WO2022142138A1 - 一种高铁硫铝酸盐熟料矿物组成的调控方法 - Google Patents

一种高铁硫铝酸盐熟料矿物组成的调控方法 Download PDF

Info

Publication number
WO2022142138A1
WO2022142138A1 PCT/CN2021/098462 CN2021098462W WO2022142138A1 WO 2022142138 A1 WO2022142138 A1 WO 2022142138A1 CN 2021098462 W CN2021098462 W CN 2021098462W WO 2022142138 A1 WO2022142138 A1 WO 2022142138A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferric
cementitious material
cao
content
performance
Prior art date
Application number
PCT/CN2021/098462
Other languages
English (en)
French (fr)
Inventor
王文龙
姚星亮
武双
姚永刚
杨世钊
王旭江
李敬伟
蒋稳
毛岩鹏
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2022142138A1 publication Critical patent/WO2022142138A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting

Definitions

  • the invention relates to the technical field of cement production, in particular to a method for regulating and controlling the mineral composition of clinker of a high-performance high-iron sulfoaluminate cementitious material.
  • the cement industry is one of the largest energy-consuming and carbon-emitting industries in the world, producing 0.87 tons of CO 2 for every ton of cement produced. According to statistics, the world produces about 4 billion tons of ordinary Portland cement every year, and the CO2 emissions account for about 7% of the global emissions. Therefore, the development of a low-carbon cement is imminent. As a common low-carbon cement, sulfoaluminate cement is gradually attracting more and more attention due to its lower CaO content, lower calcination temperature, and ease of grinding.
  • the main active mineral of sulfoaluminate cement is calcium sulfoaluminate (Ca 4 Al 6 SO 16 , ), the content of Al 2 O 3 is relatively high, and a large amount of bauxite or other high-grade aluminum sources needs to be consumed in the production process.
  • solid waste as raw material to produce sulfoaluminate cementitious materials
  • solid waste with high aluminum content is also required as raw material. Therefore, sulfoaluminate cementing materials are expensive and have limited applications.
  • the prior art has mentioned the use of Fe 2 O 3 to replace Al 2 O 3 to reduce the amount of Al 2 O 3 used, but it cannot control the active minerals in high-iron sulfoaluminate cementitious materials
  • the composition instead, were treated with C 4 AF that had reacted too quickly. Therefore, the mineral hydration in the prepared high-iron sulfoaluminate cementitious material is too fast, which is not conducive to the sustainable development of the performance of the high-iron sulfoaluminate cementitious material.
  • the present invention aims to provide a high-performance ferric ferric aluminate cementitious material.
  • a method for regulating the mineral composition of material clinker adopts the method of regulating the total amount of CaO in the raw material and the content ratio of CaO/CaSO 4 to directionally regulate the composition of iron-bearing minerals in the clinker of the sulphur-iron-aluminate cementitious material.
  • the Fe 2 O 3 in clinker can be increased in the amount of incorporation in the The content of C 4 AF and C 2 F is reduced, and the effective utilization rate of Fe 2 O 3 and Al 2 O 3 is improved. Therefore, when the Fe 2 O 3 /Al 2 O 3 in the raw material is constant, the directional regulation of iron-bearing minerals can be achieved by adjusting the content of CaO/CaSO 4 , and a ferric-pyroaluminate cementitious material with better properties can be obtained.
  • the first aspect of the present invention provides a high-performance ferric sulphur aluminate cementitious material, in terms of mass percentage, the cementitious material is composed of the following components: 50%-70% 20%-40% C 2 S, 0%-10% CaSO 4 , 0%-10% C 4 AF, wherein the value range of x is 0-1.5.
  • the technical key of this patent lies in the directional regulation of the mineral composition of the high-iron sulphoaluminate cementitious material by regulating the CaO/CaSO 4 content ratio.
  • the prior art focuses on the preparation of high-speed iron Belite sulfoaluminate cement, in which the mineral composition is C 2 S and C 4 AF, without mentioning any Relevant technical guidance, not to mention about Techniques for the regulation of C 4 AF content.
  • a second aspect of the present invention provides a method for preparing a high-performance ferric sulphur aluminate cementitious material, comprising:
  • the calcium source, sulfur source, silicon source, aluminum source and iron source are used as raw materials, the raw materials are prepared according to the target product, and the mixture is obtained by grinding with a pulverizer;
  • the mixture is added to the homogenization tank, and the homogenized material is obtained after washing;
  • the homogenized material is filtered, dried and ground to obtain a powdery mixture
  • the powdery mixture is calcined and cooled to obtain a high active mineral content sulphur-ferric aluminate cementitious material.
  • the invention realizes the directional regulation of the mineral composition of the high-iron sulphoaluminate cementitious material by regulating the CaO/CaSO 4 content ratio. Increased high iron sulfoaluminate cementitious material in clinker
  • the content of Al 2 O 3 reduces the consumption of Al 2 O 3 , reduces the demand for raw materials of sulfoaluminate cementing materials, realizes the resource utilization of low-grade aluminum-containing solid waste, broadens the source of raw materials, and improves the mineral composition of high-iron sulfoaluminate cement.
  • the mechanical properties of solidified materials continue to develop.
  • the third aspect of the present invention provides the application of the above-mentioned high-performance ferric sulfoaluminate cementitious material in the manufacture of cement and the fields of construction engineering.
  • this method can prepare high content of sulfur aluminum ferrite cementitious material.
  • the activity is higher than that of C 4 AF. Therefore, the sulphoaluminoferrite cementitious material has better mechanical properties.
  • this method can realize the directional control of the composition of iron-bearing minerals in the clinker by regulating the content of CaO/CaSO 4 in the raw material, the calcination temperature of the clinker, the holding time, etc. content, and in the clinker
  • the substitution amount of Fe 2 O 3 to Al 2 O 3 can reach 40-50%, thereby reducing the content of Al 2 O 3 in the clinker of the sulphur ferric aluminate cementitious material.
  • the method not only reduces the content of Al 2 O 3 in the clinker of the sulphur-iron-aluminate cementitious material, but also increases the effective utilization rate of alumina by more than 50%, thereby reducing the sulphoaluminate glue
  • the demand for aluminum in the clinker of the cementitious material increases the selection of raw materials, so that the solid waste or low-grade aluminum-containing minerals with low aluminum content can be used as the calcining raw material of the ferric ferric aluminate cementitious material clinker.
  • this method reduces the content of Al 2 O 3 in the clinker, which not only saves the consumption of Al 2 O 3 of the reserve material, but also reduces the price of the ferric sulphur aluminate cementitious material and increases the ferric sulphur The scope of use of aluminate cementitious materials.
  • the preparation method of the present invention is simple, convenient to operate, strong practicability, and easy to popularize.
  • Fig. 1 is the XRD pattern of different Cm ferric sulphur aluminate cementitious materials in the present invention.
  • One of the objects of the present invention is to provide a high-performance ferric sulphur aluminate cementitious material.
  • the second purpose of the present invention is to provide a preparation method of a high-active mineral content sulphur-ferric aluminate cementitious material.
  • the third object of the present invention is to provide a method for regulating the mineral composition of a high-performance ferric pyrite aluminate cementitious material clinker.
  • the present invention discloses a high-performance ferric ferric aluminate cementitious material.
  • the cementitious material is composed of the following components: 50%-70% 20%-40% C2S , 0 %-10% CaSO4, 0%-10% C4AF .
  • the present invention separates a method for preparing a high active mineral content sulphur ferric aluminate cementitious material. It includes the following steps:
  • step (2) drying and pulverizing the homogenized material in step (2) to obtain powdery mixture;
  • step (3) calcining the powdery mixture in step (3), and placing it in the air to rapidly cool after the calcination to obtain a high-active mineral content sulphur-ferric aluminate cementitious material.
  • step 1) when preparing raw materials for the clinker, the chemical composition ratio of SiO 2 , Fe 2 O 3 and Al 2 O 3 in the target clinker is constant, about 8%-14%: 18%-26%: 6%-16%; the total amount of CaO is defined by the alkalinity coefficient C m , which is about 0.80-1.10; the total amount of CaSO 4 is 0%-20%.
  • the total amount of CaO is controlled between C m of 0.85-1.00 , the theoretical residual amount of CaSO 4 is kept in the range of 5%-15% ; The amount is kept at 15 %-30% to ensure that CaSO4 is left in the clinker, thus promoting the target product Formation.
  • the content of CaO/CaSO 4 in the raw material the calcined high content of ferric pyrite aluminate cementitious material clinker raw material.
  • step 2) the mass ratio of mixture and water during the washing is 1:3-4.
  • soluble ions such as sodium and chlorine in aluminum ash and carbide slag can be removed, and the influence of soluble ions on the performance of the cementitious material can be reduced.
  • step 2) the time of the water washing is 2-4h.
  • the drying after filtration refers to: pressure filtration of the homogenized material to a moisture content of less than 25% (mass), and drying at 600° C. for 2 hours.
  • step 3 the fineness of the homogenized mixture after grinding is 30% of the sieve residue of 45 ⁇ m.
  • step 4 the calcination temperature is 1150-1250°C, and the calcination time is 0.5-1.5h. After cooling, a high active mineral content pyrite ferric aluminate cementitious material is obtained.
  • the calcination temperature of the traditional sulfoaluminate cement clinker is 1250-1300°C. Compared with this, the present invention not only has a lower calcination temperature, but also has more significant energy-saving effect; The content of high-performance ferric sulphur aluminate cementitious materials can be obtained.
  • the present invention discloses a method for regulating the mineral composition of high-performance ferric sulphur aluminate cementitious material clinker.
  • the raw materials are prepared according to a certain target product, and pulverized by a pulverizer to obtain Raw material mixture composed of target minerals;
  • step 1) the chemical composition ratio of SiO 2 , Fe 2 O 3 and Al 2 O 3 in the target clinker is constant, and the ratio is about 8%-14%: 18%-26%: 6%-16%.
  • step 1) the mineral composition of clinker is regulated by changing the content of CaO and CaSO 4 .
  • the total amount of CaO is controlled between C m of 0.85-1.00 , the theoretical residual amount of CaSO 4 is kept in the range of 5%-15% ; The amount is kept at 15 %-30% to ensure that CaSO4 is left in the clinker, thus promoting the target product Formation.
  • the ratio of raw materials realizes the directional regulation of the mineral composition of clinker.
  • the appropriate calcination temperature can be reduced to 1150-1200°C or the holding time can be shortened to 10-20min; From the production point of view, when the temperature or calcination time is reduced, and the CaO content C m is greater than 1.00, the theoretical residual amount of CaSO 4 is kept at 10%-20%, and Fe 2 O 3 and Al 2 O 3 are realized.
  • the improvement of the effective utilization rate increases the dosage of Fe 2 O 3 , thereby reducing the use of aluminum raw materials.
  • the method for regulating and controlling the mineral composition of clinker of high-iron sulphur ferric aluminate cementitious materials utilizes the CaO and CaSO 4 contents in the raw materials to control the C 4 AF and C 4 AF and the The effect of the formation reaction kinetics to realize the formation of Fe 2 O 3 to C 4 AF and directional regulation. Not only enhance the active minerals in clinker The content of aluminum oxide is increased, and the effective utilization rate of alumina is improved. At the same time, the amount of iron oxide is increased in the raw materials, thereby reducing the use of aluminum raw materials and broadening the source of raw materials.
  • a method for regulating and controlling the mineral composition of clinker of a high-performance ferric pyrite aluminate cementitious material comprising the following steps:
  • the raw materials of pyrite ferric aluminate cementitious material clinker are composed of electroplating sludge, red mud, carbide slag, phosphogypsum and fly ash, and their chemical compositions are shown in Table 1.
  • the mineral composition C 2 S:CaSO 4 :C 4 AF was 40%:30%:10%:20%.
  • Table 2 according to the requirements of SiO 2 , Fe 2 O 3 and Al 2 O 3 in the target product, a certain proportion of electroplating sludge, red mud, phosphogypsum and fly ash were first prepared. Subsequently, the alkalinity coefficient C m of the batch is adjusted by adding different amounts of carbide slag to obtain raw materials with different C m .
  • step (2) Throwing the pulverized raw material in step (1) into a homogenization tank, adding water at a mass ratio of 1:4 (raw material and water) to obtain a slurry, washing and stirring for 3h, so that aluminum ash and calcium carbide slag are mixed with The soluble substances are dissolved into the homogenization tank;
  • phase composition of the gelling material prepared in this example was mainly: and C 2 S, indicating that the mineral is well formed and similar to the expected mineral.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明属于水泥生产领域,涉及一种高性能硫铁铝酸盐胶凝材料熟料矿物组成的调控方法。本发明采用调控原料中的CaO的总量及CaO/CaSO4含量比的方法,定向调控硫铁铝酸盐胶凝材料熟料含铁矿物的组成。通过调控CaO/CaSO4的含量,提高熟料中Fe2O3在C4A(3-x)FxS中的掺入量,从而提高C4A(3-x)FxS 的含量,降低C4AF和C2F的含量,提高Fe2O3和Al2O3的有效利用率。因此,原料中Fe2O3/Al2O3一定时,通过调控CaO/CaSO4的含量实现含铁矿物的定向调控,得到具备更优性能的硫铁铝酸盐胶凝材料。

Description

一种高铁硫铝酸盐熟料矿物组成的调控方法 技术领域
本发明涉及水泥生产技术领域,具体涉及一种高性能高铁硫铝酸盐胶凝材料熟料矿物组成的调控方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
水泥行业是全球最大的能源消耗和碳排放行业之一,每生产1吨水泥将产生0.87吨的CO 2。据统计,全世界每年约生产40亿吨普通硅酸盐水泥,排放的CO 2约占全球排放量的7%。因此,发展一种低碳水泥迫在眉睫。硫铝酸盐水泥作为一种常见的低碳水泥,由于其较低的CaO含量、较低的煅烧温度以及易磨性,正逐渐引起越来越多的关注。但是,硫铝酸盐水泥的主要活性矿物是硫铝酸钙(Ca 4Al 6SO 16
Figure PCTCN2021098462-appb-000001
),Al 2O 3的含量较高,其生产过程中需要消耗大量的铝矾土或其他高品位铝源。尽管已经有很多利用固废为原料生产硫铝酸盐胶凝材料的研究,但是同样需要含铝量高的固废作为原料。因此,硫铝酸盐胶凝材料的价格昂贵,应用有限。
当制备高铁硫铝酸盐胶凝材料时,Fe 2O 3能够取代
Figure PCTCN2021098462-appb-000002
矿物中Al 2O 3形成
Figure PCTCN2021098462-appb-000003
该矿物具有与
Figure PCTCN2021098462-appb-000004
相似的水化活性。因此,掺加一部分Fe 2O 3作为煅烧熟料原料取代Al 2O 3可降低Al 2O 3的使用量,从而降低原料中Al 2O 3的含量 要求。然而,除生成
Figure PCTCN2021098462-appb-000005
一部分Fe 2O 3将会生成Ca 4Al 2Fe 2O 10(C 4AF)或Ca 2Fe 2O 5(C 2F)。其中,C 4AF水化速率过快,C 2F没有水化活性,均不利于水泥强度的长期稳定增长。
现有技术已经提到了使用Fe 2O 3取代Al 2O 3降低Al 2O 3的使用量,但是不能够控制高铁硫铝酸盐胶凝材料中活性矿物
Figure PCTCN2021098462-appb-000006
的组成,而是均已反应过快的C 4AF对待。因此,所制得的高铁硫铝酸盐胶凝材料中矿物水化过快,不利于高铁硫铝酸盐胶凝材料性能的持续发展。
因此,行业内主要面临一些问题:
(1)如何提升硫铁铝酸盐胶凝材料中活性矿物
Figure PCTCN2021098462-appb-000007
的含量。
(2)如何提高硫铁铝酸盐胶凝材料熟料中Fe 2O 3的掺入量。
(3)如何利用低品位含铝矿或固废作为烧制硫铁铝酸盐胶凝材料的原料。
发明内容
针对上述现有技术中存在的硫铁铝酸盐胶凝材料熟料原料含铝量要求高,含铁矿物活性低等缺点,本发明旨在提供一种高性能硫铁铝酸盐胶凝材料熟料矿物组成的调控方法。本发明采用调控原料中的CaO的总量及CaO/CaSO 4含量比的方法,定向调控硫铁铝酸盐胶凝材料熟料含铁矿物的组成。通过调控CaO/CaSO 4的含量,提高熟料中Fe 2O 3
Figure PCTCN2021098462-appb-000008
中的掺入量,从而提高
Figure PCTCN2021098462-appb-000009
的含量,降低C 4AF和C 2F的含量,提高Fe 2O 3和Al 2O 3的有效利用率。因此,原料中Fe 2O 3/Al 2O 3一定时,通过调控CaO/CaSO 4的含量实现含铁矿物的定向调控,得到具备更优性能的硫铁铝酸盐胶凝材料。
为实现上述技术目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种高性能硫铁铝酸盐胶凝材料,按质量百分数计,所述胶凝材料由以下组分组成:50%-70%
Figure PCTCN2021098462-appb-000010
20%-40%C 2S、0%-10%CaSO 4、0%-10%C 4AF,其中,x的取值范围是0-1.5.。
目前,本专利的技术关键在于通过调控CaO/CaSO 4含量比实现高铁硫铝酸盐胶凝材料矿物组成的定向调控。现有技术均聚焦于高铁贝利特硫铝酸盐水泥的制备工作,其中矿物组成均为
Figure PCTCN2021098462-appb-000011
C 2S和C 4AF,而没有提到任何与
Figure PCTCN2021098462-appb-000012
Figure PCTCN2021098462-appb-000013
相关的技术指导,更没有关于
Figure PCTCN2021098462-appb-000014
与C 4AF含量的调控技术。
本发明的第二个方面,提供了一种高性能硫铁铝酸盐胶凝材料的制备方法,包括:
将钙源、硫源、硅源、铝源和铁源作为原料,按照目标产物配置原料,经粉碎机粉磨,得到混合料;
将所述混合料加入均化池,水洗后得到均化物料;
将均化物料滤干后干燥、粉磨,得到粉末状混合料;
将粉末状混合料进行锻烧,冷却,即得到高活性矿物含量硫铁铝酸盐胶凝材料。
本发明通过调控CaO/CaSO 4含量比实现高铁硫铝酸盐胶凝材料矿物组成的定向调控。提高了高铁硫铝酸盐胶凝材料熟料中
Figure PCTCN2021098462-appb-000015
的含量,降低了Al 2O 3消耗,降低硫铝酸盐胶凝材料原料需求,实现低品位含铝固废的资源化利用,拓宽原料来源,并且从矿物组成上提升高铁硫铝酸盐胶凝材料的机械性能持续发展。
本发明的第三个方面,提供了上述的高性能硫铁铝酸盐胶凝材料在制造水泥,及建筑工程领域中的应用。
本发明的有益效果在于:
(1)相比于传统方法,本方法可制备得到高
Figure PCTCN2021098462-appb-000016
含量的硫铝铁酸盐胶凝材料。其中,
Figure PCTCN2021098462-appb-000017
的活性高于C 4AF。因此,硫铝铁酸盐胶凝材料具有更优的机械性能。
(2)相比于传统方法,本方法通过调控原料中CaO/CaSO 4的含量,熟料的煅烧温度、保温时间等可实现熟料中含铁矿物组成的定向调控,不仅能够提高
Figure PCTCN2021098462-appb-000018
的含量,而且熟料中
Figure PCTCN2021098462-appb-000019
中Fe 2O 3对Al 2O 3的取代量可达到40-50%,从而降低硫铁铝酸盐胶凝材料熟料中Al 2O 3的含量。
(3)相比于传统方法,本方法不仅降低硫铁铝酸盐胶凝材料熟料中Al 2O 3的含量,而且氧化铝的有效利用率提高50%以上,从而降低硫铝酸盐胶凝材料熟料中对铝元素的需求,增加原料的选择种类,使得含铝较低的固废或者低品位含铝矿物可以作为硫铁铝酸盐胶凝材料熟料的煅烧原料。
(4)相比于传统方法,本方法降低熟料中Al 2O 3的含量,既节省储备材料Al 2O 3的消耗,又可降低硫铁铝酸盐胶凝材料的价格,增加硫铁铝酸盐胶凝材料的使用范围。
(5)本发明的制备方法简单、操作方便、实用性强,易于推广。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明中不同Cm硫铁铝酸盐胶凝材料的XRD图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的 普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明的目的之一是提供一种高性能硫铁铝酸盐胶凝材料。
本发明的目的之二是提供一种高活性矿物含量硫铁铝酸盐胶凝材料的制备方法。
本发明的目的之三是提供一种高性能硫铁铝酸盐胶凝材料熟料的矿物组成调控方法。
为实现上述发明目的,具体的,本发明公开了下述技术方案:
首先,本发明公开了一种高性能硫铁铝酸盐胶凝材料,按质量百分数计,所述胶凝材料由以下组分组成:50%-70%
Figure PCTCN2021098462-appb-000020
20%-40%C 2S、0%-10%CaSO 4、0%-10%C 4AF。
其次,本发明分开了一种高活性矿物含量硫铁铝酸盐胶凝材料的制备方法。包括如下步骤:
1)将电石渣等钙源、脱硫石膏等硫源、粉煤灰等硅源和铝源、赤泥、钢渣等铁源作为原料,按照一定的目标产物配置原料,经粉碎机粉磨,得到混合料;
2)将步骤(1)中的混合料加入均化池,水洗后得到均化物料;
3)对步骤(2)中的均化物料滤干后干燥、粉磨,得到粉末状混合料;
4)对步骤(3)中的粉末状混合料进行锻烧,煅烧结束置于空气中快速冷却, 即得到高活性矿物含量硫铁铝酸盐胶凝材料。
步骤1)中,所述熟料在配制原料时,目标熟料中SiO 2、Fe 2O 3和Al 2O 3的化学组成比例一定,约为8%-14%:18%-26%:6%-16%;CaO总量由碱度系数C m定义,约为0.80-1.10;CaSO 4的总量为0%-20%。当CaO总量控制在C m为0.85-1.00之间,将CaSO 4的理论剩余量保持在5%-15%的范围内;当CaO含量配量C m大于1.00时,将CaSO 4的理论剩余量保持在15%-30%以确保CaSO 4在熟料中有剩余,从而促进目标产物中
Figure PCTCN2021098462-appb-000021
的形成。通过调控原料中CaO/CaSO 4的含量,即可得到煅烧高
Figure PCTCN2021098462-appb-000022
含量的硫铁铝酸盐胶凝材料熟料原料。
步骤2)中,所述水洗时混合料和水的质量比为1:3-4。经过均化池水洗,可以除去铝灰、电石渣中的纳、氯等可溶性离子,降低可溶性离子对胶凝材料性能的影响。
步骤2)中,所述水洗的时间为2-4h。
步骤3)中,所述滤干后干燥指:将均化物料压滤至含水率25%(质量)以下,在600℃下烘干2h。
步骤3)中,所述均化混料粉磨后的细度为45μm筛余30%。
步骤4)中,所述煅烧温度为1150-1250℃,煅烧时间为0.5-1.5h。冷却后即得到了高活性矿物含量硫铁铝酸盐胶凝材料。
传统硫铝酸盐水泥熟料制备时的煅烧温度为1250-1300℃,与其相对比,本发明不仅煅烧温度更低,节能效果更加显著;而且通过原料调配,增加熟料中活性矿物
Figure PCTCN2021098462-appb-000023
的含量,可得到高性能硫铁铝酸盐胶凝材料。
最后,本发明公开了一种高性能硫铁铝酸盐胶凝材料熟料的矿物组成调控方 法。
1)将电石渣等钙源、脱硫石膏等硫源、粉煤灰等硅源和铝源、赤泥、钢渣等铁源作为原料,按照一定的目标产物配制原料,经粉碎机粉磨,得到目标矿物组成的原料混合料;
步骤1)中,目标熟料中SiO 2、Fe 2O 3和Al 2O 3的化学组成比例一定,其比例约为8%-14%:18%-26%:6%-16%。
步骤1)中,通过改变CaO和CaSO 4的含量调控熟料的矿物组成。当CaO总量控制在C m为0.85-1.00之间,将CaSO 4的理论剩余量保持在5%-15%的范围内;当CaO含量配量C m大于1.00时,将CaSO 4的理论剩余量保持在15%-30%以确保CaSO 4在熟料中有剩余,从而促进目标产物中
Figure PCTCN2021098462-appb-000024
的形成。原料配比实现对熟料矿物组成的定向调控。同理,当CaO总量控制在C m为0.85-1.00之间,CaSO 4的理论剩余量不足时,可将适当煅烧温度降低至1150-1200℃或者保温时间缩短至10-20min;反之,从生产角度来讲,将温度降低或者煅烧时间减少,而将CaO含量配量C m大于1.00时,将CaSO 4的理论剩余量保持在10%-20%,实现Fe 2O 3和Al 2O 3有效利用率的提高,增加Fe 2O 3的配入量,从而减少铝质原料的使用。
本发明所述的高铁硫铁铝酸盐胶凝材料熟料矿物组成的调控方法,利用原料中CaO和CaSO 4含量对C 4AF和
Figure PCTCN2021098462-appb-000025
的生成反应动力学的影响,实现Fe 2O 3生成C 4AF和
Figure PCTCN2021098462-appb-000026
的定向调控。不仅提升熟料中活性矿物
Figure PCTCN2021098462-appb-000027
的含量,而且实现氧化铝有效利用率的提高,同时原料中增加氧化铁的配入量,从而减少铝质原料的使用,拓宽原料来源。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具 体实施例是对本发明的解释而不是限定。
实施例1:
一种高性能硫铁铝酸盐胶凝材料熟料矿物组成的调控方法,包括如下步骤:
(1)硫铁铝酸盐胶凝材料熟料的原料由电镀污泥、赤泥、电石渣、磷石膏和粉煤灰组成,他们的化学组成如表1所示。目标熟料产物中,矿物组成
Figure PCTCN2021098462-appb-000028
C 2S:CaSO 4:C 4AF为40%:30%:10%:20%。如表2所示,根据目标产物中SiO 2、Fe 2O 3和Al 2O 3的需求,首先配制一定比例的电镀污泥、赤泥、磷石膏和粉煤灰。随后使用添加不同量的电石渣调节配料的碱度系数C m,得到不同C m的原料。
(2)将步骤(1)中粉磨后的原料投到均化池中进行,按1:4的质量比(原料和水)加水,得浆液,水洗搅拌3h,使铝灰和电石渣中的可溶性物质溶出至均化池中;
(3)将浆液压滤至含水量18%(wt.%),将其送到600℃烘干器中烘干2h,得混合料,用粉磨机将烘干的混合料粉磨;将粉磨后的混合料加入回转窑中在1200℃保温30min,煅烧完成后急速冷却,即可得到硫铁铝酸盐胶凝材料。
用XRD检测本实施例制备的胶凝材料的物相组成,结果如表3和图1所示,从图1中可以看出本实施例制备的胶凝材料物相主要为
Figure PCTCN2021098462-appb-000029
和C 2S,这说明矿物形成良好,与预期矿物相近。
表1 实施例1中不同工业固废的化学组成(wt.%)
Figure PCTCN2021098462-appb-000030
Figure PCTCN2021098462-appb-000031
表2 实施例1中制备的胶凝材料原料配比
Figure PCTCN2021098462-appb-000032
表3 不同硫铁铝酸盐胶凝材料的矿物组成
Figure PCTCN2021098462-appb-000033
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改 进等,均应包含在本发明的保护范围之内。上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种高性能硫铁铝酸盐胶凝材料,其特征在于,按质量百分数计,所述胶凝材料由以下组分组成:50%-70%
    Figure PCTCN2021098462-appb-100001
    20%-40%C 2S、0%-10%CaSO 4、0%-10%C 4AF,其中,x取值范围为0-1.5。
  2. 一种高性能硫铁铝酸盐胶凝材料的制备方法,其特征在于,包括:
    将钙源、硫源、硅源、铝源和铁源作为原料,按照目标产物配置原料,经粉碎机粉磨,得到混合料;
    将所述混合料加入均化池,水洗后得到均化物料;
    将均化物料滤干后干燥、粉磨,得到粉末状混合料;
    将粉末状混合料进行锻烧,冷却,即得到高活性矿物含量硫铁铝酸盐胶凝材料。
  3. 如权利要求2所述的高性能硫铁铝酸盐胶凝材料的制备方法,其特征在于,目标熟料中,SiO 2、Fe 2O 3和Al 2O 3的化学组成比例一定,为8%-14%:18%-26%:6%-16%。
  4. 如权利要求2所述的高性能硫铁铝酸盐胶凝材料的制备方法,其特征在于,目标熟料中,CaO总量由碱度系数C m定义,为0.80-1.10;CaSO 4的总量为0%-20%。
  5. 如权利要求4所述的高性能硫铁铝酸盐胶凝材料的制备方法,其特征在于,目标熟料中,当CaO总量控制在C m为0.85-1.00之间,将CaSO 4的理论剩余量保持在5%-15%的范围内。
  6. 如权利要求4所述的高性能硫铁铝酸盐胶凝材料的制备方法,其特征在于,当CaO含量配量C m大于1.00时,将CaSO 4的理论剩余量保持在15%-30%。
  7. 如权利要求2所述的高性能硫铁铝酸盐胶凝材料的制备方法,其特征在于,当CaO总量控制在C m为0.85-1.00之间,CaSO 4的理论剩余量不足时,将煅烧 温度降低至1150-1200℃或者保温时间缩短至10-20min;反之,将温度降低或者煅烧时间减少,而将CaO含量配量C m大于1.00时,将CaSO 4的理论剩余量保持在10%-20%。
  8. 如权利要求2所述的高性能硫铁铝酸盐胶凝材料的制备方法,其特征在于,所述水洗时混合料和水的质量比为1:3-4,优选的,所述水洗的时间为2-4h;
    或,所述滤干后干燥指:将均化物料压滤至含水率25wt%以下,在600℃下烘干2h;
    或,所述均化混料粉磨后的细度为45μm筛余30%;
    或,所述煅烧温度为1150-1250℃,煅烧时间为0.5-1.5h。
  9. 权利要求1-8任一项所述的方法制备的高性能硫铁铝酸盐胶凝材料。
  10. 权利要求9所述的高性能硫铁铝酸盐胶凝材料在制造水泥,及建筑工程领域中的应用。
PCT/CN2021/098462 2020-12-31 2021-06-04 一种高铁硫铝酸盐熟料矿物组成的调控方法 WO2022142138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011638958.5A CN112645616A (zh) 2020-12-31 2020-12-31 一种高铁硫铝酸盐熟料矿物组成的调控方法
CN202011638958.5 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142138A1 true WO2022142138A1 (zh) 2022-07-07

Family

ID=75366885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098462 WO2022142138A1 (zh) 2020-12-31 2021-06-04 一种高铁硫铝酸盐熟料矿物组成的调控方法

Country Status (2)

Country Link
CN (1) CN112645616A (zh)
WO (1) WO2022142138A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645616A (zh) * 2020-12-31 2021-04-13 山东大学 一种高铁硫铝酸盐熟料矿物组成的调控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837121A (zh) * 2006-04-20 2006-09-27 中国地质大学(北京) 一种赤泥制备硫铝酸盐水泥的方法
CN102482148A (zh) * 2009-08-17 2012-05-30 拉法基公司 用于以贝利特-钙-硫铝酸盐-铁酸盐熟料为基础的水硬粘合剂的添加剂
US20130118384A1 (en) * 2010-07-21 2013-05-16 Vicat Iron-doped sulfo-belitic clinker
CN105658598A (zh) * 2013-09-03 2016-06-08 海德堡水泥公司 硫铝酸钙复合粘结剂
CN105683121A (zh) * 2013-09-03 2016-06-15 海德堡水泥公司 用于硫铝酸钙水泥的熔剂/矿化剂
CN112645616A (zh) * 2020-12-31 2021-04-13 山东大学 一种高铁硫铝酸盐熟料矿物组成的调控方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1219719C (zh) * 2003-12-01 2005-09-21 济南大学 含钡硫铁铝酸盐水泥
CN109369043A (zh) * 2018-11-02 2019-02-22 济南大学 一种白色硫铝酸盐水泥熟料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837121A (zh) * 2006-04-20 2006-09-27 中国地质大学(北京) 一种赤泥制备硫铝酸盐水泥的方法
CN102482148A (zh) * 2009-08-17 2012-05-30 拉法基公司 用于以贝利特-钙-硫铝酸盐-铁酸盐熟料为基础的水硬粘合剂的添加剂
US20130118384A1 (en) * 2010-07-21 2013-05-16 Vicat Iron-doped sulfo-belitic clinker
CN105658598A (zh) * 2013-09-03 2016-06-08 海德堡水泥公司 硫铝酸钙复合粘结剂
CN105683121A (zh) * 2013-09-03 2016-06-15 海德堡水泥公司 用于硫铝酸钙水泥的熔剂/矿化剂
CN112645616A (zh) * 2020-12-31 2021-04-13 山东大学 一种高铁硫铝酸盐熟料矿物组成的调控方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 1 June 2017, JIANGSU UNIVERSITY, CN, article WANG CHUN: "Research on Low Temperature Synthesis of Calcium Sulphoaluminate Cement from Industrial Waste", pages: 1 - 72, XP055948256 *
"Master Thesis", 1 May 2018, CHONGQING UNIVERSITY, CN, article LIANG JIAO: "Synthesis of Iron-Rich Calcium Sulfoaluminate-belite Cement with Steel Slag", pages: 1 - 67, XP055948252 *

Also Published As

Publication number Publication date
CN112645616A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2020211546A1 (zh) 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及***
CN107021654B (zh) 一种硫硅酸钙硫铝酸盐水泥及其制备方法
CN106698986B (zh) 一种硫铝酸盐水泥熟料的制备方法
CN105669056B (zh) 一种低碳水泥熟料及其制备方法和应用
CN104944812B (zh) 一种水泥熟料矿物晶体及其制备方法
CN106220008A (zh) 一种低碳水泥熟料的制备方法及其应用方法
CN104788032A (zh) 一种贝利特水泥及其制备方法
EA031499B1 (ru) Способ получения клинкера на основе сульфоалюмината кальция, способ производства кальций-сульфоалюминатного цемента и вяжущее вещество, содержащее этот цемент
CN101121579A (zh) 一种利用铁尾矿生产混凝土活性掺合料的方法
CN109369044B (zh) 一种硫铝酸盐水泥及其制备方法
CN102718419A (zh) 利用铁矿石选矿尾矿在水泥中配料生产道路硅酸盐水泥的方法
CN104326687B (zh) 一种c3s型硫铝酸盐水泥熟料及其制备方法
CN108675657A (zh) 一种利用废渣制备硅酸盐-硫铝酸盐复合体系熟料的方法
WO2022142138A1 (zh) 一种高铁硫铝酸盐熟料矿物组成的调控方法
CN102936104B (zh) 一种制备快硬早强水泥熟料的方法
CN109437625A (zh) 一种白色硫铝酸盐水泥及其生产方法
CN102838308A (zh) 一种膨胀熟料、膨胀剂及其制备方法
CN109320110B (zh) 一种以硫尾矿为原料的硫铝酸盐水泥熟料及其制备方法
CN102730991B (zh) 利用转炉钢渣生产抗硫酸盐水泥的方法
CN114716164A (zh) 一种以磷石膏为主要原料的硫铝酸盐水泥及其制备方法
CN104402265A (zh) 一种利用电石渣为原料煅烧的水泥熟料
CN106630707B (zh) 一种利用硅酸盐熟料诱导硫铝酸盐熟料烧成的方法
CN101948257B (zh) 含高胶凝性矿物c4a3*的通用硅酸盐水泥改性剂及其应用方法
CN106866008A (zh) 一种高镁低热水泥熟料的制备方法
EP3310737A1 (de) Anreger mit niedrigem ph-wert für klinkerersatzmaterialien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 22.08.23)