WO2022116260A1 - 摄像头快速aa装置 - Google Patents

摄像头快速aa装置 Download PDF

Info

Publication number
WO2022116260A1
WO2022116260A1 PCT/CN2020/136051 CN2020136051W WO2022116260A1 WO 2022116260 A1 WO2022116260 A1 WO 2022116260A1 CN 2020136051 W CN2020136051 W CN 2020136051W WO 2022116260 A1 WO2022116260 A1 WO 2022116260A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
chip
lens
station
image
Prior art date
Application number
PCT/CN2020/136051
Other languages
English (en)
French (fr)
Inventor
杜慧林
曹葵康
蔡雄飞
孔晨晖
赵宁波
谷孝东
Original Assignee
苏州天准科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州天准科技股份有限公司 filed Critical 苏州天准科技股份有限公司
Publication of WO2022116260A1 publication Critical patent/WO2022116260A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/006Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing

Definitions

  • the invention relates to the field of camera assembly, in particular to a camera fast AA device.
  • Semiconductors are widely used in mobile phones, automobiles, sensors and other fields. As a core component of mobile phones and computers, semiconductors are increasingly technologically enhanced, social demands are gradually increasing, semiconductors tend to be miniaturized, and the number of manufacturing is huge.
  • Optical active alignment equipment that is, an Active Alignment Machine (AA) process
  • AA Active Alignment Machine
  • the AA process can adjust all six degrees of freedom of the camera to realize the alignment function, and is a commonly used adjustment process in the prior art.
  • the existing AA process basically starts with AA lens and chip, then the chip exits the AA area, starts to draw glue, and then returns to the AA area for UV curing after drawing the glue, and finally the finished module exits the AA area.
  • the whole process is serial, and the dispensing and AA share the chip transmission module.
  • the dispensing module is idle; when the dispensing module is running, the AA is idle; the equipment efficiency is limited and difficult to improve.
  • each chip needs to be energized and imaged, and the chip transfer module needs to be equipped with a movable energized fixture.
  • the fixture requires high stability and high cost. Due to the idle space, the fixture will affect the AA and AA. The accuracy of the curing of the dispensing module.
  • the present invention provides a camera rapid AA device, which improves assembly efficiency by fixing a reference chip at the AA station.
  • the present invention adopts the following technical solutions:
  • a hollow turntable transmission module includes a transmission table hollowed out in the middle, and a plurality of operation stations are arranged on the transmission table; a plurality of the operation stations are rotated around the transmission table; the The transfer table is used to transfer the chips to be loaded;
  • An image dispensing module the image dispensing module is arranged on the periphery of the transfer table, and when the operation station moves to the image dispensing module, the image dispensing module is located in the operation
  • the chips to be mounted on the station are dispensed;
  • a parallel module is arranged on the periphery of the transfer platform; the parallel module includes an AA station on which a reference chip is fixedly installed, and the reference chip and the lens to be mounted are located in the same position.
  • the AA station performs the AA action to obtain the current attitude data of the to-be-installed lens; the AA action is used to indicate that the reference chip and the to-be-installed lens are actively aligned;
  • a chip attitude measurement module is installed in the hollow of the transfer table, and the chip attitude measurement module is used to obtain the attitude data of the reference chip and the chip to be installed;
  • the attitude data of the lens, the attitude data of the reference chip and the chip to be installed are calculated to obtain the target attitude data of the lens to be installed;
  • the assembly module is located at the end of the parallel module and adjacent to the image dispensing module; the assembly module includes a curing module, when the operation station moves to When the module is assembled, the parallel module moves the lens to be mounted to a target position corresponding to the target attitude data and is cured by the curing module to obtain finished materials.
  • the parallel module further includes a first linear slide, a second linear slide, a first six-axis module and a second six-axis module;
  • the AA station is located on the first linear slide
  • the first six-axis module and the second six-axis module move on the first and second linear slides respectively;
  • the assembly module is located at One end of the first linear sliding table or the second linear sliding table, and the other end of the first linear sliding table or the second linear sliding table is provided with a lens loading module for loading the lens to be installed; the The first six-axis module and the second six-axis module alternately clamp the lens to be mounted from the lens loading module and transfer it to the AA station.
  • the transfer table further comprises a base with a circular structure, and the base extends outward to form a plurality of the operating stations.
  • the chip feeding module is arranged adjacent to the image dispensing module; when the operation station moves to the chip feeding module, the chip to be loaded It is transferred from the chip feeding module to the operating station under the action of the pick-and-place module.
  • the finished product blanking module is arranged adjacent to the assembly module; when the operation station moves to the finished product blanking module, the finished material is Under the action of the pick-and-unload module, it is moved from the operation station to the finished product unloading module.
  • the pick-and-place module includes a manipulator, and the manipulator is installed between the chip loading module and the finished product unloading module.
  • the chip attitude measurement module includes a support, a scanning slide, a 3D profile measurement module and an image measurement module; the support is fixedly installed in the hollow of the transfer table, and the scanning slide is connected to the The support is slidably connected; the 3D profile measurement module and the image measurement module are fixedly installed on the scanning slide.
  • the 3D profile measurement module and the image measurement module are located above the to-be-installed chip and the reference chip.
  • the image dispensing module includes an image positioning module and a dispensing module; when the operation station moves to the image dispensing module, the image positioning module locates the chip to be mounted after positioning The glue is dispensed using the glue dispensing module.
  • the lens loading module includes a lens tray to be installed and a lens waste tray, and the first six-axis module or the second six-axis module clamps the lens to be installed from the lens tray to be installed and Transfer to the AA station; when the AA station is judged to be unqualified for the lens to be installed after AA, the first six-axis module or the second six-axis module will clamp the unqualified lens to be installed and into the lens waste tray.
  • the camera fast AA device disclosed by the invention adopts a hollow turntable transfer module to realize the transfer of the chip to be loaded from the material to the finished material, and the chip attitude measurement module is installed in the hollow part of the transfer table, so as to improve the utilization rate of equipment space, Improve the compactness of the overall equipment;
  • the reference chip is fixedly arranged in the AA station, so that the lens to be installed performs AA action with the reference chip in the AA station, and the position and attitude data of the lens to be installed are obtained; the chip attitude measurement module respectively obtains the chip to be installed on the assembly module and The position and attitude data of the reference chip on the AA station is calculated according to the position and attitude data of the lens to be installed, the reference chip and the attitude data of the chip to be installed.
  • the chip to be installed with good glue is cured in the assembly module and the lens to be installed to obtain the finished material, without the need to energize and AA action on the chip to be installed on the assembly module; the assembly module does not need to be energized, and the lens and chip are in the process of curing There is no occlusion in the middle, which improves the curing effect;
  • the dispensing station and the AA process are executed in parallel to improve the efficiency of assembly; in addition, the reference chip is always fixed on the AA station, which simplifies the design of the fixture mechanism and circuit and reduces the assembly cost.
  • FIG. 1 is a schematic diagram of the overall structure of an embodiment of the present invention.
  • FIG. 2a is a schematic XY plane diagram of a chip attitude measurement module according to an embodiment of the present invention
  • 2b is a YZ plane schematic diagram of a chip attitude measurement module according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another state of the embodiment of the present invention.
  • 4a is a schematic diagram of the position state of the reference chip and the lens to be mounted in the AA station according to the embodiment of the present invention before the AA action;
  • 4b is a schematic diagram of the positional state of the reference chip and the lens to be mounted after the AA action in the AA station according to the embodiment of the present invention
  • FIG. 4c is a schematic diagram of the positional state of the chip to be mounted and the lens to be mounted in the assembly module according to the embodiment of the present invention.
  • a camera fast AA device includes a hollow turntable transmission module 10, an image dispensing module 20, a parallel module 30, a chip attitude measurement module 40 and an assembly Module 50.
  • the hollow turntable transfer module 10 includes a transfer table 110 hollowed out in the middle.
  • the transfer table 110 is provided with a number of operation stations 111 , and the plurality of operation stations 111 rotate around the transfer table 110 . , the rotation of the transfer table 110 is used to transfer the chips 1 to be loaded, and the chips 1 to be loaded to different operation stations.
  • the image dispensing module 20 is disposed on the periphery of the transfer table 110 .
  • the image dispensing module 20 dispenses the chips 1 to be mounted on the operation station 111 .
  • the parallel module 30 is disposed on the periphery of the transfer table 110 .
  • the parallel module 30 includes an AA station 310 , and a reference chip 2 is fixedly installed on the AA station 310 .
  • the action is to actively align the reference chip 2 with the lens 3 to be installed, and obtain the attitude data of the lens 3 to be installed currently.
  • AA station 310 can be used for imaging with relay lens and chart; it can also be used with collimator for imaging.
  • the chip attitude measurement module 40 is installed in the hollow of the transfer table 110, and the chip attitude measurement module 40 is used to obtain the attitude data of the reference chip 2 and the chip 1 to be installed, according to the attitude data of the lens 3 to be installed, the reference chip 2 and the to-be-installed chip 1.
  • the attitude data of the mounted chip 1 is calculated to obtain the target attitude data of the lens 3 to be mounted.
  • the assembly module 50 is located at the end of the parallel module 30 , the assembly module 50 and the image dispensing module 20 are distributed around the hollow turntable transmission module 10 , and the assembly module 50 is arranged adjacent to the image dispensing module 20 .
  • the assembly module 50 includes a curing module.
  • the parallel module 30 moves the lens 3 to be mounted to a target position corresponding to the target attitude data and uses the curing module to cure to obtain a finished product materials.
  • the transfer device of the chip 1 to be loaded is set as a hollow turntable structure, and the chip attitude measurement module 40 is installed in the hollow of the transfer table 110 of the hollow turntable structure, which improves the space utilization rate of the equipment and improves the overall equipment.
  • the ready-to-install chip 1 is cured in the assembly module 50 and the to-be-installed lens 3 to obtain finished materials, without the need to energize and AA action on the to-be-installed chip 1 on the assembly module 50; the assembly module 50 does not need to be powered on, the lens and the chip There is no blocking during the curing process, which improves the curing effect; the image dispensing module 20 and the AA action process of the AA station 310 are executed in parallel to improve the assembly efficiency.
  • the reference chip 2 is always fixed on the AA station 310, which simplifies the fixture The mechanism and circuit design reduces the assembly cost.
  • the parallel module 30 further includes a first linear slide 320, a second linear slide 340, a first six-axis module 330 and a second six-axis module 350; the AA station 310 between the first linear slide 320 and the second linear slide 340 ; the first six-axis module 330 and the second six-axis module 350 are respectively on the first linear slide 320 and the second linear slide 340 Movement; the assembly module 50 is located at one end of the first linear slide 320 or the second linear slide 340, and the other end of the first linear slide 320 or the second linear slide 340 is provided with a lens for loading the lens 3 to be mounted.
  • the to-be-installed lens 3 needs to be inspected before the to-be-installed lens 3 is assembled with the to-be-installed chip 1 to detect whether the to-be-installed lens 3 is a qualified product.
  • the six-axis module installed on the linear slide clamps and transmits the lens to be installed to the AA station 310, so that the lens to be installed 3 and the reference chip 2 perform AA action, and the lens to be installed 3 can be known after the AA action.
  • the six-axis module when the lens is qualified, the six-axis module will pick up the qualified lens and transfer it to the assembly module 50; when the lens is unqualified, the six-axis module will grasp and transfer the unqualified lens into the lens waste tray 920 of the lens loading module 90 .
  • the first six-axis module 330 and the second six-axis module 350 alternately clamp and transmit the lens 3 to be mounted, thereby improving the assembly efficiency of the camera.
  • the lens loading module 90 includes a lens tray 910 to be installed and a lens waste tray 920 , and the first six-axis module 330 or the second six-axis module 350 clamps the to-be-installed lens 3 from the to-be-installed lens tray 910 And send it to the AA station 310; when the AA station 310 determines that the lens to be installed after AA is unqualified, the first six-axis module 330 or the second six-axis module 350 will clamp and transmit the unqualified lens to be installed. into the lens waste tray 920.
  • the specific workflow of the parallel module 30 is as follows:
  • the second six-axis module 350 moves to the lens feeding module 90 to take the lens, while the first six-axis module 330 moves to the assembly module 50 to assemble the chip 1 to be mounted.
  • the turntable rotates to switch the next chip to be loaded to the assembly module 50 .
  • the second six-axis module 350 moves to the AA station 310, the lens 3 to be installed and the reference chip 2 perform AA action, and the first six-axis module 330 moves to the lens loading module 90 to pick up the waiting Install lens 3.
  • the second six-axis module 350 is moved to the assembly module 50 to be assembled with the chip 1 to be mounted, while the first six-axis module 330 is moved to the AA station 310, and the lens 3 to be mounted and the reference chip 2 are assembled. AA action.
  • the first six-axis module 330 or the second six-axis module 350 clamps the unqualified lens and transfers it to the lens waste tray 920 and re-clamps a new lens. , continue to repeat the first step, the second step and the third step.
  • the first six-axis module 330 and the second six-axis module 350 need to be The same AA station 310 is shared, so the first six-axis module 330 and the second six-axis module 350 need to perform an evasive movement during the process of transferring the lens 3 to be mounted to prevent collision.
  • the second six-axis module 350 can only perform the reclaiming operation of the lens to be installed, and cannot enter the AA station 310 to perform the AA action;
  • the six-axis module 330 moves toward the assembly module 50 after completing the AA action, the second six-axis module 350 can move to the AA station 310 and perform the AA action.
  • a chip feeding module 70 is further included, and the chip feeding module 70 is disposed adjacent to the image dispensing module 20 ; when the operation station 111 moves When reaching the chip loading module 70 , the chips 1 to be loaded are transferred from the chip loading module 70 to the operation station 111 under the action of the pick-and-place module.
  • the transfer table 110 further includes a base with a circular structure, and the base extends outward to form a plurality of operating stations 111 .
  • the transfer table 110 includes four operation stations 111, and the four operation stations 111 are respectively used to place the chip 1 to be loaded, the chip that has been glued, the assembled chip and the finished material.
  • the station is a cycle, that is, after the finished material is moved out of the transfer table 110 , when the vacant operation station 111 rotates to the chip feeding module 70 , the pick-and-unload module removes the chips to be loaded from the chip feeding module 70 .
  • the vacant operating station 111 when the chip 1 to be mounted is transferred to the image dispensing module 20, the chip 1 to be mounted is dispensed, and the dispensed chip is transferred to the assembly module 50 for assembly.
  • the pick-and-place module moves the finished material into the finished product unloading module 60, so that the finished material is moved out of the transfer table 110, and the cycle is repeated.
  • the operation station 111 protrudes from the base of the transfer table 110 .
  • the operation station 111 moves to the image dispensing module 20 , the assembly module 50 or other positions, it is convenient to operate, thereby improving the assembly efficiency.
  • the pick-and-place module includes a manipulator 80 , and the manipulator 80 is installed between the chip loading module 70 and the finished product unloading module 60 .
  • the manipulator 80 is used to pick up the chips to be loaded from the chip loading module 70 and place them in the operating station 111 ; the manipulator 80 is also used to pick up and place the finished materials from the operating station 111 of the transfer table 110 . in the finished product blanking module 60 .
  • the circular structure of the transfer table 110 enables the chip loading module 70 and the finished product unloading module 60 to share the same robot 80, which not only reduces the cost of the entire equipment, but also improves the assembly efficiency.
  • the chip attitude measurement module 40 includes a support 420, a scanning slide 410, a 3D profile measurement module 430 and an image measurement module 440; the support 420 is fixed
  • the scanning slide 410 is slidably connected to the support 420 , and the 3D contour measuring module 430 and the image measuring module 440 are fixedly installed on the scanning slide 410 .
  • the scanning slide 410 is a linear scanning slide, and the scanning slide 410 drives the image measuring module 440 to move to the chip to be mounted to measure the XY position of the cmos surface, as shown in FIG. 2a in the coordinate system, Get 2D measurement data.
  • the scanning slide 410 drives the 3D profile measurement module 430 to move to the chip to be mounted to perform scanning measurement with its cmos surface to obtain 3D measurement data.
  • the obtained 2D measurement data and 3D measurement data are fused to obtain the six-dimensional attitude data of the cmos surface of the chip 1 to be mounted.
  • it is also necessary to measure the six-dimensional attitude data of the reference chip 2.
  • the measurement method is the same as that of the chip to be mounted.
  • the scanning slide 410 is slidably connected to the support 420, and the scanning slide 410 is relative to the support
  • the seat 420 moves toward the reference chip 2 to measure the six-dimensional posture of the reference chip 2 .
  • the 3D profile measurement module 430 can choose a laser 3D sensor, with a single-axis linear module to achieve surface measurement; a line 3D mechanism light sensor can also be used to directly measure the entire chip surface; a point laser or a point spectral displacement sensor can also be used. Equipped with XY double-axis linear module to measure multiple points on the chip plane and calculate the surface shape.
  • the 3D profile measurement module 430 and the image measurement module 440 are located directly above the chip to be mounted 1 and the reference chip 2, and the space above the chip to be mounted 1 and the reference chip 2 is more flexible, reducing the complexity of the device.
  • the image measurement module 440 measures the reference chip to obtain plane coordinates (X1, Y1); measures the chip to be installed to obtain plane coordinates (X2, Y2);
  • the 3D profile measuring instrument 430 measures the reference chip to obtain the plane height Z1 angle (Tx1, Ty1); measures the chip 1 to be mounted to obtain the plane height Z2 angle (Tx2, Ty2);
  • the parallel module 30 picks up the lens 3 to be installed, and performs AA action with the reference chip 2 to obtain the optimal position and angle of the lens 3 to be installed: (X3, Y3, Z3, Tx3, Ty3);
  • the image dispensing module 20 includes an image positioning module 210 and a dispensing module 220.
  • the image positioning module 210 treats the After the chip 1 is installed and positioned, the glue dispensing operation is performed using the glue dispensing module 220 .
  • the operation station 111 on the transfer table 110 stops moving when it rotates to the image dispensing module 20.
  • the image dispensing module 20 dispenses the chips 1 to be mounted on the operation station 111.
  • the group 210 needs to dispense glue on the chip 1 to be loaded, and then uses the glue dispensing module 220 to dispense glue after obtaining the dispensing position of the chip 1 to be loaded.
  • the workflow of the camera fast AA device includes the following steps:
  • the first step is to place a fixed reference chip 2 in the AA station 310, and turn it on to light up, that is, the cmos chip is energized for imaging;
  • the manipulator 80 clamps the chip 1 to be loaded from the chip feeding module 70 and moves it to the operation station 111 on the transfer table 110 of the hollow turntable;
  • the hollow turntable rotates to transmit the chip 1 to be loaded to the image dispensing module 20, and the image dispensing module 20 performs a dispensing operation for the chip 1 to be loaded;
  • the hollow turntable rotates to transfer the dispensed chip 1 to be mounted to the assembly module 50, where the chip to be mounted 1 and the lens to be mounted 3 are assembled at the assembly module 50;
  • the chip attitude measurement module 40 simultaneously scans the attitude data of the reference chip 2 and the chip 1 to be mounted, and calculates the relative plane height and angle of the two;
  • the parallel module 30 clamps the lens 3 to be mounted and transmits it to the AA station 310, and calculates the relative position of the lens 3 to be mounted and the reference chip 2;
  • the relative positions of the lens to be installed and the chip to be installed are obtained, so as to obtain the target position of the lens to be installed;
  • the target position is obtained according to the seventh step, the parallel module moves the lens to be installed to the target position, and the UV curing lamp 510 is lit and cured;
  • the hollow turntable rotates so that the finished material is transferred to the finished product unloading module 60 , and the manipulator 80 moves the finished material to the finished product tray on the finished product unloading module 60 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lens Barrels (AREA)

Abstract

本发明提供一种摄像头快速AA装置,该装置采用空心转盘传送模组实现待装芯片从上料到成品物料的传送,将芯片姿态测量模组安装于传送台的镂空处,提高设备空间利用率,提高整体设备的紧凑性;根据获取的待装镜头的位置姿态数据、参考芯片和待装芯片的姿态数据计算得出位于组装模组上的待装镜头的目标姿态数据,以使得点好胶的待装芯片在组装模组与待装镜头进行固化得到成品物料,而无需对组装模组上的待装芯片进行通电与AA动作;组装模组无需通电,镜头与芯片在固化的过程中没有遮挡,提高固化效果;点胶工位与AA过程并行执行,提高组装的效率;另外,参考芯片始终固定于AA工位上,简化治具机构与线路设计,降低了组装成本。

Description

摄像头快速AA装置 技术领域
本发明涉及一种摄像头组装领域,尤其涉及摄像头快速AA装置。
背景技术
半导体在手机、汽车、传感器等领域有着非常广泛的运用,半导体作为手机、电脑的一种核心部件,技术日益增强,社会需求逐渐增大,半导体趋向小型化,而且制造数量巨大。
随着摄像头要求的逐步提升,对半导体的制造精度要求也随之提升。在半导体的制作过程中通常需要采用光学主动对准设备,即主动对准(Active Alignment Machine,AA)工艺。AA工艺可对摄像头的全部六个自由度进行调整,实现对准功能,是现有技术常用的调整工艺。
目前,现有的AA工艺基本都是先AA镜头与芯片,然后芯片退出AA区,开始画胶,画完胶后再返回AA区进行UV固化,最后成品模组并退出AA区。整个过程为串行,点胶与AA共用了芯片传输模组。当AA运行时,点胶模组闲置;点胶模组运行时,AA闲置;设备效率受限难以提升。
另外,在AA工艺过程中需要对每一个芯片通电成像,芯片传输模组需要配置可活动的通电治具,治具稳定性要求高,成本高,且由于空间闲置,治具会影响到AA和点胶模组固化的精度。
发明内容
有鉴于此,本发明提供摄像头快速AA装置,该设备通过在AA工位固定设有参考芯片,以提高组装效率。
为解决上述技术问题,本发明采用以下技术方案:
根据本发明实施例的摄像头快速AA装置,包括:
空心转盘传送模组,所述空心转盘传送模组包括中间镂空的传送台,所述 传送台上设有若干操作工位;若干所述操作工位以所述传送台为中心进行转动;所述传送台用于传送待装芯片;
影像点胶模组,所述影像点胶模组设置于所述传送台的***,所述操作工位运动至所述影像点胶模组时,所述影像点胶模组对位于所述操作工位上的待装芯片进行点胶;
并行模组,所述并行模组设置于所述传送台的***;所述并行模组包括AA工位,所述AA工位上固定安装有参考芯片,所述参考芯片与待装镜头在所述AA工位进行AA动作,得到当前所述待装镜头的姿态数据;所述AA动作用于表示所述参考芯片与所述待装镜头主动对准;
芯片姿态测量模组,所述芯片姿态测量模组安装于所述传送台的镂空处,所述芯片姿态测量模组用于获取所述参考芯片与待装芯片的姿态数据;根据所述待装镜头的姿态数据、所述参考芯片与待装芯片的姿态数据计算得出待装镜头的目标姿态数据;
组装模组,所述组装模组位于所述并行模组的端部,且与所述影像点胶模组相邻设置;所述组装模组包括固化模组,当所述操作工位运动至所述组装模组时,所述并行模组将待装镜头移至所述目标姿态数据对应的目标位置并利用所述固化模组进行固化,得到成品物料。
优选地,所述并行模组还包括第一直线滑台、第二直线滑台、第一六轴模组和第二六轴模组;所述AA工位位于所述第一直线滑台与第二直线滑台之间;所述第一六轴模组与第二六轴模组分别在所述第一直线滑台与第二直线滑台上运动;所述组装模组位于所述第一直线滑台或第二直线滑台的一端,所述第一直线滑台或第二直线滑台的另一端设有用于装载待装镜头的镜头上料模组;所述第一六轴模组与第二六轴模组交替从所述镜头上料模组上夹取待装镜头并传送至所述AA工位上。
优选地,所述传送台还包括圆形结构的基台,所述基台向外延伸形成若干所述操作工位。
优选地,还包括芯片上料模组,所述芯片上料模组与所述影像点胶模组相邻设置;当所述操作工位运动至所述芯片上料模组时,待装芯片在取放料模组的作用下从所述芯片上料模组上移送至所述操作工位上。
优选地,还包括成品下料模组,所述成品下料模组与所述组装模组相邻设置;当所述操作工位运动至所述成品下料模组时,成品物料在所述取放料模组的作用下从所述操作工位移动至所述成品下料模组上。
优选地,所述取放料模组包括机械手,所述机械手安装于所述芯片上料模组与成品下料模组之间。
优选地,所述芯片姿态测量模组包括支座、扫描滑台、3D轮廓测量模组和影像测量模组;所述支座固定安装于所述传送台的镂空处,所述扫描滑台与支座滑动连接;所述3D轮廓测量模组与影像测量模组固定安装于所述扫描滑台上。
优选地,所述3D轮廓测量模组与影像测量模组位于所述待装芯片与参考芯片的上方。
优选地,所述影像点胶模组包括影像定位模组与点胶模组;当所述操作工位运动至所述影像点胶模组时,所述影像定位模组对待装芯片进行定位后利用所述点胶模组进行点胶。
优选地,所述镜头上料模组包括待装镜头料盘与镜头废料盘,所述第一六轴模组或第二六轴模组从所述待装镜头料盘夹取待装镜头并传送至所述AA工位;当所述AA工位进行AA后的待装镜头判定不合格,则所述第一六轴模组或第二六轴模组将不合格待装镜头夹取并传送至所述镜头废料盘内。
本发明的上述技术方案至少具有如下有益效果之一:
本发明公开的摄像头快速AA装置,该装置采用空心转盘传送模组实现待装芯片从上料到成品物料的传送,将芯片姿态测量模组安装于传送台的镂空处,提高设备空间利用率,提高整体设备的紧凑性;
通过在AA工位固定设置有参考芯片使得待装镜头在AA工位与参考芯片进行AA动作,得到待装镜头的位置姿态数据;芯片姿态测量模组分别获取组装模组上的待装芯片与AA工位上的参考芯片的位置姿态数据,根据待装镜头的位置姿态数据、参考芯片和待装芯片的姿态数据计算得出位于组装模组上的待装镜头的目标姿态数据,以使得点好胶的待装芯片在组装模组与待装镜头进行固化得到成品物料,而无需对组装模组上的待装芯片进行通电与AA动作;组装模组无需通电,镜头与芯片在固化的过程中没有遮挡,提高固化效果;
点胶工位与AA过程并行执行,提高组装的效率;另外,参考芯片始终固定于AA工位上,简化治具机构与线路设计,降低了组装成本。
附图说明
图1为本发明实施例的整体结构示意图;
图2a为本发明实施例的芯片姿态测量模组的XY平面示意图;
图2b为本发明实施例的芯片姿态测量模组的YZ平面示意图;
图3为本发明实施例的另一个状态的结构示意图;
图4a为本发明实施例的AA工位中参考芯片与待装镜头在AA动作之前的位置状态示意图;
图4b为本发明实施例的AA工位中参考芯片与待装镜头在AA动作之后的位置状态示意图;
图4c为本发明实施例的组装模组中待装芯片与待装镜头的位置状态示意图。
附图标记:
1、待装芯片,2、参考芯片,3、待装镜头,10、空心转盘传送模组,110、传送台,111、操作工位,20、影像点胶模组,210、影像定位模组,220、点胶模组,30、并行模组,310、AA工位,320、第一直线滑台,330、第一六轴模组,340、第二直线滑台,350、第二六轴模组,40、芯片姿态测量模组,410、扫描滑台,420、支座,430、3D轮廓测量模组,440、影像测量模组,50、组装模组,510、固化灯,60、成品下料模组,70、芯片上料模组,80、机械手,90、镜头上料模组,910、待装镜头料盘,920、镜头废料盘。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
下面首先结合附图具体描述根据本发明实施例的摄像头快速AA装置。
具体如图1至图4c所示,本发明实施例的一种摄像头快速AA装置,包括空心转盘传送模组10、影像点胶模组20、并行模组30、芯片姿态测量模组40和组装模组50。
其中,如图1、图3所示,空心转盘传送模组10包括中间镂空的传送台110,传送台110上设有若干操作工位111,若干操作工位111以传送台110为中心进行转动,传送台110的转动用于传送待装芯片1,将待装芯片1传送至不同操作工位。
影像点胶模组20设置于传送台110的***,操作工位111运动至影像点胶模组20时,影像点胶模组20对位于操作工位111上的待装芯片1进行点胶。
并行模组30设置于传送台110的***,并行模组30包括AA工位310,AA工位310上固定安装有参考芯片2,参考芯片2与待装镜头3在AA工位310上进行AA动作即参考芯片2与待装镜头3主动对准,得到当前待装镜头3的姿态数据。AA工位310可配合中继透镜和chart图成像;还可配合平行光管成像。
芯片姿态测量模组40安装于传送台110的镂空处,芯片姿态测量模组40用于获取参考芯片2与待装芯片1的姿态数据,根据待装镜头3的姿态数据、参考芯片2以及待装芯片1的姿态数据计算得出待装镜头3的目标姿态数据。
组装模组50位于并行模组30的端部,组装模组50与影像点胶模组20以空心转盘传送模组10为中心进行分布,组装模组50与影像点胶模组20相邻设置。组装模组50包括固化模组,当操作工位111运动至组装模组50时,并行模组30将待装镜头3移至目标姿态数据对应的目标位置并利用固化模组进行固化,得到成品物料。本发明将待装芯片1的传送装置设置为空心转盘结构,且将芯片姿态测量模组40安装于空心转盘结构的传送台110的镂空处,提高了设备的空间利用率且提高了整体设备的紧凑性;另外,根据待装镜头3的位置姿态数据、参考芯片2和待装芯片1的姿态数据计算得出位于组装模组50上的待装镜头3的目标姿态数据,以使得点好胶的待装芯片1在组装模组50与待装镜头3进行固化得到成品物料,而无需对组装模组50上的待装芯片1进行通电与AA动作;组装模组50无需通电,镜头与芯片在固化的过程中 没有遮挡,提高固化效果;影像点胶模组20与AA工位310的AA动作过程并行执行,提高组装的效率,参考芯片2始终固定于AA工位310上,简化治具机构与线路设计,降低了组装成本。
在本发明的一个实施例中,并行模组30还包括第一直线滑台320、第二直线滑台340、第一六轴模组330和第二六轴模组350;AA工位310位于第一直线滑台320与第二直线滑台340之间;第一六轴模组330与第二六轴模组350分别在第一直线滑台320与第二直线滑台340上运动;组装模组50位于第一直线滑台320或第二直线滑台340的一端,第一直线滑台320或第二直线滑台340的另一端设有用于装载待装镜头3的镜头上料模组90;第一六轴模组330与第二六轴模组350交替从镜头上料模组90上夹取待装镜头3并传送至AA工位310上。在本实施例中,在待装镜头3与待装芯片1组装之前需要对待装镜头3进行检测,检测待装镜头3是否为合格品。安装于直线滑台上的六轴模组将待装镜头夹取并传送至AA工位310,使得待装镜头3与参考芯片2进行AA动作,通过AA动作后可得知该待装镜头3是否为合格镜头,当该镜头为合格镜头时,六轴模组将合格镜头夹取并传送至组装模组50;当该镜头为不合格品时,六轴模组将不合镜头夹取并传送至镜头上料模组90的镜头废料盘920内。本实施例通过第一六轴模组330与第二六轴模组350交替夹取待装镜头3并对其进行传送,提高摄像头的组装效率。
具体地,镜头上料模组90包括待装镜头料盘910与镜头废料盘920,第一六轴模组330或第二六轴模组350从待装镜头料盘910夹取待装镜头3并传送至AA工位310;当AA工位310进行AA后的待装镜头判定不合格,则第一六轴模组330或第二六轴模组350将不合格待装镜头夹取并传送至镜头废料盘920内。
并行模组30的工作流程具体如下步骤:
第一步骤、第二六轴模组350运动至镜头上料模组90处取镜头,同时第一六轴模组330运动至组装模组50处对待装芯片1进组装,组装完成后,空心转盘旋转,将下一个待装芯片切换至组装模组50处。
第二步骤、第二六轴模组350运动至AA工位310处,待装镜头3与参考芯片2进行AA动作,同时第一六轴模组330运动至镜头上料模组90处拾取待 装镜头3。
第三步骤、第二六轴模组350运动至组装模组50处与待装芯片1进行组装,同时第一六轴模组330运动至AA工位310,待装镜头3与参考芯片2进行AA动作。
第四步骤、在AA工位310如果检测到不合格镜头,则第一六轴模组330或第二六轴模组350夹取不合格镜头并传送至镜头废料盘920内并重新夹取新的待装镜头,继续重复第一步骤、第二步骤和第三步骤。
需要说明的是:因为第一直线滑台320与第二直线滑台340之间安装有且仅有一个AA工位310,故第一六轴模组330与第二六轴模组350需要共用同一个AA工位310,因此第一六轴模组330与第二六轴模组350在对待装镜头3进行传送的过程中需要进行避位运动,防止碰撞。比如:第一六轴模组330在AA工位310进行AA动作时,第二六轴模组350只能进行待装镜头的取料操作,不能进入AA工位310进行AA动作;当第一六轴模组330完成AA动作后向组装模组50运动时,第二六轴模组350可以移动至AA工位310并进行AA动作。
在本发明的一个实施例中,如图1、图3所示,还包括芯片上料模组70,芯片上料模组70与影像点胶模组20相邻设置;当操作工位111运动至芯片上料模组70时,待装芯片1在取放料模组的作用下从芯片上料模组70上移送至操作工位111上。
还包括成品下料模组60,成品下料模组60与组装模组50相邻设置;当操作工位111运动至成品下料模组60时,成品物料在取放料模组的作用下从操作工位111移动至成品下料模组60上。
在本发明的一个实施例中,如图1、图3所示,传送台110还包括圆形结构的基台,基台向外延伸形成若干操作工位111。在本实施例中,传送台110上包括四个操作工位111,四个操作工位111分别用于放置待装芯片1、点好胶的芯片、组装好的芯片以及成品物料,四个操作工位为一个循环即当成品物料移出传送台110后,该空置的操作工位111转动至芯片上料模组70处时,取放料模组从芯片上料模组70内将待装芯片移至空置的操作工位111内,当待装芯片1传送至影像点胶模组20处时,待装芯片1进行点胶,点完胶的芯 片被传送至组装模组50进行组装,当组装完成后成品物料运动至成品下料模组60处时,取放料模组将成品物料移至成品下料模组60内,使得成品物料移出传送台110,如此循环。操作工位111突出于传送台110的基台,当操作工位111运动至影像点胶模组20、组装模组50或其他位置时便于操作,提高组装效率。
在本发明的一个实施例中,取放料模组包括机械手80,机械手80安装于芯片上料模组70与成品下料模组60之间。机械手80用于从芯片上料模组70上夹取待装芯片并将其放置于操作工位111内;机械手80还用于从传送台110的操作工位111上将成品物料夹取并放置于成品下料模组60内。圆形结构的传送台110使得芯片上料模组70与成品下料模组60可以共用同一个机械手80,不仅降低了整个设备的成本,而且提高了组装效率。
在本发明的一个实施例中,如图2a、2b所示,芯片姿态测量模组40包括支座420、扫描滑台410、3D轮廓测量模组430和影像测量模组440;支座420固定安装于传送台110的镂空处,扫描滑台410与支座420滑动连接;3D轮廓测量模组430与影像测量模组440固定安装于扫描滑台410上。在本实施例中,扫描滑台410为直线扫描滑台,扫描滑台410带动影像测量模组440运动至待装芯片处以测量cmos表面的XY位置,如图2a所示坐标系中的位置,得到2D测量数据。扫描滑台410带动3D轮廓测量模组430运动至待装芯片处以其cmos表面进行扫描测量,得到3D测量数据。对获得的2D测量数据与3D测量数据就进行融合,得到待装芯片1的cmos表面的六维姿态数据。在第一次测量的过程中,还需要对参考芯片2的六维姿态数据进行测量,测量方式与对待装芯片的相同,扫描滑台410与支座420滑动连接,扫描滑台410相对于支座420向参考芯片2方向运动,以对参考芯片2的六维姿态进行测量。
3D轮廓测量模组430可选用激光3D传感器,配单轴直线模组实现面型测量;还可选用线三维机构光传感器,直接测量整个芯片面型;还可以选用点激光或点光谱位移传感器,配XY双轴直线模组,测量芯片平面多个点,计算面型。
优选地,3D轮廓测量模组430与影像测量模组440位于待装芯片1与参考芯片2的正上方,待装芯片1与参考芯片2的上方空间较为灵活,降低该装 置的复杂度。
具体地,如图4a、4b、4c所示,包括如下步骤:
第一步骤、影像测量模组440测量参考芯片,得到平面坐标(X1,Y1);测量待装芯片,得到平面坐标(X2,Y2);
第二步骤、3D轮廓测量仪430测量参考芯片,得到平面高度Z1角度(Tx1,Ty1);测量待装芯片1得到平面高度Z2角度(Tx2,Ty2);
第三步骤、并行模组30拾取待装镜头3,与参考芯片2进行AA动作,得到待装镜头3的最佳位置与角度:(X3,Y3,Z3,Tx3,Ty3);
第四步骤、则待装镜头3在待装芯片1上的目标位置为:(X4,Y4,Z4,Tx4,Ty4);其中,X4=X3-X1+X2,Y4=Y3-Y1+Y2,Z4=Z3-Z1+Z2,Tx4=Tx3-Tx1+Tx2,Ty4=Ty3-Ty1+Ty2。
需要说明的是:只需要在第一次测量时获取参考芯片的六维姿态数据,以用于获得待装镜头的目标姿态数据;在后面从测量过程中只需要获取待装芯片的六维姿态数据即可,因为参考芯片的六维姿态数据是不变的。
在本发明的一个实施例中,影像点胶模组20包括影像定位模组210与点胶模组220,当操作工位111运动至影像点胶模组20处时,影像定位模组210对待装芯片1进行定位后利用点胶模组220进行点胶操作。传送台110上的操作工位111旋转至影像点胶模组20处时停止运动,影像点胶模组20对操作工位111上待装芯片1进行点胶,在点胶之前,影像定位模组210需要对待装芯片1进行点胶,获取待装芯片1的点胶位置后利用点胶模组220对其进行点胶。
本发明提供的摄像头快速AA装置的工作流程包括如下步骤:
第一步骤、在AA工位310放置一固定的参考芯片2,并通电点亮即cmos芯片通电成像;
第二步骤、机械手80从芯片上料模组70上夹取待装芯片1并移至空心转盘的传送台110上的操作工位111内;
第三步骤、空心转盘旋转将待装芯片1传送至影像点胶模组20处,影像点胶模组20对待装芯片1进行点胶操作;
第四步骤、点胶完成后空心转盘进行旋转将点好胶的待装芯片1传送至组装模组50处,在组装模组50处待装芯片1与待装镜头3进行组装;
第五步骤、芯片姿态测量模组40同时扫描参考芯片2与待装芯片1的姿态数据,并计算二者的平面相对高度与夹角;
第六步骤、并行模组30夹取待装镜头3并传送至AA工位310,并计算待装镜头3与参考芯片2的相对位置;
第七步骤、根据第五步骤与第六步骤的计算结果,得出待装镜头与待装芯片的相对位置,以获得待装镜头的目标位置;
第八步骤、根据第七步骤获得目标位置,并行模组将待装镜头移至目标位置,UV固化灯510进行点亮固化;
第九步骤、固化完成后,空心转盘旋转使得成品物料传送至成品下料模组60处,机械手80将成品物料移至成品下料模组60上的成品料盘内。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种摄像头快速AA装置,其特征在于,包括:
    空心转盘传送模组(10),所述空心转盘传送模组(10)包括中间镂空的传送台(110),所述传送台(110)上设有若干操作工位(111);若干所述操作工位(111)以所述传送台(110)为中心进行转动;所述传送台(110)用于传送待装芯片(1);
    影像点胶模组(20),所述影像点胶模组(20)设置于所述传送台(110)的***,所述操作工位(111)运动至所述影像点胶模组(20)时,所述影像点胶模组(20)对位于所述操作工位(111)上的待装芯片(1)进行点胶;
    并行模组(30),所述并行模组(30)设置于所述传送台(110)的***;所述并行模组(30)包括AA工位(310),所述AA工位(310)上固定安装有参考芯片(2),所述参考芯片(2)与待装镜头(3)在所述AA工位(310)进行AA动作,得到当前所述待装镜头(3)的姿态数据;所述AA动作用于表示所述参考芯片(2)与所述待装镜头(3)主动对准;
    芯片姿态测量模组(40),所述芯片姿态测量模组(40)安装于所述传送台(110)的镂空处,所述芯片姿态测量模组(40)用于获取所述参考芯片(2)与待装芯片(1)的姿态数据;根据所述待装镜头(3)的姿态数据、所述参考芯片(2)与待装芯片(1)的姿态数据计算得出待装镜头(3)的目标姿态数据;
    组装模组(50),所述组装模组(50)位于所述并行模组(30)的端部,且与所述影像点胶模组(20)相邻设置;所述组装模组(50)包括固化模组,当所述操作工位(111)运动至所述组装模组(50)时,所述并行模组(30)将待装镜头(3)移至所述目标姿态数据对应的目标位置并利用所述固化模组进行固化,得到成品物料。
  2. 如权利要求1所述的摄像头快速AA装置,其特征在于,所述并行模组(30)还包括第一直线滑台(320)、第二直线滑台(340)、第一六轴模组(330)和第二六轴模组(350);所述AA工位(310)位于所述第一直线滑台(320)与第二直线滑台(340)之间;所述第一六轴模组(330)与第二六轴模组(350)分别在所述第一直线滑台(320)与第二直线滑台(340)上运动;所述组装模 组(50)位于所述第一直线滑台(320)或第二直线滑台(340)的一端,所述第一直线滑台(320)或第二直线滑台(340)的另一端设有用于装载待装镜头(3)的镜头上料模组(90);所述第一六轴模组(330)与第二六轴模组(350)交替从所述镜头上料模组(90)上夹取待装镜头(3)并传送至所述AA工位(310)上。
  3. 如权利要求1所述的摄像头快速AA装置,其特征在于,所述传送台(110)还包括圆形结构的基台,所述基台向外延伸形成若干所述操作工位(111)。
  4. 如权利要求1所述的摄像头快速AA装置,其特征在于,还包括芯片上料模组(70),所述芯片上料模组(70)与所述影像点胶模组(20)相邻设置;当所述操作工位(111)运动至所述芯片上料模组(70)时,待装芯片(1)在取放料模组的作用下从所述芯片上料模组(70)上移送至所述操作工位(111)上。
  5. 如权利要求4所述的摄像头快速AA装置,其特征在于,还包括成品下料模组(60),所述成品下料模组(60)与所述组装模组(50)相邻设置;当所述操作工位(111)运动至所述成品下料模组(60)时,成品物料在所述取放料模组的作用下从所述操作工位(111)移动至所述成品下料模组(60)上。
  6. 如权利要求5所述的摄像头快速AA装置,其特征在于,所述取放料模组包括机械手(80),所述机械手(80)安装于所述芯片上料模组(70)与成品下料模组(60)之间。
  7. 如权利要求1所述的摄像头快速AA装置,其特征在于,所述芯片姿态测量模组(40)包括支座(420)、扫描滑台(410)、3D轮廓测量模组(430)和影像测量模组(440);所述支座(420)固定安装于所述传送台(110)的镂空处,所述扫描滑台(410)与支座(420)滑动连接;所述3D轮廓测量模组(430)与影像测量模组(440)固定安装于所述扫描滑台(410)上。
  8. 如权利要求7所述的摄像头快速AA装置,其特征在于,所述3D轮廓测量模组(430)与影像测量模组(440)位于所述待装芯片(1)与参考芯片(2)的上方。
  9. 如权利要求1所述的摄像头快速AA装置,其特征在于,所述影像点胶模组(20)包括影像定位模组(210)与点胶模组(220);当所述操作工位(111) 运动至所述影像点胶模组(20)时,所述影像定位模组(210)对待装芯片(1)进行定位后利用所述点胶模组(220)进行点胶。
  10. 如权利要求2所述的摄像头快速AA装置,其特征在于,所述镜头上料模组(90)包括待装镜头料盘(910)与镜头废料盘(920),所述第一六轴模组(330)或第二六轴模组(350)从所述待装镜头料盘(910)夹取待装镜头(3)并传送至所述AA工位(310);当所述AA工位(310)进行AA后的待装镜头(3)判定不合格,则所述第一六轴模组(330)或第二六轴模组(350)将不合格待装镜头夹取并传送至所述镜头废料盘(920)内。
PCT/CN2020/136051 2020-12-03 2020-12-14 摄像头快速aa装置 WO2022116260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011395044.0 2020-12-03
CN202011395044.0A CN112576586B (zh) 2020-12-03 2020-12-03 摄像头快速aa装置

Publications (1)

Publication Number Publication Date
WO2022116260A1 true WO2022116260A1 (zh) 2022-06-09

Family

ID=75127827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136051 WO2022116260A1 (zh) 2020-12-03 2020-12-14 摄像头快速aa装置

Country Status (2)

Country Link
CN (1) CN112576586B (zh)
WO (1) WO2022116260A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117641082A (zh) * 2023-11-25 2024-03-01 东莞市吉硕自动化设备有限公司 车载摄像头aa自动调芯设备
CN117812248A (zh) * 2023-12-28 2024-04-02 珠海广浩捷科技股份有限公司 一种双工位八头vcm测试机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245825B (zh) * 2021-06-16 2022-03-11 苏州天准科技股份有限公司 用于摄像头双摄aa的组装方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130047396A1 (en) * 2011-08-29 2013-02-28 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
CN105721859A (zh) * 2014-12-03 2016-06-29 宁波舜宇光电信息有限公司 一种影像模组的调芯设备及其应用方法
CN106425451A (zh) * 2016-10-26 2017-02-22 珠海市广浩捷精密机械有限公司 一种摄像头模组装配设备
CN108469663A (zh) * 2018-05-17 2018-08-31 深圳市泰品科技有限公司 一种镜头组件与芯片组件的组装工艺和对位装置
CN109317354A (zh) * 2018-10-16 2019-02-12 珠海市广浩捷精密机械有限公司 一种摄像头三工位自动aa组装机及其工作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130059153A (ko) * 2011-11-28 2013-06-05 현대자동차주식회사 접착제를 이용한 금속재와 고분자 복합재 결합체의 제조방법
CN105864247B (zh) * 2016-05-17 2018-10-12 安庆友仁电子有限公司 一种高精度晶体管组装点胶机
CN106239902A (zh) * 2016-08-31 2016-12-21 奥普镀膜技术(广州)有限公司 光学组件自动贴片组装机
CN107838672A (zh) * 2017-10-17 2018-03-27 歌尔股份有限公司 光学模组组装设备及方法
CN107748445B (zh) * 2017-10-27 2020-07-24 歌尔股份有限公司 一种小型有源光学模组的装配装置及装配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130047396A1 (en) * 2011-08-29 2013-02-28 Asm Technology Singapore Pte. Ltd. Apparatus for assembling a lens module and an image sensor to form a camera module, and a method of assembling the same
CN105721859A (zh) * 2014-12-03 2016-06-29 宁波舜宇光电信息有限公司 一种影像模组的调芯设备及其应用方法
CN106425451A (zh) * 2016-10-26 2017-02-22 珠海市广浩捷精密机械有限公司 一种摄像头模组装配设备
CN108469663A (zh) * 2018-05-17 2018-08-31 深圳市泰品科技有限公司 一种镜头组件与芯片组件的组装工艺和对位装置
CN109317354A (zh) * 2018-10-16 2019-02-12 珠海市广浩捷精密机械有限公司 一种摄像头三工位自动aa组装机及其工作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117641082A (zh) * 2023-11-25 2024-03-01 东莞市吉硕自动化设备有限公司 车载摄像头aa自动调芯设备
CN117641082B (zh) * 2023-11-25 2024-05-24 东莞市吉硕自动化设备有限公司 车载摄像头aa自动调芯设备
CN117812248A (zh) * 2023-12-28 2024-04-02 珠海广浩捷科技股份有限公司 一种双工位八头vcm测试机

Also Published As

Publication number Publication date
CN112576586A (zh) 2021-03-30
CN112576586B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2022116260A1 (zh) 摄像头快速aa装置
TWI615253B (zh) 移載裝置
CN111290088B (zh) 发光元件的透镜耦合方法及装置
CN107134418B (zh) 倒装芯片键合装置及键合方法
CN107134419B (zh) 倒装芯片键合装置及其键合方法
CN108962791B (zh) 一种芯片对准贴装装置及其方法
WO2022116259A1 (zh) 摄像头快速aa组装方法及装置
CN110091340B (zh) 一种晶圆取放机械手
WO2023070283A1 (zh) 晶圆键合设备及方法
CN111308624A (zh) 用于多路单模cob模块的透镜耦合方法及设备
CN105552005A (zh) 一种面向芯片的倒装键合贴装设备
CN113245809A (zh) 多摄像头组装设备
US20240170318A1 (en) Teaching Substrate for Production and Process-Control Tools
CN113745966B (zh) 阵列式反射镜自动耦合封装方法
CN114619308A (zh) 一种晶圆抛光***、装载方法及其使用方法
WO2021187002A1 (ja) 検査装置、検査方法およびワーク搬送装置
US20130230371A1 (en) Processing apparatus and device manufacturing method
JP2002118398A (ja) プリント配線板の位置検出方法
CN111354668A (zh) 硅片传输***及方法
KR101360007B1 (ko) 플립칩 본딩장치
CN107665827B (zh) 芯片键合装置和方法
CN108356432A (zh) 光学扫描和激光钻孔设备
KR101431867B1 (ko) 노광 장치 및 디바이스 제조 방법
TWI578410B (zh) 用以將積體電路轉移至封裝之封裝裝置及方法
CN113245825B (zh) 用于摄像头双摄aa的组装方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964105

Country of ref document: EP

Kind code of ref document: A1