WO2022124199A1 - 絶縁膜の製造方法 - Google Patents

絶縁膜の製造方法 Download PDF

Info

Publication number
WO2022124199A1
WO2022124199A1 PCT/JP2021/044334 JP2021044334W WO2022124199A1 WO 2022124199 A1 WO2022124199 A1 WO 2022124199A1 JP 2021044334 W JP2021044334 W JP 2021044334W WO 2022124199 A1 WO2022124199 A1 WO 2022124199A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
substrate
forming material
material layer
Prior art date
Application number
PCT/JP2021/044334
Other languages
English (en)
French (fr)
Inventor
清和 中川
Original Assignee
株式会社アビット・テクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アビット・テクノロジーズ filed Critical 株式会社アビット・テクノロジーズ
Priority to US18/266,110 priority Critical patent/US20240112906A1/en
Priority to KR1020237020117A priority patent/KR20230113330A/ko
Priority to CN202180082954.XA priority patent/CN116711055A/zh
Publication of WO2022124199A1 publication Critical patent/WO2022124199A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2

Definitions

  • the present invention relates to a method for producing an insulating film having good insulating properties, and particularly to a method for producing an insulating film that does not require high-temperature annealing treatment.
  • a silicon oxide film may be formed as an insulating film on a substrate or a patterned substrate of a semiconductor device.
  • the silicon oxide film is formed by plasma CVD (plasma-enhanced chemical vapor deposition) using silane gas (SiH 4 ) or TEOS (tetraethoxysilane) as a source, or SOG (Spin on Glass) is applied to the substrate and annealed. It is often formed by doing.
  • the formation of a silicon oxide film by plasma CVD is a method in which monosilane gas or disilane gas and oxygen are plasma-formed by electromagnetic wave irradiation in a reaction chamber, whereby SiO 2 is deposited on a substrate kept at about 400 ° C.
  • the silicon oxide film formed by this method tends to have a low dielectric breakdown electric field because hydrogen is contained in monosilane gas and disilane gas.
  • a process of flattening at a temperature of about 900 ° C. may be required in order to maintain the uneven shape of the substrate.
  • Patent Document 1 discloses a technique for physically condensing a film formed by SOG by annealing at a relatively low temperature after applying SOG and then surface-treating with accelerated high-density plasma. ..
  • the gate oxide film or the like formed on the substrate before the formation of the silicon oxide film may be electrostatically destroyed by the electric charge brought to the silicon oxide film by plasma.
  • the impact of an ionic species is used to densify the film formed by SOG, and only the surface of the film formed by SOG, specifically, about 50 nm from the surface. Only the surface layer up to the bottom is condensed. Therefore, it is not suitable for applications that require, for example, an insulating film of 100 nm or more.
  • the film is densified by using the impact of ion species, it is necessary to increase the accelerating energy of the ions in order to thicken the insulating film, and as a result, the insulating property of the obtained dielectric layer is improved. However, it is not easy to increase the density.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing an insulating film that does not require heating at a high temperature.
  • a method for producing an insulating film which comprises a step of binding with and has a product of irradiation time and density of a radical formed by plasma of 25 ⁇ 10 14 minutes / piece / cm3 or more.
  • the hydrogen permeated inside by diffusion reacts with the components of the film-forming material layer.
  • the hydrogen molecule can be separated. Since the hydrogen molecules thus generated are discharged to the outside of the film-forming material layer, the hydrogen concentration in the film can be extremely lowered, and the insulating property of the film-forming material layer can be improved.
  • insulation is performed without deteriorating the characteristics of the substrate before the formation of the insulating film corresponding to the film-forming material layer after the plasma irradiation treatment or the device portion formed on the substrate. It is possible to improve the insulating characteristics of the film.
  • the product of the irradiation time and the density of radicals contained in the plasma is 25 ⁇ 10 14 minutes / piece / cm3 or more, hydrogen should be diffused deeply into the structure of the film-forming material layer at a sufficient density. It is possible to obtain an insulating film having high insulating properties.
  • radicals are supplied to the surface of the film-forming material layer by forming plasma under a pressure of 5 Pa or more and 50 Pa or less.
  • the plasma density in contact with the film forming material layer increases, and it becomes easy to reduce the potential difference between the plasma and the film forming material layer to 10 V or less, and the plasma particles form the film forming material layer. It is possible to prevent the film-forming material layer from being driven and disturbing the structure of the film-forming material layer and reducing the density of the film-forming material layer.
  • the plasma is set to 50 Pa or less, the mean free path of radicals is maintained for a relatively long time, and the generated radicals can be effectively utilized to reach the film forming material layer.
  • the radical is a hydrogen atom H.
  • the film forming material is SOG, and SOG is applied and deposited on the substrate.
  • SOG facilitates the formation of a flat insulating film.
  • the SOG is one or more of a ladder-type hydrogen silsesquioxane, a hydrogen siloxane, and a silicate.
  • the insulating film is a silicon oxide film.
  • the heating is carried out in the atmosphere of N 2 or an inert gas. This causes a dehydration polycondensation reaction.
  • the SOG is silazane.
  • the insulating film is a silicon oxide film.
  • heating is performed in any of the atmospheres of H 2 O, O 2 and H 2 O 2 .
  • a polycondensation reaction that releases nitrogen by hydrolysis or oxidation is caused.
  • the substrate is a semiconductor substrate or a patterned substrate of a semiconductor device.
  • an insulating film can be formed on the semiconductor substrate, or an insulating film can be formed on the pattern of the semiconductor device.
  • a circuit device including an insulating film formed on a substrate and having an insulating film having a hydrogen concentration in the film of 1% or less.
  • the insulating film having a hydrogen concentration in the film of 1% or less is provided, the insulating performance can be improved.
  • the circuit device has a characteristic of repeating a plurality of concentration patterns that are saturated on the substrate side and become substantially zero on the surface side with respect to the hydrogen concentration. In this case, it is possible to provide a thick insulating film having improved insulating properties as a whole.
  • FIG. 1A is a conceptual diagram illustrating an outline of a method for manufacturing an insulating film
  • FIGS. 1B to 1E are conceptual cross-sectional views illustrating each step.
  • FIG. 2A is a conceptual cross-sectional view illustrating a substrate on which an insulating film is formed
  • FIG. 2B is a diagram illustrating formation of a film forming material layer
  • FIG. 2C illustrates a heating process.
  • FIG. 2D is a conceptual cross-sectional view illustrating a precursor layer or the like obtained by a heating step.
  • FIG. 3A is a diagram illustrating an exposure process
  • FIG. 3B is a conceptual cross-sectional view illustrating an insulating film obtained by exposure.
  • 4A and 4B are conceptual cross-sectional views illustrating a manufacturing process of a laminated insulating film. It is a chart explaining the relationship between the plasma output and the shrinkage rate of a SiO 2 film. It is a chart explaining the effect of the treatment using radicals formed by high-density plasma.
  • 7A and 7B are charts illustrating shrinkage of the SiO 2 film due to radical treatment. It is a figure explaining the cross-sectional characteristic of a laminated type insulating film. It is a figure explaining the result of having measured the characteristic about a specific sample.
  • 10A to 10C are charts showing the relationship between the shrinkage rate of the film-forming material layer and the insulating property during radical treatment. It is sectional drawing explaining an example of the circuit apparatus obtained by the manufacturing method of the insulating film of an embodiment.
  • 12A and 12B are diagrams illustrating a modified example of a radical processing apparatus using high-density plasma.
  • FIG. 1 is a conceptual diagram showing a flow of manufacturing an insulating film.
  • 1A is a conceptual diagram illustrating an outline of a method for manufacturing an insulating film
  • FIGS. 1B to 1D are conceptual cross-sectional views illustrating each step (S1 to S3) shown in FIG. 1A.
  • the method for manufacturing the insulating film includes a deposition step (S1) of depositing a film-forming material on the substrate 11 to form a film-forming material layer 12, and a film-forming material layer 12 on the substrate 11 at 85 ° C. or higher and 450 ° C. or lower.
  • the product of the irradiation time and the density of the radicals formed by the plasma 82 is 25 ⁇ 10 from the viewpoint of diffusing the hydrogen H for treatment deeply in the structural FS of the film forming material layer 12 with a sufficient density. It is desirable to set it to 14 minutes / piece / cm 3 or more.
  • the method for producing the insulating film according to the embodiment will be described separately for the deposition step, the heating step, and the exposure step.
  • a flat plate-shaped substrate 11 made of a semiconductor or other material is prepared.
  • the substrate 11 may be, for example, a semiconductor substrate, or may be a substrate with a semiconductor device in which the pattern 11p of the device portion 11d is formed on the semiconductor substrate.
  • the substrate 11 is not limited to the semiconductor substrate, but may be a ceramic substrate, a glass substrate, a heat-resistant resin substrate, a metal substrate, or the like, or may be a semiconductor device formed on them.
  • the film-forming material is applied onto the surface 11s of the substrate 11 to form the film-forming material layer 12.
  • the film-forming material is a precursor material of an insulating film such as SiO 2 , or a highly fluid material such as an inorganic SOG (Spin on Glass).
  • SOG is used as the film-forming material
  • the film-forming material layer 12 is formed by applying SOG and drying it so as to form a flat surface on the surface 11s of the substrate 11.
  • the film-forming material layer 12 is deposited on the substrate 11.
  • a spin coating method can be used as a method for applying the film forming material on the substrate 11.
  • the film-forming material applied on the substrate 11 may be prebaked at a relatively low temperature.
  • the SOG for forming the film-forming material layer 12 is, for example, a solution containing at least one of a ladder-type hydrogen silsesquioxysan, a hydrogen siloxane, and a silicate as a film component, and the film component is an organic solvent. It was adjusted by adding.
  • the SOG may be, for example, a solution containing silazane as a membrane component. Cilazan is polymerized into a polymer state.
  • the ladder-type hydrogen silsesquioxysan is expressed by the following formula.
  • Hydrogen siloxane is expressed by the following formula.
  • the silicate is expressed by the following formula.
  • the silazane polymer is represented by one of the following formulas.
  • m1, m2, and m3 in the formula are numbers representing the degree of polymerization.
  • the substrate 11 on which the film-forming material layer 12 is deposited is heated in an atmosphere.
  • the heating temperature of the substrate 11 is 85 ° C. or higher and 450 ° C. or lower, preferably 100 ° C. or higher and 200 ° C. or lower.
  • the film-forming material layer 12 is solidified, and as shown in FIG. 2D, the precursor layer 112 is formed on the substrate 11.
  • the substrate 11 on which the film-forming material layer 12 is formed is heated by, for example, baking in a heating furnace 51, and the atmosphere is controlled by supplying the atmosphere gas AG into the heating furnace 51 during heating. Will be done.
  • the film-forming material layer 12 is a ladder-type hydrogen silsesquioxane, hydrogensiloxane, silicate or the like
  • the treatment target 14 is heated for 10 minutes or more in the atmosphere of N2 or an inert gas, and undergoes a dehydration polycondensation reaction. Causes.
  • the substrate 11 is heated for 10 minutes or more in the atmosphere of H 2 O, O 2 or H 2 O 2 , and nitrogen is hydrolyzed or oxidized. Causes a polycondensation reaction that causes the water to escape.
  • the substrate temperature was set to 85 ° C. for the treatment target 14 obtained by spin-coating polysilazane, steam was supplied by bubbling at atmospheric pressure, and then the substrate temperature was set to 150 ° C. Annealing was performed for 1 hour in a nitrogen gas atmosphere at atmospheric pressure.
  • the heating temperature of the substrate 11 when the heating temperature of the substrate 11 is 85 ° C. or higher, not only the solvent can be reliably removed, but also the atom / molecule of the material such as SOG constituting the film forming material layer 12 is active. It is possible to give chemical energy, allow the polymerization to proceed to some extent, and increase the ratio of Si—O—Si bonds. Further, when the heating temperature of the substrate 11 is 450 ° C. or lower, it is possible to avoid deterioration of the substrate 11 itself and deterioration of the characteristics of the device portion 11d.
  • the substrate 11 on which the precursor layer 112 is formed is exposed to plasma. More specifically, the surface 14a of the treatment target 14 is exposed to a high-density plasma PZ containing radicals having a density of, for example, 5 ⁇ 10 14 / cm 3 or more for, for example, 5 to 20 minutes.
  • a high-density plasma PZ containing radicals having a density of, for example, 5 ⁇ 10 14 / cm 3 or more for, for example, 5 to 20 minutes.
  • the product of the irradiation time and the density of the radical RD in the high-density plasma PZ used for the radical treatment of the treatment target 14 becomes 25 ⁇ 10 14 minutes / piece / cm 3 or more.
  • the temperature of the substrate 11 is kept constant in the range of 0 ° C to 400 ° C.
  • the potential difference between the plasma and the surface of the processing target 14 is preferably 10 V or less.
  • the irradiation density of radical RD can be determined by a known method (T. Arai el al. (2016) "Selective Heating of Transition Metal Usings Hydrogen Plasma and Its Application to Formation of Nickel Silicide Electrodes for Silicon Ultralarge-Scale Integration”. Devices "Journal of Materials Science and Chemical Engineering, 2016, 4, 29-33). Although the irradiation density of radical RD changes according to the pressure of plasma, the irradiation density of radicals according to the plasma pressure and other conditions can be obtained in advance by an experiment.
  • Radical exposure to the substrate 11 on which the precursor layer 112 is formed, that is, the treatment target 14, is performed by, for example, a high-density plasma processing apparatus 53 provided with a microwave supply source 53a, and radicals introduced from the intake port 53i which is an injection port.
  • the source gas IG is radicalized by microwaves in a standing wave state in the chamber 53c.
  • the radical source gas IG is at least one of H 2, NH 3 , and H 2 O, is introduced into the chamber 53c via the intake port 53i, and is introduced outside the chamber 53c via the exhaust port 53o provided at the bottom. It is discharged.
  • the radicals in the high-density plasma PZ are obtained by being excited by microwaves, and the target is hydrogen, but other components may be contained.
  • the inner surface of the chamber 53c is, for example, a quartz dielectric tube 53 g, and microwaves are injected into the dielectric tube 53 g, and the temperature of the substrate 11 is supported under the dielectric tube 53 g. Stages 53s are arranged to adjust.
  • the high-density plasma processing apparatus 53 for example, the one disclosed in International Publication No. WO2003 / 0967669 can be used.
  • unnecessary gas is discharged to the outside from the exhaust port 53o of the chamber 53c, and the state of the high-density plasma PZ formed in the dielectric tube 53g is maintained.
  • the inside of the chamber 53c is maintained at 5 Pa to 50 Pa by the high-density plasma PZ.
  • the plasma in the chamber 53c By setting the plasma in the chamber 53c to a plasma density of 5 Pa or more, it becomes easy to reduce the potential difference between the plasma and the precursor layer 112 to 10 V or less, and plasma particles are driven into the precursor layer 112 to cause a precursor. It is possible to prevent the structure of the body layer 112 from being disturbed and the density from being lowered.
  • the plasma in the chamber 53c by setting the plasma in the chamber 53c to a plasma density of 50 Pa or less, the mean free path of radicals is maintained for a relatively long time, and the generated radicals can be effectively utilized to reach the precursor layer 112.
  • the precursor layer 112 is condensed and the silicon-based insulating film 212 is formed on the substrate 11 by the step of exposing the processing target 14 to the high-density plasma PZ by the apparatus shown in FIG. 3A.
  • the silicon-based insulating film 212 exposed to the high-density plasma PZ is condensed due to the influence of H radicals in the plasma, and its shrinkage is 5% to 25% with the untreated film thickness of 150 nm. Therefore, the film thickness d2 of the silicon-based insulating film 212 is reduced by about 5% to 20% as compared with the thickness dl of the precursor layer 112.
  • FIG. 5 is a chart illustrating the relationship between the output of the high-density plasma processing apparatus 53 and the shrinkage rate of the precursor layer 112.
  • the horizontal axis represents the microwave output of the high-density plasma processing apparatus 53
  • the vertical axis represents the shrinkage rate of the precursor layer 112.
  • the amount of H 2 gas supplied to the chamber was 10 sccm
  • the pressure in the chamber was 20 Pa
  • the treatment time with plasma, that is, radicals was 5 minutes.
  • the film thickness of the untreated (initial) SiO 2 film was 155 nm.
  • the microwave output for supplying plasma is 1000 W
  • the radical density is 3 ⁇ 10 15 / cm 3 .
  • the shrinkage rate of the precursor layer 112 is 15%.
  • the shrinkage rate of the precursor layer 112 is substantially proportional to the microwave output of the high-density plasma processing apparatus 53. That is, if the supply amount of the H 2 gas, which is the radical source gas IG, is sufficient and not excessive, the plasma, that is, the plasma so as to have a positive correlation with the output of the high-density plasma processing apparatus 53. It can be seen that the density of hydrogen radicals can be increased and the precursor layer 112 can be shrunk according to the density of hydrogen radicals.
  • FIG. 6 is a chart illustrating the temporal effect of radical treatment with high density plasma PZ.
  • the precursor layer 112 specifically, the silicon oxide film
  • the comparative sample and the chamber The supply amount of H 2 is 10 sccm
  • the pressure in the chamber is 20 Pa
  • the microwave output is 1500 W
  • the sample subjected to the radical treatment for 5 minutes the sample subjected to the radical treatment for 10 minutes
  • the sample for 15 minutes The FTIR spectrum was measured with respect to the radically treated sample. Almost no Si—H bond is already observed in the sample subjected to the radical treatment for 5 minutes, and no Si—H bond is observed in the sample subjected to the radical treatment for 10 minutes or 5 minutes.
  • FIG. 7A is a chart illustrating the shrinkage of the precursor layer 112 (specifically, the silicon oxide film) due to radical treatment using plasma.
  • the horizontal axis represents the radical treatment time, and the vertical axis represents the shrinkage rate of the precursor layer 112.
  • the supply amount of H 2 gas to the chamber was 10 sccm
  • the pressure in the chamber was 20 Pa
  • the treatment time by radical was 1, 2, 3, 4, 5, 10, and 15 minutes.
  • the film thickness of the untreated (initial) silicon oxide film was 155 nm.
  • FIG. 7B shows the shrinkage of the silicon oxide film due to radical treatment as in FIG. 7A, but the horizontal axis is the square root of the radical treatment time. As shown in FIG.
  • the shrinkage rate of the insulating film reaches 20% and is becoming saturated when the radical treatment is 5 minutes or longer.
  • the shrinkage rate increases in proportion to the square root of the processing time up to about 5 minutes.
  • the influence of radical treatment extends in the depth direction in proportion to the square root of the treatment time. This corresponds to the diffusion length of hydrogen radicals from the surface of the silicon oxide film being proportional to the supply time of hydrogen radicals, and it can be seen that this phenomenon is dominated by diffusion.
  • the shrinkage rate is saturated in 5 minutes or more, but considering the FTIR signal described in FIG. 5, this saturation means that the dehydrogenation treatment of the entire SiO 2 membrane is completed.
  • the radicals supplied by the high-density plasma PZ are from the surface of the precursor layer 112, that is, from the surface 14a to a depth of 600 nm.
  • the thickness of the precursor layer 112 is 600 nm or less, the density of the entire precursor layer 112 can be increased, and a silicon-based insulating film 212 having an extremely high proportion of SiO 2 and excellent insulating properties can be obtained. ..
  • the radicals supplied by the high density plasma PZ diffuse from the surface of the precursor layer 112, that is, the surface 14a to a depth of 1.5 ⁇ m. Therefore, if the thickness of the precursor layer 112 is 1.5 ⁇ m or less, the density of the entire precursor layer 112 can be increased, and a silicon-based insulating film 212 having an extremely high proportion of SiO 2 and excellent insulating properties can be obtained. Can be done.
  • the silicon-based insulating film 212 may be laminated in multiple layers to form the target silicon-based insulating film.
  • a silicon oxide film having a desired thickness can be obtained by repeating the deposition step, the heating step, and the exposure step.
  • the material of the precursor layer 112 is a ladder-type hydrogen silsesquioxane, hydrogen siloxane, silicate, etc., when it is desired to form a silicon oxide film corresponding to the precursor layer 112 having a film thickness of 600 nm or more, it is silicon-based.
  • the insulating film 212 is laminated in multiple layers.
  • the film-forming material is applied on the surface 12a of the silicon-based insulating film 212 formed on the substrate 11 to form the film-forming material layer 12.
  • the film-forming material layer 12 on the silicon-based insulating film 212 is made into the precursor layer 112 by the heat treatment shown in FIG. 2C, and the first silicon is subjected to the exposure treatment shown in FIG. 3A, as in the case of FIG. 2D.
  • the precursor layer 112 on the system insulating film 212 is used as the second silicon-based insulating film 212, and a laminated silicon-based insulating film 312 as shown in FIG. 4B is obtained.
  • FIG. 8 is a diagram illustrating the hydrogen concentration distribution of the laminated silicon-based insulating film.
  • the horizontal axis shows the distance from the surface 11s of the substrate 11 as a base toward the surface of the silicon-based insulating film 312, and the vertical axis shows the hydrogen concentration in the silicon-based insulating film 312.
  • the distribution of the hydrogen concentration is repeated for each constituent layer EL.
  • the hydrogen concentration saturates at the maximum value at a position close to the substrate 11, and the hydrogen concentration decreases to a value close to zero at a position near the inside of the interface IF or the surface of the silicon-based insulating film 312. There is.
  • the laminated silicon-based insulating film 312 has a characteristic of repeating a plurality of concentration patterns that are saturated on the substrate 11 side and become substantially zero on the surface 312a side with respect to the hydrogen concentration.
  • hydrogen radicals from the high-density plasma PZ efficiently diffuse into the constituent layer EL through the surface of each constituent layer EL to generate hydrogen.
  • the Si—O bond is increased while reducing the Si—H bond, so that the hydrogen concentration can be lowered except for the bottom of each constituent layer EL, and the insulating property as the constituent layer EL. It is possible to increase the insulation characteristics of the plurality of constituent layers EL as a whole.
  • the silicon-based insulating films 212 and 312 formed on the substrate 11 by the above steps are silicon oxide films, have a leakage current of 1 ⁇ 10-8 A / cm 2 or less, and have a dielectric breakdown electric field of 8 MV /. It is cm or more and 10 MV / cm or less. Further, this silicon oxide film has a density of 2.50 g / cm 3 or more and 2.65 g / cm 3 or less, and the ratio of Si—OH bond and Si—H bond contained therein is 1% or less.
  • the silicon-based insulating film 212 manufactured by the manufacturing method of the present invention has a film thickness of 100 nm or more, and realizes a low leakage current at a film thickness that is not easy to manufacture by the conventional manufacturing method, and has a dielectric breakdown electric field strength. Is increasing.
  • FIG. 9 is a chart illustrating the results of measuring the characteristics of a sample of a silicon oxide film, which is a specific silicon-based insulating film 212.
  • the horizontal axis shows the applied voltage to the silicon oxide film, and the vertical axis shows the leakage current of the silicon oxide film.
  • the “ ⁇ ” mark indicates that the output of the microwave supply source 53a is 1 kW, the chamber 53c having a capacity of 0.05 cubic meters is depressurized, the flow rate of H 2 is 5 sccm (scc / min), and the internal pressure is 20 Pa.
  • the leak current of the obtained sample is shown.
  • the “ ⁇ ” mark is the result obtained for the conventional silicon oxide film sample obtained by treating the film-forming material layer 12 at a high temperature of 900 ° C. and not performing the radical treatment with plasma, and the “+” mark is formed. This is the result obtained for a sample of a conventional silicon oxide film in which the film material layer 12 was treated at 400 ° C. and not subjected to radical treatment. It can be seen that the sample indicated by the “ ⁇ ” mark has insulation characteristics approaching those obtained by high temperature treatment at 900 ° C.
  • FIGS. 10A to 10C are charts showing the relationship between the shrinkage rate of the precursor layer 112 and the insulating characteristics during radical treatment, which are measured for a silicon oxide film which is a specific silicon-based insulating film 212.
  • FIG. 10A shows the insulating properties of the comparative example without radical treatment
  • FIG. 10B shows the insulating properties of the example in which the precursor layer 112 was shrunk by 8% by radical treatment
  • FIG. 10C shows the insulating properties of the precursor by radical treatment. Shows the insulating properties of the examples in which the body layer 112 is shrunk by 19%.
  • the resistance is large and the current density can be suppressed to a low level, but dielectric breakdown occurs at 5 MV / cm.
  • the shrinkage rate is 19% shown in FIG. 10C, the resistance is large and the current density can be suppressed to a low level, and dielectric breakdown does not occur even at an electric field strength close to 10 MV / cm.
  • FIG. 11 is a cross-sectional view illustrating an example of a semiconductor device 10 which is a circuit device obtained by the method for manufacturing an insulating film.
  • the semiconductor device 10 is a MOSFET which is a kind of power device.
  • the substrate 11 is, for example, SiC
  • the back surface side of the substrate 11 is the drain layer 11a of n + SiC
  • the drain electrode 39 is formed on the back surface
  • the front surface side of the substrate 11 is the drift layer 11b of n - SiC.
  • a pair of pSiC body regions 24 and a pair of n + SiC source regions 25 are formed so as to be embedded in the drift layer 11b.
  • a gate oxide film (insulating film) 33 is formed so as to cover the local region of the drift layer 11b sandwiched between the pair of source regions 25, and the gate electrode 35 is formed on the gate oxide film (insulating film) 33.
  • Wiring 31 is connected to the pair of source regions 25.
  • the body region 24, the source region 25, the gate oxide film 33, the gate electrode 35, etc. correspond to the device portion 11d shown in FIG. 2A and are covered with the silicon-based insulating film 212.
  • an insulating layer can be formed in advance between the wiring 31 and the surface of the substrate 11.
  • the hydrogen radicals formed by the high-density plasma PZ include a step of exposing the surface of the layer 112 to a high-density plasma PZ containing hydrogen radicals, and the hydrogen radicals have a density of 5 ⁇ 10 14 / cm 3 or more and hydrogen.
  • the product of the radical irradiation time and the density is 25 ⁇ 10 14 minutes / piece / cm3 or more.
  • the insulation of the silicon-based insulating film 212 is not deteriorated without deteriorating the characteristics of the substrate 11 or the device portion 11d formed on the substrate 11 before the formation of the silicon-based insulating film 212.
  • the characteristics can be improved.
  • the present invention has been described above in accordance with the embodiments, the present invention is not limited to the above-described embodiments, and can be implemented in various embodiments without departing from the gist thereof.
  • the target for incorporating the insulating film is not limited to the MOSFET shown in FIG. 5, but may be an IGBT or other power device, and may be various LSIs other than the power device, and may be elements constituting each part of the display. You can also.
  • the insulating film is not limited to the one used as an interlayer insulating film, and may be a functional layer such as a gate insulating film constituting a circuit device.
  • the insulating film of the present application or a silicon-based insulating film can be used as the insulating film adjacent to the floating gate constituting the flash memory.
  • the insulating film can be incorporated as an insulating layer constituting each circuit element or an insulating layer for separating the elements, and insulates necessary parts inside and outside the element in a laminated body of a large number of circuit elements. It can be a functional multi-layer structure.
  • the film-forming material forming the film-forming material layer 12 is not limited to the above-mentioned inorganic silicon compound such as hydrogen silsesquioxysan, and may be an organosilicon compound such as organic SOG.
  • the exposure step as described above is also performed on the film-forming material formed by CVD or the like using tetraethoxysilane (TEOS) or the film-forming material formed by CVD or the like using silane (SiH 4 ). This makes it possible to obtain a silicon oxide film having excellent insulating properties.
  • the deposition process and the heating process are performed collectively. That is, the substrate is placed on the substrate stage maintained at 150 ° C. or higher and 400 ° C. or lower, and the SiO 2 film is deposited.
  • the insulating film is not limited to the SiO 2 film, and may be silicon nitride (Si 3 N 4 ). Silicon nitride is formed, for example, by plasma CVD. The reaction formula is shown below, and the treatment temperature is, for example, about 600 ° C. 3SiH 4 + 4NH 3 ⁇ Si 3 N 4 + 12H 2 3SiCl 2 H 2 + 4NH 3 ⁇ Si 3 N 4 + 6HCl + 6H 2
  • the silicon nitride precursor layer 112 is exposed to, for example, a high density plasma PZ containing radicals having a density of 5 ⁇ 10 14 / cm 3 or higher, more preferably the radicals formed by the high density plasma PZ.
  • the precursor layer 112 can be condensed and a silicon nitride film is formed on the substrate 11 by radical treatment so that the product of the irradiation time and the density is 25 ⁇ 10 14 minutes / piece / cm 3 or more. Radical.
  • a high-density plasma PZ containing a radical of H is used to reduce the hydrogen concentration.
  • the silicon nitride film obtained from the precursor layer 112 exposed to the high-density plasma PZ is condensed by the influence of radicals and the insulating property is enhanced.
  • the insulating film is not limited to the SiO 2 film, but may be aluminum oxide (Al 2 O 3 ).
  • the aluminum oxide precursor layer 112 is exposed to, for example, a high density plasma PZ containing H radicals having a density of 5 ⁇ 10 14 / cm 3 or higher, more preferably radicals formed by the high density plasma PZ.
  • the precursor layer 112 can be condensed and an aluminum oxide film is formed on the substrate 11 by radical treatment so that the product of the irradiation time and the density of the plasma is 25 ⁇ 10 14 minutes / piece / cm 3 or more. Will be done.
  • a high-density plasma PZ containing a radical of H is used to reduce the hydrogen concentration.
  • the aluminum oxide film exposed to the high-density plasma PZ is condensed by the influence of radicals and the insulating property is enhanced.
  • the high-density plasma processing device 53 is not limited to the one shown in the figure, and various modifications are possible.
  • the processing target 14 is supported on the rotation stage 153s and rotates at a predetermined speed.
  • the high-density plasma processing unit 53A is arranged at a position displaced from the position directly above the rotation stage 153s. In this case, even if a high-density plasma PZ or a radical density distribution occurs in each part on the rotation stage 153s, the radicals can be uniformly supplied to the entire surface of the precursor layer 112 and irradiated by the rotation of the processing target 14. ..
  • the high-density plasma processing apparatus 453 shown in FIG. 12B has a structure in which two high-density plasma processing units 53A and 53B are combined. Also in this case, radicals can be uniformly supplied and irradiated on the entire surface of the precursor layer 112 by the rotation of the processing target 14 supported on the rotation stage 153s.
  • the method of applying the film-forming material on the substrate 11 is not limited to the spin coating method, and a brush or a roller can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

高温での加熱が不要な絶縁膜の製造方法を提供することを目的とする。絶縁膜の製造方法は、堆積工程と、加熱工程と、暴露工程とを含み、堆積工程では、基板11上に材料を堆積させ、加熱工程では、基板11を85℃以上450℃以下で加熱し、暴露工程では、基板11上の成膜材料層12の表面SA2に対して水素のラジカルを含むプラズマ82を照射することによって、成膜材料層12の構造中に水素を拡散させ成膜材料層12の成分と結合させる、プラズマ82により形成されるラジカルの照射時間と密度との積が25×1014分・個/cm3以上である。

Description

絶縁膜の製造方法
 本発明は、良好な絶縁特性を有する絶縁膜の製造方法に関し、特に高温のアニール処理を必要としない絶縁膜の製造方法に関する。
 基板又は半導体装置のパターン付き基板上に絶縁膜としてシリコン酸化膜が形成されることがある。シリコン酸化膜は、シランガス(SiH)やTEOS(テトラエトキシシラン)をソースとしてプラズマCVD(plasma-enhanced chemical vapor deposition)により形成されたり、基板にSOG(Spin on Glass)を塗布し、これをアニールすることで形成されたりすることが多い。
 プラズマCVDによるシリコン酸化膜の形成は、モノシランガスやジシランガスと酸素とを反応室内で電磁波照射によりプラズマ形成し、これにより、SiOを400℃程度に保った基板上に堆積させる方法である。この方法で形成されたシリコン酸化膜は、モノシランガスやジシランガスに水素が含まれることから絶縁破壊電界が低くなる傾向にある。
 また、プラズマCVDによるシリコン酸化膜の形成に際しては、基板の凹凸形状を保つために、900℃程度の温度で平坦化するプロセスが必要となる場合がある。
 一方、SOGを用いた場合には、緻密なシリコン酸化膜を得るために、800℃以上の高温で加熱する必要がある。
 これらの方法は、いずれも、高温での加熱が必要となるため、シリコン酸化膜の形成前に基板上に形成されるゲート酸化膜等の特性劣化をもたらす可能性がある。
 なお、特許文献1では、SOGの塗布後に比較的低温でアニールし、その後に、加速した高密度プラズマで表面処理することによって、SOGで形成した膜を物理的に凝縮する技術が開示されている。
特表2015-521375号公報
 前述した特許文献1で開示されている技術により、SOGを用いてシリコン酸化膜を形成することで、シリコン酸化膜の形成前に基板上に形成されたゲート酸化膜等の特性劣化を回避することが可能となる。
 しかしながら、特許文献1に記載された技術では、プラズマによりシリコン酸化膜にもたらされる電荷によって、シリコン酸化膜の形成前に基板上に形成されるゲート酸化膜等が静電破壊されることがある。
 また、特許文献1に記載された技術では、SOGで形成した膜を緻密化するためイオン種の衝撃を利用しており、SOGで形成した膜の表面のみ、具体的には、表面から50nm程度下までの表層のみが凝縮するにとどまる。このため、例えば100nm以上の絶縁膜が必要となる用途には適さない。なお、イオン種の衝撃を利用して膜を緻密化する場合、絶縁膜を厚くしようとすると、イオンの加速エネルギーを大きくする必要があり、結果的に、得られる誘電体層の絶縁性を高めつつ緻密度を高くすることは容易でない。
 本発明は、かかる事情を鑑みてなされたものであり、高温での加熱が不要な絶縁膜の製造方法等を提供することを目的とする。
 本発明の一態様によれば、絶縁膜の製造方法であって、基板上に成膜材料を堆積させて成膜材料層を形成する工程と、基板上の成膜材料層を85℃以上450℃以下で加熱する工程と、基板上の成膜材料層の表面に対して水素のラジカルを含むプラズマを照射することによって、成膜材料層の構造中に水素を拡散させ成膜材料層の成分と結合させる工程とを含み、プラズマにより形成されるラジカルの照射時間と密度との積が25×1014分・個/cm以上である、絶縁膜の製造方法が提供される。
 上記方法によれば、成膜材料層における成膜材料の化学的な骨格構造を基本的に維持しつつ水素を拡散させることで、拡散によって内部に浸透した水素を成膜材料層の成分と反応させて水素分子を離脱させることができる。こうして生成された水素分子は成膜材料層外に排出されるので、膜中水素濃度を極めて低くすることができ、成膜材料層の絶縁性を高めることができる。この際、高温での加熱を行う必要がないため、プラズマ照射処理後の成膜材料層に相当する絶縁膜の形成前の基板又はこれに形成された装置部分の特性を劣化させることなく、絶縁膜の絶縁特性を向上させることが可能となる。さらに、プラズマに含まれるラジカルの照射時間と密度との積が25×1014分・個/cm以上であれば、成膜材料層の構造中に水素を十分な密度で深くまで拡散させることができ、高い絶縁性を有する絶縁膜を得ることができる。
 本発明の具体的な態様によれば、ラジカルは、5Pa以上50Pa以下の圧力下でプラズマを立てることにより成膜材料層の表面に供給される。プラズマを5Pa以上とすることで、成膜材料層に接するプラズマ密度が高まってプラズマと成膜材料層との間の電位差を10V以下にすることが容易になり、プラズマ粒子が成膜材料層に打ち込まれて成膜材料層の構造を乱し成膜材料層の密度を低下させることを防止できる。一方、プラズマを50Pa以下とすることで、ラジカルの平均自由行程が比較的長く保たれ、発生したラジカルを有効に活用して成膜材料層に到達させることができる。
 本発明のさらに別の態様によれば、ラジカルは、水素原子Hである。
 本発明のさらに別の態様によれば、成膜材料は、SOGであり、SOGを基板上に塗布して堆積させる。SOGとすることで平坦な絶縁膜の形成が容易になる。
 本発明のさらに別の態様によれば、SOGは、はしご型ハイドロゲンシルセスキオキサンと、ハイドロゲンシロキサンと、シリケートとのうちの1つ以上である。この場合、絶縁膜はシリコン酸化膜となる。
 本発明のさらに別の態様によれば、加熱は、N又は不活性ガスの雰囲気中で行われる。これにより、脱水重縮合反応を生じさせる。
 本発明のさらに別の態様によれば、SOGは、シラザンである。この場合、絶縁膜はシリコン酸化膜となる。
 本発明のさらに別の態様によれば、加熱は、HOと、Oと、Hのいずれかの雰囲気中で行われる。この場合、加水分解又は酸化によって窒素を離脱させる重縮合反応を生じさせる。
 本発明のさらに別の態様によれば、基板は、半導体基板又は半導体装置のパターン付き基板である。この場合、半導体基板上に絶縁膜を形成することができ、或いは半導体装置のパターン上に絶縁膜を形成することができる。
 本発明の一態様によれば、基板上に形成された絶縁膜を備える回路装置であって、膜中水素濃度が1%以下である絶縁膜を備える回路装置が提供される。
 上記態様によれば、膜中水素濃度が1%以下である絶縁膜を備えるので、絶縁性能を高めることができる。
 本発明の具体的な態様によれば、上記回路装置は、水素濃度に関して、基板側で飽和し表面側で略ゼロとなる濃度パターンを複数繰り返す特性を有する。この場合、全体的に絶縁性を高めた厚い絶縁膜を提供することができる。
図1Aは、絶縁膜の製造方法の概要を説明する概念図であり、図1B~1Eは、各段階を説明する概念的な断面図である。 図2Aは、絶縁膜を形成する対象となる基板を説明する概念的な断面図であり、図2Bは、成膜材料層の形成を説明する図であり、図2Cは、加熱工程を説明する図であり、図2Dは、加熱工程によって得られる前駆体層等を説明する概念的な断面図である。 図3Aは、暴露工程を説明する図であり、図3Bは、暴露によって得られる絶縁膜を説明する概念的な断面図である。 図4A及び4Bは、積層型の絶縁膜の製造工程を説明する概念的な断面図である。 プラズマ出力とSiO膜の収縮率との関係を説明するチャートである。 高密度プラズマにより形成されるラジカルを用いた処理の効果を説明するチャートである。 図7A及び7Bは、ラジカル処理によるSiO膜の収縮を説明するチャートである。 積層型の絶縁膜の断面特性を説明する図である。 具体的な試料について特性を計測した結果を説明する図である。 図10A~10Cは、ラジカル処理に際しての成膜材料層の収縮率と絶縁特性との関係を示すチャートである。 実施形態の絶縁膜の製造方法によって得た回路装置の一例を説明する断面図である。 図12A及び12Bは、高密度プラズマを用いたラジカル処理装置の変形例を説明する図である。
 以下、図面を参照して、本発明に係る絶縁膜の製造方法等について詳細に説明する。
[1.絶縁膜の製造の概要]
 図1は、絶縁膜の製造の流れを示す概念図である。図1Aは、絶縁膜の製造方法の概要を説明する概念図であり、図1B~1Dは、図1Aに示す各段階(S1~S3)を説明する概念的な断面図である。絶縁膜の製造方法は、基板11上に成膜材料を堆積させて成膜材料層12を形成する堆積工程(S1)と、基板11上の成膜材料層12を85℃以上450℃以下の加熱環境81で加熱する加熱工程(S2)と、基板11上の成膜材料層12又は前駆体層の表面SA2に対して水素のラジカルを含むプラズマ82を照射する暴露工程(S3)とを含む。この暴露工程(S3)により、例えばシリコン酸化膜を製造する場合について説明すると、図1Eに示すように、成膜材料層12の構造FSに衝撃を与えないでネットワーク的な構造FS中に水素Hを拡散させ成膜材料層の成分である水素と結合させる。これによって形成された水素分子Hは成膜材料層12中を移動して成膜材料層12外に排出される。この際、成膜材料層12の構造FS中に処理用の水素Hを十分な密度で深くまで拡散させるという観点で、プラズマ82により形成されるラジカルの照射時間と密度との積は25×1014分・個/cm以上とすることが望ましい。
 以下、実施形態に係る絶縁膜の製造方法を、堆積工程、加熱工程、及び暴露工程に分けて説明する。
[2.堆積工程]
 図2Aに示すように、半導体その他の材料で形成された平板状の基板11を準備する。基板11は、例えば半導体基板であり、或いは半導体基板に対して装置部分11dのパターン11pを形成した半導体装置付き基板であってもよい。基板11は、半導体基板に限らず、セラミック基板、ガラス基板、耐熱樹脂基板、金属基板等であってもよく、それらの上に半導体装置を形成したものであってもよい。
 次に、図2Bに示すように、基板11の表面11s上に成膜材料を塗布し成膜材料層12を形成する。成膜材料は、SiOのような絶縁膜の前駆体材料や無機系のSOG(Spin on Glass)等の流動性の高い材料である。成膜材料としてSOGを用いる場合、基板11の表面11s上に平坦な表面を形成するようにSOGを塗布し乾燥させることで、成膜材料層12が形成される。これにより、基板11上に成膜材料層12が堆積される。成膜材料を基板11上に塗布する手法として例えばスピンコート法を用いることができる。基板11上に塗布された成膜材料は、比較的低温でプリベークしてもよい。
 成膜材料層12を形成するためのSOGは、例えば、膜成分としてはしご型ハイドロゲンシルセスキオキシサン、ハイドロゲンシロキサン、及びシリケートのうち、1つ以上を含む溶液であり、上記膜成分に有機系溶媒を加えて調整されたものである。SOGは、例えば、膜成分としてシラザンを含む溶液であってもよい。シラザンは、重合してポリマー状態となっている。
 はしご型ハイドロゲンシルセスキオキシサンは、下記式で表され、
Figure JPOXMLDOC01-appb-I000001
 ハイドロゲンシロキサンは、下記式で表され、
Figure JPOXMLDOC01-appb-I000002
 シリケートは、下記式で表される。
Figure JPOXMLDOC01-appb-I000003
 シラザンのポリマーは、下記いずれかの式で表される。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
なお、式中のm1、m2、及びm3は、重合度を表す数である。
[3.加熱工程]
 図2Cに示すように、成膜材料層12が堆積された基板11を雰囲気下で加熱する。基板11の加熱温度は、85℃以上450℃以下、好ましくは100℃以上200℃以下とする。この加熱により、成膜材料層12が固化され、図2Dに示すように、基板11上に前駆体層112が形成された状態となる。
 成膜材料層12が形成された基板11、つまり処理対象14の加熱は、例えば加熱炉51でベークすることで行われ、加熱に際して加熱炉51中に雰囲気ガスAGを供給することで雰囲気が制御される。成膜材料層12がはしご型ハイドロゲンシルセスキオキサン、ハイドロゲンシロキサン、シリケート等である場合、処理対象14の加熱は、N又は不活性ガスの雰囲気中で10分以上行われ、脱水重縮合反応を生じさせる。成膜材料層12がシラザンである場合、基板11の加熱は、HOと、Oと、Hとのいずれかの雰囲気中で10分以上行われ、加水分解又は酸化によって窒素を離脱させる重縮合反応を生じさせる。
 具体的な作製例について説明すると、例えばポリシラザンをスピンコートして得た処理対象14に対して、基板温度を85℃とし、大気圧で水蒸気をバブリングによって供給した後、基板温度を150℃とし、大気圧の窒素ガス雰囲気中で1時間アニールを行った。
 以上の加熱工程では、基板11の加熱温度が85℃以上であることにより、溶媒を確実に除去することができるだけでなく、成膜材料層12を構成するSOG等の材料の原子・分子に活性化エネルギーを与え、重合をある程度進行させ、Si-O-Si結合の割合を高めることができる。また、基板11の加熱温度が450℃以下であることにより、基板11自体の劣化や、装置部分11dの特性劣化が生じることを回避することができる。
[4.暴露工程]
 図3Aに示すように、前駆体層112が形成された基板11、つまり処理対象14の表面14aをプラズマに暴露する。より具体的には、処理対象14の表面14aを、密度が例えば5×1014/cm以上のラジカルを含む高密度プラズマPZに例えば5分から20分暴露する。これにより、処理対象14のラジカル処理に用いられる高密度プラズマPZ中のラジカルRDの照射時間と密度との積が25×1014分・個/cm以上となる。このとき、基板11の温度は、0℃~400℃の範囲で一定に保持される。また、プラズマと処理対象14の表面との間の電位差は、10V以下であることが好ましい。ラジカルRDの照射密度は、公知の手法によって決定することができる(T. Arai el al. (2016) "Selective Heating of Transition Metal Usings Hydrogen Plasma and Its Application to Formation of Nickel Silicide Electrodes for Silicon Ultralarge-Scale Integration Devices" Journal of Materials Science and Chemical Engineering, 2016, 4, 29-33参照)。なお、プラズマの圧力に応じてラジカルRDの照射密度も変化するが、プラズマ圧力その他の条件に応じたラジカル照射密度を、予め実験によって求めておくことができる。
 前駆体層112が形成された基板11、つまり処理対象14に対するラジカル暴露は、例えばマイクロ波供給源53aを備える高密度プラズマ処理装置53によって行われ、注入口である吸気ポート53iから導入されたラジカル・ソースガスIGがチャンバー53c内で定在波状態とされたマイクロ波によってラジカル化される。ラジカル・ソースガスIGは、H2、NH、HOの少なくとも1つであり、吸気ポート53iを介してチャンバー53c内に導入され、下部に設けた排気ポート53oを介してチャンバー53c外に排出される。高密度プラズマPZ中のラジカルは、マイクロ波によって励起されることによって得られるものであり、目的とするのは水素であるが他の成分を含んでいてもよい。なお、チャンバー53cの内面は、例えば石英製の誘電体管53gとなっており、この誘電体管53g内にマイクロ波が注入され、誘電体管53gの下部には、基板11を支持して温度を調整するステージ53sが配置されている。高密度プラズマ処理装置53としては、例えば国際公開第WO2003/096769号に開示のものを用いることができる。プラズマ暴露中、不用ガスがチャンバー53cの排気ポート53oから外部に排出され、誘電体管53g内に形成された高密度プラズマPZの状態が維持される。チャンバー53c内は、高密度プラズマPZによって5Pa~50Paに維持される。チャンバー53c内のプラズマを5Pa以上のプラズマ密度とすることで、プラズマと前駆体層112との間の電位差を10V以下にすることが容易になり、プラズマ粒子が前駆体層112に打ち込まれて前駆体層112の構造を乱し密度を低下させることを防止できる。一方、チャンバー53c内のプラズマを50Pa以下のプラズマ密度とすることで、ラジカルの平均自由行程が比較的長く保たれ、発生したラジカルを有効に活用して前駆体層112に到達させることができる。
 図3Bに示すように、図3Aに示す装置によって処理対象14を高密度プラズマPZに暴露する工程により、前駆体層112が凝縮され、基板11上にシリコン系絶縁膜212が形成される。高密度プラズマPZに暴露されたシリコン系絶縁膜212は、プラズマ中のHラジカルの影響で凝縮し、その収縮率は、未処理膜厚を150nmとして5%~25%である。このため、シリコン系絶縁膜212の膜厚d2は、前駆体層112の厚みdlに比較して5%~20%程度減少する。
 図5は、高密度プラズマ処理装置53の出力と前駆体層112の収縮率との関係を説明するチャートである。横軸は高密度プラズマ処理装置53のマイクロ波出力であり、縦軸は前駆体層112の収縮率を示す。この実験で、チャンバーへのHガスの供給量を10sccmとし、チャンバー内の圧力を20Paとし、プラズマつまりラジカルによる処理時間を5分とした。未処理(初期)のSiO膜の膜厚は、155nmであった。プラズマを供給するマイクロ波出力を1000Wとした場合、ラジカル密度は、3×1015/cmとなっている。この際、前駆体層112の収縮率は、15%となっている。このチャートから、前駆体層112の収縮率は、高密度プラズマ処理装置53のマイクロ波出力にほぼ比例していることが分かる。つまり、ラジカル・ソースガスIGであるHガス等の供給量が十分であり、かつ、過剰でなければ、高密度プラズマ処理装置53の出力に対して正の相関性を持たせるようにプラズマすなわち水素ラジカルの密度を増加させることができ、水素ラジカルの密度に応じて前駆体層112を収縮させることができることが分かる。
 図6は、高密度プラズマPZによるラジカル処理の時間的な効果を説明するチャートである。この場合、図3Aに示す工程によって基板11上の加熱処理後の前駆体層112(具体的にはシリコン酸化膜)に対して、プラズマを利用したラジカル処理を行わなかった比較試料と、チャンバーへのHの供給量を10sccmとし、チャンバー内の圧力を20Paとし、マイクロ波出力を1500Wとして、5分のラジカル処理を行った試料と、10分のラジカル処理を行った試料と、15分のラジカル処理を行った試料とについて、FTIRスペクトルを計測した。5分のラジカル処理を行った試料では、既にSi-H結合がほとんど観察されず、10分又は5分のラジカル処理を行った試料は、Si-H結合が全く観察されない。
 図7Aは、プラズマを利用したラジカル処理による前駆体層112(具体的にはシリコン酸化膜)の収縮を説明するチャートである。横軸はラジカル処理時間であり、縦軸は前駆体層112の収縮率を示す。以上のラジカル処理では、チャンバーへのHガスの供給量を10sccmとし、チャンバー内の圧力を20Paとし、ラジカルによる処理時間を1、2、3、4、5、10、15分とした。未処理(初期)のシリコン酸化膜の膜厚は、155nmであった。図7Bは、図7Aと同様にラジカル処理によるシリコン酸化膜の収縮を示すが、横軸がラジカル処理時間の平方根となっている。図7Aに示すように、ラジカル処理が5分以上となった段階で絶縁膜の収縮率が20数%となって飽和しつつあることが分かる。図7Bに示すように、5分程度までは処理時間の平方根に比例して収縮率が増加している。つまり、ラジカル処理の影響は、処理時間の平方根に比例して深さ方向に及んでいると言える。このことは、シリコン酸化膜の表面からの水素ラジカルの拡散長が水素ラジカルの供給時間に比例することに対応し、本現象は拡散によって支配されていることが分かる。5分以上では収縮率は飽和しているが、図5で説明したFTIR信号を考慮すれば、この飽和はSiO膜全体の脱水素処理が完了していることを意味している。
 以上では、Hの供給圧(つまりプラズマの供給圧)を20Paとした場合における処理時間及び収縮率の関係について説明したが、プラズマの供給圧を5Pa以上50Pa以下の範囲で変化させた場合にも同様の結果が得られている。これは、水素ラジカルがSiO膜のネットワーク構造又は骨格的構造を再配列させるような衝撃をSiO膜に与えることなく、SiO膜のネットワーク構造中に迅速に拡散していること示している。
 図3Aに戻って、基板11上の前駆体層112を高密度プラズマPZに暴露することにより、水素ラジカルが前駆体層112内へ迅速に拡散し、Si-H、Si-OH結合を減少させ、SiO膜の凝縮を促し、高密度のシリコン酸化膜となる。
 具体的には、加熱処理後のSiO前駆体において、水素を含むラジカルが表面から侵入して基板11に向けて拡散し、Si-H + H=Si- + Hや、Si-OH + H=Si-O- + Hといった、水素を離脱させる反応が進み、Si-O-Si結合を増加させることができる。
 前駆体層112の材料がはしご型ハイドロゲンシルセスキオキサン、ハイドロゲンシロキサン、シリケート等である場合、高密度プラズマPZによって供給されるラジカルは、前駆体層112の表面、すなわち表面14aから深さ600nmまで拡散する。よって、前駆体層112の厚みが600nm以下であれば、前駆体層112全体を高密度化することができ、SiOの割合が極めて高く絶縁性に優れるシリコン系絶縁膜212を得ることができる。前駆体層112の材料がシラザンである場合、高密度プラズマPZによって供給されるラジカルは、前駆体層112の表面、すなわち表面14aから深さ1.5μmまで拡散する。よって、前駆体層112の厚みが1.5μm以下であれば、前駆体層112全体を高密度化することができ、SiOの割合が極めて高く絶縁性に優れるシリコン系絶縁膜212を得ることができる。
 以上では、シリコン系絶縁膜212が単一の層からなることを前提として説明しているが、シリコン系絶縁膜212を多層積層して目的とするシリコン系絶縁膜としてもよい。この場合、堆積工程、加熱工程、及び暴露工程を繰り返して行うことで所期の厚みを有するシリコン酸化膜を得ることができる。前駆体層112の材料がはしご型ハイドロゲンシルセスキオキサン、ハイドロゲンシロキサン、シリケート等である場合、600nm以上の膜厚の前駆体層112に対応するシリコン酸化膜の形成を所望するときは、シリコン系絶縁膜212を多層積層する。一方、前駆体層112の材料がシラザンである場合、膜厚1.5μm以下の前駆体層112をラジカルに暴露することで、シリコン系絶縁膜212として、通常の用途を略カバーするシリコン酸化膜が得られる。
 多層積層の具体的手法について説明すると、図4Aに示すように、基板11上に形成されたシリコン系絶縁膜212の表面12a上に成膜材料を塗布し成膜材料層12を形成する。その後は、図2Cに示す加熱処理によって、図2Dの場合と同様に、シリコン系絶縁膜212上の成膜材料層12を前駆体層112とし、図3Aに示す暴露処理によって、第1のシリコン系絶縁膜212上の前駆体層112を第2のシリコン系絶縁膜212とし、図4Bに示すような積層型のシリコン系絶縁膜312を得る。
 図8は、積層型のシリコン系絶縁膜の水素濃度分布を説明する図である。横軸は、下地である基板11の表面11sからシリコン系絶縁膜312の表面に向けての距離を示し、縦軸は、シリコン系絶縁膜312中の水素濃度を示す。積層型のシリコン系絶縁膜312の場合、構成層EL単位で水素濃度の分布が繰り返される。各構成層ELにおいて、基板11に近い位置では水素濃度が最大値で飽和し、界面IFの内側やシリコン系絶縁膜312の表面に近い位置では、水素濃度が略ゼロに近い値まで減少している。構成層EL間の界面IFでは、水素濃度が急激に変化している。つまり、積層型のシリコン系絶縁膜312は、水素濃度に関して、基板11側で飽和し表面312a側で略ゼロとなる濃度パターンを複数繰り返す特性を有する。積層型のシリコン系絶縁膜312を構成する各構成層ELの形成に際して、各構成層ELの表面を介して高密度プラズマPZからの水素ラジカルが効率的に構成層EL内に拡散して水素と結合することで、Si-H結合を減少させつつSi-O結合を増加させることになるので、各構成層ELの底を除いて水素濃度を低くすることができ、構成層ELとしての絶縁性を高め、複数の構成層EL全体としても絶縁特性を示すものとすることができる。
[5.製造されたシリコン系絶縁膜]
 以上の工程により基板11上に形成されたシリコン系絶縁膜212,312は、シリコン酸化膜であり、リーク電流が1×10-8A/cm以下であり、かつ、絶縁破壊電界が8MV/cm以上10MV/cm以下である。また、このシリコン酸化膜は、密度が2.50g/cm以上2.65g/cm以下であり、含有されるSi-OH結合及びSi-H結合の割合が1%以下である。
 また、本発明の製造方法で製造されるシリコン系絶縁膜212は、膜厚が100nm以上であり、従来の製法で製造が容易でなかった膜厚において、低リーク電流を実現し絶縁破壊電界強度を高めている。
 図9は、具体的なシリコン系絶縁膜212であるシリコン酸化膜の試料について特性を計測した結果を説明するチャートである。横軸はシリコン酸化膜に対する印可電圧を示し、縦軸はシリコン酸化膜のリーク電流を示す。「○」印は、マイクロ波供給源53aの出力を1kWとし、容量が0.05立方メートルであるチャンバー53cを減圧しつつ、Hの流量を5sccm(scc/分)とし、内圧を20Paにして得た試料のリーク電流を示す。これらの試料では、リーク電流が1×10-8A/cm程度に抑えられており、絶縁破壊電界も9MV/cm程度となっていることが分かる。なお、「●」印は、成膜材料層12を900℃で高温処理しプラズマによるラジカル処理を行わなかった従来型のシリコン酸化膜の試料について得た結果であり、「+」印は、成膜材料層12を400℃で処理しラジカル処理を行わなかった従来型のシリコン酸化膜の試料について得た結果である。「○」印で示す試料では、900℃で高温処理した場合に迫る絶縁特性が得られていることが分かる。
 図10A~10Cは、具体的なシリコン系絶縁膜212であるシリコン酸化膜について計測した、ラジカル処理に際しての前駆体層112の収縮率と絶縁特性との関係を示すチャートである。図10Aは、ラジカル処理を行わなかった比較例の絶縁特性を示し、図10Bは、ラジカル処理によって前駆体層112が8%収縮した実施例の絶縁特性を示し、図10Cは、ラジカル処理によって前駆体層112が19%収縮した実施例の絶縁特性を示す。図10Bに示す収縮率8%の場合、抵抗が大きく電流密度を低く抑えることができるが、5MV/cmで絶縁破壊が生じている。図10Cに示す収縮率19%の場合、抵抗が大きく電流密度を低く抑えることができ、かつ、10MV/cmに近い電界強度でも絶縁破壊が生じていない。
[6.絶縁膜を備える半導体装置]
 図11は、上記絶縁膜の製造方法によって得られる回路装置である半導体装置10の一例を説明する断面図である。半導体装置10は、パワーデバイスの一種であるMOSFETである。この場合、基板11は、例えばSiCであり、基板11の裏面側がnSiCのドレイン層11aとなっており、裏面にドレイン電極39が形成され、基板11の表面側がnSiCのドリフト層11bとなっており、ドリフト層11bに埋め込まれるようにpSiCの一対のボディ領域24や、nSiCの一対のソース領域25が形成されている。一対のソース領域25に挟まれたドリフト層11bの局所領域を覆うようにゲート酸化膜(絶縁膜)33が形成され、その上にゲート電極35が形成されている。一対のソース領域25には、配線31が接続されている。ボディ領域24、ソース領域25、ゲート酸化膜33、ゲート電極35等は、図2Aに示す装置部分11dに相当し、シリコン系絶縁膜212で覆われている。なお、図示を省略しているが、配線31と基板11の表面との間には予め絶縁層を形成することができる。
 本実施形態の絶縁膜の製造方法では、基板11上に成膜材料層12を堆積させる工程と、基板11を85℃以上450℃以下で加熱する工程と、基板11上に形成された前駆体層112の表面に対して水素のラジカルを含む高密度プラズマPZに暴露する工程とを含み、高密度プラズマPZにより形成される水素ラジカルは、密度が5×1014/cm以上であり、水素ラジカルの照射時間と密度との積が25×1014分・個/cm以上である。この方法によれば、高温での加熱を行わないため、シリコン系絶縁膜212の形成前における基板11又はこれに形成された装置部分11dの特性を劣化させることなく、シリコン系絶縁膜212の絶縁特性を向上させることができる。
[7.その他]
 以上実施形態に即して本発明を説明したが、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。例えば絶縁膜を組み込む対象は、図5に示すMOSFETに限らずIGBTその他のパワーデバイスとすることができ、さらにパワーデバイス以外の各種LSIとすることができ、ディスプレイの各部を構成する要素とすることもできる。
 絶縁膜は、層間絶縁膜として用いられるものに限らず、回路デバイスを構成する例えばゲート絶縁膜のような機能層であってもよい。例えばフラッシュメモリーを構成するフローティングゲートに隣接する絶縁膜として、本願の絶縁膜又はシリコン系絶縁膜を用いることができる。絶縁膜は、集積回路として組み込まれる場合、個々の回路素子を構成する絶縁層や素子間を分離する絶縁層として組み込むことができ、多数の回路素子の積層体において素子内外の必要個所を絶縁する機能的多層構造とすることができる。
 成膜材料層12を形成する成膜材料は、上述したハイドロゲンシルセスキオキシサンのような無機ケイ素化合物に限らず、有機SOGのような有機ケイ素化合物であってもよい。さらに、テトラエトキシシラン(TEOS)を用いてCVD等で成膜した成膜材料や、シラン(SiH)を用いてCVD等で成膜した成膜材料についても、上記のような暴露工程を行うことで、優れた絶縁特性を有するシリコン酸化膜を得ることができる。この場合、堆積工程と加熱工程とが一括して行われる。つまり、150℃以上400℃以下に保った基板ステージ上に基板を設置しSiO膜を堆積する。
 絶縁膜は、SiO膜に限らず、窒化シリコン(Si)とすることができる。窒化シリコンは、例えばプラズマCVDによって形成される。その反応式は下記に示すものであり、処理温度は例えば600℃程度とされる。
3SiH+4NH→Si+12H
3SiCl+4NH→Si+6HCl+6H
この場合も、窒化シリコンの前駆体層112を、例えば密度が5×1014/cm以上のラジカルを含む高密度プラズマPZに暴露すること、より好ましくは高密度プラズマPZにより形成されるラジカルの照射時間と密度との積が25×1014分・個/cm以上となるようにラジカル処理することにより、前駆体層112を凝縮させることができ、基板11上に窒化シリコン膜が形成される。ここで、高密度プラズマPZとしてHのラジカルを含むものを用いて水素濃度を低下させる。高密度プラズマPZに暴露された前駆体層112から得た窒化シリコン膜は、ラジカルの影響で凝縮し絶縁性が高まる。
 絶縁膜は、SiO膜に限らず、酸化アルミニウム(Al)とすることもできる。この場合も、酸化アルミニウムの前駆体層112を、例えば密度が5×1014/cm以上のHラジカルを含む高密度プラズマPZに暴露すること、より好ましくは高密度プラズマPZにより形成されるラジカルの照射時間と密度との積が25×1014分・個/cm以上となるようにラジカル処理することにより、前駆体層112を凝縮させることができ、基板11上に酸化アルミニウム膜が形成される。ここで、高密度プラズマPZとしてHのラジカルを含むものを用いて水素濃度を低下させる。高密度プラズマPZに暴露された酸化アルミニウム膜は、ラジカルの影響で凝縮し絶縁性が高まる。
 高密度プラズマ処理装置53については、図示のものに限らず、様々な変形が可能である。例えば図12Aに示す高密度プラズマ処理装置353では、処理対象14は、回転ステージ153s上に支持され所定速度で回転する。一方、高密度プラズマ処理部53Aは、回転ステージ153sの直上方に対してずれた位置に配置されている。この場合、回転ステージ153s上の各部で高密度プラズマPZ又はラジカルの密度分布が生じていても、処理対象14の回転によって、前駆体層112の全面にラジカルを均一に供給し照射することができる。
 図12Bに示す高密度プラズマ処理装置453は、2つの高密度プラズマ処理部53A,53Bを組み合わせた構造を有する。この場合も、回転ステージ153s上に支持された処理対象14の回転によって、前駆体層112の全面にラジカルを均一に供給し照射することができる。
 成膜材料を基板11上に塗布する手法は、スピンコート法に限らず、刷毛やローラーを用いることができる。

Claims (9)

  1.  絶縁膜の製造方法であって、
     堆積工程と、加熱工程と、暴露工程とを含み、
     前記堆積工程では、基板上に成膜材料を堆積させて成膜材料層を形成し、
     前記加熱工程では、前記基板上の前記成膜材料層を85℃以上450℃以下で加熱し、
     前記暴露工程では、前記基板上の前記成膜材料層の表面に対して水素のラジカルを含むプラズマを照射することによって、前記成膜材料層の構造中に水素を拡散させ前記成膜材料層の成分と結合させ、
     前記プラズマにより形成されるラジカルの照射時間と密度との積が25×1014分・個/cm以上である
     絶縁膜の製造方法。
  2.  請求項1に記載の絶縁膜の製造方法において、
     前記ラジカルは、5Pa以上50Pa以下の圧力下でプラズマを立てることにより前記成膜材料層の表面に供給される
     絶縁膜の製造方法。
  3.  請求項1及び2のいずれか一項に記載の絶縁膜の製造方法において、
     前記ラジカルは、水素原子Hである
     絶縁膜の製造方法。
  4.  請求項1~3のいずれか一項に記載の絶縁膜の製造方法において、
     前記成膜材料は、SOGであり、
     前記SOGを前記基板上に塗布して堆積させる
     絶縁膜の製造方法。
  5.  請求項4に記載の絶縁膜の製造方法において、
     前記SOGは、はしご型ハイドロゲンシルセスキオキサンと、ハイドロゲンシロキサンと、シリケートとのうちの1つ以上である
     絶縁膜の製造方法。
  6.  請求項5に記載の絶縁膜の製造方法において、
     前記加熱は、N又は不活性ガスの雰囲気中で行われる
     絶縁膜の製造方法。
  7.  請求項6に記載の絶縁膜の製造方法において、
     前記SOGは、シラザンである
     絶縁膜の製造方法。
  8.  請求項7に記載の絶縁膜の製造方法において、
     前記加熱は、HO、Oと、Hのいずれかの雰囲気中で行われる
     絶縁膜の製造方法。
  9.  請求項1~7のいずれか一項に記載の絶縁膜の製造方法において、
     前記基板は、半導体基板又は半導体装置のパターン付き基板である
     絶縁膜の製造方法。
PCT/JP2021/044334 2020-12-09 2021-12-02 絶縁膜の製造方法 WO2022124199A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/266,110 US20240112906A1 (en) 2020-12-09 2021-12-02 Manufacturing method of insulation film
KR1020237020117A KR20230113330A (ko) 2020-12-09 2021-12-02 절연막의 제조 방법
CN202180082954.XA CN116711055A (zh) 2020-12-09 2021-12-02 绝缘膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204626A JP6918386B1 (ja) 2020-12-09 2020-12-09 絶縁膜の製造方法
JP2020-204626 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022124199A1 true WO2022124199A1 (ja) 2022-06-16

Family

ID=77172734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044334 WO2022124199A1 (ja) 2020-12-09 2021-12-02 絶縁膜の製造方法

Country Status (5)

Country Link
US (1) US20240112906A1 (ja)
JP (1) JP6918386B1 (ja)
KR (1) KR20230113330A (ja)
CN (1) CN116711055A (ja)
WO (1) WO2022124199A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116825A (ja) * 1990-09-06 1992-04-17 Fujitsu Ltd 半導体装置の製造方法
JP2000332010A (ja) * 1999-03-17 2000-11-30 Canon Sales Co Inc 層間絶縁膜の形成方法及び半導体装置
JP2006222171A (ja) * 2005-02-09 2006-08-24 Fujitsu Ltd 絶縁膜の形成方法、多層構造の形成方法および半導体装置の製造方法
JP2007227720A (ja) * 2006-02-24 2007-09-06 Fujitsu Ltd 半導体装置とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115136A (ja) * 1993-10-20 1995-05-02 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2001085420A (ja) * 1999-09-09 2001-03-30 Toshiba Corp 半導体装置およびその製造方法
JP5362176B2 (ja) * 2006-06-12 2013-12-11 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2009010043A (ja) * 2007-06-26 2009-01-15 Tokyo Electron Ltd 基板処理方法,基板処理装置,記録媒体
KR101523358B1 (ko) * 2009-12-04 2015-05-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
US20130288485A1 (en) 2012-04-30 2013-10-31 Applied Materials, Inc. Densification for flowable films

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116825A (ja) * 1990-09-06 1992-04-17 Fujitsu Ltd 半導体装置の製造方法
JP2000332010A (ja) * 1999-03-17 2000-11-30 Canon Sales Co Inc 層間絶縁膜の形成方法及び半導体装置
JP2006222171A (ja) * 2005-02-09 2006-08-24 Fujitsu Ltd 絶縁膜の形成方法、多層構造の形成方法および半導体装置の製造方法
JP2007227720A (ja) * 2006-02-24 2007-09-06 Fujitsu Ltd 半導体装置とその製造方法

Also Published As

Publication number Publication date
US20240112906A1 (en) 2024-04-04
JP6918386B1 (ja) 2021-08-11
KR20230113330A (ko) 2023-07-28
JP2022091642A (ja) 2022-06-21
CN116711055A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
KR0135486B1 (ko) 반도체 장치 제조방법
KR102438577B1 (ko) 고 품질 fcvd 막들을 위한 진보된 프로세스 플로우
KR101528832B1 (ko) 유동성 유전체 층의 형성 방법
KR102175046B1 (ko) 목표 조성 및 막 특성들을 갖는 SiC 부류의 막들을 획득하는 방법
KR100440233B1 (ko) 반도체 기판 처리방법
CN113707542A (zh) 使用远程等离子体处理使碳化硅膜致密化
JP5065054B2 (ja) 制御された二軸応力を有する超低誘電率膜および該作製方法
KR20150022677A (ko) 유기아미노실란 어닐링을 이용한 SiOCH 막의 형성 방법
US9570287B2 (en) Flowable film curing penetration depth improvement and stress tuning
JP2013521650A (ja) ラジカル成分cvdによる共形層
TW200413559A (en) Non-thermal process for forming porous low dielectric constant films
KR20110082025A (ko) 질화규소계 필름 또는 규소 탄소계 필름을 형성시키는 방법
WO1992012535A1 (en) Process for forming silicon oxide film
KR20090027675A (ko) 다공질막의 전구체 조성물 및 그 조제 방법, 다공질막 및 그 제조 방법, 그리고 반도체 장치
KR101361454B1 (ko) 반도체 소자의 실리콘 산화막 형성 방법
KR20150128870A (ko) 저-k 유전체 막들에 대한 기계적 강도 및 처리량을 개선하기 위한 uv 경화 프로세스
JP3149223B2 (ja) 成膜方法
WO2022124199A1 (ja) 絶縁膜の製造方法
JP3877472B2 (ja) 層間絶縁膜の形成方法
WO2023167031A1 (ja) 絶縁膜の形成方法および基板処理システム
JP5565314B2 (ja) 半導体装置の製造方法及びその製造装置
JP3612859B2 (ja) 絶縁膜の形成方法
JPH06283507A (ja) 半導体装置の製造方法
JPH06283516A (ja) 半導体装置の製造方法
JP2759655B2 (ja) シリコン酸化膜の改質方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18266110

Country of ref document: US

Ref document number: 202180082954.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237020117

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903303

Country of ref document: EP

Kind code of ref document: A1