WO2022116259A1 - 摄像头快速aa组装方法及装置 - Google Patents

摄像头快速aa组装方法及装置 Download PDF

Info

Publication number
WO2022116259A1
WO2022116259A1 PCT/CN2020/136050 CN2020136050W WO2022116259A1 WO 2022116259 A1 WO2022116259 A1 WO 2022116259A1 CN 2020136050 W CN2020136050 W CN 2020136050W WO 2022116259 A1 WO2022116259 A1 WO 2022116259A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
chip
lens
assembly
data
Prior art date
Application number
PCT/CN2020/136050
Other languages
English (en)
French (fr)
Inventor
孔晨晖
蔡雄飞
曹葵康
杜慧林
王阳
魏小寅
Original Assignee
苏州天准科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州天准科技股份有限公司 filed Critical 苏州天准科技股份有限公司
Publication of WO2022116259A1 publication Critical patent/WO2022116259A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • the invention relates to the field of semiconductor manufacturing, in particular to a method and a device for assembling a rapid AA of a camera.
  • Semiconductors are widely used in mobile phones, automobiles, sensors and other fields. As a core component of mobile phones and computers, semiconductors are increasingly technologically enhanced, social demands are gradually increasing, semiconductors tend to be miniaturized, and the number of manufacturing is huge.
  • Optical active alignment equipment that is, an Active Alignment Machine (AA) process
  • AA Active Alignment Machine
  • the AA process can adjust all six degrees of freedom of the camera to realize the alignment function, and is a commonly used adjustment process in the prior art.
  • the existing AA process basically starts with AA lens and chip, then the chip exits the AA area, starts to draw glue, and then returns to the AA area for UV curing after drawing the glue, and finally the finished module exits the AA area.
  • the whole process is serial, and the dispensing and AA share the chip transmission module.
  • the dispensing module is idle; when the dispensing module is running, the AA is idle; the equipment efficiency is limited and difficult to improve.
  • each chip needs to be energized and imaged, and the chip transfer module needs to be equipped with a movable energized fixture.
  • the fixture requires high stability and high cost. Due to the idle space, the fixture will affect the AA and AA. The accuracy of the curing of the dispensing module.
  • the present invention provides a method and device for rapid AA assembly of a camera, which improves assembly efficiency by fixing a reference chip at the AA station.
  • the present invention adopts the following technical solutions:
  • the chip to be loaded is transferred to the dispensing station under the action of the transmission module and the glue is dispensed to obtain the first chip to be loaded;
  • the first chip to be loaded is transferred to the assembly station under the action of the transfer module
  • the lens is transmitted to the AA station under the action of the transmission module, a reference chip is arranged at the AA station, and the reference chip is fixedly installed at the AA station; the lens and the reference chip are actively aligned with each other. Accurate, obtain the position and attitude data of the lens after the active alignment action, which is recorded as the first data;
  • the data measuring instrument obtains the attitude data of the first chip to be mounted and the reference chip at the assembly station, which is recorded as second data; wherein, the second data includes the surface of the first chip to be mounted and the reference chip The plane coordinates, relative height and plane angle of ;
  • the lens is transmitted to the assembly station under the action of the transmission module; the target position of the lens is calculated according to the first data and the second data, and the lens and the first to-be-installed are calculated.
  • the chip is cured to obtain a finished material.
  • the step after the chip to be loaded is transferred to the dispensing station under the action of the transfer module, it further includes:
  • the glue dispensing module dispenses glue on the positioned chips to be loaded to obtain the first chips to be loaded.
  • a reference chip is arranged at the AA station, and the lens and the reference chip perform an active alignment action; it also includes:
  • the reference chip is fixedly installed in the lighting fixture at the AA station;
  • the transmission assembly moves the lens to just above the lighting fixture
  • the active alignment of the lens and the reference chip is performed under the action of the image acquisition mechanism and the adjustment mechanism at the AA station to obtain the first data.
  • the step data measuring instrument obtains the attitude data of the first chip to be mounted and the reference chip at the assembly station, it also includes:
  • the image measuring instrument of the data measuring instrument measures the plane position data of the first chip to be mounted and the reference chip.
  • the step data measuring instrument obtains the attitude data of the first chip to be mounted and the reference chip at the assembly station, it also includes:
  • the 3D profiler of the data measuring instrument measures the relative height and plane angle of the first chip to be mounted and the reference chip.
  • the method further includes:
  • the chip to be loaded is taken out from the chip tray mechanism of the chip feeding station and transferred to the dispensing station by the transfer module.
  • the step lens before the step lens is transferred to the AA station, it also includes:
  • the lens or the chip is clamped by the clamping jaws on the six-axis module of the transmission module, so as to transmit the two.
  • the present invention also provides a camera fast AA device, comprising:
  • the glue dispensing station includes an image positioning module and a glue dispensing module; the image positioning module is used for positioning the chip, and the glue dispensing module dispenses glue on the positioned chip, obtain the first chip to be loaded;
  • the AA station includes an image acquisition mechanism, an adjustment mechanism and a lighting fixture, and a reference chip is fixedly installed on the lighting fixture; under the action of the image acquisition mechanism and the adjustment mechanism, the lens and the The reference chip performs an active alignment action;
  • the assembly station which is arranged between the dispensing station and the AA station;
  • the assembly station includes a data measuring instrument and a curing lamp, and the data measuring instrument is used to measure the first The attitude data of the mounted chip and the lens;
  • the curing light is used for curing the glue between the lens and the first chip to be mounted;
  • the transmission module is used for transferring the chip to be mounted and the lens between the glue dispensing station, the AA station and the assembly station.
  • it also includes:
  • the chip feeding station is arranged adjacent to the dispensing station; the chip feeding station includes a chip feeding tray mechanism for storing chips;
  • the lens feeding station is arranged adjacent to the AA station; the lens feeding station includes a lens feeding tray mechanism for storing lenses;
  • the finished material unloading station is set adjacent to the assembly station; the finished material unloading station is used for unloading the finished material on the assembly station.
  • a reference chip is fixedly arranged at the AA station, so that the lens is actively aligned with the reference chip at the AA station, so as to obtain the position and attitude data of the lens, that is, the first data;
  • the assembly station does not need to be powered on, and the lens and chip are in the There is no blocking during the curing process, which improves the curing effect;
  • the dispensing station and the AA process are executed in parallel to improve the efficiency of assembly; in addition, the reference chip is always fixed on the AA station, which simplifies the design of the fixture mechanism and circuit and reduces the assembly cost.
  • Fig. 1 is the overall flow chart of a kind of camera quick AA assembly method provided by the embodiment of the present invention
  • FIG. 2 is an overall logic diagram of a method for assembling a camera fast AA according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a camera fast AA device according to an embodiment of the present invention.
  • 4a is a schematic diagram of the positional state of the reference chip and the lens before the active alignment action in the AA station according to the embodiment of the present invention
  • 4b is a schematic diagram of the position state of the reference chip and the lens after the active alignment action in the AA station according to the embodiment of the present invention
  • 4c is a schematic diagram of the positional state of the chip to be mounted and the lens in the assembly station according to the embodiment of the present invention.
  • Chip to be installed 2. The first chip to be installed, 3. Reference chip, 4. Lens, 10. Chip loading station, 20, Dispensing station, 210, Dispensing module, 220, Image positioning module Group, 30, Assembly Station, 310, Curing Light, 320, 3D Profiler, 330, Image Measuring Instrument, 40, AA Station, 410, Image Acquisition Mechanism, 50, Six-axis Module, 60, Lens Loader bit, 70, the finished material blanking station.
  • the camera quick AA assembly method includes the following steps:
  • the chip 1 to be loaded is transferred to the glue dispensing station 20 under the action of the transmission module and glue is dispensed to obtain the first chip 2 to be loaded.
  • the first chip 2 to be mounted is transferred to the assembly station 30 under the action of the transfer module.
  • the lens 4 is transmitted to the AA station 40 under the action of the transmission module, the reference chip 3 is set at the AA station 40, and the reference chip 3 is fixedly installed at the AA station 40; the lens 4 and the reference chip 3 are actively aligned
  • the position and attitude data of the lens after the active alignment action is obtained, which is recorded as the first data.
  • the data measuring instrument obtains the attitude data of the first chip 2 to be mounted and the reference chip 3 at the assembly station 30, and is recorded as the second data; wherein, the second data includes the surface of the first chip 2 to be mounted and the reference chip 3. Plane coordinates, relative heights, and plane angles.
  • the lens 4 is transferred to the assembly station 30 under the action of the transmission module; the target position of the lens is calculated according to the first data and the second data, and the lens 4 and the first chip 2 to be mounted are cured to obtain a finished product materials.
  • the reference chip 3 is fixedly arranged at the AA station 40, so that the lens is actively aligned with the reference chip 3 at the AA station 40, so as to obtain the position and attitude data of the lens 4, that is, the first data;
  • the position and attitude data of the first chip to be mounted on the 30 and the reference chip 3 on the AA station 40 are the second data, and the calculation of the first data and the second data is obtained.
  • the lens 4 on the assembly station 30 is The target position, so that the chip 1 to be mounted that has been glued is cured at the assembly station 30 and the lens 4 to obtain a finished material, without the need to energize and actively align the first chip to be mounted 2 on the assembly station 30;
  • the assembly station 30 does not need to be powered on, and the lens 4 and the chip are not blocked during the curing process, which improves the curing effect;
  • the dispensing station 20 is executed in parallel with the AA process, which improves the efficiency of assembly; in addition, the reference chip 3 is always fixed on the AA station 40, which simplifies the design of the fixture mechanism and circuit and reduces the assembly cost.
  • step S1 further includes:
  • the image positioning module 220 is used to position the chip 1 to be loaded; the glue dispensing module 210 is used to dispense glue to the positioned chip 1 to be loaded to obtain the first chip 2 to be loaded.
  • the transmission module transmits the chip 1 to be mounted to the dispensing station 20, and the chip 1 to be mounted is dispensed at the dispensing station 20 to obtain the first chip 2 to be mounted, and the first chip to be mounted 2 is the ready to be mounted after dispensing Chip 1.
  • the glue dispensed on the first chip to be mounted 2 is cured glue, that is, it is in a fluid state before the curing lamp 310 is cured.
  • step S3 it also includes:
  • the reference chip 3 is fixedly installed in the lighting fixture at the AA station 40;
  • the transmission assembly moves the lens 4 to just above the lighting fixture
  • the active alignment of the lens 4 and the reference chip 3 is performed under the action of the image acquisition mechanism 410 and the adjustment mechanism at the AA station 40 to obtain the first data.
  • the reference chip 3 is fixedly installed in the lighting fixture of the AA station 40 , and the transmission component moves the lens directly above the reference chip 3 to perform an active alignment action.
  • the active alignment action is completed, the current posture data of the current lens 4, that is, the first data, is acquired.
  • step S4 it also includes:
  • the image measuring instrument 330 of the data measuring instrument measures the plane position data of the first chip 2 to be mounted and the reference chip 3 .
  • the 3D profiler 320 of the data measuring instrument measures the relative height and plane angle of the first chip 2 to be mounted and the reference chip 3 .
  • the image measuring instrument 330 measures the reference chip 3 to obtain plane coordinates (X1, Y1); measures the first to-be-installed chip 2 to obtain plane coordinates (X2, Y2);
  • the 3D profiler 320 measures the reference chip 3 to obtain the plane height Z1 angle (Tx1, Ty1); measures the first chip 2 to be mounted to obtain the plane height Z2 angle (Tx2, Ty2);
  • the transmission module picks up the lens 4, and performs an active alignment action with the reference chip 3 to obtain the optimal position and angle of the lens 4: (X3, Y3, Z3, Tx3, Ty3);
  • step S1 before step S1, it further includes:
  • the chips 1 to be loaded are taken out from the chip feeder mechanism of the chip loading station 10 and transferred to the dispensing station 20 by the transfer module.
  • the chip feeder mechanism is used to store several chips 1 to be loaded.
  • step S3 it also includes picking up the lens 4 from the lens tray mechanism of the lens loading station 60 and using the transmission module to transmit the lens to the AA station 40, so that the lens 4 and the reference chip 3 are actively aligned. quasi-action.
  • the transmission module is preferably a six-axis module 50, and the six-axis module 50 includes a clamping claw, and the clamping claw is used to clamp the lens 4 or the chip to clamp and transmit the lens 4 or the chip.
  • the six-axis module 50 includes three translation axes, XYZ, and three rotation axes around XYZ. The clamping jaws at the ends of the axes are used to pick up and fix the lens 4 .
  • the present invention also provides a camera fast AA device, as shown in FIG. 3 , including: a dispensing station 20, an AA station 40, an assembly station 30 and a transmission module;
  • the glue dispensing station 20 includes an image positioning module 220 and a glue dispensing module 210; the image positioning module 220 is used to position the chip, and the glue dispensing module 210 dispenses glue to the positioned chip to obtain the first to-be-positioned chip. Install chip 2.
  • the AA station 40 includes an image acquisition mechanism 410, an adjustment mechanism and a lighting fixture.
  • the lighting fixture is fixedly mounted with a reference chip 3; under the action of the image acquisition mechanism 410 and the adjustment mechanism, the lens 4 and the reference chip 3 are actively engaged. Align the action.
  • the AA station 40 can be used with relay lens and chart imaging; it can also be used with collimator for imaging.
  • the assembly station 30 is arranged between the dispensing station 20 and the AA station 40; the assembly station 30 includes a data measuring instrument and a curing lamp 310, and the data measuring instrument is used to measure the attitude data of the first chip 2 to be mounted and the lens 4 ;
  • the curing lamp 310 is used for curing the glue between the lens 4 and the first chip 2 to be mounted.
  • the data measuring instrument includes an image measuring instrument 330 for measuring 2D data and a 3D profiler 320 for measuring 3D data.
  • the 3D profiler 320 can be equipped with a laser 3D sensor, and a single-axis linear module can be used to realize surface measurement;
  • the sensor can directly measure the entire chip surface shape; you can also choose a point laser or point spectral displacement sensor, equipped with an XY dual-axis linear module, to measure multiple points on the chip plane and calculate the surface shape.
  • the transfer module is used for transferring the chip to be mounted and the lens 4 between the glue dispensing station 20 , the AA station 40 and the assembly station 30 .
  • the transmission module should be built with a multi-axis linear motion platform; or a multi-axis manipulator.
  • the device further includes: a chip feeding station 10, a lens feeding station 60 and a finished material feeding station 70;
  • the chip feeding station 10 is disposed adjacent to the glue dispensing station 20; the chip feeding station 10 includes a chip feeding tray mechanism for storing chips.
  • the lens feeding station 60 is arranged adjacent to the AA station 40 ; the lens feeding station 60 includes a lens feeding tray mechanism for storing the lens 4 .
  • the finished material unloading station 70 is disposed adjacent to the assembly station 30 ; the finished material unloading station 70 is used for unloading the finished material on the assembly station 30 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

本发明提供一种摄像头快速AA组装方法,该组装方法通过在AA工位固定设置有参考芯片使得镜头在AA工位与参考芯片进行主动对准动作,得到镜头的位置姿态数据即第一数据;分别通过获取组装工位上的待装芯片与AA工位上的参考芯片的位置姿态数据即第二数据,通过对第一数据与第二数据的计算得出位于组装工位上的镜头的目标位置,以使得点好胶的待装芯片在组装工位与镜头进行固化得到成品物料,而无需对组装工位上的待装芯片进行通电与主动对准动作;组装工位无需通电,镜头与芯片在固化的过程中没有遮挡,提高固化效果;点胶工位与AA过程并行执行,提高组装的效率;另外,参考芯片始终固定于AA工位上,简化治具机构与线路设计,降低了组装成本。

Description

摄像头快速AA组装方法及装置 技术领域
本发明涉及一种半导体制造领域,尤其涉及摄像头快速AA组装方法及装置。
背景技术
半导体在手机、汽车、传感器等领域有着非常广泛的运用,半导体作为手机、电脑的一种核心部件,技术日益增强,社会需求逐渐增大,半导体趋向小型化,而且制造数量巨大。
随着摄像头要求的逐步提升,对半导体的制造精度要求也随之提升。在半导体的制作过程中通常需要采用光学主动对准设备,即主动对准(Active Alignment Machine,AA)工艺。AA工艺可对摄像头的全部六个自由度进行调整,实现对准功能,是现有技术常用的调整工艺。
目前,现有的AA工艺基本都是先AA镜头与芯片,然后芯片退出AA区,开始画胶,画完胶后再返回AA区进行UV固化,最后成品模组并退出AA区。整个过程为串行,点胶与AA共用了芯片传输模组。当AA运行时,点胶模组闲置;点胶模组运行时,AA闲置;设备效率受限难以提升。
另外,在AA工艺过程中需要对每一个芯片通电成像,芯片传输模组需要配置可活动的通电治具,治具稳定性要求高,成本高,且由于空间闲置,治具会影响到AA和点胶模组固化的精度。
发明内容
有鉴于此,本发明提供摄像头快速AA组装方法及装置,该设备通过在AA工位固定设有参考芯片,以提高组装效率。
为解决上述技术问题,本发明采用以下技术方案:
根据本发明实施例的摄像头快速AA组装方法,包括如下步骤:
待装芯片在传输模组的作用下传送至点胶工位并进行点胶,得到第一待装芯片;
所述第一待装芯片在所述传输模组的作用下传送至组装工位;
镜头在所述传输模组的作用下传送至AA工位,所述AA工位处设置有参考芯片,所述参考芯片固定安装于所述AA工位处;所述镜头与参考芯片进行主动对准,得到主动对准动作之后的所述镜头的位置姿态数据,记为第一数据;
数据测量仪获取所述组装工位处的所述第一待装芯片与参考芯片的姿态数据,记为第二数据;其中,所述第二数据包括所述第一待装芯片与参考芯片表面的平面坐标、相对高度和平面角度;
所述镜头在所述传输模组的作用下传送至所述组装工位;根据所述第一数据与第二数据计算得出所述镜头的目标位置,并对所述镜头与第一待装芯片进行固化,得到成品物料。
优选地,在步骤待装芯片在传输模组的作用下传送至点胶工位后还包括:
利用影像定位模组对待装芯片进行定位;
点胶模组对定位好的所述待装芯片进行点胶,得到所述第一待装芯片。
优选地,所述AA工位处设置有参考芯片,所述镜头与参考芯片进行主动对准动作;还包括:
所述参考芯片固定安装于所述AA工位处的点亮治具内;
所述传输组件将所述镜头移动至所述点亮治具的正上方;
在所述AA工位处的图像采集机构、调节机构的作用下进行所述镜头与参考芯片的主动对准动作,得到所述第一数据。
优选地,在步骤数据测量仪获取所述组装工位处的所述第一待装芯片与参考芯片的姿态数据中,还包括:
所述数据测量仪的影像测量仪测量所述第一待装芯片与参考芯片的平面位置数据。
优选地,在步骤数据测量仪获取所述组装工位处的所述第一待装芯片与参考芯片的姿态数据中,还包括:
所述数据测量仪的3D轮廓仪测量所述第一待装芯片与参考芯片的相对高度与平面角度。
优选地,在步骤待装芯片传送至点胶工位之前,还包括:
将待装芯片从芯片上料工位的芯片料盘机构上取出并利用传送模组将其传送至所述点胶工位。
优选地,在步骤镜头传送至AA工位之前,还包括:
将镜头从镜头上料工位的镜头料盘机构上取出并利用传输模组将其传送至所述AA工位。
优选地,利用所述传输模组的六轴模组上的夹爪夹取所述镜头或芯片,以将二者进行传送。
本发明还提供一种摄像头快速AA装置,包括:
点胶工位,所述点胶工位包括影像定位模组与点胶模组;所述影像定位模组用于给芯片进行定位,所述点胶模组对定位好的芯片进行点胶,得到第一待装芯片;
AA工位,所述AA工位包括图像采集机构、调节机构和点亮治具,所述点亮治具上固定安装有参考芯片;在所述图像采集机构、调节机构的作用下,镜头与参考芯片进行主动对准动作;
组装工位,所述组装工位设置于所述点胶工位与AA工位之间;所述组装工位包括数据测量仪与固化灯,所述数据测量仪用于测量所述第一待装芯片与镜头的姿态数据;所述固化灯用于对所述镜头与第一待装芯片之间的胶水进行固化;
传输模组,所述传输模组用于将待装芯片与镜头在所述点胶工位、AA工位和组装工位之间进行传送。
优选地,还包括:
芯片上料工位,所述芯片上料工位与点胶工位相邻设置;所述芯片上料工位包括用于存储芯片的芯片料盘机构;
镜头上料工位,所述镜头上料工位与所述AA工位相邻设置;所述镜头上料工位包括用于存储镜头的镜头料盘机构;
成品物料下料工位,所述成品物料下料工位与所述组装工位相邻设置;所述成品物料下料工位用于将所述组装工位上的成品物料进行下料。
本发明的上述技术方案至少具有如下有益效果之一:
本发明公开的摄像头快速AA组装方法及装置,通过在AA工位固定设置有参考芯片使得镜头在AA工位与参考芯片进行主动对准动作,得到镜头的位置姿态数据即第一数据;分别通过获取组装工位上的待装芯片与AA工位上的参考芯片的位置姿态数据即第二数据,通过对第一数据与第二数据的计算得出位于组装工位上的镜头的目标位置,以使得点好胶的待装芯片在组装工位与镜头进行固化得到成品物料,而无需对组装工位上的待装芯片进行通电与主动对准动作;组装工位无需通电,镜头与芯片在固化的过程中没有遮挡,提高固化效果;
点胶工位与AA过程并行执行,提高组装的效率;另外,参考芯片始终固定于AA工位上,简化治具机构与线路设计,降低了组装成本。
附图说明
图1为本发明实施例提供的一种摄像头快速AA组装方法的整体流程图;
图2为本发明实施例的一种摄像头快速AA组装方法的整体逻辑图;
图3为本发明实施例的一种摄像头快速AA装置的结构示意图;
图4a为本发明实施例的AA工位中参考芯片与镜头在主动对准动作之前的位置状态示意图;
图4b为本发明实施例的AA工位中参考芯片与镜头在主动对准动作之后的位置状态示意图;
图4c为本发明实施例的组装工位中待装芯片与镜头的位置状态示意图。
附图标记:
1、待装芯片,2、第一待装芯片,3、参考芯片,4、镜头,10、芯片上料工位,20、点胶工位,210、点胶模组,220、影像定位模组,30、组装工位,310、固化灯,320、3D轮廓仪,330、影像测量仪,40、AA工位,410、图像采集机构,50、六轴模组,60、镜头上料工位,70、成品物料下料工位。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所 描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
下面首先结合附图具体描述根据本发明实施例的摄像头快速AA组装方法。
如图1、图2所示,本发明实施例的摄像头快速AA组装方法,包括如下步骤:
S1、待装芯片1在传输模组的作用下传送至点胶工位20并进行点胶,得到第一待装芯片2。
S2、第一待装芯片2在传输模组的作用下传送至组装工位30。
S3、镜头4在传输模组的作用下传送至AA工位40,AA工位40处设置有参考芯片3,参考芯片3固定安装于AA工位40处;镜头4与参考芯片3进行主动对准动作,得到主动对准动作之后的镜头的位置姿态数据,记为第一数据。
S4、数据测量仪获取组装工位30处的第一待装芯片2与参考芯片3的姿态数据,记为第二数据;其中,第二数据包括第一待装芯片2与参考芯片3表面的平面坐标、相对高度和平面角度。
S5、镜头4在传输模组的作用下传送至组装工位30;根据第一数据与第二数据计算得出镜头的目标位置,并对镜头4与第一待装芯片2进行固化,得到成品物料。该组装方法通过在AA工位40固定设置有参考芯片3使得镜头在AA工位40与参考芯片3进行主动对准动作,得到镜头4的位置姿态数据即第一数据;分别通过获取组装工位30上的第一待装芯片与AA工位40上的参考芯片3的位置姿态数据即第二数据,通过对第一数据与第二数据的计算得出位于组装工位30上的镜头4的目标位置,以使得点好胶的待装芯片1在组装工位30与镜头4进行固化得到成品物料,而无需对组装工位30上的第一待装芯片2进行通电与主动对准动作;组装工位30无需通电,镜头4与芯片在固化的过程中没有遮挡,提高固化效果;
点胶工位20与AA过程并行执行,提高组装的效率;另外,参考芯片3始终固定于AA工位40上,简化治具机构与线路设计,降低了组装成本。
在本发明的一个实施例中,在步骤S1中还包括:
利用影像定位模组220对待装芯片1进行定位;点胶模组210对定位好的 待装芯片1进行点胶,得到第一待装芯片2。传输模组将待装芯片1传送至点胶工位20,在点胶工位20对待装芯片1进行点胶得到第一待装芯片2,第一待装芯片2为点好胶的待装芯片1。
需要说明的是:第一待装芯片2上点好的胶为固化胶,即在固化灯310进行固化之前为流体状态。
在本发明的一个实施例中,在步骤S3中,还包括:
参考芯片3固定安装于AA工位40处的点亮治具内;
传输组件将镜头4移动至点亮治具的正上方;
在AA工位40处的图像采集机构410、调节机构的作用下进行镜头4与参考芯片3的主动对准动作,得到第一数据。参考芯片3固定安装于AA工位40的点亮治具内,传输组件将镜头移送至参考芯片3的正上方,以进行主动对准动作。当主动对准动作完成后,获取当前镜头4的当前姿态数据,即第一数据。
在步骤S4中,还包括:
数据测量仪的影像测量仪330测量第一待装芯片2与参考芯片3的平面位置数据。
数据测量仪的3D轮廓仪320测量第一待装芯片2与参考芯片3的相对高度与平面角度。
具体地,如图4a、4b、4c所示,包括如下步骤:
第一步骤、影像测量仪330测量参考芯片3,得到平面坐标(X1,Y1);测量第一待装芯片2,得到平面坐标(X2,Y2);
第二步骤、3D轮廓仪320测量参考芯片3,得到平面高度Z1角度(Tx1,Ty1);测量第一待装芯片2得到平面高度Z2角度(Tx2,Ty2);
第三步骤、传输模组拾取镜头4,与参考芯片3进行主动对准动作,得到镜头4的最佳位置与角度:(X3,Y3,Z3,Tx3,Ty3);
第四步骤、则镜头4在第一待装芯片上的目标位置为:(X4,Y4,Z4,Tx4,Ty4);其中,X4=X3-X1+X2,Y4=Y3-Y1+Y2,Z4=Z3-Z1+Z2,Tx4=Tx3-Tx1+Tx2,Ty4=Ty3-Ty1+Ty2。
需要说明的是:只需要在第一次测量时获取参考芯片3的六维姿态数据,以用于获得镜头的目标姿态数据;在后面从测量过程中只需要获取第一待装芯 片的六维姿态数据即可,因为参考芯片3的六维姿态数据是不变的。
在本发明的一个实施例中,在步骤S1之前还包括:
将待装芯片1从芯片上料工位10的芯片料盘机构上取出并利用传送模组将其传送至点胶工位20,芯片料盘机构用于存储若干待装芯片1。
在步骤S3中,还包括将镜头4从镜头上料工位60的镜头料盘机构上拾取并利用传输模组将镜头传送至AA工位40处,以使得镜头4与参考芯片3进行主动对准动作。
传输模组优选为六轴模组50,六轴模组50包括夹爪,夹爪用于夹取镜头4或芯片以将镜头4或芯片进行夹持并传送。六轴模组50包括XYZ三个平移轴,和绕XYZ三个旋转轴,轴端的夹爪用于拾取并固定镜头4。
本发明还提供一种摄像头快速AA装置,如图3所示,包括:点胶工位20、AA工位40、组装工位30和传输模组;
其中,点胶工位20包括影像定位模组220与点胶模组210;影像定位模组220用于给芯片进行定位,点胶模组210对定位好的芯片进行点胶,得到第一待装芯片2。
AA工位40包括图像采集机构410、调节机构和点亮治具,点亮治具上固定安装有参考芯片3;在图像采集机构410、调节机构的作用下,镜头4与参考芯片3进行主动对准动作。AA工位40可配合中继透镜和chart图成像;还可配合平行光管成像。
组装工位30设置于点胶工位20与AA工位40之间;组装工位30包括数据测量仪与固化灯310,数据测量仪用于测量第一待装芯片2与镜头4的姿态数据;固化灯310用于对镜头4与第一待装芯片2之间的胶水进行固化。数据测量仪包括测量2D数据的影像测量仪330与测量3D数据的3D轮廓仪320,3D轮廓仪320可选用激光3D传感器,配单轴直线模组实现面型测量;还可选用线三维机构光传感器,直接测量整个芯片面型;还可以选用点激光或点光谱位移传感器,配XY双轴直线模组,测量芯片平面多个点,计算面型。
传输模组用于将待装芯片与镜头4在点胶工位20、AA工位40和组装工位30之间进行传送。传输模组看选用多轴直线运动平台搭建;或者选用多轴机械手。
进一步的,该装置还包括:芯片上料工位10、镜头上料工位60和成品物料下料工位70;
其中,芯片上料工位10与点胶工位20相邻设置;芯片上料工位10包括用于存储芯片的芯片料盘机构。镜头上料工位60与AA工位40相邻设置;镜头上料工位60包括用于存储镜头4的镜头料盘机构。成品物料下料工位70与组装工位30相邻设置;成品物料下料工位70用于将组装工位30上的成品物料进行下料。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种摄像头快速AA组装方法,其特征在于,包括如下步骤:
    待装芯片(1)在传输模组的作用下传送至点胶工位(20)并进行点胶,得到第一待装芯片(2);
    所述第一待装芯片(2)在所述传输模组的作用下传送至组装工位(30);
    镜头(4)在所述传输模组的作用下传送至AA工位(40),所述AA工位(40)处设置有参考芯片(3),所述参考芯片(3)固定安装于所述AA工位(40)处;所述镜头(4)与参考芯片(3)进行主动对准动作,得到主动对准动作之后的所述镜头(4)的位置姿态数据,记为第一数据;
    数据测量仪获取所述组装工位(30)处的所述第一待装芯片(2)与参考芯片(3)的姿态数据,记为第二数据;其中,所述第二数据包括所述第一待装芯片(2)与参考芯片(3)表面的平面坐标、相对高度和平面角度;
    所述镜头(4)在所述传输模组的作用下传送至所述组装工位(30);根据所述第一数据与第二数据计算得出所述镜头(4)的目标位置,并对所述镜头(4)与第一待装芯片(2)进行固化,得到成品物料。
  2. 如权利要求1所述的摄像头快速AA组装方法,其特征在于,在步骤待装芯片(1)在传输模组的作用下传送至点胶工位(20)后还包括:
    利用影像定位模组(220)对待装芯片(1)进行定位;
    点胶模组(210)对定位好的所述待装芯片(1)进行点胶,得到所述第一待装芯片(2)。
  3. 如权利要求1所述的摄像头快速AA组装方法,其特征在于,所述AA工位(40)处设置有参考芯片(3),所述镜头(4)与参考芯片(3)进行主动对准动作;还包括:
    所述参考芯片(3)固定安装于所述AA工位(40)处的点亮治具内;
    所述传输组件将所述镜头(4)移动至所述点亮治具的正上方;
    在所述AA工位(40)处的图像采集机构、调节机构的作用下进行所述镜头(4)与参考芯片(3)的主动对准动作,得到所述第一数据。
  4. 如权利要求1所述的摄像头快速AA组装方法,其特征在于,在步骤数据测量仪获取所述组装工位(30)处的所述第一待装芯片(2)与参考芯片(3) 的姿态数据中,还包括:
    所述数据测量仪的影像测量仪(330)测量所述第一待装芯片(2)与参考芯片(3)的平面位置数据。
  5. 如权利要求4所述的摄像头快速AA组装方法,其特征在于,在步骤数据测量仪获取所述组装工位(30)处的所述第一待装芯片(2)与参考芯片(3)的姿态数据中,还包括:
    所述数据测量仪的3D轮廓仪测量(320)所述第一待装芯片(2)与参考芯片(3)的相对高度与平面角度。
  6. 如权利要求1所述的摄像头快速AA组装方法,其特征在于,在步骤待装芯片(1)传送至点胶工位(20)之前,还包括:
    将待装芯片(1)从芯片上料工位(10)的芯片料盘机构上取出并利用传送模组将其传送至所述点胶工位(20)。
  7. 如权利要求1所述的摄像头快速AA组装方法,其特征在于,在步骤镜头(4)传送至AA工位(40)之前,还包括:
    将镜头(4)从镜头上料工位(60)的镜头料盘机构上取出并利用传输模组将其传送至所述AA工位(40)。
  8. 如权利要求1-7任一项所述的摄像头快速AA组装方法,其特征在于,利用所述传输模组的六轴模组上的夹爪夹取所述镜头或芯片,以将二者进行传送。
  9. 一种摄像头快速AA装置,其特征在于,包括:
    点胶工位(20),所述点胶工位(20)包括影像定位模组(220)与点胶模组(210);所述影像定位模组(220)用于给芯片进行定位,所述点胶模组(210)对定位好的芯片进行点胶,得到第一待装芯片;
    AA工位(40),所述AA工位(40)包括图像采集机构(410)、调节机构和点亮治具,所述点亮治具上固定安装有参考芯片(3);在所述图像采集机构(410)、调节机构的作用下,镜头(4)与参考芯片(3)进行主动对准动作;
    组装工位(30),所述组装工位(30)设置于所述点胶工位(20)与AA工位(40)之间;所述组装工位(30)包括数据测量仪与固化灯(310),所述数据测量仪用于测量所述第一待装芯片(2)与镜头(4)的姿态数据;所述固 化灯(310)用于对所述镜头(4)与第一待装芯片(1)之间的胶水进行固化;
    传输模组,所述传输模组用于将待装芯片(1)与镜头(4)在所述点胶工位(20)、AA工位(40)和组装工位(30)之间进行传送。
  10. 如权利要求9所述的摄像头快速AA装置,其特征在于,还包括:
    芯片上料工位(10),所述芯片上料工位(10)与点胶工位(20)相邻设置;所述芯片上料工位(10)包括用于存储芯片的芯片料盘机构;
    镜头上料工位(60),所述镜头上料工位(60)与所述AA工位(40)相邻设置;所述镜头上料工位(60)包括用于存储镜头的镜头料盘机构;
    成品物料下料工位(70),所述成品物料下料工位(70)与所述组装工位(30)相邻设置;所述成品物料下料工位(70)用于将所述组装工位(30)上的成品物料进行下料。
PCT/CN2020/136050 2020-12-03 2020-12-14 摄像头快速aa组装方法及装置 WO2022116259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011398128.XA CN112543270B (zh) 2020-12-03 2020-12-03 摄像头快速aa组装方法及装置
CN202011398128.X 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022116259A1 true WO2022116259A1 (zh) 2022-06-09

Family

ID=75015634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136050 WO2022116259A1 (zh) 2020-12-03 2020-12-14 摄像头快速aa组装方法及装置

Country Status (2)

Country Link
CN (1) CN112543270B (zh)
WO (1) WO2022116259A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245825B (zh) * 2021-06-16 2022-03-11 苏州天准科技股份有限公司 用于摄像头双摄aa的组装方法及设备
CN113245823B (zh) * 2021-06-16 2021-11-19 苏州天准科技股份有限公司 具有插接功能的转盘装置及摄像头组装设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150062422A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Lens alignment in camera modules using phase detection pixels
CN104580859A (zh) * 2014-12-22 2015-04-29 格科微电子(上海)有限公司 摄像头模组的装配方法和摄像头模组
CN108469663A (zh) * 2018-05-17 2018-08-31 深圳市泰品科技有限公司 一种镜头组件与芯片组件的组装工艺和对位装置
CN109317354A (zh) * 2018-10-16 2019-02-12 珠海市广浩捷精密机械有限公司 一种摄像头三工位自动aa组装机及其工作方法
CN209390218U (zh) * 2019-03-25 2019-09-13 宁波舜宇仪器有限公司 一种摄像模组aa设备
CN111757092A (zh) * 2019-03-28 2020-10-09 宁波舜宇光电信息有限公司 摄像模组对焦组装***和方法、镜头组件参数获取装置和感光组件参数获取装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934081B2 (en) * 2010-03-01 2015-01-13 Mycronic AB Method and apparatus for performing alignment using reference board
DE102014212104A1 (de) * 2014-06-24 2015-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur relativen positionierung einer multiaperturoptik mit mehreren optischen kanälen relativ zu einem bildsensor
CN107838672A (zh) * 2017-10-17 2018-03-27 歌尔股份有限公司 光学模组组装设备及方法
CN108745779B (zh) * 2018-05-24 2019-11-12 深圳中科精工科技有限公司 一种高精度的双工位aa装置
CN209735946U (zh) * 2019-01-31 2019-12-06 浙江图元智能装备科技有限公司 一种照相机作空间安装的自润轴承石墨粒自动装配机
CN209982634U (zh) * 2019-03-28 2020-01-21 宁波舜宇光电信息有限公司 摄像模组对焦组装***、镜头组件和感光组件参数获取装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150062422A1 (en) * 2013-08-27 2015-03-05 Semiconductor Components Industries, Llc Lens alignment in camera modules using phase detection pixels
CN104580859A (zh) * 2014-12-22 2015-04-29 格科微电子(上海)有限公司 摄像头模组的装配方法和摄像头模组
CN108469663A (zh) * 2018-05-17 2018-08-31 深圳市泰品科技有限公司 一种镜头组件与芯片组件的组装工艺和对位装置
CN109317354A (zh) * 2018-10-16 2019-02-12 珠海市广浩捷精密机械有限公司 一种摄像头三工位自动aa组装机及其工作方法
CN209390218U (zh) * 2019-03-25 2019-09-13 宁波舜宇仪器有限公司 一种摄像模组aa设备
CN111757092A (zh) * 2019-03-28 2020-10-09 宁波舜宇光电信息有限公司 摄像模组对焦组装***和方法、镜头组件参数获取装置和感光组件参数获取装置

Also Published As

Publication number Publication date
CN112543270B (zh) 2022-03-15
CN112543270A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2022116260A1 (zh) 摄像头快速aa装置
WO2022116259A1 (zh) 摄像头快速aa组装方法及装置
US8688261B2 (en) Transport apparatus, position teaching method, and sensor jig
CN110364455A (zh) 芯片贴装装置及半导体装置的制造方法
CN101640181A (zh) 基底对准设备和基底处理设备
KR101445123B1 (ko) 웨이퍼 상에 칩을 정밀하게 본딩하기 위한 장치
KR102088376B1 (ko) 플립 칩 결합 장치 및 결합 방법
CN103376260A (zh) 半导体封装检查设备及使用该设备的半导体封装检查方法
EP4231340A1 (en) Bonding system and bonding compensation method
CN107134419B (zh) 倒装芯片键合装置及其键合方法
CN113745966B (zh) 阵列式反射镜自动耦合封装方法
KR102658410B1 (ko) 픽업모듈, 그를 가지는 이송툴 및 그를 가지는 플립소자 핸들러
JP2011066090A (ja) 基板移載装置、基板位置合わせ装置、基板移載方法およびデバイスの製造方法
JP6438826B2 (ja) ボンディング装置及びボンディング方法
US11908722B2 (en) Automatic teaching of substrate handling for production and process-control tools
JP7450429B2 (ja) 電子部品の実装装置
US12051604B2 (en) Apparatus for manufacturing semiconductor device and method of manufacturing semiconductor device
CN102192705A (zh) 非接触式复合扫描测量***
US20220216077A1 (en) Apparatus for manufacturing semiconductor device and method of manufacturing semiconductor device
CN114815283B (zh) 光轴主动对准装置
CN114005777B (zh) 键合装置和键合方法
KR20220099475A (ko) 반도체 장치의 제조 장치 및 반도체 장치의 제조 방법
CN113245825B (zh) 用于摄像头双摄aa的组装方法及设备
EP4231338A1 (en) Bonding system and bonding method
CN101487693A (zh) 一种视觉部件对位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964104

Country of ref document: EP

Kind code of ref document: A1