具钛氧位点与过渡金属粒子,是一种双功能催化剂,孔径大、比表面积大,骨架稳定,具有高的催化氧化活性,特别是对N,N-二乙基羟胺的选择性高,且易于反应后分离与回收,可重复利用,具有很好的应用前景。

Description

核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备N,N-二乙基羟胺的方法 技术领域
本发明属于化工技术领域,具体为涉及一种核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备及其制备N,N-二乙基羟胺的方法。
背景技术
N,N-二乙基羟胺是一种重要的烯烃单体阻聚剂、端基终止剂、抗氧化剂和有机合成中间体,随着N,N-二乙基羟胺用途的扩大,我国需求逐年增加。目前,N,N-二乙基羟胺工业生产技术主要采用三乙胺氧化热解法,即以三乙胺为原料经氧化与热解过程制得N,N-二乙基羟胺,工艺繁琐、污染重且生产周期长,特别是反应中产生易燃易爆气体乙烯,使得该生产过程存在一定的安全隐患。近年来以二乙胺和H 2O 2为原料的清洁路线替代传统热解法生产高附加值的N,N-二乙基羟胺技术,更加符合绿色环保要求,该路线的研发将不仅实现二乙胺的清洁化高效利用,而且可以实现我国N,N-二乙基羟胺生产技术的清洁化更新换代。
具有钛氧位点的钛硅分子筛是一类绿色环保的仲胺催化氧化用催化剂,但对目标产物羟胺定向选择性差及促进羟胺深度氧化为硝酮类化合物的特点限制了其在仲胺氧化反应中的应用,且传统钛硅分子筛较小的孔径(0.56~0.58nm)和比表面积(360~420m 2/g)及空间位阻作用,使得反应过程中扩散成为控制过程。与传统钛硅分子筛相比,空心钛硅分子筛钛含量高、孔容大,但在仲胺催化氧化体系中骨架的溶解、脱落导致的骨架坍塌现象不可避免。在过渡金属盐-锌盐或镉盐存在下,以H 2O 2溶液氧化仲胺,也可得到羟胺类产品,且过渡金属阳离子的存在,降低了反应活化能,使反应易于发生,但存在催化剂难以回收循环再利用及羟胺的选择性较低的问题。专利CN111909054A披露的是二乙胺、H 2O 2、丙酮等溶剂在钛硅氧催化剂混合接触反应,N,N-二乙基羟胺选择性较低,不适合二乙胺氧化的高效转化,难以达到工业应用水平。核壳型钛硅分子筛包覆锌镉合金粒子催化剂是一种兼具钛氧位点与过渡金属粒子的双功能催化剂,目前,未有核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备及其制备N,N-二乙基羟胺的公开报道。
发明内容
本发明目的在于针对现有技术所存在的不足而提供一种核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备N,N-二乙基羟胺的方法。本发明所制备的核壳型钛硅分子筛包覆锌镉合金粒子催化剂孔径大、比表面积大、骨架稳定、易于回收循环再利用,同时具有对N,N-二乙基羟胺的选择性高的优点。
为了解决上述技术问题,本发明采用如下技术方案:
本发明所述核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法,包括如下步骤:
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比锌盐:镉盐:聚乙烯吡咯烷酮:水=1:0.1~2.0:0.015:2.0~3.0,在25~35℃的温度下,将0.05~0.15mol/L的2~10mL NaBH 4水溶液滴加到含锌盐、镉盐和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌0.5~2h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:15~28%氨水=1:0.01~0.90:1500~3000:100~300:5~15,在25~35℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌0.5~2h,混合均匀后,将温度升至40~45℃,再缓慢滴加体积比为1:20~60的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.1~1h,混合均匀后,将温度升至60~100℃,缓慢滴加体积比为10~20:1~2:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌1~4h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥12~20h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以1~3℃/min的加热速率从室温升至400~600℃下焙烧2~6h脱除有机物,然后在N 2氛围中于300~500℃焙烧0.5~4h,再于H 2氛围中于500~600℃还原0.5~4h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂。
所述的锌盐为ZnCl 2、Zn(NO 3) 2、Zn(CH 3COO) 2中的一种;所述的镉盐为CdCl 2、Cd(NO 3) 2、Cd(CH 3COO) 2中的一种;
本发明所述的核壳型钛硅分子筛包覆锌镉合金粒子催化剂制备N,N-二乙基羟胺的方法,包括如下步骤:
将催化剂、二乙胺和甲醇溶剂加入到密闭反应器中搅拌,当反应温度达到45~60℃时,开始缓慢滴加浓度为30~50wt%的H 2O 2,滴加速率为1d/2s,滴加完毕后,将温度升至65~80℃,继续反应1~2h,反应完毕后,经过滤分离出催化剂,得到N,N-二乙基羟胺,上述步骤中,二乙胺与H 2O 2的摩尔比为0.5~2:1,催化剂与二乙胺的重量比为0.005~0.3:1,甲醇与二乙胺的重量比为3~8:1;经高氯酸标准滴定溶液滴定确定二乙胺转化率及N,N-二乙基羟胺选择性。
与现有技术相比,本发明的有益效果体现在:
1)所得的核壳型钛硅分子筛包覆锌镉合金粒子催化剂是一种兼具钛氧位点与过渡金属粒子的双功能催化剂,同时具有孔径大、比表面积大、骨架稳定的优点。
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂用于二乙胺绿色氧化反应时,表现出良好的催化活性和循环使用性,特别是对N,N-二乙基羟胺的选择性高,且催化剂易于从反应体系中分离,降低了生产成本和操作难度。
具体实施方式
下面结合实施例对本发明做进一步说明。
实施例1
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比ZnCl 2:CdCl 2:聚乙烯吡咯烷酮:水=1:0.1:0.015:2.0,在25℃的温度下,将0.05mol/L的10mL NaBH 4水溶液滴加到含ZnCl 2、CdCl 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌0.5h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:15%氨水=1:0.01:1500:100:5,在25℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌0.5h,混合均匀后,将温度升至40℃,再缓慢滴加体积比为1:20的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.1h,混合均匀后,将温度升至60℃,缓慢滴加体积比为10:1:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌1h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥12h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以1℃/min的加热速率从室温升至400℃下焙烧6h脱除有机物,然后在N 2氛围中于300℃焙烧4h,再于H 2氛围中于500℃还原4h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例2
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比ZnCl 2:Cd(NO 3) 2:聚乙烯吡咯烷酮:水=1:2.0:0.015:3.0,在35℃的温度下,将0.15mol/L的2mL NaBH 4水溶液滴加到含ZnCl 2、Cd(NO 3) 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌2h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:28%氨水=1:0.90:3000:300:15,在35℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌2h,混合均匀后,将温度升至45℃,再缓慢滴加体积比为1:60的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌1h,混合均匀后,将温度升至100℃,缓慢滴加体积比为20:2:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌4h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥20h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以3℃/min的加热速率从室温升至600℃下焙烧2h脱除有机物,然后在N 2氛围中于500℃焙烧0.5h,再于H 2氛围中于600℃还原0.5h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例3
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比ZnCl 2:Cd(CH 3COO) 2:聚乙烯吡咯烷酮:水=1:1.5:0.015:2.5,在30℃的温度下,将0.1mol/L的5mL NaBH 4水溶液滴加到含ZnCl 2、Cd(CH 3COO) 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌1.25h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:25%氨水=1:0.45:2000:200:10,在30℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌1.25h,混合均匀后,将温度升至42℃,再缓慢滴加体积比为1:40的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.5h,混合均匀后,将温度升至80℃,缓慢滴加体积比为15:1.5:1的1,2-双(三甲氧 基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌2.5h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥16h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以1.5℃/min的加热速率从室温升至500℃下焙烧4h脱除有机物,然后在N 2氛围中于400℃焙烧2.5h,再于H 2氛围中于550℃还原3h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例4
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比Zn(NO 3) 2:CdCl 2:聚乙烯吡咯烷酮:水=1:0.5:0.015:2.2,在28℃的温度下,将0.08mol/L的7mL NaBH 4水溶液滴加到含Zn(NO 3) 2、CdCl 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌1.5h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:20%氨水=1:0.35:2500:150:8,在28℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌0.8h,混合均匀后,将温度升至44℃,再缓慢滴加体积比为1:25的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.3h,混合均匀后,将温度升至65℃,缓慢滴加体积比为12:1.3:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌1.5h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥15h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以2℃/min的加热速率从室温升至450℃下焙烧5h脱除有机物,然后在N 2氛围中于350℃焙烧3.5h,再于H 2氛围中于530℃还原3.5h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例5
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比Zn(NO 3) 2:Cd(NO 3) 2:聚乙烯吡咯烷酮:水=1:1.8:0.015:2.4,在32℃的温度下,将0.12mol/L的4mL NaBH 4水溶液滴加到含Zn(NO 3) 2、Cd(NO 3) 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌0.8h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:22%氨水=1:0.25:1800:170:12,在32℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌0.65h,混合均匀后,将温度升至43℃,再缓慢滴加体积比为1:30的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.2h,混合均匀后,将温度升至70℃,缓慢滴加体积比为14:1.6:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌2h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥18h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以2.5℃/min的加热速率从室温升至550℃下焙烧3h脱除有机物,然后在N 2氛围中于450℃焙烧1.5h,再于H 2氛围中于560℃还原2.5h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例6
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比Zn(NO 3) 2:Cd(CH 3COO) 2:聚乙烯吡咯烷酮:水=1:0.3:0.015:2.1,在26℃的温度下,将0.065mol/L的8mL NaBH 4水溶液滴加到含锌盐、镉盐和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌0.65h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:17%氨水=1:0.15:1700:120:6.5,在26℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌1.0h,混合均匀后,将温度升至40℃,再缓慢滴加体积比为1:35的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.4h,混合均匀后,将温度升至75℃,缓慢滴加体积比为11:1.2:1的1,2-双(三甲氧 基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌3h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥13h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以1.2℃/min的加热速率从室温升至420℃下焙烧5.5h脱除有机物,然后在N 2氛围中于320℃焙烧3.8h,再于H 2氛围中于520℃还原3.8h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例7
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比Zn(CH 3COO) 2:CdCl 2:聚乙烯吡咯烷酮:水=1:0.7:0.015:2.6,在29℃的温度下,将0.09mol/L的6mL NaBH 4水溶液滴加到含Zn(CH 3COO) 2、CdCl 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌1.0h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:19%氨水=1:0.55:2300:230:9,在29℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌1.4h,混合均匀后,将温度升至41℃,再缓慢滴加体积比为1:45的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.6h,混合均匀后,将温度升至85℃,缓慢滴加体积比为13:1.4:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌3.5h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥14h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以1.8℃/min的加热速率从室温升至480℃下焙烧4.5h脱除有机物,然后在N 2氛围中于380℃焙烧3.0h,再于H 2氛围中于540℃还原3.2h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例8
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比Zn(CH 3COO) 2:Cd(NO 3) 2:聚乙烯吡咯烷酮:水=1:0.9:0.015:2.8,在31℃的温度下,将0.13mol/L的3.5mL NaBH 4水溶液滴加到含Zn(CH 3COO) 2、Cd(NO 3) 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌1.35h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:24%氨水=1:0.65:2600:260:11,在31℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌1.6h,混合均匀后,将温度升至42℃,再缓慢滴加体积比为1:50的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.7h,混合均匀后,将温度升至90℃,缓慢滴加体积比为16:1.7:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌2h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥17h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以2.2℃/min的加热速率从室温升至530℃下焙烧3.5h脱除有机物,然后在N 2氛围中于420℃焙烧2.0h,再于H 2氛围中于570℃还原1.0h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
实施例9
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法
1)锌镉合金粒子前驱体溶液的制备:
按摩尔比Zn(CH 3COO) 2:Cd(CH 3COO) 2:聚乙烯吡咯烷酮:水=1:1.2:0.015:2.3,在34℃的温度下,将0.14mol/L的3mL NaBH 4水溶液滴加到含Zn(CH 3COO) 2、Cd(CH 3COO) 2和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌1.7h,得到锌镉合金粒子前驱体溶液;
2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:26%氨水=1:0.75:2800:280:13.5,在34℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌1.8h,混合均匀后,将温度升至45℃,再缓慢滴加体积比为1:55的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.85h,混合均匀后,将温度升至95℃,缓慢滴加体积比为18:1.9:1的1,2-双(三 甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌2.5h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥19h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
3)焙烧与还原
将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以2.8℃/min的加热速率从室温升至580℃下焙烧2.5h脱除有机物,然后在N 2氛围中于480℃焙烧1h,再于H 2氛围中于590℃还原0.7h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂,其孔径及比表面积列于表1。
表1
Figure PCTCN2021135733-appb-000001
实施例10
本发明核壳型钛硅分子筛包覆锌镉合金粒子催化剂制备N,N-二乙基羟胺的方法,包括如下步骤:
依次将实施例1-9制备的催化剂用于制备N,N-二乙基羟胺,其中催化剂、二乙胺和溶剂甲醇加入到密闭反应器中,按照催化剂与二乙胺的重量比为0.15:1,甲醇与二乙胺的重量比为6:1,当密闭反应器内温度达到50℃时,开始缓慢滴加浓度为35wt%的H 2O 2,二乙胺与H 2O 2的摩尔比为1:1,滴加速率为1d/2s,滴加完毕后,将温度升至80℃,继续反应1h,反应完毕后,经过滤分离出催化剂,得到N,N-二乙基羟胺;经高氯酸标准滴定溶液滴定确定二乙胺转化率及N,N-二乙基羟胺选择性,结果见表2。
表2
样品来源 二乙胺转化率,% N,N-二乙基羟胺选择性,%
实施例1 51.6 88.9
实施例2 53.8 90.5
实施例3 55.2 91.6
实施例4 54.9 93.4
实施例5 51.3 89.9
实施例6 52.9 92.5
实施例7 54.1 93.2
实施例8 53.7 92.7
实施例9 55.0 91.9
从表1的结果可以看出,本发明的核壳型钛硅分子筛包覆锌镉合金粒子催化剂用于二乙胺绿色氧化反应,N,N-二乙基羟胺选择性高。
实施例11
将实施例1-9制备的催化剂按照实施例10进行反应后,经过滤分离、干燥后按照实施例10的反应条件进行二乙胺绿色氧化反应,反复进行反应-分离-反应循环,循环5次后的结果见表3。
表3
样品来源 二乙胺转化率,% N,N-二乙基羟胺选择性,%
实施例1 51.3 89.3
实施例2 53.6 90.6
实施例3 55.1 91.3
实施例4 54.4 93.6
实施例5 51.1 89.6
实施例6 52.5 92.1
实施例7 54.0 93.4
实施例8 53.3 92.6
实施例9 54.7 91.5
从表3的结果可以看出,本发明的核壳型钛硅分子筛包覆锌镉合金粒子催化剂用于二乙胺绿色氧化反应,不但N,N-二乙基羟胺的选择性高,且循环利用5次后活性保留度较高,选择性和转化率下降幅度很小,说明本发明的核壳型钛硅分子筛包覆锌镉合金粒子催化剂合金粒子及骨架稳定,可以反复循环利用多次。与现有技术相比,在氧化反应中,本发明的核壳型钛硅分子筛包覆锌镉合金粒子催化剂孔径大、比表面积大有利于反应物和产物的扩散,减少了扩散阻力;钛氧位点与过渡金属粒子的同时存在使N,N-二乙基羟胺的选择性提高;并且易于从反应体系中分离,降低了生产成本和操作难度,可循环利用,易于工业化应用。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

Claims (3)

  1. 一种核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法,其特征在于,包括以下步骤:
    1)锌镉合金粒子前驱体溶液的制备:
    按摩尔比锌盐:镉盐:聚乙烯吡咯烷酮:水=1:0.1~2.0:0.015:2.0~3.0,在25~35℃的温度下,将0.05~0.15mol/L的2~10mL NaBH 4水溶液滴加到含锌盐、镉盐和聚乙烯吡咯烷酮的水溶液中,加料完毕后,充分搅拌0.5~2h,得到锌镉合金粒子前驱体溶液;
    2)核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体的制备:
    按摩尔比正硅酸乙酯:十六烷基三甲基溴化铵:水:乙醇:15~28%氨水=1:0.01~0.90:1500~3000:100~300:5~15,在25~35℃的温度下,将正硅酸乙酯缓慢滴加到含十六烷基三甲基溴化铵和氨水的水-乙醇混合溶液中,加料完毕后,充分搅拌0.5~2h,混合均匀后,将温度升至40~45℃,再缓慢滴加体积比为1:20~60的正硅酸乙酯与步骤1)所得的锌镉合金粒子前驱体溶液,加料完毕后,充分搅拌0.1~1h,混合均匀后,将温度升至60~100℃,缓慢滴加体积比为10~20:1~2:1的1,2-双(三甲氧基硅基)乙烷、钛酸四丁酯与异丙醇,加料完毕后,充分搅拌1~4h,将上述过程得到的最终混合液过滤,用去离子水和乙醇洗涤滤饼至中性,在25℃下干燥12~20h,得到核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体;
    3)焙烧与还原:
    将步骤2)得到的核壳型钛硅分子筛包覆锌镉合金粒子催化剂中间体在空气氛围中以1~3℃/min的加热速率从室温升至400~600℃下焙烧2~6h脱除有机物,然后在N 2氛围中于300~500℃焙烧0.5~4h,再于H 2氛围中于500~600℃还原0.5~4h,得到最终的核壳型钛硅分子筛包覆锌镉合金粒子催化剂。
  2. 根据权利要求1所述的核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法,其特征在于,所述锌盐为ZnCl 2、Zn(NO 3) 2、Zn(CH 3COO) 2中的一种;所述镉盐为CdCl 2、Cd(NO 3) 2、Cd(CH 3COO) 2中的一种。
  3. 一种如权利要求1或2所述的核壳型钛硅分子筛包覆锌镉合金粒子催化剂制备N,N-二乙基羟胺的方法,其特征在于,包括如下步骤:
    将催化剂、二乙胺和甲醇溶剂加入到密闭反应器中搅拌,当反应温度达到45~60℃时,开始缓慢滴加浓度为30~50wt%的H 2O 2,滴加速率为1d/2s,滴加完毕后,将温度升至65~80℃,继续反应1~2h,反应完毕后,经过滤分离出催化剂,得到N,N-二乙基羟胺,上述步骤中,二乙胺与H 2O 2的摩尔比为0.5~2:1,催化剂与二乙胺的重量比为0.005~0.3:1,甲醇与二乙胺的重量比为3~8:1;经高氯酸标准滴定溶液滴定确定二乙胺转化率及N,N-二乙基羟胺选择性。
PCT/CN2021/135733 2021-01-20 2021-12-06 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法 WO2022156391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110074519.4A CN112892586A (zh) 2021-01-20 2021-01-20 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法
CN202110074519.4 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022156391A1 true WO2022156391A1 (zh) 2022-07-28

Family

ID=76116513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135733 WO2022156391A1 (zh) 2021-01-20 2021-12-06 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法

Country Status (2)

Country Link
CN (2) CN112892586A (zh)
WO (1) WO2022156391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414923A (zh) * 2022-09-19 2022-12-02 常州大学 用于合成聚碳酸酯二醇的非均相TiO2/SiO2催化剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892586A (zh) * 2021-01-20 2021-06-04 济宁学院 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1282794C (fr) * 1986-02-17 1991-04-09 Franz Legrand Procede pour la fabrication d'hydroxylamines et produits ainsi obtenus
CN109096143A (zh) * 2018-10-09 2018-12-28 南京工业大学 一种采用过氧乙酸合成二乙基羟胺的方法
CN111909054A (zh) * 2020-08-07 2020-11-10 菏泽鸿特药业有限公司 一种n,n-二乙基羟胺的生产方法
CN112892586A (zh) * 2021-01-20 2021-06-04 济宁学院 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2594614A1 (en) * 2004-12-23 2006-07-06 Chevron U.S.A. Inc. Molecular sieve ssz-71 composition of matter and synthesis thereof
CN101804351B (zh) * 2010-04-01 2012-05-30 中国科学院山西煤炭化学研究所 一种用于合成气制备中间馏分油核壳结构钴基催化剂的制法及应用
JP2012187565A (ja) * 2011-03-10 2012-10-04 Hiromi Yamashita コアシェル型触媒およびその製造方法
CN103657715B (zh) * 2013-12-04 2015-08-19 中国科学院山西煤炭化学研究所 甲醇或二甲醚羰基化合成醋酸甲酯的催化剂及制法和应用
CN104128199B (zh) * 2014-07-08 2016-06-08 东南大学 一种纳米金催化剂及其制备方法
CN107983417B (zh) * 2017-12-19 2021-05-28 南京工程学院 一种离子交换树脂担载纳米金催化剂及其制备方法
CN108187593B (zh) * 2017-12-20 2021-06-04 中国科学院山西煤炭化学研究所 一种ZSM-5分子筛包覆FeMn纳米粒子核壳结构材料的制备方法
CN108579795A (zh) * 2018-03-30 2018-09-28 昆明理工大学 一种以过渡金属盐为核纳米分子筛为壳的核壳催化剂的制备方法与应用
CN109999902B (zh) * 2019-04-11 2022-04-19 浙江工业大学 封装型铂族亚纳米金属负载多孔级钛硅分子筛催化剂及其制备和应用
CN110252389B (zh) * 2019-07-11 2022-07-05 中国科学院上海高等研究院 一种钴基核壳催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1282794C (fr) * 1986-02-17 1991-04-09 Franz Legrand Procede pour la fabrication d'hydroxylamines et produits ainsi obtenus
CN109096143A (zh) * 2018-10-09 2018-12-28 南京工业大学 一种采用过氧乙酸合成二乙基羟胺的方法
CN111909054A (zh) * 2020-08-07 2020-11-10 菏泽鸿特药业有限公司 一种n,n-二乙基羟胺的生产方法
CN112892586A (zh) * 2021-01-20 2021-06-04 济宁学院 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master Thesis Zhejiang University ", 31 July 2016, ZHEJIANG UNIVERSITY, CN, article ZHAO HONG: "Studies on the Oxidation Process of Diethylamine to Diethylhydroxylamine Over Hollow Titanium Silicalite Sieves and on the Machanism of Side Reactions", pages: 1 - 68, XP055954075 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414923A (zh) * 2022-09-19 2022-12-02 常州大学 用于合成聚碳酸酯二醇的非均相TiO2/SiO2催化剂及其制备方法
CN115414923B (zh) * 2022-09-19 2024-02-13 常州大学 用于合成聚碳酸酯二醇的非均相TiO2/SiO2催化剂及其制备方法

Also Published As

Publication number Publication date
CN113797966B (zh) 2024-02-27
CN113797966A (zh) 2021-12-17
CN112892586A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022156391A1 (zh) 核壳型钛硅分子筛包覆锌镉合金粒子催化剂的制备方法及其制备n,n-二乙基羟胺的方法
CN101045213B (zh) 固载离子液体-纳米金属粒子催化剂及其制备和在芳胺合成中的应用
CN111375415B (zh) 一种低碳烷烃脱氢制烯烃催化剂及其制备方法
CN101711988B (zh) NaBiO3/BiOCl异质结光催化剂及其制备方法
WO2022021506A1 (zh) 一种超薄多孔纳米氮化碳光催化剂的制备及其在光催化氧化果糖合成乳酸中的应用
CN104107716B (zh) 用于c6~c8正构烷烃芳构化的催化剂及其制备和应用
CN111715226A (zh) 一种草酸酯气相加氢制乙二醇的纳米催化剂及制备方法
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN102962071A (zh) 一种用于醋酸酯加氢制乙醇的催化剂、其制备方法及其应用
CN107335446A (zh) 一种用于合成气一步法制取混合醇的钴基催化剂及其制备和应用
CN102744085B (zh) 一种含纳米Ru催化剂和碱式硫酸锌盐的催化体系及其催化苯选择加氢制环己烯方法
CN113368860B (zh) 一种木质素催化转化制取环烷烃催化剂及其制备方法与应用
CN112246283A (zh) 一种钨酸铋@MIL-100(Fe)复合材料及其制备方法和应用
WO2022247214A1 (zh) 基于微介孔Zr-MOF材料的戊二酸选择多酸催化剂及其制备方法和应用
CN112221509B (zh) 一种高稳定性甲醇合成催化剂的制备方法
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
CN108479798B (zh) 一种草酸二甲酯加氢制备乙二醇的催化剂以及其制备方法
CN110256230B (zh) 一种无碱条件下高效催化甘油制备甘油酸的催化剂及其制备方法
CN114349973B (zh) 一种镧锰双金属准有机框架材料及其制备方法和应用
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN116618055A (zh) 一种碳修饰镍基催化剂及在木质素衍生物催化氢化方面的应用
CN114367312B (zh) 一种Ag+-Ag0掺杂石墨相氮化碳耦合钴肟分子复合光催化剂及其制备方法与应用
CN114011467B (zh) 一种巯基丙酸联结的二氧化钛共价有机框架复合材料及其制备方法和应用
CN113522296B (zh) CO加氢制乙醇CuZn催化剂及其制备方法和应用
CN111659429B (zh) 一种硫化镉-磷钨酸铯复合材料的制备方法及其作为可见光催化剂制取氢的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920765

Country of ref document: EP

Kind code of ref document: A1