WO2022130722A1 - ベローズポンプ装置 - Google Patents

ベローズポンプ装置 Download PDF

Info

Publication number
WO2022130722A1
WO2022130722A1 PCT/JP2021/034699 JP2021034699W WO2022130722A1 WO 2022130722 A1 WO2022130722 A1 WO 2022130722A1 JP 2021034699 W JP2021034699 W JP 2021034699W WO 2022130722 A1 WO2022130722 A1 WO 2022130722A1
Authority
WO
WIPO (PCT)
Prior art keywords
bellows
state
time
control unit
pair
Prior art date
Application number
PCT/JP2021/034699
Other languages
English (en)
French (fr)
Inventor
大輔 浦田
一清 手嶋
敦文 木下
Original Assignee
日本ピラー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピラー工業株式会社 filed Critical 日本ピラー工業株式会社
Priority to US18/266,922 priority Critical patent/US20240044325A1/en
Priority to JP2022569717A priority patent/JP7429804B2/ja
Priority to KR1020237020927A priority patent/KR20230119147A/ko
Priority to CN202180085164.7A priority patent/CN116724171A/zh
Publication of WO2022130722A1 publication Critical patent/WO2022130722A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/022Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows with two or more bellows in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/088Machines, pumps, or pumping installations having flexible working members having tubular flexible members with two or more tubular flexible members in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/102Disc valves
    • F04B53/1032Spring-actuated disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1095Valves linked to another valve of another pumping chamber

Definitions

  • the present invention relates to a bellows pump device.
  • the present invention has been made in view of such circumstances, and a bellows pump capable of automatically resetting the fluid pressure of the pressurized fluid for extending the bellows when the extension time of the bellows changes.
  • the purpose is to provide the device.
  • the present invention has a pair of bellows that can expand and contract independently of each other, suck the transferred fluid inside by stretching, and discharge the transferred fluid from the inside by contraction, and have a suction side fluid chamber and a discharge side fluid chamber. Then, by supplying the pressurized fluid to the suction side fluid chamber, each bellows is extended to a predetermined extended state, and by supplying the pressurized fluid to the discharge side fluid chamber, each bellows is brought into a predetermined contracted state.
  • the drive control of the pair of drive units is performed so that the pair of drive units that are contracted to the above and the pair of bellows contracts the other bellows from the extended state before one of the bellows is in the contracted state.
  • a bellows pump device including a control unit, which adjusts the fluid pressure of a pair of detection units for detecting the expansion / contraction state of each bellows and a pressurized fluid supplied to the suction-side fluid chamber of each drive unit.
  • the control unit includes a pair of fluid pressure adjusting units, and the control unit contracts to a state in the middle of contraction before the one bellows becomes the contracted state based on each detection signal of the pair of detection units.
  • the other bellows is determined whether or not the other bellows is in the extended state, and if the determination result is negative, the other bellows is increased so as to increase the fluid pressure at the next extension of the other bellows. It is a bellows pump device that performs next boost control to control the fluid pressure adjusting unit corresponding to the driving unit that extends the bellows.
  • the control unit performs the next boost control to increase the fluid pressure of the pressurized fluid supplied to the suction side fluid chamber of the corresponding drive unit when the other bellows is extended next time.
  • the extension time of the other bellows becomes long, the fluid pressure of the pressurized fluid for extending the other bellows can be automatically reset to a high value.
  • the extension time of the other bellows is shortened next time, it is possible to suppress the deterioration of the pulsation on the discharge side of the bellows pump device due to the extension time.
  • the present invention is independently expandable and contractible, and has a pair of bellows that suck the transfer fluid inside by extension and discharge the transfer fluid from the inside by contraction, a suction side fluid chamber, and the suction side fluid chamber.
  • Each of the above has a discharge side fluid chamber, and by supplying a pressurized fluid to the suction side fluid chamber, each bellows is extended to a predetermined extended state, and by supplying a pressurized fluid to the discharge side fluid chamber, the pressure fluid is supplied.
  • a pair of driving units that contract the bellows to a predetermined contracted state, and a pair of the driven parts of the pair of the bellows so that the other bellows contracts from the expanded state before one of the bellows becomes the contracted state.
  • a bellows pump device including a control unit that controls drive of the unit, a pair of detection units that detect the expansion / contraction state of each bellows, and pressurization supplied to the suction-side fluid chamber of each drive unit.
  • a pair of fluid pressure adjusting units for adjusting the fluid pressure of the fluid are provided, and the control unit is in the process of contracting before one of the bellows is in the contracted state based on each detection signal of the pair of the detection units. When it contracts to the state, or when one of the bellows contracts to the contracted state, it is determined whether or not the other bellows is in the extended state, and if the determination result is negative, the present time.
  • a bellows pump that controls the current boost control to control the fluid pressure adjusting unit corresponding to the driving unit that extends the other bellows so as to gradually increase the fluid pressure of the other bellows extending in. It is a device.
  • the control unit performs current boost control for gradually increasing the fluid pressure of the pressurized fluid supplied to the suction side fluid chamber of the corresponding drive unit for the other bellows that is currently extending. ..
  • the fluid pressure of the pressurized fluid for extending the other bellows can be automatically set to a gradually higher value.
  • the extension time of the other bellows at the present time is shortened, it is possible to suppress the deterioration of the pulsation on the discharge side of the bellows pump device due to the increase of the extension time.
  • the present invention is independently expandable and contractible, and has a pair of bellows that suck the transfer fluid inside by extension and discharge the transfer fluid from the inside by contraction, a suction side fluid chamber, and the suction side fluid chamber.
  • Each of the above has a discharge side fluid chamber, and by supplying a pressurized fluid to the suction side fluid chamber, each bellows is extended to a predetermined extended state, and by supplying a pressurized fluid to the discharge side fluid chamber, the pressure fluid is supplied.
  • a pair of driving units that contract the bellows to a predetermined contracted state, and a pair of the driven parts of the pair of the bellows so that the other bellows contracts from the expanded state before one of the bellows becomes the contracted state.
  • a bellows pump device including a control unit that controls drive of the unit, a pair of detection units that detect the expansion / contraction state of each bellows, and pressurization supplied to the suction-side fluid chamber of each drive unit.
  • a pair of fluid pressure adjusting units for adjusting the fluid pressure of the fluid are provided, and the control unit is in the process of contracting before one of the bellows is in the contracted state based on each detection signal of the pair of the detection units.
  • the said It is a bellows pump device that performs step-down control for controlling the fluid pressure adjusting unit corresponding to the driving unit that extends the other bellows so as to reduce the fluid pressure.
  • the other bellows when one bellows contracts to a state in the middle of contraction, the other bellows may continue a predetermined extended state for a predetermined time or more.
  • the control unit performs step-down control to lower the fluid pressure of the pressurized fluid supplied to the suction side fluid chamber of the corresponding drive unit at the next extension of the other bellows.
  • the control unit of the above (1) determines the extended state of the other bellows when the one bellows contracts to the contracted state based on each detection signal of the pair of the detection units. It is determined whether or not it has continued for more than an hour, and if the determination result is positive, the drive for extending the other bellows so as to lower the fluid pressure at the next extension of the other bellows. It is preferable to perform step-down control for controlling the fluid pressure adjusting unit corresponding to the unit. In this case, both the step-up control and the step-down control are performed next time.
  • the fluid pressure of the pressurized fluid for extending the other bellows can be automatically reset to a high value, and the other bellows can be extended.
  • the fluid pressure of the pressurized fluid for extending the other bellows can be automatically reset to a low value.
  • the control unit determines whether or not the other bellows is in the extended state when the one bellows contracts to the contracted state based on each detection signal of the pair of detection units. If the determination result is negative, the lower limit of the fluid pressure adjustment range by the fluid pressure adjusting unit at the next extension of the other bellows is set to the lower limit of the fluid pressure adjustment range at the previous extension of the other bellows. It is preferable to set it higher than the fluid pressure.
  • the control unit When the control unit performs step-down control, when one bellows contracts to a predetermined contracted state, the other bellows may not expand to a predetermined extended state.
  • the step-down control causes the fluid pressure of the pressurized fluid supplied to the suction-side fluid chamber of the corresponding drive unit to be stepped down more than necessary, so that the extension time of the other bellows becomes too long.
  • the control unit sets the lower limit of the adjustment range of the fluid pressure at the time of the next extension of the other bellows to be higher than the fluid pressure at the time of the previous extension of the other bellows.
  • the control unit determines whether or not the other bellows is in the extended state when the one bellows contracts to the contracted state based on each detection signal of the pair of detection units. If the determination result is negative, the lower limit of the adjustment range of the fluid pressure by the fluid pressure adjusting unit at the time of extension of the other bellows after the next time is set to the lower limit value of the adjustment range of the other bellows at the time of the previous extension of the other bellows. It is preferable to set it higher than the fluid pressure.
  • the control unit When the control unit performs step-down control, when one bellows contracts to a predetermined contracted state, the other bellows may not expand to a predetermined extended state.
  • the step-down control causes the fluid pressure of the pressurized fluid supplied to the suction-side fluid chamber of the corresponding drive unit to be stepped down more than necessary, so that the extension time of the other bellows becomes too long.
  • the control unit may set the lower limit of the adjustment range of the fluid pressure at the time of extension of the other bellows one after another to be higher than the fluid pressure at the time of extension of the other bellows at the previous time. ..
  • the control unit contracts when one of the bellows contracts to a state in the middle of contraction before the contraction state, or the one bellows contracts.
  • the other bellows is contracted to the state, it is determined whether or not the other bellows is in the extended state, and if the determination result is negative, the fluid pressure of the other bellows currently being expanded is gradually applied. It is preferable to perform the current boost control that controls the fluid pressure adjusting unit corresponding to the driving unit that extends the other bellows so as to increase the pressure.
  • the control unit When the control unit performs step-down control, when one bellows contracts to a predetermined contracted state, the other bellows may not expand to a predetermined extended state. The reason is that the step-down control causes the fluid pressure of the pressurized fluid supplied to the suction-side fluid chamber of the corresponding drive unit to be stepped down more than necessary, so that the extension time of the other bellows becomes too long. In such a case, the control unit performs current boost control for gradually boosting the fluid pressure of the other bellows that is currently stretched. This makes it possible to shorten the elongation time of the other bellows at the present time.
  • control unit performs the drive control based on each detection signal of the pair of detection units.
  • the pair of detectors used for the drive control of the pair of drive units also serve as the pair of detectors used for the current step-up control, the next step-up control, or the step-down control, the configuration of the bellows pump device is simplified. be able to.
  • the fluid pressure of the pressurized fluid for extending the bellows can be automatically reset.
  • FIG. 1 is a schematic configuration diagram of a bellows pump device according to an embodiment of the present invention.
  • the bellows pump device 1 of the present embodiment is used, for example, in a semiconductor manufacturing device when supplying a fixed amount of a transfer fluid such as a chemical solution or a solvent.
  • the bellows pump device 1 includes an air supply device (fluid supply device) 2, a mechanical regulator 3, a first solenoid valve 4, a second solenoid valve 5, a control unit 6, a bellows pump 10, and a first electropneumatic regulator (fluid pressure adjustment). Section 51 and a second electropneumatic regulator (fluid pressure adjusting section) 52 are provided.
  • the air supply device 2 comprises, for example, an air compressor, and generates pressurized air (pressurized fluid) to be supplied to the bellows pump 10.
  • the mechanical regulator 3 adjusts the air pressure (fluid pressure) of the pressurized air generated by the air supply device 2.
  • the first electropneumatic regulator 51 and the second electropneumatic regulator 52 will be described later.
  • FIG. 2 is a cross-sectional view of the bellows pump 10 according to the present embodiment.
  • the bellows pump 10 of the present embodiment has a pump head 11 arranged in the center, a pair of pump cases 12 attached to both sides of the pump head 11 in the left-right direction, and a pump head inside each pump case 12. Attached to the left-right side surface of the pump head 11 inside each of the first bellows 13 and the second bellows 14, which are a pair of bellows attached to the left-right side surface of the eleven, and the first and second bellows 13, 14 respectively. A total of four check valves 15 and check valves 16 are provided.
  • the first bellows 13 and the second bellows 14 are formed in a bottomed tubular shape by a fluororesin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • the flange portion 13a and the flange portion 14a integrally formed at the open side ends of the first and second bellows 13 and 14 are hermetically pressed and fixed to the side surface of the pump head 11.
  • the peripheral walls of the first and second bellows 13 and 14 are formed in a bellows shape, and are configured to be elastic in the left-right direction independently of each other.
  • the working plate 19 is fixed to the outer surface of the closed end of the first and second bellows 13 and 14 by bolts 17 and nuts 18.
  • the first and second bellows 13 and 14 are in a fully extended state in which the outer surface of the working plate 19 abuts on the inner surface of the bottom wall portion 121 in the bottomed cylindrical pump case 12, and the inner surface of the piston body 23 described later is the bottom wall. It can be expanded and contracted with the most contracted state in contact with the outer surface of the portion 121.
  • first pump case 12A An opening peripheral edge of the pump case 12 (hereinafter, also referred to as “first pump case 12A”) is hermetically pressed and fixed to the flange portion 13a of the first bellows 13. As a result, the first discharge side air chamber (discharge side fluid chamber) 21A in which the airtight state is maintained is formed on the outside of the first bellows 13 inside the first pump case 12A.
  • the first pump case 12A is provided with a first intake / exhaust port 22A, and the first intake / exhaust port 22A is an air supply device via a first solenoid valve 4, a first electropneumatic regulator 51, and a mechanical regulator 3. It is connected to 2 (see FIG. 1).
  • the first bellows 13 contracts to a predetermined contracted state (hereinafter, simply referred to as “contracted state”).
  • the contracted state of the first bellows 13 may be the most contracted state or a state before the most contracted state.
  • second pump case 12B The opening peripheral edge of the pump case 12 (hereinafter, also referred to as “second pump case 12B") is airtightly pressed and fixed to the flange portion 14a of the second bellows 14. As a result, a second discharge side air chamber (discharge side fluid chamber) 21B that maintains an airtight state is formed on the outside of the second bellows 14 inside the second pump case 12B.
  • the second pump case 12B is provided with a second intake / exhaust port 22B, and the second intake / exhaust port 22B is an air supply device via a second solenoid valve 5, a second electropneumatic regulator 52, and a mechanical regulator 3. It is connected to 2 (see FIG. 1).
  • the second bellows 14 contracts to a predetermined contracted state (hereinafter, simply referred to as “contracted state”).
  • the contracted state of the second bellows 14 may be the most contracted state or a state before the most contracted state.
  • a rod-shaped connecting member 20 is penetrated through the bottom wall portion 121 of each of the pump cases 12A and 12B, and the connecting member 20 is slidably supported with respect to the bottom wall portion 121 in the left-right direction.
  • a piston body 23 is fixed to the outer end of the connecting member 20 by a nut 24. The piston body 23 is slidably supported in the left-right direction with respect to the inner peripheral surface of the cylindrical cylinder body 25 integrally provided on the outside of the bottom wall portion 121 while maintaining an airtight state.
  • the space surrounded by the bottom wall portion 121, the cylinder body 25, and the piston body 23 is the first suction side air chamber (suction side fluid chamber) 26A in which the airtight state is maintained. It is said that.
  • the space surrounded by the bottom wall portion 121, the cylinder body 25, and the piston body 23 is the second suction side air chamber (suction side fluid chamber) 26B in which the airtight state is maintained. Has been done.
  • the cylinder body 25 on the first pump case 12A side is formed with an intake / exhaust port 251 communicating with the first suction side air chamber 26A.
  • the intake / exhaust port 251 is connected to the air supply device 2 via the first solenoid valve 4, the first electropneumatic regulator 51, and the mechanical regulator 3 (see FIG. 1).
  • the first bellows 13 is in a predetermined extended state (hereinafter, simply "extended state"). ”).
  • the extended state of the first bellows 13 may be the most extended state or may be a state before the most extended state.
  • the cylinder body 25 on the second pump case 12B side is formed with an intake / exhaust port 252 communicating with the second suction side air chamber 26B.
  • the intake / exhaust port 252 is connected to the air supply device 2 via the second solenoid valve 5, the second electropneumatic regulator 52, and the mechanical regulator 3 (see FIG. 1).
  • the second bellows 14 is in a predetermined extended state (hereinafter, simply "extended state"). ”).
  • the extended state of the second bellows 14 may be the most extended state or may be a state before the most extended state.
  • the first bellows 13 is formed by the first pump case 12A in which the first discharge side air chamber 21A is formed, and the piston body 23 and the cylinder body 25 forming the first suction side air chamber 26A.
  • a first drive unit (drive unit) 27 that continuously expands and contracts between the extended state and the contracted state is configured.
  • the second bellows 14 is extended by the second pump case 12B in which the second discharge side air chamber 21B is formed, and the piston body 23 and the cylinder body 25 forming the second suction side air chamber 26B.
  • a second drive unit (drive unit) 28 that continuously expands and contracts with the contracted state is configured.
  • a pair of proximity sensors 29A and proximity sensors 29B are attached to the cylinder body 25 of the first drive unit 27.
  • a detected plate 30 detected by the proximity sensors 29A and 29B is attached to the piston body 23 of the first drive unit 27. The detected plate 30 reciprocates together with the piston body 23 to alternately approach the proximity sensors 29A and 29B.
  • the proximity sensor 29A is arranged at a position where the detected plate 30 is detected when the first bellows 13 is in the middle of contraction state before the contraction state.
  • the proximity sensor 29B is arranged at a position where the detected plate 30 is detected when the first bellows 13 is in the extended state.
  • the pair of proximity sensors 29A and 29B function as a first detection unit (detection unit) for detecting the expansion / contraction state of the first bellows 13.
  • a pair of proximity sensors 31A and proximity sensors 31B are attached to the cylinder body 25 of the second drive unit 28.
  • a detected plate 32 detected by the proximity sensors 31A and 31B is attached to the piston body 23 of the second drive unit 28. The detected plate 32 reciprocates together with the piston body 23 to alternately approach the proximity sensors 31A and 31B.
  • the proximity sensor 31A is arranged at a position where the detected plate 32 is detected when the second bellows 14 is in the state of contraction before the second bellows 14 is in the contracted state.
  • the proximity sensor 31B is arranged at a position where the detected plate 32 is detected when the second bellows 14 is in the extended state.
  • the pair of proximity sensors 31A and 31B function as a second detection unit (detection unit) for detecting the expansion / contraction state of the second bellows 14.
  • the "mid-shrinkage state" of the first bellows 13 means that the shrinkage progress position of the first bellows 13 (second bellows 14) is a shrinkage end position (extension state) rather than the shrinkage start position (extension state). It means that it is in a position close to the contracted state), and more specifically, the first bellows 13 (second bellows 14) contracts to 50% to 90% of the contracted length from the expanded state to the contracted state. Means position.
  • the pump head 11 is made of a fluororesin such as PTFE or PFA. Inside the pump head 11, a suction passage 34 and a discharge passage 35 for the transferred fluid are formed. The suction passage 34 and the discharge passage 35 are opened on the outer peripheral surface of the pump head 11 and are connected to a suction port and a discharge port (both not shown) provided on the outer peripheral surface.
  • the suction port is connected to the transfer fluid storage tank, etc., and the discharge port is connected to the transfer fluid transfer destination. Further, the suction passage 34 and the discharge passage 35 each have a suction port 36 and a discharge port 37 that branch toward the left and right side surfaces of the pump head 11 and open on the left and right side surfaces of the pump head 11. Each suction port 36 and each discharge port 37 communicate with the inside of bellows 13 and 14 via check valves 15 and 16, respectively.
  • Check valves 15 and 16 are provided at each suction port 36 and each discharge port 37.
  • the check valve 15 attached to the suction port 36 (hereinafter, also referred to as “suction check valve”) has a valve case 15a, a valve body 15b housed in the valve case 15a, and the valve body 15b in the valve closing direction. It has a compression coil spring 15c that urges the valve.
  • the valve case 15a is formed in a bottomed cylindrical shape.
  • a through hole 15d communicating with the inside of the bellows 13 and 14 is formed on the bottom wall of the valve case 15a.
  • the valve body 15b closes the suction port 36 (valve closure) by the urging force of the compression coil spring 15c, and opens the suction port 36 (valve opening) when the back pressure due to the flow of the transfer fluid accompanying the expansion and contraction of the bellows 13 and 14 acts. It is designed to do.
  • the suction check valve 15 opens when the bellows 13 and 14 in which the suction check valve 15 is arranged are extended, and the transfer fluid is transferred from the suction passage 34 toward the inside of the bellows 13 and 14 (one direction). Allow inhalation. Further, the suction check valve 15 closes when the bellows 13 and 14 in which the suction check valve 15 is arranged contracts, and the transfer fluid from the inside of the bellows 13 and 14 toward the suction passage 34 (other direction). Stop backflow.
  • the check valve 16 attached to the discharge port 37 (hereinafter, also referred to as “discharge check valve”) has a valve case 16a, a valve body 16b housed in the valve case 16a, and the valve body 16b in the valve closing direction. It has a compression coil spring 16c that urges the valve.
  • the valve case 16a is formed in a bottomed cylindrical shape.
  • a through hole 16d communicating with the inside of the bellows 13 and 14 is formed on the bottom wall of the valve case 16a.
  • the valve body 16b closes (closes) the through hole 16d of the valve case 16a by the urging force of the compression coil spring 16c, and penetrates the valve case 16a when the back pressure due to the flow of the transfer fluid accompanying the expansion and contraction of the bellows 13 and 14 acts.
  • the hole 16d is opened (valve opened).
  • the discharge check valve 16 opens when the bellows 13 and 14 in which the discharge check valve 16 is arranged contracts, and the transfer fluid is transferred from the inside of the bellows 13 and 14 toward the discharge passage 35 (one direction). Allow the outflow of. Further, the discharge check valve 16 closes when the bellows 13 and 14 in which the discharge check valve 16 is arranged are extended, and the transfer fluid from the discharge passage 35 toward the inside of the bellows 13 and 14 (other direction). Stop backflow.
  • FIGS. 3 and 4 the configurations of the first and second bellows 13 and 14 are simplified and shown.
  • FIG. 3 when the first bellows 13 contracts and the second bellows 14 expands, each valve body of the suction check valve 15 and the discharge check valve 16 mounted on the left side of the figure of the pump head 11.
  • the 15b and 16b receive pressure from the transfer fluid in the first bellows 13 and move to the right side in the figure of the valve cases 15a and 16a, respectively.
  • the suction check valve 15 is closed, the discharge check valve 16 is opened, and the transfer fluid in the first bellows 13 is discharged from the discharge passage 35 to the outside of the pump.
  • valve body 15b of the suction check valve 15 mounted on the right side of the figure of the pump head 11 moves to the right side of the figure of the valve case 15a by the suction action of the second bellows 14.
  • the valve body 16b of the discharge check valve 16 mounted on the right side of the pump head 11 is due to the suction action of the second bellows 14 and the pressing action of the transfer fluid discharged from the first bellows 13 to the discharge passage 35.
  • the valve case 16a moves to the right side in the figure.
  • the suction check valve 15 opens, the discharge check valve 16 closes, and the transferred fluid is sucked from the suction passage 34 into the second bellows 14.
  • valve body 15b of the suction check valve 15 mounted on the left side in the figure of the pump head 11 moves to the left side in the figure of the valve case 15a due to the suction action by the first bellows 13.
  • the valve body 16b of the discharge check valve 16 mounted on the left side of the pump head 11 is due to the suction action of the first bellows 13 and the pressing action of the transfer fluid discharged from the first bellows 13 to the discharge passage 35. It moves to the left side in the figure of the valve case 16a.
  • the suction check valve 15 opens, the discharge check valve 16 closes, and the transferred fluid is sucked from the suction passage 34 into the first bellows 13.
  • the left and right bellows 13 and 14 can alternately suck and discharge the transferred fluid.
  • the first solenoid valve 4 is composed of, for example, a three-position solenoid switching valve having a pair of solenoids 4a and 4b.
  • the solenoids 4a and 4b are excited based on the command signal received from the control unit 6.
  • the first solenoid valve 4 is switched and controlled by the control unit 6.
  • the first solenoid valve 4 switches between supply and discharge of pressurized air to the first discharge side air chamber 21A and supply and discharge of pressurized air to the first suction side air chamber 26A in the first drive unit 27.
  • the first solenoid valve 4 supplies pressurized air to the first discharge side air chamber 21A and discharges the pressurized air in the first suction side air chamber 26A. Switch to the state. Further, when the solenoid 4b is excited, the first solenoid valve 4 is in a state of discharging the pressurized air in the first discharge side air chamber 21A and supplying the pressurized air to the first suction side air chamber 26A. Switch.
  • the second solenoid valve 5 is composed of, for example, a three-position solenoid switching valve having a pair of solenoids 5a and solenoids 5b.
  • the solenoids 5a and 5b are excited by receiving a command signal from the control unit 6.
  • the second solenoid valve 5 is switched and controlled by the control unit 6.
  • the second solenoid valve 5 switches between supply and discharge of pressurized air to the second discharge side air chamber 21B and supply and discharge of pressurized air to the second suction side air chamber 26B in the second drive unit 28.
  • the second solenoid valve 5 supplies pressurized air to the second discharge side air chamber 21B and discharges the pressurized air in the second suction side air chamber 26B. Switch to the state. Further, when the solenoid 5b is excited, the second solenoid valve 5 is in a state of discharging the pressurized air in the second discharge side air chamber 21B and supplying the pressurized air to the second suction side air chamber 26B. Switch.
  • the first and second solenoid valves 4 and 5 of the present embodiment are composed of three-position solenoid switching valves, but may be two-position solenoid switching valves having no neutral position.
  • the first electropneumatic regulator 51 is arranged between the mechanical regulator 3 and the first solenoid valve 4.
  • the first electropneumatic regulator 51 is supplied to the air pressure of the pressurized air supplied to the first suction side air chamber 26A of the first drive unit 27 and to the first discharge side air chamber 21A of the first drive unit 27. Adjust the air pressure of the pressurized air respectively.
  • the second electropneumatic regulator 52 is arranged between the mechanical regulator 3 and the second solenoid valve 5.
  • the second electropneumatic regulator 52 is supplied to the air pressure of the pressurized air supplied to the second suction side air chamber 26B of the second drive unit 28 and to the second discharge side air chamber 21B of the second drive unit 28. Adjust the air pressure of the pressurized air respectively.
  • the electropneumatic regulators 51 and 52 may be any as long as they adjust at least the air pressure of the pressurized air supplied to the suction side air chambers 26A and 26B. Further, in the present embodiment, the electropneumatic regulators 51 and 52 that directly adjust the air pressure are used as the fluid pressure adjusting unit, but the air pressure is indirectly adjusted by using the air flow rate adjusting valve that adjusts the air flow rate. Alternatively, a device for adjusting the pressure or flow rate of a gas other than air (for example, nitrogen) or a liquid may be used.
  • control unit 6 is configured to include a computer having a CPU or the like. Each function of the control unit 6 is exhibited by the CPU executing the control program stored in the storage device of the computer.
  • the control unit 6 switches between the first solenoid valve 4 and the second solenoid valve 5 based on the detection results of the first detection unit 29 and the second detection unit 31, so that the first drive unit 27 and the second drive unit 6 28 drive control is performed.
  • control unit 6 contracts the second bellows 14 from the extended state before the first bellows 13 is in the contracted state, based on the detection results of the first detection unit 29 and the second detection unit 31.
  • each drive of the first drive unit 27 and the second drive unit 28 is controlled so that the first bellows 13 contracts from the extended state before the second bellows 14 enters the contracted state.
  • one of the first bellows 13 and the second bellows 14 is switched from contraction to expansion (from discharge of transfer fluid to suction) of the other bellows. Has already contracted and discharged the transfer fluid, so that it is possible to reduce a large drop in the discharge pressure of the transfer fluid at the above timing. As a result, the pulsation on the discharge side of the bellows pump 10 can be reduced.
  • the control unit 6 performs the next boost control and the current boost control for shortening each extension time of the first bellows 13 and the second bellows 14.
  • the control unit 6 receives a second when the first bellows 13 (second bellows 14) contracts to a state in the middle of contraction based on the detection results of the first detection unit 29 and the second detection unit 31. 2
  • the first determination for determining whether or not the bellows 14 (first bellows 13) is in the extended state is performed.
  • the control unit 6 receives the second suction side air chamber 26B (first suction) at the next expansion of the second bellows 14 (first bellows 13).
  • the next boost control for controlling the second electropneumatic regulator 52 (first electropneumatic regulator 51) is performed so as to boost the air pressure of the pressurized air supplied to the side air chamber 26A). It is desirable that the degree of boosting of the air pressure in the next boost control is + 1 kPa to +50 kPa (more preferably + 1 kPa to + 20 kPa).
  • the control unit 6 has the second suction side air for the second bellows 14 (first bellows 13) that is currently expanded.
  • Current boost control that controls the second electropneumatic regulator 52 (first electropneumatic regulator 51) so as to gradually increase the air pressure of the pressurized air supplied to the chamber 26B (first suction side air chamber 26A).
  • the degree of boosting of the air pressure in the current boost control is +1 kPa to +100 kPa (more preferably +1 kPa to +30 kPa) every 1 msec to 100 msec (more preferably every 1 msec to 30 msec).
  • the control unit 6 performs step-down control for lengthening each extension time of the first bellows 13 and the second bellows 14.
  • control unit 6 receives the first bellows 13 (second bellows 14) when the first bellows 13 (second bellows 14) contracts to a state in the middle of contraction based on the detection results of the first detection unit 29 and the second detection unit 31. 2
  • a second determination is made to determine whether or not the bellows 14 (first bellows 13) continues to be in the stretched state for a predetermined time or longer.
  • the predetermined time is preferably set to a value of, for example, 500 msec (preferably 10 to 200 msec).
  • the control unit 6 receives the second suction side at the next extension of the second bellows 14 (first bellows 13).
  • a step-down control is performed to control the second electropneumatic regulator 52 (first electropneumatic regulator 51) so as to lower the air pressure of the pressurized air supplied to the air chamber 26B (first suction side air chamber 26A). It is desirable that the degree of pressure reduction of the air pressure in the pressure reduction control is -1 kPa to -50 kPa (more preferably -1 kPa to -20 kPa).
  • the control unit 6 receives a second when the first bellows 13 (second bellows 14) contracts to a contracted state based on the detection results of the first detection unit 29 and the second detection unit 31.
  • a third determination is made to determine whether or not the bellows 14 (first bellows 13) is in the extended state.
  • the control unit 6 receives the second electropneumatic regulator 52 (first electric) at the next expansion of the second bellows 14 (first bellows 13).
  • the lower limit of the adjustment range of the air pressure by the empty regulator 51) is set higher than the air pressure at the time of the previous extension of the second bellows 14 (first bellows 13).
  • the lower limit of the air pressure adjustment range is set to + 1 kPa to + 50 kPa (more preferably + 5 kPa to + 20 kPa).
  • the upper limit of the air pressure adjustment range is a fixed value, and the upper limit is not changed even if the lower limit is reset.
  • the lower limit value reset in this way is the adjustment range of the air pressure by the second electropneumatic regulator 52 (first electropneumatic regulator 51) even when the second bellows 14 (first bellows 13) is extended one after another. It is applied as the lower limit.
  • the control unit 6 When the air pressure of the pressurized air supplied to the second suction side air chamber 26B (first suction side air chamber 26A) is lowered more than necessary by the step-down control, the control unit 6 further performs the above-mentioned current boost control. Specifically, when the determination result of the third determination is negative (not in the stretched state), the control unit 6 sucks the second bellows 14 (first bellows 13) which is currently stretched into the second suction. The current boost that controls the second electropneumatic regulator 52 (first electropneumatic regulator 51) so as to gradually boost the air pressure of the pressurized air supplied to the side air chamber 26B (first suction side air chamber 26A). Further control.
  • FIG. 5 is a time chart showing an example of the next boost control performed during drive control by the control unit 6.
  • the drive control and the next boost control executed by the control unit 6 will be described with reference to FIGS. 1 and 5.
  • the state in which the first bellows 13 is in the contraction operation (during discharge) and the second bellows 14 is in the extension operation (during suction) will be described.
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 at the time t1 when the proximity sensor 29A detects (ON) the contracting state of the first bellows 13. (First judgment).
  • the control unit 6 determines that the proximity sensor 31B is not ON. Based on this determination result, the control unit 6 executes the next boost control at the time of the next extension of the second bellows 14 (time point t6 to time point t7), as will be described later.
  • the control unit 6 determines that the proximity sensor 31B is not turned on, the control unit 6 waits until the proximity sensor 31B is turned on. Then, the control unit 6 degausses the solenoid 5b of the second solenoid valve 5 and excites the solenoid 5a at the time t2 when the proximity sensor 31B is turned on. When the control unit 6 determines that the proximity sensor 31B is ON at the time point t1, it immediately degausses the solenoid 5b of the second solenoid valve 5 and excites the solenoid 5a.
  • the control unit 6 controls the second electropneumatic regulator 52 so that the air pressure of the pressurized air supplied to the second discharge side air chamber 21B becomes a predetermined value P2.
  • the control unit 6 determines that the first bellows 13 is in the contracted state at the time t3 when the predetermined calculation time elapses from the time t1 when the proximity sensor 29A is turned on. do. Then, the control unit 6 degausses the solenoid 4a of the first solenoid valve 4 and excites the solenoid 4b.
  • the control unit 6 controls the first electropneumatic regulator 51 so that the air pressure of the pressurized air supplied to the first suction side air chamber 26A becomes a predetermined value P11.
  • the first bellows 13 starts the extension operation from the contracted state.
  • the control unit 6 determines whether or not the proximity sensor 29B detects (ON) the extended state of the first bellows 13 at the time t4 when the proximity sensor 31A detects (ON) the contracting state of the second bellows 14. Is determined (first determination).
  • the control unit 6 determines that the proximity sensor 29B is not ON. Based on this determination result, the control unit 6 executes the next boost control at the time of the next extension of the first bellows 13 (time point t8 to time point t9), as will be described later.
  • the control unit 6 determines that the proximity sensor 29B is not turned on, the control unit 6 waits until the proximity sensor 29B is turned on. Then, the control unit 6 degausses the solenoid 4b of the first solenoid valve 4 and excites the solenoid 4a at the time t5 when the proximity sensor 29B is turned on. When the control unit 6 determines that the proximity sensor 29B is ON at the time point t4, the control unit 6 immediately degausses the solenoid 4b of the first solenoid valve 4 and excites the solenoid 4a.
  • the pressurized air generated by the air supply device 2 passes through the mechanical regulator 3, the first electropneumatic regulator 51, and the first solenoid valve 4. It is supplied to the first discharge side air chamber 21A of the 1 drive unit 27.
  • the control unit 6 controls the first electropneumatic regulator 51 so that the air pressure of the pressurized air supplied to the first discharge side air chamber 21A becomes a predetermined value P1.
  • the first bellows 13 starts the contracting operation from the extended state before the second bellows 14 is in the contracted state.
  • the control unit 6 determines that the second bellows 14 is in the contracted state at t6 when a predetermined time has elapsed from the time when the proximity sensor 31A is turned on. Then, the control unit 6 degausses the solenoid 5a of the second solenoid valve 5 and excites the solenoid 5b.
  • the pressurized air generated by the air supply device 2 is passed through the mechanical regulator 3, the second electropneumatic regulator 52, and the second solenoid valve 5. 2 It is supplied to the second suction side air chamber 26B of the drive unit 28. At that time, since the determination result of the first determination performed at the time point t1 was negative (because it was determined that the proximity sensor 31B was not turned on), the control unit 6 moved to the second suction side air chamber 26B. The next boost control that controls the second electropneumatic regulator 52 so as to boost the air pressure of the supplied pressurized air is executed.
  • control unit 6 makes the second electropneumatic air so that the air pressure of the pressurized air supplied to the second suction side air chamber 26B becomes a value P22 higher than the value P21 of the previous time (before the time point t2). It controls the regulator 52. As a result, the second bellows 14 starts the extension operation from the contracted state. The elongation rate is higher than the elongation rate of the previous second bellows 14.
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 at the time t7 when the proximity sensor 29A detects (ON) the contracting state of the first bellows 13. Is determined (first determination).
  • the extension rate of the second bellows 14 becomes faster and the extension time of the second bellows 14 becomes shorter, so that the second bellows 14 reaches the extended state at the time point t7. Therefore, since the proximity sensor 31B detects the extended state of the second bellows 14 at the time point t7, the control unit 6 determines that the proximity sensor 31B is ON. Based on this determination result, the control unit 6 does not execute the next boost control at the next extension of the second bellows 14.
  • the control unit 6 determines that the proximity sensor 29B is ON, the control unit 6 degausses the solenoid 5b of the second solenoid valve 5 and excites the solenoid 5a.
  • the solenoid 5a of the second solenoid valve 5 is excited, as described above, the second bellows 14 starts the contraction operation from the extended state before the first bellows 13 is in the contracted state (in the middle of contracted state).
  • the control unit 6 determines that the first bellows 13 is in the contracted state at the time t8 when a predetermined calculation time elapses from the time t7 when the proximity sensor 29A is turned on. Then, the solenoid 4a of the first solenoid valve 4 is demagnetized and the solenoid 4b is excited. When the solenoid 4b of the first solenoid valve 4 is excited, the pressurized air generated by the air supply device 2 is supplied to the first suction side air chamber 26A of the first drive unit 27 as described above.
  • control unit 6 determined that the determination result of the first determination performed at the time point t4 was negative (because it was determined that the proximity sensor 29B was not turned on), so that the first suction side air chamber 26A
  • control unit 6 makes a first so that the air pressure of the pressurized air supplied to the first suction side air chamber 26A becomes a value P12 higher than the value P11 of the previous time (time point t3 to time point t5). It controls the electropneumatic regulator 51. As a result, the first bellows 13 starts the extension operation from the contracted state. The extension speed is higher than the extension speed at the time of the previous extension operation of the first bellows 13.
  • the control unit 6 determines whether or not the proximity sensor 29B detects (ON) the extended state of the first bellows 13 at the time t9 when the proximity sensor 31A detects (ON) the contracting state of the second bellows 14. Is determined (first determination).
  • first determination the elongation rate of the first bellows 13 becomes faster and the extension time of the first bellows 13 becomes shorter, so that the first bellows 13 reaches the stretched state at the time point t9. Therefore, since the proximity sensor 29B detects the extended state of the first bellows 13 at the time point t9, the control unit 6 determines that the proximity sensor 29B is ON. Based on this determination result, the control unit 6 does not execute the next boost control at the next extension of the first bellows 13.
  • the control unit 6 determines that the proximity sensor 29B is ON, the control unit 6 degausses the solenoid 4b of the first solenoid valve 4 and excites the solenoid 4a.
  • the solenoid 4a of the first solenoid valve 4 is excited, as described above, the first bellows 13 starts the contraction operation from the extended state before the second bellows 14 is in the contracted state (in the middle of contracted state).
  • FIG. 6 is a time chart showing an example of step-down control performed during drive control by the control unit 6.
  • the step-down control executed by the control unit 6 will be described with reference to FIGS. 1 and 6.
  • the first bellows 13 is in the contraction operation (during discharge)
  • the second bellows 14 is in the extension operation (during suction).
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 before the proximity sensor 29A detects (ON) the contracting state of the first bellows 13.
  • the control unit 6 states that the proximity sensor 31B is turned on. judge.
  • the proximity sensor 31B detects the extension state of the second bellows 14 at t21 when the proximity sensor 29A further detects the contracting state of the first bellows 13. It is determined whether or not it has continued for a predetermined time T or more from the time point t20 (second determination).
  • the control unit 6 determines that the time point t20 has continued for a predetermined time T or more. Based on this determination result, the control unit 6 executes the step-down control at the time of the next extension of the second bellows 14 (time point t25 to time point t26), as will be described later.
  • the control unit 6 degausses the solenoid 5b of the second solenoid valve 5 and excites the solenoid 5a at t21 when the proximity sensor 29A is turned on.
  • the solenoid 5a of the second solenoid valve 5 is excited, as described above, the second bellows 14 starts the contraction operation from the extended state before the first bellows 13 is in the contracted state (in the middle of contracted state).
  • the control unit 6 determines that the first bellows 13 is in the contracted state at the time t22 when a predetermined calculation time elapses from the time t21 when the proximity sensor 29A is turned on. do. Then, the control unit 6 degausses the solenoid 4a of the first solenoid valve 4 and excites the solenoid 4b. When the solenoid 4b of the first solenoid valve 4 is excited, the first bellows 13 starts the extension operation from the contracted state as described above.
  • the control unit 6 determines whether or not the proximity sensor 29B detects (ON) the extended state of the first bellows 13 before the proximity sensor 31A detects (ON) the contracting state of the second bellows 14. judge.
  • the control unit 6 since the proximity sensor 29B detects the extension state of the first bellows 13 at the time point t23 before the second bellows 14 reaches the contracting state, the control unit 6 states that the proximity sensor 29B is turned on. judge.
  • the proximity sensor 29B detects the extension state of the second bellows 14 at t24 when the proximity sensor 31A further detects the contracting state of the second bellows 14. It is determined whether or not it has continued for a predetermined time T or more from the time point t23 (second determination).
  • the control unit 6 determines that the time point t23 has continued for a predetermined time T or more. Based on this determination result, the control unit 6 executes the step-down control at the time of the next extension of the first bellows 13 (time point t27 to time point t28), as will be described later.
  • the control unit 6 degausses the solenoid 4b of the first solenoid valve 4 and excites the solenoid 4a at t24 when the proximity sensor 31A is turned on.
  • the solenoid 4a of the first solenoid valve 4 is excited, as described above, the first bellows 13 starts the contraction operation from the extended state before the second bellows 14 is in the contracted state (in the middle of contracted state).
  • the control unit 6 determines that the second bellows 14 is in the contracted state at the time t25 when a predetermined calculation time elapses from the time t24 when the proximity sensor 31A is turned on. do. Then, the control unit 6 degausses the solenoid 5a of the second solenoid valve 5 and excites the solenoid 5b. When the solenoid 5b of the second solenoid valve 5 is excited, the pressurized air generated by the air supply device 2 is supplied to the second suction side air chamber 26B of the second drive unit 28 as described above.
  • a step-down control for controlling the second electropneumatic regulator 52 is executed so as to lower the air pressure of the pressurized air supplied to the second suction side air chamber 26B.
  • control unit 6 makes the second electropneumatic air so that the air pressure of the pressurized air supplied to the second suction side air chamber 26B becomes a value P23 lower than the value P21 of the previous time (before the time point t21). It controls the regulator 52. As a result, the second bellows 14 starts the extension operation from the contracted state. The extension speed is slower than the extension speed at the time of the previous extension operation of the second bellows 14.
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 before the proximity sensor 29A detects (ON) the contracting state of the first bellows 13. judge.
  • the elongation rate of the second bellows 14 becomes slower and the extension time of the second bellows 14 becomes longer, so that the second bellows 14 becomes the second bellows 14 at t26 when the first bellows 13 reaches the state in the middle of contraction. Reach an extended state.
  • the proximity sensor 31B does not detect (OFF) the extended state of the second bellows 14, so that the control unit 6 does not turn on the proximity sensor 31B. judge. Based on this determination result, since the second determination by the control unit 6 is not performed at the time t26 when the first bellows 13 reaches the state in the middle of contraction, the step-down control is not executed at the next extension of the second bellows 14.
  • the control unit 6 degausses the solenoid 5b of the second solenoid valve 5 and excites the solenoid 5a at t26 when the proximity sensor 31B is turned on.
  • the solenoid 5a of the second solenoid valve 5 is excited, as described above, the second bellows 14 starts the contraction operation from the extended state before the first bellows 13 is in the contracted state (in the middle of contracted state).
  • the control unit 6 determines that the first bellows 13 is in the contracted state at the time t27 when a predetermined calculation time elapses from the time t26 when the proximity sensor 29A is turned on. do. Then, the control unit 6 degausses the solenoid 4a of the first solenoid valve 4 and excites the solenoid 4b. When the solenoid 4b of the first solenoid valve 4 is excited, the pressurized air generated by the air supply device 2 is supplied to the first suction side air chamber 26A of the first drive unit 27 as described above.
  • the control unit 6 determined that the determination result of the second determination performed at the time point t24 was positive (it was determined that the proximity sensor 29B continued for a predetermined time T or more from the time point t23 when the proximity sensor 29B was turned on. Therefore, a step-down control for controlling the first electropneumatic regulator 51 is executed so as to lower the air pressure of the pressurized air supplied to the first suction side air chamber 26A.
  • control unit 6 makes the first so that the air pressure of the pressurized air supplied to the first suction side air chamber 26A becomes a value P13 lower than the value P11 of the previous time (time point t22 to time point t24). It controls the electropneumatic regulator 51. As a result, the first bellows 13 starts the extension operation from the contracted state. The extension speed is slower than the extension speed at the time of the previous extension operation of the first bellows 13.
  • the control unit 6 determines whether or not the proximity sensor 29B detects (ON) the extended state of the first bellows 13 before the proximity sensor 31A detects (ON) the contracting state of the second bellows 14. judge.
  • the elongation rate of the first bellows 13 becomes slower and the extension time of the first bellows 13 becomes longer, so that the first bellows 13 reaches the state in which the second bellows 14 is in the process of contraction at t28. Reach an extended state.
  • the proximity sensor 29B does not detect (OFF) the extended state of the first bellows 13, so that the control unit 6 does not turn on the proximity sensor 29B. judge. Based on this determination result, since the second determination by the control unit 6 is not performed at the time t28 when the second bellows 14 reaches the state in the middle of contraction, the step-down control is not executed at the next extension of the first bellows 13.
  • FIG. 7 is a time chart showing an example of resetting the lower limit value of the air pressure adjustment range by the pneumatic regulators 51 and 52 after the step-down control is performed by the control unit 6.
  • the resetting of the lower limit value executed by the control unit 6 will be described with reference to FIGS. 1 and 7.
  • the control performed between the time point t40 and the time point t44 in FIG. 7 is almost the same as the control performed between the time point t20 and the time point t24 in FIG. 6, and thus the description thereof will be omitted.
  • the control unit 6 determines that the second bellows 14 is in the contracted state at the time t45 when the predetermined calculation time elapses from the time t44 when the proximity sensor 31A is turned on. Then, the control unit 6 degausses the solenoid 5a of the second solenoid valve 5 and excites the solenoid 5b. When the solenoid 5b of the second solenoid valve 5 is excited, the pressurized air generated by the air supply device 2 is supplied to the second suction side air chamber 26B of the second drive unit 28 as described above.
  • the control unit 6 determined that the determination result of the second determination performed at the time point t41 was positive (it was determined that the proximity sensor 31B continued for a predetermined time T or more from the time point t40 when the proximity sensor 31B was turned on. Therefore, a step-down control for controlling the second electropneumatic regulator 52 is executed so as to lower the air pressure of the pressurized air supplied to the second suction side air chamber 26B.
  • control unit 6 has a second air pressure so that the air pressure of the pressurized air supplied to the second suction side air chamber 26B becomes a value P24 lower than the previous value P21 (before the time point t41). It controls the regulator 52. As a result, the second bellows 14 starts the extension operation from the contracted state. The extension speed is slower than the extension speed at the time of the previous extension operation of the second bellows 14.
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 before the proximity sensor 29A detects (ON) the contracting state of the first bellows 13. judge.
  • the elongation rate of the second bellows 14 becomes slower and the extension time of the second bellows 14 becomes longer, so that the second bellows 14 is still at the time t46 when the first bellows 13 reaches the state in the middle of contraction.
  • the decompression operation is in progress.
  • the proximity sensor 31B does not detect (OFF) the extended state of the second bellows 14, so that the control unit 6 does not turn on the proximity sensor 31B. judge. Based on this determination result, since the second determination by the control unit 6 is not performed at the time t46 when the first bellows 13 reaches the state in the middle of contraction, the step-down control is not executed at the next extension of the second bellows 14.
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 at the time t46 when the proximity sensor 29A detects (ON) the contracting state of the first bellows 13. Is determined (first determination).
  • the control unit 6 determines that the proximity sensor 31B is not ON. Based on this determination result, the control unit 6 executes the next boost control at the time of the next extension of the second bellows 14 (time point t50 to time point t51), as will be described later.
  • the proximity sensor 31B When the control unit 6 determines that the proximity sensor 31B is not ON, the proximity sensor 31B is turned ON (until the second bellows 14 is in the extended state), or the proximity sensor 29A is turned ON. It waits from t46 to the time point t47 when a predetermined calculation time elapses (until the first bellows 13 is in the contracted state).
  • a predetermined calculation time elapses until the first bellows 13 is in the contracted state.
  • the elongation rate of the second bellows 14 slows down, and the elongation time of the second bellows 14 becomes too long, so that the first bellows 13 contracts before the second bellows 14 reaches the stretched state. It reaches t47 when it becomes a state.
  • the control unit 6 degausses the solenoid 4a of the first solenoid valve 4 and excites the solenoid 4b at t47 when the first bellows 13 reaches the contracted state.
  • the solenoid 4b of the first solenoid valve 4 is excited, the first bellows 13 starts the extension operation from the contracted state as described above. Since the drive control and step-down control of the first bellows 13 by the control unit 6 after the time point t47 are the same as those after the time point t27 in FIG. 6, the description thereof will be omitted.
  • the control unit 6 further determines whether or not the proximity sensor 31B has detected (ON) the extended state of the second bellows 14 at t47 when the first bellows 13 reaches the contracted state (third determination).
  • the control unit 6 determines that the proximity sensor 31B is not turned on. Based on this determination result, the control unit 6 resets the lower limit value of the air pressure adjustment range by the second electropneumatic regulator 52 at the time of the next extension of the second bellows 14 (time point t50 to time point t51), as will be described later. ..
  • the control unit 6 degausses the solenoid 5b of the second solenoid valve 5 and excites the solenoid 5a at t48 when the proximity sensor 31B detects the extended state of the second bellows 14.
  • the solenoid 5a of the second solenoid valve 5 is excited, as described above, the second bellows 14 starts the contraction operation from the stretched state while the first bellows 13 is in the middle of stretching.
  • the control unit 6 degausses the solenoid 5a of the second solenoid valve 5.
  • the solenoid 5b is excited.
  • the pressurized air generated by the air supply device 2 is supplied to the second suction side air chamber 26B of the second drive unit 28 as described above.
  • control unit 6 determined that the determination result of the first determination performed at the time point t46 was negative (because it was determined that the proximity sensor 31B was not turned on), so that the second suction side air chamber 26B
  • the value of the air pressure of the pressurized air supplied to the second suction side air chamber 26B is the first when the second bellows 14 is extended (time point t45 to time point t48). 2
  • the degree of pressure increase of the air pressure is determined so as to be higher than the value P24 of the air pressure of the pressurized air supplied to the suction side air chamber 26B.
  • the control unit 6 determines the degree of boosting so as to be, for example, a value P23 higher than the air pressure value P24 after the step-down control and lower than the air pressure value P21 before the step-down control.
  • control unit 6 controls the second electropneumatic regulator 52 so that the air pressure of the pressurized air supplied to the second suction side air chamber 26B becomes the determined value P23.
  • the second bellows 14 starts the extension operation from the contracted state.
  • the extension speed is higher than the extension speed at the time of the previous extension operation of the second bellows 14.
  • the control unit 6 air pressure by the second electropneumatic regulator 52. Reset the lower limit of the adjustment range of.
  • control unit 6 sets the lower limit value Pd of the air pressure adjustment range by the second electropneumatic regulator 52 to the second by step-down control at the time of the previous extension of the second bellows 14 (time point t45 to time point t48).
  • the air pressure is set higher than the value P24 of the pressurized air supplied to the suction side air chamber 26B (here, the value P23). It is preferable that the lower limit value is reset before the control of the second electropneumatic regulator 52 is started in the next boost control.
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 at the time t51 when the proximity sensor 29A detects (ON) the contracting state of the first bellows 13. Is determined (first determination).
  • the extension rate of the second bellows 14 becomes faster and the extension time of the second bellows 14 becomes shorter, so that the second bellows 14 reaches the extended state at the time point t51. Therefore, since the proximity sensor 31B detects the extended state of the second bellows 14 at the time point t51, the control unit 6 determines that the proximity sensor 31B is ON. Based on this determination result, the control unit 6 does not execute the next boost control at the next extension of the second bellows 14.
  • the lower limit value Pd reset as described above is applied as the lower limit value of the air pressure adjustment range by the second electropneumatic regulator 52. Therefore, even if the step-down control is executed at the time of extension of the second bellows 14 from the next time onward, the air pressure lowered by the step-down control does not become lower than the lower limit value Pd.
  • the adjustment range of the air pressure by the second electropneumatic regulator 52 at the time of the next extension of the second bellows 14 (time point t50 to time point t51) based on the judgment result of the third judgment performed at the time point t47.
  • the lower limit value of is reset, the lower limit value may not be reset at the next extension of the second bellows 14, but may be performed at the next extension of the second bellows 14. The reason is that when the second bellows 14 is expanded next time, the next boost control is executed as described above, and the air pressure is boosted by the second electropneumatic regulator 52 without resetting the lower limit value. ..
  • the reset lower limit Pd is adjusted by the second electropneumatic regulator 52 when the second bellows 14 is extended one after another. It is applied as the lower limit of the range. Therefore, even if the step-down control is executed at the time of extension of the second bellows 14 one after another, the air pressure lowered by the step-down control does not become lower than the lower limit value Pd.
  • the lower limit value may not be reset at the time of extension of the second bellows 14 one after another and at the time of extension of the second bellows 14 one after another.
  • FIG. 8 is a time chart showing a specific example 1 of the current boost control performed during drive control by the control unit 6.
  • Specific example 1 is a modification of FIG. 5, and the current boost control is performed together with the next boost control.
  • a specific example 1 of the current boost control executed by the control unit 6 will be described with reference to FIGS. 1 and 8.
  • the first bellows 13 is in the contraction operation (during discharge)
  • the second bellows 14 is in the extension operation (during suction).
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 at t61 when the proximity sensor 29A detects (ON) the contracting state of the first bellows 13. (First judgment).
  • the control unit 6 determines that the proximity sensor 31B is not ON. Based on this determination result, as described above, the control unit 6 executes the next boost control at the time of the next extension of the second bellows 14 (time point t66 to time point t67).
  • the second electric power is used so as to gradually increase the air pressure of the pressurized air supplied to the second suction side air chamber 26B at the present time t61.
  • the current boost control that controls the empty regulator 52 is executed. Specifically, the control unit 6 controls the second electropneumatic regulator 52 so that the air pressure of the pressurized air supplied to the second suction side air chamber 26B gradually increases from the value P21 at the present time t61. .. As a result, the elongation rate of the second bellows 14, which is currently being elongated at t61, gradually increases with the passage of time.
  • the control unit 6 continues the current boost control until the proximity sensor 31B is turned on. Therefore, since the extension speed of the second bellows 14 being extended increases until the proximity sensor 31B is turned on, the second bellows 14 can be rapidly extended from the current t61 to the extended state. As a result, the time point when the second bellows 14 is in the extended state (the time when the proximity sensor 31B is turned on) t62 is earlier than the time point t2 when the second bellows 14 is in the extended state in FIG. be able to.
  • the control performed between the time point t62 and the time point t63 in FIG. 8 is the same as the control performed between the time point t2 and the time point t3 in FIG. 5, and thus the description thereof will be omitted.
  • the control unit 6 determines whether or not the proximity sensor 29B detects (ON) the extended state of the first bellows 13. Judgment (first judgment).
  • the control unit 6 determines that the proximity sensor 29B is not ON. Based on this determination result, as described above, the control unit 6 executes the next boost control at the time of the next extension of the first bellows 13 (time point t68 to time point t69).
  • the control unit 6 determines that the proximity sensor 29B is not turned on, the first electric power is gradually increased so as to gradually increase the air pressure of the pressurized air supplied to the first suction side air chamber 26A at the present time t64.
  • the current boost control that controls the empty regulator 51 is executed. Specifically, the control unit 6 controls the first electropneumatic regulator 51 so that the air pressure of the pressurized air supplied to the first suction side air chamber 26A gradually increases from the value P11 of the current t64. .. As a result, the elongation rate of the first bellows 13, which is currently being elongated at t64, gradually increases with the passage of time.
  • the control unit 6 continues the current boost control until the proximity sensor 29B is turned on. Therefore, since the extension speed of the first bellows 13 being extended increases until the proximity sensor 29B is turned on, the first bellows 13 can be rapidly extended from the current t64 to the extended state. As a result, the time point when the first bellows 13 is in the extended state (the time when the proximity sensor 29B is turned on) t65 is earlier than the time point t5 when the first bellows 13 is in the extended state in FIG. be able to. Since the control performed after the time point t65 in FIG. 8 is the same as the control performed after the time point t5 in FIG. 5, the description thereof will be omitted.
  • the control unit 6 of the first embodiment executes the current boost control at the time point t61 when the first determination is made, but any timing from that time point t61 until the first bellows 13 is in the extended state.
  • the boost control may be executed at the present time.
  • the control unit 6 uses the first determination as the determination criterion for executing the next boost control as the determination criterion for executing the current boost control, but the first determination is the determination criterion for executing the current boost control. It may be performed independently of the judgment.
  • the control unit 6 may make the determination at t63 when the first bellows 13 reaches the contracted state. In that case, the second bellows 14 being stretched at the time point t63 can be rapidly stretched to the stretched state.
  • FIG. 9 is a time chart showing a specific example 2 of the current boost control performed during drive control by the control unit 6.
  • Specific example 2 is a modification of FIG. 7, and after the step-down control is performed, the current step-up control is performed by resetting the lower limit value and setting.
  • a specific example 2 of the current boost control executed by the control unit 6 will be described with reference to FIGS. 1 and 9.
  • the control performed between the time point t80 and the time point t86 in FIG. 9 is the same as the control performed between the time point t40 and the time point t46 in FIG. 7, and thus the description thereof will be omitted.
  • the control unit 6 determines whether or not the proximity sensor 31B detects (ON) the extended state of the second bellows 14 at t87 when the first bellows 13 reaches the contracted state (third determination). Here, since the second bellows 14 has not reached the extended state at the time point t87, the control unit 6 determines that the proximity sensor 31B is not turned on. Based on this determination result, as described above, the control unit 6 resets the lower limit value of the air pressure adjustment range by the second electropneumatic regulator 52 at the time of the next extension of the second bellows 14 (time point t90 to time point t91). ..
  • the second electric power is used so as to gradually increase the air pressure of the pressurized air supplied to the second suction side air chamber 26B at the present time t87.
  • the current boost control that controls the empty regulator 52 is executed. Specifically, the control unit 6 controls the second electropneumatic regulator 52 so that the air pressure of the pressurized air supplied to the second suction side air chamber 26B gradually increases from the value P24 of t87 at the present time. .. As a result, the elongation rate of the second bellows 14, which is currently being elongated at t87, gradually increases with the passage of time.
  • the control unit 6 continues the current boost control until the proximity sensor 31B is turned on. Therefore, since the extension speed of the second bellows 14 being extended increases until the proximity sensor 31B is turned on, the second bellows 14 can be rapidly extended from the current t87 to the extended state. As a result, the time point when the second bellows 14 is in the extended state (the time when the proximity sensor 31B is turned on) t88 is earlier than the time point t48 when the second bellows 14 is in the extended state in FIG. 7 in which the boost control is not performed at present. be able to.
  • the control unit 6 of the specific example 2 uses the third determination, which is the determination criterion for resetting the lower limit value, as the determination criterion for executing the current boost control, but is the determination criterion for executing the current boost control.
  • the determination may be made independently of the third determination.
  • the control unit 6 may make the determination at t86 when the first bellows 13 reaches the state in the middle of contraction. In that case, the control unit 6 may execute the current boost control at the time t86 when the determination is made, or the current boost control at an arbitrary timing from the time t86 until the first bellows 13 is in the extended state. May be executed.
  • the control unit 6 receives the second suction side air chamber 26B (first suction side air) of the second drive unit 28 (first drive unit 27) when the second bellows 14 (first bellows 13) is extended next time.
  • the next boost control is performed to boost the air pressure of the pressurized air supplied to the chamber 26A).
  • first bellows 13 contracts to the middle of contraction state
  • second bellows 14 contracts to the middle of contraction state
  • the control unit 6 expands at the present time.
  • the second bellows 14 (first bellows 13) is supplied to the second suction side air chamber 26B (first suction side air chamber 26A) of the second drive unit 28 (first drive unit 27).
  • the current boost control is performed to gradually boost the air pressure of the pressurized air.
  • the boost control at the present time, the second bellows 14 (first bellows 13) currently being stretched can be surely stretched to the stretched state without stopping in the middle of stretching. As a result, the next step-up control can be reliably performed at the time of the next extension of the second bellows 14 (first bellows 13).
  • the control unit 6 receives the second suction side air chamber 26B (first suction side air) of the second drive unit 28 (first drive unit 27) when the second bellows 14 (first bellows 13) is extended next time.
  • a step-down control is performed to lower the pressure of the pressurized air supplied to the chamber 26A).
  • the control unit 6 When the control unit 6 performs step-down control, when the first bellows 13 (second bellows 14) contracts to the contracted state, the second bellows 14 (first bellows 13) may not expand to the expanded state. be. In this case, the control unit 6 sets the lower limit value of the air pressure adjustment range by the second pneumatic regulator 52 (first pneumatic regulator 51) at the time of the next expansion of the second bellows 14 (first bellows 13) to the previous time. It is reset to be higher than the air pressure at the time of extension of the other bellows. This regulates that the air pressure adjusted by the second electropneumatic regulator 52 (first electropneumatic regulator 51) becomes lower than the lower limit value Pd when the second bellows 14 (first bellows 13) is extended next time.
  • the lower limit value reset at the time of the next extension of the second bellows 14 is the second electropneumatic regulator even at the time of extension of the second bellows 14 (first bellows 13) one after another. It is applied as the lower limit of the adjustment range of the air pressure by the 52 (first electropneumatic regulator 51). Therefore, even if the step-down control is executed during the extension of the second bellows 14 (first bellows 13) one after another, the air pressure lowered by the step-down control does not become lower than the lower limit value Pd.
  • the extension time of the second bellows 14 becomes longer due to the step-down control, and the second bellows 14 (first bellows 13) is before the first bellows 13 (second bellows 14) is in the contracted state. Can be suppressed from being unable to contract from the stretched state. As a result, it is possible to further suppress the deterioration of the pulsation on the discharge side of the bellows pump device 1.
  • the control unit 6 performs one after another.
  • the lower limit of the adjustment range of the air pressure by the second air pressure regulator 52 (first air pressure regulator 51) when the second bellows 14 (first bellows 13) is extended is set from the above air pressure when the other bellows is extended last time. May be reset to be higher.
  • the next boost control is executed, and the air pressure is increased by the second electropneumatic regulator 52 (first electropneumatic regulator 51) without resetting the lower limit value.
  • the lower limit value reset at the time of extension of the second bellows 14 (first bellows 13) one after another is the second electric voltage even at the time of extension of the second bellows 14 (first bellows 13) one after another. It is applied as the lower limit of the adjustment range of the air pressure by the empty regulator 52 (first electropneumatic regulator 51). Therefore, even if the step-down control is executed at the time of extension of the second bellows 14 (first bellows 13) one after another, the air pressure lowered by the step-down control does not become lower than the lower limit value Pd.
  • the extension time of the second bellows 14 becomes longer due to the step-down control, and the second bellows 14 (first bellows 13) is before the first bellows 13 (second bellows 14) is in the contracted state. Can be suppressed from being unable to contract from the stretched state. As a result, it is possible to further suppress the deterioration of the pulsation on the discharge side of the bellows pump device 1.
  • the control unit 6 performs step-down control, when the first bellows 13 (second bellows 14) contracts to the contracted state, the second bellows 14 (first bellows 13) does not expand to the expanded state.
  • the control unit 6 performs current boost control that gradually boosts the air pressure of the pressurized air with respect to the second bellows 14 (first bellows 13) that is currently elongated.
  • the extension time of the second bellows 14 (first bellows 13) at the present time can be shortened.
  • the suction failure of the transferred fluid due to the extension of the second bellows 14 (first bellows 13) can be suppressed, it is possible to suppress the bellows pump device 1 from stopping due to the suction failure.
  • the second bellows 14 (first bellows 13) currently being stretched can be reliably stretched to the stretched state without stopping in the middle of stretching.
  • the lower limit value can be reliably reset at the time of the next extension of the second bellows 14 (first bellows 13).
  • the first detection unit 29 and the second detection unit 31 used for the drive control of the first drive unit 27 and the second drive unit 28 also serve as a pair of detection units used for the current step-up control, the next step-up control, and the step-down control. Therefore, the configuration of the bellows pump device 1 can be simplified.
  • the first detection unit 29 is composed of proximity sensors 29A and 29B, but may be composed of a displacement sensor using laser light or the like.
  • the second detection unit 31 is composed of proximity sensors 31A and 31B, it may be composed of a displacement sensor using laser light or the like.
  • the first detection unit 29 and the second detection unit 31 used for the drive control of the first drive unit 27 and the second drive unit 28 are used for the current step-up control, the next step-up control, and the step-down control. Although it also serves as a pair of detection units, these pair of detection units may be provided separately from the first detection unit 29 and the second detection unit 31.
  • Control unit 13 1st bellows (bellows) 14 Second bellows (bellows) 21A 1st discharge side air chamber (discharge side fluid chamber) 21B 2nd discharge side air chamber (discharge side fluid chamber) 26A 1st suction side air chamber (suction side air chamber) 26B 2nd suction side air chamber (suction side air chamber) 27 First drive unit (drive unit) 28 Second drive unit (drive unit) 29 First detection unit (detection unit) 31 Second detection unit (detection unit) 51 First electropneumatic regulator (fluid pressure regulator) 52 Second electropneumatic regulator (fluid pressure regulator)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

ベローズポンプ装置1の制御部6は、第1検知部29及び第2検知部31の各検知信号に基づいて、第1ベローズ13(第2ベローズ14)が収縮途中状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が所定の伸長状態であるか否かを判定し、その判定結果が否定的である場合、次回の第2ベローズ14(第1ベローズ13)の伸長時に、第2駆動部28(第1駆動部27)の第2吸込側空気室26B(第1吸込側空気室26A)に供給される加圧空気の空気圧を昇圧させるように第2電空レギュレータ52(第1電空レギュレータ51)を制御する次回昇圧制御を行う。

Description

ベローズポンプ装置
 本発明は、ベローズポンプ装置に関する。
 半導体製造や化学工業等において、薬液や溶剤等の移送流体を送給するために使用されるベローズポンプとして、互いに独立して伸縮することで内部に移送流体を吸い込んで吐出する一対のベローズと、加圧空気の給排により各ベローズを伸縮させる一対のエアシリンダと、を備えたものが知られている(例えば、特許文献1参照)。特許文献1に記載されたベローズポンプは、一方のベローズが最収縮(吐出終了)する手前で他方のベローズを最伸長状態から収縮させて移送流体を吐出するように、各エアシリンダの駆動を制御している。
 上記のように各エアシリンダの駆動を制御することで、一方のベローズの収縮から伸長(移送流体の吐出から吸い込み)に切り換わるタイミングで、他方のベローズは既に収縮して移送流体を吐出している状態となる。これにより、前記タイミングにおいて移送流体の吐出圧力が大きく落ち込むのを低減することができるので、ベローズポンプの吐出側の脈動を低減することができる。
特開2004-293502号公報
 上記ベローズポンプでは、一方のベローズが最収縮(吐出終了)する手前までに、他方のベローズを最伸長(吸い込み終了)させておく必要がある。しかし、雰囲気温度や移送流体の流量等が変化すると、その影響によりベローズの硬さが変化する。ベローズの硬さが変化すると、ベローズの伸長時間(吸い込み時間)が変化し、種々の問題が発生する。
 例えば、他方のベローズが硬くなると、他方のベローズが伸長しにくくなるので、その伸長時間は長くなる。そうすると、一方のベローズが最収縮する手前までに、他方のベローズを最伸長させることができなくなり、ベローズポンプの吐出側の脈動が悪化する。
 また、他方のベローズが柔らかくなると、他方のベローズが伸長しやすくなるので、その伸長時間は短くなる。そうすると、他方のベローズの伸長速度が速くなり、他方のベローズの内部に負圧が発生する。このような負圧が発生すると、移送流体を他方のベローズ内に吸い込む吸込配管内において、「ウォータハンマ」と呼ばれる衝撃圧力やキャビテーションが発生し、半導体製造プロセス等に悪影響を及ぼすおそれがある。
 上記のような問題が発生するのを防止するためには、ベローズの伸長時間が適正な時間になるように、対応するエアシリンダの空気室に供給する加圧空気の空気圧を適正な値に設定し直す必要がある。しかし、従来のベローズポンプでは、ベローズの伸長時間が変化するたびに、前記空気圧を手動で設定し直す必要があった。
 本発明はこのような事情に鑑みてなされたものであり、ベローズの伸長時間が変化したときに、当該ベローズを伸長させるための加圧流体の流体圧を自動で設定し直すことができるベローズポンプ装置を提供することを目的とする。
 (1)本発明は、互いに独立して伸縮自在であり、伸長により内部に移送流体を吸い込み、収縮により内部から移送流体を吐出する一対のベローズと、吸込側流体室及び吐出側流体室を有し、前記吸込側流体室に加圧流体を供給することで前記各ベローズを所定の伸長状態まで伸長させ、前記吐出側流体室に加圧流体を供給することで前記各ベローズを所定の収縮状態まで収縮させる一対の駆動部と、一対の前記ベローズのうち、一方のベローズが前記収縮状態となる手前で他方のベローズを前記伸長状態から収縮させるように、一対の前記駆動部の駆動制御を行う制御部と、を備えるベローズポンプ装置であって、前記各ベローズの伸縮状態を検知する一対の検知部と、前記各駆動部の前記吸込側流体室に供給される加圧流体の流体圧を調整する一対の流体圧調整部と、を備え、前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、次回の前記他方のベローズの伸長時における前記流体圧を昇圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する次回昇圧制御を行う、ベローズポンプ装置である。
 本発明のベローズポンプ装置において、一方のベローズが収縮途中状態まで収縮したときに、他方のベローズが所定の伸長状態まで伸長していない場合がある。その原因は、他方のベローズが硬くなることによって他方のベローズの伸長時間が長くなるからである。このような場合、制御部は、次回の他方のベローズの伸長時に、対応する駆動部の吸込側流体室に供給する加圧流体の流体圧を昇圧させる次回昇圧制御を行う。これにより、他方のベローズの伸長時間が長くなったときに、他方のベローズを伸長させるための加圧流体の流体圧を自動的に高い値に設定し直すことができる。その結果、次回の他方のベローズの伸長時間が短くなるので、その伸長時間が長くなることに起因してベローズポンプ装置の吐出側の脈動が悪化するのを抑制することができる。
 (2)他の観点から見た本発明は、互いに独立して伸縮自在であり、伸長により内部に移送流体を吸い込み、収縮により内部から移送流体を吐出する一対のベローズと、吸込側流体室及び吐出側流体室を有し、前記吸込側流体室に加圧流体を供給することで前記各ベローズを所定の伸長状態まで伸長させ、前記吐出側流体室に加圧流体を供給することで前記各ベローズを所定の収縮状態まで収縮させる一対の駆動部と、一対の前記ベローズのうち、一方のベローズが前記収縮状態となる手前で他方のベローズを前記伸長状態から収縮させるように、一対の前記駆動部の駆動制御を行う制御部と、を備えるベローズポンプ装置であって、前記各ベローズの伸縮状態を検知する一対の検知部と、前記各駆動部の前記吸込側流体室に供給される加圧流体の流体圧を調整する一対の流体圧調整部と、を備え、前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、又は前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、現時点で伸長している前記他方のベローズに関する前記流体圧を徐々に昇圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する現時昇圧制御を行う、ベローズポンプ装置である。
 本発明のベローズポンプ装置において、一方のベローズが収縮途中状態まで収縮したときに、又は一方のベローズが収縮状態まで収縮したときに、他方のベローズが所定の伸長状態まで伸長していない場合がある。その原因は、他方のベローズが硬くなることによって他方のベローズの伸長時間が長くなるからである。このような場合、制御部は、現時点で伸長している他方のベローズについて、対応する駆動部の吸込側流体室に供給している加圧流体の流体圧を徐々に昇圧させる現時昇圧制御を行う。これにより、他方のベローズの伸長時間が長くなったときに、他方のベローズを伸長させるための加圧流体の流体圧を徐々に高い値になるように自動的に設定し直すことができる。その結果、現時点における他方のベローズの伸長時間が短くなるので、その伸長時間が長くなることに起因してベローズポンプ装置の吐出側の脈動が悪化するのを抑制することができる。
 (3)他の観点から見た本発明は、互いに独立して伸縮自在であり、伸長により内部に移送流体を吸い込み、収縮により内部から移送流体を吐出する一対のベローズと、吸込側流体室及び吐出側流体室を有し、前記吸込側流体室に加圧流体を供給することで前記各ベローズを所定の伸長状態まで伸長させ、前記吐出側流体室に加圧流体を供給することで前記各ベローズを所定の収縮状態まで収縮させる一対の駆動部と、一対の前記ベローズのうち、一方のベローズが前記収縮状態となる手前で他方のベローズを前記伸長状態から収縮させるように、一対の前記駆動部の駆動制御を行う制御部と、を備えるベローズポンプ装置であって、前記各ベローズの伸縮状態を検知する一対の検知部と、前記各駆動部の前記吸込側流体室に供給される加圧流体の流体圧を調整する一対の流体圧調整部と、を備え、前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、前記他方のベローズが前記伸長状態を所定時間以上継続しているか否かを判定し、その判定結果が肯定的である場合、次回の前記他方のベローズの伸長時における前記流体圧を降圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する降圧制御を行う、ベローズポンプ装置である。
 本発明のベローズポンプ装置において、一方のベローズが収縮途中状態まで収縮したときに、他方のベローズが所定の伸長状態を所定時間以上継続している場合がある。その原因は、他方のベローズが柔らかくなることによって他方のベローズの伸長時間が必要以上に短くなるからである。このような場合、制御部は、次回の他方のベローズの伸長時に、対応する駆動部の吸込側流体室に供給する加圧流体の流体圧を降圧させる降圧制御を行う。これにより、他方のベローズの伸長時間が必要以上に短くなったときに、他方のベローズを伸長させるための加圧流体の流体圧を自動的に低い値に設定し直すことができる。その結果、次回の他方のベローズの伸長時間が長くなって伸長速度が低下するので、衝撃圧力やキャビテーションが発生するのを抑制することができる。
 (4)前記(1)の制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮途中状態まで収縮したときに、前記他方のベローズが前記伸長状態を所定時間以上継続しているか否かを判定し、その判定結果が肯定的である場合、次回の前記他方のベローズの伸長時における前記流体圧を降圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する降圧制御を行うのが好ましい。
 この場合、次回昇圧制御と降圧制御の両方が行われる。これにより、他方のベローズの伸長時間が長くなったときに、他方のベローズを伸長させるための加圧流体の流体圧を自動的に高い値に設定し直すことができ、かつ、他方のベローズの伸長時間が必要以上に短くなったときに、他方のベローズを伸長させるための加圧流体の流体圧を自動的に低い値に設定し直すことができる。
 (5)前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、次回の前記他方のベローズの伸長時における前記流体圧調整部による前記流体圧の調整範囲の下限値を、前回の前記他方のベローズの伸長時における前記流体圧よりも高く設定するのが好ましい。
 制御部が降圧制御を行った場合、一方のベローズが所定の収縮状態まで収縮したときに、他方のベローズが所定の伸長状態まで伸長していない場合がある。その原因は、降圧制御によって、対応する駆動部の吸込側流体室に供給する加圧流体の流体圧が必要以上に降圧されることによって、他方のベローズの伸長時間が長くなりすぎるからである。このような場合、制御部は、次回の他方のベローズの伸長時における前記流体圧の調整範囲の下限値を、前回の他方のベローズの伸長時における前記流体圧よりも高く設定する。これにより、次回の他方のベローズの伸長時に流体圧調整部により調整された前記流体圧が下限値よりも低くなるのを規制することができるので、他方のベローズの伸長時間が長くなりすぎるのを抑制することができる。その結果、前記伸長時間が長くなることに起因してベローズポンプ装置の吐出側の脈動が悪化するのを抑制することができる。
 (6)前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、次々回以降の前記他方のベローズの伸長時における前記流体圧調整部による前記流体圧の調整範囲の下限値を、前回の前記他方のベローズの伸長時における前記流体圧よりも高く設定するのが好ましい。
 制御部が降圧制御を行った場合、一方のベローズが所定の収縮状態まで収縮したときに、他方のベローズが所定の伸長状態まで伸長していない場合がある。その原因は、降圧制御によって、対応する駆動部の吸込側流体室に供給する加圧流体の流体圧が必要以上に降圧されることによって、他方のベローズの伸長時間が長くなりすぎるからである。このような場合、制御部は、次々回以降の他方のベローズの伸長時における前記流体圧の調整範囲の下限値を、前回の他方のベローズの伸長時における前記流体圧よりも高く設定してもよい。これにより、次々回以降の他方のベローズの伸長時に流体圧調整部により調整された前記流体圧が下限値よりも低くなるのを規制することができるので、他方のベローズの伸長時間が長くなりすぎるのを抑制することができる。その結果、前記伸長時間が長くなることに起因してベローズポンプ装置の吐出側の脈動が悪化するのを抑制することができる。
 (7)前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、又は前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、現時点で伸長している前記他方のベローズに関する前記流体圧を徐々に昇圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する現時昇圧制御を行うのが好ましい。
 制御部が降圧制御を行った場合、一方のベローズが所定の収縮状態まで収縮したときに、他方のベローズが所定の伸長状態まで伸長していない場合がある。その原因は、降圧制御によって、対応する駆動部の吸込側流体室に供給する加圧流体の流体圧が必要以上に降圧されることによって、他方のベローズの伸長時間が長くなりすぎるからである。このような場合、制御部は、現時点で伸長している他方のベローズに関する前記流体圧を徐々に昇圧させる現時昇圧制御を行う。これにより、現時点における他方のベローズの伸長時間を短くすることができる。その結果、前記伸長時間が長くなることに起因してベローズポンプ装置の吐出側の脈動が悪化するのを抑制することができる。また、他方のベローズの伸長による移送流体の吸い込み不全を抑制できるので、その吸い込み不全に起因してベローズポンプ装置が停止するのを抑制することができる。
 (8)前記制御部は、一対の前記検知部の各検知信号に基づいて前記駆動制御を行うのが好ましい。
 この場合、一対の駆動部の駆動制御に用いられる一対の検知部は、現時昇圧制御、次回昇圧制御、又は降圧制御に用いられる一対の検知部を兼ねるので、ベローズポンプ装置の構成を簡素化することができる。
 本発明のベローズポンプ装置によれば、ベローズの伸長時間が変化したときに、当該ベローズを伸長させるための加圧流体の流体圧を自動で設定し直すことができる。
本発明の実施形態に係るベローズポンプ装置の概略構成図である。 ベローズポンプの断面図である。 ベローズポンプの動作を示す説明図である。 ベローズポンプの動作を示す説明図である。 次回昇圧制御の一例を示すタイムチャートである。 降圧制御の一例を示すタイムチャートである。 電空レギュレータによる空気圧の調整範囲の下限値を再設定する一例を示すタイムチャートである。 現時昇圧制御の具体例1を示すタイムチャートである。 現時昇圧制御の具体例2を示すタイムチャートである。
 次に、本発明の好ましい実施形態について添付図面を参照しながら説明する。
 [全体構成]
 図1は、本発明の実施形態に係るベローズポンプ装置の概略構成図である。本実施形態のベローズポンプ装置1は、例えば半導体製造装置において薬液や溶剤等の移送流体を一定量供給するときに用いられる。ベローズポンプ装置1は、空気供給装置(流体供給装置)2、機械式レギュレータ3、第1電磁弁4、第2電磁弁5、制御部6、ベローズポンプ10、第1電空レギュレータ(流体圧調整部)51、及び第2電空レギュレータ(流体圧調整部)52を備えている。
 空気供給装置2は、例えばエアコンプレッサからなり、ベローズポンプ10に供給する加圧空気(加圧流体)を生成する。機械式レギュレータ3は、空気供給装置2で生成された加圧空気の空気圧(流体圧)を調整する。第1電空レギュレータ51及び第2電空レギュレータ52については後述する。
 図2は、本実施形態に係るベローズポンプ10の断面図である。本実施形態のベローズポンプ10は、中央部に配置されたポンプヘッド11と、このポンプヘッド11の左右方向の両側に取り付けられた一対のポンプケース12と、各ポンプケース12の内部において、ポンプヘッド11の左右方向の側面に取り付けられた一対のベローズである第1ベローズ13及び第2ベローズ14と、第1及び第2ベローズ13,14それぞれの内部において、ポンプヘッド11の左右方向の側面に取り付けられる合計4個のチェックバルブ15,チェックバルブ16と、を備えている。
 [ベローズ]
 第1ベローズ13及び第2ベローズ14は、ポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂により有底筒形状に形成されている。第1及び第2ベローズ13,14の開放側端部に一体形成されたフランジ部13a及びフランジ部14aは、ポンプヘッド11の側面に気密状に押圧して固定されている。第1及び第2ベローズ13,14の各周壁は、蛇腹形状に形成され、互いに独立して左右方向に伸縮自在に構成されている。
 第1及び第2ベローズ13,14の閉塞側端部の外面には、ボルト17及びナット18により作動板19が固定されている。第1及び第2ベローズ13,14は、作動板19の外面が有底円筒状のポンプケース12における底壁部121の内面に当接する最伸長状態と、後述するピストン体23の内面が底壁部121の外面に当接する最収縮状態との間で伸縮可能である。
 [ポンプケース]
 第1ベローズ13のフランジ部13aには、ポンプケース12(以下、「第1ポンプケース12A」ともいう)の開口周縁部が、気密状に押圧して固定されている。これにより、第1ポンプケース12Aの内部における第1ベローズ13の外側には、気密状態が保持された第1吐出側空気室(吐出側流体室)21Aが形成されている。
 第1ポンプケース12Aには第1吸排気ポート22Aが設けられており、第1吸排気ポート22Aは、第1電磁弁4、第1電空レギュレータ51及び機械式レギュレータ3を介して空気供給装置2に接続されている(図1参照)。これにより、空気供給装置2から第1吐出側空気室21Aの内部に加圧空気が供給されると、第1ベローズ13は所定の収縮状態(以下、単に「収縮状態」という)まで収縮する。第1ベローズ13の収縮状態は、最収縮状態であってもよいし、最収縮状態よりも手前の状態であってもよい。
 第2ベローズ14のフランジ部14aには、ポンプケース12(以下、「第2ポンプケース12B」ともいう)の開口周縁部が、気密状に押圧して固定されている。これにより、第2ポンプケース12Bの内部における第2ベローズ14の外側には、気密状態が保持された第2吐出側空気室(吐出側流体室)21Bが形成されている。
 第2ポンプケース12Bには第2吸排気ポート22Bが設けられており、第2吸排気ポート22Bは、第2電磁弁5、第2電空レギュレータ52及び機械式レギュレータ3を介して空気供給装置2に接続されている(図1参照)。これにより、空気供給装置2から第2吐出側空気室21Bの内部に加圧空気が供給されると、第2ベローズ14は所定の収縮状態(以下、単に「収縮状態」という)まで収縮する。第2ベローズ14の収縮状態は、最収縮状態であってもよいし、最収縮状態よりも手前の状態であってもよい。
 各ポンプケース12A,12Bの底壁部121には棒状の連結部材20が貫通されており、連結部材20は、底壁部121に対して左右方向に摺動可能に支持されている。連結部材20の外端部にはピストン体23がナット24により固定されている。ピストン体23は、底壁部121の外側に一体に設けられた円筒状のシリンダ体25の内周面に対して、気密状態を保持しながら左右方向へ摺動可能に支持されている。
 これにより、第1ポンプケース12A側において、底壁部121、シリンダ体25、及びピストン体23によって囲まれた空間は、気密状態が保持された第1吸込側空気室(吸込側流体室)26Aとされている。また、第2ポンプケース12B側において、底壁部121、シリンダ体25、及びピストン体23によって囲まれた空間は、気密状態が保持された第2吸込側空気室(吸込側流体室)26Bとされている。
 第1ポンプケース12A側のシリンダ体25には、第1吸込側空気室26Aに連通する吸排気口251が形成されている。この吸排気口251は、第1電磁弁4、第1電空レギュレータ51及び機械式レギュレータ3を介して空気供給装置2に接続されている(図1参照)。これにより、空気供給装置2から吸排気口251を介して第1吸込側空気室26Aの内部に加圧空気が供給されると、第1ベローズ13は所定の伸長状態(以下、単に「伸長状態」という)まで伸長する。第1ベローズ13の伸長状態は、最伸長状態であってもよいし、最伸長状態よりも手前の状態であってもよい。
 第2ポンプケース12B側のシリンダ体25には、第2吸込側空気室26Bに連通する吸排気口252が形成されている。この吸排気口252は、第2電磁弁5、第2電空レギュレータ52及び機械式レギュレータ3を介して空気供給装置2に接続されている(図1参照)。これにより、空気供給装置2から吸排気口252を介して第2吸込側空気室26Bの内部に加圧空気が供給されると、第2ベローズ14は所定の伸長状態(以下、単に「伸長状態」という)まで伸長する。第2ベローズ14の伸長状態は、最伸長状態であってもよいし、最伸長状態よりも手前の状態であってもよい。
 以上の構成により、第1吐出側空気室21Aが内部に形成された第1ポンプケース12Aと、第1吸込側空気室26Aを形成するピストン体23及びシリンダ体25とにより、第1ベローズ13を伸長状態と収縮状態との間で連続して伸縮動作させる第1駆動部(駆動部)27が構成されている。
 また、第2吐出側空気室21Bが内部に形成された第2ポンプケース12Bと、第2吸込側空気室26Bを形成するピストン体23及びシリンダ体25とにより、第2ベローズ14を伸長状態と収縮状態との間で連続して伸縮動作させる第2駆動部(駆動部)28が構成されている。
 [検知部]
 第1駆動部27のシリンダ体25には、一対の近接センサ29A,近接センサ29Bが取り付けられている。第1駆動部27のピストン体23には、各近接センサ29A,29Bにより検知される被検知板30が取り付けられている。被検知板30は、ピストン体23とともに往復動することで、近接センサ29A,29Bに交互に近接する。
 近接センサ29Aは、第1ベローズ13が収縮状態となる手前の収縮途中状態のときに被検知板30を検知する位置に配置されている。近接センサ29Bは、第1ベローズ13が伸長状態のときに被検知板30を検知する位置に配置されている。各近接センサ29A,29Bは、被検知板30を検知すると、その検知信号を制御部6に出力する。一対の近接センサ29A,29Bは、第1ベローズ13の伸縮状態を検知する第1検知部(検知部)として機能する。
 第2駆動部28のシリンダ体25には、一対の近接センサ31A,近接センサ31Bが取り付けられている。第2駆動部28のピストン体23には、各近接センサ31A,31Bより検知される被検知板32が取り付けられている。被検知板32は、ピストン体23とともに往復動することで、近接センサ31A,31Bに交互に近接する。
 近接センサ31Aは、第2ベローズ14が収縮状態となる手前の収縮途中状態のときに被検知板32を検知する位置に配置されている。近接センサ31Bは、第2ベローズ14が伸長状態のときに被検知板32を検知する位置に配置されている。各近接センサ31A,31Bは、被検知板30を検知すると、その検知信号を制御部6に出力する。一対の近接センサ31A,31Bは、第2ベローズ14の伸縮状態を検知する第2検知部(検知部)として機能する。
 ここで、第1ベローズ13(第2ベローズ14)の「収縮途中状態」とは、第1ベローズ13(第2ベローズ14)の収縮経過位置が収縮開始位置(伸長状態)よりも収縮終了位置(収縮状態)に近い位置にあることを意味し、より詳細には、第1ベローズ13(第2ベローズ14)が伸長状態から収縮状態となるまでの収縮長さの50%~90%まで収縮した位置を意味する。
 [ポンプヘッド]
 ポンプヘッド11は、PTFEやPFA等のフッ素樹脂から形成されている。ポンプヘッド11の内部には、移送流体の吸込通路34と吐出通路35が形成されている。吸込通路34及び吐出通路35は、ポンプヘッド11の外周面において開口し、当該外周面に設けられた吸込ポート及び吐出ポート(いずれも図示省略)に接続されている。
 吸込ポートは移送流体の貯留タンク等に接続され、吐出ポートは移送流体の移送先に接続される。また、吸込通路34及び吐出通路35は、それぞれポンプヘッド11の左右両側面に向けて分岐するとともに、ポンプヘッド11の左右両側面において開口する吸込口36及び吐出口37を有している。各吸込口36及び各吐出口37は、それぞれチェックバルブ15,16を介してベローズ13,14の内部と連通している。
 [チェックバルブ]
 各吸込口36及び各吐出口37には、チェックバルブ15,16が設けられている。
 吸込口36に取り付けられたチェックバルブ15(以下、「吸込用チェックバルブ」ともいう)は、バルブケース15aと、このバルブケース15aに収容された弁体15bと、この弁体15bを閉弁方向に付勢する圧縮コイルバネ15cとを有している。
 バルブケース15aは有底円筒形状に形成されている。バルブケース15aの底壁にはベローズ13,14の内部に連通する貫通孔15dが形成されている。弁体15bは、圧縮コイルバネ15cの付勢力により吸込口36を閉鎖(閉弁)し、ベローズ13,14の伸縮に伴う移送流体の流れによる背圧が作用すると吸込口36を開放(開弁)するようになっている。
 これにより、吸込用チェックバルブ15は、自身が配置されているベローズ13,14が伸長したときに開弁して、吸込通路34からベローズ13,14内部に向かう方向(一方向)への移送流体の吸入を許容する。また、吸込用チェックバルブ15は、自身が配置されているベローズ13,14が収縮したときに閉弁して、ベローズ13,14内部から吸込通路34に向かう方向(他方向)への移送流体の逆流を阻止する。
 吐出口37に取り付けられたチェックバルブ16(以下、「吐出用チェックバルブ」ともいう)は、バルブケース16aと、このバルブケース16aに収容された弁体16bと、この弁体16bを閉弁方向に付勢する圧縮コイルバネ16cとを有している。
 バルブケース16aは有底円筒形状に形成されている。バルブケース16aの底壁には、ベローズ13,14の内部に連通する貫通孔16dが形成されている。弁体16bは、圧縮コイルバネ16cの付勢力によりバルブケース16aの貫通孔16dを閉鎖(閉弁)し、ベローズ13,14の伸縮に伴う移送流体の流れによる背圧が作用するとバルブケース16aの貫通孔16dを開放(開弁)するようになっている。
 これにより、吐出用チェックバルブ16は、自身が配置されているベローズ13,14が収縮したときに開弁して、ベローズ13,14内部から吐出通路35に向かう方向(一方向)への移送流体の流出を許容する。また、吐出用チェックバルブ16は、自身が配置されているベローズ13,14が伸長したときに閉弁して、吐出通路35からベローズ13,14内部に向かう方向(他方向)への移送流体の逆流を阻止する。
 [ベローズポンプの動作]
 次に、本実施形態のベローズポンプ10の動作を図3及び図4を参照して説明する。なお、図3及び図4においては第1及び第2ベローズ13,14の構成を簡略化して示している。図3に示すように、第1ベローズ13が収縮し、第2ベローズ14が伸長した場合、ポンプヘッド11の図中左側に装着された吸込用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、第1ベローズ13内の移送流体から圧力を受けて、各バルブケース15a,16aの図中右側にそれぞれ移動する。これにより吸込用チェックバルブ15が閉弁するとともに、吐出用チェックバルブ16が開弁し、第1ベローズ13内の移送流体が吐出通路35からポンプ外へ吐出される。
 一方、ポンプヘッド11の図中右側に装着された吸込用チェックバルブ15の弁体15bは、第2ベローズ14による吸入作用によってバルブケース15aの図中右側に移動する。ポンプヘッド11の図中右側に装着された吐出用チェックバルブ16の弁体16bは、第2ベローズ14による吸入作用、及び第1ベローズ13から吐出通路35に吐出された移送流体による押圧作用によって、バルブケース16aの図中右側に移動する。これにより吸込用チェックバルブ15が開弁するとともに、吐出用チェックバルブ16が閉弁し、吸込通路34から第2ベローズ14内に移送流体が吸い込まれる。
 次に、図4に示すように、第1ベローズ13が伸長し、第2ベローズ14が収縮した場合、ポンプヘッド11の図中右側に装着された吸込用チェックバルブ15及び吐出用チェックバルブ16の各弁体15b,16bは、第2ベローズ14内の移送流体から圧力を受けて、各バルブケース15a,16aの図中左側に移動する。これにより吸込用チェックバルブ15が閉弁するとともに、吐出用チェックバルブ16が開弁し、第2ベローズ14内の移送流体が吐出通路35からポンプ外へ吐出される。
 一方、ポンプヘッド11の図中左側に装着された吸込用チェックバルブ15の弁体15bは、第1ベローズ13による吸入作用によってバルブケース15aの図中左側に移動する。ポンプヘッド11の図中左側に装着された吐出用チェックバルブ16の弁体16bは、第1ベローズ13による吸入作用、及び第1ベローズ13から吐出通路35に吐出された移送流体による押圧作用によって、バルブケース16aの図中左側に移動する。これにより吸込用チェックバルブ15が開弁するとともに、吐出用チェックバルブ16が閉弁し、吸込通路34から第1ベローズ13内に移送流体が吸い込まれる。
 以上の動作を繰り返し行うことで、左右のベローズ13,14は、交互に移送流体の吸入と吐出とを行うことができる。
 [電磁弁]
 図1において、第1電磁弁4は、例えば、一対のソレノイド4a,ソレノイド4bを有する三位置の電磁切換弁からなる。各ソレノイド4a,4bは制御部6から受けた指令信号に基づいて励磁されるようになっている。これにより、第1電磁弁4は、制御部6により切り換え制御される。第1電磁弁4は、第1駆動部27において、第1吐出側空気室21Aに対する加圧空気の給排、及び第1吸込側空気室26Aに対する加圧空気の給排を切り換える。
 具体的には、第1電磁弁4は、ソレノイド4aが励磁されると、第1吐出側空気室21Aに加圧空気を供給するとともに第1吸込側空気室26A内の加圧空気を排出する状態に切り換わる。また、第1電磁弁4は、ソレノイド4bが励磁されると、第1吐出側空気室21A内の加圧空気を排出するとともに第1吸込側空気室26Aに加圧空気を供給する状態とに切り換わる。
 第2電磁弁5は、例えば一対のソレノイド5a,ソレノイド5bを有する三位置の電磁切換弁からなる。各ソレノイド5a,5bは制御部6から指令信号を受けて励磁されるようになっている。これにより、第2電磁弁5は、制御部6により切り換え制御される。第2電磁弁5は、第2駆動部28において、第2吐出側空気室21Bに対する加圧空気の給排、及び第2吸込側空気室26Bに対する加圧空気の給排を切り換える。
 具体的には、第2電磁弁5は、ソレノイド5aが励磁されると、第2吐出側空気室21Bに加圧空気を供給するとともに第2吸込側空気室26B内の加圧空気を排出する状態に切り換わる。また、第2電磁弁5は、ソレノイド5bが励磁されると、第2吐出側空気室21B内の加圧空気を排出するとともに第2吸込側空気室26Bに加圧空気を供給する状態とに切り換わる。
 なお、本実施形態の第1及び第2電磁弁4,5は、三位置の電磁切換弁からなるが、中立位置を有しない二位置の電磁切換弁であってもよい。
 [電空レギュレータ]
 第1電空レギュレータ51は、機械式レギュレータ3と第1電磁弁4との間に配置されている。第1電空レギュレータ51は、第1駆動部27の第1吸込側空気室26Aに供給される加圧空気の空気圧、及び第1駆動部27の第1吐出側空気室21Aに供給される加圧空気の空気圧をそれぞれ調整する。
 第2電空レギュレータ52は、機械式レギュレータ3と第2電磁弁5との間に配置されている。第2電空レギュレータ52は、第2駆動部28の第2吸込側空気室26Bに供給される加圧空気の空気圧、及び第2駆動部28の第2吐出側空気室21Bに供給される加圧空気の空気圧をそれぞれ調整する。
 なお、電空レギュレータ51,52は、少なくとも吸込側空気室26A,26Bに供給される加圧空気の空気圧を調整するものであればよい。また、本実施形態では、流体圧調整部として、空気圧を直接的に調整する電空レギュレータ51,52を用いているが、空気流量を調整する空気流量調整弁を用いて空気圧を間接的に調整してもよいし、空気以外の気体(例えば窒素)や液体等の圧力又は流量を調整する機器を用いてもよい。
 [制御部]
 図1及び図2において、制御部6は、CPU等を有するコンピュータを備えて構成されている。制御部6の各機能は、前記コンピュータの記憶装置に記憶された制御プログラムがCPUにより実行されることで発揮される。制御部6は、第1検知部29及び第2検知部31の各検知結果に基づいて、第1電磁弁4及び第2電磁弁5を切り換えることにより、第1駆動部27及び第2駆動部28の駆動制御を行う。
 具体的には、制御部6は、第1検知部29及び第2検知部31の各検知結果に基づいて、第1ベローズ13が収縮状態となる手前で第2ベローズ14を伸長状態から収縮させるとともに、第2ベローズ14が収縮状態となる手前で第1ベローズ13を伸長状態から収縮させるように、第1駆動部27及び第2駆動部28の各駆動を制御する。
 以上のように制御部6が駆動制御を行うことで、第1ベローズ13及び第2ベローズ14のうち、一方のベローズの収縮から伸長(移送流体の吐出から吸い込み)へ切り換えるタイミングにおいて、他方のベローズは既に収縮して移送流体を吐出しているので、前記タイミングにおいて移送流体の吐出圧力が大きく落ち込むのを低減することができる。その結果、ベローズポンプ10の吐出側の脈動を低減することができる。
 前記駆動制御において、例えば雰囲気温度が低下すると、その影響により第1ベローズ13及び第2ベローズ14が硬くなり、第1ベローズ13及び第2ベローズ14の各伸長時間が長くなる場合がある。この場合、制御部6は、第1ベローズ13及び第2ベローズ14の各伸長時間を短くするための次回昇圧制御、及び現時昇圧制御を行う。
 具体的には、制御部6は、第1検知部29及び第2検知部31の各検知結果に基づいて、第1ベローズ13(第2ベローズ14)が収縮途中状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態であるか否かを判定する第1判定を行う。制御部6は、第1判定の判定結果が否定的である(伸長状態でない)場合、次回の第2ベローズ14(第1ベローズ13)の伸長時に、第2吸込側空気室26B(第1吸込側空気室26A)に供給される加圧空気の空気圧を昇圧させるように、第2電空レギュレータ52(第1電空レギュレータ51)を制御する次回昇圧制御を行う。次回昇圧制御における前記空気圧の昇圧度合いは、+1kPa~+50kPa(より好ましくは+1kPa~+20kPa)とするのが望ましい。
 制御部6は、上記のように第1判定の判定結果が否定的である(伸長状態でない)場合、現時点で伸長している第2ベローズ14(第1ベローズ13)について、第2吸込側空気室26B(第1吸込側空気室26A)に供給されている加圧空気の空気圧を徐々に昇圧させるように、第2電空レギュレータ52(第1電空レギュレータ51)を制御する現時昇圧制御をさらに行う。現時昇圧制御における前記空気圧の昇圧度合いは、1msec~100msec毎(より好ましくは1msec~30msec毎)に+1kPa~+100kPa(より好ましくは+1kPa~+30kPa)とするのが望ましい。
 一方、前記駆動制御において、例えば雰囲気温度が上昇すると、その影響により第1ベローズ13及び第2ベローズ14が柔らかくなり、第1ベローズ13及び第2ベローズ14の各伸長時間が短くなる場合がある。この場合、制御部6は、第1ベローズ13及び第2ベローズ14の各伸長時間を長くするための降圧制御を行う。
 具体的には、制御部6は、第1検知部29及び第2検知部31の各検知結果に基づいて、第1ベローズ13(第2ベローズ14)が収縮途中状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態を所定時間以上継続しているか否かを判定する第2判定を行う。前記所定時間は、例えば500msec(好ましくは10~200msec)の値に設定するのが望ましい。
 制御部6は、第2判定の判定結果が肯定的である(伸長状態を所定時間以上継続している)場合、次回の第2ベローズ14(第1ベローズ13)の伸長時に、第2吸込側空気室26B(第1吸込側空気室26A)に供給される加圧空気の空気圧を降圧させるように、第2電空レギュレータ52(第1電空レギュレータ51)を制御する降圧制御を行う。降圧制御における前記空気圧の降圧度合いは、-1kPa~-50kPa(より好ましくは-1kPa~-20kPa)とするのが望ましい。
 降圧制御が行われた場合、第2吸込側空気室26B(第1吸込側空気室26A)に供給される加圧空気の空気圧が必要以上に低下することが考えられる。この場合、第2ベローズ14(第1ベローズ13)の伸長時間が長くなりすぎて、第1ベローズ13(第2ベローズ14)が収縮状態まで収縮しても、第2ベローズ14(第1ベローズ13)が伸長状態に達しない場合が起こり得る。こうなると、前記駆動制御を正常に行うことができなくなり、ベローズポンプ10の吐出側の脈動が悪化してしまう。そこで、制御部6は、降圧制御により第2吸込側空気室26B(第1吸込側空気室26A)に供給される加圧空気の空気圧が必要以上に低下した場合、次回の第2ベローズ14(第1ベローズ13)の伸長時において、第2電空レギュレータ52(第1電空レギュレータ51)による空気圧の調整範囲の下限値を再設定する。
 具体的には、制御部6は、第1検知部29及び第2検知部31の各検知結果に基づいて、第1ベローズ13(第2ベローズ14)が収縮状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態であるか否かを判定する第3判定を行う。制御部6は、第3判定の判定結果が否定的である(伸長状態でない)場合、次回の第2ベローズ14(第1ベローズ13)の伸長時において、第2電空レギュレータ52(第1電空レギュレータ51)による空気圧の調整範囲の下限値を、前回の第2ベローズ14(第1ベローズ13)の伸長時における前記空気圧よりも高く設定する。
 空気圧の調整範囲の下限値の設定度合いは、+1kPa~+50kPa(より好ましくは+5kPa~+20kPa)とするのが望ましい。なお、言うまでもないが、空気圧の調整範囲の上限値は固定値であり、下限値を再設定しても上限値が変更されることはない。このように再設定された下限値は、次々回以降の第2ベローズ14(第1ベローズ13)の伸長時においても、第2電空レギュレータ52(第1電空レギュレータ51)による空気圧の調整範囲の下限値として適用される。
 制御部6は、降圧制御により第2吸込側空気室26B(第1吸込側空気室26A)に供給される加圧空気の空気圧が必要以上に低下した場合、上記の現時昇圧制御をさらに行う。具体的には、制御部6は、上記第3判定の判定結果が否定的である(伸長状態でない)場合、現時点で伸長している第2ベローズ14(第1ベローズ13)について、第2吸込側空気室26B(第1吸込側空気室26A)に供給されている加圧空気の空気圧を徐々に昇圧させるように、第2電空レギュレータ52(第1電空レギュレータ51)を制御する現時昇圧制御をさらに行う。
 [次回昇圧制御の具体例]
 図5は、制御部6により駆動制御中に行われる次回昇圧制御の一例を示すタイムチャートである。以下、図1及び図5を参照しながら、制御部6が実行する駆動制御及び次回昇圧制御について説明する。ここでは、第1ベローズ13が収縮動作中(吐出中)であり、かつ第2ベローズ14が伸長動作中(吸い込み中)の状態から説明する。
 制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)した時点t1で、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、時点t1において、近接センサ31Bは第2ベローズ14の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ31BがONになっていないと判定する。この判定結果により、制御部6は、後述するように、次回の第2ベローズ14の伸長時(時点t6~時点t7)に次回昇圧制御を実行する。
 制御部6は、近接センサ31BがONになっていないと判定した場合、近接センサ31BがONになるまで待機する。そして、制御部6は、近接センサ31BがONになった時点t2で、第2電磁弁5のソレノイド5bを消磁させるとともにソレノイド5aを励磁させる。なお、制御部6は、時点t1において近接センサ31BがONになっていると判定した場合、直ちに第2電磁弁5のソレノイド5bを消磁させるとともにソレノイド5aを励磁させる。
 第2電磁弁5のソレノイド5aが励磁されると、空気供給装置2で生成された加圧空気は、機械式レギュレータ3、第2電空レギュレータ52、及び第2電磁弁5を介して、第2駆動部28の第2吐出側空気室21Bに供給される。その際、制御部6は、第2吐出側空気室21Bに供給される加圧空気の空気圧が所定値P2となるように第2電空レギュレータ52を制御する。これにより、第1ベローズ13が収縮状態となる手前で、第2ベローズ14は伸長状態から収縮動作を開始する。
 第2ベローズ14が収縮動作を開始した後、制御部6は、近接センサ29AがONになった時点t1から所定の演算時間が経過した時点t3で、第1ベローズ13が収縮状態になったと判断する。そして、制御部6は、第1電磁弁4のソレノイド4aを消磁させるとともにソレノイド4bを励磁させる。
 第1電磁弁4のソレノイド4bが励磁されると、空気供給装置2で生成された加圧空気は、機械式レギュレータ3、第1電空レギュレータ51、及び第1電磁弁4を介して、第1駆動部27の第1吸込側空気室26Aに供給される。その際、制御部6は、第1吸込側空気室26Aに供給される加圧空気の空気圧が所定値P11となるように第1電空レギュレータ51を制御する。これにより、第1ベローズ13は収縮状態から伸長動作を開始する。
 次に、制御部6は、近接センサ31Aが第2ベローズ14の収縮途中状態を検知(ON)した時点t4で、近接センサ29Bが第1ベローズ13の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、時点t4において、近接センサ29Bは第1ベローズ13の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ29BがONになっていないと判定する。この判定結果により、制御部6は、後述するように、次回の第1ベローズ13の伸長時(時点t8~時点t9)に次回昇圧制御を実行する。
 制御部6は、近接センサ29BがONになっていないと判定した場合、近接センサ29BがONになるまで待機する。そして、制御部6は、近接センサ29BがONになった時点t5で、第1電磁弁4のソレノイド4bを消磁させるとともにソレノイド4aを励磁させる。なお、制御部6は、時点t4において近接センサ29BがONになっていると判定した場合、直ちに第1電磁弁4のソレノイド4bを消磁させるとともにソレノイド4aを励磁させる。
 第1電磁弁4のソレノイド4aが励磁されると、空気供給装置2で生成された加圧空気は、機械式レギュレータ3、第1電空レギュレータ51、及び第1電磁弁4を介して、第1駆動部27の第1吐出側空気室21Aに供給される。その際、制御部6は、第1吐出側空気室21Aに供給される加圧空気の空気圧が所定値P1となるように第1電空レギュレータ51を制御する。これにより、これにより、第2ベローズ14が収縮状態となる手前で、第1ベローズ13は伸長状態から収縮動作を開始する。
 第1ベローズ13が収縮動作を開始した後、制御部6は、近接センサ31AがONになった時点から所定時間が経過した時点t6で、第2ベローズ14が収縮状態になったと判断する。そして、制御部6は、第2電磁弁5のソレノイド5aを消磁させるとともにソレノイド5bを励磁させる。
 第2電磁弁5のソレノイド5bが励磁されると、空気供給装置2で生成された加圧空気は、機械式レギュレータ3、第2電空レギュレータ52、及び第2電磁弁5を介して、第2駆動部28の第2吸込側空気室26Bに供給される。その際、制御部6は、時点t1で行った第1判定の判定結果が否定的であったので(近接センサ31BがONになっていないと判定したので)、第2吸込側空気室26Bに供給される加圧空気の空気圧を昇圧させるように第2電空レギュレータ52を制御する次回昇圧制御を実行する。
 具体的には、制御部6は、第2吸込側空気室26Bに供給される加圧空気の空気圧が前回(時点t2以前)の値P21よりも高い値P22となるように、第2電空レギュレータ52を制御する。これにより、第2ベローズ14は、収縮状態から伸長動作を開始する。その伸長速度は、前回の第2ベローズ14の伸長速度よりも速くなる。
 次に、制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)した時点t7で、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、上記のように第2ベローズ14の伸長速度が速くなり、第2ベローズ14の伸長時間が短くなることで、時点t7で第2ベローズ14は伸長状態に達する。したがって、時点t7において近接センサ31Bは第2ベローズ14の伸長状態を検知しているので、制御部6は、近接センサ31BがONになっていると判定する。この判定結果により、制御部6は、次回の第2ベローズ14の伸長時には次回昇圧制御を実行しない。
 制御部6は、近接センサ29BがONになっていると判定した場合、第2電磁弁5のソレノイド5bを消磁させるとともにソレノイド5aを励磁させる。第2電磁弁5のソレノイド5aが励磁されると、上記のように、第1ベローズ13が収縮状態となる手前(収縮途中状態)で、第2ベローズ14は伸長状態から収縮動作を開始する。
 第2ベローズ14が収縮動作を開始した後、制御部6は、近接センサ29AがONになった時点t7から所定の演算時間が経過した時点t8で、第1ベローズ13が収縮状態になったと判断し、第1電磁弁4のソレノイド4aを消磁させるとともにソレノイド4bを励磁させる。第1電磁弁4のソレノイド4bが励磁されると、上記のように、空気供給装置2で生成された加圧空気は、第1駆動部27の第1吸込側空気室26Aに供給される。
 その際、制御部6は、前記時点t4で行った第1判定の判定結果が否定的であったので(近接センサ29BがONになっていないと判定したので)、第1吸込側空気室26Aに供給される加圧空気の空気圧を昇圧させるように第1電空レギュレータ51を制御する次回昇圧制御を実行する。
 具体的には、制御部6は、第1吸込側空気室26Aに供給された加圧空気の空気圧が前回(時点t3~時点t5)の値P11よりも高い値P12となるように、第1電空レギュレータ51を制御する。これにより、第1ベローズ13は、収縮状態から伸長動作を開始する。その伸長速度は、前回の第1ベローズ13の伸長動作時における伸長速度よりも速くなる。
 次に、制御部6は、近接センサ31Aが第2ベローズ14の収縮途中状態を検知(ON)した時点t9で、近接センサ29Bが第1ベローズ13の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、上記のように第1ベローズ13の伸長速度が速くなり、第1ベローズ13の伸長時間が短くなることで、時点t9で第1ベローズ13は伸長状態に達する。したがって、時点t9において近接センサ29Bは第1ベローズ13の伸長状態を検知しているので、制御部6は、近接センサ29BがONになっていると判定する。この判定結果により、制御部6は、次回の第1ベローズ13の伸長時には次回昇圧制御を実行しない。
 制御部6は、近接センサ29BがONになっていると判定した場合、第1電磁弁4のソレノイド4bを消磁させるとともにソレノイド4aを励磁させる。第1電磁弁4のソレノイド4aが励磁されると、上記のように、第2ベローズ14が収縮状態となる手前(収縮途中状態)で、第1ベローズ13は伸長状態から収縮動作を開始する。
 [降圧制御の具体例]
 図6は、制御部6により駆動制御中に行われる降圧制御の一例を示すタイムチャートである。以下、図1及び図6を参照しながら、制御部6が実行する降圧制御について説明する。ここでは、図5と同様に、第1ベローズ13が収縮動作中(吐出中)であり、かつ第2ベローズ14が伸長動作中(吸い込み中)の状態から説明する。
 制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)する前に、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)したか否かを判定する。ここでは、第1ベローズ13が収縮途中状態に達する前の時点t20で、近接センサ31Bは第2ベローズ14の伸長状態を検知しているので、制御部6は、近接センサ31BがONになったと判定する。
 制御部6は、近接センサ31BがONになったと判定した場合、さらに近接センサ29Aが第1ベローズ13の収縮途中状態を検知した時点t21で、近接センサ31Bが第2ベローズ14の伸長状態を検知した時点t20から所定時間T以上継続しているか否かを判定する(第2判定)。ここでは、時点t21において所定時間Tが経過しているので、制御部6は、時点t20から所定時間T以上継続していると判定する。この判定結果により、制御部6は、後述するように、次回の第2ベローズ14の伸長時(時点t25~時点t26)に降圧制御を実行する。
 制御部6は、近接センサ29AがONになった時点t21で、第2電磁弁5のソレノイド5bを消磁させるとともにソレノイド5aを励磁させる。第2電磁弁5のソレノイド5aが励磁されると、上記のように、第1ベローズ13が収縮状態となる手前(収縮途中状態)で、第2ベローズ14は伸長状態から収縮動作を開始する。
 第2ベローズ14が収縮動作を開始した後、制御部6は、近接センサ29AがONになった時点t21から所定の演算時間が経過した時点t22で、第1ベローズ13が収縮状態になったと判断する。そして、制御部6は、第1電磁弁4のソレノイド4aを消磁させるとともにソレノイド4bを励磁させる。第1電磁弁4のソレノイド4bが励磁されると、上記のように、第1ベローズ13は収縮状態から伸長動作を開始する。
 次に、制御部6は、近接センサ31Aが第2ベローズ14の収縮途中状態を検知(ON)する前に、近接センサ29Bが第1ベローズ13の伸長状態を検知(ON)したか否かを判定する。ここでは、第2ベローズ14が収縮途中状態に達する前の時点t23で、近接センサ29Bは第1ベローズ13の伸長状態を検知しているので、制御部6は、近接センサ29BがONになったと判定する。
 制御部6は、近接センサ29BがONになったと判定した場合、さらに近接センサ31Aが第2ベローズ14の収縮途中状態を検知した時点t24で、近接センサ29Bが第2ベローズ14の伸長状態を検知した時点t23から所定時間T以上継続しているか否かを判定する(第2判定)。ここでは、時点t24において所定時間Tが経過しているので、制御部6は、時点t23から所定時間T以上継続していると判定する。この判定結果により、制御部6は、後述するように、次回の第1ベローズ13の伸長時(時点t27~時点t28)に降圧制御を実行する。
 制御部6は、近接センサ31AがONになった時点t24で、第1電磁弁4のソレノイド4bを消磁させるとともにソレノイド4aを励磁させる。第1電磁弁4のソレノイド4aが励磁されると、上記のように、第2ベローズ14が収縮状態となる手前(収縮途中状態)で、第1ベローズ13は伸長状態から収縮動作を開始する。
 第1ベローズ13が収縮動作を開始した後、制御部6は、近接センサ31AがONになった時点t24から所定の演算時間が経過した時点t25で、第2ベローズ14が収縮状態になったと判断する。そして、制御部6は、第2電磁弁5のソレノイド5aを消磁させるとともにソレノイド5bを励磁させる。第2電磁弁5のソレノイド5bが励磁されると、上記のように、空気供給装置2で生成された加圧空気は、第2駆動部28の第2吸込側空気室26Bに供給される。
 その際、制御部6は、前記時点t21で行った第2判定の判定結果が肯定的であったので(近接センサ31BがONになった時点t20から所定時間T以上継続していると判定したので)、第2吸込側空気室26Bに供給される加圧空気の空気圧を降圧させるように、第2電空レギュレータ52を制御する降圧制御を実行する。
 具体的には、制御部6は、第2吸込側空気室26Bに供給される加圧空気の空気圧が前回(時点t21以前)の値P21よりも低い値P23となるように、第2電空レギュレータ52を制御する。これにより、第2ベローズ14は、収縮状態から伸長動作を開始する。その伸長速度は、前回の第2ベローズ14の伸長動作時における伸長速度よりも遅くなる。
 次に、制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)する前に、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)したか否かを判定する。ここでは、上記のように第2ベローズ14の伸長速度が遅くなり、第2ベローズ14の伸長時間が長くなることで、第1ベローズ13が収縮途中状態に達した時点t26で第2ベローズ14は伸長状態に達する。
 したがって、第1ベローズ13が収縮途中状態に達する前に、近接センサ31Bは第2ベローズ14の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ31BがONにならなかったと判定する。この判定結果により、第1ベローズ13が収縮途中状態に達した時点t26で、制御部6による第2判定は行われないため、次回の第2ベローズ14の伸長時に降圧制御は実行されない。
 制御部6は、近接センサ31BがONになった時点t26で、第2電磁弁5のソレノイド5bを消磁させるとともにソレノイド5aを励磁させる。第2電磁弁5のソレノイド5aが励磁されると、上記のように、第1ベローズ13が収縮状態となる手前(収縮途中状態)で、第2ベローズ14は伸長状態から収縮動作を開始する。
 第2ベローズ14が収縮動作を開始した後、制御部6は、近接センサ29AがONになった時点t26から所定の演算時間が経過した時点t27で、第1ベローズ13が収縮状態になったと判断する。そして、制御部6は、第1電磁弁4のソレノイド4aを消磁させるとともにソレノイド4bを励磁させる。第1電磁弁4のソレノイド4bが励磁されると、上記のように、空気供給装置2で生成された加圧空気は、第1駆動部27の第1吸込側空気室26Aに供給される。
 その際、制御部6は、前記時点t24で行った第2判定の判定結果が肯定的であったので(近接センサ29BがONになった時点t23から所定時間T以上継続していると判定したので)、第1吸込側空気室26Aに供給される加圧空気の空気圧を降圧させるように、第1電空レギュレータ51を制御する降圧制御を実行する。
 具体的には、制御部6は、第1吸込側空気室26Aに供給される加圧空気の空気圧が前回(時点t22~時点t24)の値P11よりも低い値P13となるように、第1電空レギュレータ51を制御する。これにより、第1ベローズ13は、収縮状態から伸長動作を開始する。その伸長速度は、前回の第1ベローズ13の伸長動作時における伸長速度よりも遅くなる。
 次に、制御部6は、近接センサ31Aが第2ベローズ14の収縮途中状態を検知(ON)する前に、近接センサ29Bが第1ベローズ13の伸長状態を検知(ON)したか否かを判定する。ここでは、上記のように第1ベローズ13の伸長速度が遅くなり、第1ベローズ13の伸長時間が長くなることで、第2ベローズ14が収縮途中状態に達した時点t28で第1ベローズ13は伸長状態に達する。
 したがって、第2ベローズ14が収縮途中状態に達する前に、近接センサ29Bは第1ベローズ13の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ29BがONにならなかったと判定する。この判定結果により、第2ベローズ14が収縮途中状態に達した時点t28で、制御部6による第2判定は行われないため、次回の第1ベローズ13の伸長時に降圧制御は実行されない。
 [下限値の再設定の具体例]
 図7は、制御部6により降圧制御を行った後に、電空レギュレータ51,52による空気圧の調整範囲の下限値を再設定する一例を示すタイムチャートである。以下、図1及び図7を参照しながら、制御部6が実行する前記下限値の再設定について説明する。なお、図7の時点t40から時点t44までの間に行われる制御については、図6の時点t20から時点t24までの間に行われる制御とほぼ同様であるため、説明を省略する。
 制御部6は、近接センサ31AがONになった時点t44から所定の演算時間が経過した時点t45で、第2ベローズ14が収縮状態になったと判断する。そして、制御部6は、第2電磁弁5のソレノイド5aを消磁させるとともにソレノイド5bを励磁させる。第2電磁弁5のソレノイド5bが励磁されると、上記のように、空気供給装置2で生成された加圧空気は、第2駆動部28の第2吸込側空気室26Bに供給される。
 その際、制御部6は、前記時点t41で行った第2判定の判定結果が肯定的であったので(近接センサ31BがONになった時点t40から所定時間T以上継続していると判定したので)、第2吸込側空気室26Bに供給される加圧空気の空気圧を降圧させるように、第2電空レギュレータ52を制御する降圧制御を実行する。
 具体的には、制御部6は、第2吸込側空気室26Bに供給される加圧空気の空気圧が前回(時点t41以前)の値P21よりも低い値P24となるように、第2電空レギュレータ52を制御する。これにより、第2ベローズ14は、収縮状態から伸長動作を開始する。その伸長速度は、前回の第2ベローズ14の伸長動作時における伸長速度よりも遅くなる。
 次に、制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)する前に、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)したか否かを判定する。ここでは、上記のように第2ベローズ14の伸長速度が遅くなり、第2ベローズ14の伸長時間が長くなることで、第1ベローズ13が収縮途中状態に達した時点t46でも第2ベローズ14は伸長動作中である。
 したがって、第1ベローズ13が収縮途中状態に達する前に、近接センサ31Bは第2ベローズ14の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ31BがONにならなかったと判定する。この判定結果により、第1ベローズ13が収縮途中状態に達した時点t46で、制御部6による第2判定は行われないため、次回の第2ベローズ14の伸長時に降圧制御は実行されない。
 次に、制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)した時点t46で、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、時点t46において、近接センサ31Bは第2ベローズ14の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ31BがONになっていないと判定する。この判定結果により、制御部6は、後述するように、次回の第2ベローズ14の伸長時(時点t50~時点t51)に次回昇圧制御を実行する。
 制御部6は、近接センサ31BがONになっていないと判定した場合、近接センサ31BがONになるまで(第2ベローズ14が伸長状態になるまで)、又は近接センサ29AがONになった時点t46から所定の演算時間が経過する時点t47まで(第1ベローズ13が収縮状態になるまで)待機する。ここでは、上記のように第2ベローズ14の伸長速度が遅くなり、第2ベローズ14の伸長時間が長くなりすぎることで、第2ベローズ14が伸長状態に達する前に、第1ベローズ13が収縮状態となる時点t47に達する。
 制御部6は、第1ベローズ13が収縮状態に達した時点t47において、第1電磁弁4のソレノイド4aを消磁させるとともにソレノイド4bを励磁させる。第1電磁弁4のソレノイド4bが励磁されると、上記のように、第1ベローズ13は収縮状態から伸長動作を開始する。なお、時点t47以降の制御部6による第1ベローズ13の駆動制御及び降圧制御は、図6の時点t27以降と同様であるため、説明を省略する。
 制御部6は、第1ベローズ13が収縮状態に達した時点t47において、さらに近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)しているか否かを判定する(第3判定)。ここでは、上記のように時点t47において第2ベローズ14は伸長状態に達していないので、制御部6は、近接センサ31BがONになっていないと判定する。この判定結果により、制御部6は、後述するように、次回の第2ベローズ14の伸長時(時点t50~時点t51)に第2電空レギュレータ52による空気圧の調整範囲の下限値を再設定する。
 次に、制御部6は、近接センサ31Bが第2ベローズ14の伸長状態を検知した時点t48で、第2電磁弁5のソレノイド5bを消磁させるとともにソレノイド5aを励磁させる。第2電磁弁5のソレノイド5aが励磁されると、上記のように、第1ベローズ13の伸長途中状態で、第2ベローズ14は伸長状態から収縮動作を開始する。その後、近接センサ31Aが第2ベローズ14の収縮途中状態を検知(ON)した時点t49から所定の演算時間が経過した時点t50で、制御部6は、第2電磁弁5のソレノイド5aを消磁させるとともにソレノイド5bを励磁させる。第2電磁弁5のソレノイド5bが励磁されると、上記のように、空気供給装置2で生成された加圧空気は、第2駆動部28の第2吸込側空気室26Bに供給される。
 その際、制御部6は、前記時点t46で行った第1判定の判定結果が否定的であったので(近接センサ31BがONになっていないと判定したので)、第2吸込側空気室26Bに供給される加圧空気の空気圧を昇圧させるように第2電空レギュレータ52を制御する次回昇圧制御を実行する。
 具体的には、制御部6は、まず、第2吸込側空気室26Bに供給される加圧空気の空気圧の値が、前回の第2ベローズ14の伸長時(時点t45~時点t48)における第2吸込側空気室26Bに供給された加圧空気の空気圧の値P24よりも高くなるように、空気圧の昇圧度合いを決定する。ここでは、制御部6は、例えば、降圧制御後の空気圧の値P24よりも高く、かつ降圧制御前の空気圧の値P21よりも低い値P23になるように昇圧度合いを決定する。そして、制御部6は、第2吸込側空気室26Bに供給される加圧空気の空気圧が決定した値P23となるように、第2電空レギュレータ52を制御する。これにより、第2ベローズ14は、収縮状態から伸長動作を開始する。その伸長速度は、前回の第2ベローズ14の伸長動作時における伸長速度よりも速くなる。
 さらに、制御部6は、前記時点t47で行った第3判定の判定結果が否定的であったので(近接センサ31BがONになっていないと判定したので)、第2電空レギュレータ52による空気圧の調整範囲の下限値を再設定する。
 具体的には、制御部6は、第2電空レギュレータ52による空気圧の調整範囲の下限値Pdを、前回の第2ベローズ14の伸長時(時点t45~時点t48)に、降圧制御によって第2吸込側空気室26Bに供給された加圧空気の空気圧の値P24よりも高い空気圧(ここでは値P23)に設定する。なお、前記下限値の再設定は、次回昇圧制御において第2電空レギュレータ52の制御を開始する前に行うのが好ましい。
 次に、制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)した時点t51で、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、上記のように第2ベローズ14の伸長速度が速くなり、第2ベローズ14の伸長時間が短くなることで、時点t51で第2ベローズ14は伸長状態に達する。したがって、時点t51において近接センサ31Bは第2ベローズ14の伸長状態を検知しているので、制御部6は、近接センサ31BがONになっていると判定する。この判定結果により、制御部6は、次回の第2ベローズ14の伸長時には次回昇圧制御を実行しない。
 また、次回以降の第2ベローズ14の伸長時には、上記のように再設定された下限値Pdが、第2電空レギュレータ52による空気圧の調整範囲の下限値として適用される。したがって、次回以降の第2ベローズ14の伸長時において降圧制御が実行されても、その降圧制御により降圧された空気圧が下限値Pdよりも低くなることはない。
 図7の制御例では、時点t47で行った第3判定の判定結果に基づいて、次回の第2ベローズ14の伸長時(時点t50~時点t51)に第2電空レギュレータ52による空気圧の調整範囲の下限値を再設定しているが、当該下限値の再設定は、次回の第2ベローズ14の伸長時には行わず、次々回の第2ベローズ14の伸長時に行ってもよい。その理由は、次回の第2ベローズ14の伸長時には、上述のように次回昇圧制御が実行され、前記下限値を再設定しなくても第2電空レギュレータ52により空気圧が昇圧されるからである。
 次々回の第2ベローズ14の伸長時に前記下限値を再設定した場合、次々々回以降の第2ベローズ14の伸長時には、再設定された下限値Pdが、第2電空レギュレータ52による空気圧の調整範囲の下限値として適用される。したがって、次々々回以降の第2ベローズ14の伸長時において降圧制御が実行されても、その降圧制御により降圧された空気圧が下限値Pdよりも低くなることはない。なお、前記下限値の再設定は、次回及び次々回の第2ベローズ14の伸長時には行わず、次々々回以降の第2ベローズ14の伸長時に行ってもよい。
 図7の制御例では、第2電空レギュレータ52による空気圧の調整範囲の下限値を再設定する場合について説明したが、第1電空レギュレータ51による空気圧の調整範囲の下限値を再設定する場合も上記と同様であるため、説明を省略する。
 [現時昇圧制御の具体例1]
 図8は、制御部6により駆動制御中に行われる現時昇圧制御の具体例1を示すタイムチャートである。具体例1は、図5の変形例であり、次回昇圧制御とセットで現時昇圧制御が行われる。以下、図1及び図8を参照しながら、制御部6が実行する現時昇圧制御の具体例1について説明する。ここでは、図5と同様に、第1ベローズ13が収縮動作中(吐出中)であり、かつ第2ベローズ14が伸長動作中(吸い込み中)の状態から説明する。
 制御部6は、近接センサ29Aが第1ベローズ13の収縮途中状態を検知(ON)した時点t61で、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、時点t61において、近接センサ31Bは第2ベローズ14の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ31BがONになっていないと判定する。この判定結果により、制御部6は、上述したように、次回の第2ベローズ14の伸長時(時点t66~時点t67)に次回昇圧制御を実行する。
 また、制御部6は、近接センサ31BがONになっていないと判定した場合、現時点t61で第2吸込側空気室26Bに供給される加圧空気の空気圧を徐々に昇圧させるように第2電空レギュレータ52を制御する現時昇圧制御を実行する。具体的には、制御部6は、第2吸込側空気室26Bに供給される加圧空気の空気圧が、現時点t61の値P21から徐々に高くなるように、第2電空レギュレータ52を制御する。これにより、現時点t61において伸長中の第2ベローズ14の伸長速度は、時間経過とともに徐々に速くなる。
 制御部6は、近接センサ31BがONになるまで現時昇圧制御を継続する。したがって、伸長中である第2ベローズ14の伸長速度は、近接センサ31BがONになるまで増加するので、第2ベローズ14を現時点t61から迅速に伸長状態まで伸長させることができる。その結果、第2ベローズ14が伸長状態となる時点(近接センサ31BがONになる時点)t62を、現時昇圧制御が行われない図5で第2ベローズ14が伸長状態となる時点t2よりも早めることができる。なお、図8の時点t62から時点t63までの間に行われる制御については、図5の時点t2から時点t3までの間に行われる制御と同様であるため、説明を省略する。
 時点t64において、近接センサ31Aが第2ベローズ14の収縮途中状態を検知(ON)すると、制御部6は、近接センサ29Bが第1ベローズ13の伸長状態を検知(ON)しているか否かを判定する(第1判定)。ここでは、時点t64において、近接センサ29Bは第1ベローズ13の伸長状態を非検知(OFF)であるため、制御部6は、近接センサ29BがONになっていないと判定する。この判定結果により、制御部6は、上述したように、次回の第1ベローズ13の伸長時(時点t68~時点t69)に次回昇圧制御を実行する。
 また、制御部6は、近接センサ29BがONになっていないと判定した場合、現時点t64で第1吸込側空気室26Aに供給される加圧空気の空気圧を徐々に昇圧させるように第1電空レギュレータ51を制御する現時昇圧制御を実行する。具体的には、制御部6は、第1吸込側空気室26Aに供給される加圧空気の空気圧が、現時点t64の値P11から徐々に高くなるように、第1電空レギュレータ51を制御する。これにより、現時点t64において伸長中の第1ベローズ13の伸長速度は、時間経過とともに徐々に速くなる。
 制御部6は、近接センサ29BがONになるまで現時昇圧制御を継続する。したがって、伸長中である第1ベローズ13の伸長速度は、近接センサ29BがONになるまで増加するので、第1ベローズ13を現時点t64から迅速に伸長状態まで伸長させることができる。その結果、第1ベローズ13が伸長状態となる時点(近接センサ29BがONになる時点)t65を、現時昇圧制御が行われない図5で第1ベローズ13が伸長状態となる時点t5よりも早めることができる。図8の時点t65以降に行われる制御は、図5の時点t5以降に行われる制御と同様であるため、説明を省略する。
 なお、具体例1の制御部6は、第1判定を行った時点t61で現時昇圧制御を実行しているが、その時点t61から第1ベローズ13が伸長状態となるまでの間の任意のタイミングで現時昇圧制御を実行してもよい。
 また、制御部6は、次回昇圧制御を実行する判断基準となる第1判定を、現時昇圧制御を実行する判断基準として用いているが、現時昇圧制御を実行する判断基準となる判定を第1判定とは独立して行ってもよい。例えば、制御部6は、第1ベローズ13が収縮状態に達した時点t63で前記判定を行ってもよい。その場合、時点t63において伸長中の第2ベローズ14を迅速に伸長状態まで伸長させることができる。
 [現時昇圧制御の具体例2]
 図9は、制御部6により駆動制御中に行われる現時昇圧制御の具体例2を示すタイムチャートである。具体例2は、図7の変形例であり、降圧制御が行われた後に、前記下限値の再設定とセットで現時昇圧制御が行われる。以下、図1及び図9を参照しながら、制御部6が実行する現時昇圧制御の具体例2について説明する。なお、図9の時点t80から時点t86までの間に行われる制御については、図7の時点t40から時点t46までの間に行われる制御と同様であるため、説明を省略する。
 制御部6は、第1ベローズ13が収縮状態に達した時点t87において、近接センサ31Bが第2ベローズ14の伸長状態を検知(ON)しているか否かを判定する(第3判定)。ここでは、時点t87において第2ベローズ14は伸長状態に達していないので、制御部6は、近接センサ31BがONになっていないと判定する。この判定結果により、制御部6は、上述したように、次回の第2ベローズ14の伸長時(時点t90~時点t91)に第2電空レギュレータ52による空気圧の調整範囲の下限値を再設定する。
 また、制御部6は、近接センサ31BがONになっていないと判定した場合、現時点t87で第2吸込側空気室26Bに供給される加圧空気の空気圧を徐々に昇圧させるように第2電空レギュレータ52を制御する現時昇圧制御を実行する。具体的には、制御部6は、第2吸込側空気室26Bに供給される加圧空気の空気圧が、現時点t87の値P24から徐々に高くなるように、第2電空レギュレータ52を制御する。これにより、現時点t87において伸長中の第2ベローズ14の伸長速度は、時間経過とともに徐々に速くなる。
 制御部6は、近接センサ31BがONになるまで現時昇圧制御を継続する。したがって、伸長中である第2ベローズ14の伸長速度は、近接センサ31BがONになるまで増加するので、第2ベローズ14を現時点t87から迅速に伸長状態まで伸長させることができる。その結果、第2ベローズ14が伸長状態となる時点(近接センサ31BがONになる時点)t88を、現時昇圧制御が行われない図7で第2ベローズ14が伸長状態となる時点t48よりも早めることができる。
 図9の時点t87以降に行われる第1ベローズ13の制御は、図7の時点t47以降(図6の時点t27以降)の制御と同様であるため、説明を省略する。また、図9の時点t88以降に行われる第2ベローズ14の制御は、図7の時点t48以降の制御と同様であるため、説明を省略する。また、図9では、第2電空レギュレータ52の現時昇圧制御について説明したが、第1電空レギュレータ51の現時昇圧制御も上記と同様であるため、説明を省略する。
 なお、具体例2の制御部6は、前記下限値を再設定する判断基準となる第3判定を、現時昇圧制御を実行する判断基準として用いているが、現時昇圧制御を実行する判断基準となる判定を第3判定とは独立して行ってもよい。例えば、制御部6は、第1ベローズ13が収縮途中状態に達した時点t86で前記判定を行ってもよい。その場合、制御部6は、前記判定を行った時点t86で現時昇圧制御を実行してもよいし、時点t86から第1ベローズ13が伸長状態となるまでの間の任意のタイミングで現時昇圧制御を実行してもよい。
 [本実施形態の作用効果]
 以上、本実施形態のベローズポンプ装置1によれば、第1ベローズ13(第2ベローズ14)が収縮途中状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態まで伸長していない場合がある。この場合、制御部6は、次回の第2ベローズ14(第1ベローズ13)の伸長時に、第2駆動部28(第1駆動部27)の第2吸込側空気室26B(第1吸込側空気室26A)に供給する加圧空気の空気圧を昇圧させる次回昇圧制御を行う。これにより、第2ベローズ14(第1ベローズ13)の伸長時間が長くなったときに、第2ベローズ14(第1ベローズ13)を伸長させるための加圧空気の空気圧を自動的に高い値に設定し直すことができる。その結果、次回の第2ベローズ14(第1ベローズ13)の伸長時間が短くなるので、その伸長時間が長くなることに起因してベローズポンプ装置1の吐出側の脈動が悪化するのを抑制することができる。
 また、第1ベローズ13(第2ベローズ14)が収縮途中状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態まで伸長していない場合、制御部6は、現時点で伸長している第2ベローズ14(第1ベローズ13)について、第2駆動部28(第1駆動部27)の第2吸込側空気室26B(第1吸込側空気室26A)に供給している加圧空気の空気圧を徐々に昇圧させる現時昇圧制御を行う。これにより、第2ベローズ14(第1ベローズ13)の伸長時間が長くなったときに、第2ベローズ14(第1ベローズ13)を伸長させるための加圧空気の空気圧を徐々に高い値になるように自動的に設定し直すことができる。その結果、現時点における第2ベローズ14(第1ベローズ13)の伸長時間が短くなるので、その伸長時間が長くなることに起因してベローズポンプ装置1の吐出側の脈動が悪化するのを抑制することができる。
 また、現時昇圧制御を行うことで、現時点で伸長中の第2ベローズ14(第1ベローズ13)を、伸長途中で停止させることなく確実に伸長状態まで伸長させることができる。その結果、次回の第2ベローズ14(第1ベローズ13)の伸長時において次回昇圧制御を確実に行うことができる。
 第1ベローズ13(第2ベローズ14)が収縮途中状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態を所定時間以上継続している場合がある。この場合、制御部6は、次回の第2ベローズ14(第1ベローズ13)の伸長時に、第2駆動部28(第1駆動部27)の第2吸込側空気室26B(第1吸込側空気室26A)に供給する加圧空気の空気圧を降圧させる降圧制御を行う。これにより、第2ベローズ14(第1ベローズ13)の伸長時間が必要以上に短くなったときに、第2ベローズ14(第1ベローズ13)を伸長させるための加圧空気の空気圧を自動的に低い値に設定し直すことができる。その結果、次回の第2ベローズ14(第1ベローズ13)の伸長時間が長くなって伸長速度が低下するので、衝撃圧力やキャビテーションが発生するのを抑制することができる。
 制御部6が降圧制御を行った場合、第1ベローズ13(第2ベローズ14)が収縮状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態まで伸長していない場合がある。この場合、制御部6は、次回の第2ベローズ14(第1ベローズ13)の伸長時における第2電空レギュレータ52(第1電空レギュレータ51)による空気圧の調整範囲の下限値を、前回の他方のベローズの伸長時における前記空気圧よりも高くなるように再設定する。これにより、次回の第2ベローズ14(第1ベローズ13)の伸長時に第2電空レギュレータ52(第1電空レギュレータ51)により調整された前記空気圧が下限値Pdよりも低くなるのを規制することができるので、第2ベローズ14(第1ベローズ13)の伸長時間が長くなりすぎるのを抑制することができる。その結果、前記伸長時間が長くなることに起因してベローズポンプ装置1の吐出側の脈動が悪化するのを抑制することができる。
 また、次回の第2ベローズ14(第1ベローズ13)の伸長時に再設定された前記下限値は、次々回以降の第2ベローズ14(第1ベローズ13)の伸長時においても、第2電空レギュレータ52(第1電空レギュレータ51)による空気圧の調整範囲の下限値として適用される。このため、次々回以降の第2ベローズ14(第1ベローズ13)の伸長時において降圧制御が実行されても、その降圧制御により降圧された空気圧が下限値Pdよりも低くなることはない。したがって、降圧制御により第2ベローズ14(第1ベローズ13)の伸長時間が長くなって、第1ベローズ13(第2ベローズ14)が収縮状態となる手前で第2ベローズ14(第1ベローズ13)を伸長状態から収縮させることができなくなるのを抑制することができる。その結果、ベローズポンプ装置1の吐出側の脈動が悪化するのをさらに抑制することができる。
 降圧制御によって、第1ベローズ13(第2ベローズ14)が収縮状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態まで伸長していない場合、制御部6は、次々回の第2ベローズ14(第1ベローズ13)の伸長時における第2電空レギュレータ52(第1電空レギュレータ51)による空気圧の調整範囲の下限値を、前回の他方のベローズの伸長時における前記空気圧よりも高くなるように再設定してもよい。次回の第2ベローズ14(第1ベローズ13)の伸長時には次回昇圧制御が実行され、前記下限値を再設定しなくても第2電空レギュレータ52(第1電空レギュレータ51)により前記空気圧が昇圧されるので、次回の第2ベローズ14(第1ベローズ13)の伸長時にあえて下限値を再設定する必要がないからである。これにより、次々回の第2ベローズ14(第1ベローズ13)の伸長時に第2電空レギュレータ52(第1電空レギュレータ51)により調整された前記空気圧が下限値Pdよりも低くなるのを規制することができるので、第2ベローズ14(第1ベローズ13)の伸長時間が長くなりすぎるのを抑制することができる。その結果、前記伸長時間が長くなることに起因してベローズポンプ装置1の吐出側の脈動が悪化するのを抑制することができる。
 また、次々回の第2ベローズ14(第1ベローズ13)の伸長時に再設定された前記下限値は、次々々回以降の第2ベローズ14(第1ベローズ13)の伸長時においても、第2電空レギュレータ52(第1電空レギュレータ51)による空気圧の調整範囲の下限値として適用される。このため、次々々回以降の第2ベローズ14(第1ベローズ13)の伸長時において降圧制御が実行されても、その降圧制御により降圧された空気圧が下限値Pdよりも低くなることはない。したがって、降圧制御により第2ベローズ14(第1ベローズ13)の伸長時間が長くなって、第1ベローズ13(第2ベローズ14)が収縮状態となる手前で第2ベローズ14(第1ベローズ13)を伸長状態から収縮させることができなくなるのを抑制することができる。その結果、ベローズポンプ装置1の吐出側の脈動が悪化するのをさらに抑制することができる。
 また、制御部6が降圧制御を行うことで、第1ベローズ13(第2ベローズ14)が収縮状態まで収縮したときに、第2ベローズ14(第1ベローズ13)が伸長状態まで伸長していない場合、制御部6は、現時点で伸長している第2ベローズ14(第1ベローズ13)に関する加圧空気の空気圧を徐々に昇圧させる現時昇圧制御を行う。これにより、現時点における第2ベローズ14(第1ベローズ13)の伸長時間を短くすることができる。その結果、前記伸長時間が長くなることに起因してベローズポンプ装置1の吐出側の脈動が悪化するのを抑制することができる。また、第2ベローズ14(第1ベローズ13)の伸長による移送流体の吸い込み不全を抑制できるので、その吸い込み不全に起因してベローズポンプ装置1が停止するのを抑制することができる。
 また、現時昇圧制御を行うことで、現時点で伸長中の第2ベローズ14(第1ベローズ13)を、伸長途中で停止させることなく確実に伸長状態まで伸長させることができる。その結果、次回の第2ベローズ14(第1ベローズ13)の伸長時において前記下限値の再設定を確実に行うことができる。
 第1駆動部27及び第2駆動部28の駆動制御に用いられる第1検知部29及び第2検知部31は、現時昇圧制御、次回昇圧制御、及び降圧制御に用いられる一対の検知部を兼ねるので、ベローズポンプ装置1の構成を簡素化することができる。
 [その他]
 上記実施形態では、第1検知部29は、近接センサ29A,29Bにより構成されているが、レーザ光等を用いた変位センサで構成されていてもよい。同様に、第2検知部31は、近接センサ31A,31Bにより構成されているが、レーザ光等を用いた変位センサで構成されていてもよい。
 また、上記実施形態では、第1駆動部27及び第2駆動部28の駆動制御に用いられる第1検知部29及び第2検知部31が、現時昇圧制御、次回昇圧制御、及び降圧制御に用いられる一対の検知部を兼ねているが、これら一対の検知部を第1検知部29及び第2検知部31とは別に設けてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
1 ベローズポンプ装置
6 制御部
13 第1ベローズ(ベローズ)
14 第2ベローズ(ベローズ)
21A 第1吐出側空気室(吐出側流体室)
21B 第2吐出側空気室(吐出側流体室)
26A 第1吸込側空気室(吸込側空気室)
26B 第2吸込側空気室(吸込側空気室)
27 第1駆動部(駆動部)
28 第2駆動部(駆動部)
29 第1検知部(検知部)
31 第2検知部(検知部)
51 第1電空レギュレータ(流体圧調整部)
52 第2電空レギュレータ(流体圧調整部)

Claims (8)

  1.  互いに独立して伸縮自在であり、伸長により内部に移送流体を吸い込み、収縮により内部から移送流体を吐出する一対のベローズと、
     吸込側流体室及び吐出側流体室を有し、前記吸込側流体室に加圧流体を供給することで前記各ベローズを所定の伸長状態まで伸長させ、前記吐出側流体室に加圧流体を供給することで前記各ベローズを所定の収縮状態まで収縮させる一対の駆動部と、
     一対の前記ベローズのうち、一方のベローズが前記収縮状態となる手前で他方のベローズを前記伸長状態から収縮させるように、一対の前記駆動部の駆動制御を行う制御部と、を備えるベローズポンプ装置であって、
     前記各ベローズの伸縮状態を検知する一対の検知部と、
     前記各駆動部の前記吸込側流体室に供給される加圧流体の流体圧を調整する一対の流体圧調整部と、を備え、
     前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、次回の前記他方のベローズの伸長時における前記流体圧を昇圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する次回昇圧制御を行う、ベローズポンプ装置。
  2.  互いに独立して伸縮自在であり、伸長により内部に移送流体を吸い込み、収縮により内部から移送流体を吐出する一対のベローズと、
     吸込側流体室及び吐出側流体室を有し、前記吸込側流体室に加圧流体を供給することで前記各ベローズを所定の伸長状態まで伸長させ、前記吐出側流体室に加圧流体を供給することで前記各ベローズを所定の収縮状態まで収縮させる一対の駆動部と、
     一対の前記ベローズのうち、一方のベローズが前記収縮状態となる手前で他方のベローズを前記伸長状態から収縮させるように、一対の前記駆動部の駆動制御を行う制御部と、を備えるベローズポンプ装置であって、
     前記各ベローズの伸縮状態を検知する一対の検知部と、
     前記各駆動部の前記吸込側流体室に供給される加圧流体の流体圧を調整する一対の流体圧調整部と、を備え、
     前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、又は前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、現時点で伸長している前記他方のベローズに関する前記流体圧を徐々に昇圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する現時昇圧制御を行う、ベローズポンプ装置。
  3.  互いに独立して伸縮自在であり、伸長により内部に移送流体を吸い込み、収縮により内部から移送流体を吐出する一対のベローズと、
     吸込側流体室及び吐出側流体室を有し、前記吸込側流体室に加圧流体を供給することで前記各ベローズを所定の伸長状態まで伸長させ、前記吐出側流体室に加圧流体を供給することで前記各ベローズを所定の収縮状態まで収縮させる一対の駆動部と、
     一対の前記ベローズのうち、一方のベローズが前記収縮状態となる手前で他方のベローズを前記伸長状態から収縮させるように、一対の前記駆動部の駆動制御を行う制御部と、を備えるベローズポンプ装置であって、
     前記各ベローズの伸縮状態を検知する一対の検知部と、
     前記各駆動部の前記吸込側流体室に供給される加圧流体の流体圧を調整する一対の流体圧調整部と、を備え、
     前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、前記他方のベローズが前記伸長状態を所定時間以上継続しているか否かを判定し、その判定結果が肯定的である場合、次回の前記他方のベローズの伸長時における前記流体圧を降圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する降圧制御を行う、ベローズポンプ装置。
  4.  前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮途中状態まで収縮したときに、前記他方のベローズが前記伸長状態を所定時間以上継続しているか否かを判定し、その判定結果が肯定的である場合、次回の前記他方のベローズの伸長時における前記流体圧を降圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する降圧制御を行う、請求項1に記載のベローズポンプ装置。
  5.  前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、次回の前記他方のベローズの伸長時における前記流体圧調整部による前記流体圧の調整範囲の下限値を、前回の前記他方のベローズの伸長時における前記流体圧よりも高く設定する、請求項3又は請求項4に記載のベローズポンプ装置。
  6.  前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、次々回以降の前記他方のベローズの伸長時における前記流体圧調整部による前記流体圧の調整範囲の下限値を、前回の前記他方のベローズの伸長時における前記流体圧よりも高く設定する、請求項4に記載のベローズポンプ装置。
  7.  前記制御部は、一対の前記検知部の各検知信号に基づいて、前記一方のベローズが前記収縮状態となる手前の収縮途中状態まで収縮したときに、又は前記一方のベローズが前記収縮状態まで収縮したときに、前記他方のベローズが前記伸長状態であるか否かを判定し、その判定結果が否定的である場合、現時点で伸長している前記他方のベローズに関する前記流体圧を徐々に昇圧させるように、前記他方のベローズを伸長させる前記駆動部に対応する前記流体圧調整部を制御する現時昇圧制御を行う、請求項3から請求項6のいずれか1項に記載のベローズポンプ装置。
  8.  前記制御部は、一対の前記検知部の各検知信号に基づいて前記駆動制御を行う、請求項1から請求項7のいずれか1項に記載のベローズポンプ装置。
PCT/JP2021/034699 2020-12-16 2021-09-22 ベローズポンプ装置 WO2022130722A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/266,922 US20240044325A1 (en) 2020-12-16 2021-09-22 Bellows pump device
JP2022569717A JP7429804B2 (ja) 2020-12-16 2021-09-22 ベローズポンプ装置
KR1020237020927A KR20230119147A (ko) 2020-12-16 2021-09-22 벨로우즈 펌프 장치
CN202180085164.7A CN116724171A (zh) 2020-12-16 2021-09-22 波纹管泵装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-208526 2020-12-16
JP2020208526 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022130722A1 true WO2022130722A1 (ja) 2022-06-23

Family

ID=82059005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034699 WO2022130722A1 (ja) 2020-12-16 2021-09-22 ベローズポンプ装置

Country Status (5)

Country Link
US (1) US20240044325A1 (ja)
JP (1) JP7429804B2 (ja)
KR (1) KR20230119147A (ja)
CN (1) CN116724171A (ja)
WO (1) WO2022130722A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037912A (ja) * 2014-08-08 2016-03-22 日本ピラー工業株式会社 ベローズポンプ装置
JP2016109022A (ja) * 2014-12-05 2016-06-20 日本ピラー工業株式会社 ベローズポンプ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293502A (ja) 2003-03-28 2004-10-21 Yamagiwa Kanagata:Kk ベローズポンプ。

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037912A (ja) * 2014-08-08 2016-03-22 日本ピラー工業株式会社 ベローズポンプ装置
JP2016109022A (ja) * 2014-12-05 2016-06-20 日本ピラー工業株式会社 ベローズポンプ装置

Also Published As

Publication number Publication date
US20240044325A1 (en) 2024-02-08
CN116724171A (zh) 2023-09-08
KR20230119147A (ko) 2023-08-16
JP7429804B2 (ja) 2024-02-08
JPWO2022130722A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2016021350A1 (ja) ベローズポンプ装置
JP6367645B2 (ja) ベローズポンプ装置
JP6362535B2 (ja) ベローズポンプ装置
JP6780959B2 (ja) ベローズポンプ装置
JP6353732B2 (ja) ベローズポンプ装置
WO2022130722A1 (ja) ベローズポンプ装置
JP6371207B2 (ja) ベローズポンプ装置
JP6734704B2 (ja) ベローズポンプ装置
JP7272913B2 (ja) ベローズポンプ装置
JP2023058170A (ja) ベローズポンプ装置
WO2023139832A1 (ja) ベローズポンプ装置
WO2023223603A1 (ja) ベローズポンプ装置
JP7120899B2 (ja) ベローズポンプ装置
WO2024053158A1 (ja) ベローズポンプ
JP6387265B2 (ja) ベローズポンプ装置
JP2023141796A (ja) ベローズポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569717

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18266922

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180085164.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237020927

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906087

Country of ref document: EP

Kind code of ref document: A1