WO2022127468A1 - 供电电路、驱动芯片以及显示装置 - Google Patents

供电电路、驱动芯片以及显示装置 Download PDF

Info

Publication number
WO2022127468A1
WO2022127468A1 PCT/CN2021/130736 CN2021130736W WO2022127468A1 WO 2022127468 A1 WO2022127468 A1 WO 2022127468A1 CN 2021130736 W CN2021130736 W CN 2021130736W WO 2022127468 A1 WO2022127468 A1 WO 2022127468A1
Authority
WO
WIPO (PCT)
Prior art keywords
field effect
type field
power supply
effect transistors
groups
Prior art date
Application number
PCT/CN2021/130736
Other languages
English (en)
French (fr)
Inventor
马英杰
Original Assignee
北京集创北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京集创北方科技股份有限公司 filed Critical 北京集创北方科技股份有限公司
Priority to EP21905397.2A priority Critical patent/EP4240112A4/en
Priority to KR1020237004999A priority patent/KR20230038261A/ko
Priority to JP2023524873A priority patent/JP2023553251A/ja
Priority to US18/255,381 priority patent/US20230402000A1/en
Publication of WO2022127468A1 publication Critical patent/WO2022127468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present application relates to the technical field of integrated circuits, and in particular, to a power supply circuit, a driving chip and a display device.
  • LED Light Emitting Diode, light emitting diode
  • the constant current source generating circuit is divided into three parts, wherein the first part is the reference current generating circuit 101 , the second part is the current mirror circuit 102 , and the third part is the current output circuit 103 .
  • the specific working principle of the constant current generating circuit is as follows: firstly, the reference current generating circuit 101 uses the built-in reference voltage Vref and the external resistance Rext to generate the reference current I 0 , and then the reference current I 0 is generated by the current mirror circuit 102 (the ratio of the number of MOS metal oxide semiconductor devices) is M:N) to obtain the current I 1 by mirroring the current; finally, the current output circuit 103 (the ratio of the number of MOS devices is J:K) generates and drives the output constant current source Iout.
  • the second and third parts are to adapt to the LED common anode structure and meet the multi-channel driving capability requirements.
  • the purpose of the embodiments of the present application is to provide a power supply circuit, a driving chip and a display device.
  • the embodiment of the present application provides a power supply circuit, including:
  • a reference current generating circuit configured to generate a reference current
  • a driving circuit connected to the reference current generating circuit, configured to generate a mirror current with an adjustable mirror ratio according to the reference current, and output a bias voltage and a gate driving voltage;
  • a channel current output circuit connected to the driving circuit, is configured to receive the bias voltage and the gate driving voltage, and generate a channel current with an adjustable mirror ratio according to the mirror current.
  • the reference current generating circuit includes:
  • the reverse input terminal is configured to input the reference voltage
  • the first end is grounded, and the second end is connected to the forward input end of the first amplifier
  • a plurality of groups of first P-type field effect transistors the source is connected to the power supply, the gate is connected to the output end of the first amplifier respectively, the drain is connected to the second end of the resistor, and the reference current is output to the resistor;
  • the first switch is connected to the plurality of groups of first P-type field effect transistors, and is configured to independently control whether the first P-type field effect transistors of each group are turned on or off.
  • the number of groups of the first P-type field effect transistors is four.
  • the drive circuit includes:
  • the second P-type field effect transistor the source is connected to the power supply, the gate is connected to the gates of the plurality of groups of the first P-type field effect transistor, and the drain is configured to output the mirror current;
  • the inverting input terminal is configured to input a reference voltage
  • the output terminal is configured to provide the gate driving voltage
  • the first N-type field effect transistor the gate is connected to the output terminal of the second amplifier, the source is grounded, and the drain is connected to the drain of the second P-type field effect transistor and the forward input terminal of the second amplifier , configured to provide the same bias voltage as the reference voltage.
  • the channel current output circuit includes:
  • the forward input terminal is connected to the drain of the first N-type field effect transistor
  • the third N-type field effect transistor the gate is connected to the output terminal of the third amplifier; the source is connected to the reverse input terminal of the third amplifier, and the drain is configured to output the channel current;
  • the drains are respectively connected to the reverse input terminals of the third amplifier; the gates are respectively connected to the output terminals of the second amplifier; the sources are grounded;
  • the second switch is connected to a plurality of groups of the second N-type field effect transistors, and is configured to independently control the conduction of each group of the second N-type field effect transistors.
  • the number of groups of the second N-type field effect transistors is four.
  • the drive circuit further includes:
  • a drive buffer is connected to the output terminal of the second amplifier and the gates of the plurality of second N-type field effect transistors, and is configured to increase the gate drive voltage.
  • the drive buffer includes two inverters connected in series.
  • the first switch includes a plurality of first sub-switches, which independently control whether the plurality of groups of the first P-type field effect transistors are turned on or not;
  • the second switch includes a plurality of second sub-switches, which independently control whether the plurality of groups of the second N-type field effect transistors are turned on or off.
  • a plurality of the first sub-switches are connected to a plurality of groups of the first P-type field effect transistors in a one-to-one correspondence;
  • the plurality of second sub-switches are connected to the plurality of groups of the second N-type field effect transistors in one-to-one correspondence.
  • the number ratio between the multiple groups of first P-type field effect transistors is the same as the number ratio between the multiple groups of second N-type field effect transistors.
  • the adjustment ratio of the number of conduction of the plurality of groups of first P-type field effect transistors is the same as the adjustment ratio of the number of conduction of the plurality of groups of second N-type field effect transistors.
  • the switch control signals of the first switch and the second switch are the same.
  • the embodiment of the present application also provides a driving chip, including the above-mentioned power supply circuit.
  • the embodiment of the present application also provides a display device, including:
  • the LED display panel is of common cathode or common anode structure
  • a driver chip is connected to the LED display panel, and the driver chip includes the above-mentioned power supply circuit, wherein there are multiple channel current output circuits; if the LED display panel has a common cathode structure, the multiple channel current output circuits respectively connecting the anodes of the plurality of light emitting diodes of the LED display panel;
  • the plurality of channel current output circuits are respectively connected to the cathodes of the plurality of light emitting diodes of the LED display panel.
  • FIG. 1 is a schematic structural diagram of a power supply circuit provided in the background technology
  • FIG. 2 is a schematic diagram of the principle of a current mirror provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a power supply circuit provided by an embodiment of the present application.
  • 101-reference current generating circuit 101-reference current generating circuit; 102-current mirror circuit; 103-current output circuit; 301-reference current generating circuit; 302-drive circuit; 303-channel current output circuit.
  • FIG. 2 is a schematic diagram of the principle of a current mirror provided by an embodiment of the present application.
  • N-type field effect transistor (NOMS) NM0 and N-type field effect transistor NM1 have the same gate voltage Vg1, assuming that the gate voltage Vg2 of N-type field effect transistor NM2, N-type field effect transistor NM0,
  • the drain voltages of N-type field effect transistor NM1 and N-type field effect transistor NM2 are Vd0, Vd1 and Vd2 respectively, then if the gate voltage Vg1 of N-type field effect transistor NM1 is equal to the gate voltage Vg2 of N-type field effect transistor NM2 , and the drain voltage Vd1 of the N-type field effect transistor NM1 is equal to the drain voltage Vd2 of the N-type field effect transistor NM2, then the two devices of the N-type field effect transistor NM1 and the N-type field effect transistor NM2 are in the same bias condition Then, the current I1 of the branch where the N-type field effect
  • FIG. 3 is a schematic diagram of a power supply circuit provided by an embodiment of the present application.
  • the power supply circuit includes: a reference current generating circuit 301 , a driving circuit 302 and a channel current output circuit 303 .
  • the reference current generating circuit 301 is configured to generate the reference current I0.
  • the reference current generating circuit 301 includes: a first amplifier OP0, a resistor REXT, multiple groups of first P-type field effect transistors PM0, and a first switch K0;
  • the reverse input terminal of the first amplifier OP0 is configured to input the reference voltage VREF
  • the output terminal is connected to the gates of multiple groups of first P-type field effect transistors PM0, and is configured to provide the gate voltage VGATEP
  • the forward input terminal is connected to the first resistor REXT.
  • the first end of the resistor REXT is grounded, and the second end is connected to the forward input end of the first amplifier OP0 and the drains of the plurality of groups of first P-type field effect transistors PM0.
  • the sources of the plurality of first P-type field effect transistors PM0 are connected to the power supply, the gates are respectively connected to the output terminals of the first amplifier OP0, the drains are connected to the second terminal of the resistor REXT, and the reference current I0 is output to the resistor REXT.
  • the reference voltage VREF can be generated by a bandgap reference voltage source inside the chip, and a negative feedback structure is formed by using the first amplifier OP0, multiple groups of first P-type field effect transistors PM0 and an external resistor REXT to obtain the reference current I0.
  • I0 represents the reference current
  • Vref represents the reference voltage
  • Rext represents the resistance
  • the first switch K0 is connected to a plurality of groups of the first P-type field effect transistors PM0, and is configured to independently control whether the first P-type field effect transistors PM0 of each group are turned on or off.
  • the multiple groups of first P-type field effect transistors PM0 may be four groups (PM0:1, PM0:2, PM0:3, PM0:4), for example, four groups of first P-type field effect transistors PM0
  • the number ratio can be M:M:2M:4M; the gate of each group of the first P-type field effect transistor PM0 is connected to the output end of the first amplifier OP0, the source is connected to the power supply, and the drain is connected to the resistor REXT and the first amplifier.
  • OP0 is connected to the first terminal. It can be understood that the above is only an implementation example and should not be regarded as a limitation. In practical applications, the number of groups of the first P-type field effect transistor PM0 can be flexibly set according to requirements.
  • the first switch K0 may include a plurality of first sub-switches (K0:1, K0:2, K0:3, K0:4), which are connected to a plurality of groups of first P-type field effect transistors PM0 in one-to-one correspondence, and are configured to individually control each Whether the first P-type field effect transistor PM0 of the group is turned on or not.
  • each first sub-switch can have two states, which is connected to a high level to be turned on, and connected to a low level to be disconnected.
  • K0:1 is configured to control the conduction of the first group of first P-type field effect transistors PM0:1, and K0:2 is configured to control the second group of first P-type field effect transistors PM0:2 Whether it is turned on or not
  • K0:3 is configured to control the conduction of the third group of the first P-type field effect transistor PM0:3, and K0:4 is configured to control the fourth group of the first P-type field effect transistor PM0:4 of conduction or not.
  • the conduction of K0:1, K0:2, K0:3, and K0:4 can be independently controlled, thereby controlling the conduction number of the first P-type field effect transistor PM0.
  • the driving circuit 302 is connected to the reference current generating circuit 301, and is configured to generate a mirror current I1 with an adjustable mirror ratio according to the reference current I0, and output a bias voltage and a gate driving voltage;
  • the driving circuit 302 includes: a second P-type field effect transistor PM1 , a second amplifier OP1 and a first N-type field effect transistor NM1 .
  • the gate of the second P-type field effect transistor PM1 is connected to the gates of the plurality of groups of the first P-type field effect transistor PM0, the source is connected to the power supply, and the drain is configured to output a mirror current I1.
  • the second P-type field effect transistor PM1 and multiple groups of the first P-type field effect transistor PM0 form a current mirror.
  • the current of the MOS device is proportional to the size of the device.
  • the current ratio is determined by The number of MOS devices is determined, and the required current ratio can be obtained by adjusting the number of MOS devices. Therefore, by controlling the first switch K0, the number of the first P-type field effect transistors PM0 that are turned on can be adjusted, thereby controlling the magnitude of the mirror current I1.
  • the reverse input terminal of the second amplifier OP1 is configured to input the reference voltage VCRES, the output terminal is configured to provide the gate driving voltage VGATE, and the forward input terminal is connected to the drain of the first N-type field effect transistor NM0.
  • the gate of the first N-type field effect transistor NM0 is connected to the output terminal of the second amplifier OP1, the source is grounded, and the drain is connected to the drain of the second P-type field effect transistor PM1 and the forward input terminal of the second amplifier OP1 , configured to provide the same bias voltage as the reference voltage VCRES.
  • a negative feedback loop formed by the second P-type field effect transistor PM1, the first N-type field effect transistor NM0 and the second amplifier OP1 can set the drain voltage of the first N-type field effect transistor NM0 (i.e. bias voltage). Since the negative feedback system is in steady state, the voltages of the two input terminals of the second amplifier OP1 are the same (there is only a slight difference, depending on the open-loop gain of the loop), so the drain voltage of the first N-type field effect transistor NM0 is equal to that of the second amplifier OP1.
  • the channel current output circuit 303 is connected to the driving circuit 302, and is configured to receive the bias voltage and the gate driving voltage, and generate a channel current Iout with an adjustable mirror ratio according to the mirror current I0.
  • the channel current output circuit includes: a third amplifier DRIVER_OP, a third N-type field effect transistor NM2 , a plurality of groups of second N-type field effect transistors NM1 and a second switch K1 .
  • the forward input terminal of the third amplifier DRIVER_OP is connected to the drain of the first N-type field effect transistor NM0, so the voltage input to the forward input terminal of the third amplifier DRIVER_OP is equal to the reference voltage VCRES.
  • the gate of the third N-type field effect transistor NM2 is connected to the output terminal of the third amplifier DRIVER_OP; the source is connected to the drains of the second N-type field effect transistors NM1 and the inverting input terminal of the third amplifier DRIVER_OP , the drain is configured to output the channel current.
  • the voltage input to the inverting input terminal of the third amplifier DRIVER_OP is also equal to the reference voltage VCRES.
  • bias voltages are provided for the plurality of groups of second N-type field effect transistors NM1, and the bias voltages are also equal to the reference voltage VCRES.
  • the drains of the plurality of groups of second N-type field effect transistors NM1 are respectively connected to the reverse input terminals of the third amplifier DRIVER_OP; the gates are respectively connected to the output terminals of the second amplifier OP1; and the sources are grounded.
  • the second switch K1 is connected to a plurality of groups of the second N-type field effect transistors NM1, and is configured to independently control the conduction of each group of the second N-type field effect transistors NM1.
  • the second N-type field effect transistor NM1 may have 4 groups (NM1:1, NM1:2, NM1:3, NM1:4), and the number ratio of each group of MOS transistors is K :K:2K:4K.
  • Each group of second N-type field effect transistors NM1 is connected to the inverting input terminal of the third amplifier DRIVER_OP and the source of the third N-type field effect transistor NM2, so as to provide the same bias voltage for each group of N-type field effect transistors NM1.
  • DRIVER_OP the third amplifier
  • the third N-type field effect transistor NM2 so as to provide the same bias voltage for each group of N-type field effect transistors NM1.
  • the second switch K1 may include a plurality of second sub-switches (K1:1, K1:2, K1:3, K1:4), which are connected to a plurality of groups of the second N-type field effect transistors NM1 in a one-to-one correspondence, and are configured to be individually Control whether the second N-type field effect transistor NM1 of each group is turned on or not.
  • each second sub-switch can have two states, which is connected to a high level to be turned on, and connected to a low level to be disconnected.
  • K1:1 controls the conduction of the first group of second N-type field effect transistors NM1:1
  • K1:2 controls the conduction of the second group of second N-type field effect transistors NM1:2 and No
  • K1:3 controls the conduction of the third group of the second N-type field effect transistors NM1:3
  • K1:4 controls the conduction of the fourth group of the second N-type field effect transistors NM1:4.
  • the drive circuit 302 further includes a drive buffer buffer, which is connected to the output end of the second amplifier OP1 and the gates of the plurality of groups of second N-type field effect transistors NM1, and is configured to increase By increasing the gate driving voltage and increasing the driving capability of the later stage, the buffer can be an inverter with a gradually increasing device size of several stages or a circuit with a similar structure, such as two inverters connected in series.
  • a drive buffer buffer which is connected to the output end of the second amplifier OP1 and the gates of the plurality of groups of second N-type field effect transistors NM1, and is configured to increase
  • the buffer can be an inverter with a gradually increasing device size of several stages or a circuit with a similar structure, such as two inverters connected in series.
  • the number ratio between the multiple groups of first P-type field effect transistors and the number ratio between the multiple groups of second N-type field effect transistors may be the same.
  • the number ratio of multiple groups of first P-type field effect transistors PM0 is M:M:2M:4M
  • the number ratio of multiple groups of second N-type field effect transistors NN1 is K:K:2K:4K, it can be The number ratio is considered to be the same.
  • the adjustment ratio of the number of conduction of the plurality of groups of first P-type field effect transistors is the same as the adjustment ratio of the number of conduction of the plurality of groups of second N-type field effect transistors.
  • the number of the first P-type field effect transistors PM0 being turned on can be controlled by the first switch K0.
  • the number of the first P-type field effect transistor PM0 to be turned on can be M, 2M, 3M, 4M, 5M, 6M, 7M, and 8M.
  • the number of the second N-type field effect transistors NN1 turned on can be controlled by the second switch K1.
  • the number K, 2K, 3K, 4K, 5K, 6K, 7K, 8K of the second N-type field effect transistor NN1 turned on. Therefore, the number of the first P-type field effect transistor PM0 being turned on is M.
  • the number of the second N-type field effect transistor NN1 turned on is K, and the number of the first P-type field effect transistor PM0 turned on is 2M, the number of the second N-type field effect transistor NN1 turned on is 2K, with By analogy, it can be considered that the adjustment ratio of the number of conduction is the same.
  • the switch control signals of the first switch and the second switch may be the same, so that the conduction number of the plurality of groups of first P-type field effect transistors is adjusted in proportion to the conduction of the plurality of groups of second N-type field effect transistors.
  • the adjustment ratio of the number of passes is the same, that is, the values of control R1 and R2 are equal.
  • the switch control signal can be configured to control the first switch K0 and the second switch K1.
  • the switch control signals are the same, that is, the control signals of K0:1 and K1:1 are the same, the control signals of K0:2 and K1:2 are the same, K0: 3
  • the control signals of K1:3 are the same, and the control signals of K0:4 and K1:4 are the same, so that the ratio of the number of the first P-type field effect transistors PM0 in the multiple groups to the number of the second N-type field effect transistors in the multiple groups is NN1.
  • both R1 and R2 can be represented by R, and compared to cancel.
  • the precise output current Iout can be obtained.
  • a comparator and a logic circuit can be set to automatically determine whether the VGATE voltage is too high or too low, so as to output a corresponding switch control signal to control the first switch K0 and the second switch K1.
  • the accuracy of the current mirror in a larger current range is guaranteed, and the power consumption of the chip is reduced at the same time.
  • the table below shows the R value for different on-states of the switch.
  • Idis represents the quiescent current of the entire chip
  • Idis_ana represents the quiescent current of other analog modules
  • I0 and I1 represent the two branch currents in the power supply circuit respectively
  • L represents the number of output constant current channels
  • ICH represents the analog circuit in the constant current source channel.
  • Quiescent Current In general, N/M>1, and K/J>1. Therefore, it is I1 that varies greatly in the quiescent current of the chip.
  • the power supply circuit provided in the embodiment of the present application can be applied to a driver chip, and the driver chip can be a driver chip of an LED (Light Emitting Diode, light-emitting diode) display panel.
  • the driver chip can be a driver chip of an LED (Light Emitting Diode, light-emitting diode) display panel.
  • An embodiment of the present application further provides a display device, the display device may include an LED display panel and a driving chip, and the LED display panel may be a common cathode or a common anode structure.
  • the driver chip is connected to the LED display panel, and the driver chip may include the power supply circuit provided in the embodiment of the present application, wherein there are multiple channel current output circuits; the common anode means that the anodes of the multiple light-emitting diodes in the same row are connected together (For example, +5V), the output terminals IOUT of the current output circuits of the multiple channels are respectively connected to the cathodes of the multiple light-emitting diodes, and different levels of the cathodes control different brightness.
  • the common anode means that the anodes of the multiple light-emitting diodes in the same row are connected together (For example, +5V), the output terminals IOUT of the current output circuits of the multiple channels are respectively connected to the cathodes of the multiple light-emitting diodes, and different levels of the cathodes control different brightness.
  • Common cathode means that the cathodes of multiple light-emitting diodes in the same row are connected together (for example, grounded), and the output terminals IOUT of the current output circuits of multiple channels are respectively connected to the anodes of multiple light-emitting diodes. Different anode levels control different brightness. .
  • Each functional module in each embodiment of the present application may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the connection mentioned in the text can be a direct connection or an indirect connection.
  • the mirror ratio is adjustable, the current accuracy can be improved, and when a large channel current is required, the mirror current can still be small, thereby reducing power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Led Devices (AREA)
  • Control Of Electrical Variables (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种供电电路、驱动芯片及显示装置,供电电路包括:基准电流产生电路(101),配置成产生基准电流;驱动电路(302),连接基准电流产生电路(101),配置成根据基准电流,产生镜像比例可调的镜像电流,并输出偏置电压以及栅极驱动电压;通道电流输出电路(303),连接驱动电路(302),配置成接收偏置电压以及栅极驱动电压,并根据镜像电流,产生镜像比例可调的通道电流。由于镜像比例可调,可以提高电流精度,在需要输出电流较大时,镜像电流仍可较小,从而减小功耗。

Description

供电电路、驱动芯片以及显示装置
相关申请的交叉引用
本申请要求于2020年12月17日提交中国专利局的申请号为2020114996564、名称为“供电电路以及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及集成电路技术领域,特别涉及一种供电电路、驱动芯片以及显示装置。
背景技术
在LED(Light Emitting Diode,发光二极管)显示驱动芯片中,大多数采用图1所示结构作为恒流源产生电路,恒流源产生电路分成三个部分,其中,第一部分为基准电流产生电路101,第二部分为电流镜像电路102,第三部分为电流输出电路103。该恒流产生电路的具体工作原理为:首先由基准电流产生电路101利用内置基准电压Vref与外置电阻Rext产生基准电流I 0,然后通过电流镜像电路102(MOS金属氧化物半导体器件个数比为M:N)将电流镜像得到电流I 1;最后通过电流输出电路103(MOS器件个数比为J:K)产生并驱动输出恒流源Iout。其中,第二、三部分是为了适应LED共阳极结构,并满足多通道驱动能力需求。
对于需要输出恒流源电流Iout较大的情况下,由于K:J的比例固定,需使电流I 1很大,进而增大了芯片功耗。
发明内容
本申请实施例的目的在于提供一种供电电路、驱动芯片以及显示装置。
本申请实施例提供了一种供电电路,包括:
基准电流产生电路,配置成产生基准电流;
驱动电路,连接所述基准电流产生电路,配置成根据所述基准电流,产生镜像比例可调的镜像电流,并输出偏置电压以及栅极驱动电压;
通道电流输出电路,连接所述驱动电路,配置成接收所述偏置电压以及栅极驱动电压,并根据所述镜像电流,产生镜像比例可调的通道电流。
可选地,所述基准电流产生电路包括:
第一放大器,反向输入端配置成输入基准电压;
电阻,第一端接地,第二端连接所述第一放大器的正向输入端;
多组第一P型场效应管,源极接电源,栅极分别连接所述第一放大器的输出端,漏极连接所述电阻的第二端,向所述电阻输出所述基准电流;
第一开关,连接所述多组第一P型场效应管,配置成独立控制每组的第一P型场效应管的导通与否。
可选地,所述第一P型场效应管的组数为四组。
可选地,所述驱动电路包括:
第二P型场效应管,源极接电源,栅极连接所述多组第一P型场效应管的栅极,漏极配置成输出所述镜像电流;
第二放大器,反向输入端配置成输入参考电压,输出端配置成提供所述栅极驱动电压;
第一N型场效应管,栅极连接所述第二放大器的输出端,源极接地,漏极连接所述第二P型场效应管的漏极以及所述第二放大器的正向输入端,配置成提供与所述参考电压相同的所述偏置电压。
可选地,所述通道电流输出电路包括:
第三放大器,正向输入端连接所述第一N型场效应管的漏极;
第三N型场效应管,栅极连接所述第三放大器的输出端;源极连接所述第三放大器的反向输入端,漏极配置成输出所述通道电流;
多组第二N型场效应管,漏极分别连接所述第三放大器的反向输入端;栅极分别连接所述第二放大器的输出端;源极接地;
第二开关,连接多组所述第二N型场效应管,配置成独立控制每组的第二N型场效应管的导通与否。
可选地,所述第二N型场效应管的组数为四组。
可选地,所述驱动电路还包括:
驱动缓冲器,连接所述第二放大器的输出端和所述多组第二N型场效应管的栅极,配置成增大所述栅极驱动电压。
可选地,所述驱动缓冲器包括两个串联的反相器。
可选地,所述第一开关包括多个第一子开关,分别独立控制多组所述第一P型场效应管的导通与否;
第二开关包括多个第二子开关,分别独立控制多组所述第二N型场效应管的导通与否。
可选地,多个所述第一子开关与多组所述第一P型场效应管一一对应连接;
多个所述第二子开关与多组所述第二N型场效应管一一对应连接。
可选地,所述多组第一P型场效应管之间的个数比与所述多组第二N型场效应管之间 的个数比相同。
可选地,所述多组第一P型场效应管的导通个数调整比例与所述多组第二N型场效应管的导通个数调整比例相同。
可选地,所述第一开关和第二开关的开关控制信号相同。
本申请实施例还提供了一种驱动芯片,包括上述供电电路。
本申请实施例还提供了一种显示装置,包括:
LED显示面板,所述LED显示面板为共阴极或共阳极结构;
驱动芯片,连接所述LED显示面板,所述驱动芯片包括上述供电电路,其中,所述通道电流输出电路存在多个;若所述LED显示面板为共阴极结构,所述多个通道电流输出电路分别连接所述LED显示面板的多个发光二极管的阳极;
若所述LED显示面板为共阳极结构,所述多个通道电流输出电路分别连接所述LED显示面板的多个发光二极管的阴极。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。
图1是背景技术中提供的供电电路的结构示意图;
图2为本申请实施例提供的电流镜像的原理示意图;
图3是本申请实施例提供的一种供电电路的示意图。
附图标记:
101-基准电流产生电路;102-电流镜像电路;103电流输出电路;301-基准电流产生电路;302-驱动电路;303-通道电流输出电路。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
图2为本申请实施例提供的电流镜像的原理示意图。如图2所示,N型场效应管(NOMS)NM0与N型场效应管NM1具有相同的栅极电压Vg1,假设N型场效应管NM2的栅极电压Vg2,N型场效应管NM0、N型场效应管NM1、N型场效应管NM2的漏极电压分别为Vd0、Vd1、Vd2,那么如果N型场效应管NM1的栅极电压Vg1等于N型场效应管NM2 的栅极电压Vg2,且N型场效应管NM1的漏极电压Vd1等于N型场效应管NM2的漏极电压Vd2,则N型场效应管NM1、N型场效应管NM2这两个器件处于相同的偏置条件下,于是N型场效应管NM1所在支路的电流I1等于N型场效应管NM2所在支路的电流I2,即可以说电流I2镜像了电流I1。
图3为本申请实施例提供的一种供电电路的示意图。如图3所示,该供电电路包括:基准电流产生电路301、驱动电路302以及通道电流输出电路303。
其中,基准电流产生电路301配置成产生基准电流I0。可选地,所述基准电流产生电路301包括:第一放大器OP0、电阻REXT、多组第一P型场效应管PM0、第一开关K0;
其中,第一,第二主要用于进行区分。第一放大器OP0的反向输入端配置成输入基准电压VREF,输出端连接多组第一P型场效应管PM0的栅极,配置成提供栅极电压VGATEP,正向输入端连接电阻REXT的第二端。电阻REXT的第一端接地,第二端连接第一放大器OP0的正向输入端以及多组第一P型场效应管PM0的漏极。多组第一P型场效应管PM0的源极接电源,栅极分别连接第一放大器OP0的输出端,漏极连接电阻REXT的第二端,向电阻REXT输出基准电流I0。
其中,基准电压VREF可以由芯片内部的带隙基准电压源产生,利用第一放大器OP0、多组第一P型场效应管PM0以及外置的电阻REXT构成负反馈结构,得到基准电流I0。
Figure PCTCN2021130736-appb-000001
式中,I0表示基准电流,Vref表示基准电压,Rext表示电阻。
第一开关K0连接多组第一P型场效应管PM0,配置成独立控制每组的第一P型场效应管PM0的导通与否。
如图3所示,多组第一P型场效应管PM0可以是4组(PM0:1、PM0:2、PM0:3、PM0:4),例如,4组第一P型场效应管PM0的个数比例可以是M:M:2M:4M;每组第一P型场效应管PM0的栅极连接第一放大器OP0的输出端,源极接电源,漏极连接电阻REXT与第一放大器OP0相连的第一端。可以理解的是,以上仅为一种实施示例,不应当被视为限制,在实际应用中,第一P型场效应管PM0的组数可以根据需求而灵活设置。
第一开关K0可以包括多个第一子开关(K0:1、K0:2、K0:3、K0:4),一一对应连接多组第一P型场效应管PM0,配置成单独控制每组的第一P型场效应管PM0的导通与否。其中,每个第一子开关可以有两种状态,接高电平导通,接低电平断开。
如图3所示,K0:1配置成控制第一组第一P型场效应管PM0:1的导通与否,K0:2配置成控制第二组第一P型场效应管PM0:2的导通与否,K0:3配置成控制第三组第一P型场效应管PM0:3的导通与否,K0:4配置成控制第四组第一P型场效应管PM0:4的导通与否。根据需要,可以独立控制K0:1、K0:2、K0:3、K0:4的导通,从而控制第一P型场效应管 PM0的导通个数。
驱动电路302连接所述基准电流产生电路301,配置成根据所述基准电流I0,产生镜像比例可调的镜像电流I1,并输出偏置电压以及栅极驱动电压;
可选地,如图3所示,驱动电路302包括:第二P型场效应管PM1、第二放大器OP1以及第一N型场效应管NM1。
第二P型场效应管PM1的栅极连接所述多组第一P型场效应管PM0的栅极,源极接电源,漏极配置成输出镜像电流I1。第二P型场效应管PM1与多组第一P型场效应管PM0构成电流镜,在相同电压偏置下MOS器件的电流与器件尺寸成正比,采用相同尺寸的MOS器件,电流比例则由MOS器件的个数决定,通过调整MOS器件的个数,即可得到所需要的电流比例。故通过控制第一开关K0,可以调整导通的第一P型场效应管PM0的个数,从而控制镜像电流I1的大小。
如图3所示,4组第一P型场效应管PM0的个数比例可以是M:M:2M:4M,分别受开关K0:1、K0:2、K0:3、K0:4控制,假设通过控制上述开关,使第一P型场效应管PM0的导通个数为R1×M(R1可能是1,2,3,4,5,6,7,8)。则在第二P型场效应管PM1与第一N型场效应管NM0的电流支路中,根据电流镜像,支路电流I1=N/(R1×M)×I0。I1表示输出的镜像电流。N表示第二P型场效应管PM1的个数。通过第一P型场效应管PM0、第二P型场效应管PM1的电流镜像,可以得到精准匹配的镜像电流I1。
第二放大器OP1的反向输入端配置成输入参考电压VCRES,输出端配置成提供栅极驱动电压VGATE,正向输入端连接第一N型场效应管NM0的漏极。
第一N型场效应管NM0的栅极连接所述第二放大器OP1的输出端,源极接地,漏极连接第二P型场效应管PM1的漏极以及第二放大器OP1的正向输入端,配置成提供与所述参考电压VCRES相同的偏置电压。
如图3所示,通过第二P型场效应管PM1、第一N型场效应管NM0以及第二放大器OP1构成的负反馈环路可以设置第一N型场效应管NM0的漏极电压(即偏置电压)。因为负反馈***在稳态时候,第二放大器OP1的两个输入端电压相同(只有微小差异,取决与环路开环增益),故第一N型场效应管NM0的漏极电压等于第二放大器OP1的反相输入电压VCRES。即偏置电压可以等于输入的参考电压。
其中,通道电流输出电路303连接所述驱动电路302,配置成接收所述偏置电压以及栅极驱动电压,并根据所述镜像电流I0,产生镜像比例可调的通道电流Iout。
如图3所示,通道电流输出电路包括:第三放大器DRIVER_OP、第三N型场效应管NM2、多组第二N型场效应管NM1以及第二开关K1。
第三放大器DRIVER_OP的正向输入端连接第一N型场效应管NM0的漏极,故第三 放大器DRIVER_OP的正向输入端输入的电压等于参考电压VCRES。第三N型场效应管NM2的栅极连接所述第三放大器DRIVER_OP的输出端;源极连接多组第二N型场效应管NM1的漏极以及所述第三放大器DRIVER_OP的反向输入端,漏极配置成输出所述通道电流。
因为负反馈***在稳态时候,放大器的两个输入端电压相同,故第三放大器DRIVER_OP的反向输入端输入的电压也等于参考电压VCRES。从而为多组第二N型场效应管NM1提供偏置电压,此偏置电压也等于参考电压VCRES。
多组第二N型场效应管NM1的漏极分别连接所述第三放大器DRIVER_OP的反向输入端;栅极分别连接所述第二放大器OP1的输出端;源极接地。
第二开关K1连接多组所述第二N型场效应管NM1,配置成独立控制每组的第二N型场效应管NM1的导通与否。
可选地,如图3所示,第二N型场效应管NM1可以有4组(NM1:1、NM1:2、NM1:3、NM1:4),每组mos管的个数比为K:K:2K:4K。每组第二N型场效应管NM1连接第三放大器DRIVER_OP的反向输入端和第三N型场效应管NM2的源极,从而为每组N型场效应管NM1提供相同的偏置电压。可以理解的是,以上仅为一种实施示例,不应当被视为限制,在实际应用中,第二N型场效应管NM1的组数可以根据需求而灵活设置。
第二开关K1可以包括多个第二子开关(K1:1、K1:2、K1:3、K1:4),一一对应连接多组所述第二N型场效应管NM1,配置成单独控制每组的第二N型场效应管NM1的导通与否。其中,每个第二子开关可以有两种状态,接高电平导通,接低电平断开。
如图3所示,K1:1控制第一组第二N型场效应管NM1:1的导通与否,K1:2控制第二组第二N型场效应管NM1:2的导通与否,K1:3控制第三组第二N型场效应管NM1:3的导通与否,K1:4控制第四组第二N型场效应管NM1:4的导通与否。
多组第二N型场效应管NM1的个数比可以为K:K:2K:4K,假设通过控制上述第二开关K1,使第二N型场效应管NM1的导通个数为R2×K(R2可能是1,2,3,4,5,6,7,8),第一N型场效应管NM0的个数假设是J,由于第二N型场效应管NM1的栅极电压等于VGATE,漏极电压等于VCRES,则在第二N型场效应管NM1与第三N型场效应管NM2的电流支路中,根据电流镜像,可以得到精准的输出电流,支路电流Iout=R2×K/J×I1,Iout表示通道电流。故通过控制第二开关K1,可以调整第二N型场效应管NM1的导通个数R2×K,从而控制输出电流Iout的大小。
可选地,如图3所示,驱动电路302还包括驱动缓冲器buffer,连接所述第二放大器OP1的输出端和所述多组第二N型场效应管NM1的栅极,配置成增大所述栅极驱动电压,增加后级驱动能力,Buffer可以是几级器件尺寸逐步增大的反相器或类似结构的电路,例 如两个串联的反相器。
可选地,多组第一P型场效应管之间的个数比与所述多组第二N型场效应管之间的个数比可以相同。例如,多组第一P型场效应管PM0的个数比例是M:M:2M:4M;多组第二N型场效应管NN1的个数比例是K:K:2K:4K,则可以认为个数比相同。
可选地,上述所述多组第一P型场效应管的导通个数调整比例与所述多组第二N型场效应管的导通个数调整比例相同。
即上文中的R1与R2相等。其中,第一P型场效应管PM0导通的个数可以通过第一开关K0进行控制。第一P型场效应管PM0导通的个数可以M,2M,3M,4M,5M,6M,7M,8M。第二N型场效应管NN1导通的个数可以通过第二开关K1进行控制。第二N型场效应管NN1导通的个数K,2K,3K,4K,5K,6K,7K,8K。故第一P型场效应管PM0导通的个数是M时。第二N型场效应管NN1导通的个数为K,第一P型场效应管PM0导通的个数是2M时,第二N型场效应管NN1导通的个数为2K,以此类推,可以认为导通个数的调整比例相同。
可选地,所述第一开关和第二开关的开关控制信号可以相同,从而使多组第一P型场效应管的导通个数调整比例与多组第二N型场效应管的导通个数调整比例相同,即控制R1和R2的值相等。开关控制信号可以配置成控制第一开关K0和第二开关K1,开关控制信号相同时,即K0:1与K1:1的控制信号相同,K0:2与K1:2的控制信号相同,K0:3与K1:3的控制信号相同K0:4与K1:4的控制信号相同,从而在多组第一P型场效应管PM0的个数比与多组第二N型场效应管NN1的个数比相同时,可以使导通个数调整比例相同,即R1=R2,由此经过两次电流镜像可以得到:
Figure PCTCN2021130736-appb-000002
Figure PCTCN2021130736-appb-000003
Figure PCTCN2021130736-appb-000004
Figure PCTCN2021130736-appb-000005
也就是说,R1和R2均可用R表示,并相比抵消。通过调整电阻REXT两次镜像的比例,即可得到精确的输出电流Iout。
可选地,在输出电流较小的时候,可以只开启K0:1以及K1:1,此时恒流源的精度最好,当输出电流Iout增加,超出了NM1:1的能力,再开启K0:2、K1:2,如此这样,随着 设置的输出电流Iout的增大,逐一打开开关K0:1~4以及K1:1~4,即在较小电流时使用较少组数的NMOS器件开启,这样会提高芯片的电流精度。为了使NMOS器件处于线性区,可以通过监测VGATE电压的方式来判断,一旦VGATE过高以及过低则打开下一级开关或是关断当前开关。可选地,可以通过设置比较器和逻辑电路,自动判断VGATE电压是否过高或过低,从而输出相应的开关控制信号,控制第一开关K0和第二开关K1。保证在较大电流范围内的电流镜的精度,同时降低芯片的功耗。下表是开关不同导通状态时的R值。
Figure PCTCN2021130736-appb-000006
此时,利用以下公式计算芯片的静态电流:
Idis=Idis_ana+I0+I1+L*ICH
其中,Idis表示整个芯片的静态电流;Idis_ana表示其它模拟模块静态电流;I0、I1分别表示供电电路中两个支路电流;L表示输出恒流通道数;ICH表示恒流源通道中模拟电路的静态电流。一般情况下N/M>1,且K/J>1。所以在芯片的静态电流中变化较大的是I1。
基于本申请实施例提供的电路,
Figure PCTCN2021130736-appb-000007
输出恒流源电流Iout增加,R随之增加,I1减小,故可以得出,本申请实施例提供的电路架构可以有效的降低芯片功耗。
本申请实施例提供的供电电路可以应用于驱动芯片中,该驱动芯片可以是LED(Light Emitting Diode,发光二极管)显示面板的驱动芯片。本申请实施例还提供了一种显示装置,该显示装置可以包括LED显示面板和驱动芯片,所述LED显示面板可以是为共阴极或共阳极结构。驱动芯片连接所述LED显示面板,驱动芯片可以包括本申请实施例提供的供电电路,其中,所述通道电流输出电路存在多个;共阳极是指同一行的多个发光二极管的阳极连接在一起(例如接+5V),多个通道电流输出电路的输出端IOUT分别连接多个发光二极管的阴极,阴极电平的不同,控制不同的亮度。共阴极是指同一行的多个发光二极管的阴极连接在一起(例如接地),多个通道电流输出电路的输出端IOUT分别连接多个发光二极管的阳极,阳极电平的不同,控制不同的亮度。
在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。文中所说的连接可以是直接连接也可以是间接连接。
工业实用性
本申请提出的技术方案,由于镜像比例可调,从而可以提高电流精度,在需要通道电流较 大时,镜像电流仍可较小,从而减小功耗。

Claims (15)

  1. 一种供电电路,其特征在于,包括:
    基准电流产生电路,配置成产生基准电流;
    驱动电路,连接所述基准电流产生电路,配置成根据所述基准电流,产生镜像比例可调的镜像电流,并输出偏置电压以及栅极驱动电压;
    通道电流输出电路,连接所述驱动电路,配置成接收所述偏置电压以及栅极驱动电压,并根据所述镜像电流,产生镜像比例可调的通道电流。
  2. 根据权利要求1所述的供电电路,其特征在于,所述基准电流产生电路包括:
    第一放大器,反向输入端配置成输入基准电压;
    电阻,第一端接地,第二端连接所述第一放大器的正向输入端;
    多组第一P型场效应管,源极接电源,栅极分别连接所述第一放大器的输出端,漏极连接所述电阻的第二端,向所述电阻输出所述基准电流;
    第一开关,连接所述多组第一P型场效应管,配置成独立控制每组的第一P型场效应管的导通与否。
  3. 根据权利要求2所述的供电电路,其特征在于,所述第一P型场效应管的组数为四组。
  4. 根据权利要求2或3所述的供电电路,其特征在于,所述驱动电路包括:
    第二P型场效应管,源极接电源,栅极连接所述多组第一P型场效应管的栅极,漏极配置成输出所述镜像电流;
    第二放大器,反向输入端配置成输入参考电压,输出端配置成提供所述栅极驱动电压;
    第一N型场效应管,栅极连接所述第二放大器的输出端,源极接地,漏极连接所述第二P型场效应管的漏极以及所述第二放大器的正向输入端,配置成提供与所述参考电压相同的所述偏置电压。
  5. 根据权利要求4所述的供电电路,其特征在于,所述通道电流输出电路包括:
    第三放大器,正向输入端连接所述第一N型场效应管的漏极;
    第三N型场效应管,栅极连接所述第三放大器的输出端;源极连接所述第三放大器的反向输入端,漏极配置成输出所述通道电流;
    多组第二N型场效应管,漏极分别连接所述第三放大器的反向输入端;栅极分别连接所述第二放大器的输出端;源极接地;
    第二开关,连接多组所述第二N型场效应管,配置成独立控制每组的第二N型场效应管的导通与否。
  6. 根据权利要求5所述的供电电路,其特征在于,所述第二N型场效应管的组数为四组。
  7. 根据权利要求5所述的供电电路,其特征在于,所述驱动电路还包括:
    驱动缓冲器,连接所述第二放大器的输出端和所述多组第二N型场效应管的栅极,配置成增大所述栅极驱动电压。
  8. 根据权利要求7所述的供电电路,其特征在于,所述驱动缓冲器包括两个串联的反相器。
  9. 根据权利要求5所述的供电电路,其特征在于,所述第一开关包括多个第一子开关,分别独立控制多组所述第一P型场效应管的导通与否;
    第二开关包括多个第二子开关,分别独立控制多组所述第二N型场效应管的导通与否。
  10. 根据权利要求9所述的供电电路,其特征在于,多个所述第一子开关与多组所述第一P型场效应管一一对应连接;
    多个所述第二子开关与多组所述第二N型场效应管一一对应连接。
  11. 根据权利要求5所述的供电电路,其特征在于,所述多组第一P型场效应管之间的个数比与所述多组第二N型场效应管之间的个数比相同。
  12. 根据权利要求11所述的供电电路,所述多组第一P型场效应管的导通个数调整比例与所述多组第二N型场效应管的导通个数调整比例相同。
  13. 根据权利要求12所述的供电电路,其特征在于,所述第一开关和第二开关的开关控制信号相同。
  14. 一种驱动芯片,其特征在于,包括如权利要求1至13任一项所述的供电电路。
  15. 一种显示装置,其特征在于,包括:
    LED显示面板,所述LED显示面板为共阴极或共阳极结构;
    驱动芯片,连接所述LED显示面板,所述驱动芯片包括权利要求1至13任一项所述的供电电路,其中,所述通道电流输出电路存在多个;
    若所述LED显示面板为共阴极结构,多个所述通道电流输出电路分别连接所述LED显示面板的多个发光二极管的阳极;
    若所述LED显示面板为共阳极结构,多个所述通道电流输出电路分别连接所述LED显示面板的多个发光二极管的阴极。
PCT/CN2021/130736 2020-12-17 2021-11-15 供电电路、驱动芯片以及显示装置 WO2022127468A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21905397.2A EP4240112A4 (en) 2020-12-17 2021-11-15 POWER SUPPLY CIRCUIT, DRIVING CHIP AND DISPLAY DEVICE
KR1020237004999A KR20230038261A (ko) 2020-12-17 2021-11-15 전원 공급 회로, 구동 칩 및 디스플레이 장치
JP2023524873A JP2023553251A (ja) 2020-12-17 2021-11-15 給電回路、駆動用チップおよび表示装置
US18/255,381 US20230402000A1 (en) 2020-12-17 2021-11-15 Power supply circuit, driving chip and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011499656.4A CN112423436A (zh) 2020-12-17 2020-12-17 供电电路以及显示装置
CN202011499656.4 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022127468A1 true WO2022127468A1 (zh) 2022-06-23

Family

ID=74782405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130736 WO2022127468A1 (zh) 2020-12-17 2021-11-15 供电电路、驱动芯片以及显示装置

Country Status (6)

Country Link
US (1) US20230402000A1 (zh)
EP (1) EP4240112A4 (zh)
JP (1) JP2023553251A (zh)
KR (1) KR20230038261A (zh)
CN (1) CN112423436A (zh)
WO (1) WO2022127468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116248136A (zh) * 2023-03-02 2023-06-09 苏州纳芯微电子股份有限公司 发送器电路及具有其的总线收发器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112423436A (zh) * 2020-12-17 2021-02-26 北京集创北方科技股份有限公司 供电电路以及显示装置
CN113098483B (zh) * 2021-03-26 2022-04-08 上海芯问科技有限公司 一种高速全差分升压转换电路
CN113672026B (zh) * 2021-08-17 2022-11-29 晟合微电子(肇庆)有限公司 Mipi的偏置电路、mipi模块及显示设备
CN114461006B (zh) * 2022-01-17 2023-06-13 深圳市诚芯微科技股份有限公司 一种基准电压及倍压电路
CN117059020B (zh) * 2023-09-14 2024-02-27 广东保伦电子股份有限公司 一种低转折电压的led显示屏驱动电路及led显示屏

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612614A (en) * 1995-10-05 1997-03-18 Motorola Inc. Current mirror and self-starting reference current generator
US5867067A (en) * 1997-01-29 1999-02-02 Lucent Technologies Inc. Critically-biased MOS current mirror
CN104965560A (zh) * 2015-07-13 2015-10-07 深圳市富满电子集团股份有限公司 一种高精度宽电流范围电流镜
CN109859681A (zh) * 2019-03-28 2019-06-07 北京集创北方科技股份有限公司 一种led显示驱动电路、显示器、驱动方法及驱动芯片
CN110096089A (zh) * 2019-04-26 2019-08-06 北京集创北方科技股份有限公司 驱动电路和显示装置
CN110234188A (zh) * 2019-05-08 2019-09-13 深圳市富满电子集团股份有限公司 Led驱动芯片的自动换挡调节电路
CN110767152A (zh) * 2019-11-08 2020-02-07 深圳市德普微电子有限公司 一种led显示屏驱动芯片的恒流源产生方法
CN112423436A (zh) * 2020-12-17 2021-02-26 北京集创北方科技股份有限公司 供电电路以及显示装置
CN214481381U (zh) * 2020-12-17 2021-10-22 北京集创北方科技股份有限公司 供电电路以及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103632635B (zh) * 2013-11-08 2016-04-13 电子科技大学 功率管分组混合驱动电路
US11438982B2 (en) * 2019-08-16 2022-09-06 Lumileds Llc LED pulse width modulation with active turn-off
EP4240111A4 (en) * 2020-11-04 2024-04-03 Suzhou Opple Lighting Co., Ltd. CONTROL CIRCUIT AND LIGHTING DEVICE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612614A (en) * 1995-10-05 1997-03-18 Motorola Inc. Current mirror and self-starting reference current generator
US5867067A (en) * 1997-01-29 1999-02-02 Lucent Technologies Inc. Critically-biased MOS current mirror
CN104965560A (zh) * 2015-07-13 2015-10-07 深圳市富满电子集团股份有限公司 一种高精度宽电流范围电流镜
CN109859681A (zh) * 2019-03-28 2019-06-07 北京集创北方科技股份有限公司 一种led显示驱动电路、显示器、驱动方法及驱动芯片
CN110096089A (zh) * 2019-04-26 2019-08-06 北京集创北方科技股份有限公司 驱动电路和显示装置
CN110234188A (zh) * 2019-05-08 2019-09-13 深圳市富满电子集团股份有限公司 Led驱动芯片的自动换挡调节电路
CN110767152A (zh) * 2019-11-08 2020-02-07 深圳市德普微电子有限公司 一种led显示屏驱动芯片的恒流源产生方法
CN112423436A (zh) * 2020-12-17 2021-02-26 北京集创北方科技股份有限公司 供电电路以及显示装置
CN214481381U (zh) * 2020-12-17 2021-10-22 北京集创北方科技股份有限公司 供电电路以及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4240112A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116248136A (zh) * 2023-03-02 2023-06-09 苏州纳芯微电子股份有限公司 发送器电路及具有其的总线收发器
CN116248136B (zh) * 2023-03-02 2024-05-03 苏州纳芯微电子股份有限公司 发送器电路及具有其的总线收发器

Also Published As

Publication number Publication date
EP4240112A1 (en) 2023-09-06
KR20230038261A (ko) 2023-03-17
JP2023553251A (ja) 2023-12-21
US20230402000A1 (en) 2023-12-14
EP4240112A4 (en) 2024-05-01
CN112423436A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022127468A1 (zh) 供电电路、驱动芯片以及显示装置
CN106910463B (zh) 一种amoled驱动电路及显示装置
WO2016184169A1 (zh) 多通道双模式数字控制led驱动电路及led灯
JP5353548B2 (ja) バンドギャップレファレンス回路
US5933051A (en) Constant-voltage generating device
US8742689B2 (en) Light emitting diode driving apparatus
CN110767152B (zh) 一种led显示屏驱动芯片的恒流源产生方法
WO2022127470A1 (zh) 供电电路、芯片和显示屏
CN110708809A (zh) 一种共阳led显示屏驱动芯片的恒流源产生电路
CN214481381U (zh) 供电电路以及显示装置
EP2249623A1 (en) A low-dropout (LDO) current regulator
US11847982B1 (en) Backlight LED driver circuit with current regulating function
CN214752879U (zh) 一种led显示屏驱动芯片的恒流源选段检测模组
US20140015440A1 (en) Constant current control circuit
CN111145683B (zh) 一种led显示屏的恒流驱动自适应调节电路
CN115985236B (zh) 一种驱动芯片、驱动***、电子设备
CN115397063B (zh) 一种miniLED驱动电路
US7432696B1 (en) Apparatus and method for low input voltage current mirror circuit
CN214012480U (zh) 供电电路、芯片和显示屏
US20190310676A1 (en) Voltage generating circuit for improving stability of bandgap voltage generator
CN211698756U (zh) 一种适用于电池管理***的单片机电源电路
US9161405B2 (en) Light emitting diode driving circuit and system
CN111077937A (zh) 一种适用于电池管理***的单片机电源电路
WO2020000238A1 (en) Circuit for reducing noise signal
JP3593623B2 (ja) 発光素子駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237004999

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023524873

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021905397

Country of ref document: EP

Effective date: 20230602

NENP Non-entry into the national phase

Ref country code: DE