WO2022135580A1 - 吡啶并吡咯类化合物的晶型、制备方法及其应用 - Google Patents

吡啶并吡咯类化合物的晶型、制备方法及其应用 Download PDF

Info

Publication number
WO2022135580A1
WO2022135580A1 PCT/CN2021/141302 CN2021141302W WO2022135580A1 WO 2022135580 A1 WO2022135580 A1 WO 2022135580A1 CN 2021141302 W CN2021141302 W CN 2021141302W WO 2022135580 A1 WO2022135580 A1 WO 2022135580A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
following
angles
Prior art date
Application number
PCT/CN2021/141302
Other languages
English (en)
French (fr)
Inventor
刘迎春
徐招兵
胡利红
丁照中
朱兴训
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202180087104.9A priority Critical patent/CN116685588A/zh
Publication of WO2022135580A1 publication Critical patent/WO2022135580A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the invention relates to a crystal form of a pyridopyrrole compound, as well as a preparation method and application of the crystal form.
  • CDKs cell cycle-dependent kinases
  • CDK9 is a member of the CDK family and is mainly involved in transcriptional regulation.
  • the heterodimer composed of CDK9 and cyclin (T1, T2a, T2b, K) participates in the formation of positive transcription elongation factor (p-TEFb), of which about 80% of CDK9 binds to cyclinT1.
  • P-TEFb regulates transcription elongation by phosphorylating the carboxy-terminal domain of RNA polymerase II, primarily Ser-2.
  • Inhibition and transcriptional repression of CDK9 results in rapid depletion of short-lived mRNA transcripts and associated proteins, including Myc and Mcl-1, resulting in the death of cancer cells that are highly dependent on these anti-apoptotic proteins.
  • Targeting CDK9 thus represents a therapeutic strategy for tumor types that are highly dependent on these anti-apoptotic proteins.
  • CDK9 small molecule inhibitors have entered the clinical research stage for the treatment of cancer, namely Bayer's BAY1251152 and AstraZeneca's AZD4573. These patents include WO2012160034, WO2014076091, WO2009047359, WO2011110612, US2016376287.
  • CDK9 inhibitors for the treatment of cancer and other diseases
  • no drugs targeting this target have been marketed so far.
  • the most important clinical grade 3/4 and dose-limiting adverse side effect of BAY1251152 is neutropenia, while AZD4573 has poor kinase selectivity and metabolism, which limits its performance. the medicinal effect. Therefore, there is still an urgent need to develop novel, safer and more effective CDK9 inhibitors that can treat a variety of cancers, including leukemia and lymphoma.
  • the present invention provides crystal form A of the compound of formula (I), whose X-ray powder diffraction (XRPD) pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 7.22 ⁇ 0.20°, 17.16 ⁇ 0.20° and 22.34 ⁇ 0.20°;
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.22 ⁇ 0.20°, 15.24 ⁇ 0.20°, 15.80 ⁇ 0.20°, 17.16 ⁇ 0.20°, 20.70 ⁇ 0.20 °, 22.34 ⁇ 0.20°, 24.46 ⁇ 0.20° and 31.74 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.22 ⁇ 0.20°, 8.76 ⁇ 0.20°, 15.24 ⁇ 0.20°, 15.80 ⁇ 0.20°, 17.16 ⁇ 0.20 °, 19.66 ⁇ 0.20°, 20.70 ⁇ 0.20°, 22.34 ⁇ 0.20°, 24.46 ⁇ 0.20°, 25.84 ⁇ 0.20°, 29.76 ⁇ 0.20° and 31.74 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned Form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.22 ⁇ 0.20°, 17.16 ⁇ 0.20°, and/or 22.34 ⁇ 0.20°, and/or 8.76 ⁇ 0.20°, and/or 9.84 ⁇ 0.20°, and/or 12.24 ⁇ 0.20°, and/or 15.24 ⁇ 0.20°, and/or 15.80 ⁇ 0.20°, and/or 16.22 ⁇ 0.20°, and/or 17.52 ⁇ 0.20° , and/or 18.40 ⁇ 0.20°, and/or 19.26 ⁇ 0.20°, and/or 19.66 ⁇ 0.20°, and/or 20.70 ⁇ 0.20°, and/or 21.46 ⁇ 0.20°, and/or 23.64 ⁇ 0.20°, and /or 24.46 ⁇ 0.20°, and/or 25.84 ⁇ 0.20°, and/or 27.10 ⁇ 0.20°, and/or 27.62 ⁇ 0.20°, and/or 28.02
  • the X-ray powder diffraction pattern of the above-mentioned A crystal form has characteristic diffraction peaks at the following 2 ⁇ angles: 7.22°, 8.76°, 9.84°, 12.24°, 15.24°, 15.80°, 16.22°, 17.16° , 17.52°, 18.40°, 19.26°, 19.66°, 20.70°, 21.46°, 22.34°, 23.64°, 24.46°, 25.84°, 27.10°, 27.62°, 28.02°, 29.26°, 29.76°, 30.88°, 31.74 °, 33.38°, 37.10° and 37.68°.
  • the XRPD pattern of the above-mentioned crystal form A is basically as shown in FIG. 1 .
  • the differential scanning calorimetry curve of the differential scanning calorimetry curve has an endothermic peak starting point at 77.71 ⁇ 3°C and 236.85 ⁇ 3°C, respectively.
  • the DSC spectrum of the above-mentioned crystal form A is shown in FIG. 2 .
  • thermogravimetric analysis curve (TGA) of the above crystal form A has a weight loss of 3.420% at 200 ⁇ 3°C.
  • the TGA spectrum of the above-mentioned A crystal form is shown in FIG. 3 .
  • the present invention also provides the B crystal form of the compound of formula (I), whose X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 19.72 ⁇ 0.20°, 21.52 ⁇ 0.20° and 23.20 ⁇ 0.20°;
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 10.74 ⁇ 0.20°, 16.22 ⁇ 0.20°, 19.72 ⁇ 0.20°, 20.58 ⁇ 0.20°, 21.52 ⁇ 0.20 °, 22.30 ⁇ 0.20°, 23.20 ⁇ 0.20° and 28.04 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 7.92 ⁇ 0.20°, 10.74 ⁇ 0.20°, 16.22 ⁇ 0.20°, 17.66 ⁇ 0.20°, 19.72 ⁇ 0.20 °, 20.58 ⁇ 0.20°, 21.52 ⁇ 0.20°, 22.30 ⁇ 0.20°, 23.20 ⁇ 0.20°, 23.88 ⁇ 0.20°, 26.54 ⁇ 0.20°, 27.48 ⁇ 0.20° and 28.04 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 19.72 ⁇ 0.20°, 21.52 ⁇ 0.20°, and/or 23.20 ⁇ 0.20°, and/or 7.92 ⁇ 0.20°, and/or 10.74 ⁇ 0.20°, and/or 11.42 ⁇ 0.20°, and/or 13.52 ⁇ 0.20°, and/or 13.76 ⁇ 0.20°, and/or 15.86 ⁇ 0.20°, and/or 16.22 ⁇ 0.20° , and/or 16.52 ⁇ 0.20°, and/or 17.66 ⁇ 0.20°, and/or 17.90 ⁇ 0.20°, and/or 18.22 ⁇ 0.20°, and/or 18.92 ⁇ 0.20°, and/or 20.58 ⁇ 0.20°, and /or 22.30 ⁇ 0.20°, and/or 23.88 ⁇ 0.20°, and/or 25.32 ⁇ 0.20°, and/or 26.12 ⁇ 0.20°, and/or 26.54
  • the X-ray powder diffraction pattern of the above crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 7.92°, 10.74°, 11.42°, 13.52°, 13.76°, 15.86°, 16.22°, 16.52° , 17.66°, 17.90°, 18.22°, 18.92°, 19.72°, 20.58°, 21.52°, 22.30°, 23.20°, 23.88°, 25.32°, 26.12°, 26.54°, 27.14°, 27.48°, 27.72°, 28.04 degrees 37.96°, 38.74° and 39.50°.
  • the XRPD pattern of the above-mentioned crystal form B is basically as shown in FIG. 4 .
  • the differential scanning calorimetry curve has an endothermic peak starting point at 257.81 ⁇ 3°C.
  • the DSC spectrum of the above-mentioned crystal form B is shown in FIG. 5 .
  • thermogravimetric analysis curve of the above-mentioned crystal form B loses weight up to 0.326% at 200 ⁇ 3°C.
  • the TGA spectrum of the above-mentioned B crystal form is shown in FIG. 6 .
  • the present invention also provides a method for preparing crystal form A, comprising the following steps:
  • the above reflux temperature is 65°C-80°C, preferably 65°C.
  • the above stirring time is 10-12 hours, preferably 12 hours.
  • the present invention also provides a preparation method of crystal form B, comprising the following steps:
  • the stirring temperature is 20°C;
  • the stirring time is 20-21 hours.
  • the present invention also provides the application of the above-mentioned A crystal form and the above-mentioned B crystal form in the preparation of CDK9 inhibitor drugs.
  • the compound of formula (I) of the present application has good efficacy for in vivo administration, and its crystal form is stable, less affected by light, heat and humidity, and has good solubility.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by their combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, the examples of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by Bruker D8 venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • the solvent used in the present invention is commercially available.
  • DCM dichloromethane
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • EtOH stands for ethanol
  • MeOH stands for methanol
  • ACN stands for acetonitrile
  • THF tetrahydrofuran
  • H 2 O water
  • NCS 1-chloropyrrolidine-2,5-dione
  • NIS for N-iodosuccinimide
  • DMAC for dimethylacetamide
  • Pd(dppf)Cl 2 ⁇ CH 2 Cl 2 represents [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium dichloromethane adduct.
  • the XRPD test used the DX-2700BH X-ray diffractometer of Dandong Haoyuan Company. The test parameters are shown in Table 3.
  • the DSC spectra were collected on a TA 2500 differential scanning calorimeter, and the test parameters are shown in Table 4.
  • TGA was collected on a TA 5500 thermogravimetric analyzer, and the test parameters are shown in Table 5.
  • Figure 1 XRPD pattern of Form A
  • step 1
  • the filter cake was dissolved in 1.50L of water, the organic phase was discarded, and the aqueous phase was transferred into a 5.0-liter there-necked flask, and under stirring, 1 mol/liter aqueous sodium hydroxide solution was added dropwise to pH ⁇ 11, and a large amount of white solid was separated out, and filtered to obtain the formula ( I) Compounds.
  • the A crystal form (50 g, 0.158 mol) of the compound of formula (I) was stirred in 250 mL of ethanol for 21 hours, the mixture was filtered, the filter cake was transferred to an oven, and dried under reduced pressure to obtain the compound of formula (I)
  • the B crystal form, the XRPD detection results are shown in Figure 4, and the TGA and DSC detection results are shown in Figure 5 and Figure 6, respectively.
  • test sample marked S1-condition-time is used for content and related substance detection; the test sample marked S2-condition-time is used as a preparation sample, and the test sample marked S3-condition-time is used for XRPD detection .
  • CDK9/CyclinT1 kinase was purchased from Carna
  • ADP-Glo assay kit was purchased from Promega
  • PKDTide substrate and kinase reaction buffer were purchased from Signalchem. Nivo Multilabel Analyzer (PerkinElmer).
  • the compound to be tested was diluted 5 times to the 8th concentration with a row gun, that is, from 50 ⁇ M to 0.65 nM, and the DMSO concentration was 5%, and a double-well experiment was set up.
  • Add 1 ⁇ L of each concentration gradient of inhibitor, 2 ⁇ L CDK9/CyclinT1 enzyme (4ng), 2 ⁇ L mixture of substrate and ATP (100 ⁇ M adenosine triphosphate, 0.2 ⁇ g/ ⁇ L substrate) to the microplate, and the final compound concentration gradient is 10 ⁇ M dilution at this time to 0.13 nM.
  • the reaction system was placed at 25°C for 120 minutes.
  • the IC 50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • Table 8 provides the CDK9/CyclinT1 enzymatic inhibitory activity of the compounds of the present invention.
  • the compound of formula (I) has good activity on CDK9 kinase, similar to the activity of reference compounds BAY1251152 and AZD4573.
  • CDK1/CyclinB1 Kinase Assay Kit was purchased from Promega. Nivo Multilabel Analyzer (PerkinElmer).
  • the compound to be tested was diluted 5 times to the 8th concentration with a row gun, that is, from 50 ⁇ M to 0.65 nM, and the DMSO concentration was 5%, and a double-well experiment was set up.
  • the reaction system was placed at 25°C for 120 minutes.
  • the IC 50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • Table 6 provides the CDK1/CyclinB1 enzymatic inhibitory activity of the compounds of the present invention.
  • the compounds of formula (I) have weak inhibitory activity on CDK1 kinase, so the compounds of the present invention show better selectivity to CDK1 than BAY1251152 and AZD4573.
  • the experimental results are shown in Table 8.
  • CDK2/CyclinE1 Kinase Assay Kit was purchased from Promega. Nivo Multilabel Analyzer (PerkinElmer).
  • the compound to be tested was diluted 5 times to the 8th concentration with a row gun, that is, from 50 ⁇ M to 0.65 nM, and the DMSO concentration was 5%, and a double-well experiment was set up.
  • Add 1 ⁇ L of each concentration gradient of inhibitor, 2 ⁇ L CDK2/CyclinE1 enzyme (2ng), 2 ⁇ L mixture of substrate and ATP (150 ⁇ M adenosine triphosphate, 0.1 ⁇ g/ ⁇ L substrate) to the microplate, and the final compound concentration gradient is 10 ⁇ M dilution at this time to 0.13 nM.
  • the reaction system was placed at 25°C for 60 minutes.
  • the IC 50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • Table 8 provides the CDK2/CyclinE1 enzymatic inhibitory activity of the compounds of the present invention.
  • the compound of formula (I) does not have strong inhibitory activity on CDK2 kinase, so the compound of the present invention exhibits better selectivity to CDK2 than BAY1251152 and AZD4573.
  • the experimental results are shown in Table 8.
  • IMDM medium fetal bovine serum, penicillin/streptomycin antibiotics were purchased from Promega (Madison, WI).
  • MV-4-11 cell line was purchased from the Cell Bank of the Chinese Academy of Sciences. Nivo Multilabel Analyzer (PerkinElmer).
  • MV-4-11 cells were seeded in a white 96-well plate, 80 ⁇ L of cell suspension per well, which contained 6000 MV-4-11 cells. Cell plates were incubated overnight in a carbon dioxide incubator.
  • the compounds to be tested were diluted 5-fold to the 8th concentration, that is, from 2 mM to 26 nM, and a double-well experiment was set up. Add 78 ⁇ L of medium to the middle plate, and then transfer 2 ⁇ L of each well of the compound to the middle plate according to the corresponding position. After mixing, transfer 20 ⁇ L of each well to the cell plate. Final compound concentrations ranged from 10 ⁇ M to 0.13 nM.
  • the cell plates were placed in a carbon dioxide incubator for 3 days.
  • the IC 50 value can be obtained by curve fitting with four parameters ("log(inhibitor) vs. response--Variable slope" mode).
  • Table 8 provides the inhibitory activity of the compounds of the present invention on the proliferation of MV-4-11 cells.
  • mice Female, 6-8 weeks, weighing approximately 18-22 grams, were kept in a special pathogen-free environment in a single ventilated cage (3 mice per cage). All cages, bedding and water were sterilized before use. All animals had free access to standard certified commercial laboratory diets. A total of 36 mice purchased from Shanghai Lingchang biological science and technology Co., LTD. were used for the study. Tumor cells (10 ⁇ 10 6 in 0.2 ml phosphate buffered saline) were implanted subcutaneously in the right flank of each mouse for tumor growth. Dosing was initiated when the mean tumor volume reached approximately 121 cubic millimeters. The test compound was administered weekly by injection at a dose of 10 mg/kg.
  • Antitumor efficacy is determined by dividing the mean tumor increase volume in animals treated with the compound by the mean tumor increase volume in untreated animals.

Abstract

一种吡啶并吡咯类化合物的晶型、制备方法及其应用。

Description

吡啶并吡咯类化合物的晶型、制备方法及其应用
本发明主张如下优先权:
CN202011563187.8,2020年12月25日。
技术领域
本发明涉及了一种吡啶并吡咯类化合物的晶型、以及晶型的制备方法及应用。
背景技术
肿瘤的发生往往伴随着细胞的过度活化和持续性增殖,而CDK(细胞周期依赖性激酶)在细胞内外信号的调节下对细胞周期和转录过程发挥着重要的调控作用。在癌细胞中,CDK-cyclin(周期素)的活性往往是失调的,可能的原因包含:信号传导通路的过度激活、cyclin的过度表达、CDK的异常扩增、内源性抑制因子的失活或缺失,这些启发着人们通过不断寻找新型的CDK抑制剂来发展肿瘤治疗技术。
CDK9是CDK家族成员之一,主要参与转录调控过程,由CDK9和cyclin(T1、T2a、T2b、K)组成的异源二聚体参与组成正性转录延长因子(p-TEFb),其中约有80%的CDK9与cyclinT1结合。P-TEFb通过使RNA聚合酶II的羧基端结构域磷酸化,主要是Ser-2磷酸化,调节转录延长。CDK9的抑制和转录阻遏导致快速消耗短寿命的mRNA转录物和相关蛋白(包括Myc和Mcl-1),从而导致高度依赖这些抗凋亡蛋白的癌细胞死亡。因此靶向CDK9代表一种高度依赖这些抗凋亡蛋白的肿瘤类型的治疗策略。
目前,已经有CDK9小分子抑制剂进入临床研究阶段用于癌症的治疗,即拜耳的BAY1251152和阿斯利康的AZD4573。这些专利包括WO2012160034,WO2014076091,WO2009047359,WO2011110612,US2016376287。
Figure PCTCN2021141302-appb-000001
虽然在开发用于癌症和其他疾病治疗的CDK9抑制剂的道路上已经做了很多努力,但是到目前为止还没有针对该靶点的药物上市。在开展临床研究的这些药物中,BAY1251152的临床上最主要的3/4级和剂量限制性不良副作用为嗜中性白血球减少症,而AZD4573的激酶选择性和代谢不好,限制其发挥更好的药效。因此仍然迫切需要开发新颖的、更加安全有效的、能够治疗多种癌症(包括白血病和淋巴癌)的CDK9抑制剂。
发明内容
本发明提供了式(Ⅰ)化合物的A晶型,其X射线粉末衍射(XRPD)图谱在下列2θ角处具有特征衍射峰:7.22±0.20°、17.16±0.20°和22.34±0.20°;
Figure PCTCN2021141302-appb-000002
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22±0.20°、15.24±0.20°、15.80±0.20°、17.16±0.20°、20.70±0.20°、22.34±0.20°、24.46±0.20°和31.74±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22±0.20°、8.76±0.20°、15.24±0.20°、15.80±0.20°、17.16±0.20°、19.66±0.20°、20.70±0.20°、22.34±0.20°、24.46±0.20°、25.84±0.20°、29.76±0.20°和31.74±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22±0.20°,17.16±0.20°,和/或22.34±0.20°,和/或8.76±0.20°,和/或9.84±0.20°,和/或12.24±0.20°,和/或15.24±0.20°,和/或15.80±0.20°,和/或16.22±0.20°,和/或17.52±0.20°,和/或18.40±0.20°,和/或19.26±0.20°,和/或19.66±0.20°,和/或20.70±0.20°,和/或21.46±0.20°,和/或23.64±0.20°,和/或24.46±0.20°,和/或25.84±0.20°,和/或27.10±0.20°,和/或27.62±0.20°,和/或28.02±0.20°,和/或29.26±0.20°,和/或29.76±0.20°,和/或30.88±0.20°,和/或31.74±0.20°,和/或33.38±0.20°,和/或37.10±0.20°,和/或37.68±0.20°。
本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22°、8.76°、9.84°、12.24°、15.24°、15.80°、16.22°、17.16°、17.52°、18.40°、19.26°、19.66°、20.70°、21.46°、22.34°、23.64°、24.46°、25.84°、27.10°、27.62°、28.02°、29.26°、29.76°、30.88°、31.74°、33.38°、37.10°和37.68°。
本发明的一些方案中,上述A晶型,其XRPD图谱基本如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示。
表1式(I)化合物A晶型的XRPD解析数据
Figure PCTCN2021141302-appb-000003
Figure PCTCN2021141302-appb-000004
本发明的一些方案中,上述A晶型,其差示扫描量热曲线在77.71±3℃和236.85±3℃分别有一个吸热峰的起始点。
本发明的一些方案中,上述A晶型,其DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线(TGA)在200±3℃时失重达3.420%。
在本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
本发明还提供了式(Ⅰ)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:19.72±0.20°、21.52±0.20°和23.20±0.20°;
Figure PCTCN2021141302-appb-000005
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.74±0.20°、16.22±0.20°、19.72±0.20°、20.58±0.20°、21.52±0.20°、22.30±0.20°、23.20±0.20°和28.04±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92±0.20°、10.74±0.20°、16.22±0.20°、17.66±0.20°、19.72±0.20°、20.58±0.20°、21.52±0.20°、22.30±0.20°、23.20±0.20°、23.88±0.20°、26.54±0.20°、27.48±0.20°和28.04±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:19.72±0.20°,21.52±0.20°,和/或23.20±0.20°,和/或7.92±0.20°,和/或10.74±0.20°,和/或11.42±0.20°,和/或13.52±0.20°,和/或13.76±0.20°,和/或15.86±0.20°,和/或16.22±0.20°,和/或16.52±0.20°,和/或17.66±0.20°,和/或17.90±0.20°,和/或18.22±0.20°,和/或18.92±0.20°,和/或20.58±0.20°,和/或22.30±0.20°,和/或23.88±0.20°,和/或25.32±0.20°,和/或26.12±0.20°,和/或26.54±0.20°,和/或27.14±0.20°,和/或27.48±0.20°,和/或27.72±0.20°,和/或28.04±0.20°,和/或28.52±0.20°,和/或28.96±0.20°,和/或29.20±0.20°,和/或29.74±0.20°,和/或30.24±0.20°,和/或30.58±0.20°,和/或31.56±0.20°,和/或32.54±0.20°,和/或32.82±0.20°,和/或33.38±0.20°,和/或34.36±0.20°,和/或34.75±0.20°,和/或35.44±0.20°,和/或36.00±0.20°,和/或36.56±0.20°,和/或37.08±0.20°,和/或37.96±0.20°,和/或38.74±0.20°,和/或39.50±0.20°。
本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92°、10.74°、11.42°、13.52°、13.76°、15.86°、16.22°、16.52°、17.66°、17.90°、18.22°、18.92°、19.72°、20.58°、21.52°、22.30°、23.20°、23.88°、25.32°、26.12°、26.54°、27.14°、27.48°、27.72°、28.04°、28.52°、28.96°、29.20°、29.74°、30.24°、30.58°、31.56°、32.54°、32.82°、33.38°、34.36°、34.75°、35.44°、36.00°、36.56°、37.08°、37.96°、38.74°和39.50°。
本发明的一些方案中,上述B晶型,其XRPD图谱基本如图4所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示。
表2式(I)化合物B晶型的XRPD解析数据
Figure PCTCN2021141302-appb-000006
本发明的一些方案中,上述B晶型,其差示扫描量热曲线在257.81±3℃有一个吸热峰的起始点。
本发明的一些方案中,上述B晶型,其DSC图谱如图5所示。
在本发明的一些方案中,上述B晶型的热重分析曲线在200±3℃时失重达0.326%。
在本发明的一些方案中,上述B晶型的TGA图谱如图6所示。
本发明还提供了A晶型的制备方法,包含如下步骤:
1)式(I)化合物加入到无水甲醇中回流;
2)式(I)化合物完全溶解,趁热过滤;
3)滤液在回流状态下滴加蒸馏水,析出白色固体,自然降温至室温,室温搅拌;
4)混合物过滤,滤饼减压烘干。
本发明的一些方案中,上述回流温度为65℃-80℃,优选为65℃。
本发明的一些方案中,上述搅拌时间为10-12小时,优选为12小时。
本发明还提供了B晶型的制备方法,包含如下步骤:
1)式(I)化合物的A晶型在乙醇中搅拌,过滤、滤饼减压烘干;
其中,
搅拌温度为20℃;
搅拌时间为20-21小时。
本发明还提供了上述A晶型和上述的B晶型在制备CDK9抑制剂药物中的应用。
技术效果
本申请式(Ⅰ)化合物具有良好的体内给药药效且其晶型稳定、受光热湿度影响小、溶解性好,成药前景广阔。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021141302-appb-000007
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:DCM代表二氯甲烷;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOH代表乙醇;MeOH代表甲醇;ACN代表乙腈;THF代表四氢呋喃;H 2O代表水;NCS代表1-氯吡咯烷-2,5-二酮;NIS代表N-碘代丁二酰亚胺;DMAC代表二甲基乙酰胺;Pd(dppf)Cl 2·CH 2Cl 2代表[1,1'‐双(二苯基膦基)二茂铁]二氯化钯二氯甲烷加合物。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021141302-appb-000008
软件命名,市售化合物采用供应商目录名称。仪器参数
本发明X射线粉末衍射(XRPD)仪器信息和方法
XRPD测试使用丹东浩元公司的DX-2700BH型X射线衍射仪。测试参数如表3所示。
表3:XRPD测试参数
Figure PCTCN2021141302-appb-000009
本发明差示扫描量热(DSC)仪器信息及方法
DSC图谱在TA 2500差示扫描量热仪上采集,测试参数如表4所示。
表4:DSC测试参数
参数 METTLER TOLEDO DSC1
样品盘 高压坩埚
温度范围 40~350℃
扫描速率(℃/分钟) 10
保护气体 氮气
本发明热重分析(TGA)仪器信息与方法
TGA在TA 5500热重分析仪上采集,测试参数如表5所示。
表5:TGA测试参数
参数 TA TGA5500
样品盘 铝盘,开盖
温度范围 40~500℃
扫描速率(℃/分钟) 10
保护气体 氮气
附图说明
图1:A晶型的XRPD图谱;
图2:A晶型的DSC图谱;
图3:A晶型的TGA图谱;
图4:B晶型的XRPD图谱;
图5:B晶型的DSC图谱;
图6:B晶型的TGA图谱。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(I)化合物的制备
Figure PCTCN2021141302-appb-000010
第1步:
在0℃下,向化合物1(900克,5.20摩尔,1当量)的DMF(3.60升)溶液中分批加入NCS(729.37 克,5.46摩尔,1.05当量),混合物在15℃搅拌反应12小时。LCMS和HPLC监测原料化合物1反应完全;一边搅拌,一边将反应液缓慢倒入w%=10%的氢氧化钠水溶液(4.0升)中,乙酸乙酯(2.0升*2)萃取,合并有机相,饱和食盐水(2.0升*2)洗涤,分液,有机相浓缩得到残余物。残余物用二氯甲烷(3.0升)打浆2小时。过滤,滤饼烘干得到化合物2。 1H NMR(400MHz,CDCl 3)δ8.05(s,1H),6.79(s,1H),4.57(br s,2H)。LCMS(ESI)m/z:208.9(M+1)。
第2步:
向化合物2(1870克,9.01摩尔,1当量)的醋酸(5.0升)溶液中加入NIS(2.23千克,9.92摩尔,1.1当量),混合物氮气置换三次后加热至80℃反应4.0小时。LCMS和HPLC监测原料反应完全;反应液冷却至15℃,一边搅拌一边将反应液缓慢倒入水(2.5升)中,大量固体析出,过滤,滤饼水(1升)洗,抽干得到粗品。粗品用乙醇(2.0升)打浆。混合物过滤,滤饼烘干得到化合物3。LCMS(ESI)m/z:334.8(M+1)。
第3步:
向化合物3(2700克,7.48摩尔)的甲苯(16.2升)中加入化合物4(1.88千克,8.98摩尔,1.20当量)、二氯二三苯基膦钯(262.51克,374毫摩尔,0.05当量)、碘化亚铜(142.46克,747.99毫摩尔,0.1当量)、三乙胺(2.27千克,22.44摩尔,3.12升,3当量);混合物氮气置换三次,加热至110℃反应5小时。混合物冷却至15℃,大量固体析出。混合物过滤,滤饼减压干燥得到粗品;粗品用水(20L)洗涤一次后过滤,滤饼抽干。滤饼用甲苯(12升)重结晶得到化合物5。LCMS(ESI)m/z:416.1(M+1)。
第4步:
向5.0升三口烧瓶中加入DMAC(3.15升),搅拌下加入化合物5(630克,1.50摩尔,1.0当量),搅拌得到悬浊液,分批加入叔丁醇钾(252.98克,2.25摩尔,1.50当量),加毕,15℃搅拌反应16小时得到澄清溶液。一边搅拌,一边将反应液缓慢加入到水(18.9升)中,析出大量固体,搅拌半小时后过滤,滤饼抽干,滤饼用水(12.6升)打浆2小时。过滤,滤饼烘干得到化合物6。
第5步:
向30升反应釜中加入二氧六环(6.0升)和水(600毫升),开启搅拌,加入化合物6(600克,1.45摩尔,1当量)、化合物7(361.20克,1.74摩尔,1.20当量)、碳酸铯(942.92克,2.89摩尔,2.0当量),混合物氮气置换三次,加入Pd(dppf)Cl 2·CH 2Cl 2(29.55克,36.17毫摩尔),氮气置换三次,升温至105~110℃反应16小时。反应液降温至15℃。反应液分为两批处理,每批约4.0升。一边搅拌,一边将一半反应液缓慢加入到水(15升)中,大量固体析出,过滤,滤饼用乙醇(3.0L×2)洗涤。合并两次的滤饼,用二氯甲烷:甲醇=5:1(15L)溶解,过滤,滤液加入巯基硅胶(w%=40%,220克)室温搅拌16小时,垫硅藻土过滤,同样的方法共除钯三次。滤液旋干,残余物用乙醇(3.0升)打浆,过滤,滤饼烘干得到化合物8。LCMS(ESI)m/z:416.2(M+1)。
第6步:
向5.0升三口烧瓶中加入乙酸乙酯(2.35升),开启搅拌,加入化合物8(470克,1.08摩尔),固体不能完全溶解得到白色悬浊液,用恒压滴液漏斗滴加盐酸/乙酸乙酯(4摩尔/升,2.35升),加毕,室温搅拌反应16小时,反应过滤得到式(I)化合物的盐酸盐。式(I)化合物的盐酸盐用乙酸乙酯(2.0升)淋洗后抽干。滤饼用1.50L水溶解,丢弃有机相,水相转入5.0升三口瓶中,搅拌下,滴加1摩尔/升氢氧化钠水溶液至PH~11,大量白色固体析出,过滤,得到式(I)化合物。 1H NMR(400MHz,DMSO-d 6)δ11.76(s,1H),8.29(s,1H),8.15(s,1H),7.95(s,1H),6.30(s,1H),3.97(s,3H),3.02(d,J=12.0Hz,2H),2.78(ddd,J=11.6,7.6,3.4Hz,2H),2.58(dd,J=12.0,10.0Hz,2H),1.93(d,J=12.2Hz,2H),1.58(qd,J=12.2,3.8Hz,2H);LCMS(ESI)m/z:316.2(M+1)。
实施例2:式(I)化合物A晶型的制备
向30升高低温夹套反应釜中加入无水甲醇(9.0L),开启搅拌,加入式(I)化合物(300克,0.92摩尔),开启加热,外温80℃,内温约65℃,甲醇开始回流,保温65℃,固体完全溶解得到澄清溶液,反应液趁热过滤,滤液转入反应釜,回流下开始滴加蒸馏水(9.0L),加毕,大量白色固体析出,自然降温至室温,室温搅拌12小时。混合物过滤,滤饼转入烘箱,减压烘干得到式(I)化合物的A晶型,XRPD检测结果如图1,TGA和DSC检测结果分别如图2和图3所示。
实施例3:式(I)化合物B晶型的制备
20℃条件下,式(I)化合物的A晶型(50克,0.158摩尔)在250mL的乙醇中搅拌21小时,混合物过滤,滤饼转入烘箱,减压烘干得到得到式(I)化合物的B晶型,XRPD检测结果如图4,TGA和DSC检测结果分别如图5和图6所示。
实施例4:式(I)化合物A晶型的稳定性实验
实验目的:
对式(I)化合物A晶型进行影响因素(高温、高湿及光照)和加速条件下(40℃/75%RH及30℃/65%RH)稳定性的考察,评估A晶型的固体稳定性。
实验方法:
1)称取式(I)化合物A晶型约1.5g置于干燥洁净的玻璃瓶中,称2份,分别标记为S1-条件-时间和S2-条件-时间,再称取约20mg置于干燥洁净的玻璃瓶中,标记为S3-条件-时间,摊成薄薄一层,作为供试样品,放置于影响因素试验条件下(40℃,60℃,25℃/75%RH,25℃/92.5%RH,光照,光照对照)和加速条件下(40℃/75%RH和30℃/65%RH),其样品为完全暴露放样。40℃,60℃,25℃/75%RH,25℃/92.5%RH在5天、10天、30天取样;光照对照在5天、10天取样分析;加速条件在1个月、2个月、3个月取样分析,分析方法如表6所示。
表6
Figure PCTCN2021141302-appb-000011
2)在考察时间点,将相应的供试样品取出,用瓶盖盖好,0天的样品从冰箱中取出,待样品恢复至室温后进行分析。标记为S1-条件-时间的供试品用于含量和有关物质检测;标记为S2-条件-时间的供试品用作备样,标记为S3-条件-时间的供试品用于XRPD检测。
实验结果:
A晶型固体稳定性实验结果如表7所示
表7晶型固体稳定性实验结果
Figure PCTCN2021141302-appb-000012
*光照(总照度可见光=5000±500lux,紫外90μw/cm 2,敞口);**与可见光+紫外同时。
实验结论:式(I)化合物A晶型具有良好的稳定性。
生物测试
实验例一:体外CDK9/CyclinT1酶活性测试
实验材料:
CDK9/CyclinT1激酶购自Carna,ADP-Glo检测试剂盒购自Promega,PKDTide底物及激酶反应缓冲液购自Signalchem。Nivo多标记分析仪(PerkinElmer)。
实验方法:
使用试剂盒里的激酶缓冲液稀释酶,底物,三磷酸腺苷和抑制剂。
将待测化合物用排枪进行5倍稀释至第8个浓度,即从50μM稀释至0.65nM,DMSO浓度为5%,设置双复孔实验。向微孔板中加入1μL抑制剂各浓度梯度,2μL CDK9/CyclinT1酶(4ng),2μL底物和ATP的混合物(100μM三磷酸腺苷,0.2μg/μL底物),此时化合物终浓度梯度为10μM稀释至0.13nM。反应体系置于25℃反应120分钟。反应结束后,每孔加入5μL ADP-Glo试剂,25℃继续反应40分钟,结束反应后每孔加入10μL的激酶检测试剂,25℃反应30分钟后采用多标记分析仪读数化学发光,积分时间0.5秒。数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。表8提供了本发明的化合物对CDK9/CyclinT1酶学抑制活性。
实验结论:
式(I)化合物对CDK9激酶具有良好的活性,和参照化合物BAY1251152和AZD4573活性类似。
实验例二:体外CDK1/CyclinB1酶活性测试
实验材料:
CDK1/CyclinB1激酶检测试剂盒购自Promega。Nivo多标记分析仪(PerkinElmer)。
实验方法:
使用试剂盒里的激酶缓冲液稀释酶,底物,三磷酸腺苷和抑制剂。
将待测化合物用排枪进行5倍稀释至第8个浓度,即从50μM稀释至0.65nM,DMSO浓度为5%,设置双复孔实验。向微孔板中加入1μL抑制剂各浓度梯度,2μL CDK1/CyclinB1酶(12.5ng),2μL底物和ATP的混合物(25μM三磷酸腺苷,0.2μg/μL底物),此时化合物终浓度梯度为10μM稀释至0.13nM。反应体系置于25℃反应120分钟。反应结束后,每孔加入5μL ADP-Glo试剂,25℃继续反应40分钟,结束反应后每孔加入10μL的激酶检测试剂,25℃反应30分钟后采用多标记分析仪读数化学发光,积分时间0.5秒。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。表6提供了本发明的化合物对CDK1/CyclinB1酶学抑制活性。
实验结论:
式(I)化合物对CDK1激酶的抑制活性不强,所以,本发明化合物表现出对CDK1的选择性好于BAY1251152和AZD4573,实验结果如表8所示。
实验例三:体外CDK2/CyclinE1酶活性测试
实验材料:
CDK2/CyclinE1激酶检测试剂盒购自Promega。Nivo多标记分析仪(PerkinElmer)。
实验方法:
使用试剂盒里的激酶缓冲液稀释酶,底物,三磷酸腺苷和抑制剂。
将待测化合物用排枪进行5倍稀释至第8个浓度,即从50μM稀释至0.65nM,DMSO浓度为5%,设置双复孔实验。向微孔板中加入1μL抑制剂各浓度梯度,2μL CDK2/CyclinE1酶(2ng),2μL底物和ATP的混合物(150μM三磷酸腺苷,0.1μg/μL底物),此时化合物终浓度梯度为10μM稀释至0.13nM。反应体系置于25℃反应60分钟。反应结束后,每孔加入5μL ADP-Glo试剂,25℃继续反应40分钟,结束反应后每孔加入10μL的激酶检测试剂,25℃反应30分钟后采用多标记分析仪读数化学发光,积分时间0.5秒。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。表8提供了本发明的化合物对CDK2/CyclinE1酶学抑制活性。
实验结论:
式(I)化合物对CDK2激酶的抑制活性不强,所以,本发明化合物表现出对CDK2的选择性好于BAY1251152和AZD4573,实验结果如表8所示。
实验例四:体外细胞活性测试
实验材料:
IMDM培养基,胎牛血清,盘尼西林/链霉素抗生素购自Promega(Madison,WI)。MV-4-11细胞系购自中国科学院细胞库。Nivo多标记分析仪(PerkinElmer)。
实验方法:
将MV-4-11细胞种于白色96孔板中,80μL细胞悬液每孔,其中包含6000个MV-4-11细胞。细胞板置于二氧化碳培养箱中过夜培养。
将待测化合物用排枪进行5倍稀释至第8个浓度,即从2mM稀释至26nM,设置双复孔实验。向中间板中加入78μL培养基,再按照对应位置,转移2μL每孔的梯度稀释化合物至中间板,混匀后转移20μL每孔到细胞板中。化合物终浓度为10μM至0.13nM。细胞板置于二氧化碳培养箱中培养3天。
向细胞板中加入每孔25μL的Promega CellTiter-Glo试剂,室温孵育10分钟使发光信号稳定。采用PerkinElmer Nivo多标记分析仪读数。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中"log(inhibitor)vs.response--Variable slope"模式得出)。表8提供了本发明的化合物对MV-4-11细胞增殖的抑制活性。
实验结论:
式(I)化合物对MV4-11具有良好的细胞抗增殖活性。实验结果如表8所示:
表8激酶及细胞活性结果
Figure PCTCN2021141302-appb-000013
实验例五:体内药效研究
在皮下植入MV4-11急性髓系白血病患者来源的基于人源肿瘤细胞系的异种移植(CDX)BALB/c裸小鼠上进行体内药效实验。
实验操作:
BALB/c裸鼠,雌性,6-8周,体重约18-22克,将小鼠保持在一个特殊的无病原体的环境中,且在单个通风笼中(3只小鼠每笼)。所有的笼子,铺垫和水在使用前进行消毒。所有的动物都可以自由获取标准认证的商业实验室饮食。共有36只购于上海灵畅生物科技有限公司(Shanghai Lingchang biological science and technology Co.,LTD.)的小鼠用于研究。每只小鼠在右胁腹皮下植入肿瘤细胞(10×10 6在0.2毫升磷酸盐缓冲液中),用于肿瘤的生长。当平均肿瘤体积达到约121立方毫米时开始给药。将试验化合物每周注射给药,给药剂量为10毫克/公斤。肿瘤体积每周2次用二维卡尺测量,体积以立方毫米计量,通过以下公式计算:V=0.5a×b 2,其中a和b分别是肿瘤的长径和短径。抗肿瘤药效是通过用化合物处理过的动物的平均肿瘤增加体积除以未处理过动物的平均肿瘤增加体积来确定。
实验结论:
在MV4-11急性髓系白血病CDX体内药效模型中,式(I)化合物展现良好的药效和安全性。体内药效结果如表9所示:
表9体内药效结果
Figure PCTCN2021141302-appb-000014

Claims (23)

  1. 式(Ⅰ)化合物的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22±0.20°、17.16±0.20°和22.34±0.20°;
    Figure PCTCN2021141302-appb-100001
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22±0.20°、15.24±0.20°、15.80±0.20°、17.16±0.20°、20.70±0.20°、22.34±0.20°、24.46±0.20°和31.74±0.20°。
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22±0.20°、8.76±0.20°、15.24±0.20°、15.80±0.20°、17.16±0.20°、19.66±0.20°、20.70±0.20°、22.34±0.20°、24.46±0.20°、25.84±0.20°、29.76±0.20°和31.74±0.20°。
  4. 根据权利要求3所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.22°、8.76°、9.84°、12.24°、15.24°、15.80°、16.22°、17.16°、17.52°、18.40°、19.26°、19.66°、20.70°、21.46°、22.34°、23.64°、24.46°、25.84°、27.10°、27.62°、28.02°、29.26°、29.76°、30.88°、31.74°、33.38°、37.10°和37.68°。
  5. 根据权利要求4所述的A晶型,其XRPD图谱基本如图1所示。
  6. 根据权利要求1~5所述的A晶型,其差示扫描量热曲线在77.71±3℃和236.85±3℃分别有一个吸热峰的起始点。
  7. 根据权利要求6所述的A晶型,其DSC图谱如图2所示。
  8. 根据权利要求1~5所述的A晶型,其热重分析曲线在200±3℃时失重达3.420%。
  9. 根据权利要求8所述的A晶型,其TGA图谱如图3所示。
  10. 式(Ⅰ)化合物的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:19.72±0.20°、21.52±0.20°和23.20±0.20°;
    Figure PCTCN2021141302-appb-100002
  11. 根据权利要求10所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.74±0.20°、16.22±0.20°、19.72±0.20°、20.58±0.20°、21.52±0.20°、22.30±0.20°、23.20±0.20°和28.04±0.20°。
  12. 根据权利要求11所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92±0.20°、10.74±0.20°、16.22±0.20°、17.66±0.20°、19.72±0.20°、20.58±0.20°、21.52±0.20°、22.30±0.20°、23.20±0.20°、23.88±0.20°、26.54±0.20°、27.48±0.20°和28.04±0.20°。
  13. 根据权利要求12所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92°、10.74°、11.42°、13.52°、13.76°、15.86°、16.22°、16.52°、17.66°、17.90°、18.22°、18.92°、19.72°、20.58°、21.52°、22.30°、23.20°、23.88°、25.32°、26.12°、26.54°、27.14°、27.48°、27.72°、28.04°、28.52°、28.96°、29.20°、29.74°、30.24°、30.58°、31.56°、32.54°、32.82°、33.38°、34.36°、34.75°、35.44°、36.00°、36.56°、37.08°、37.96°、38.74°和39.50°。
  14. 根据权利要求13所述的B晶型,其XRPD图谱基本如图4所示。
  15. 根据权利要求10~14所述的B晶型,其差示扫描量热曲线在257.81±3℃有一个吸热峰的起始点。
  16. 根据权利要求15所述的B晶型,其DSC图谱如图5所示。
  17. 根据权利要求10~14所述的B晶型,其热重分析曲线在200±3℃时失重达0.326%。
  18. 根据权利要求17所述的B晶型,其TGA图谱如图6所示。
  19. 根据权利要求1-9任意一项所述的式(Ⅰ)化合物A晶型的制备方法,包含如下步骤:
    1)式(I)化合物加入到无水甲醇中回流;
    2)式(I)化合物完全溶解,趁热过滤;
    3)滤液在回流状态下滴加蒸馏水,析出白色固体,自然降温至室温,室温搅拌;
    4)混合物过滤,滤饼减压烘干。
  20. 根据权利要求19所述的制备方法,其中,所述回流温度为65℃-80℃,优选为65℃。
  21. 根据权利要求19所述的制备方法,其中,搅拌时间为10-12小时,优选为12小时。
  22. 根据权利要求10-17任意一项所述的式(Ⅰ)化合物B晶型的制备方法,包含如下步骤:
    1)权利要求1-9任意一项所述的式(Ⅰ)化合物A晶型在乙醇中搅拌,过滤、滤饼减压烘干。
  23. 权利要求1~9任意一项所述的A晶型或权利要求10~18任意一项所述的B晶型在制备CDK9抑制剂药物中的应用。
PCT/CN2021/141302 2020-12-25 2021-12-24 吡啶并吡咯类化合物的晶型、制备方法及其应用 WO2022135580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180087104.9A CN116685588A (zh) 2020-12-25 2021-12-24 吡啶并吡咯类化合物的晶型、制备方法及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011563187 2020-12-25
CN202011563187.8 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022135580A1 true WO2022135580A1 (zh) 2022-06-30

Family

ID=82158840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141302 WO2022135580A1 (zh) 2020-12-25 2021-12-24 吡啶并吡咯类化合物的晶型、制备方法及其应用

Country Status (2)

Country Link
CN (1) CN116685588A (zh)
WO (1) WO2022135580A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389324A (zh) * 2005-12-23 2009-03-18 史密丝克莱恩比彻姆公司 Aurora激酶的氮杂吲哚抑制剂
CN102143746A (zh) * 2008-07-03 2011-08-03 埃克塞利希斯股份有限公司 Cdk 调节剂
CN105246890A (zh) * 2013-03-14 2016-01-13 艾伯维公司 吡咯并[2,3-b]吡啶cdk9激酶抑制剂
US20200247824A1 (en) * 2017-09-22 2020-08-06 The University Of Nottingham Heterocyclyl substituted pyrrolopyridines that are inhibitors of the cdk12 kinase
WO2020259556A1 (zh) * 2019-06-27 2020-12-30 南京明德新药研发有限公司 作为cdk9抑制剂的氮杂吲哚连吡唑类化合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389324A (zh) * 2005-12-23 2009-03-18 史密丝克莱恩比彻姆公司 Aurora激酶的氮杂吲哚抑制剂
CN102143746A (zh) * 2008-07-03 2011-08-03 埃克塞利希斯股份有限公司 Cdk 调节剂
CN105246890A (zh) * 2013-03-14 2016-01-13 艾伯维公司 吡咯并[2,3-b]吡啶cdk9激酶抑制剂
CN105324380A (zh) * 2013-03-14 2016-02-10 艾伯维公司 吡咯并[2,3-b]吡啶cdk9激酶抑制剂
US20200247824A1 (en) * 2017-09-22 2020-08-06 The University Of Nottingham Heterocyclyl substituted pyrrolopyridines that are inhibitors of the cdk12 kinase
WO2020259556A1 (zh) * 2019-06-27 2020-12-30 南京明德新药研发有限公司 作为cdk9抑制剂的氮杂吲哚连吡唑类化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY 17 January 2021 (2021-01-17), ANONYMOUS : "1H-Pyrrolo[2,3-b]pyridine, 5-chloro-4-(1-methyl-1H-pyrazol-4-yl)-2-(4- piperidinyl)-(CA INDEX NAME)", XP055944707, retrieved from STN Database accession no. 2571068-74-9 *

Also Published As

Publication number Publication date
CN116685588A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
JP5492565B2 (ja) Janusキナーゼ阻害剤としての置換複素環
EP3378861A1 (en) Acrylic acid derivative, preparation method and use in medicine thereof
CN109415361B (zh) 丙烯酸类衍生物及其制备方法和其在医药上的用途
CA2502182A1 (en) Pyrimido[4,5-d]pyrimidine derivatives with anticancer activity
EP2393814A1 (en) Pyrrolopyrimidinyl axl kinase inhibitors
JP2013510107A (ja) ベンゾジアゼピンブロモドメイン阻害剤
EP3395817B1 (en) Pyrido[1,2-a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
CN112105617B (zh) 一种***并嘧啶类化合物的晶型、盐型及其制备方法
WO2021023194A1 (zh) 吡嗪-2(1h)-酮类化合物的c晶型和e晶型及其制备方法
WO2021023195A1 (zh) 吡嗪-2(1h)-酮类化合物的d晶型及其制备方法
WO2022135580A1 (zh) 吡啶并吡咯类化合物的晶型、制备方法及其应用
US8343977B2 (en) Substituted triazolo-pyrimidine compounds
TW553945B (en) Triazolopurine derivatives, medicinal composition containing the derivatives, adenosine A3 receptor compatibilizing agent, and asthmatic remedy
WO2020238802A1 (zh) 一种c-MET/AXL抑制剂的晶型
EP1313732B1 (en) Oxindole derivatives
US11465986B2 (en) Crystal form of c-MET inhibitor and salt form thereof and preparation method therefor
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
CN115701429B (zh) 4-(1h-吲哚-1-基)嘧啶-2-氨基衍生物及其制备方法和应用
CN115093419B (zh) 一种嘧啶酮类化合物及其制备方法和医药应用
WO2021164789A1 (zh) 一种吡唑并嘧啶类化合物的晶型及其应用
CN115611867B (zh) (1,1,1-三氯-2)氨基甲酸酯类衍生物及其制备方法和应用
WO2024027825A1 (zh) 一种cdk抑制剂及其磷酸盐的多晶型
Liu et al. Synthesis and In Vitro Antitumor Activity Evaluation of Gefitinib-1, 2, 3-Triazole Derivatives
WO2019085860A1 (zh) Fgfr4抑制剂晶型及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087104.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909575

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 16.08.2023