WO2021164789A1 - 一种吡唑并嘧啶类化合物的晶型及其应用 - Google Patents

一种吡唑并嘧啶类化合物的晶型及其应用 Download PDF

Info

Publication number
WO2021164789A1
WO2021164789A1 PCT/CN2021/077255 CN2021077255W WO2021164789A1 WO 2021164789 A1 WO2021164789 A1 WO 2021164789A1 CN 2021077255 W CN2021077255 W CN 2021077255W WO 2021164789 A1 WO2021164789 A1 WO 2021164789A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
angles
ray powder
Prior art date
Application number
PCT/CN2021/077255
Other languages
English (en)
French (fr)
Inventor
黄婧婕
谭冶
王彦斌
姚婷
于涛
吴成德
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2021164789A1 publication Critical patent/WO2021164789A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the invention relates to a crystal form of a pyrazolo pyrimidine compound and a preparation method thereof, and relates to the preparation and treatment of chronic lymphocytic leukemia, small lymphocytic lymphoma, marginal zone lymphoma, follicular lymphoma, and mantle cell lymphoma. Tumors and diffuse large B-cell lymphoma related diseases.
  • Phosphatidylinositol 3-kinase (phosphatidylinositol-3-kinase, PI3K) is composed of regulatory subunit p85 or p101, and catalytic subunit p110 (subdivided into four subtypes: p110a, p110b, p110g, and p110d)
  • Lipid kinase catalyzes the phosphorylation of the inositol ring 3'-OH of phosphatidylinositol 4,5-bisphosphate (phosphatidylinositol 4,5-bisphosphate, PIP2) to phosphatidylinositol 3,4,5-triphosphate (phosphatidylinositol 4,5-bisphosphate, PIP2). 3,4,5-trisphosphate, PIP3) and activate downstream Akt, which plays a key role in cell proliferation, survival and metabolism. In tumor cells, PI3K is overexpressed, which leads to
  • the tumor suppressor gene PTEN (phosphatase, tension homolog deleted on chromosome ten) dephosphorylates PIP3 to generate PIP2, which leads to negative feedback regulation of the PI3K signaling pathway, inhibits cell proliferation and promotes cell apoptosis.
  • PTEN phosphatase, tension homolog deleted on chromosome ten
  • TGR-1202 is a second-generation PI3K ⁇ inhibitor developed by TG Therapeutic. Compared with the first-generation PI3K ⁇ inhibitor, it can significantly reduce the toxicity of liver and gastrointestinal tract in clinical trials, and patients with large B-cell lymphoma are also exposed to TGR. -1202 There is a partial response.
  • Patent WO2014006572 discloses the structure of TGR-1202.
  • ACP-196 is a second-generation BTK inhibitor that has been approved for marketing by the FDA. It has been reported in the literature (PLoS ONE 12(2):e0171221.). The combination of PI3K ⁇ inhibitors and BTK inhibitors can jointly inhibit BCR signaling from two aspects. Access, thereby playing a synergistic effect.
  • the present invention provides crystal form A of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 7.92 ⁇ 0.20°, 8.82 ⁇ 0.20°, 17.24 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.92 ⁇ 0.20°, 8.82 ⁇ 0.20°, 16.22 ⁇ 0.20°, 17.24 ⁇ 0.20°, 19.78 ⁇ 0.20°, 23.30 ⁇ 0.20°, 24.96 ⁇ 0.20°, 26.00 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.92 ⁇ 0.20°, 8.82 ⁇ 0.20°, 14.78 ⁇ 0.20°, 16.22 ⁇ 0.20°, 17.24 ⁇ 0.20°, 19.78 ⁇ 0.20°, 21.84 ⁇ 0.20°, 23.30 ⁇ 0.20°, 24.96 ⁇ 0.20°, 26.00 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction at the following 2 ⁇ angles: 4.80°, 7.92°, 8.82°, 10.26°, 11.94°, 13.82°, 14.78°, 15.46° , 16.22°, 17.24°, 18.26°, 19.78°, 21.12°, 21.84°, 22.70°, 23.30°, 24.20°, 24.96°, 26.00°, 26.58°, 27.74°, 28.56°, 29.40°, 30.76°, 32.24 °, 37.18°.
  • the XRPD pattern of the above-mentioned crystal form A is shown in FIG. 1.
  • the XRPD pattern analysis data of the above-mentioned crystal form A is shown in Table 1:
  • the differential scanning calorimetry curve of the above crystal form A has an endothermic peak at 188.9 ⁇ 3.0°C and an exothermic peak at 414.7 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form A is shown in FIG. 2.
  • thermogravimetric analysis curve of the above-mentioned crystal form A has a weight loss of 0.21% at 200.0°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form A is shown in FIG. 3.
  • the present invention also provides the B crystal form of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 10.30 ⁇ 0.20°, 11.96 ⁇ 0.20°, 19.94 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 10.30 ⁇ 0.20°, 11.96 ⁇ 0.20°, 18.04 ⁇ 0.20°, 19.94 ⁇ 0.20°, 21.54 ⁇ 0.20°, 22.72 ⁇ 0.20°, 23.58 ⁇ 0.20°, 26.18 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 10.30 ⁇ 0.20°, 11.96 ⁇ 0.20°, 13.06 ⁇ 0.20°, 18.04 ⁇ 0.20°, 19.94 ⁇ 0.20°, 21.54 ⁇ 0.20°, 22.72 ⁇ 0.20°, 23.58 ⁇ 0.20°, 26.18 ⁇ 0.20°, 26.98 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction at the following 2 ⁇ angles: 9.10°, 10.30°, 11.96°, 13.06°, 14.36°, 14.96°, 16.98°, 18.04° , 19.94°, 21.54°, 22.72°, 23.58°, 26.18°, 26.98°, 28.40°, 29.74°, 36.66°.
  • the XRPD pattern of the above-mentioned crystal form B is shown in FIG. 4.
  • the XRPD pattern analysis data of the above-mentioned crystal form B is shown in Table 2:
  • the differential scanning calorimetry curve of the above-mentioned crystal form B has an endothermic peak at 126.6 ⁇ 3.0°C and 187.9 ⁇ 3.0°C, and an exothermic peak at 415.7 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form B is shown in FIG. 5.
  • thermogravimetric analysis curve of the above-mentioned crystal form B has a weight loss of 0.31% at 200.0°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form B is shown in FIG. 6.
  • the present invention also provides crystal form C of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 10.28 ⁇ 0.20°, 11.90 ⁇ 0.20°, 23.30 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 10.28 ⁇ 0.20°, 10.78 ⁇ 0.20°, 11.90 ⁇ 0.20°, 12.86 ⁇ 0.20°, 17.92 ⁇ 0.20°, 22.88 ⁇ 0.20°, 23.30 ⁇ 0.20°, 26.26 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 10.28 ⁇ 0.20°, 10.78 ⁇ 0.20°, 11.90 ⁇ 0.20°, 12.86 ⁇ 0.20°, 14.92 ⁇ 0.20°, 17.92 ⁇ 0.20°, 22.88 ⁇ 0.20°, 23.30 ⁇ 0.20°, 25.52 ⁇ 0.20°, 26.26 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction at the following 2 ⁇ angles: 7.42°, 8.36°, 9.04°, 10.28°, 10.78°, 11.90°, 12.86°, 14.38° , 14.92°, 16.06°, 16.74°, 17.92°, 19.06°, 19.94°, 20.58°, 21.28°, 22.88°, 23.30°, 23.76°, 25.52°, 26.00°, 26.26°, 26.94°, 27.93°, 28.90 °, 29.96°, 30.63°, 31.30°, 32.32°, 33.28°, 33.90°.
  • the XRPD pattern of the above-mentioned crystal form C is shown in FIG. 7.
  • the XRPD pattern analysis data of the above-mentioned crystal form C is shown in Table 3:
  • the differential scanning calorimetry curve of the above crystal form C has an endothermic peak at 122.0 ⁇ 3.0°C and 180.1 ⁇ 3.0°C, respectively.
  • the DSC spectrum of the above-mentioned crystal form C is shown in FIG. 8.
  • thermogravimetric analysis curve of the above-mentioned crystal form C has a weight loss of 4.31% at 200.0°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form C is shown in FIG. 9.
  • the present invention also provides the D crystal form of the compound of formula (I), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 10.10 ⁇ 0.20°, 11.56 ⁇ 0.20°, 22.90 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form D has characteristic diffraction peaks at the following 2 ⁇ angles: 10.10 ⁇ 0.20°, 11.56 ⁇ 0.20°, 17.80 ⁇ 0.20°, 19.98 ⁇ 0.20°, 20.80 ⁇ 0.20°, 22.90 ⁇ 0.20°, 23.68 ⁇ 0.20°, 25.68 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form D has characteristic diffraction peaks at the following 2 ⁇ angles: 10.10 ⁇ 0.20°, 11.56 ⁇ 0.20°, 14.68 ⁇ 0.20°, 17.80 ⁇ 0.20°, 19.98 ⁇ 0.20°, 20.80 ⁇ 0.20°, 22.90 ⁇ 0.20°, 23.68 ⁇ 0.20°, 25.00 ⁇ 0.20°, 25.68 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form D has characteristic diffraction at the following 2 ⁇ angles: 4.48°, 8.26°, 9.00°, 10.10°, 10.56°, 11.56°, 12.40°, 12.72° , 14.26°, 14.68°, 15.90°, 16.56°, 17.80°, 18.76°, 19.58°, 19.98°, 20.26°, 20.80°, 21.28°, 21.72°, 22.90°, 23.68°, 25.00°, 25.68°, 26.20 °, 26.84°, 27.88°, 28.74°, 29.46°, 29.96°, 30.80°, 32.18°, 32.86°, 33.60°, 33.98°, 35.90°, 37.46°, 38.36°.
  • the XRPD pattern of the above-mentioned crystal form D is shown in FIG. 10.
  • the XRPD pattern analysis data of the above-mentioned crystal form D is shown in Table 4:
  • the differential scanning calorimetry curve of the above-mentioned crystal form D has an endothermic peak at 129.2 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form D is shown in FIG. 11.
  • thermogravimetric analysis curve of the above-mentioned crystal form D has a weight loss of 9.06% at 200.0°C ⁇ 3.0°C.
  • the TGA spectrum of the above-mentioned crystal form D is shown in FIG. 12.
  • the present invention provides compounds of formula (II).
  • n is selected from 1 to 2, preferably 1 or 1.1 or 2.
  • the present invention also provides the E crystal form of the compound of formula (II), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 4.14 ⁇ 0.20°, 7.56 ⁇ 0.20°, 14.61 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 4.14 ⁇ 0.20°, 7.56 ⁇ 0.20°, 9.46 ⁇ 0.20°, 14.61 ⁇ 0.20°, 15.30 ⁇ 0.20°, 19.39 ⁇ 0.20°, 22.00 ⁇ 0.20°, 25.09 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form E has characteristic diffraction peaks at the following 2 ⁇ angles: 4.14 ⁇ 0.20°, 7.56 ⁇ 0.20°, 9.46 ⁇ 0.20°, 12.40 ⁇ 0.20°, 14.61 ⁇ 0.20°, 15.30 ⁇ 0.20°, 19.39 ⁇ 0.20°, 20.33 ⁇ 0.20°, 22.00 ⁇ 0.20°, 25.09 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form E has characteristic diffraction at the following 2 ⁇ angles: 4.14°, 7.56°, 9.08°, 9.46°, 10.25°, 12.40°, 12.78°, 14.61° , 15.30°, 16.11°, 16.69°, 19.39°, 20.33°, 22.00°, 22.74°, 23.00°, 23.20°, 25.09°, 27.33°.
  • the XRPD pattern of the above-mentioned crystal form E is shown in FIG. 13.
  • the XRPD pattern analysis data of the above-mentioned crystal form E is shown in Table 5:
  • the differential scanning calorimetry curve of the above crystal form E has an endothermic peak at 169.49 ⁇ 3.0°C and 198.33 ⁇ 3.0°C, respectively.
  • the DSC spectrum of the above-mentioned crystal form E is shown in FIG. 14.
  • thermogravimetric analysis curve of the above crystal form E has a weight loss of 3.453% at 113.05°C ⁇ 3.0°C, and a weight loss of 3.537% at 179.56°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form E is shown in FIG. 15.
  • the present invention provides compounds of formula (III).
  • m is selected from 0.5 to 2, preferably 0.5 or 1 or 1.1.
  • the present invention also provides the F crystal form of the compound of formula (III), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.12 ⁇ 0.20°, 6.41 ⁇ 0.20°, 10.38 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form F has characteristic diffraction peaks at the following 2 ⁇ angles: 5.12 ⁇ 0.20°, 6.41 ⁇ 0.20°, 7.54 ⁇ 0.20°, 10.38 ⁇ 0.20°, 12.80 ⁇ 0.20°, 19.98 ⁇ 0.20°, 24.82 ⁇ 0.20°, 25.72 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form F has characteristic diffraction peaks at the following 2 ⁇ angles: 5.12 ⁇ 0.20°, 6.41 ⁇ 0.20°, 7.54 ⁇ 0.20°, 10.38 ⁇ 0.20°, 12.80 ⁇ 0.20°, 13.40 ⁇ 0.20°, 16.24 ⁇ 0.20°, 19.98 ⁇ 0.20°, 24.82 ⁇ 0.20°, 25.72 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form F has characteristic diffraction at the following 2 ⁇ angles: 5.12°, 6.41°, 7.54°, 7.98°, 10.38°, 12.36°, 12.80°, 13.40° , 16.24°, 17.52°, 17.89°, 18.61°, 19.22°, 19.63°, 19.98°, 20.96°, 22.39°, 22.81°, 23.45°, 24.82°, 25.72°, 27.31°, 28.39°, 29.92°, 30.99 °.
  • the XRPD pattern of the above-mentioned crystal form F is shown in FIG. 16.
  • the XRPD pattern analysis data of the above-mentioned crystal form F is shown in Table 6:
  • the differential scanning calorimetry curve of the above crystal form F has an endothermic peak at 126.43 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form F is shown in FIG. 17.
  • thermogravimetric analysis curve of the above-mentioned crystal form F has a weight loss of 1.726% at 84.88°C ⁇ 3.0°C, and a weight loss of 6.580% at 185.53°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form F is shown in FIG. 18.
  • the present invention provides compounds of formula (IV).
  • o is selected from 1.
  • the present invention also provides the G crystal form of the compound of formula (IV), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.08 ⁇ 0.20°, 8.58 ⁇ 0.20°, 12.21 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form G has characteristic diffraction peaks at the following 2 ⁇ angles: 4.12 ⁇ 0.20°, 5.43 ⁇ 0.20°, 6.08 ⁇ 0.20°, 8.58 ⁇ 0.20°, 12.21 ⁇ 0.20°, 16.83 ⁇ 0.20°, 20.69 ⁇ 0.20°, 21.20 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form G has characteristic diffraction at the following 2 ⁇ angles: 4.12°, 5.43°, 6.08°, 8.58°, 8.80°, 12.21°, 12.40°, 16.63° , 16.83°, 20.69°, 21.20°, 25.02°.
  • the XRPD pattern of the above-mentioned crystal form G is shown in FIG. 19.
  • the XRPD pattern analysis data of the above-mentioned crystal form G is shown in Table 7:
  • the differential scanning calorimetry curve of the above-mentioned crystal form G has an endothermic peak at 149.27 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form G is shown in FIG. 20.
  • thermogravimetric analysis curve of the above crystal form G has a weight loss of 0.652% at 99.16°C ⁇ 3.0°C, and a weight loss of 0.888% at 183.57°C ⁇ 3.0°C.
  • the TGA spectrum of the above-mentioned crystal form G is shown in FIG. 21.
  • the present invention also provides the H crystal form of the compound of formula (IV), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 3.17 ⁇ 0.20°, 6.00 ⁇ 0.20°, 8.50 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form H has characteristic diffraction peaks at the following 2 ⁇ angles: 3.17 ⁇ 0.20°, 6.00 ⁇ 0.20°, 8.50 ⁇ 0.20°, 12.28 ⁇ 0.20°, 15.73 ⁇ 0.20°, 19.87 ⁇ 0.20°, 20.59 ⁇ 0.20°, 21.85 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form H has characteristic diffraction at the following 2 ⁇ angles: 3.17°, 6.00°, 8.50°, 8.76°, 12.28°, 15.73°, 19.87°, 20.59° , 21.85°, 25.96°.
  • the XRPD pattern of the above-mentioned crystal form H is shown in FIG. 22.
  • the differential scanning calorimetry curve of the above crystal form H has an endothermic peak at 146.13 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form H is shown in FIG. 24.
  • thermogravimetric analysis curve of the above crystal form H has a weight loss of 4.637% at 167.09°C ⁇ 3.0°C.
  • the TGA spectrum of the above-mentioned crystal form H is shown in FIG. 24.
  • the present invention provides compounds of formula (V).
  • p is selected from 0.5 to 2, preferably 0.5 or 0.67 or 1 or 1.1.
  • the present invention also provides the I crystal form of the compound of formula (V), which is characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 5.08 ⁇ 0.20°, 10.23 ⁇ 0.20°, 16.24 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form I has characteristic diffraction peaks at the following 2 ⁇ angles: 5.08 ⁇ 0.20°, 6.30 ⁇ 0.20°, 7.45 ⁇ 0.20°, 10.23 ⁇ 0.20°, 12.60 ⁇ 0.20°, 16.24 ⁇ 0.20°, 19.81 ⁇ 0.20°, 24.56 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form I has characteristic diffraction peaks at the following 2 ⁇ angles: 5.08 ⁇ 0.20°, 6.30 ⁇ 0.20°, 7.45 ⁇ 0.20°, 10.23 ⁇ 0.20°, 12.60 ⁇ 0.20°, 16.24 ⁇ 0.20°, 19.81 ⁇ 0.20°, 20.92 ⁇ 0.20°, 22.19 ⁇ 0.20°, 24.56 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form I has characteristic diffraction at the following 2 ⁇ angles: 3.78°, 5.08°, 6.30°, 7.45°, 7.96°, 10.23°, 11.62°, 12.35° , 12.60°, 13.21°, 16.24°, 18.54°, 19.81°, 20.20°, 20.92°, 22.19°, 22.49°, 24.56°, 25.33°, 25.55°, 27.14°, 29.58°.
  • the XRPD pattern of the above-mentioned crystal form I is shown in FIG. 25.
  • the differential scanning calorimetry curve of the above-mentioned crystal form I has an endothermic peak at 128.77 ⁇ 3.0°C and 162.07 ⁇ 3.0°C, respectively.
  • the DSC spectrum of the above-mentioned crystal form I is shown in FIG. 26.
  • thermogravimetric analysis curve of the above-mentioned crystal form I has a weight loss of 3.564% at 168.36°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form I is shown in FIG. 27.
  • the present invention also provides the preparation of the crystal form of compound A of formula (I), including:
  • the alcohol solvent is methanol or ethanol
  • the present invention also provides that the above-mentioned compound or crystal form A or crystal form B or crystal form C or crystal form D or crystal form E or crystal form F or crystal form G or crystal form H or crystal form I are used in the preparation and treatment of chronic lymphocytic leukemia, Small lymphocytic lymphoma, marginal zone lymphoma, follicular lymphoma, mantle cell lymphoma and diffuse large B-cell lymphoma drugs.
  • the crystalline forms of the compound of the present invention are stable, are less affected by light, heat and humidity, and have good drug efficacy for in vivo administration.
  • the compound has a broad prospect of preparation; the compound of formula (I) can well inhibit the activity of PI3K kinase, and at the same time has a better effect on PI3K ⁇ / ⁇ / ⁇ .
  • High subtype selectivity; the compound of formula (I) has a lower plasma protein binding rate, that is, more free drugs in the body, and exhibits high exposure, low clearance, and good oral biology in mice Availability:
  • the combination of the compound of formula (I) and the second-generation BTK inhibitor ACP-196 showed a significant tumor regression effect in the TMD-8 mouse subcutaneous xenograft model.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the field.
  • the single crystal X-ray diffraction method uses the Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultivated single crystal.
  • the light source is CuK ⁇ radiation.
  • the scanning method ⁇ / ⁇ scanning. After the relevant data is collected, the direct method is further adopted. (Shelxs97) By analyzing the crystal structure, the absolute configuration can be confirmed.
  • EtOH stands for ethanol
  • MeOH stands for methanol
  • TFA trifluoroacetic acid
  • TsOH stands for p-toluenesulfonic acid
  • mp stands for melting point
  • EtSO3H stands for ethanesulfonic acid
  • MeSO3H stands for methanesulfonic acid
  • THF stands for tetrahydrofuran
  • EtOAc stands for ethyl acetate
  • NBS stands for N-bromosuccinimide
  • Pd(dppf)Cl 2 stands for [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride
  • Pd( PPh 3 ) 4 represents tetrakis(triphenylphosphine)palladium.
  • Test method Approximately 10-20mg sample is used for XRPD detection.
  • Light tube voltage 40kV
  • light tube current 40mA
  • Test method Approximately 10-20mg sample is used for XRPD detection.
  • Light tube voltage 40kV
  • light tube current 40mA
  • Test method Take a sample (4.08mg) and place it in a DSC aluminum pan for testing. Heat the sample from 30°C to 450°C at a temperature increase rate of 10°C/min under a nitrogen condition of 50 mL/min.
  • Test method Take a sample (0.5mg ⁇ 1mg) into a DSC aluminum pan for testing, and heat the sample from 30°C to 250°C at a temperature increase rate of 10°C/min under a nitrogen condition of 50mL/min.
  • TGA Thermal Gravimetric Analyzer
  • Test method Take a sample (5.95 mg) and place it in a TGA alumina crucible for testing. Heat the sample from room temperature to 300°C at a heating rate of 20°C/min under 25mL/min nitrogen conditions.
  • TGA Thermal Gravimetric Analyzer
  • Test method Take a sample (2 ⁇ 5mg) and place it in a TGA platinum pot for testing. Under 25mL/min nitrogen conditions, at a heating rate of 10°C/min, heat the sample from room temperature to 300°C or a weight loss of 20%.
  • Fig. 1 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound A of formula (I).
  • Figure 2 is a DSC spectrum of the crystal form of compound A of formula (I).
  • Figure 3 is a TGA spectrum of the crystal form of compound A of formula (I).
  • Fig. 4 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound B of formula (I).
  • Figure 5 is a DSC chart of the crystal form of compound B of formula (I).
  • Figure 6 is a TGA spectrum of the crystal form of compound B of formula (I).
  • Fig. 7 is an XRPD spectrum of Cu-K ⁇ radiation of the crystalline form C of compound of formula (I).
  • Fig. 8 is a DSC chart of the crystal form of compound C of formula (I).
  • Figure 9 is a TGA spectrum of the crystal form of compound C of formula (I).
  • Fig. 10 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form D of compound of formula (I).
  • Figure 11 is a DSC chart of the crystalline form D of compound of formula (I).
  • Figure 12 is a TGA spectrum of the crystal form D of compound of formula (I).
  • Fig. 13 is an XRPD spectrum of Cu-K ⁇ radiation of the E crystal form of compound of formula (II).
  • Fig. 14 is a DSC chart of the crystal form of compound E of formula (II).
  • Figure 15 is a TGA spectrum of the crystal form E of compound of formula (II).
  • Figure 16 is an XRPD spectrum of Cu-K ⁇ radiation of the F crystal of the compound of formula (III).
  • Figure 17 is a DSC chart of the crystal form F of the compound of formula (III).
  • Figure 18 is a TGA spectrum of the F crystal form of the compound of formula (III).
  • Fig. 19 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form G of compound of formula (IV).
  • Fig. 20 is a DSC chart of the crystalline form G of compound of formula (IV).
  • Figure 21 is a TGA spectrum of the crystal form G of compound of formula (IV).
  • Fig. 22 is an XRPD spectrum of Cu-K ⁇ radiation of the H crystal form of compound of formula (IV).
  • Fig. 23 is a DSC chart of the crystal form H of compound of formula (IV).
  • Figure 24 is a TGA spectrum of the crystal form H of compound of formula (IV).
  • Fig. 25 is an XRPD spectrum of Cu-K ⁇ radiation of the crystalline form of compound I of formula (V).
  • Figure 26 is a DSC spectrum of the crystalline form of compound I of formula (V).
  • Figure 27 is a TGA spectrum of the crystal form of compound I of formula (V).
  • Triethylamine (4.91g, 48.57mmol, 6.76mL, 10eq) was added, and after stirring at -78°C for 1 hour, the reaction solution was raised to 25°C and stirred for 1 hour.
  • dichloromethane (20 mL) was added to the reaction solution at 0° C., water (10 mL) was added slowly to quench the reaction, and the reaction was extracted with dichloromethane (30 mL*3). The organic phases were combined, dried over anhydrous sodium sulfate, and concentrated to obtain the target compound BB-1-8.
  • WX001-6 was purified by supercritical fluid chromatography (column: DAICEL CHIRALPAK AD-H (250mm*30mm, 5 ⁇ m); mobile phase: [0.1% ammonia in ethanol]; B%: 22%-22%, 8min) (B It is 0.1% ammonia in ethanol) to obtain the compound of formula (I) (retention time is 2.29 min), and the structure of the compound of formula (I) is confirmed by a single crystal to be correct.
  • supercritical fluid chromatography column: DAICEL CHIRALPAK AD-H (250mm*30mm, 5 ⁇ m); mobile phase: [0.1% ammonia in ethanol]; B%: 22%-22%, 8min) (B It is 0.1% ammonia in ethanol) to obtain the compound of formula (I) (retention time is 2.29 min), and the structure of the compound of formula (I) is confirmed by a single crystal to be correct.
  • the lipid kinase reaction is carried out under the conditions of a suitable substrate and ATP, followed by two steps to detect the kinase activity with the ADP-Glo TM kit.
  • the first step terminate the kinase reaction, in which the residual ATP is completely removed, and only ADP is retained; the second step: add kinase detection reagent to convert ADP into ATP, accompanied by a luciferin/luciferase reaction. Finally, the fluorescence value output is converted into kinase activity.
  • the conditions for testing PI3K enzyme activity are shown in Table 13.
  • Kit ADP-Glo TM lipid kinase and PIP2:3PS kit (Promega#V1792)
  • the kit contains: 1mM PIP2:3PS, 10 ⁇ lipid dilution buffer, 1M magnesium chloride, 10mM ATP, 10mM ADP, ADP-Glo reagent, detection buffer and detection substrate.
  • reaction buffer 500mM HEPES (4-hydroxyethylpiperazine ethanesulfonic acid), pH 7.5, 500mM NaCl, 9mM MgCl 2 ; BSA: 10% stock solution, homemade
  • Reaction system 3 ⁇ L enzyme and substrate mixture (1:1) + 2 ⁇ L ATP/MgCl 2 mixture + 5 ⁇ L ADP-Glo reagent + 10 ⁇ L detection reagent.
  • the compound was diluted three-fold from the highest concentration of 0.111 mM for a total of 10 concentrations.
  • the compound was diluted three-fold from the highest concentration of 1.11 mM for a total of 10 concentrations.
  • DMEM medium (Invitrogen, Cat#11965126) to dilute the compound to 10 ⁇ M (1mL medium + 1 ⁇ l 10mM compound stock solution), and dilute in 4 times volume successively, and dilute 8 gradients (40 ⁇ l solution of the previous gradient + 120 ⁇ l dilution gradient The solution).
  • the tumor cell lines were cultured in an incubator at 37°C and 5% CO 2 according to the culture conditions shown in Table 2. Passage regularly, and take the cells in the logarithmic growth phase for plating.
  • the culture plate is placed at room temperature for 10 minutes to stabilize the luminescence signal.
  • the compound of formula (I) can well inhibit the activity of PI3K kinase, and at the same time has a high subtype selectivity for PI3K ⁇ / ⁇ / ⁇ . In addition, it can also well inhibit the phosphorylation level of Akt downstream of PI3K in cells.
  • mice Female Balb/c mice as the test animal, after a single administration, the blood concentration of the compound was measured and the pharmacokinetic behavior was evaluated.
  • mice 8 healthy adult female Balb/c mice, 4 as the intravenous injection group and 4 as the oral group.
  • the compound to be tested is mixed with an appropriate amount of intravenous group solvent (DMSO/PEG200/water (5:45:50v/v/v)), vortexed and sonicated to prepare a clear solution of 1.0 mg/mL, filtered by a microporous membrane for use
  • the solvent of the oral group is 0.5% MC/0.2% Tween 80.
  • the test compound is mixed with the solvent, vortex and sonicate to prepare a 1.0 mg/mL homogeneous suspension for later use.
  • PPB% plasma protein binding rate
  • oral administration pharmacokinetic parameters Cmax: the highest concentration of the drug in the body
  • F% oral bioavailability
  • Oral DNAUC area under the normalized dose curve
  • intravenous Pharmacokinetic parameters of administration by injection Vd: apparent volume of distribution
  • Cl clearance rate
  • T 1/2 half-life
  • the compound of formula (I) has a lower plasma protein binding rate, that is, more free drugs in the body, and exhibits high exposure, low clearance rate, and good oral bioavailability in mice.
  • Human lymphoma TMD-8 cells (Shanghai Junrui-UFBN1682) were cultured in a monolayer in vitro, and the culture conditions were RPMI 1640 medium with 10% fetal bovine serum, 100U/mL penicillin and 100 ⁇ g/mL streptomycin, 37°C5% CO 2 culture. Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90%, collect the cells, count, and inoculate
  • TMD-8 cells (with matrigel, volume ratio 1:1) were subcutaneously inoculated into each mouse when the average volume of the right back tumor reached 99 mm 3 and was administered in groups.
  • Vehicle group 0.5% MC/0.2% Tween 80/99.3% water.
  • Test compound group Weigh a quantitative test compound in a brown dispensing bottle, add a corresponding volume of solvent and vortex to obtain a uniform suspension or clear solution.
  • the experimental index is to investigate whether the tumor growth is inhibited, delayed or cured.
  • the tumor diameter was measured with vernier calipers twice a week.
  • TGI (%) [1- (Average tumor volume at the end of a certain treatment group-the average tumor volume at the beginning of the treatment group) / (Average tumor volume at the end of the solvent control group- The average tumor volume at the start of treatment in the solvent control group)] ⁇ 100%.

Abstract

本发明公开了一种吡唑并嘧啶类化合物的晶型及其制备方法,并涉及其在制备治疗慢性淋巴细胞白血病、小淋巴细胞淋巴瘤、边缘带淋巴瘤、滤泡性淋巴瘤、套细胞淋巴瘤和弥漫性大B细胞淋巴瘤相关疾病的药物中的应用。

Description

一种吡唑并嘧啶类化合物的晶型及其应用
本申请主张如下优先权
CN202010110671.9,申请日:2020-02-21。
技术领域
本发明涉及一种吡唑并嘧啶类化合物的晶型及其制备方法,并涉及其在制备治疗慢性淋巴细胞白血病、小淋巴细胞淋巴瘤、边缘带淋巴瘤、滤泡性淋巴瘤、套细胞淋巴瘤和弥漫性大B细胞淋巴瘤相关疾病的药物中的应用。
背景技术
磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase,PI3K)为一种由调节亚单位p85或p101,以及催化亚单位p110(又分为p110a,p110b,p110g,p110d四种亚型)组成的脂激酶,通过催化磷脂酰肌醇4,5-二磷酸(phosphatidylinositol 4,5-bisphosphate,PIP2)的肌醇环3’-OH磷酸化为磷脂酰肌醇3,4,5-三磷酸(phosphatidylinositol 3,4,5-trisphosphate,PIP3)而激活下游的Akt等从而对细胞的增殖、生存和代谢等起关键作用。在肿瘤细胞中,PI3K过度表达,从而导致肿瘤细胞的快速增殖和生长。
肿瘤抑制基因PTEN(phosphatase,tension homolog deleted on chromosome ten)使PIP3去磷酸化生成PIP2,从而导致PI3K信号通路的负反馈调节,抑制细胞增殖和促进细胞凋亡。PI3K基因突变和扩增在癌症中屡有发生,以及PTEN基因在癌症中缺失等都提示PI3K的过度表达与肿瘤发生密切相关。
TGR-1202是由TG Therapeutic公司开发的第二代PI3Kδ抑制剂,在临床试验中较第一代PI3Kδ抑制剂能显著降低肝及胃肠道毒副反应,并且大B细胞淋巴瘤病人也对TGR-1202有部分应答。专利WO2014006572中公开了TGR-1202的结构。ACP-196是已经被FDA批准上市的第二代BTK抑制剂,有文献报道(PLoS ONE 12(2):e0171221.),PI3Kδ抑制剂与BTK抑制剂联用能够从两个方面共同抑制BCR信号通路,从而起到协同作用。
Figure PCTCN2021077255-appb-000001
发明内容
本发明提供了式(I)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征 衍射峰:7.92±0.20°,8.82±0.20°,17.24±0.20°。
Figure PCTCN2021077255-appb-000002
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92±0.20°,8.82±0.20°,16.22±0.20°,17.24±0.20°,19.78±0.20°,23.30±0.20°,24.96±0.20°,26.00±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92±0.20°,8.82±0.20°,14.78±0.20°,16.22±0.20°,17.24±0.20°,19.78±0.20°,21.84±0.20°,23.30±0.20°,24.96±0.20°,26.00±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:4.80°,7.92°,8.82°,10.26°,11.94°,13.82°,14.78°,15.46°,16.22°,17.24°,18.26°,19.78°,21.12°,21.84°,22.70°,23.30°,24.20°,24.96°,26.00°,26.58°,27.74°,28.56°,29.40°,30.76°,32.24°,37.18°。
在本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1.A晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000003
Figure PCTCN2021077255-appb-000004
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在188.9±3.0℃有一个吸热峰的峰值;在414.7±3.0℃有一个放热峰的峰值。
在本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线在200.0℃±3.0℃时失重达0.21%。
在本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
本发明还提供了式(I)化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.30±0.20°,11.96±0.20°,19.94±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.30±0.20°,11.96±0.20°,18.04±0.20°,19.94±0.20°,21.54±0.20°,22.72±0.20°,23.58±0.20°,26.18±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.30±0.20°,11.96±0.20°,13.06±0.20°,18.04±0.20°,19.94±0.20°,21.54±0.20°,22.72±0.20°,23.58±0.20°,26.18±0.20°,26.98±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:9.10°,10.30°,11.96°,13.06°,14.36°,14.96°,16.98°,18.04°,19.94°,21.54°,22.72°,23.58°,26.18°,26.98°,28.40°,29.74°,36.66°。
在本发明的一些方案中,上述B晶型,其XRPD图谱如图4所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2.B晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000005
在本发明的一些方案中,上述B晶型的差示扫描量热曲线分别在126.6±3.0℃和187.9±3.0℃有一个吸热峰的峰值;在415.7±3.0℃一个放热峰的峰值。
在本发明的一些方案中,上述B晶型的DSC图谱如图5所示。
在本发明的一些方案中,上述B晶型的热重分析曲线在200.0℃±3.0℃时失重达0.31%。
在本发明的一些方案中,上述B晶型的TGA图谱如图6所示。
本发明还提供了式(I)化合物的C晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.28±0.20°,11.90±0.20°,23.30±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.28±0.20°,10.78±0.20°,11.90±0.20°,12.86±0.20°,17.92±0.20°,22.88±0.20°,23.30±0.20°,26.26±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.28±0.20°,10.78±0.20°,11.90±0.20°,12.86±0.20°,14.92±0.20°,17.92±0.20°,22.88±0.20°,23.30±0.20°,25.52±0.20°,26.26±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:7.42°,8.36°,9.04°,10.28°,10.78°,11.90°,12.86°,14.38°,14.92°,16.06°,16.74°,17.92°,19.06°,19.94°,20.58°,21.28°,22.88°,23.30°,23.76°,25.52°,26.00°,26.26°,26.94°,27.93°,28.90°,29.96°,30.63°,31.30°,32.32°,33.28°,33.90°。
在本发明的一些方案中,上述C晶型,其XRPD图谱如图7所示。
本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3.C晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000006
在本发明的一些方案中,上述C晶型的差示扫描量热曲线分别在122.0±3.0℃和180.1±3.0℃有一个吸热峰的峰值。
在本发明的一些方案中,上述C晶型的DSC图谱如图8所示。
在本发明的一些方案中,上述C晶型的热重分析曲线在200.0℃±3.0℃时失重达4.31%。
在本发明的一些方案中,上述C晶型的TGA图谱如图9所示。
本发明还提供了式(I)化合物的D晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,11.56±0.20°,22.90±0.20°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,11.56±0.20°,17.80±0.20°,19.98±0.20°,20.80±0.20°,22.90±0.20°,23.68±0.20°,25.68±0.20°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,11.56±0.20°,14.68±0.20°,17.80±0.20°,19.98±0.20°,20.80±0.20°,22.90±0.20°,23.68±0.20°,25.00±0.20°,25.68±0.20°。
在本发明的一些方案中,上述D晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:4.48°,8.26°,9.00°,10.10°,10.56°,11.56°,12.40°,12.72°,14.26°,14.68°,15.90°,16.56°,17.80°,18.76°,19.58°,19.98°,20.26°,20.80°,21.28°,21.72°,22.90°,23.68°,25.00°,25.68°,26.20°,26.84°,27.88°,28.74°,29.46°,29.96°,30.80°,32.18°,32.86°,33.60°,33.98°,35.90°,37.46°,38.36°。
在本发明的一些方案中,上述D晶型,其XRPD图谱如图10所示。
本发明的一些方案中,上述D晶型的XRPD图谱解析数据如表4所示:
表4.D晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000007
Figure PCTCN2021077255-appb-000008
在本发明的一些方案中,上述D晶型的差示扫描量热曲线在129.2±3.0℃有一个吸热峰的峰值。
在本发明的一些方案中,上述D晶型的DSC图谱如图11所示。
在本发明的一些方案中,上述D晶型的热重分析曲线在200.0℃±3.0℃时失重达9.06%。
在本发明的一些方案中,上述D晶型的TGA图谱如图12所示。
本发明提供了式(II)化合物。
Figure PCTCN2021077255-appb-000009
其中,n选自1~2,优选为1或1.1或2。
本发明还提供了式(II)化合物的E晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.14±0.20°,7.56±0.20°,14.61±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.14±0.20°,7.56±0.20°,9.46±0.20°,14.61±0.20°,15.30±0.20°,19.39±0.20°,22.00±0.20°,25.09±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.14±0.20°,7.56±0.20°,9.46±0.20°,12.40±0.20°,14.61±0.20°,15.30±0.20°,19.39±0.20°,20.33±0.20°,22.00±0.20°,25.09±0.20°。
在本发明的一些方案中,上述E晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:4.14°,7.56°,9.08°,9.46°,10.25°,12.40°,12.78°,14.61°,15.30°,16.11°,16.69°,19.39°,20.33°,22.00°,22.74°,23.00°,23.20°,25.09°,27.33°。
在本发明的一些方案中,上述E晶型,其XRPD图谱如图13所示。
本发明的一些方案中,上述E晶型的XRPD图谱解析数据如表5所示:
表5.E晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000010
Figure PCTCN2021077255-appb-000011
在本发明的一些方案中,上述E晶型的差示扫描量热曲线分别在169.49±3.0℃和198.33±3.0℃有一个吸热峰的峰值。
在本发明的一些方案中,上述E晶型的DSC图谱如图14所示。
在本发明的一些方案中,上述E晶型的热重分析曲线在113.05℃±3.0℃时失重达3.453%,在179.56℃±3.0℃时失重又达3.537%。
在本发明的一些方案中,上述E晶型的TGA图谱如图15所示。
本发明提供了式(III)化合物。
Figure PCTCN2021077255-appb-000012
其中,m选自0.5~2,优选为0.5或1或1.1。
本发明还提供了式(III)化合物的F晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.12±0.20°,6.41±0.20°,10.38±0.20°。
在本发明的一些方案中,上述F晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.12±0.20°,6.41±0.20°,7.54±0.20°,10.38±0.20°,12.80±0.20°,19.98±0.20°,24.82±0.20°,25.72±0.20°。
在本发明的一些方案中,上述F晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.12±0.20°,6.41±0.20°,7.54±0.20°,10.38±0.20°,12.80±0.20°,13.40±0.20°,16.24±0.20°,19.98±0.20°,24.82±0.20°,25.72±0.20°。
在本发明的一些方案中,上述F晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:5.12°,6.41°,7.54°,7.98°,10.38°,12.36°,12.80°,13.40°,16.24°,17.52°,17.89°,18.61°,19.22°,19.63°,19.98°,20.96°,22.39°,22.81°,23.45°,24.82°,25.72°,27.31°,28.39°,29.92°,30.99°。
在本发明的一些方案中,上述F晶型,其XRPD图谱如图16所示。
本发明的一些方案中,上述F晶型的XRPD图谱解析数据如表6所示:
表6.F晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000013
在本发明的一些方案中,上述F晶型的差示扫描量热曲线在126.43±3.0℃有一个吸热峰的峰值。
在本发明的一些方案中,上述F晶型的DSC图谱如图17所示。
在本发明的一些方案中,上述F晶型的热重分析曲线在84.88℃±3.0℃时失重达1.726%,在185.53℃±3.0℃时又失重达6.580%。
在本发明的一些方案中,上述F晶型的TGA图谱如图18所示。
本发明提供了式(IV)化合物。
Figure PCTCN2021077255-appb-000014
其中,o选自1。
本发明还提供了式(IV)化合物的G晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.08±0.20°,8.58±0.20°,12.21±0.20°。
在本发明的一些方案中,上述G晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:4.12±0.20°,5.43±0.20°,6.08±0.20°,8.58±0.20°,12.21±0.20°,16.83±0.20°,20.69±0.20°,21.20±0.20°。
在本发明的一些方案中,上述G晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:4.12°, 5.43°,6.08°,8.58°,8.80°,12.21°,12.40°,16.63°,16.83°,20.69°,21.20°,25.02°。
在本发明的一些方案中,上述G晶型,其XRPD图谱如图19所示。
本发明的一些方案中,上述G晶型的XRPD图谱解析数据如表7所示:
表7.G晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000015
在本发明的一些方案中,上述G晶型的差示扫描量热曲线在149.27±3.0℃有一个吸热峰的峰值。
在本发明的一些方案中,上述G晶型的DSC图谱如图20所示。
在本发明的一些方案中,上述G晶型的热重分析曲线在99.16℃±3.0℃时失重达0.652%,在183.57℃±3.0℃时又失重达0.888%。
在本发明的一些方案中,上述G晶型的TGA图谱如图21所示。
本发明还提供了式(IV)化合物的H晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.17±0.20°,6.00±0.20°,8.50±0.20°。
在本发明的一些方案中,上述H晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.17±0.20°,6.00±0.20°,8.50±0.20°,12.28±0.20°,15.73±0.20°,19.87±0.20°,20.59±0.20°,21.85±0.20°。
在本发明的一些方案中,上述H晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:3.17°,6.00°,8.50°,8.76°,12.28°,15.73°,19.87°,20.59°,21.85°,25.96°。
在本发明的一些方案中,上述H晶型,其XRPD图谱如图22所示。
本发明的一些方案中,上述H晶型的XRPD图谱解析数据如表8所示:
表8.H晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000016
在本发明的一些方案中,上述H晶型的差示扫描量热曲线在146.13±3.0℃有一个吸热峰的峰值。
在本发明的一些方案中,上述H晶型的DSC图谱如图24所示。
在本发明的一些方案中,上述H晶型的热重分析曲线在167.09℃±3.0℃时失重达4.637%。
在本发明的一些方案中,上述H晶型的TGA图谱如图24所示。
本发明提供了式(V)化合物。
Figure PCTCN2021077255-appb-000017
其中,p选自0.5~2,优选为0.5或0.67或1或1.1。
本发明还提供了式(V)化合物的I晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.08±0.20°,10.23±0.20°,16.24±0.20°。
在本发明的一些方案中,上述I晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.08±0.20°,6.30±0.20°,7.45±0.20°,10.23±0.20°,12.60±0.20°,16.24±0.20°,19.81±0.20°,24.56±0.20°。
在本发明的一些方案中,上述I晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.08±0.20°,6.30±0.20°,7.45±0.20°,10.23±0.20°,12.60±0.20°,16.24±0.20°,19.81±0.20°,20.92±0.20°,22.19±0.20°,24.56±0.20°。
在本发明的一些方案中,上述I晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:3.78°,5.08°,6.30°,7.45°,7.96°,10.23°,11.62°,12.35°,12.60°,13.21°,16.24°,18.54°,19.81°,20.20°,20.92°,22.19°,22.49°,24.56°,25.33°,25.55°,27.14°,29.58°。
在本发明的一些方案中,上述I晶型,其XRPD图谱如图25所示。
本发明的一些方案中,上述I晶型的XRPD图谱解析数据如表9所示:
表9.I晶型的XRPD图谱解析数据
Figure PCTCN2021077255-appb-000018
Figure PCTCN2021077255-appb-000019
在本发明的一些方案中,上述I晶型的差示扫描量热曲线分别在128.77±3.0℃和162.07±3.0℃有一个吸热峰的峰值。
在本发明的一些方案中,上述I晶型的DSC图谱如图26所示。
在本发明的一些方案中,上述I晶型的热重分析曲线在168.36℃±3.0℃时失重达3.564%。
在本发明的一些方案中,上述I晶型的TGA图谱如图27所示。
本发明还提供了式(I)化合物A晶型的制备,包括:
1)将式(I)化合物加入水、醇类或混合溶剂中使其成悬浊液;
2)悬浊液在25~40℃下搅拌16~30小时,
3)将上述悬浊液过滤,滤饼干燥8~16小时。
其中,
醇类溶剂为甲醇或乙醇;
混合溶剂为乙醇:水(v/v=2:1)、丙酮:水(v/v=2:1)或乙醇:水(v/v=1:3)。
本发明还提供上述化合物或A晶型或B晶型或C晶型或D晶型或E晶型或F晶型或G晶型或H晶型或I晶型在制备治疗慢性淋巴细胞白血病、小淋巴细胞淋巴瘤、边缘带淋巴瘤、滤泡性淋巴瘤、套细胞淋巴瘤和弥漫性大B细胞淋巴瘤药物中的应用。
技术效果
本发明化合物各晶型稳定、受光热湿度影响小且具有良好的体内给药药效,成药前景广阔;式(I)化合物能够很好的抑制PI3K激酶活性,同时对PI3Kα/β/γ有较高的亚型选择性;式(I)化合物有更低的血浆蛋白结合率,即在体内游离药物更多,并且在小鼠体内表现出了高暴露量,低清除率,以及良好的口服生物利用度;式(I)化合物与第二代BTK抑制剂ACP-196联用,在TMD-8小鼠皮下异植瘤模型中展示了显著的肿瘤消退的作用。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合 物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:φ/ω扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:EtOH代表乙醇;MeOH代表甲醇;TFA代表三氟乙酸;TsOH代表对甲苯磺酸;mp代表熔点;EtSO3H代表乙磺酸;MeSO3H代表甲磺酸;THF代表四氢呋喃;EtOAc代表乙酸乙酯;NBS代表N-溴代丁二酰亚胺;Pd(dppf)Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯;Pd(PPh 3) 4代表四(三苯基膦)钯。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021077255-appb-000020
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:DX-2700BH射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,kα,
Figure PCTCN2021077255-appb-000021
光管电压:40kV,光管电流:40mA
发散狭缝:1mm
探测器狭缝:0.3mm
防散射狭缝:1mm
扫描范围:3-40deg
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D8 advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,kα,
Figure PCTCN2021077255-appb-000022
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:3/4-40deg
扫描速率:10deg/min
样品盘转速:15rpm/0rpm
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:NETZSCH DSC 214差示扫描量热仪
测试方法:取样品(4.08mg)置于DSC铝锅内进行测试,在50mL/min氮气条件下,以10℃/min的升温速率,加热样品从30℃到450℃。
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA DSC-2500差示扫描量热仪
测试方法:取样品(0.5mg~1mg)置于DSC铝锅内进行测试,在50mL/min氮气条件下,以10℃/min的升温速率,加热样品从30℃到250℃。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:NETZSCH TG 209F3A热重分析仪
测试方法:取样品(5.95mg)置于TGA氧化铝坩埚内进行测试,在25mL/min氮气条件下,以20℃/min的升温速率,加热样品从室温到300℃。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA TGA 5500热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min氮气条件下,以10℃/min的升温速率,加热样品从室温到300℃或失重20%。
本发明高效液相色谱分析方法
配样浓度:1mg/mL
固体稳定性试验HPLC方法色谱条件参见下表:
Figure PCTCN2021077255-appb-000023
Figure PCTCN2021077255-appb-000024
附图说明
图1为式(I)化合物A晶型的Cu-Kα辐射的XRPD谱图。
图2为式(I)化合物A晶型的DSC谱图。
图3为式(I)化合物A晶型的TGA谱图。
图4为式(I)化合物B晶型的Cu-Kα辐射的XRPD谱图。
图5为式(I)化合物B晶型的DSC谱图。
图6为式(I)化合物B晶型的TGA谱图。
图7为式(I)化合物C晶型的Cu-Kα辐射的XRPD谱图。
图8为式(I)化合物C晶型的DSC谱图。
图9为式(I)化合物C晶型的TGA谱图。
图10为式(I)化合物D晶型的Cu-Kα辐射的XRPD谱图。
图11为式(I)化合物D晶型的DSC谱图。
图12为式(I)化合物D晶型的TGA谱图。
图13为式(II)化合物E晶型的Cu-Kα辐射的XRPD谱图。
图14为式(II)化合物E晶型的DSC谱图。
图15为式(II)化合物E晶型的TGA谱图。
图16为式(III)化合物F晶型的Cu-Kα辐射的XRPD谱图。
图17为式(III)化合物F晶型的DSC谱图。
图18为式(III)化合物F晶型的TGA谱图。
图19为式(IV)化合物G晶型的Cu-Kα辐射的XRPD谱图。
图20为式(IV)化合物G晶型的DSC谱图。
图21为式(IV)化合物G晶型的TGA谱图。
图22为式(IV)化合物H晶型的Cu-Kα辐射的XRPD谱图。
图23为式(IV)化合物H晶型的DSC谱图。
图24为式(IV)化合物H晶型的TGA谱图。
图25为式(V)化合物I晶型的Cu-Kα辐射的XRPD谱图。
图26为式(V)化合物I晶型的DSC谱图。
图27为式(V)化合物I晶型的TGA谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(I)化合物的制备
Figure PCTCN2021077255-appb-000025
步骤1:化合物BB-1-3的合成
向BB-1-1(23g,205.17mmol,1eq)的多聚磷酸(23g,17.84mmol)溶液中,加入BB-1-2(43.90g,266.71mmol,1.3eq)。反应液于氮气保护下,125℃下搅拌5小时。反应完成后,向反应液中加入水(300mL)淬灭反应,有固体析出,直接过滤得到滤饼。滤饼再用水(100mL)洗涤一次,然后经柱层析(PE:EA=1:1)纯化,得到目标化合物BB-1-3。 1H NMR(400MHz,CDCl 3)δ8.94(br s,1H),7.68(br d,J=5.3Hz,2H),6.65(s,1H),4.51(s,2H)。
步骤2:化合物BB-1-4的合成
向BB-1-3(21.02g,98.87mmol,1eq)的冰醋酸(210mL)溶液中,加入NBS(19.36g,108.75mmol,1.1eq)。反应液于氮气保护下,25℃下搅拌1小时。反应完成后,向反应液中加入水(200mL)淬灭反应,有固体 生成,过滤得到滤饼。用水(30mL*3)洗涤三次后,滤饼用二氯甲烷(100mL)溶解,无水硫酸钠干燥,浓缩,再用甲基叔丁基醚(50mL)打浆一次,过滤收集滤饼,得到目标化合物BB-1-4批次一。水相用二氯甲烷(100mL*3)萃取并与甲基叔丁基醚洗涤得到的母液合并,再经柱经柱层析(石油醚:乙酸乙酯=1:1,目标产物Rf=0.43)纯化,得到目标化合物BB-1-4批次二。两批次用二氯甲烷溶解合并,旋干得到目标化合物BB-1-4。 1H NMR(400MHz,CDCl 3)δ8.93(dd,J=1.3,3.1Hz,1H),7.80-7.69(m,2H),4.74(s,2H)。
步骤3:化合物BB-1-5的合成
向BB-1-4(3g,10.29mmol,1eq)的N,N-二甲基甲酰胺(30mL)溶液中,加入醋酸钾(1.52g,15.44mmol,1.5eq)。反应液于氮气保护下,40℃下搅拌3.5小时。反应完成后,向反应液中加入水(60mL)淬灭反应,有大量固体生成,过滤,得到滤饼。滤饼用二氯甲烷(100mL)溶解,无水硫酸钠干燥,浓缩,得到目标化合物BB-1-5批次一。水相用甲基叔丁基醚(100mL*3)萃取,得到有机相,无水硫酸钠干燥,浓缩,得到BB-1-5批次二,将两批次合并得到。直接用于下一步的反应。 1H NMR(400MHz,CDCl 3)δ9.07-8.88(m,1H),7.71(dd,J=1.7,5.8Hz,2H),5.31-5.26(m,2H),2.22(s,3H)。
步骤4:化合物BB-1-6的合成
向BB-1-5(3.77g,11.96mmol,1eq)的二氧六环(37mL)溶液中,加入盐酸(12M,3.49mL,3.5eq)。反应液于氮气保护下,40℃下搅拌3.5小时。反应完成后,将反应液浓缩,加入水(2mL),用氨水调pH=9,过滤收集滤饼。用二氯甲烷(100mL)溶解后,用无水硫酸钠干燥,浓缩,得到目标化合物BB-1-6。直接用于下一步的反应。 1H NMR(400MHz,DMSO-d 6)δ8.95(dd,J=2.9,4.6Hz,1H),8.15(dd,J=2.6,7.0,9.6Hz,1H),7.86(dd,J=5.3,9.6Hz,1H),5.35(t,J=5.9Hz,1H),4.58(d,J=6.1Hz,2H)。
步骤5:化合物BB-1-7的合成
向BB-1-6(2.6g,9.52mmol,1eq)和3-氟苯硼酸(2.66g,19.04mmol,2eq)的乙腈/水(12.5mL,体积比:3/1)溶液中,加入碳酸钠(5.05g,47.61mmol,5eq)和Pd(PPh 3) 4(550.15mg,476.09μmol,0.05eq)。反应液于氮气保护下,85℃下搅拌4小时。反应完成后,向反应液中加入二氯甲烷(50mL),再缓慢加入水(5mL)淬灭反应,再用二氯甲烷(50mL*3)萃取。合并有机相,无水硫酸钠干燥,浓缩,经柱层析(石油醚:乙酸乙酯=0:1)纯化,得到BB-1-7。 1H NMR(400MHz,DMSO-d 6)δ8.94(dd,J=3.1,4.8Hz,1H),8.12(ddd,J=2.6,7.1,10.0Hz,1H),7.84(dd,J=5.3,10.1Hz,1H),7.62(s,1H),7.27-7.15(m,3H),5.25(t,J=5.9Hz,1H),4.28(d,J=5.7Hz,2H)。
步骤6:化合物BB-1-8的合成
于三口瓶中,-78℃下,向草酰氯(1.85g,14.57mmol,1.28mL,3eq)的二氯甲烷(20mL)溶液中,加入DMSO(2.28g,29.14mmol,2.28mL,6eq)。反应液于氮气保护下,-78℃下搅拌1小时。加入BB-1-7(1.4g,4.86mmol,1eq)的二氯甲烷(20mL)溶液,-78℃下搅拌1小时。加入三乙胺(4.91g,48.57mmol,6.76mL,10eq),-78℃下搅拌1小时后,反应液升至25℃搅拌1小时。反应完成后,0℃下,向反应液中加入二氯甲烷(20mL),再缓慢加入水(10mL)淬灭反应,再用二氯甲烷(30mL*3)萃取。合并有机相,无水硫酸钠干燥,浓缩,得到目标化合物BB-1-8。LCMS,m/z=287.0[M+1]。
步骤7:化合物BB-1的合成
于三口瓶中,0℃下,向BB-1-8(1.9g,6.64mmol,1eq)的四氢呋喃(50mL)溶液中,加入甲基溴化镁(3M,5.53mL,2.5eq)。反应液于氮气保护下,25℃下搅拌5小时。反应完成后,0℃下,向反应液中缓慢加入水(10mL)淬灭反应,再用二氯甲烷(10mL*3)萃取。合并有机相,无水硫酸钠干燥,浓缩,经制备高效液相色谱(柱:Phenomenex Luna C18 200*40mm*10μm;流动相:[水(0.1%TFA)-乙腈];B%:15%-35%,10min)纯化(B为乙腈),得到BB-1。
步骤8:化合物WX001-2的合成
向WX001-1(2g,10.47mmol,1eq)和碳酸钾(4.34g,31.41mmol,3eq)的N,N-二甲基甲酰胺(20mL)溶液中,加入2-碘丙烷(3.56g,20.94mmol,2.09mL,2eq)。反应液于氮气保护下,90℃下搅拌12小时。反应完成后,向反应液中加入水(20mL)淬灭反应,再用甲基叔丁基醚(10mL*3)萃取。合并有机相,无水硫酸钠干燥,浓缩,经柱层析(石油醚:乙酸乙酯=5:1)纯化,得到目标化合物WX001-2。 1H NMR(400MHz,CDCl 3)δ7.23(dd,J=2.4,10.6Hz,1H),7.16(td,J=1.9,8.8Hz,1H),6.85(t,J=8.7Hz,1H),4.49(spt,J=6.1Hz,1H),1.35(d,J=6.1Hz,6H)。
步骤9:化合物WX001-3的合成
向WX001-2(2g,8.58mmol,1eq)的二氧六环(20mL)溶液中,加入双联频哪醇硼酸酯(2.40g,9.44mmol,1.1eq),醋酸钾(1.68g,17.16mmol,2eq)和Pd(dppf)Cl 2(627.87mg,858.09μmol,0.1eq)。反应液于氮气保护下,90℃下搅拌3小时。反应完成后,向反应液中加入水(20mL)淬灭反应,再用二氯甲烷(30mL*3)萃取。合并有机相,无水硫酸钠干燥,浓缩,粗产品经柱层析(石油醚:乙酸乙酯=5:1)纯化,得到目标化合物WX001-3。 1H NMR(400MHz,CDCl 3)δ7.54-7.44(m,2H),6.95(t,J=8.1Hz,1H),4.60(spt,J=6.1Hz,1H),1.37(s,3H),1.36(s,3H),1.33(s,12H)。
步骤10:化合物WX001-5的合成
向WX001-3(2.65g,9.46mmol,1eq)和WX001-4(2.47g,9.46mmol,1eq)的N,N-二甲基甲酰胺/乙醇/水(265mL,体积比:2/1/1)溶液中,加入Pd(PPh 3) 4(546.55mg,472.97μmol,0.05eq)和碳酸钠(3.01g,28.38mmol,3eq)。反应液于氮气保护下,80℃下搅拌12小时。反应完成后,将反应液趁热过滤(80℃)得到母液,母液旋干后,再加入二氯甲烷(30mL)和水(30mL),有大量不溶物生成,过滤后经制备高效液相色谱纯化,得到目标化合物WX001-5。LCMS,m/z=288.1[M+1]。
步骤11:化合物WX001-6的合成
25℃下,向BB-1(230mg,760.90μmol,1eq),WX001-5(218.60mg,760.90μmol,1eq)和PPh 3(299.36mg,1.14mmol,1.5eq)的四氢呋喃(50mL)溶液中,加入偶氮二甲酸二异丙酯(230.79mg,1.14mmol,221.91μL,1.5eq)。反应液于氮气保护下,45℃下搅拌5小时。反应完成后,反应液直接浓缩,经制备薄层层析板(二氯甲烷:甲醇=15:1)纯化,得到异构体混合物WX001-6。
步骤12:式(I)化合物的合成
WX001-6经超临界流体色谱(色谱柱:DAICEL CHIRALPAK AD-H(250mm*30mm,5μm);流动相:[0.1%氨水的乙醇];B%:22%-22%,8min)纯化(B为0.1%氨水的乙醇),得到式(I)化合物(保留时间为2.29 min),式(I)化合物经单晶确证结构正确。 1H NMR(400MHz,CD 3OD)δ8.95(br s,1H),8.03(s,1H),8.00-7.92(m,1H),7.91-7.82(m,1H),7.42-7.29(m,2H),7.27-7.09(m,1H),7.22(br t,J=8.6Hz,1H),6.96-6.71(m,2H),6.20(q,J=6.6Hz,1H),4.68(td,J=6.1,11.9Hz,1H),1.91(d,J=7.0Hz,3H),1.36(d,J=5.7Hz,6H);LCMS,m/z=572.2[M+1]。
实施例2:式(I)化合物A晶型的制备
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入7.4mL甲醇使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时,抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的A晶型。
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入7.4mL乙醇使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时,抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的A晶型。
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入4mL乙腈使其成澄清液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时,抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的A晶型。
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入7.4mL乙醇-水(2:1)使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的A晶型。
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入7.4mL丙酮-水(2:1)使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时,抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的A晶型。
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入7.4mL水使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时,抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的A晶型。
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入7.4mL乙醇-水(1:3)使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时,抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的A晶型。
实施例3:式(I)化合物B晶型的制备
称取740mg式(I)化合物加入到15.0mL玻璃小瓶中,加入7.4mL乙腈-水(2:1)使其成悬浊液。加入磁子后,将上述悬浊液样品置于磁力加热搅拌器上(室温)进行试验,40℃下搅拌24小时,抽滤后滤饼置于真空干燥箱中(50℃)干燥过夜,得式(I)化合物的B晶型。
实施例4:式(I)化合物C晶型的制备
称取1g式(I)化合物,加入10mL乙醇,升温至80℃使其溶清,并继续搅拌1小时,降温至40℃,加入式(I)化合物B晶型10mg,继续在40℃下搅拌12小时,有固体析出抽滤,得式(I)化合物的C晶型。
实施例5:式(I)化合物D晶型的制备
称取5g式(I)化合物,加入50mL异丙醇,升温至80℃溶清后继续搅拌1小时,再降温到40℃搅拌12小时,有固体析出抽滤,得式(I)化合物的D晶型。
实施例6:式(II)化合物E晶型的制备
称取115mg式(I)化合物加入到8.0mL玻璃小瓶中,加入1.5mL异丙醇,将其置于磁力搅拌器上(80℃)搅拌2小时。缓慢加入盐酸(量取21.83μL 12mol/L浓盐酸用四氢呋喃稀释10倍后,再加入182μL至玻璃瓶中)后在80℃条件下持续搅拌2小时,将上述样品降至室温,并置于磁力搅拌器上(室温)进行搅拌过夜,离心得固体物置于30℃真空干燥箱中干燥过夜,得到式(II)化合物的E晶型。
称取115mg式(I)化合物加入到8.0mL玻璃小瓶中,加入0.8mL四氢呋喃,将其置于磁力搅拌器上(40℃)搅拌溶解。缓慢加入盐酸(量取21.83μL 12mol/L浓盐酸用四氢呋喃稀释10倍后,再加入182μL至玻璃瓶中)后在40℃条件下持续搅拌2小时,将上述样品降至室温,并置于磁力搅拌器上(室温)进行搅拌过夜,离心得固体物置于30℃真空干燥箱中干燥过夜,得到式(II)化合物的E晶型。
Figure PCTCN2021077255-appb-000026
1H NMR(400MHz,DMSO-d 6)δ8.94(dd,J=2.9,4.4Hz,1H),8.35(s,1H),8.15(ddd,J=2.8,7.1,9.8Hz,1H),7.86(dd,J=5.3,9.8Hz,1H),7.44-7.37(m,1H),7.36-7.23(m,3H),7.08-6.84(m,3H),6.17(q,J=6.8Hz,1H),4.80-4.67(m,1H),4.45-3.79(m,1H),1.85(d,J=6.9Hz,3H),1.34(d,J=6.0Hz,6H)。
实施例7:式(III)化合物F晶型的制备
称取115mg式(I)化合物加入到8.0mL玻璃小瓶中,加入1.5mL异丙醇,将其置于磁力搅拌器上(80℃)搅拌2小时。缓慢加入硫酸(量取22.15μL 98%浓硫酸用四氢呋喃稀释10倍后,再加入121μL至玻璃瓶中)后在80℃条件下持续搅拌2小时,将上述样品降至室温,并置于磁力搅拌器上(室温)进行搅拌过夜,离心得固体物置于30℃真空干燥箱中干燥过夜,得到式(III)化合物的F晶型。
Figure PCTCN2021077255-appb-000027
1H NMR(400MHz,DMSO-d 6)δ8.95(dd,J=2.9,4.4Hz,1H),8.28(s,1H),8.15(ddd,J=2.8,7.1,9.8Hz,1H),7.86(dd,J=5.3,9.8Hz,1H),7.40(br d,J=12.5Hz,1H),7.36-7.26(m,3H),7.07-6.91(m,3H),6.16(q,J=6.9Hz,1H),4.73(td,J=6.0,12.1Hz,1H),4.50(br s,1H),1.85(d,J=6.9Hz,3H),1.34(d,J=6.0Hz,6H)。
实施例8:式(IV)化合物G晶型的制备
称取115mg式(I)化合物加入到8.0mL玻璃小瓶中,加入1.5mL异丙醇,将其置于磁力搅拌器上(80℃)搅拌2小时。缓慢加入苯磺酸(称量33.46mg苯磺酸用200μL四氢呋喃稀释后,再加入至玻璃瓶中)后在80℃条件下持续搅拌2小时,将上述样品降至室温,并置于磁力搅拌器上(室温)进行搅拌过夜,离心得固体物置于30℃真空干燥箱中干燥过夜,得到式(IV)化合物的G晶型。
Figure PCTCN2021077255-appb-000028
1H NMR(400MHz,DMSO-d 6)δ8.95(br s,1H),8.30(s,1H),8.16(br t,J=7.0Hz,1H),7.86(br dd,J=5.1,9.7Hz,1H),7.61(br d,J=5.3Hz,2H),7.44-7.27(m,6H),7.10-6.89(m,3H),6.16(br d,J=7.0Hz,1H),4.81-4.56(m,1H),3.92-3.77(m,1H),1.85(br d,J=6.5Hz,3H),1.34(br d,J=6.0Hz,6H)。
实施例9:式(IV)化合物H晶型的制备
称取115mg式(I)化合物加入到8.0mL玻璃小瓶中,加入0.8mL四氢呋喃,将其置于磁力搅拌器上(40℃)搅拌溶解。缓慢加入苯磺酸(称量33.46mg苯磺酸用200μL四氢呋喃稀释后,再加入至玻璃瓶中)后在40℃条件下持续搅拌2小时,将上述样品降至室温,并置于磁力搅拌器上(室温)进行搅拌过夜,未有固体析出,加入反溶剂(3.2mL的MTBE),搅拌过夜,离心得固体物置于30 真空干燥箱中干燥过夜,得到式(IV)化合物的H晶型。
Figure PCTCN2021077255-appb-000029
1H NMR(400MHz,DMSO-d 6)δ8.94(br s,1H),8.23(s,1H),8.19-8.07(m,1H),7.86(br dd,J=5.3,9.8Hz,1H),7.67-7.56(m,2H),7.43-7.27(m,1H),7.43-7.23(m,5H),7.09-6.86(m,3H),6.14(br d,J=6.8Hz,1H),4.84-4.63(m,1H),3.72-3.64(m,1H),1.84(br d,J=6.8Hz,3H),1.34(br d,J=6.0Hz,6H)。
实施例10:式(V)化合物I晶型的制备
称取115mg式(I)化合物加入到8.0mL玻璃小瓶中,加入1.5mL异丙醇,将其置于磁力搅拌器上(80℃)搅拌2小时。缓慢加入对甲苯磺酸(称量38.07mg对甲苯磺酸用200μL四氢呋喃稀释后,再加入至玻璃瓶中)后在80℃条件下持续搅拌2小时,将上述样品降至室温,并置于磁力搅拌器上(室温)进行搅拌过夜,离心得固体物置于30℃真空干燥箱中干燥过夜,得到式(V)化合物的I晶型。
称取115mg式(I)化合物加入到8.0mL玻璃小瓶中,加入0.8mL四氢呋喃,将其置于磁力搅拌器上(40℃)搅拌溶解。缓慢加入对甲苯磺酸(称量38.07mg对甲苯磺酸用200μL四氢呋喃稀释后,再加入至玻璃瓶中)后在40℃条件下持续搅拌2小时,将上述样品降至室温,并置于磁力搅拌器上(室温)进行搅拌过夜,未有固体析出,加入反溶剂(3.2mL的MTBE),搅拌过夜,离心得固体物置于30 真空干燥箱中干燥过夜,得到式(V)化合物的I晶型。
Figure PCTCN2021077255-appb-000030
1H NMR(400MHz,DMSO-d 6)δ8.99(dd,J=3.0,4.4Hz,1H),8.28(s,1H),8.20(ddd,J=2.8,7.1,9.8Hz,1H),7.91(dd,J=5.3,9.8Hz,1H),7.54(d,J=8.0Hz,1H),7.44(br d,J=12.5Hz,1H),7.41-7.30(m,3H),7.17(d,J=7.8Hz,1H),7.11-6.92(m,3H),6.19(q,J=6.8Hz,1H),4.78(td,J=6.0,12.1Hz,1H),3.90-3.79(m,1H),2.35(s,2H),1.89(d,J=7.0Hz,3H),1.39(d,J=6.1Hz,6H)。
实施例11:式(I)化合物A晶型的引湿性测试
实验操作:取两个干燥的具塞玻璃称量瓶(尺寸:50mm×30mm)放在盛有硫酸铵饱和溶液的干燥器中,于25℃药品稳定性试验箱(厂家:永生仪器,型号:SHH-250SD)中平衡。精密称取平衡后称量瓶的重量m1。取供试品适量,分别平铺于上述两个称量瓶中,供试品厚度一般约为1mm,精密称量总重m2。将称量瓶敞口,并与瓶盖同置于上述干燥器中,于25℃药品稳定性试验箱中放置24小时。盖好称量瓶盖子,精密称定总重m3。具体称量数据见表10。
表10.引湿性测试称量及计算数据
Figure PCTCN2021077255-appb-000031
计算:增重百分率=(m3-m2)/(m2-m1)×100%。
表11.引湿性判断依据
吸湿性特性描述 引湿性增重(ΔW%)
潮解 吸收足量水分形成液体
极具引湿性 ΔW%≥15%
有引湿性 15%>ΔW%≥2%
略有引湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
实验结果:式(I)化合物A晶型无或几乎无引湿性。
实施例12:式(I)化合物A晶型的稳定性测试
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式(I)化合物A晶型的稳定性。
分别称取式(I)化合物A晶型5mg,置于干燥洁净的玻璃瓶中,一式两份,摊成薄薄一层,作为正式供试样品,放置于影响因素试验条件下(60℃,92.5%相对湿度)和加速条件下(30℃/65%相对湿度,40℃/75%相对湿度和60℃/75%相对湿度),其样品为完全暴露放样,用铝箔纸盖上,扎上小孔。在5天、10天、1月进行取样分析。光照(总照度1200000Lux·hr,近紫外200w·hr/m 2)条件下放置的样品为室温完全暴露放样。试验结果见下表12所示:
表12.式(I)化合物A晶型的固体稳定性试验结果
Figure PCTCN2021077255-appb-000032
Figure PCTCN2021077255-appb-000033
结论:式(I)化合物A晶型具有良好的稳定性。
实验例1:体外评价
1.体外酶活性测试
脂激酶反应通过在合适的底物及ATP的条件下进行,随后通过两个步骤用ADP-Glo TM试剂盒来检测激酶的活性。第一步:终止激酶反应,其中残留的ATP彻底清除,仅保留ADP;第二步:加入 激酶检测试剂将ADP转化为ATP,并伴随荧光素/荧光素酶的反应。最终通过荧光数值输出值来转化为激酶活性。测试PI3K酶活性的条件如表13。
表13.测试PI3K酶活性的条件
Figure PCTCN2021077255-appb-000034
实验材料及设备:
1)酶:PI3Kα   Millipore#14-602-K
PI3Kβ   Promega#V1751
PI3Kδ   Millipore#14-604-K
PI3Kγ   Millipore#14-558-K
2)试剂盒:ADP-Glo TM脂激酶及PIP2:3PS试剂盒(Promega#V1792)
试剂盒包含:1mM PIP2:3PS,10×脂质稀释缓冲液,1M氯化镁,10mM ATP,10mM ADP,ADP-Glo试剂,检测缓冲液及检测底物。
3)反应孔板:OptiPlate-384,白色透明(PerkinElmer#6007299)
试剂准备:
1)10×反应缓冲液:500mM HEPES(4-羟乙基哌嗪乙磺酸),pH 7.5,500mM NaCl,9mM MgCl 2;BSA:10%储备液,自制
2)最终测试体系条件:1×反应体系:50mM HEPES,50mM NaCl,3mM MgCl 2,0.01%BSA(实验当天新鲜配制),1%DMSO(v/v)+/-化合物
3)反应体系:3μL酶和底物混合物(1:1)+2μL ATP/MgCl 2混合物+5μL ADP-Glo试剂+10μL检测试剂。
具体实验操作如下:
1)化合物稀释:用Echo将50nL 100×化合物/DMSO转移至测试孔板中
-对于PI3Kα,化合物从最高浓度0.111mM三倍稀释,共10个浓度。
-对于PI3Kβ/PI3Kδ/PI3Kγ,化合物从最高浓度1.11mM三倍稀释,共10个浓度。
2)激酶反应:
(1)准备待测化合物,并加入50nL 100加化合物溶液或者DMSO至相应孔板中
(2)准备3.33×反应缓冲液
(3)准备3.33×PIP2:3PS,在使用前涡旋解冻PIP2:3PS至少1分钟
(4)准备含5.25mM MgCl 2的ATP溶液
(5)准备3.33×PI3Kα/PI3Kβ/PI3Kδ/PI3Kγ溶液
(6)将脂激酶溶液和PIP2:3PS溶液按体积比1:1混合
(7)将3.33×脂激酶缓冲液与PIP2:3PS溶液按体积比1:1混合
(8)将3μL反应缓冲液和PIP2:3PS的混合溶液加入到孔板的第1列和第2列中
(9)将3μL酶和PIP2:3PS的混合溶液加入到孔板中除第1列和第2列外的孔中,离心10s(1000rpm)。23℃孵育20min
(10)加入2μL ATP溶液,1000rpm并摇匀
(11)盖上孔板并摇匀约30s,随后孔板在23℃孵育2h
(12)加入5μL含有10mM MgCl 2的ADP-Glo试剂
(13)1000rpm离心10s,盖上孔板并摇晃约30s,在23℃孵育60min
(14)加入10μL激酶检测试剂
(15)1000rpm离心10s,随后在23℃孵育60min
(16)在Envision仪器上测量荧光数值。
2.体外细胞活性测试
<1>Jeko-1细胞活性测试
1)用DMSO将化合物粉末配置成10mM的母液,储存在-20℃的冰箱中。
2)用DMEM培养基(Invitrogen,Cat#11965126)稀释化合物到10μM(1mL培养基+1μl 10mM化合物母液),并且依次4倍体积稀释,稀释8个梯度(40μl上个梯度的溶液+120μl稀释梯度的溶液)。
3)经过24小时的无血清饥饿处理,移除无血清培养基,加入对应的稀释好的化合物100μL/孔,37℃2h。
4)加入人重组蛋白IgM(sigma Cat#I2386)6μg/mL 5μL/孔,37℃CO 2 10min。
5)用排枪移除化合物,加入50μl/孔的裂解液,放到震荡器上震荡30min。
6)待细胞完全裂解后,取16μl裂解液到384孔板上,加入4μl/孔试剂盒中配置好的AC+D2。(AC:Eu3+-cryptate抗体结合到磷酸化的AKT上,而D2结合到非磷酸化的AKT上),室温孵育4h。
7)孵育后,在EnVingen上选取620and 665nm的激发光读数。
<2>TMD-8细胞活性测试
1)细胞培养
将肿瘤细胞系按表2所示的培养条件在37℃,5%CO 2的培养箱中进行培养。定期传代,取处于对数生长期的细胞用于铺板。
2)细胞铺板
(1).用台盼兰进行细胞染色并计数活细胞。
(2).将细胞浓度调整至7000个细胞/孔
(3).在培养板中每孔加入90μL细胞悬液,在空白对照空中加入不含细胞的培养液。
(4).将培养板在37℃,5%CO 2,及100%相对湿度的培养箱中培养过夜。
3)化合物存储板制备
(12).制备400×化合物存储板:将化合物用DMSO从最高浓度梯度稀释至最低浓度。
4)10×化合物工作液的配制及化合物处理细胞
(1).10×化合物工作液的配制:在V形底的96孔板中加入78μL细胞培养液,从400X化合物存储板中吸取2μL化合物加入96孔板的细胞培养液中。在溶媒对照和空白对照中加入2μL DMSO。加入化合物或DMSO后用排枪吹打混匀。
(2).加药:取10μL的10X化合物工作液按表1所示加入到细胞培养板中。在溶媒对照和空白对照中加入10μL DMSO-细胞培养液混合液。DMSO终浓度为0.25%。
(3).将96孔细胞板放回培养箱中培养72h。
5)CellTiter-Glo发光法细胞活性检测
以下步骤按照Promega CellTiter-Glo发光法细胞活性检测试剂盒(Promega-G7573)的说明书来进行。
(1).将CellTiter-Glo缓冲液融化并放置至室温。
(2).将CellTiter-Glo底物放置至室温。
(3).在一瓶CellTiter-Glo底物中加入CellTiter-Glo缓冲液以溶解底物,从而配制CellTiter-Glo工作液。
(4).缓慢涡旋震荡使充分溶解。
(5).取出细胞培养板放置30分钟使其平衡至室温。
(6).在每孔中加入50μL(等于每孔中细胞培养液一半体积)的CellTiter-Glo工作液。用铝箔纸包裹细胞板以避光。
(7).将培养板在轨道摇床上振摇2分钟以诱导细胞裂解。
(8).培养板在室温放置10分钟以稳定发光信号。
(9).在2104EnVision读板器上检测发光信号。
结果见表14。
表14.本发明化合物体外筛选试验结果
Figure PCTCN2021077255-appb-000035
结论:式(I)化合物能够很好的抑制PI3K激酶活性,同时对PI3Kα/β/γ有较高的亚型选择性。此外,在细胞中也能够很好地抑制PI3K下游Akt的磷酸化水平。
实验例2:体内研究
1.体内DMPK研究
实验目的:以雌性Balb/c小鼠为受试动物,单次给药后测定化合物血药浓度并评估药代动力学行 为。
实验操作:选择健康成年雌性Balb/c小鼠8只,4只为静注组,4只为口服组。待测化合物与适量静注组溶媒(DMSO/PEG200/水(5:45:50v/v/v))混合,涡旋并超声,制备得到1.0mg/mL澄清溶液,微孔滤膜过滤后备用;口服组溶媒为0.5%MC/0.2%Tween 80,待测化合物与溶媒混合后,涡旋并超声,制备得到1.0mg/mL均一混悬液备用。小鼠1mg/kg静脉给药或3mg/kg口服给药后,收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。结果见表15。
表15.本发明化合物小鼠体内药物代谢动力学性质研究结果
Figure PCTCN2021077255-appb-000036
注:PPB%:血浆蛋白结合率;口服方式给药药代动力学参数(Cmax:药物在体内的最高浓度,F%:口服生物利用度,Oral DNAUC:剂量归一化曲线下面积);静脉注射方式给药药代动力学参数(Vd:表观分布容积;Cl:清除率;T 1/2:半衰期)。
结论:式(I)化合物有更低的血浆蛋白结合率,即在体内游离药物更多,并且在小鼠体内表现出了高暴露量,低清除率,以及良好的口服生物利用度。
2.体内药效研究
实验目的:研究受试药化合物对人淋巴癌TMD-8细胞皮下异种移植瘤在CB-17SCID小鼠模型体内药效进行评估。
实验操作:
(1)细胞培养
人淋巴癌TMD-8细胞(上海君瑞-UFBN1682)体外单层培养,培养条件为RPMI 1640培养基中加10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃5%CO 2培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%时,收取细胞,计数,接种
(2)肿瘤细胞接种
将0.2mL(1×10 7个)TMD-8细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背肿瘤平均体积达到99mm 3时分组给药。
(3)受试物的配制
溶媒组:0.5%MC/0.2%Tween 80/99.3%水。
待测化合物组:称量定量的受试化合物于棕色配药瓶内,加入相应体积的溶媒后涡旋,得到均匀混悬液或澄清溶液。
实验指标是考察肿瘤生长是否被抑制、延缓或治愈。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=【1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积)/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)】×100%。
表16.本发明化合物对TMD-8小鼠异植瘤模型的抑瘤效果
Figure PCTCN2021077255-appb-000037
结论:式(I)化合物与第二代BTK抑制剂ACP-196联用,在TMD-8小鼠皮下异植瘤模型中展示了显著的肿瘤消退的作用。

Claims (28)

  1. 式(I)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92±0.20°,8.82±0.20°,17.24±0.20°,
    Figure PCTCN2021077255-appb-100001
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.92±0.20°,8.82±0.20°,16.22±0.20°,17.24±0.20°,19.78±0.20°,23.30±0.20°,24.96±0.20°,26.00±0.20°。
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射:7.92±0.20°,8.82±0.20°,14.78±0.20°,16.22±0.20°,17.24±0.20°,19.78±0.20°,21.84±0.20°,23.30±0.20°,24.96±0.20°,26.00±0.20°。
  4. 根据权利要求3所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射:4.80°,7.92°,8.82°,10.26°,11.94°,13.82°,14.78°,15.46°,16.22°,17.24°,18.26°,19.78°,21.12°,21.84°,22.70°,23.30°,24.20°,24.96°,26.00°,26.58°,27.74°,28.56°,29.40°,30.76°,32.24°,37.18°。
  5. 根据权利要求4所述的A晶型,其XRPD图谱如图1所示。
  6. 根据权利要求1~5任意一项所述的A晶型,其差示扫描量热曲线在在414.7±3.0℃有一个吸热峰的峰值;在188.9±3.0℃有一个放热峰的峰值。
  7. 根据权利要求6所述的A晶型,其DSC图谱如图2所示。
  8. 根据权利要求1~5任意一项所述的A晶型,其热重分析曲线在200.0℃±3.0℃时失重达0.21%。
  9. 根据权利要求8所述的A晶型,其TGA图谱如图3所示。
  10. 式(I)化合物的D晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,11.56±0.20°,22.90±0.20°。
  11. 根据权利要求10所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,11.56±0.20°,17.80±0.20°,19.98±0.20°,20.80±0.20°,22.90±0.20°,23.68±0.20°,25.68±0.20°。
  12. 根据权利要求11所述的D晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射:10.10±0.20°,11.56±0.20°,14.68±0.20°,17.80±0.20°,19.98±0.20°,20.80±0.20°,22.90±0.20°,23.68±0.20°,25.00±0.20°,25.68±0.20°。
  13. 根据权利要求12所述的D晶型,其XRPD图谱如图10所示。
  14. 根据权利要求10~13任意一项所述的D晶型,其差示扫描量热曲线在129.2±3.0℃有一个放热峰的峰值。
  15. 根据权利要求14所述的D晶型,其DSC图谱如图11所示。
  16. 根据权利要求10~13任意一项所述的D晶型,其热重分析曲线在200.0℃±3.0℃时失重达9.06%。
  17. 根据权利要求16所述的D晶型,其TGA图谱如图12所示。
  18. 式(V)所示化合物,
    Figure PCTCN2021077255-appb-100002
    其中,p选自1~2,优选为1~1.2,更优选为1或1.1。
  19. 式(V)化合物的I晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.08±0.20°,10.23±0.20°,16.24±0.20°。
  20. 根据权利要求19所述的I晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.08±0.20°,6.30±0.20°,7.45±0.20°,10.23±0.20°,12.60±0.20°,16.24±0.20°,19.81±0.20°,24.56±0.20°。
  21. 根据权利要求20所述的I晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射:5.08±0.20°,6.30±0.20°,7.45±0.20°,10.23±0.20°,12.60±0.20°,16.24±0.20°,19.81±0.20°,20.92±0.20°,22.19±0.20°,24.56±0.20°。
  22. 根据权利要求21所述的I晶型,其XRPD图谱如图25所示。
  23. 根据权利要求19~22任意一项所述的I晶型,其差示扫描量热曲线分别在128.77±3.0℃和162.07±3.0℃有一个吸热峰的峰值。
  24. 根据权利要求23所述的I晶型,其DSC图谱如图26所示。
  25. 根据权利要求19~22任意一项所述的I晶型,其热重分析曲线在168.36℃±3.0℃时失重达3.564%。
  26. 根据权利要求25所述的I晶型,其TGA图谱如图27所示。
  27. 式(I)化合物A晶型的制备,包括:
    1)将式(I)化合物加入水、醇类或混合溶剂中使其成悬浊液;
    2)悬浊液在25~40℃下搅拌16~30小时,
    3)将上述悬浊液过滤,滤饼干燥8~16小时;
    其中,
    醇类溶剂为甲醇或乙醇;
    混合溶剂为乙醇:水(v/v=2:1)、丙酮:水(v/v=2:1)或乙醇:水(v/v=1:3)。
  28. 根据权利要求1~9任意一项所述A晶型或权利要求10~17任意一项所述D晶型或权利要求18所述的化合物或权利要求19~26任意一项所述I晶型或根据权利要求27所述的方法制备得到的晶型在制备治疗慢性淋巴细胞白血病、小淋巴细胞淋巴瘤、边缘带淋巴瘤、滤泡性淋巴瘤、套细胞淋巴瘤和弥漫性大B细胞淋巴瘤药物中的应用。
PCT/CN2021/077255 2020-02-21 2021-02-22 一种吡唑并嘧啶类化合物的晶型及其应用 WO2021164789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010110671.9 2020-02-21
CN202010110671 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021164789A1 true WO2021164789A1 (zh) 2021-08-26

Family

ID=77391877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077255 WO2021164789A1 (zh) 2020-02-21 2021-02-22 一种吡唑并嘧啶类化合物的晶型及其应用

Country Status (1)

Country Link
WO (1) WO2021164789A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151735A2 (en) * 2009-06-25 2010-12-29 Amgen Inc. Heterocyclic compounds and their uses
CN104470923A (zh) * 2012-07-04 2015-03-25 理森制药股份公司 选择性PI3K δ抑制剂
CN104582732A (zh) * 2012-06-15 2015-04-29 布里格姆及妇女医院股份有限公司 治疗癌症的组合物及其制造方法
WO2015081127A2 (en) * 2013-11-26 2015-06-04 Gilead Sciences, Inc. Therapies for treating myeloproliferative disorders
CN105073197A (zh) * 2012-11-02 2015-11-18 Tg疗法有限公司 抗cd20抗体和pi3激酶选择性抑制剂的组合
CN106470996A (zh) * 2014-07-04 2017-03-01 鲁平有限公司 作为pi3k抑制剂的喹嗪酮衍生物
US20170209594A1 (en) * 2015-06-25 2017-07-27 Immunomedics, Inc. Synergistic effect of anti-trop-2 antibody-drug conjugate in combination therapy for triple-negative breast cancer when used with microtubule inhibitors or parp inhibitors
CN108310384A (zh) * 2018-02-05 2018-07-24 苏州大学 Pi3k抑制剂在制备治疗血小板数量减少相关疾病药物中的用途
WO2020038394A1 (zh) * 2018-08-21 2020-02-27 南京明德新药研发有限公司 吡唑并嘧啶衍生物及其作为pi3k抑制剂的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151735A2 (en) * 2009-06-25 2010-12-29 Amgen Inc. Heterocyclic compounds and their uses
CN104582732A (zh) * 2012-06-15 2015-04-29 布里格姆及妇女医院股份有限公司 治疗癌症的组合物及其制造方法
CN104470923A (zh) * 2012-07-04 2015-03-25 理森制药股份公司 选择性PI3K δ抑制剂
CN105073197A (zh) * 2012-11-02 2015-11-18 Tg疗法有限公司 抗cd20抗体和pi3激酶选择性抑制剂的组合
WO2015081127A2 (en) * 2013-11-26 2015-06-04 Gilead Sciences, Inc. Therapies for treating myeloproliferative disorders
CN106470996A (zh) * 2014-07-04 2017-03-01 鲁平有限公司 作为pi3k抑制剂的喹嗪酮衍生物
US20170209594A1 (en) * 2015-06-25 2017-07-27 Immunomedics, Inc. Synergistic effect of anti-trop-2 antibody-drug conjugate in combination therapy for triple-negative breast cancer when used with microtubule inhibitors or parp inhibitors
CN108310384A (zh) * 2018-02-05 2018-07-24 苏州大学 Pi3k抑制剂在制备治疗血小板数量减少相关疾病药物中的用途
WO2020038394A1 (zh) * 2018-08-21 2020-02-27 南京明德新药研发有限公司 吡唑并嘧啶衍生物及其作为pi3k抑制剂的应用

Similar Documents

Publication Publication Date Title
ES2502941T3 (es) Método de preparación de compuestos de amida de dihidroindeno, las composiciones farmacéuticas que contienen dichos compuestos y el uso como inhibidor de proteína quinasas
Liu et al. Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1, 2, 4-triazolone moiety as c-Met kinase inhibitors
WO2018024208A1 (zh) Ido1抑制剂及其制备方法和应用
CN109311891A (zh) 作为jak抑制剂的吡咯并嘧啶化合物的结晶
EP3395817A1 (en) Pyrido[1,2-a]pyrimidone analog, crystal form thereof, intermediate thereof and preparation method therefor
KR20210034058A (ko) Lsd1억제제의 염 및 이의 결정형
CN107501279B (zh) 呋喃并喹啉二酮类化合物及其医药用途
CN109641909A (zh) 雷帕霉素信号通路抑制剂的机理靶标及其治疗应用
ES2943092T3 (es) Sal que sirve como inhibidor de Akt y cristal de la misma
JP6974618B2 (ja) Fgfr及びvegfr阻害剤としての化合物の塩形態、結晶形およびその製造方法
WO2021164789A1 (zh) 一种吡唑并嘧啶类化合物的晶型及其应用
WO2022257965A1 (zh) 固体形式的周期蛋白依赖性激酶9抑制剂及其用途
CN106892907B (zh) 含酰腙结构的喹唑啉类化合物及其应用
CN111247137A (zh) 一种嘧啶类化合物、其制备方法及其医药用途
CN106866642B (zh) 含芳基酰腙结构的喹唑啉类化合物及其应用
WO2020228729A1 (zh) 喹唑啉酮类化合物的晶型及其制备方法
WO2020192637A1 (zh) 固体形式的brd4抑制剂化合物及其制备方法与应用
CN110167554A (zh) 一种具有抗癌作用的化合物及其制备方法和应用
CN107235931A (zh) 新型嘧啶类抗肿瘤化合物及其制备方法与用途
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
WO2024027825A1 (zh) 一种cdk抑制剂及其磷酸盐的多晶型
CN111606891B (zh) (1,1,1-三氯-2)氨基甲酸酯类衍生物及其制备方法和应用
WO2023093861A1 (zh) Axl激酶抑制剂的单对甲苯磺酸盐及其晶型
WO2020224585A1 (zh) 一种mTORC1/2双激酶活性抑制剂的盐型、晶型及其制备方法
WO2022016420A1 (zh) 一种喹唑啉酮类化合物的晶型、其制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757656

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21757656

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21757656

Country of ref document: EP

Kind code of ref document: A1