WO2022110902A1 - 光学邻近效应校正方法、掩膜版及可读存储介质 - Google Patents

光学邻近效应校正方法、掩膜版及可读存储介质 Download PDF

Info

Publication number
WO2022110902A1
WO2022110902A1 PCT/CN2021/112075 CN2021112075W WO2022110902A1 WO 2022110902 A1 WO2022110902 A1 WO 2022110902A1 CN 2021112075 W CN2021112075 W CN 2021112075W WO 2022110902 A1 WO2022110902 A1 WO 2022110902A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolated metal
metal pattern
pattern
rectangle
optical proximity
Prior art date
Application number
PCT/CN2021/112075
Other languages
English (en)
French (fr)
Inventor
朱斌
王谨恒
陈洁
张剑
曹楠
孙鹏飞
Original Assignee
无锡华润上华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡华润上华科技有限公司 filed Critical 无锡华润上华科技有限公司
Publication of WO2022110902A1 publication Critical patent/WO2022110902A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to an optical proximity effect correction method, a mask, a readable storage medium, and a computer device.
  • the nanoscale critical dimension (CD) fluctuation will cause fluctuations in the key parameters of the device, thereby affecting the overall product performance.
  • the present invention provides a method for correcting optical proximity effect, comprising:
  • the mask plate-making pattern is obtained according to the isolated metal pattern after preprocessing.
  • a reticle the reticle is made according to the reticle pattern obtained by the optical proximity effect correction method described in any one of the above.
  • a computer device includes a memory and a processor, wherein the memory stores a computer program, and the processor implements the steps of any one of the methods when executing the computer program.
  • FIG. 1 is a schematic diagram of an exemplary OPC processing flow
  • FIG. 2 is a schematic flowchart of an optical proximity effect correction method in an embodiment
  • FIG. 3 is a schematic top-view structural diagram of the pretreated isolated metal pattern obtained after step S106 in Example 1;
  • FIG. 4 is a schematic top-view structural diagram of the pretreated isolated metal pattern obtained after step S106 in Example 2;
  • FIG. 5 is a schematic top-view structural diagram of the pretreated isolated metal pattern obtained after step S106 in Example 3;
  • FIG. 6 is a schematic flowchart of an optical proximity effect correction method according to an embodiment of the present application.
  • Embodiments of the invention are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention, such that variations in the shapes shown may be contemplated due, for example, to manufacturing techniques and/or tolerances. Accordingly, embodiments of the present invention should not be limited to the particular shapes of the regions shown herein, but include shape deviations due, for example, to manufacturing techniques. For example, an implanted region shown as a rectangle typically has rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface over which the implantation proceeds. Thus, the regions shown in the figures are schematic in nature and their shapes do not represent the actual shape of a region of a device and do not limit the scope of the invention.
  • the change of the metal clad hole morphology will cause the fluctuation of the key parameters of the semiconductor device, which in turn affects the overall product performance.
  • an exemplary OPC processing flow includes: (1) Fixed process conditions: obtaining design rules and photolithography process conditions, where the photolithography process conditions include optical parameters of the exposure optical path, photoresist material parameters, and etching process chemical parameters. (2) OPC modeling data collection: form a pre-designed test pattern on a dummy wafer (dummy wafer) according to the photolithography process conditions, and collect test data corresponding to the photolithography process conditions as OPC model data. (3) OPC model establishment: Input the collected test data and lithography process conditions into the OPC modeling tool, set the software simulation, and generate the OPC model. (4) OPC program setting: develop and run the program (recipe) of the OPC model (opc model).
  • Design graphic OPC operation perform OPC operation on the design graphic to obtain a revised graphic.
  • OPC accuracy verification The modified graphics generate contours and design graphics through software simulation to check the difference to confirm whether they meet the specification requirements. When the difference exceeds 5nm, re-do the OPC operation until it is qualified.
  • Photolithography plate making according to the correction pattern that meets the specification for lithography plate making.
  • the above OPC strategy only corrects the overall optical proximity effect of the metal layer, and does not consider the influence of the special optical proximity effect of the isolated pattern. Compared with other patterns of the same metal layer, the phenomenon of shorting of the isolated pattern due to the optical proximity effect is more serious.
  • the coverage of the holes in the front layer is worse, which in turn affects the filling and wrapping effect of the formed metal lines on the filling holes in the previous layer, which makes the morphology of the metal-clad holes deteriorate, and it is easy to cause product failure.
  • FIG. 2 it is a schematic flowchart of an optical proximity effect correction method in an embodiment.
  • a method for correcting optical proximity effect including:
  • the design patterns of various levels in accordance with the requirements are obtained, and then the metal patterns corresponding to each metal layer are selected as the lithography mask design patterns.
  • an isolated metal pattern that meets the first condition is selected from the lithography mask design patterns.
  • the metal pattern in the lithography mask design pattern is composed of multiple patterns. From the lithography mask design pattern obtained in step S102, a pattern that meets the first condition in each metal pattern is selected as an isolated metal pattern, and no pattern is selected. Figures that meet the first condition are regarded as non-isolated metal figures.
  • S106 preprocess the isolated metal pattern, so that the widths at both ends of the isolated metal pattern are larger than the width in the middle.
  • the two ends of each isolated metal figure are preprocessed, so that the width of the two ends of the isolated metal figure is greater than the width of the middle, and a new isolated metal figure that is narrow in the middle and wide at both ends along the extension direction of each isolated metal figure is obtained. , as the first figure.
  • the first condition is that the distance between the isolated metal pattern and any pattern of the same lithography layer in the first direction is not less than 1.5 micrometers, and the width of the isolated metal pattern is not more than 0.85 micrometers and the length is not less than 0.9 micrometers ;
  • the first direction is perpendicular to the extension direction of the isolated metal pattern, that is, the first direction is parallel to the width direction of the isolated metal pattern.
  • any metal pattern in the lithography mask design pattern if one pattern A in the metal pattern has a width W1 ⁇ 0.85 ⁇ m, a length L1 ⁇ 0.9 ⁇ m, and the distance from other patterns in the first direction D1 ⁇ 1.5 ⁇ m, then the figure A is an isolated metal figure.
  • the first direction is perpendicular to the extending direction of the figure A, that is, the first direction is parallel to the width direction of the figure A.
  • the photolithography mask design pattern affected by the optical proximity effect after the metal lines are formed, the shorting phenomenon at the ends of the metal lines is serious, and the filling and wrapping effect of the filling holes of the previous layer is poor, which will cause the product to fail.
  • the two ends of the screened isolated metal pattern can be screened out through the first condition, and then the two ends of the screened isolated metal pattern are bolded, so that the width of the two ends of the isolated metal pattern is greater than the width of the middle, so as to reduce the problem of shortage of line ends after the formation of metal lines, To achieve the purpose of improving the shape of the package hole at the rear end of the metal line formed by the metal pattern and improving the performance of the product.
  • FIG. 3 it is a schematic top-view structure diagram of the pretreated isolated metal pattern obtained after step S106 in Example 1.
  • step S106 includes: adding a first rectangle on both sides of the end of the isolated metal pattern, the length of the first rectangle is 0.4 microns and the width is 0.15 microns, wherein the first rectangle is The width direction of a rectangle is the direction of both sides of the end of the isolated metal pattern.
  • the isolated metal pattern 10 includes a first end portion 102, a second end portion 104, and an intermediate portion between the first end portion 102 and the second end portion 104;
  • the isolated metal pattern 20 includes a first end portion 202, A second end portion 204 , and an intermediate portion between the first end portion 202 and the second end portion 204 .
  • a first rectangle 1020 and a first rectangle 1022 are respectively added on both sides of the first end 102, a first rectangle 1040 and a first rectangle 1042 are respectively added on both sides of the second end 104;
  • a first rectangle 2020 and a first rectangle 2022 are respectively added to the sides, and a first rectangle 2040 and a first rectangle 2042 are respectively added to the two sides of the second end 204; and the first rectangle 1042 are symmetrical about the connecting line of the first end 102 and the second end 104;
  • the first rectangle 2020 and the first rectangle 2022, the first rectangle 2040 and the first rectangle 2042 are all about the first end 202 and
  • the connecting line of the second end portion 204 is symmetrical;
  • the lengths L3 of the first rectangles 2042 are both 0.4 ⁇ m and the widths W2 are both 0.15 ⁇ m.
  • FIG. 4 it is a schematic top-view structure diagram of the preprocessed isolated metal pattern obtained after step S106 in Example 2.
  • step S106 further includes:
  • a third rectangle is respectively added in the extending direction of both ends of the isolated metal pattern.
  • the width of the third rectangle is 0.15 ⁇ m, and the length is the sum of 0.3 ⁇ m and the width of the isolated metal pattern.
  • the length direction of the third rectangle is the direction of both sides of the end of the isolated metal pattern, and the width direction is the extension direction of the end of the isolated metal pattern.
  • a third rectangle 1024 and a third rectangle 1044 are respectively added to the extending directions of both ends of the isolated metal pattern 10 , and the widths of the third rectangle 1024 and the third rectangle 1044 are both L4.
  • the rectangle 1022 , the third rectangle 1024 and the first end portion 102 , as well as the first rectangle 1040 , the first rectangle 1042 , the third rectangle 1044 and the second end portion 104 are all rectangular structures;
  • the third rectangle 2024 and the third rectangle 2044, the lengths of the third rectangle 2024 and the third rectangle 2044 are both L5, wherein the first rectangle 2020, the first rectangle 2022, the third rectangle 2024 and the first end 202, and the A rectangle 2040, the first rectangle 2042, the third rectangle 2044 and the second end 204 are all rectangular structures.
  • the length of the metal line formed by the isolated metal pattern is increased by adding the third rectangle, and the filling and wrapping ability of the metal line formed by the isolated metal pattern to the filling hole formed under the metal line is further improved, It makes the product performance (electrical parameters of the device) more stable.
  • L4 and L5 are equal, eg, both 0.15 microns. In practical applications, the values of L4 and L5 can be selected according to actual requirements. In other embodiments, L4 and L5 may be unequal values.
  • step S106 there is also a step of checking and correcting according to regulations, including: if the distance between the preprocessed isolated metal pattern and any pattern of the same lithography layer is less than 0.165 microns, then The preprocessing added pattern removes a portion so that the pitch is greater than 0.165 microns.
  • step S108 is to obtain a mask plate-making pattern according to the isolated metal pattern after inspection and correction according to regulations.
  • FIG. 5 it is a schematic top-view structure diagram of the pretreated isolated metal pattern obtained after step S106 in the third embodiment.
  • the two preprocessed isolated metal patterns 10 and 20 are the closest corners
  • the second rectangle is removed, that is, the second rectangle 1046 is removed from the corner 1041 of the third rectangle 1044 to obtain the first added portion 1043 ; the corner 2041 of the third rectangle 2044 is removed from the second rectangle 2046 to obtain the second added portion 2043 .
  • the length of the first side M1 of the second rectangle 1046 is X1, the length of the second side N1 is Y1; the length of the first side M2 of the second rectangle 2046 is X2, and the length of the second side N2 is Y2.
  • the lengths of the first side M1 of the second rectangle 1046 and the first side M2 of the second rectangle 2046 are equal, and the lengths of the second side N1 of the second rectangle 1046 and the second side N2 of the second rectangle 2046 are the same.
  • the lengths are not equal; or the lengths of the first side M1 of the second rectangle 1046 and the first side M2 of the second rectangle 2046 are not equal, and the lengths of the second side N1 of the second rectangle 1046 and the second side N2 of the second rectangle 2046 equal.
  • step S108 after the step of checking and revising according to regulations, and before step S108, it further includes checking the isolated metal pattern after checking and revising according to regulations according to design rules, and reporting an error if it does not meet the design rules.
  • the error reporting includes: outputting specific graphics and positions that do not conform to the design rules.
  • Step 1 check whether the width width of the preprocessed isolated metal pattern B is less than or equal to 0.15 ⁇ m, if the width of the isolated metal pattern B is greater than 0.15 ⁇ m, the pattern shape and position of the isolated metal pattern B are output.
  • the second step is to check whether the first space between the output isolated metal pattern B and the added dummy is > 0.095 ⁇ m, if the first space is less than or equal to 0.095 ⁇ m, then output the shape and shape of the isolated metal pattern B and Location.
  • the third step is to check whether the second spacing space between the isolated metal pattern B and the opposite pattern in the same lithography layer (the intersecting pattern in the same lithography layer) is > 0.165 ⁇ m, if the second spacing space ⁇ 0.165 ⁇ m, Then output the shape and position of the isolated metal pattern B.
  • the fourth step is to check whether the third spacing space between the isolated metal pattern B and the side-to-side patterns in the same lithography layer (patterns with the same extension direction in the same lithography layer) is >0.15 ⁇ m, if the third spacing space ⁇ 0.15 ⁇ m, then output the shape and position of the isolated metal pattern B.
  • M2_XOR_BOX SIZE(M2_CLN_OUTSIDE XOR M2_CLN_F_850)BY 0.075 UNDEROVER
  • M2_XOR_BOX_DUM (SIZE(M2_INPUT XOR M2_RB_MER_1)BY 0.095 UNDEROVER)XOR M2_EXCLUDED_1
  • the method before step S108, further includes: after simulating the preprocessed isolated metal pattern, comparing the lithography mask design pattern to check the difference; if the difference is greater than 5 nanometers, returning to step S106 to perform again Optical proximity correction was performed until the difference was checked to be no greater than 5 nanometers.
  • the preprocessed isolated metal pattern and non-isolated metal pattern are simulated by software, and after the simulated pattern is obtained, the difference is checked by comparing the simulated pattern and the lithography mask design pattern to confirm whether the obtained simulated pattern can be To meet the requirements of the specification, if the difference between the simulation pattern and the lithography mask design pattern is greater than 5nm, then return to step S106, and perform the optical proximity effect correction operation again until the difference is not greater than 5nm.
  • the isolated metal graphics and non-isolated metal graphics constitute the mask plate-making graphics.
  • step S108 a step of making a photoresist according to the mask pattern making pattern is further included.
  • the optical proximity effect correction method described above is applied to a technology node of 0.153 ⁇ m and below.
  • FIG. 6 is a schematic flowchart of an optical proximity effect correction method according to an embodiment of the present application.
  • the optical proximity effect correction method in the present application will be described below with reference to FIG. 6 .
  • Fixed process conditions design rules and photolithography process conditions are obtained.
  • the photolithography process conditions include the optical parameters of the exposure optical path, the material parameters of the photoresist, and the chemical parameters of the etching process.
  • OPC modeling data collection form a pre-designed test pattern on a dummy wafer (dummy wafer) according to the photolithography process conditions, and collect test data corresponding to the photolithography process conditions as OPC model data.
  • OPC model establishment Input the collected test data and process conditions into the OPC modeling tool, set the software simulation, and generate the OPC model.
  • OPC program setting develop and run the program (recipe) of the OPC model (opc model).
  • Selecting isolated metal patterns that is, picking out the isolated metal patterns in each metal level. Specifically, set the conditions of the metal patterns to be corrected (width ⁇ 0.85 ⁇ m, space ⁇ 1.5 ⁇ m, length ⁇ 0.9 ⁇ m, etc.)
  • the codes of (5) and (6) executed with the mentro OPC tool are as follows:
  • M2_CLN_BOX_1_850 EXPAND EDGE M2_CLN_850 inside by 0.4 EXTEND BY 0.15
  • M2_CLN_BOX_850 NOT M2_CLN_BOX_1_850 M2_CLN_OUTSIDE
  • M2_BOX_D_850 M2_CLN_BOX_850NOT WITH EDGE M2_CLN_SPACE_D_850
  • M2_CLN_F_850_1 M2_CLN_BOX_D_850 OR M2_CLN_OUTSIDE
  • M2_CLN_F_850_2 EXTERNAL[M2_CLN_F_850_1] ⁇ 0.165
  • M2_CLN_F_850_3 EXPAND EDGE M2_CLN_F_850_2 inside by 0.033
  • M2_CLN_F_850_4 EXTENTS M2_CLN_F_850_3
  • M2_CLN_F_850 M2_CLN_F_850_1NOT M2_CLN_F_850_4
  • OPC accuracy verification After combining the preprocessed isolated metal graphics and non-isolated metal graphics into a modified graphics, the modified graphics will be used to generate a contour and the design graphics to check the difference through software simulation to confirm whether they meet the requirements of the specification. When the difference exceeds 5nm, re-do the opc operation until it is qualified.
  • Lithography layout plate making Send the qualified layout data processed by OPC to the mask shop to make a lithography plate.
  • the present application provides a reticle, the reticle is made according to the reticle pattern obtained by the optical proximity effect correction method described in any one of the above.
  • the present application also provides a readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any one of the methods described above.
  • the present application also provides a computer device, including a memory and a processor, wherein the memory stores a computer program, and the processor implements the steps of any one of the methods when executing the computer program.
  • the above optical proximity effect correction method performs additional OPC processing on the isolated metal pattern, so that the width of both ends of the isolated metal pattern is greater than the width of the middle, which can avoid the isolated metal pattern caused by the optical proximity effect.
  • lines appear at the ends
  • the shortage makes the filling and wrapping effect of the metal lines on the filling holes of the previous layer is poor, resulting in the problem of fluctuations in the key parameters of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

一种光学邻近效应校正方法、掩膜版、可读存储介质及计算机设备,校正方法包括:获取光刻掩膜设计图形(S102);从光刻掩膜设计图形中选中符合第一条件的孤立金属图形(10,20)(S104);对孤立金属图形(10,20)进行预处理,使孤立金属图形(10,20)两端的宽度大于中间的宽度(S106);根据预处理后的孤立金属图形(10,20)得到掩膜版制版图形(S108)。对孤立金属图形(10,20)进行额外的OPC处理,使孤立金属图形(10,20)两端的宽度均大于中间的宽度,能够避免因光学邻近效应导致的孤立金属图形(10,20)形成金属线条后在端部出现线条短缺,使得金属线条对前一层次填充孔的填充包裹效果较差,导致器件关键参数波动的问题,使得产品性能更稳定。

Description

光学邻近效应校正方法、掩膜版及可读存储介质 技术领域
本申请涉及半导体技术领域,特别是涉及一种光学邻近效应校正方法、掩膜版、可读存储介质及计算机设备。
背景技术
随着超大规模集成电路(ULSI,Ultra Large Scale Integration)的飞速发展,集成电路制造工艺变得越来越复杂和精细。在0.13μm以下技术节点的关键层次中,如TO(有源区层次)、GT(栅氧层次)以及An(金属连线层次)等关键层次的CD(关键尺寸)越来越小,某些关键层次的CD已经接近甚至小于光刻工艺中所使用的光波的波长248nm,因此在光刻中的曝光过程中,由于光的干涉和衍射现象,实际产品晶片上得到的光刻图形与掩膜版图形之间存在一定的变形和偏差,光刻中的这种误差直接影响电路性能和生产成品率。
现有技术中为了消除上述误差,通常使用OPC(光学邻近效应矫正)方法对设计图进行一定的修正。
但是,在0.11/0.13μm技术节点,使用OPC方法对设计图进行整体修正后,纳米级的线宽(critical dimension,CD)波动,会造成器件关键参数的波动,进而影响整体产品性能。
发明内容
基于此,有必要针对现有技术中使用OPC方法对设计图进行整体修正后,纳米级的线宽波动,会造成器件关键参数的波动,进而影响整体产品性能的问题,提供一种光学邻近效应校正方法、掩膜版、可读存储介质及计算机设备。
为了实现上述目的,一方面,本发明提供了一种光学邻近效应校正方法,包括:
获取光刻掩膜设计图形;
从所述光刻掩膜设计图形中选中符合第一条件的孤立金属图形;
对所述孤立金属图形进行预处理,使所述孤立金属图形两端的宽度大于中间的宽度;
根据预处理后的孤立金属图形得到掩膜版制版图形。
一种掩膜版,所述掩膜版根据上述任意一项所述的光学邻近效应校正方法得到的掩膜版制版图形制成的。
一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的方法的步骤。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现所述任一项所述的方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为示例性的OPC处理流程示意图;
图2为一实施例中光学邻近效应校正方法的流程示意图;
图3为实施例1中步骤S106之后得到的预处理后的孤立金属图形的俯视结构示意图;
图4为实施例2中步骤S106之后得到的预处理后的孤立金属图形的俯视结构示意图;
图5为实施例3步骤S106之后得到的预处理后的孤立金属图形的俯视结构示意图;
图6为本申请一实施例中光学邻近效应校正方法的流程示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
这里参考作为本发明的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例,这样可以预期由于例如制造技术和/或容差导致的所示形状的变化。因此,本发明的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造技术导致的形状偏差。例如,显示为矩形的注入区在其边缘通常具有圆的或弯曲特征和/或注入浓度梯度,而不是从注入区到非注入区的二元改变。同样,通过注入形成的埋藏区可导致该埋藏区和注 入进行时所经过的表面之间的区中的一些注入。因此,图中显示的区实质上是示意性的,它们的形状并不表示器件的区的实际形状,且并不限定本发明的范围。
在0.13μm及以下技术节点的关键层次中,金属包孔形貌的变化会造成半导体器件关键参数的波动,进而影响整体产品性能。
参见图1,示例性的OPC处理的流程包括:(1)工艺条件固定:获取设计规则和光刻工艺条件,光刻工艺条件包括曝光光路的光学参数、光刻胶的材料参数以及刻蚀工艺的化学参数。(2)OPC建模数据收集:根据光刻工艺条件在假片(dummy片)上形成预先设计的测试图形,收集到光刻工艺条件对应的测试数据,作为OPC模型数据。(3)OPC模型建立:将收集到的测试数据和光刻工艺条件输入OPC建模工具,设定软件仿真,生成OPC模型。(4)OPC程序设定:开发运行OPC模型(opc model)的程序(recipe)。(5)设计图形OPC运算:对设计图形进行OPC运算得到修正图形。(6)OPC准确性验证:修正图形通过软件仿真生成外形轮廓(contour)与设计图形做差异性检查,确认是否满足规范要求,当差异性超过5nm时,重新做OPC运算直至合格。(7)光刻版图制版,根据差异性满足规范的修正图形进行光刻版制版。
上述OPC策略仅对金属层次进行整体光学临近效应修正,不考虑孤立图形特殊的光学临近效应的影响,与同一金属层次的其他图形相比,孤立图形因光学临近效应而短缺(shorting)的现象更严重,对前层次孔的覆盖性更差,进而影响形成的金属线条对前一层次填充孔的填充包裹效果,使得金属包孔形貌变差,容易造成产品失效。
参见图2,为一实施例中光学邻近效应校正方法的流程示意图。
如图2所示,在一个实施例中,提供一种光学邻近效应校正方法,包括:
S102,获取光刻掩膜设计图形。
根据实际需求进行集成电路设计后,得到与需求相符的各个层次的设计图形,然后选取各个金属层对应的金属图形作为光刻掩膜设计图形。
S104,从光刻掩膜设计图形中选中符合第一条件的孤立金属图形。
光刻掩膜设计图形中的金属图形是由多个图形构成的,从步骤S102中得到的光刻掩膜设计图形中,挑选出各个金属图形中符合第一条件的图形作为孤立金属图形,不符合第一条件的图形作为非孤立金属图形。
S106,对孤立金属图形进行预处理,使孤立金属图形两端的宽度大于中间的宽度。
得到孤立金属图形后,对各个孤立金属图形的两端进行预处理,使孤立金属图形两端的宽度大于中间的宽度,得到沿各个孤立金属图的延伸方向中间窄两端宽的新的孤立金属图形,作为第一图形。
S108,根据预处理后的孤立金属图形得到掩膜版制版图形。
使用预处理后的孤立金属图形替换光刻掩膜设计图形中的孤立金属图形,得到由预处理后的孤立金属图形和非孤立金属图形构成的掩膜版制版图形,即各个金属层对应的掩膜版制版图形。
在其中一个实施例中,第一条件是孤立金属图形在第一方向上与同一光刻层的任意图形的间距不小于1.5微米,且孤立金属图形的宽度不大于0.85微米,长度不小于0.9微米;第一方向垂直于孤立金属图形的延伸方向,即第一方向平行于孤立金属图形的宽度方向。
具体地,选取光刻掩膜设计图形中的任意一个金属图形,若该金属图形中的一个图形A的宽度W1≤0.85μm、长度L1≥0.9μm,且与其他图形在第一方向上的距离D1≥1.5μm,则该图形A为孤立金属图形。其中,第一方向与图形A的延伸方向垂直,即第一方向平行于图形A的宽度方向。对于光刻掩膜设计图形中受光学临近效应影响,形成金属线条后,金属线条的端部shorting现象严重,对前一层次填充孔的填充包裹效果较差,会造成产品失效的各个孤立金属图形,可以通过所述第一条件筛选出,进而对筛选出的孤立金属图形两端进行加粗,使孤立金属图形两端的宽度大于中间的宽度,减小形成金属线条后线条端部短缺的问题,达到改善金属图形形成金属线条后端部包孔形貌,提高产品性能的目的。
参见图3,为实施例1中步骤S106之后得到的预处理后的孤立金属图形的俯视结构示意图。
如图3所示,在其中一个实施例中,步骤S106包括:在孤立金属图形的端部的两侧分别添加第一矩形,第一矩形的长度为0.4微米、宽度为0.15微米,其中,第一矩形的宽度方向为孤立金属图形的端部的两侧方向。
具体地,孤立金属图形10包括第一端部102、第二端部104,以及位于第一端部102和第二端部104之间的中间部;孤立金属图形20包括第一端部202、第二端部204,以及位于第一端部202和第二端部204之间的中间部。在第一端部102的两侧分别添加第一矩形1020和第一矩形1022,在第二端部104的两侧分别添加第一矩形1040和第一矩形1042;在第一端部202的两侧分别添加第一矩形2020和第一矩形2022,在第二端部204的两侧分别添加第一矩形2040和第一矩形2042;其中,第一矩形1020和第一矩形1022、第一矩形1040和第一矩形1042均关于第一端部102和第二端部104的连线对称;第一矩形2020和第一矩形2022、第一矩形2040和第一矩形2042均关于第一端部202和第二端部204的连线对称;并且,第一矩形1020、第一矩形1022、第一矩形1040、第一矩形1042的长度L2和第一矩形2020、第一矩形2022、第一矩形2040和第一矩形2042的长度L3均为0.4μm,宽度W2均为0.15μm。通过添加第一矩形使得孤立金属图形10和20形成的金属线条的两 端变宽,对形成于金属线条下方的填充孔的填充包裹能力更强,产品性能更稳定。
参见图4,为实施例2中步骤S106之后得到的预处理后的孤立金属图形的俯视结构示意图。
如图4所示,在其中一个实施例中,步骤S106还包括:
在孤立金属图形两端的延伸方向分别添加第三矩形,第三矩形的宽度为0.15微米,长度为0.3微米与孤立金属图形的宽度之和。其中,第三矩形的长度方向为孤立金属图形端部的两侧方向,宽度方向为孤立金属图形端部的延伸方向。
本实施例中,在孤立金属图形10两端的延伸方向分别添加第三矩形1024和第三矩形1044,第三矩形1024和第三矩形1044的宽度均为L4,其中,第一矩形1020、第一矩形1022、第三矩形1024和第一端部102,以及第一矩形1040、第一矩形1042、第三矩形1044和第二端部104均为矩形结构;在孤立金属图形20的延伸方向分别添加第三矩形2024和第三矩形2044,第三矩形2024和第三矩形2044的长度均为L5,其中,第一矩形2020、第一矩形2022、第三矩形2024和第一端部202,以及第一矩形2040、第一矩形2042、第三矩形2044和第二端部204均为矩形结构。与仅添加第一矩形相比,通过添加第三矩形增加了孤立金属图形形成的金属线条的长度,进一步提高了孤立金属图形形成的金属线条对形成于金属线条下方的填充孔的填充包裹能力,使得产品性能(器件的电性参数)更稳定。
在其中一个实施例中,L4和L5相等,例如均为0.15微米。在实际应用中,可以根据实际需求选取L4和L5的值。在其他实施例中,L4和L5可以为不相等的值。
在其中一个实施例中,步骤S106之后还包括依规检查修正的步骤,包括:若预处理后的孤立金属图形与同一光刻层的任意图形的间距小于0.165微米,则将间距最小位置处的预处理添加的图形去除一部分,从而使间距大于0.165微米。相应地,步骤S108是根据依规检查修正后的孤立金属图形得到掩膜版制版图形。
参见图5,为实施例3步骤S106之后得到的预处理后的孤立金属图形的俯视结构示意图。
如图5所示,若不平行的两个预处理后的孤立金属图形10和20之间的间距D2<0.165μm,则将两个预处理后的孤立金属图形10和20最接近的角部均去除第二矩形,即第三矩形1044的角部1041去除第二矩形1046,得到第一添加部1043;第三矩形2044的角部2041去除第二矩形2046,得到第二添加部2043。第二矩形1046的第一边M1的长度为X1、第二边N1的长度为Y1的;第二矩形2046的第一边M2的长度为X2、第二边N2的长度为Y2。第一边M1平行于第一边M2,第二边N1平行于第一边N2,其中, X1=X2=0.033μm,Y1=Y2<W2,或者Y1=Y2=0.033μm,X1=X2<L2。在D2<0.165μm时,通过去除第二矩形,避免了预处理后的孤立金属图形10和20形成金属线条之后,两条金属线条之间出现金属连条,即两条分离的金属线条出现异常的金属互连的问题,从而达到提高产品性能的目的。在实际应用中可以根据设计需要选择不同的间距D2、不同的X1、X2、Y1和Y2。
在另一个实施例中,第二矩形1046的第一边M1和第二矩形2046的第一边M2的长度相等,第二矩形1046的第二边N1和第二矩形2046的第二边N2的长度不相等;或者第二矩形1046的第一边M1和第二矩形2046的第一边M2的长度不相等,第二矩形1046的第二边N1和第二矩形2046的第二边N2的长度相等。
在其中一个实施例中,所述依规检查修正的步骤之后,步骤S108之前,还包括根据设计规则对依规检查修正后的孤立金属图形进行检查,若不符合设计规则则报错的步骤。
在其中一个实施例中,所述报错包括:输出不符合设计规则的具体图形和位置。
具体地,根据设计规则对依规检查修正后的孤立金属图形进行检查,若不符合所述设计规则则报错的步骤为:第一步,检查预处理后的孤立金属图形B的宽度width是否小于或等于0.15μm,若该孤立金属图形B的宽度width>0.15μm,则输出该孤立金属图形B的图形形貌及位置。第二步,检查输出的孤立金属图形B与添加的假片之间的第一间距space是否>0.095μm,若该第一间距space≤0.095μm,则输出该孤立金属图形B的图形形貌及位置。第三步,检查孤立金属图形B和同一光刻层中正对的图形(同一光刻层中相交的图形)之间的第二间距space是否>0.165μm,若该第二间距space≤0.165μm,则输出该孤立金属图形B的图形形貌及位置。第四步,检查孤立金属图形B和同一光刻层中侧对的图形(同一光刻层中延伸方向相同的图形)之间的第三间距space是否>0.15μm,若该第三间距space≤0.15μm,则输出该孤立金属图形B的图形形貌及位置。通过对修正后的孤立金属图形进行设计规则检查,输出不符合设计规则的图形,消除了修正后的图形不合规则的风险。
用mentro OPC工具执行时的代码具体如下:
M2_XOR_BOX=SIZE(M2_CLN_OUTSIDE XOR M2_CLN_F_850)BY 0.075 UNDEROVER
M2_XOR_BOX{DFM RDB M2_XOR_BOX”./OPC/AC092 end_D1ULP_L153AxA8_20200605.rdb”NOEMPTY ALL CELLS}
M2_XOR_BOX_DUM=(SIZE(M2_INPUT XOR M2_RB_MER_1)BY 0.095 UNDEROVER)XOR M2_EXCLUDED_1
M2_XOR_BOX_DUM{DFM RDB M2_XOR_BOX_DUM”./OPC/AC092 end_D1ULP_L153AxA8_20200605.rdb”NOEMPTY ALL CELLS}
M2_MIN_SPACE_PROJ=EXT M2_RB_MER<0.165 PROJECTING>=0.000
M2_MIN_SPACE_PROJ{DFM RDB M2_MIN_SPACE_PROJ”./OPC/AC092 end_D1ULP_L153AxA8_20200605.rdb”NOEMPTY ALL CELLS}
M2_MIN_SPACE_NOPROJ=EXT M2_RB_MER<0.15 NOT PROJECTING
M2_MIN_SPACE_NOPROJ{DFM RDB M2_MIN_SPACE_NOPROJ”./OPC/AC092 end_D1ULP_L153AxA8_20200605.rdb”NOEMPTY ALL CELLS}
M2_MIN_WIDTH=INT M2_RB_MER<0.2 NOT REGION
M2_MIN_WIDTH{DFM RDB M2_MIN_WIDTH”./OPC/AC092 end_D1ULP_L153AxA8_20200605.rdb”NOEMPTY ALL CELLS}
在其中一个实施例中,步骤S108之前还包括:对预处理后的孤立金属图形进行仿真后,对比光刻掩膜设计图形进行差异性检查;若差异性大于5纳米,则返回步骤S106重新进行光学邻近效应校正运算,直至差异性检查不大于5纳米。
具体地,通过软件对预处理后的孤立金属图形和非孤立金属图形进行仿真,得到仿真图形后,通过对比仿真图形和光刻掩膜设计图形,进行差异性检查,确认得到的仿真图形是否能够满足规范要求,若仿真图形和光刻掩膜设计图形之间的差异性大于5nm,则返回步骤S106,重新进行光学邻近效应校正运算,直至差异性不大于5nm,以此时得到的预处理后的孤立金属图形和非孤立金属图形构成掩膜版制版图形。
在其中一个实施例中,步骤S108之后还包括根据掩膜版制版图形制作光刻版的步骤。
在其中一个实施例中,上述光学邻近效应校正方法应用于0.153μm及以下技术节点中。
图6为本申请一实施例中光学邻近效应校正方法的流程示意图。以下参考图6对本申请中的光学邻近效应校正方法进行说明。(1)工艺条件固定:获取设计规则和光刻工艺条件,光刻工艺条件包括曝光光路的光学参数、光刻胶的材料参数以及刻蚀工艺的化学参数。(2)OPC建模数据收集:根据光刻工艺条件在假片(dummy片)上形成预先设计的测试图形,收集到光刻工艺条件对应的测试数据,作为OPC模型数据。(3)OPC模型建立:将收集到的测试数据和工艺条件输入OPC建模工具,设定软件仿真,生成OPC模型。(4)OPC程序设定:开发运行OPC模型(opc model)的程序(recipe)。(5)挑选金属层次孤立图形:即挑出各金属层次中的孤立金属图形,具体的,将需要修正的金属图形的条件(width≤0.85μm、space≥1.5μm、length≥0.9μm等)设定在opc程式中,执行后挑选出需要修正的图形,即孤立金属图形。(6)对图形进行特殊OPC运算:对孤立金属图形进 行预处理。其中,(5)、(6)用mentro OPC工具执行时的代码具体如下:
M2_CLN_850=CONVEX ENGE M2_CLN_OUTSIDE ANGLE1==90LENGTH1>0.9 ANGLE2==90LENGTH2>0.9WITH LENGTH>0<=0.850
M2_CLN_BOX_1_850=EXPAND EDGE M2_CLN_850 inside by 0.4 EXTEND BY 0.15
M2_CLN_BOX_850=NOT M2_CLN_BOX_1_850 M2_CLN_OUTSIDE
M2_CLN_SPACE_D_850=EXTERNAL[M2_CLN_OUTSIDE]<=1.5 OPPOSITE EXTENDED 0.15
M2_BOX_D_850=M2_CLN_BOX_850NOT WITH EDGE M2_CLN_SPACE_D_850
M2_CLN_F_850_1=M2_CLN_BOX_D_850 OR M2_CLN_OUTSIDE
M2_CLN_F_850_2=EXTERNAL[M2_CLN_F_850_1]<0.165
M2_CLN_F_850_3=EXPAND EDGE M2_CLN_F_850_2 inside by 0.033
M2_CLN_F_850_4=EXTENTS M2_CLN_F_850_3
M2_CLN_F_850=M2_CLN_F_850_1NOT M2_CLN_F_850_4
(7)OPC准确性验证:将预处理后的孤立金属图形和非孤立金属图形合并为修正图形后,通过软件仿真将修正图形生成contour与设计图形做差异性检查,确认是否满足规范要求,当差异性超过5nm时,重新做opc运算直至合格。(8)光刻版图制版:将opc处理完成的合格版图数据发送到mask shop制作光刻版。
本申请提供一种掩膜版,所述掩膜版根据上述任意一项所述的光学邻近效应校正方法得到的掩膜版制版图形制成的。
本申请还提供一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的方法的步骤。
本申请还提供一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现所述任一项所述的方法的步骤。
上述光学邻近效应校正方法,对孤立金属图形进行额外的OPC处理,使孤立金属图形两端的宽度均大于中间的宽度,能够避免因光学邻近效应导致的孤立金属图形形成金属线条后在端部出现线条短缺,使得金属线条对前一层次填充孔的填充包裹效果较差,导致器件关键参数波动的问题。
应该理解的是,虽然图2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完 成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种光学邻近效应校正方法,其特征在于,包括:
    获取光刻掩膜设计图形;
    从所述光刻掩膜设计图形中选中符合第一条件的孤立金属图形;
    对所述孤立金属图形进行预处理,使所述孤立金属图形两端的宽度大于中间的宽度;
    根据预处理后的孤立金属图形得到掩膜版制版图形。
  2. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,所述对所述孤立金属图形进行预处理的步骤包括:在所述孤立金属图形的端部的两侧分别添加第一矩形,所述第一矩形的长度为0.4微米、宽度为0.15微米,其中,所述宽度的方向为所述两侧的方向。
  3. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,所述第一条件是所述孤立金属图形在第一方向上与同一光刻层的任意图形的间距不小于1.5微米,且所述孤立金属图形的宽度不大于0.85微米,长度不小于0.9微米;所述第一方向垂直于所述孤立金属图形的延伸方向。
  4. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,所述孤立金属图形包括第一端部、第二端部,以及位于所述第一端部和所述第二端部之间的中间部,在所述第一端部的两侧分别添加第一矩形,在所述第二端部的两侧分别添加第一矩形。
  5. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,在所述孤立金属图形两端的延伸方向分别添加第三矩形,所述第三矩形的宽度为0.15微米,所述第三矩形的长度为0.3微米与所述孤立金属图形的宽度之和,其中,第三矩形的长度方向为所述孤立金属图形端部的两侧方向,第三矩形的宽度方向为所述孤立金属图形端部的延伸方向。
  6. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,还包括依规检查修正的步骤,包括:若所述预处理后的孤立金属图形与同一光刻层的任意图形的间距小于0.165微米,则将间距最小位置处的第一矩形去除一部分,从而使所述间距大于0.165微米;
    所述根据预处理后的孤立金属图形得到掩膜版制版图形的步骤,是根据依规检查修正后的孤立金属图形得到掩膜版制版图形。
  7. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,还包括依规检查修正的步骤,包括:若不平行的两个预处理后的孤立金属图形间距小于0.165微米,则将所述两个预处理后的孤立金属图形最接近的角部均去除第二矩形,所述第二矩形的宽度为0.033微米且宽度方向为所述两个预处理后的孤立金属图形中任一的第一矩形的宽度方向。
  8. 根据权利要求7所述的光学邻近效应校正方法,其特征在于,所述依规检查修正的步骤之后,所述根据预处理后的孤立金属图形得到掩膜版制版图形的步骤之前,还包括根据 设计规则对依规检查修正后的孤立金属图形进行检查,若不符合所述设计规则则报错的步骤。
  9. 根据权利要求8所述的光学邻近效应校正方法,其特征在于,所述报错包括:输出不符合所述设计规则的具体图形和位置。
  10. 根据权利要求9所述的光学邻近效应校正方法,其特征在于,所述根据设计规则对依规检查修正后的孤立金属图形进行检查,若不符合所述设计规则则报错的步骤,还包括:
    第一步,检查预处理后的孤立金属图形的宽度是否小于或等于0.15μm,若所述孤立金属图形的宽度大于0.15μm,则输出所述孤立金属图形的图形形貌及位置;
    第二步,检查输出的孤立金属图形与添加的假片之间的第一间距是否大于0.095μm,若所述第一间距小于等于0.095μm,则输出所述孤立金属图形的图形形貌及位置;
    第三步,检查所述孤立金属图形和同一光刻层中正对的图形之间的第二间距是否大于0.165μm,若所述第二间距小于等于0.165μm,则输出所述孤立金属图形的图形形貌及位置;
    第四步,检查孤立金属图形和同一光刻层中侧对的图形之间的第三间距是否大于0.15μm,若所述第三间距小于等于0.15μm,则输出所述孤立金属图形的图形形貌及位置。
  11. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,所述根据预处理后的孤立金属图形得到掩膜版制版图形的步骤之前还包括:
    对所述预处理后的孤立金属图形进行仿真后,对比所述光刻掩膜设计图形进行差异性检查;
    若所述差异性大于5纳米,则返回所述对所述孤立金属图形进行预处理的步骤重新进行光学邻近效应校正运算,直至所述差异性检查不大于5纳米。
  12. 根据权利要求1所述的光学邻近效应校正方法,其特征在于,所述光学邻近效应校正方法应用于0.153μm及以下技术节点中。
  13. 一种掩膜版,其特征在于,所述掩膜版根据权利要求1所述的光学邻近效应校正方法得到的掩膜版制版图形制成。
  14. 一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1所述的方法的步骤。
  15. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1所述的方法的步骤。
PCT/CN2021/112075 2020-11-30 2021-08-11 光学邻近效应校正方法、掩膜版及可读存储介质 WO2022110902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011379831.6 2020-11-30
CN202011379831.6A CN114578650A (zh) 2020-11-30 2020-11-30 光学邻近效应校正方法、掩膜版及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022110902A1 true WO2022110902A1 (zh) 2022-06-02

Family

ID=81755272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112075 WO2022110902A1 (zh) 2020-11-30 2021-08-11 光学邻近效应校正方法、掩膜版及可读存储介质

Country Status (2)

Country Link
CN (1) CN114578650A (zh)
WO (1) WO2022110902A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933306A (zh) * 2023-03-09 2023-04-07 合肥晶合集成电路股份有限公司 光学临近修正方法
CN117348334A (zh) * 2023-12-04 2024-01-05 华芯程(杭州)科技有限公司 一种光学临近效应修正方法、装置、设备及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566550A (ja) * 1991-08-22 1993-03-19 Nikon Corp パターン作成方法、及びパターン作成システム
JPH06123962A (ja) * 1991-08-22 1994-05-06 Nikon Corp マスク及び該マスクを用いた露光方法
JPH11258770A (ja) * 1998-03-16 1999-09-24 Toshiba Corp マスクパターン設計方法及びフォトマスク
JPH11265055A (ja) * 1999-01-06 1999-09-28 Nikon Corp 回路素子製造方法
JPH11271957A (ja) * 1999-01-06 1999-10-08 Nikon Corp マスク、マスク製造方法及び装置
CN1361450A (zh) * 2000-12-27 2002-07-31 联华电子股份有限公司 修正光学邻近效应的方法
US20050196686A1 (en) * 2004-02-25 2005-09-08 Dirk Meyer Method for compensation of the shortening of line ends during the formation of lines on a wafer
KR20060075371A (ko) * 2004-12-28 2006-07-04 동부일렉트로닉스 주식회사 반도체 제조공정에서의 마스크 제작 장치
US20070212620A1 (en) * 2006-03-09 2007-09-13 Elpida Memory, Inc. Mask data generation method and mask

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566550A (ja) * 1991-08-22 1993-03-19 Nikon Corp パターン作成方法、及びパターン作成システム
JPH06123962A (ja) * 1991-08-22 1994-05-06 Nikon Corp マスク及び該マスクを用いた露光方法
JPH11258770A (ja) * 1998-03-16 1999-09-24 Toshiba Corp マスクパターン設計方法及びフォトマスク
JPH11265055A (ja) * 1999-01-06 1999-09-28 Nikon Corp 回路素子製造方法
JPH11271957A (ja) * 1999-01-06 1999-10-08 Nikon Corp マスク、マスク製造方法及び装置
CN1361450A (zh) * 2000-12-27 2002-07-31 联华电子股份有限公司 修正光学邻近效应的方法
US20050196686A1 (en) * 2004-02-25 2005-09-08 Dirk Meyer Method for compensation of the shortening of line ends during the formation of lines on a wafer
KR20060075371A (ko) * 2004-12-28 2006-07-04 동부일렉트로닉스 주식회사 반도체 제조공정에서의 마스크 제작 장치
US20070212620A1 (en) * 2006-03-09 2007-09-13 Elpida Memory, Inc. Mask data generation method and mask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115933306A (zh) * 2023-03-09 2023-04-07 合肥晶合集成电路股份有限公司 光学临近修正方法
CN115933306B (zh) * 2023-03-09 2023-06-09 合肥晶合集成电路股份有限公司 光学临近修正方法
CN117348334A (zh) * 2023-12-04 2024-01-05 华芯程(杭州)科技有限公司 一种光学临近效应修正方法、装置、设备及介质
CN117348334B (zh) * 2023-12-04 2024-04-16 华芯程(杭州)科技有限公司 一种光学临近效应修正方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114578650A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN107065430B (zh) 一种基于规则的亚分辨率辅助图形添加方法
US7475383B2 (en) Method of fabricating photo mask
WO2022110902A1 (zh) 光学邻近效应校正方法、掩膜版及可读存储介质
KR100847842B1 (ko) 반도체 소자의 마스크 제작방법
KR100826655B1 (ko) 광 근접 효과 보정 방법
US7010775B2 (en) Method for creating mask pattern for circuit fabrication and method for verifying mask pattern for circuit fabrication
US7266801B2 (en) Design pattern correction method and mask pattern producing method
KR100780775B1 (ko) 자기 조립 더미 패턴이 삽입된 회로 레이아웃을 이용한반도체 소자 제조 방법
US20060033049A1 (en) Design pattern data preparing method, mask pattern data preparing method, mask manufacturing method, semiconductor device manufacturing method, and program recording medium
KR20170047101A (ko) Opc 이용한 마스크 제조방법 및 반도체 소자 제조방법
TWI575308B (zh) 修正輔助圖案的方法
JP2004302263A (ja) マスクパターン補正方法およびフォトマスク
TWI421908B (zh) 光學鄰近校正模型的建立方法
JP2004333529A (ja) 露光マスクの作製方法
JP4133047B2 (ja) 補正マスクパターン検証装置および補正マスクパターン検証方法
US8443309B2 (en) Multifeature test pattern for optical proximity correction model verification
TWI588595B (zh) 光學鄰近修正方法
US8127257B2 (en) Designing method of photo-mask and method of manufacturing semiconductor device using the photo-mask
US6245466B1 (en) Mask pattern design method and a photomask
TWI679490B (zh) 產生雙圖案光罩的處理方法以及其記錄媒體
Kang et al. Combination of rule and pattern based lithography unfriendly pattern detection in OPC flow
CN108803233B (zh) 一种掩模版的制备方法
CN115480441A (zh) 光学临近修正方法、掩膜版、可读存储介质及计算机设备
JP5248540B2 (ja) マスク検証方法、半導体装置の製造方法およびマスク検証プログラム
JP2005250360A (ja) マスクパターンの検証装置および検証方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896408

Country of ref document: EP

Kind code of ref document: A1