WO2022107695A1 - Method for producing barium titanyl oxalate and method for producing barium titanate - Google Patents

Method for producing barium titanyl oxalate and method for producing barium titanate Download PDF

Info

Publication number
WO2022107695A1
WO2022107695A1 PCT/JP2021/041717 JP2021041717W WO2022107695A1 WO 2022107695 A1 WO2022107695 A1 WO 2022107695A1 JP 2021041717 W JP2021041717 W JP 2021041717W WO 2022107695 A1 WO2022107695 A1 WO 2022107695A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium
oxalate
solution
liquid
flow path
Prior art date
Application number
PCT/JP2021/041717
Other languages
French (fr)
Japanese (ja)
Inventor
宏亮 丹野
武久 国枝
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020192357A external-priority patent/JP7110305B2/en
Priority claimed from JP2020192358A external-priority patent/JP7110306B2/en
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to CN202180078063.7A priority Critical patent/CN116507588A/en
Priority to KR1020237016544A priority patent/KR20230109634A/en
Publication of WO2022107695A1 publication Critical patent/WO2022107695A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/06Oxalic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/06Oxalic acid
    • C07C55/07Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds

Definitions

  • the present invention relates to a method for producing barium oxalate titanyl oxalate, which is useful as a raw material for functional ceramics such as dielectrics, piezoelectric materials, optoelectronic materials, semiconductors, and sensors.
  • barium titanate has been produced by a solid phase method, a hydrothermal synthesis method, an alkoxide method, an oxalate method, or the like.
  • the constituent raw material powder and the like are mixed and the mixture is produced by a dry method of heating at a high temperature. Therefore, the obtained powder forms an agglomerate having an irregular shape and has desired characteristics. High temperature firing is required to achieve this.
  • the hydrothermal synthesis method has the advantages of good powder characteristics, but the synthesis process is complicated, the productivity is inferior because an autoclave is used, the price of the produced powder is high, and it is not industrially advantageous.
  • the alkoxide method is difficult to handle as a starting material, is expensive, and is not industrially advantageous.
  • Barium titanate obtained by the oxalate method can be cheaply produced with a uniform composition as compared with the hydrothermal synthesis method and the alkoxide method, and is compared with barium titanate produced by the solid phase method. It is characterized by a uniform composition.
  • a titanium source such as titanium tetrachloride, a barium source such as barium chloride, and barium oxalate are reacted in a solvent such as water to obtain barium titanyl oxalate, and then the barium oxalate is obtained.
  • a method of firing titanium is common (see, for example, Patent Documents 1 to 3).
  • barium titanate oxalate obtained in the above patent document produces barium titanate at a firing temperature of 700 ° C. or higher, the degree of crystallinity is low at the time of production of barium titanate, but some grains are formed. It is growing.
  • barium oxalate titanyl oxalate is fired at a high temperature, even high crystals become large particles, and there is a problem that the characteristics as a raw material for functional ceramics cannot be satisfied.
  • an object of the present invention is to provide a production method for producing barium titanate oxalate, which can obtain barium titanate having a small particle size and high crystals.
  • solution A containing oxalic acid and a titanium compound on one end side of the reaction liquid flow path formed in an in-line mixer, a microreactor, or the like.
  • solution B the solution containing the barium compound
  • the solution A and the solution B are mixed in the reaction flow path, and the reaction solution is discharged from the other end side of the reaction solution flow path.
  • the present inventors have conducted a solution containing oxalic acid (solution A) and a solution containing a titanium compound and a barium compound (B) on one end side of the reaction liquid flow path.
  • Liquid is supplied separately, liquid A and liquid B are mixed while generating a vortex in the reaction flow path, and the reaction liquid is discharged from the other end side of the reaction liquid flow path, so that the liquid A is discharged.
  • the reaction raw materials in the solution B can be brought into contact with each other quickly, fine barium titanyl oxalate can be obtained, and when such fine barium titanyl oxalate is fired, carbon dioxide gas is released during thermal decomposition.
  • barium titanate Grain growth of barium titanate can be easily performed, the temperature at which barium titanate is produced can be lowered, and barium titanate can be highly crystallized at a lower temperature than before by producing barium titanate at a low temperature. It has been found that finer and higher crystalline barium titanate can be obtained as compared with the conventional case, and the present invention has been completed.
  • barium oxalate titanyl oxalate is produced by mixing a solution containing oxalate (solution A) and a solution containing a titanium source and a barium source (solution B) and reacting them. It is a method for producing barium titanyl oxalate to be produced.
  • the A solution and the B solution are separately supplied to one end side of the reaction solution flow path, the A solution and the B solution are mixed in the reaction flow path, and the other end side of the reaction solution flow path is mixed. Then, the reaction solution is discharged, and then the solid-liquid separation of the reaction solution is performed.
  • the residence time of the reaction solution in the reaction solution flow path is within 30 seconds.
  • the present invention provides a method for producing barium titanyl oxalate, which is characterized by the above.
  • the present invention (2) is characterized in that the reaction liquid flow path is formed in the static mixer by separately supplying the liquid A and the liquid B to one end side of the static mixer. It provides the method for producing barium titanyl oxalate (1).
  • the reaction liquid flow in the microreactor is obtained by separately supplying the liquid A and the liquid B to one end side of the reaction liquid flow path of the continuous flow type microreactor. It provides the method for producing barium titanyl oxalate (1), which is characterized by forming a path.
  • a solution containing barium oxalate (solution A) and a solution containing a titanium source and a barium source (solution B) are mixed and reacted to produce barium oxalate titanyl oxalate. It is a method for producing barium titanyl oxalate to be produced.
  • the solution A and the solution B are separately supplied to one end side of the reaction solution flow path, and the solution A and the solution B are mixed at one end side of the reaction solution flow path to create a vortex in the reaction solution.
  • the present invention provides a method for producing barium titanyl oxalate, which is characterized by the above.
  • the present invention (5) provides the method for producing barium oxalate titanyl oxalate (4), which is characterized in that the residence time of the reaction solution in the reaction solution flow path is within 60 seconds. be.
  • the present invention (6) provides the method for producing barium oxalate titanyl oxalate according to (4), wherein the vortex is a Taylor vortex.
  • the present invention (7) provides the method for producing barium oxalate titanyl oxalate according to (1) or (4), wherein the solvent of the liquid A is an organic solvent.
  • the solvent of the solution A is methanol, ethanol, propanol, butanol, diethyl ether, 1,3-butylene glycol, ethylene glycol, propylene glycol, dipropylene glycol, glycerol, N, N-.
  • the present invention provides the method for producing barium titanyl oxalate according to (1) or (4), which is one or more selected from the group consisting of dimethylformamide and acetone.
  • the present invention (9) provides the method for producing barium oxalate titanyl oxalate according to (1) or (4), wherein the solvent of the liquid B is water.
  • the present invention is the barium titanyl oxalate according to (1) or (4), wherein the titanium compound in the liquid B is titanium tetrachloride and the barium compound is barium chloride. It provides a manufacturing method.
  • the present invention (11) provides the method for producing barium oxalate titanyl oxalate according to (1) or (4), wherein the mixing temperature of the liquid A and the liquid B is 75 ° C. or lower. be.
  • the present invention (12) also provides the method for producing barium titanyl oxalate according to (1) or (4), wherein the average particle size of barium oxalate titanyl produced is 1.0 ⁇ m or less. It is a thing.
  • the present invention (13) provides a method for producing barium titanate, which comprises calcining barium titanate oxalate obtained by any of the production methods (1) to (6).
  • a production method for producing barium titanate oxalate which can obtain barium titanate having a smaller particle size and higher crystals than conventional barium titanate oxalate when fired at the same temperature. can do.
  • the first invention of the present invention will be described.
  • a solution containing oxalic acid (solution A) and a solution containing a titanium source and a barium source (solution B) are mixed and reacted to cause oxalic acid.
  • the A solution and the B solution are separately supplied to one end side of the reaction solution flow path, the A solution and the B solution are mixed in the reaction flow path, and the other end side of the reaction solution flow path is mixed. Then, the reaction solution is discharged, and then the solid-liquid separation of the reaction solution is performed.
  • the residence time of the reaction solution in the reaction solution flow path is within 30 seconds. It is a method for producing barium titanyl oxalate, which is characterized by the above.
  • the liquid A according to the method for producing barium oxalate titanyl oxalate of the present invention is a solution containing oxalic acid.
  • the concentration of oxalate ion in the liquid A is not particularly limited, but is preferably 0.1 to 7.0 mol / L, and particularly preferably 0.6 to 5.0 mol / L.
  • the solvent of the liquid A may be a water solvent, an organic solvent, or a mixed solvent thereof, and is preferably an organic solvent from the viewpoint of obtaining fine particles of barium oxalate titanyl oxalate.
  • the organic solvent is not particularly limited as long as it is hydrophilic and inactive with respect to the raw material, and is not particularly limited. Methanol, ethanol, propanol, butanol, diethyl ether, 1,3-butylene glycol, ethylene glycol, propylene glycol, di
  • One or more selected from the group consisting of propylene glycol, glycerol, N, N-dimethylformamide and acetone can be used.
  • a mixed solvent of water and an organic solvent or a mixed solvent of a plurality of organic solvents the mixing ratio thereof is appropriately selected.
  • the liquid B according to the method for producing barium titanyl oxalate of the present invention is a solution containing a titanium compound and a barium compound.
  • the concentration of titanium ions in the liquid B is not particularly limited, but is preferably 0.04 to 4.0 mol / L, and particularly preferably 0.2 to 3.0 mol / L.
  • the concentration of barium ions in the liquid B is not particularly limited, but is preferably 0.08 to 6.5 mol / L, and particularly preferably 0.4 to 3.0 mol / L.
  • the titanium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include titanium tetrachloride and titanium lactate.
  • the titanium compound may be one kind or a combination of two or more kinds.
  • As the titanium source titanium tetrachloride is preferable.
  • the barium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include barium chloride, barium carbonate, barium hydroxide, barium acetate, and barium nitrate.
  • the barium compound may be one kind or a combination of two or more kinds.
  • As the barium compound one or more selected from the group consisting of barium chloride, barium acetate, barium nitrate and barium hydroxide is preferable, and barium chloride is particularly preferable.
  • liquid A and liquid B are separately supplied to one end side of the reaction liquid flow path, and liquid A and liquid B are mixed in the reaction liquid flow path.
  • the reaction for producing barium titanyl oxalate is carried out in the reaction solution flow path.
  • a static mixer As a method of separately supplying the liquid A and the liquid B to one end side of the reaction liquid flow path and mixing the liquid A and the liquid B in the reaction flow path, for example, a static mixer, a screw mixer, a dynamic mixer, etc.
  • a method of separately supplying the liquid A and the liquid B to one end side of the in-line mixer and mixing the liquid A and the liquid B in the in-line mixer can be mentioned.
  • a reaction liquid flow path is formed in the in-line mixer.
  • a static mixer is preferable in that fine barium oxalate titanyl oxalate can be easily obtained.
  • the static mixer is not particularly limited, and examples thereof include MC08-32 manufactured by Tomita Engineering Co., Ltd.
  • a continuous flow type microreactor can be used as a method of separately supplying liquid A and liquid B to one end side of the reaction liquid flow path and mixing the liquid A and the liquid B in the reaction flow path.
  • a method of separately supplying the liquid A and the liquid B to one end side and mixing the liquid A and the liquid B in the flow path of the microreactor can be mentioned.
  • the microreactor is, for example, a flow path composed of a tube having a flow path diameter of 0.1 to 10 mm and a length of 1 to 2000 mm, and a supply unit that simultaneously supplies liquid A and liquid B to one end side of the flow path. It is a reactor having and. When a continuous flow type microreactor is used, a reaction liquid flow path is formed in the flow path of the continuous flow type microreactor.
  • the liquid A and the liquid B are mixed in the reaction liquid flow path, and the liquid A and the liquid B are mixed.
  • the reaction raw materials in the liquid react to form fine particles of barium oxalate titanyl oxalate.
  • liquid A and liquid B are supplied from one end side of the reaction flow path, and the generated reaction liquid is discharged from the other end side of the reaction liquid flow path.
  • the residence time of the reaction solution in the reaction solution flow path is 30 seconds or less, preferably 10 seconds or less, and particularly preferably 0.1 to 5 seconds.
  • the residence time of the reaction solution in the reaction solution flow path is the time until the mixture of the solution A and the solution B supplied to one end side of the reaction solution flow path reaches the other end side of the reaction solution flow path. Point to.
  • the mixing temperature of the solution A and the solution B that is, the temperature of the reaction solution in the reaction solution flow path is preferably 75 ° C. or lower, particularly preferably 5 to 50 ° C.
  • the ratio of the number of moles of titanium and barium in the liquid B to the number of moles of oxalic acid in the liquid A is preferably 0.01 to 20.0, particularly preferably 0.01 to 20.0.
  • the mixing ratio is 0.10 to 10.0.
  • the reaction liquid discharged from the reaction liquid flow path is separated into solid and liquid.
  • washing After solid-liquid separation, wash the solids with water.
  • the washing method is not particularly limited, but washing with repulp or the like is preferable in terms of high washing efficiency.
  • the solid content is dried and, if necessary, pulverized to obtain barium titanyl oxalate.
  • the liquid A according to the method for producing barium oxalate titanyl oxalate of the present invention is a solution containing oxalic acid.
  • the concentration of oxalate ion in the liquid A is not particularly limited, but is preferably 0.1 to 7.0 mol / L, and particularly preferably 0.6 to 5.0 mol / L.
  • the solvent of the liquid A may be a water solvent, an organic solvent, or a mixed solvent thereof, and is preferably an organic solvent from the viewpoint of obtaining fine particles of barium oxalate titanyl oxalate.
  • the organic solvent is not particularly limited as long as it is hydrophilic and inactive with respect to the raw material, and is not particularly limited. Methanol, ethanol, propanol, butanol, diethyl ether, 1,3-butylene glycol, ethylene glycol, propylene glycol, di
  • One or more selected from the group consisting of propylene glycol, glycerol, N, N-dimethylformamide and acetone can be used.
  • a mixed solvent of water and an organic solvent or a mixed solvent of a plurality of organic solvents the mixing ratio thereof is appropriately selected.
  • the liquid B according to the method for producing barium titanyl oxalate of the present invention is a solution containing a titanium compound and a barium compound.
  • the concentration of titanium ions in the liquid B is not particularly limited, but is preferably 0.04 to 4.0 mol / L, and particularly preferably 0.2 to 3.0 mol / L.
  • the concentration of barium ions in the liquid B is not particularly limited, but is preferably 0.08 to 6.5 mol / L, and particularly preferably 0.4 to 3.0 mol / L.
  • the titanium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include titanium tetrachloride and titanium lactate.
  • the titanium compound may be one kind or a combination of two or more kinds.
  • As the titanium source titanium tetrachloride is preferable.
  • the barium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include barium chloride, barium carbonate, barium hydroxide, barium acetate, and barium nitrate.
  • the barium compound may be one kind or a combination of two or more kinds.
  • As the barium compound one or more selected from the group consisting of barium chloride, barium acetate, barium nitrate and barium hydroxide is preferable, and barium chloride is particularly preferable.
  • liquid A and liquid B are separately supplied to one end side of the reaction liquid flow path, and then liquid A and liquid B are supplied to one end side of the reaction liquid flow path.
  • liquid A and liquid B are supplied to one end side of the reaction liquid flow path.
  • liquid A is reacted with the reaction raw materials in liquid A and liquid B while generating a vortex in the mixed liquid of liquid A and liquid B in the reaction liquid flow path. And the reaction raw materials in the liquid B can be brought into contact with each other promptly. Therefore, in the method for producing barium oxalate titanyl oxalate of the present invention, a large number of nuclei of barium oxalate titanyl oxalate can be generated in the obtained reaction solution (mixed solution) after mixing the solution A and the solution B.
  • Barium oxalate titanyl oxalate having a large diameter is difficult to be produced, and barium oxalate titanyl oxalate having a small diameter is produced. Further, in the method for producing barium oxalate titanyl oxalate of the present invention, the reaction raw materials in the obtained reaction solution (mixed solution) can be brought into contact with each other quickly, so that the reaction time (residence time) can be shortened. The reaction efficiency can be increased.
  • Examples of the vortex flow generated in the reaction liquid flow path include a Taylor vortex flow.
  • the Taylor vortex flow refers to a donut-shaped vortex flow generated when the inner cylinder is rotated while the gap between the double cylinder consisting of the inner cylinder and the outer cylinder is filled with fluid.
  • Japanese Patent Application Laid-Open No. 2011-83768 Japanese Patent Application Laid-Open No. 2011-83768.
  • Examples thereof include the devices disclosed in Japanese Patent Application Laid-Open No. 2016-10774, Japanese Patent Application Laid-Open No. 2017-209660, etc., and for example, Taylor vortex stirring such as TVF manufactured by Chipton Co., Ltd. and small reactorizer Akita manufactured by Tokuju Co., Ltd. Equipment is mentioned.
  • liquid A and liquid B are supplied to one end side of the reaction liquid flow path, and the generated reaction liquid is discharged from the other end side of the reaction liquid flow path. If the reaction liquid is within the residence time described later between the supply and discharge reaction liquid flow paths, a reaction device that generates a vortex flow such as a Taylor vortex flow is provided, for example, as described in JP-A-2011-83768. You may use a plurality of combinations.
  • the residence time of the reaction solution in the reaction solution flow path is preferably 60 seconds or less, more preferably 20 seconds or less, and particularly preferably 0.1 to 10 seconds. ..
  • the residence time of the reaction solution in the reaction solution flow path is defined as the mixture of the solution A and the solution B supplied to one end side of the reaction solution flow path (the reaction solution produced by mixing the solution A and the solution B). , Refers to the time from one end side of the reaction solution flow path to the other end side of the reaction solution flow path.
  • the mixing temperature of the solution A and the solution B that is, the temperature of the reaction solution in the reaction solution flow path is preferably 75 ° C. or lower, particularly preferably 5 to 50 ° C.
  • the ratio of the number of moles of titanium and barium in the liquid B to the number of moles of oxalic acid in the liquid A is preferably 0.01 to 20.0, particularly preferably 0.01 to 20.0.
  • the mixing ratio is 0.10 to 10.0.
  • the reaction liquid discharged from the reaction liquid flow path is separated into solid and liquid.
  • washing After solid-liquid separation, wash the solids with water.
  • the washing method is not particularly limited, but washing with repulp or the like is preferable in terms of high washing efficiency.
  • the solid content is dried and, if necessary, pulverized to obtain barium titanyl oxalate.
  • barium titanyl oxalate that can be obtained by performing the method for producing barium oxalate titanyl oxalate according to the first invention and the second invention of the present invention will be described.
  • the barium oxalate titanyl oxalate obtained by performing the method for producing barium oxalate titanyl oxalate of the present invention has a temperature at which the weight loss rate reaches 99% with respect to the weight loss rate at 1000 ° C. at 600 to 700 in thermogravimetric analysis.
  • Barium oxalate titanyl oxalate characterized in that the temperature is, preferably 610 to 690 ° C, particularly preferably 615 to 685 ° C.
  • the weight loss rate of 1000 ° C. in the thermogravimetric analysis refers to the weight loss rate at the time when the analysis temperature in the thermogravimetric analysis is 1000 ° C.
  • the temperature at which the weight loss rate reaches 99% with respect to the weight loss rate of 1000 ° C. in the thermogravimetric analysis means that the weight loss rate at the start of the analysis is 99% of the weight loss rate at the analysis temperature of 1000 ° C. Refers to the temperature at which it reaches.
  • the temperature at which the weight loss rate reaches 99% with respect to the weight loss rate at 1000 ° C. is the temperature at which the thermal decomposition of barium titanyl oxalate occurs and the conversion to barium titanate ends, that is, barium titanyl oxalate.
  • the temperature at which barium titanate is produced refers to the temperature at which barium titanate is produced.
  • the weight loss measured by thermal weight analysis of barium titanate oxalate when the temperature of the sample to be measured was raised from room temperature to 10 ° C / min, some weight loss was confirmed, and then at around 700 ° C. It can be confirmed that the weight reduction is no longer confirmed, and finally the barium titanate is thermally decomposed.
  • the weight of the conventional barium titanate oxalate disappears at 700 to 720 ° C., and it can be confirmed that barium titanate is obtained in this temperature range.
  • the weight loss of barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention cannot be confirmed at 600 to 700 ° C, preferably 610 to 690 ° C, particularly preferably 615 to 685 ° C.
  • Barium titanate can be obtained from barium titanyl oxalate at a lower temperature than in the prior art.
  • the barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention has an average particle size of preferably 1.0 ⁇ m or less, particularly preferably 0.01 to 0.5 ⁇ m, which is fine. Therefore, the present inventors consider that the carbon dioxide gas is easily released by thermal decomposition and changes to barium titanate at a lower temperature than the conventional technique.
  • the barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention has a temperature at which the weight loss rate reaches 99% with respect to a weight loss rate of 1000 ° C. at 600 to 700 ° C., preferably 610 ° C. in thermogravimetric analysis.
  • barium titanate can be produced in the temperature range of 600 to 700 ° C., preferably 610 to 690 ° C., particularly preferably 615 to 685 ° C.
  • the barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention can produce barium titanate at a low temperature, so that barium titanate can be highly crystallized at a lower temperature than before.
  • barium titanate oxalate produced by the method for producing barium titanate oxalate of the present invention barium titanate can be highly crystallized at a lower temperature than before, so that the grain growth of barium titanate can be suppressed.
  • Barium titanate which is finer and more crystalline than the conventional one, can be obtained.
  • the barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention can obtain finer and higher crystalline barium titanate than the conventional barium titanate oxalate when fired at the same temperature. Can be done.
  • the temperature at which the weight loss rate reaches 99% with respect to the weight loss rate at 1000 ° C. exceeds 700 ° C.
  • the temperature at which barium titanate is produced from barium titanyl oxalate rises, so that for subsequent high crystallization.
  • the heating temperature also becomes high, and as a result, the particle size of barium titanate becomes large.
  • thermogravimetric analyzer used for thermogravimetric analysis of barium titanyl oxalate is not particularly limited, and examples thereof include TGA / DSC 1 manufactured by METTLER TOLEDO CO., LTD.
  • the barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention has a specific surface area of 15 to 20 m 2 / g and a c / a of c / a by a heating test at 700 ⁇ 10 ° C. in the air for 2 hours. It is preferably barium titanyl oxalate that is converted to barium titanate from 1.030 to 1.055.
  • the specific surface area of barium titanate obtained by heating and testing barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention in the air at 700 ⁇ 10 ° C. for 2 hours is particularly preferably 16 to 19 m 2 . / G.
  • the c / a of barium titanate obtained by heating the barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention in the air at 700 ⁇ 10 ° C. for 2 hours is particularly preferably 1. It is .0035 to 1.0050.
  • the specific surface area of barium titanate produced by the heating test at 700 ⁇ 10 ° C. in the air for 2 hours is in the above range, and c / a is in the above range. Even if grain growth occurs due to heating for crystallization, finer and higher crystal barium titanate can be obtained as compared with the conventional barium titanate oxalate.
  • the measurement target sample was held for 2 hours in a heating device whose temperature was controlled to 700 ⁇ 10 ° C., and the heating test was performed. After cooling, the measurement target sample after the heating test was BET. Specific surface area analysis and X-ray diffraction analysis by the method are performed to determine the specific surface area and c / a of the sample to be measured after the heating test.
  • the average particle size of barium oxalate titanyl oxalate obtained by the method for producing barium oxalate titanyl of the present invention is preferably 1.0 ⁇ m or less, more preferably 0.005 to 1.0 ⁇ m, and particularly preferably 0.01 to 0. It is 5.5 ⁇ m.
  • the average particle size of barium titanyl oxalate is in the above range, barium titanate can be produced at a low temperature.
  • the average particle size of barium oxalate titanyl is obtained by arbitrarily measuring 200 particles by a scanning electron microscope (SEM) photograph and using the average value as the average particle size.
  • the barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention can be obtained when heated in a temperature range of 600 to 700 ° C., preferably 610 to 690 ° C., particularly preferably 615 to 685 ° C. Barium titanyl oxalate capable of producing barium titanate.
  • Barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention is suitably used as a raw material for producing barium titanate-based ceramic, which is a dielectric ceramic material.
  • the method for producing barium titanate of the present invention is as follows.
  • the method for producing barium titanate of the present invention is characterized by firing barium titanyl oxalate obtained by the method for producing barium titanate oxalate of the present invention.
  • Oxalic acid-derived organic substances contained in the final product are not preferable because they impair the dielectric properties of the material and cause unstable behavior in the thermal process for ceramicization. Therefore, in the present invention, it is necessary to thermally decompose barium titanyl oxalate by firing to obtain the desired barium titanate and to sufficiently remove organic substances derived from oxalic acid.
  • the firing conditions are such that the firing temperature is preferably 600 to 1200 ° C, more preferably 620 to 1100 ° C. When the firing temperature is less than 600 ° C., only a part of barium titanate is produced, or it is difficult to obtain single-phase barium titanate. On the other hand, when the firing temperature exceeds 1200 ° C., the variation in particle size becomes large.
  • the firing time is preferably 0.5 to 30 hours, more preferably 1 to 20 hours.
  • the firing atmosphere is not particularly limited, and may be any of an inert gas atmosphere, a vacuum atmosphere, an oxidizing gas atmosphere, and the atmosphere, or firing is performed in the atmosphere while introducing steam. You may.
  • Baking may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, once fired may be crushed and then re-baked.
  • the barium titanate powder obtained by firing is fragile and block-shaped, but the barium titanate particles themselves have the following specific average particle size and BET specific surface area. It has. That is, the barium titanate powder obtained above has an average particle size of preferably 0.5 ⁇ m or less, more preferably 0.02 to 0.5 ⁇ m, as determined from a scanning electron micrograph (SEM).
  • the BET specific surface area is preferably 2 to 100 m 2 / g, more preferably 2.5 to 50 m 2 / g.
  • the composition of barium titanate obtained by the production method of the present invention preferably has a molar ratio of Ba to Ti (Ba / Ti) of 0.998 to 1.004, particularly preferably 0.999 to 1.003. .
  • the c-axis / a-axis ratio which is an index of crystallinity, is preferably 1.030 to 1.0055, preferably 1.0035 to 1.0050, in the range where the specific surface area of barium titanate is 15 m 2 / g or more. Especially preferable.
  • the specific surface area is in the range of less than 15 m 2 / g, but in that range, the c-axis / a-axis ratio is preferably more than 1.0055, preferably 1.0070 or more. More preferably, 1.0075 or more is particularly preferable.
  • the method for producing barium titanate of the present invention may be obtained by using a compound containing a subcomponent element for the purpose of adjusting the dielectric property and the temperature characteristic as necessary. It can be added to the resulting barium titanate to contain sub-component elements.
  • the subcomponent element-containing compound that can be used include rare earth elements such as Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. , Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn. Examples include compounds containing elements.
  • the subcomponent element-containing compound may be either an inorganic substance or an organic substance.
  • oxides containing the above elements, hydroxides, chlorides, nitrates, oxalates, carboxylates, alkoxides and the like can be mentioned.
  • the auxiliary component element-containing compound is a compound containing a Si element, silica sol, sodium silicate, or the like can be used in addition to the oxide or the like.
  • the subcomponent element-containing compound may be used alone or in combination of two or more. The addition amount and the combination of the added compounds may be carried out according to a conventional method.
  • barium titanate and a sub-component element-containing compound may be uniformly mixed and then fired.
  • barium titanyl oxalate and a compound containing a subcomponent element may be uniformly mixed and then calcined.
  • a laminated ceramic capacitor is manufactured by using the barium titanate obtained by the method for producing barium titanate of the present invention
  • a powder of barium titanate is added to a conventionally known substance including subcomponent elements. It is mixed and dispersed in an appropriate solvent together with a compounding agent such as an agent, an organic binder, a plasticizing agent, and a dispersant to form a slurry, and sheet molding is performed.
  • a compounding agent such as an agent, an organic binder, a plasticizing agent, and a dispersant to form a slurry, and sheet molding is performed.
  • a ceramic sheet used for manufacturing a monolithic ceramic capacitor is obtained.
  • a conductive paste for forming an internal electrode is printed on one surface of the ceramic sheet.
  • a plurality of the ceramic sheets are laminated and pressure-bonded in the thickness direction to form a laminated body.
  • this laminated body is heat-treated to perform a binder removal treatment, and then fired to obtain a fired body.
  • Ni paste, Ag paste, nickel alloy paste, copper paste, copper alloy paste and the like are applied and baked on the fired body to obtain a laminated ceramic capacitor.
  • the powder of barium titanate obtained by the method for producing barium titanate of the present invention is blended with a resin such as an epoxy resin, a polyester resin or a polyimide resin to form a resin sheet, a resin film, an adhesive or the like. Then, in addition to being able to be used as a material for printed wiring boards and multilayer printed wiring boards, a common material for suppressing the shrinkage difference between the internal electrode and the dielectric layer, an electrode ceramic circuit board, a glass ceramic circuit board, and circuit peripherals. It can also be used as a material and a dielectric material for inorganic EL.
  • a resin such as an epoxy resin, a polyester resin or a polyimide resin to form a resin sheet, a resin film, an adhesive or the like.
  • barium titanate obtained by the method for producing barium titanate of the present invention is used for surface modification of catalysts used in reactions such as exhaust gas removal and chemical synthesis, and printing toners having antistatic and cleaning effects. It is suitably used as a material.
  • the static mixer (MC08-32 manufactured by Tomita Engineering Co., Ltd.) was supplied with the solution A at a rate of 4.3 L / hour and the solution B at a rate of 9.6 L / hour, and the reaction solution was discharged from the static mixer.
  • the residence time of the reaction solution in the static mixer was set to 2 seconds.
  • the ratio of the supply rate of oxalate ions to the supply rate of Ba element and Ti element to the static mixer was 1.91 in terms of molar ratio.
  • the reaction solution discharged from the static mixer was solid-liquid separated to obtain a precipitate. After washing this precipitate, it was dried to obtain barium titanyl oxalate.
  • the physical characteristics of the obtained barium oxalate titanyl are as shown in Table 1.
  • the result of having measured the weight loss rate of the obtained barium titanyl oxalate by thermal analysis is shown in FIG. As a result, the weight loss rate at 680 ° C. was 45.42%, and the weight loss rate at 1000 ° C. was 99.30% with respect to 45.74%.
  • the obtained barium titanate oxalate was calcined at 700 ° C. for 2 hours to obtain barium titanate.
  • the physical characteristics of the obtained barium titanate are as shown in Table 1.
  • Examples 2 to 4 The barium titanate oxalate obtained in Example 1 was calcined at the temperatures shown in Table 1 to obtain barium titanate.
  • Table 1 shows the physical property values of the obtained barium titanate.
  • Example 5 25.0 g of oxalic acid dihydrate was dissolved in 100 g of ethylene glycol to prepare 120 mL of a solution (solution A) containing an oxalic acid component having oxalic acid of 2.21 mol / L.
  • liquid A was supplied at a rate of 72 mL / min and liquid B was supplied at a rate of 160 mL / min to the microreactor (flow path diameter: 1.0 mm, flow path length: 1000 mm), and the reaction solution was discharged from the microreactor.
  • the residence time of the reaction solution in the microreactor was set to 2.6 seconds.
  • the ratio of the supply rate of oxalate ions to the supply rate of Ba element and Ti element to the microreactor was 1.91 in molar ratio.
  • the reaction solution discharged from the microreactor was solid-liquid separated to obtain a precipitate. After washing this precipitate, it was dried to obtain barium titanyl oxalate.
  • the physical characteristics of the obtained barium oxalate titanyl are as shown in Table 1.
  • the result of having measured the weight loss rate of the obtained barium titanyl oxalate by thermal analysis is shown in FIG. As a result, the weight loss rate at 680 ° C. was 48.53%, which was 99.40% with respect to the weight loss rate of 45.28% at 1000 ° C.
  • the obtained barium titanate oxalate was calcined at 700 ° C. for 2 hours to obtain barium titanate.
  • the physical characteristics of the obtained barium titanate are as shown in Table 1.
  • 35.0 g of barium chloride dihydrate and 35.0 g of oxalic acid dihydrate are dissolved in 120 g of pure water, and the barium component and oxalic acid having a barium concentration of 1.10 mol / L and a oxalic acid concentration of 2.20 mol / L are dissolved.
  • 120 mL of a solution (solution a) containing the components was prepared.
  • 54.0 g of titanium tetrachloride was dissolved in pure water to prepare 260 mL of a solution (liquid b) containing a titanium component having a titanium concentration of 0.40 mol / L.
  • the obtained barium oxalate titanyl was calcined at 700 ° C. for 2 hours. However, it was found that barium titanate was not obtained from the measurement result of the weight loss rate of the thermogravimetric analysis. (Comparative Examples 2 to 4)
  • the barium titanate oxalate obtained in Comparative Example 1 was calcined at the temperature shown in Table 1 to obtain barium titanate. Table 1 shows the physical characteristics of the obtained barium titanate.
  • the titanium obtained in the examples was compared with the barium titanate obtained in the comparative example from the comparison of the average particle size, the BET specific surface area and the numerical values of c / a when calcined at the same temperature. It can be seen that barium acid acid is fine and highly crystalline. Further, as shown in FIG. 1, the barium titanate oxalate obtained in Example 1 was obtained as barium titanate at 700 ° C. by thermal weight analysis, whereas the barium titanyl oxalate obtained in Comparative Example 1 was obtained. It can be seen that barium titanate could not be obtained even at 700 ° C.
  • Example 6 25.0 g of oxalic acid dihydrate was dissolved in 100 g of ethylene glycol to prepare 120 mL of a solution (solution A) containing an oxalic acid component having oxalic acid of 2.21 mol / L. Separately, 64.4 g of titanium tetrachloride and 32.0 g of barium chloride are dissolved in 210 g of pure water, and the titanium component and barium component having titanium tetrachloride of 0.59 mol / L and barium chloride of 0.63 mol / L are dissolved. 270 mL of a solution (solution B) containing the above was prepared.
  • the solution A is supplied to the Taylor vortex agitator (TVF-01 manufactured by Chipton) at a rate of 4.3 L / hour and the solution B is supplied at a rate of 9.6 L / hour, and the reaction solution is supplied from the Taylor vortex agitator. It was discharged.
  • the residence time of the reaction solution in the Taylor vortex type agitator was set to 5 seconds.
  • the ratio of the supply rate of oxalate ions to the supply rate of Ba element and Ti element to the Taylor vortex type agitator was 1.91 in molar ratio.
  • FIG. 6 shows the results of measuring the weight loss rate of the obtained barium oxalate titanyl in thermal analysis. As a result, the weight loss rate at 680 ° C. was 48.53%, which was 99.40% with respect to the weight loss rate of 48.82% at 1000 ° C.
  • the obtained barium titanate oxalate was calcined at 700 ° C. for 2 hours to obtain barium titanate.
  • the physical characteristics of the obtained barium titanate are shown in Table 2. (Examples 7 to 9)
  • the barium titanate oxalate obtained in Example 7 was calcined at the temperature shown in Table 2 to obtain barium titanate.
  • Table 2 shows the physical characteristics of the obtained barium titanate.
  • FIG. 6 shows the results of measuring the weight loss rate of the obtained barium oxalate titanyl in thermal analysis. As a result, the weight loss rate at 680 ° C. was 37.71%, which was 84.15% with respect to the weight loss rate of 44.81% at 1000 ° C.
  • the obtained barium oxalate titanyl was calcined at 700 ° C. for 2 hours. However, it was found that barium titanate was not obtained from the measurement result of the weight loss rate of the thermogravimetric analysis. (Comparative Examples 6 to 8)
  • the barium titanate oxalate obtained in Comparative Example 5 was calcined at the temperature shown in Table 2 to obtain barium titanate. Table 2 shows the physical characteristics of the obtained barium titanate.
  • the titanium obtained in the examples was compared with the barium titanate obtained in the comparative example from the comparison of the average particle size, the BET specific surface area and the numerical values of c / a when calcined at the same temperature. It can be seen that barium acid acid is fine and highly crystalline. Further, as shown in FIG. 6, the barium titanate oxalate obtained in Example 6 was obtained as barium titanate at 700 ° C. by thermal weight analysis, whereas the barium titanyl oxalate obtained in Comparative Example 5 was obtained. It can be seen that barium titanate could not be obtained even at 700 ° C.

Abstract

A method for producing barium titanyl oxalate, wherein barium titanyl oxalate is produced by mixing and reacting a solution containing oxalic acid (solution A) and a solution containing a titanium source and a barium source (solution B) with each other, said method being characterized by: separately supplying the solution A and the solution B to one end of a reaction liquid channel, mixing the solution A and the solution B with each other within the reaction liquid channel, discharging the reaction liquid from the other end of the reaction liquid channel, and subsequently performing solid-liquid separation of the reaction liquid; setting the residence time of the reaction liquid within the reaction liquid channel to 30 seconds or less; or separately supplying the solution A and the solution B to one end of the reaction liquid channel, mixing the solution A and the solution B with each other at the one end of the reaction liquid channel, moving the reaction liquid to the other end of the reaction liquid channel, while generating a vortex flow in the reaction liquid, discharging the reaction liquid from the other end of the reaction liquid channel, and subsequently performing solid-liquid separation of the reaction liquid.

Description

シュウ酸バリウムチタニルの製造方法及びチタン酸バリウムの製造方法Method for producing barium titanate oxalate and method for producing barium titanate
 本発明は、誘電体、圧電体、オプトエレクトロニクス材、半導体、センサー等の機能性セラミックの原料として有用なシュウ酸バリウムチタニルの製造方法に関するものである。 The present invention relates to a method for producing barium oxalate titanyl oxalate, which is useful as a raw material for functional ceramics such as dielectrics, piezoelectric materials, optoelectronic materials, semiconductors, and sensors.
 従来、チタン酸バリウムは、固相法、水熱合成法、アルコキシド法、シュウ酸塩法等により製造されている。 Conventionally, barium titanate has been produced by a solid phase method, a hydrothermal synthesis method, an alkoxide method, an oxalate method, or the like.
 固相法では、構成原料粉末等を混合し、該混合物を高温で加熱する乾式方法により製造するため、得られた粉末は不規則な形状を呈する凝集体を成し、また、所望の特性を達成するために高温焼成が必要である。また、水熱合成法は、粉体の特性が良好との長所にもかかわらず合成工程が複雑で、オートクレーブを用いるため生産性が劣り、製造粉末の値段が高く工業的に有利でない。また、アルコキシド法も同様、出発物質の取り扱いが難しく、値段が高く工業的に有利でない。 In the solid phase method, the constituent raw material powder and the like are mixed and the mixture is produced by a dry method of heating at a high temperature. Therefore, the obtained powder forms an agglomerate having an irregular shape and has desired characteristics. High temperature firing is required to achieve this. Further, the hydrothermal synthesis method has the advantages of good powder characteristics, but the synthesis process is complicated, the productivity is inferior because an autoclave is used, the price of the produced powder is high, and it is not industrially advantageous. Similarly, the alkoxide method is difficult to handle as a starting material, is expensive, and is not industrially advantageous.
 シュウ酸塩法で得られるチタン酸バリウムは、水熱合成法やアルコキシド法に比べ、組成が均一なものを安価に製造することができ、また、固相法で製造したチタン酸バリウムに比べ、組成が均一であるという特徴を有する。従来のシュウ酸塩法としては、四塩化チタン等のチタン源、塩化バリウム等のバリウム源及びシュウ酸とを水等の溶媒中で反応させてシュウ酸バリウムチタニルを得た後、該シュウ酸バリウムチタニルを焼成する方法が一般的である(例えば、特許文献1~3参照)。 Barium titanate obtained by the oxalate method can be cheaply produced with a uniform composition as compared with the hydrothermal synthesis method and the alkoxide method, and is compared with barium titanate produced by the solid phase method. It is characterized by a uniform composition. In the conventional oxalate method, a titanium source such as titanium tetrachloride, a barium source such as barium chloride, and barium oxalate are reacted in a solvent such as water to obtain barium titanyl oxalate, and then the barium oxalate is obtained. A method of firing titanium is common (see, for example, Patent Documents 1 to 3).
特表2005-500239号公報Special Table 2005-500239 特開2010-202610号公報Japanese Unexamined Patent Publication No. 2010-2062010 特開2013-63867号公報Japanese Unexamined Patent Publication No. 2013-63867
 しかし、上記特許文献で得られるシュウ酸バリウムチタニルは、焼成温度が700℃以上でチタン酸バリウムを生成するものであるため、チタン酸バリウムの生成時点で、結晶化度が低いが、ある程度の粒成長を起こしている。このようなシュウ酸バリウムチタニルを高温で焼成すると、高結晶であっても大粒子となってしまい、機能性セラミックの原料としての特性を満たすことができないという問題があった。 However, since barium titanate oxalate obtained in the above patent document produces barium titanate at a firing temperature of 700 ° C. or higher, the degree of crystallinity is low at the time of production of barium titanate, but some grains are formed. It is growing. When such barium oxalate titanyl oxalate is fired at a high temperature, even high crystals become large particles, and there is a problem that the characteristics as a raw material for functional ceramics cannot be satisfied.
 従って、本発明の目的は、粒径が小さく且つ高結晶のチタン酸バリウムが得られるシュウ酸バリウムチタニルを製造するための製造方法を提供することにある。 Therefore, an object of the present invention is to provide a production method for producing barium titanate oxalate, which can obtain barium titanate having a small particle size and high crystals.
 本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、インラインミキサーやマイクロリアクター等内に形成される反応液流路の一端側に、シュウ酸を含有する溶液(A液)とチタン化合物及びバリウム化合物を含有する溶液(B液)とを別々に供給し、反応流路内で、A液とB液を混合し、反応液流路の他端側から、反応液を排出することで、A液とB液の混合時間を短くすることにより、微細なシュウ酸バリウムチタニルが得られること、このような微細なシュウ酸バリウムチタニルを焼成すると、熱分解の際に炭酸ガスが抜けやすくなり、チタン酸バリウムが生成する温度を下げることができること、そして、低温でチタン酸バリウムを生成させることにより、従来よりも低温でチタン酸バリウムを高結晶化できることから、チタン酸バリウムの粒成長を抑えることができるため、従来に比べ、微粒且つ高結晶なチタン酸バリウムが得られることを見出し、本発明を完成させるに至った。 As a result of diligent research in view of the above circumstances, the present inventors have found a solution (solution A) containing oxalic acid and a titanium compound on one end side of the reaction liquid flow path formed in an in-line mixer, a microreactor, or the like. And the solution containing the barium compound (solution B) is supplied separately, the solution A and the solution B are mixed in the reaction flow path, and the reaction solution is discharged from the other end side of the reaction solution flow path. By shortening the mixing time of solution A and solution B, fine barium titanyl oxalate can be obtained. When such fine barium titanyl oxalate is fired, carbon dioxide gas is easily released during thermal decomposition. Since the temperature at which barium titanate is produced can be lowered, and barium titanate can be highly crystallized at a lower temperature than before by producing barium titanate at a low temperature, grain growth of barium titanate can be suppressed. Therefore, it has been found that finer and higher crystalline barium titanate can be obtained as compared with the conventional case, and the present invention has been completed.
 また、本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、反応液流路の一端側に、シュウ酸を含有する溶液(A液)とチタン化合物及びバリウム化合物を含有する溶液(B液)とを別々に供給し、反応流路内で、渦流を発生させながら、A液とB液を混合し、反応液流路の他端側から、反応液を排出することで、A液及びB液中の反応原料を速やかに接触させることができるので、微細なシュウ酸バリウムチタニルが得られること、このような微細なシュウ酸バリウムチタニルを焼成すると、熱分解の際に炭酸ガスが抜けやすくなり、チタン酸バリウムが生成する温度を下げることができること、そして、低温でチタン酸バリウムを生成させることにより、従来よりも低温でチタン酸バリウムを高結晶化できることから、チタン酸バリウムの粒成長を抑えることができるため、従来に比べ、微粒且つ高結晶なチタン酸バリウムが得られることを見出し、本発明を完成させるに至った。 In addition, as a result of diligent research in view of the above circumstances, the present inventors have conducted a solution containing oxalic acid (solution A) and a solution containing a titanium compound and a barium compound (B) on one end side of the reaction liquid flow path. Liquid) is supplied separately, liquid A and liquid B are mixed while generating a vortex in the reaction flow path, and the reaction liquid is discharged from the other end side of the reaction liquid flow path, so that the liquid A is discharged. And since the reaction raw materials in the solution B can be brought into contact with each other quickly, fine barium titanyl oxalate can be obtained, and when such fine barium titanyl oxalate is fired, carbon dioxide gas is released during thermal decomposition. Grain growth of barium titanate can be easily performed, the temperature at which barium titanate is produced can be lowered, and barium titanate can be highly crystallized at a lower temperature than before by producing barium titanate at a low temperature. It has been found that finer and higher crystalline barium titanate can be obtained as compared with the conventional case, and the present invention has been completed.
 すなわち、本発明(1)は、シュウ酸を含有する溶液(A液)と、チタン源及びバリウム源を含有する溶液(B液)とを混合して、反応させることにより、シュウ酸バリウムチタニルを製造するシュウ酸バリウムチタニルの製造方法であり、
 反応液流路の一端側に、該A液と該B液とを別々に供給し、該反応流路内で、該A液と該B液を混合し、該反応液流路の他端側から、反応液を排出し、次いで、該反応液の固液分離を行うこと、
 該反応液流路内での該反応液の滞留時間が30秒以内であること、
を特徴とするシュウ酸バリウムチタニルの製造方法を提供するものである。
That is, in the present invention (1), barium oxalate titanyl oxalate is produced by mixing a solution containing oxalate (solution A) and a solution containing a titanium source and a barium source (solution B) and reacting them. It is a method for producing barium titanyl oxalate to be produced.
The A solution and the B solution are separately supplied to one end side of the reaction solution flow path, the A solution and the B solution are mixed in the reaction flow path, and the other end side of the reaction solution flow path is mixed. Then, the reaction solution is discharged, and then the solid-liquid separation of the reaction solution is performed.
The residence time of the reaction solution in the reaction solution flow path is within 30 seconds.
The present invention provides a method for producing barium titanyl oxalate, which is characterized by the above.
 また、本発明(2)は、スタティックミキサーの一端側に、前記A液及び前記B液を別々に供給することにより、該スタティックミキサー内で、前記反応液流路を形成させることを特徴とする(1)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, the present invention (2) is characterized in that the reaction liquid flow path is formed in the static mixer by separately supplying the liquid A and the liquid B to one end side of the static mixer. It provides the method for producing barium titanyl oxalate (1).
 また、本発明(3)は、連続フロー式のマイクロリアクターの反応液流路の一端側に、前記A液及び前記B液を別々に供給することにより、該マイクロリアクター内で、前記反応液流路を形成させることを特徴とする(1)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, in the present invention (3), the reaction liquid flow in the microreactor is obtained by separately supplying the liquid A and the liquid B to one end side of the reaction liquid flow path of the continuous flow type microreactor. It provides the method for producing barium titanyl oxalate (1), which is characterized by forming a path.
 そして、本発明(4)は、シュウ酸を含有する溶液(A液)と、チタン源及びバリウム源を含有する溶液(B液)とを混合して、反応させることにより、シュウ酸バリウムチタニルを製造するシュウ酸バリウムチタニルの製造方法であり、
 反応液流路の一端側に、該A液と該B液とを別々に供給し、該反応液流路の一端側で、該A液と該B液とを混合し、反応液に渦流を発生させながら、該反応液を該反応液流路の他端側に移動させ、該反応液流路の他端側から、該反応液を排出し、次いで、該反応液の固液分離を行うこと、
を特徴とするシュウ酸バリウムチタニルの製造方法を提供するものである。
Then, in the present invention (4), a solution containing barium oxalate (solution A) and a solution containing a titanium source and a barium source (solution B) are mixed and reacted to produce barium oxalate titanyl oxalate. It is a method for producing barium titanyl oxalate to be produced.
The solution A and the solution B are separately supplied to one end side of the reaction solution flow path, and the solution A and the solution B are mixed at one end side of the reaction solution flow path to create a vortex in the reaction solution. While generating, the reaction solution is moved to the other end side of the reaction solution flow path, the reaction solution is discharged from the other end side of the reaction solution flow path, and then the reaction solution is solid-liquid separated. thing,
The present invention provides a method for producing barium titanyl oxalate, which is characterized by the above.
 また、本発明(5)は、前記反応液流路内での前記反応液の滞留時間が60秒以内であることを特徴とする(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, the present invention (5) provides the method for producing barium oxalate titanyl oxalate (4), which is characterized in that the residence time of the reaction solution in the reaction solution flow path is within 60 seconds. be.
 また、本発明(6)は、前記渦流が、テイラー渦流であることを特徴とする(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, the present invention (6) provides the method for producing barium oxalate titanyl oxalate according to (4), wherein the vortex is a Taylor vortex.
 また、本発明(7)は、前記A液の溶媒が有機溶媒であることを特徴とする(1)又は(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, the present invention (7) provides the method for producing barium oxalate titanyl oxalate according to (1) or (4), wherein the solvent of the liquid A is an organic solvent.
 また、本発明(8)は、前記A液の溶媒が、メタノール、エタノール、プロパノール、ブタノール、ジエチルエーテル、1,3-ブチレングリコール、エチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセロール、N,N-ジメチルホルムアミド及びアセトンからなる群から選ばれる1種又は2種以上であることを特徴とする(1)又は(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, in the present invention (8), the solvent of the solution A is methanol, ethanol, propanol, butanol, diethyl ether, 1,3-butylene glycol, ethylene glycol, propylene glycol, dipropylene glycol, glycerol, N, N-. The present invention provides the method for producing barium titanyl oxalate according to (1) or (4), which is one or more selected from the group consisting of dimethylformamide and acetone.
 また、本発明(9)は、前記B液の溶媒が水であることを特徴とする(1)又は(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, the present invention (9) provides the method for producing barium oxalate titanyl oxalate according to (1) or (4), wherein the solvent of the liquid B is water.
 また、本発明(10)は、前記B液中の前記チタン化合物が四塩化チタンであり、前記バリウム化合物が塩化バリウムであることを特徴とする(1)又は(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, the present invention (10) is the barium titanyl oxalate according to (1) or (4), wherein the titanium compound in the liquid B is titanium tetrachloride and the barium compound is barium chloride. It provides a manufacturing method.
 また、本発明(11)は、前記A液と前記B液の混合温度が75℃以下であることを特徴とする(1)又は(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 Further, the present invention (11) provides the method for producing barium oxalate titanyl oxalate according to (1) or (4), wherein the mixing temperature of the liquid A and the liquid B is 75 ° C. or lower. be.
 また、本発明(12)は、生成されるシュウ酸バリウムチタニルの平均粒子径が1.0μm以下であることを特徴とする(1)又は(4)のシュウ酸バリウムチタニルの製造方法を提供するものである。 The present invention (12) also provides the method for producing barium titanyl oxalate according to (1) or (4), wherein the average particle size of barium oxalate titanyl produced is 1.0 μm or less. It is a thing.
 また、本発明(13)は、(1)~(6)いずれかの製造方法で得られたシュウ酸バリウムチタニルを焼成することを特徴とするチタン酸バリウムの製造方法を提供するものである。 Further, the present invention (13) provides a method for producing barium titanate, which comprises calcining barium titanate oxalate obtained by any of the production methods (1) to (6).
 本発明によれば、同じ温度で焼成した場合に、従来のシュウ酸バリウムチタニルに比べ、粒径が小さく且つ高結晶のチタン酸バリウムが得られるシュウ酸バリウムチタニルを製造するための製造方法を提供することができる。 According to the present invention, there is provided a production method for producing barium titanate oxalate, which can obtain barium titanate having a smaller particle size and higher crystals than conventional barium titanate oxalate when fired at the same temperature. can do.
実施例1及び比較例1で得られたシュウ酸バリウムチタニルの熱重量分析の測定結果である。It is a measurement result of the thermogravimetric analysis of barium titanyl oxalate obtained in Example 1 and Comparative Example 1. 実施例1で得られたシュウ酸バリウムチタニルのSEM写真である。6 is an SEM photograph of barium titanyl oxalate obtained in Example 1. 実施例1で得られたチタン酸バリウムのSEM写真である。6 is an SEM photograph of barium titanate obtained in Example 1. 比較例1で得られたシュウ酸バリウムチタニルのSEM写真である。6 is an SEM photograph of barium oxalate titanyl oxalate obtained in Comparative Example 1. 比較例1で得られた焼成物のSEM写真である。It is an SEM photograph of the fired product obtained in Comparative Example 1. 実施例6及び比較例5で得られたシュウ酸バリウムチタニルの熱重量分析の測定結果である。It is a measurement result of the thermogravimetric analysis of barium titanyl oxalate obtained in Example 6 and Comparative Example 5. 実施例6で得られたシュウ酸バリウムチタニルのSEM写真である。6 is an SEM photograph of barium titanyl oxalate obtained in Example 6. 実施例6で得られたチタン酸バリウムのSEM写真である。6 is an SEM photograph of barium titanate obtained in Example 6. 比較例5で得られたシュウ酸バリウムチタニルのSEM写真である。6 is an SEM photograph of barium oxalate titanyl oxalate obtained in Comparative Example 5. 比較例5で得られた焼成物のSEM写真である。6 is an SEM photograph of the fired product obtained in Comparative Example 5.
 本発明の第一発明について説明する。
<第一発明>
 本発明のシュウ酸バリウムチタニルの製造方法は、シュウ酸を含有する溶液(A液)と、チタン源及びバリウム源を含有する溶液(B液)とを混合して、反応させることにより、シュウ酸バリウムチタニルを製造するシュウ酸バリウムチタニルの製造方法であり、
 反応液流路の一端側に、該A液と該B液とを別々に供給し、該反応流路内で、該A液と該B液を混合し、該反応液流路の他端側から、反応液を排出し、次いで、該反応液の固液分離を行うこと、
 該反応液流路内での該反応液の滞留時間が30秒以内であること、
を特徴とするシュウ酸バリウムチタニルの製造方法である。
The first invention of the present invention will be described.
<First invention>
In the method for producing barium oxalate titanyl oxalate of the present invention, a solution containing oxalic acid (solution A) and a solution containing a titanium source and a barium source (solution B) are mixed and reacted to cause oxalic acid. A method for producing barium titanyl oxalate, which produces barium titanyl.
The A solution and the B solution are separately supplied to one end side of the reaction solution flow path, the A solution and the B solution are mixed in the reaction flow path, and the other end side of the reaction solution flow path is mixed. Then, the reaction solution is discharged, and then the solid-liquid separation of the reaction solution is performed.
The residence time of the reaction solution in the reaction solution flow path is within 30 seconds.
It is a method for producing barium titanyl oxalate, which is characterized by the above.
 本発明のシュウ酸バリウムチタニルの製造方法に係るA液は、シュウ酸を含有する溶液である。A液中のシュウ酸イオンの濃度は、特に制限されないが、好ましくは0.1~7.0mol/L、特に好ましくは0.6~5.0mol/Lである。 The liquid A according to the method for producing barium oxalate titanyl oxalate of the present invention is a solution containing oxalic acid. The concentration of oxalate ion in the liquid A is not particularly limited, but is preferably 0.1 to 7.0 mol / L, and particularly preferably 0.6 to 5.0 mol / L.
 A液の溶媒は、水溶媒、有機溶媒、あるいはこれらの混合溶媒が挙げられ、微粒のシュウ酸バリウムチタニルを得る観点から、有機溶媒であることが好ましい。有機溶媒としては、親水性であり原料に対して不活性なものであれば特に制限されず、メタノール、エタノール、プロパノール、ブタノール、ジエチルエーテル、1,3-ブチレングリコール、エチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセロール、N,N-ジメチルホルムアミド及びアセトンからなる群から選ばれる1種又は2種以上を用いることができる。水と有機溶媒との混合溶媒、複数の有機溶媒の混合溶媒の場合、これらの混合比は適宜選択される。 The solvent of the liquid A may be a water solvent, an organic solvent, or a mixed solvent thereof, and is preferably an organic solvent from the viewpoint of obtaining fine particles of barium oxalate titanyl oxalate. The organic solvent is not particularly limited as long as it is hydrophilic and inactive with respect to the raw material, and is not particularly limited. Methanol, ethanol, propanol, butanol, diethyl ether, 1,3-butylene glycol, ethylene glycol, propylene glycol, di One or more selected from the group consisting of propylene glycol, glycerol, N, N-dimethylformamide and acetone can be used. In the case of a mixed solvent of water and an organic solvent or a mixed solvent of a plurality of organic solvents, the mixing ratio thereof is appropriately selected.
 本発明のシュウ酸バリウムチタニルの製造方法に係るB液は、チタン化合物及びバリウム化合物を含有する溶液である。B液中のチタンイオンの濃度は、特に制限されないが、好ましくは0.04~4.0mol/L、特に好ましくは0.2~3.0mol/Lである。また、B液中のバリウムイオンの濃度は、特に制限されないが、好ましくは0.08~6.5mol/L、特に好ましくは0.4~3.0mol/Lである。 The liquid B according to the method for producing barium titanyl oxalate of the present invention is a solution containing a titanium compound and a barium compound. The concentration of titanium ions in the liquid B is not particularly limited, but is preferably 0.04 to 4.0 mol / L, and particularly preferably 0.2 to 3.0 mol / L. The concentration of barium ions in the liquid B is not particularly limited, but is preferably 0.08 to 6.5 mol / L, and particularly preferably 0.4 to 3.0 mol / L.
 本発明のシュウ酸バリウムチタニルの製造方法に係るチタン化合物としては、特に制限されず、四塩化チタン、乳酸チタン等が挙げられる。チタン化合物は、1種であっても、2種以上の併用であってもよい。チタン源としては、四塩化チタンが好ましい。 The titanium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include titanium tetrachloride and titanium lactate. The titanium compound may be one kind or a combination of two or more kinds. As the titanium source, titanium tetrachloride is preferable.
 本発明のシュウ酸バリウムチタニルの製造方法に係るバリウム化合物としては、特に制限されず、塩化バリウム、炭酸バリウム、水酸化バリウム、酢酸バリウム、硝酸バリウム等が挙げられる。バリウム化合物は、1種であっても、2種以上の併用であってもよい。バリウム化合物としては、塩化バリウム、酢酸バリウム、硝酸バリウム及び水酸化バリウムからなる群から選ばれる1種又は2種以上が好ましく、塩化バリウムが特に好ましい。 The barium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include barium chloride, barium carbonate, barium hydroxide, barium acetate, and barium nitrate. The barium compound may be one kind or a combination of two or more kinds. As the barium compound, one or more selected from the group consisting of barium chloride, barium acetate, barium nitrate and barium hydroxide is preferable, and barium chloride is particularly preferable.
 本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路の一端側に、A液とB液とを別々に供給し、反応液流路内で、A液とB液を混合することにより、反応液流路内で、シュウ酸バリウムチタニルの生成反応を行う。 In the method for producing barium oxalate titanyl oxalate of the present invention, liquid A and liquid B are separately supplied to one end side of the reaction liquid flow path, and liquid A and liquid B are mixed in the reaction liquid flow path. , The reaction for producing barium titanyl oxalate is carried out in the reaction solution flow path.
 反応液流路の一端側に、A液とB液とを別々に供給し、反応流路内で、A液とB液を混合する方法としては、例えば、スタティックミキサー、スクリューミキサー、ダイナミックミキサー等のインラインミキサーの一端側に、A液とB液とを別々に供給し、インラインミキサー内でA液とB液を混合する方法が挙げられる。インラインミキサーを用いる場合、インラインミキサー内に、反応液流路が形成される。インラインミキサーとしては、スタティックミキサーが微細なシュウ酸バリウムチタニルが得られ易くなる点で好ましい。スタティックミキサーとしては、特に制限されず、例えば、トミタエンジニアリング株式会社製のMC08-32等が挙げられる。 As a method of separately supplying the liquid A and the liquid B to one end side of the reaction liquid flow path and mixing the liquid A and the liquid B in the reaction flow path, for example, a static mixer, a screw mixer, a dynamic mixer, etc. A method of separately supplying the liquid A and the liquid B to one end side of the in-line mixer and mixing the liquid A and the liquid B in the in-line mixer can be mentioned. When an in-line mixer is used, a reaction liquid flow path is formed in the in-line mixer. As the in-line mixer, a static mixer is preferable in that fine barium oxalate titanyl oxalate can be easily obtained. The static mixer is not particularly limited, and examples thereof include MC08-32 manufactured by Tomita Engineering Co., Ltd.
 また、反応液流路の一端側に、A液とB液とを別々に供給し、反応流路内で、A液とB液を混合する方法としては、例えば、連続フロー式のマイクロリアクターの一端側に、A液とB液とを別々に供給し、マイクロリアクターの流路内でA液とB液を混合する方法が挙げられる。なお、マイクロリアクターとは、例えば、流路径が0.1~10mm、長さが1~2000mmのチューブからなる流路と、該流路の一端側にA液とB液を同時に供給する供給部と、を有する反応装置である。連続フロー式のマイクロリアクターを用いる場合、連続フロー式のマイクロリアクターの流路内に、反応液流路が形成される。 Further, as a method of separately supplying liquid A and liquid B to one end side of the reaction liquid flow path and mixing the liquid A and the liquid B in the reaction flow path, for example, a continuous flow type microreactor can be used. A method of separately supplying the liquid A and the liquid B to one end side and mixing the liquid A and the liquid B in the flow path of the microreactor can be mentioned. The microreactor is, for example, a flow path composed of a tube having a flow path diameter of 0.1 to 10 mm and a length of 1 to 2000 mm, and a supply unit that simultaneously supplies liquid A and liquid B to one end side of the flow path. It is a reactor having and. When a continuous flow type microreactor is used, a reaction liquid flow path is formed in the flow path of the continuous flow type microreactor.
 本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路に、A液とB液を供給することにより、反応液流路内で、A液とB液が混合されて、A液とB液中の反応原料が反応して、微粒のシュウ酸バリウムチタニルが生成する。そして、本発明のシュウ酸バリウムチタニルの製造方法では、反応流路の一端側から、A液とB液を供給しつつ、反応液流路の他端側から、生成する反応液を排出する。 In the method for producing barium oxalate titanyl oxalate of the present invention, by supplying liquid A and liquid B to the reaction liquid flow path, the liquid A and the liquid B are mixed in the reaction liquid flow path, and the liquid A and the liquid B are mixed. The reaction raw materials in the liquid react to form fine particles of barium oxalate titanyl oxalate. Then, in the method for producing barium oxalate titanyl oxalate of the present invention, liquid A and liquid B are supplied from one end side of the reaction flow path, and the generated reaction liquid is discharged from the other end side of the reaction liquid flow path.
 本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路内での反応液の滞留時間が30秒以内、好ましくは10秒以内、特に好ましくは0.1~5秒である。反応液流路内での反応液の滞留時間が上記範囲にあることにより、微粒のシュウ酸バリウムチタニルが得られる。なお、反応液流路内での反応液の滞留時間とは、反応液流路の一端側に供給されたA液及びB液の混合物が、反応液流路の他端側に達するまでの時間を指す。 In the method for producing barium titanyl oxalate of the present invention, the residence time of the reaction solution in the reaction solution flow path is 30 seconds or less, preferably 10 seconds or less, and particularly preferably 0.1 to 5 seconds. When the residence time of the reaction solution in the reaction solution flow path is within the above range, fine particles of barium oxalate titanyl oxalate can be obtained. The residence time of the reaction solution in the reaction solution flow path is the time until the mixture of the solution A and the solution B supplied to one end side of the reaction solution flow path reaches the other end side of the reaction solution flow path. Point to.
 A液とB液の混合温度、即ち、反応液流路内の反応液の温度は、好ましくは75℃以下、特に好ましくは5~50℃である。 The mixing temperature of the solution A and the solution B, that is, the temperature of the reaction solution in the reaction solution flow path is preferably 75 ° C. or lower, particularly preferably 5 to 50 ° C.
 A液とB液の混合比は、A液中のシュウ酸のモル数に対するB液中のチタン及びバリウムの原子換算のモル数の比が、好ましくは0.01~20.0、特に好ましくは0.10~10.0となる混合比である。 As for the mixing ratio of the liquid A and the liquid B, the ratio of the number of moles of titanium and barium in the liquid B to the number of moles of oxalic acid in the liquid A is preferably 0.01 to 20.0, particularly preferably 0.01 to 20.0. The mixing ratio is 0.10 to 10.0.
 次いで、本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路から排出された反応液の固液分離をする。 Next, in the method for producing barium oxalate titanyl oxalate of the present invention, the reaction liquid discharged from the reaction liquid flow path is separated into solid and liquid.
 また、固液分離を行った後は、固形分を水洗する。水洗方法としては、特に制限されないが、リパルプ等で洗浄を行うことが、洗浄効率が高い点で好ましい。洗浄後、固形分を乾燥し、必要に応じて粉砕してシュウ酸バリウムチタニルを得る。 After solid-liquid separation, wash the solids with water. The washing method is not particularly limited, but washing with repulp or the like is preferable in terms of high washing efficiency. After washing, the solid content is dried and, if necessary, pulverized to obtain barium titanyl oxalate.
 次に、本発明の第二発明について説明する。
<第二発明>
 本発明のシュウ酸バリウムチタニルの製造方法は、シュウ酸を含有する溶液(A液)と、チタン源及びバリウム源を含有する(B液)とを混合して、反応させることにより、シュウ酸バリウムチタニルを製造するシュウ酸バリウムチタニルの製造方法であり、
 反応液流路の一端側に、該A液と該B液とを別々に供給し、該反応液流路の一端側で、該A液と該B液とを混合し、反応液に渦流を発生させながら、該反応液を該反応液流路の他端側に移動させ、該反応液流路の他端側から、該反応液を排出し、次いで、該反応液の固液分離を行うこと、
を特徴とするシュウ酸バリウムチタニルの製造方法である。
Next, the second invention of the present invention will be described.
<Second invention>
In the method for producing barium oxalate titanyl oxalate of the present invention, a solution containing oxalic acid (solution A) and a solution containing a titanium source and a barium source (solution B) are mixed and reacted to cause barium oxalate. Barium oxalate for producing titanium This is a method for producing titanium oxalate.
The solution A and the solution B are separately supplied to one end side of the reaction solution flow path, and the solution A and the solution B are mixed at one end side of the reaction solution flow path to create a vortex in the reaction solution. While generating, the reaction solution is moved to the other end side of the reaction solution flow path, the reaction solution is discharged from the other end side of the reaction solution flow path, and then the reaction solution is solid-liquid separated. thing,
It is a method for producing barium titanyl oxalate, which is characterized by the above.
 本発明のシュウ酸バリウムチタニルの製造方法に係るA液は、シュウ酸を含有する溶液である。A液中のシュウ酸イオンの濃度は、特に制限されないが、好ましくは0.1~7.0mol/L、特に好ましくは0.6~5.0mol/Lである。 The liquid A according to the method for producing barium oxalate titanyl oxalate of the present invention is a solution containing oxalic acid. The concentration of oxalate ion in the liquid A is not particularly limited, but is preferably 0.1 to 7.0 mol / L, and particularly preferably 0.6 to 5.0 mol / L.
 A液の溶媒は、水溶媒、有機溶媒、あるいはこれらの混合溶媒が挙げられ、微粒のシュウ酸バリウムチタニルを得る観点から、有機溶媒であることが好ましい。有機溶媒としては、親水性であり原料に対して不活性なものであれば特に制限されず、メタノール、エタノール、プロパノール、ブタノール、ジエチルエーテル、1,3-ブチレングリコール、エチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセロール、N,N-ジメチルホルムアミド及びアセトンからなる群から選ばれる1種又は2種以上を用いることができる。水と有機溶媒との混合溶媒、複数の有機溶媒の混合溶媒の場合、これらの混合比は適宜選択される。 The solvent of the liquid A may be a water solvent, an organic solvent, or a mixed solvent thereof, and is preferably an organic solvent from the viewpoint of obtaining fine particles of barium oxalate titanyl oxalate. The organic solvent is not particularly limited as long as it is hydrophilic and inactive with respect to the raw material, and is not particularly limited. Methanol, ethanol, propanol, butanol, diethyl ether, 1,3-butylene glycol, ethylene glycol, propylene glycol, di One or more selected from the group consisting of propylene glycol, glycerol, N, N-dimethylformamide and acetone can be used. In the case of a mixed solvent of water and an organic solvent or a mixed solvent of a plurality of organic solvents, the mixing ratio thereof is appropriately selected.
 本発明のシュウ酸バリウムチタニルの製造方法に係るB液は、チタン化合物及びバリウム化合物を含有する溶液である。B液中のチタンイオンの濃度は、特に制限されないが、好ましくは0.04~4.0mol/L、特に好ましくは0.2~3.0mol/Lである。また、B液中のバリウムイオンの濃度は、特に制限されないが、好ましくは0.08~6.5mol/L、特に好ましくは0.4~3.0mol/Lである。 The liquid B according to the method for producing barium titanyl oxalate of the present invention is a solution containing a titanium compound and a barium compound. The concentration of titanium ions in the liquid B is not particularly limited, but is preferably 0.04 to 4.0 mol / L, and particularly preferably 0.2 to 3.0 mol / L. The concentration of barium ions in the liquid B is not particularly limited, but is preferably 0.08 to 6.5 mol / L, and particularly preferably 0.4 to 3.0 mol / L.
 本発明のシュウ酸バリウムチタニルの製造方法に係るチタン化合物としては、特に制限されず、四塩化チタン、乳酸チタン等が挙げられる。チタン化合物は、1種であっても、2種以上の併用であってもよい。チタン源としては、四塩化チタンが好ましい。 The titanium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include titanium tetrachloride and titanium lactate. The titanium compound may be one kind or a combination of two or more kinds. As the titanium source, titanium tetrachloride is preferable.
 本発明のシュウ酸バリウムチタニルの製造方法に係るバリウム化合物としては、特に制限されず、塩化バリウム、炭酸バリウム、水酸化バリウム、酢酸バリウム、硝酸バリウム等が挙げられる。バリウム化合物は、1種であっても、2種以上の併用であってもよい。バリウム化合物としては、塩化バリウム、酢酸バリウム、硝酸バリウム及び水酸化バリウムからなる群から選ばれる1種又は2種以上が好ましく、塩化バリウムが特に好ましい。 The barium compound according to the method for producing barium titanyl oxalate of the present invention is not particularly limited, and examples thereof include barium chloride, barium carbonate, barium hydroxide, barium acetate, and barium nitrate. The barium compound may be one kind or a combination of two or more kinds. As the barium compound, one or more selected from the group consisting of barium chloride, barium acetate, barium nitrate and barium hydroxide is preferable, and barium chloride is particularly preferable.
 本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路の一端側に、A液とB液とを別々に供給し、次いで、該反応液流路の一端側で、A液とB液を混合して得られる反応液(A液とB液の混合液)に渦流を発生させながら、反応液を反応液流路の他端側に移動させることにより、反応液流路内で、シュウ酸バリウムチタニルの生成反応を行い、次いで、反応液流路の他端側から、反応液を排出する。 In the method for producing barium oxalate titanyl oxalate of the present invention, liquid A and liquid B are separately supplied to one end side of the reaction liquid flow path, and then liquid A and liquid B are supplied to one end side of the reaction liquid flow path. By moving the reaction solution to the other end side of the reaction solution flow path while generating a vortex in the reaction solution (mixed solution of solution A and solution B) obtained by mixing the above, oxalate in the reaction solution flow path. The reaction for producing barium oxalate is carried out, and then the reaction solution is discharged from the other end side of the reaction solution flow path.
 本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路内のA液とB液の混合液に渦流を発生させながら、A液とB液中の反応原料を反応させることにより、A液及びB液中の反応原料を速やかに接触させることできる。そのため、本発明のシュウ酸バリウムチタニルの製造方法では、A液とB液の混合後に、得られる反応液(混合液)中に多数のシュウ酸バリウムチタニルの核を発生させることができるので、粒径が大きいシュウ酸バリウムチタニルが生成し難く、粒径が小さいシュウ酸バリウムチタニルが生成する。更に、本発明のシュウ酸バリウムチタニルの製造方法では、得られる反応液(混合液)中の反応原料を速やかに接触させることができるので、反応時間(滞留時間)を短くすることができるため、反応効率を高くすることができる。 In the method for producing barium oxalate titanyl oxalate of the present invention, liquid A is reacted with the reaction raw materials in liquid A and liquid B while generating a vortex in the mixed liquid of liquid A and liquid B in the reaction liquid flow path. And the reaction raw materials in the liquid B can be brought into contact with each other promptly. Therefore, in the method for producing barium oxalate titanyl oxalate of the present invention, a large number of nuclei of barium oxalate titanyl oxalate can be generated in the obtained reaction solution (mixed solution) after mixing the solution A and the solution B. Barium oxalate titanyl oxalate having a large diameter is difficult to be produced, and barium oxalate titanyl oxalate having a small diameter is produced. Further, in the method for producing barium oxalate titanyl oxalate of the present invention, the reaction raw materials in the obtained reaction solution (mixed solution) can be brought into contact with each other quickly, so that the reaction time (residence time) can be shortened. The reaction efficiency can be increased.
 反応液流路内に発生させる渦流としては、例えば、テイラー渦流が挙げられる。テイラー渦流とは、内円筒及び外円筒からなる二重円筒の隙間に流体が満たされた状態において、内円筒を回転させたときに生じるドーナツ状の渦流を指す。 Examples of the vortex flow generated in the reaction liquid flow path include a Taylor vortex flow. The Taylor vortex flow refers to a donut-shaped vortex flow generated when the inner cylinder is rotated while the gap between the double cylinder consisting of the inner cylinder and the outer cylinder is filled with fluid.
 流路の一端側から供給液を供給し、流路内でテイラー渦流を発生させながら、流路の他端側から排出液を排出する装置としては、例えば、特開2011-83768号公報、特開2016-10774号公報、特開2017-209660号公報等に開示されている装置が挙げられ、また、例えば、チップトン社製のTVF、徳寿社製の小型リアクタライザー晶多等のテイラー渦型撹拌装置が挙げられる。 As a device for supplying the supply liquid from one end side of the flow path and discharging the discharge liquid from the other end side of the flow path while generating a Taylor vortex flow in the flow path, for example, Japanese Patent Application Laid-Open No. 2011-83768, Japanese Patent Application Laid-Open No. 2011-83768. Examples thereof include the devices disclosed in Japanese Patent Application Laid-Open No. 2016-10774, Japanese Patent Application Laid-Open No. 2017-209660, etc., and for example, Taylor vortex stirring such as TVF manufactured by Chipton Co., Ltd. and small reactorizer Akita manufactured by Tokuju Co., Ltd. Equipment is mentioned.
 本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路の一端側に、A液とB液を供給しつつ、反応液流路の他端側から、生成する反応液を排出する。この供給と排出の反応液流路間に、反応液が後述する滞留時間内であれば、例えば上記特開2011-83768号公報に記載のように、テイラー渦流等の渦流を発生させる反応装置を複数組み合わせて使用してもよい。 In the method for producing barium oxalate titanyl oxalate of the present invention, liquid A and liquid B are supplied to one end side of the reaction liquid flow path, and the generated reaction liquid is discharged from the other end side of the reaction liquid flow path. If the reaction liquid is within the residence time described later between the supply and discharge reaction liquid flow paths, a reaction device that generates a vortex flow such as a Taylor vortex flow is provided, for example, as described in JP-A-2011-83768. You may use a plurality of combinations.
 本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路内での反応液の滞留時間が、好ましくは60秒以内、より好ましくは20秒以内、特に好ましくは0.1~10秒である。反応液流路内での反応液の滞留時間が上記範囲にあることにより、微粒のシュウ酸バリウムチタニルを得易くなる。なお、反応液流路内での反応液の滞留時間とは、反応液流路の一端側に供給されたA液及びB液の混合物(A液とB液の混合により生成する反応液)が、反応液流路の一端側から反応液流路の他端側に達するまでの時間を指す。 In the method for producing barium titanyl oxalate of the present invention, the residence time of the reaction solution in the reaction solution flow path is preferably 60 seconds or less, more preferably 20 seconds or less, and particularly preferably 0.1 to 10 seconds. .. When the residence time of the reaction solution in the reaction solution flow path is within the above range, fine particles of barium oxalate titanyl oxalate can be easily obtained. The residence time of the reaction solution in the reaction solution flow path is defined as the mixture of the solution A and the solution B supplied to one end side of the reaction solution flow path (the reaction solution produced by mixing the solution A and the solution B). , Refers to the time from one end side of the reaction solution flow path to the other end side of the reaction solution flow path.
 A液とB液の混合温度、即ち、反応液流路内の反応液の温度は、好ましくは75℃以下、特に好ましくは5~50℃である。 The mixing temperature of the solution A and the solution B, that is, the temperature of the reaction solution in the reaction solution flow path is preferably 75 ° C. or lower, particularly preferably 5 to 50 ° C.
 A液とB液の混合比は、A液中のシュウ酸のモル数に対するB液中のチタン及びバリウムの原子換算のモル数の比が、好ましくは0.01~20.0、特に好ましくは0.10~10.0となる混合比である。 As for the mixing ratio of the liquid A and the liquid B, the ratio of the number of moles of titanium and barium in the liquid B to the number of moles of oxalic acid in the liquid A is preferably 0.01 to 20.0, particularly preferably 0.01 to 20.0. The mixing ratio is 0.10 to 10.0.
 次いで、本発明のシュウ酸バリウムチタニルの製造方法では、反応液流路から排出された反応液の固液分離をする。 Next, in the method for producing barium oxalate titanyl oxalate of the present invention, the reaction liquid discharged from the reaction liquid flow path is separated into solid and liquid.
 また、固液分離を行った後は、固形分を水洗する。水洗方法としては、特に制限されないが、リパルプ等で洗浄を行うことが、洗浄効率が高い点で好ましい。洗浄後、固形分を乾燥し、必要に応じて粉砕してシュウ酸バリウムチタニルを得る。 After solid-liquid separation, wash the solids with water. The washing method is not particularly limited, but washing with repulp or the like is preferable in terms of high washing efficiency. After washing, the solid content is dried and, if necessary, pulverized to obtain barium titanyl oxalate.
 次に、本発明の第一発明及び第二発明に係るシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルについて説明する。 Next, barium titanyl oxalate that can be obtained by performing the method for producing barium oxalate titanyl oxalate according to the first invention and the second invention of the present invention will be described.
 このようにして、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、熱重量分析において、1000℃の重量減少率に対する重量減少率が99%に達する温度が600~700℃、好ましくは610~690℃、特に好ましくは615~685℃であることを特徴とするシュウ酸バリウムチタニルである。なお、熱重量分析における1000℃の重量減少率とは、熱重量分析での分析温度が1000℃の時点での重量減少率を指す。また、熱重量分析における1000℃の重量減少率に対する重量減少率が99%に達する温度とは、分析開始時に対する重量減少率が、分析温度が1000℃の時点での重量減少率の99%に達するときの温度を指す。 In this way, the barium oxalate titanyl oxalate obtained by performing the method for producing barium oxalate titanyl oxalate of the present invention has a temperature at which the weight loss rate reaches 99% with respect to the weight loss rate at 1000 ° C. at 600 to 700 in thermogravimetric analysis. Barium oxalate titanyl oxalate, characterized in that the temperature is, preferably 610 to 690 ° C, particularly preferably 615 to 685 ° C. The weight loss rate of 1000 ° C. in the thermogravimetric analysis refers to the weight loss rate at the time when the analysis temperature in the thermogravimetric analysis is 1000 ° C. Further, the temperature at which the weight loss rate reaches 99% with respect to the weight loss rate of 1000 ° C. in the thermogravimetric analysis means that the weight loss rate at the start of the analysis is 99% of the weight loss rate at the analysis temperature of 1000 ° C. Refers to the temperature at which it reaches.
 熱重量分析において、1000℃の重量減少率に対する重量減少率が99%に達する温度は、シュウ酸バリウムチタニルの熱分解が起こり、チタン酸バリウムへの変化が終了する温度、つまり、シュウ酸バリウムチタニルからチタン酸バリウムの生成する温度を指す。シュウ酸バリウムチタニルの熱重量分析により測定される重量減少については、測定対象試料を室温から10℃/分で昇温していくと、いくつかの重量減少が確認された後、700℃近傍で重量減少が確認されなくなり、最終的にチタン酸バリウムまで熱分解されたことが確認できる。従来のシュウ酸バリウムチタニルは、700~720℃で重量減少がなくなり、この温度範囲でチタン酸バリウムが得られていることが確認できる。しかし、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、600~700℃、好ましくは610~690℃、特に好ましくは615~685℃で重量減少が確認できなくなるため、従来技術よりも低温でシュウ酸バリウムチタニルからチタン酸バリウムが得られるものである。この理由としては、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、その平均粒子径が好ましくは1.0μm以下、特に好ましくは0.01~0.5μmと微粒なため、熱分解での炭酸ガスが抜け易く、従来技術よりも低温でチタン酸バリウムに変化しているためと本発明者らは考えている。 In the thermal weight analysis, the temperature at which the weight loss rate reaches 99% with respect to the weight loss rate at 1000 ° C. is the temperature at which the thermal decomposition of barium titanyl oxalate occurs and the conversion to barium titanate ends, that is, barium titanyl oxalate. Refers to the temperature at which barium titanate is produced. Regarding the weight loss measured by thermal weight analysis of barium titanate oxalate, when the temperature of the sample to be measured was raised from room temperature to 10 ° C / min, some weight loss was confirmed, and then at around 700 ° C. It can be confirmed that the weight reduction is no longer confirmed, and finally the barium titanate is thermally decomposed. The weight of the conventional barium titanate oxalate disappears at 700 to 720 ° C., and it can be confirmed that barium titanate is obtained in this temperature range. However, the weight loss of barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention cannot be confirmed at 600 to 700 ° C, preferably 610 to 690 ° C, particularly preferably 615 to 685 ° C. Barium titanate can be obtained from barium titanyl oxalate at a lower temperature than in the prior art. The reason for this is that the barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention has an average particle size of preferably 1.0 μm or less, particularly preferably 0.01 to 0.5 μm, which is fine. Therefore, the present inventors consider that the carbon dioxide gas is easily released by thermal decomposition and changes to barium titanate at a lower temperature than the conventional technique.
 本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、熱重量分析において、1000℃の重量減少率に対する重量減少率が99%に達する温度が600~700℃、好ましくは610~690℃、特に好ましくは615~685℃であることにより、チタン酸バリウムを、600~700℃、好ましくは610~690℃、特に好ましくは615~685℃の温度範囲で生成させることができる。そのため、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、低温でチタン酸バリウムを生成させることができるので、従来よりも低温でチタン酸バリウムを高結晶化できる。そして、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルでは、従来よりも低温でチタン酸バリウムを高結晶化できることから、チタン酸バリウムの粒成長を抑えることができるので、従来に比べ、微粒且つ高結晶なチタン酸バリウムが得られる。そのため、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、同じ温度で焼成したときに、従来のシュウ酸バリウムチタニルに比べ、微細且つ高結晶のチタン酸バリウムを得ることができる。一方、1000℃の重量減少率に対する重量減少率が99%に達する温度が700℃を超えると、シュウ酸バリウムチタニルからチタン酸バリウムを生成する温度が高くなるので、その後の高結晶化のための加熱温度も高くなってしまい、その結果、チタン酸バリウムの粒径が大きくなってしまう。 The barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention has a temperature at which the weight loss rate reaches 99% with respect to a weight loss rate of 1000 ° C. at 600 to 700 ° C., preferably 610 ° C. in thermogravimetric analysis. By 690 ° C., particularly preferably 615 to 685 ° C., barium titanate can be produced in the temperature range of 600 to 700 ° C., preferably 610 to 690 ° C., particularly preferably 615 to 685 ° C. Therefore, the barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention can produce barium titanate at a low temperature, so that barium titanate can be highly crystallized at a lower temperature than before. In the barium titanate oxalate produced by the method for producing barium titanate oxalate of the present invention, barium titanate can be highly crystallized at a lower temperature than before, so that the grain growth of barium titanate can be suppressed. Barium titanate, which is finer and more crystalline than the conventional one, can be obtained. Therefore, the barium titanate oxalate obtained by the method for producing barium titanyl oxalate of the present invention can obtain finer and higher crystalline barium titanate than the conventional barium titanate oxalate when fired at the same temperature. Can be done. On the other hand, when the temperature at which the weight loss rate reaches 99% with respect to the weight loss rate at 1000 ° C. exceeds 700 ° C., the temperature at which barium titanate is produced from barium titanyl oxalate rises, so that for subsequent high crystallization. The heating temperature also becomes high, and as a result, the particle size of barium titanate becomes large.
 シュウ酸バリウムチタニルの熱重量分析に用いる熱重量分析装置は、特に制限されず、例えば、メトラー・トレド株式会社製のTGA/DSC 1が挙げられる。 The thermogravimetric analyzer used for thermogravimetric analysis of barium titanyl oxalate is not particularly limited, and examples thereof include TGA / DSC 1 manufactured by METTLER TOLEDO CO., LTD.
 本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、大気中700±10℃、2時間の加熱試験により、比表面積が15~20m/g、且つ、c/aが1.0030~1.0055のチタン酸バリウムに変換されるシュウ酸バリウムチタニルであることが好ましい。本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルを、大気中700±10℃、2時間加熱試験して得られるチタン酸バリウムの比表面積は、特に好ましくは16~19m/gである。また、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルを、大気中700±10℃、2時間加熱試験して得られるチタン酸バリウムのc/aは、特に好ましくは1.0035~1.0050である。大気中700±10℃、2時間の加熱試験により生じるチタン酸バリウムの比表面積が上記範囲にあり且つc/aが上記範囲にあることにより、焼成過程において、チタン酸バリウムが生成した後の高結晶化のための加熱で粒成長が起きても、従来のシュウ酸バリウムチタニルに比べ、微細且つ高結晶のチタン酸バリウムを得ることができる。シュウ酸バリウムチタニルの加熱試験については、700±10℃に温度調節された加熱装置中に、測定対象試料を2時間保持して加熱試験を行い、冷却後、加熱試験後の測定対象試料をBET法による比表面積分析及びX線回折分析を行い、加熱試験後の測定対象試料の比表面積及びc/aを求める。 The barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention has a specific surface area of 15 to 20 m 2 / g and a c / a of c / a by a heating test at 700 ± 10 ° C. in the air for 2 hours. It is preferably barium titanyl oxalate that is converted to barium titanate from 1.030 to 1.055. The specific surface area of barium titanate obtained by heating and testing barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention in the air at 700 ± 10 ° C. for 2 hours is particularly preferably 16 to 19 m 2 . / G. Further, the c / a of barium titanate obtained by heating the barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention in the air at 700 ± 10 ° C. for 2 hours is particularly preferably 1. It is .0035 to 1.0050. The specific surface area of barium titanate produced by the heating test at 700 ± 10 ° C. in the air for 2 hours is in the above range, and c / a is in the above range. Even if grain growth occurs due to heating for crystallization, finer and higher crystal barium titanate can be obtained as compared with the conventional barium titanate oxalate. Regarding the heating test of barium titanyl oxalate, the measurement target sample was held for 2 hours in a heating device whose temperature was controlled to 700 ± 10 ° C., and the heating test was performed. After cooling, the measurement target sample after the heating test was BET. Specific surface area analysis and X-ray diffraction analysis by the method are performed to determine the specific surface area and c / a of the sample to be measured after the heating test.
 本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルの平均粒子径は、好ましくは1.0μm以下、より好ましくは0.005~1.0μm、特に好ましくは0.01~0.5μmである。シュウ酸バリウムチタニルの平均粒子径が上記範囲にあることにより、低温でチタン酸バリウムを生成させることができる。なお、本発明においてシュウ酸バリウムチタニルの平均粒子径は、走査型電子顕微鏡(SEM)写真により、任意に200個の粒子を測定し、その平均値を平均粒子径とする。 The average particle size of barium oxalate titanyl oxalate obtained by the method for producing barium oxalate titanyl of the present invention is preferably 1.0 μm or less, more preferably 0.005 to 1.0 μm, and particularly preferably 0.01 to 0. It is 5.5 μm. When the average particle size of barium titanyl oxalate is in the above range, barium titanate can be produced at a low temperature. In the present invention, the average particle size of barium oxalate titanyl is obtained by arbitrarily measuring 200 particles by a scanning electron microscope (SEM) photograph and using the average value as the average particle size.
 また、本発明のシュウ酸バリウムチタニルの製造方法を行い得られるシュウ酸バリウムチタニルは、600~700℃、好ましくは610~690℃、特に好ましくは615~685℃の温度範囲で加熱したときに、チタン酸バリウムを生成することができるシュウ酸バリウムチタニルである。 Further, the barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention can be obtained when heated in a temperature range of 600 to 700 ° C., preferably 610 to 690 ° C., particularly preferably 615 to 685 ° C. Barium titanyl oxalate capable of producing barium titanate.
 本発明のシュウ酸バリウムチタニルの製造方法により得られるシュウ酸バリウムチタニルは、誘電体セラミック材料のチタン酸バリウム系セラミックの製造原料として好適に用いられる。本発明のチタン酸バリウムの製造方法は以下の通りである。 Barium titanyl oxalate obtained by the method for producing barium titanyl oxalate of the present invention is suitably used as a raw material for producing barium titanate-based ceramic, which is a dielectric ceramic material. The method for producing barium titanate of the present invention is as follows.
 本発明のチタン酸バリウムの製造方法は、本発明のシュウ酸バリウムチタニルの製造方法により得られたシュウ酸バリウムチタニルを焼成することを特徴とするものである。 The method for producing barium titanate of the present invention is characterized by firing barium titanyl oxalate obtained by the method for producing barium titanate oxalate of the present invention.
 最終製品に含まれるシュウ酸由来の有機物は、材料の誘電体特性を損なうとともに、セラミック化のための熱工程における挙動の不安定要因となるので好ましくない。従って、本発明では焼成によりシュウ酸バリウムチタニルを熱分解して目的とするチタン酸バリウムを得ると共に、シュウ酸由来の有機物を十分除去する必要がある。焼成条件は、焼成温度が好ましくは600~1200℃、更に好ましくは620~1100℃である。焼成温度が600℃未満では、チタン酸バリウムが一部しか生成していない、或いは、単一相のチタン酸バリウムが得られにくい。一方、焼成温度が1200℃を超えると、粒径のバラツキが大きくなる。焼成時間は好ましくは0.5~30時間、更に好ましくは1~20時間である。また、焼成雰囲気は、特に制限されず、不活性ガス雰囲気下、真空雰囲気下、酸化性ガス雰囲気下、大気中のいずれであってもよく、或いは水蒸気を導入しながら前記雰囲気中で焼成を行ってもよい。 Oxalic acid-derived organic substances contained in the final product are not preferable because they impair the dielectric properties of the material and cause unstable behavior in the thermal process for ceramicization. Therefore, in the present invention, it is necessary to thermally decompose barium titanyl oxalate by firing to obtain the desired barium titanate and to sufficiently remove organic substances derived from oxalic acid. The firing conditions are such that the firing temperature is preferably 600 to 1200 ° C, more preferably 620 to 1100 ° C. When the firing temperature is less than 600 ° C., only a part of barium titanate is produced, or it is difficult to obtain single-phase barium titanate. On the other hand, when the firing temperature exceeds 1200 ° C., the variation in particle size becomes large. The firing time is preferably 0.5 to 30 hours, more preferably 1 to 20 hours. The firing atmosphere is not particularly limited, and may be any of an inert gas atmosphere, a vacuum atmosphere, an oxidizing gas atmosphere, and the atmosphere, or firing is performed in the atmosphere while introducing steam. You may.
  焼成は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。 Baking may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, once fired may be crushed and then re-baked.
  焼成後、適宜冷却し、必要に応じ粉砕してチタン酸バリウムの粉末を得る。必要に応じて行われる粉砕は、焼成して得られるチタン酸バリウムがもろくブロック状のものである場合等に適宜行うが、チタン酸バリウムの粒子自体は下記特定の平均粒径、BET比表面積を有するものである。即ち、前記で得られるチタン酸バリウムの粉末は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が好ましくは0.5μm以下、更に好ましくは0.02~0.5μmである。BET比表面積は、好ましくは2~100m/g、更に好ましくは2.5~50m/gである。更に、本発明の製造方法で得られるチタン酸バリウムの組成は、BaとTiのモル比(Ba/Ti)が0.998~1.004、特に0.999~1.003であることが好ましい。また、結晶性の指標となるc軸/a軸比は、チタン酸バリウムの比表面積が15m/g以上の範囲では、1.0030~1.0055が好ましく、1.0035~1.0050が特に好ましい。焼成温度が高くなると粒成長が生じるため、比表面積が15m/g未満の範囲となるが、その範囲では、c軸/a軸比は、1.0055超が好ましくは、1.0070以上が更に好ましく、1.0075以上が特に好ましい。 After firing, it is appropriately cooled and pulverized as necessary to obtain barium titanate powder. The pulverization performed as necessary is appropriately performed when the barium titanate obtained by firing is fragile and block-shaped, but the barium titanate particles themselves have the following specific average particle size and BET specific surface area. It has. That is, the barium titanate powder obtained above has an average particle size of preferably 0.5 μm or less, more preferably 0.02 to 0.5 μm, as determined from a scanning electron micrograph (SEM). The BET specific surface area is preferably 2 to 100 m 2 / g, more preferably 2.5 to 50 m 2 / g. Further, the composition of barium titanate obtained by the production method of the present invention preferably has a molar ratio of Ba to Ti (Ba / Ti) of 0.998 to 1.004, particularly preferably 0.999 to 1.003. .. The c-axis / a-axis ratio, which is an index of crystallinity, is preferably 1.030 to 1.0055, preferably 1.0035 to 1.0050, in the range where the specific surface area of barium titanate is 15 m 2 / g or more. Especially preferable. Since grain growth occurs when the firing temperature is high, the specific surface area is in the range of less than 15 m 2 / g, but in that range, the c-axis / a-axis ratio is preferably more than 1.0055, preferably 1.0070 or more. More preferably, 1.0075 or more is particularly preferable.
  また、本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムには、必要により誘電特性や温度特性を調整する目的で、副成分元素含有化合物を本発明のチタン酸バリウムの製造方法を行い得られるチタン酸バリウムに添加して、副成分元素を含有させることができる。用いることができる副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素を含有する化合物が挙げられる。 Further, for the barium titanate obtained by the method for producing barium titanate of the present invention, the method for producing barium titanate of the present invention may be obtained by using a compound containing a subcomponent element for the purpose of adjusting the dielectric property and the temperature characteristic as necessary. It can be added to the resulting barium titanate to contain sub-component elements. Examples of the subcomponent element-containing compound that can be used include rare earth elements such as Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. , Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn. Examples include compounds containing elements.
  副成分元素含有化合物は、無機物又は有機物のいずれであってもよい。例えば、前記の元素を含む酸化物、水酸化物、塩化物、硝酸塩、蓚酸塩、カルボン酸塩及びアルコキシド等が挙げられる。副成分元素含有化合物がSi元素を含有する化合物である場合は、酸化物等に加えて、シリカゾルや珪酸ナトリウム等も用いることができる。副成分元素含有化合物は1種又は2種以上適宜組み合わせて用いることができる。その添加量や添加化合物の組み合わせは、常法に従って行えばよい。 The subcomponent element-containing compound may be either an inorganic substance or an organic substance. For example, oxides containing the above elements, hydroxides, chlorides, nitrates, oxalates, carboxylates, alkoxides and the like can be mentioned. When the auxiliary component element-containing compound is a compound containing a Si element, silica sol, sodium silicate, or the like can be used in addition to the oxide or the like. The subcomponent element-containing compound may be used alone or in combination of two or more. The addition amount and the combination of the added compounds may be carried out according to a conventional method.
  チタン酸バリウムに副成分元素を含有させるには、例えば、チタン酸バリウムと副成分元素含有化合物を均一混合後、焼成を行えばよい。或いは、シュウ酸バリウムチタニルと副成分元素含有化合物を均一混合後、焼成を行ってもよい。 In order to make barium titanate contain a sub-component element, for example, barium titanate and a sub-component element-containing compound may be uniformly mixed and then fired. Alternatively, barium titanyl oxalate and a compound containing a subcomponent element may be uniformly mixed and then calcined.
  本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムを用いて、例えば積層セラミックコンデンサを製造する場合には、先ず、チタン酸バリウムの粉末を、副成分元素を含め従来公知の添加剤、有機系バインダ、可塑剤、分散剤等の配合剤と共に適当な溶媒中に混合分散させてスラリー化し、シート成形を行う。これにより、積層セラミックコンデンサの製造に用いられるセラミックシートを得る。該セラミックシートから積層セラミックコンデンサを作製するには、先ず、該セラミックシートの一面に内部電極形成用導電ペーストを印刷する。乾燥後、複数枚の前記セラミックシートを積層し、厚み方向に圧着することにより積層体とする。次に、この積層体を加熱処理して脱バインダ処理を行い、焼成して焼成体を得る。さらに、該焼成体にNiペースト、Agペースト、ニッケル合金ペースト、銅ペースト、銅合金ペースト等を塗布し焼き付けて、積層セラミックコンデンサが得られる。 When, for example, a laminated ceramic capacitor is manufactured by using the barium titanate obtained by the method for producing barium titanate of the present invention, first, a powder of barium titanate is added to a conventionally known substance including subcomponent elements. It is mixed and dispersed in an appropriate solvent together with a compounding agent such as an agent, an organic binder, a plasticizing agent, and a dispersant to form a slurry, and sheet molding is performed. As a result, a ceramic sheet used for manufacturing a monolithic ceramic capacitor is obtained. In order to manufacture a laminated ceramic capacitor from the ceramic sheet, first, a conductive paste for forming an internal electrode is printed on one surface of the ceramic sheet. After drying, a plurality of the ceramic sheets are laminated and pressure-bonded in the thickness direction to form a laminated body. Next, this laminated body is heat-treated to perform a binder removal treatment, and then fired to obtain a fired body. Further, Ni paste, Ag paste, nickel alloy paste, copper paste, copper alloy paste and the like are applied and baked on the fired body to obtain a laminated ceramic capacitor.
  また、本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムの粉末を、例えばエポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂に配合して、樹脂シート、樹脂フィルム、接着剤等とすると、プリント配線板や多層プリント配線板等の材料として用いることができる他、内部電極と誘電体層との収縮差を抑制するための共材、電極セラミック回路基板、ガラスセラミックス回路基板、回路周辺材料及び無機EL用の誘電体材料としても用いることができる。 Further, the powder of barium titanate obtained by the method for producing barium titanate of the present invention is blended with a resin such as an epoxy resin, a polyester resin or a polyimide resin to form a resin sheet, a resin film, an adhesive or the like. Then, in addition to being able to be used as a material for printed wiring boards and multilayer printed wiring boards, a common material for suppressing the shrinkage difference between the internal electrode and the dielectric layer, an electrode ceramic circuit board, a glass ceramic circuit board, and circuit peripherals. It can also be used as a material and a dielectric material for inorganic EL.
  また、本発明のチタン酸バリウムの製造方法を行い得られたチタン酸バリウムは、排ガス除去、化学合成等の反応時に使用される触媒や、帯電防止、クリーニング効果を付与する印刷トナーの表面改質材として好適に用いられる。 Further, the barium titanate obtained by the method for producing barium titanate of the present invention is used for surface modification of catalysts used in reactions such as exhaust gas removal and chemical synthesis, and printing toners having antistatic and cleaning effects. It is suitably used as a material.
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定される
ものではない。
(1)シュウ酸バリウムチタニルの熱重量分析
 メトラー・トレド株式会社製熱重量測定装置TGA/DSC 1を用いて、30mgの試料を50mL/minの空気気流中、30℃から1200℃まで昇温速度10℃/minで測定した。
(2)シュウ酸バリウムチタニル及びチタン酸バリウムの平均粒子径
 走査型電子顕微鏡(SEM)写真により、任意に200個の粒子を測定し、その平均値を平均粒子径とした。
(3)チタン酸バリウムの比表面積
 BET法により求めた。
(4)チタン酸バリウムのc/a値
 線源としてCu-Kα線を用いてX線回折装置(Bruker社製、D8 ADVANCE)により、c軸とa軸の比c/aを測定した。
(実施例1)
 シュウ酸2水和物25.0gをエチレングリコール100gに溶解させ、シュウ酸が2.21mol/Lであるシュウ酸成分を含む溶液(A液)120mLを調製した。これとは別に、四塩化チタン64.4g及び塩化バリウム32.0gを純水210gに溶解させ、四塩化チタンが0.59mol/L、塩化バリウムが0.63mol/Lであるチタン成分及びバリウム成分を含む溶液(B液)270mLを調製した。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.
(1) Thermogravimetric analysis of barium titanyl oxalate Using the thermogravimetric measuring device TGA / DSC 1 manufactured by METTLER TOLEDO Co., Ltd., a 30 mg sample is heated from 30 ° C to 1200 ° C in an air stream of 50 mL / min. It was measured at 10 ° C./min.
(2) Average particle diameters of barium oxalate and barium titanate 200 particles were arbitrarily measured by scanning electron microscopy (SEM) photographs, and the average value was taken as the average particle diameter.
(3) Specific surface area of barium titanate Obtained by the BET method.
(4) c / a value of barium titanate Using Cu—Kα ray as a radiation source, the ratio c / a of the c-axis to the a-axis was measured by an X-ray diffractometer (D8 ADVANCE manufactured by Bruker).
(Example 1)
25.0 g of oxalic acid dihydrate was dissolved in 100 g of ethylene glycol to prepare 120 mL of a solution (solution A) containing an oxalic acid component having oxalic acid of 2.21 mol / L. Separately, 64.4 g of titanium tetrachloride and 32.0 g of barium chloride are dissolved in 210 g of pure water, and the titanium component and barium component having titanium tetrachloride of 0.59 mol / L and barium chloride of 0.63 mol / L are dissolved. 270 mL of a solution (solution B) containing the above was prepared.
 次いで、スタティックミキサー(トミタエンジニアリング株式会社製、MC08-32)に、A液を4.3L/時間、B液を9.6L/時間の速度で供給し、反応液をスタティックミキサーから排出させた。このとき、反応液のスタティックミキサー内の滞留時間は2秒とした。スタティックミキサーへのBa元素及びTi元素の供給速度に対するシュウ酸イオンの供給速度の比はモル比で1.91であった。 Next, the static mixer (MC08-32 manufactured by Tomita Engineering Co., Ltd.) was supplied with the solution A at a rate of 4.3 L / hour and the solution B at a rate of 9.6 L / hour, and the reaction solution was discharged from the static mixer. At this time, the residence time of the reaction solution in the static mixer was set to 2 seconds. The ratio of the supply rate of oxalate ions to the supply rate of Ba element and Ti element to the static mixer was 1.91 in terms of molar ratio.
 スタティックミキサーから排出させた反応液を、固液分離して沈殿物を得た。この沈殿物を洗浄後、乾燥してシュウ酸バリウムチタニルを得た。得られたシュウ酸バリウムチタニルの物性値は表1の通りであった。また、得られたシュウ酸バリウムチタニルの熱分析の重量減少率を測定した結果を図1に示す。この結果、680℃の重量減少率は45.42%であり、1000℃の重量減少率45.74%に対しては99.30%であった。 The reaction solution discharged from the static mixer was solid-liquid separated to obtain a precipitate. After washing this precipitate, it was dried to obtain barium titanyl oxalate. The physical characteristics of the obtained barium oxalate titanyl are as shown in Table 1. Moreover, the result of having measured the weight loss rate of the obtained barium titanyl oxalate by thermal analysis is shown in FIG. As a result, the weight loss rate at 680 ° C. was 45.42%, and the weight loss rate at 1000 ° C. was 99.30% with respect to 45.74%.
 得られたシュウ酸バリウムチタニルを700℃で2時間焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムの物性値は表1の通りであった。
(実施例2~4)
 実施例1で得られたシュウ酸バリウムチタニルを表1に示す温度で焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムの物性値を表1示す。
(実施例5)
 シュウ酸2水和物25.0gをエチレングリコール100gに溶解させ、シュウ酸が2.21mol/Lであるシュウ酸成分を含む溶液(A液)120mLを調製した。これとは別に、四塩化チタン64.4g及び塩化バリウム32.0gを純水210gに溶解させ、四塩化チタンが0.59mol/L、塩化バリウムが0.63mol/Lであるチタン成分及びバリウム成分を含む溶液(B液)270mLを調製した。
The obtained barium titanate oxalate was calcined at 700 ° C. for 2 hours to obtain barium titanate. The physical characteristics of the obtained barium titanate are as shown in Table 1.
(Examples 2 to 4)
The barium titanate oxalate obtained in Example 1 was calcined at the temperatures shown in Table 1 to obtain barium titanate. Table 1 shows the physical property values of the obtained barium titanate.
(Example 5)
25.0 g of oxalic acid dihydrate was dissolved in 100 g of ethylene glycol to prepare 120 mL of a solution (solution A) containing an oxalic acid component having oxalic acid of 2.21 mol / L. Separately, 64.4 g of titanium tetrachloride and 32.0 g of barium chloride are dissolved in 210 g of pure water, and the titanium component and barium component having titanium tetrachloride of 0.59 mol / L and barium chloride of 0.63 mol / L are dissolved. 270 mL of a solution (solution B) containing the above was prepared.
 次いで、マイクロリアクター(流路径:1.0mm、流路長:1000mm)に、A液を72mL/分、B液を160mL/分の速度で供給し、反応液をマイクロリアクターから排出させた。このとき、反応液のマイクロリアクター内の滞留時間は2.6秒とした。マイクロリアクターへのBa元素及びTi元素の供給速度に対するシュウ酸イオンの供給速度の比はモル比で1.91であった。 Next, liquid A was supplied at a rate of 72 mL / min and liquid B was supplied at a rate of 160 mL / min to the microreactor (flow path diameter: 1.0 mm, flow path length: 1000 mm), and the reaction solution was discharged from the microreactor. At this time, the residence time of the reaction solution in the microreactor was set to 2.6 seconds. The ratio of the supply rate of oxalate ions to the supply rate of Ba element and Ti element to the microreactor was 1.91 in molar ratio.
 マイクロリアクターから排出させた反応液を、固液分離して沈殿物を得た。この沈殿物を洗浄後、乾燥してシュウ酸バリウムチタニルを得た。得られたシュウ酸バリウムチタニルの物性値は表1の通りであった。また、得られたシュウ酸バリウムチタニルの熱分析の重量減少率を測定した結果を図1に示す。この結果、680℃の重量減少率は48.53%であり、1000℃の重量減少率45.28%に対しては99.40%であった。 The reaction solution discharged from the microreactor was solid-liquid separated to obtain a precipitate. After washing this precipitate, it was dried to obtain barium titanyl oxalate. The physical characteristics of the obtained barium oxalate titanyl are as shown in Table 1. Moreover, the result of having measured the weight loss rate of the obtained barium titanyl oxalate by thermal analysis is shown in FIG. As a result, the weight loss rate at 680 ° C. was 48.53%, which was 99.40% with respect to the weight loss rate of 45.28% at 1000 ° C.
 得られたシュウ酸バリウムチタニルを700℃で2時間焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムの物性値は表1の通りであった。
(比較例1)
 塩化バリウム2水塩35.0gとシュウ酸2水塩35.0gを純水120gに溶解させ、バリウム濃度が1.10mol/L、シュウ酸濃度が2.20mol/Lであるバリウム成分及びシュウ酸成分を含む溶液(a液)120mLを調製した。これとは別に、四塩化チタン54.0gを純水に溶解させ、チタン濃度が0.40mol/Lであるチタン成分を含む溶液(b液)260mLを調製した。
The obtained barium titanate oxalate was calcined at 700 ° C. for 2 hours to obtain barium titanate. The physical characteristics of the obtained barium titanate are as shown in Table 1.
(Comparative Example 1)
35.0 g of barium chloride dihydrate and 35.0 g of oxalic acid dihydrate are dissolved in 120 g of pure water, and the barium component and oxalic acid having a barium concentration of 1.10 mol / L and a oxalic acid concentration of 2.20 mol / L are dissolved. 120 mL of a solution (solution a) containing the components was prepared. Separately, 54.0 g of titanium tetrachloride was dissolved in pure water to prepare 260 mL of a solution (liquid b) containing a titanium component having a titanium concentration of 0.40 mol / L.
 次いで、a液を撹拌しながらb液を90秒で添加し、その後、1時間保持した後、固液分離して沈殿物を得た。この沈殿物を洗浄後、乾燥してシュウ酸バリウムチタニルを得た。得られたシュウ酸バリウムチタニルの物性値は表1の通りであった。また、得られたシュウ酸バリウムチタニルの熱分析の重量減少率を測定した結果を図1に示す。この結果、680℃の重量減少率は37.71%であり、1000℃の重量減少率44.81%に対しては84.15%であった。 Next, solution b was added in 90 seconds while stirring solution a, and after holding for 1 hour, solid-liquid separation was performed to obtain a precipitate. After washing this precipitate, it was dried to obtain barium titanyl oxalate. The physical characteristics of the obtained barium oxalate titanyl are as shown in Table 1. Moreover, the result of having measured the weight loss rate of the obtained barium titanyl oxalate by thermal analysis is shown in FIG. As a result, the weight loss rate at 680 ° C. was 37.71%, which was 84.15% with respect to the weight loss rate of 44.81% at 1000 ° C.
 得られたシュウ酸バリウムチタニルを700℃で2時間焼成した。しかし、熱重量分析の重量減少率の測定結果からチタン酸バリウムは得られていないことが分かった。
(比較例2~4)
 比較例1で得られたシュウ酸バリウムチタニルを表1で示す温度で焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムの物性値を表1に示す。
The obtained barium oxalate titanyl was calcined at 700 ° C. for 2 hours. However, it was found that barium titanate was not obtained from the measurement result of the weight loss rate of the thermogravimetric analysis.
(Comparative Examples 2 to 4)
The barium titanate oxalate obtained in Comparative Example 1 was calcined at the temperature shown in Table 1 to obtain barium titanate. Table 1 shows the physical characteristics of the obtained barium titanate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、同じ温度で焼成したときの平均粒径、BET比表面積及びc/aの数値の比較から、比較例で得られたチタン酸バリウムと比べて、実施例で得られたチタン酸バリウムは微粒且つ高結晶であることが判る。また、図1に示す通り、実施例1で得られたシュウ酸バリウムチタニルは、熱重量分析により700℃においてチタン酸バリウムが得られたが、比較例1で得られたシュウ酸バリウムチタニルは、700℃でもチタン酸バリウムが得られなかったことが判る。
(実施例6)
 シュウ酸2水和物25.0gをエチレングリコール100gに溶解させ、シュウ酸が2.21mol/Lであるシュウ酸成分を含む溶液(A液)120mLを調製した。これとは別に、四塩化チタン64.4g及び塩化バリウム32.0gを純水210gに溶解させ、四塩化チタンが0.59mol/L、塩化バリウムが0.63mol/Lであるチタン成分及びバリウム成分を含む溶液(B液)270mLを調製した。
As shown in Table 1, the titanium obtained in the examples was compared with the barium titanate obtained in the comparative example from the comparison of the average particle size, the BET specific surface area and the numerical values of c / a when calcined at the same temperature. It can be seen that barium acid acid is fine and highly crystalline. Further, as shown in FIG. 1, the barium titanate oxalate obtained in Example 1 was obtained as barium titanate at 700 ° C. by thermal weight analysis, whereas the barium titanyl oxalate obtained in Comparative Example 1 was obtained. It can be seen that barium titanate could not be obtained even at 700 ° C.
(Example 6)
25.0 g of oxalic acid dihydrate was dissolved in 100 g of ethylene glycol to prepare 120 mL of a solution (solution A) containing an oxalic acid component having oxalic acid of 2.21 mol / L. Separately, 64.4 g of titanium tetrachloride and 32.0 g of barium chloride are dissolved in 210 g of pure water, and the titanium component and barium component having titanium tetrachloride of 0.59 mol / L and barium chloride of 0.63 mol / L are dissolved. 270 mL of a solution (solution B) containing the above was prepared.
 次いで、テイラー渦型撹拌装置(チップトン社製、TVF-01)に、A液を4.3L/時間、B液を9.6L/時間の速度で供給し、反応液をテイラー渦型撹拌装置から排出させた。このとき、反応液のテイラー渦型撹拌装置内の滞留時間は5秒とした。テイラー渦型撹拌装置へのBa元素及びTi元素の供給速度に対するシュウ酸イオンの供給速度の比はモル比で1.91であった。 Next, the solution A is supplied to the Taylor vortex agitator (TVF-01 manufactured by Chipton) at a rate of 4.3 L / hour and the solution B is supplied at a rate of 9.6 L / hour, and the reaction solution is supplied from the Taylor vortex agitator. It was discharged. At this time, the residence time of the reaction solution in the Taylor vortex type agitator was set to 5 seconds. The ratio of the supply rate of oxalate ions to the supply rate of Ba element and Ti element to the Taylor vortex type agitator was 1.91 in molar ratio.
 テイラー渦型撹拌装置から排出させた反応液を、固液分離して沈殿物を得た。この沈殿物を洗浄後、乾燥してシュウ酸バリウムチタニルを得た。得られたシュウ酸バリウムチタニルの物性値は表2の通りであった。また、得られたシュウ酸バリウムチタニルの熱分析の重量減少率を測定した結果を図6に示す。この結果、680℃の重量減少率は48.53%であり、1000℃の重量減少率48.82%に対しては99.40%であった。 The reaction solution discharged from the Taylor vortex type stirrer was solid-liquid separated to obtain a precipitate. After washing this precipitate, it was dried to obtain barium titanyl oxalate. The physical characteristic values of the obtained barium oxalate titanyl are as shown in Table 2. Further, FIG. 6 shows the results of measuring the weight loss rate of the obtained barium oxalate titanyl in thermal analysis. As a result, the weight loss rate at 680 ° C. was 48.53%, which was 99.40% with respect to the weight loss rate of 48.82% at 1000 ° C.
 得られたシュウ酸バリウムチタニルを700℃で2時間焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムの物性値は表2の通りであった。
(実施例7~9)
 実施例7で得られたシュウ酸バリウムチタニルを表2に示す温度で焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムの物性値を表2示す。
(比較例5)
 塩化バリウム2水塩35.0gとシュウ酸2水塩35.0gを純水120gに溶解させ、バリウム濃度が1.10mol/L、シュウ酸濃度が2.20mol/Lであるバリウム成分及びシュウ酸成分を含む溶液(a液)120mLを調製した。これとは別に、四塩化チタン54.0gを純水に溶解させ、チタン濃度が0.40mol/Lであるチタン成分を含む溶液(b液)260mLを調製した。
The obtained barium titanate oxalate was calcined at 700 ° C. for 2 hours to obtain barium titanate. The physical characteristics of the obtained barium titanate are shown in Table 2.
(Examples 7 to 9)
The barium titanate oxalate obtained in Example 7 was calcined at the temperature shown in Table 2 to obtain barium titanate. Table 2 shows the physical characteristics of the obtained barium titanate.
(Comparative Example 5)
35.0 g of barium chloride dihydrate and 35.0 g of oxalic acid dihydrate are dissolved in 120 g of pure water, and the barium component and oxalic acid having a barium concentration of 1.10 mol / L and a oxalic acid concentration of 2.20 mol / L are dissolved. 120 mL of a solution (solution a) containing the components was prepared. Separately, 54.0 g of titanium tetrachloride was dissolved in pure water to prepare 260 mL of a solution (liquid b) containing a titanium component having a titanium concentration of 0.40 mol / L.
 次いで、a液を撹拌しながらb液を90秒で添加し、その後、1時間保持した後、固液分離して沈殿物を得た。この沈殿物を洗浄後、乾燥してシュウ酸バリウムチタニルを得た。得られたシュウ酸バリウムチタニルの物性値は表2の通りであった。また、得られたシュウ酸バリウムチタニルの熱分析の重量減少率を測定した結果を図6に示す。この結果、680℃の重量減少率は37.71%であり、1000℃の重量減少率44.81%に対しては84.15%であった。 Next, solution b was added in 90 seconds while stirring solution a, and after holding for 1 hour, solid-liquid separation was performed to obtain a precipitate. After washing this precipitate, it was dried to obtain barium titanyl oxalate. The physical characteristic values of the obtained barium oxalate titanyl are as shown in Table 2. Further, FIG. 6 shows the results of measuring the weight loss rate of the obtained barium oxalate titanyl in thermal analysis. As a result, the weight loss rate at 680 ° C. was 37.71%, which was 84.15% with respect to the weight loss rate of 44.81% at 1000 ° C.
 得られたシュウ酸バリウムチタニルを700℃で2時間焼成した。しかし、熱重量分析の重量減少率の測定結果からチタン酸バリウムは得られていないことが分かった。
(比較例6~8)
 比較例5で得られたシュウ酸バリウムチタニルを表2で示す温度で焼成し、チタン酸バリウムを得た。得られたチタン酸バリウムの物性値を表2に示す。
The obtained barium oxalate titanyl was calcined at 700 ° C. for 2 hours. However, it was found that barium titanate was not obtained from the measurement result of the weight loss rate of the thermogravimetric analysis.
(Comparative Examples 6 to 8)
The barium titanate oxalate obtained in Comparative Example 5 was calcined at the temperature shown in Table 2 to obtain barium titanate. Table 2 shows the physical characteristics of the obtained barium titanate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、同じ温度で焼成したときの平均粒径、BET比表面積及びc/aの数値の比較から、比較例で得られたチタン酸バリウムと比べて、実施例で得られたチタン酸バリウムは微粒且つ高結晶であることが判る。また、図6に示す通り、実施例6で得られたシュウ酸バリウムチタニルは、熱重量分析により700℃においてチタン酸バリウムが得られたが、比較例5で得られたシュウ酸バリウムチタニルは、700℃でもチタン酸バリウムが得られなかったことが判る。
 
As shown in Table 2, the titanium obtained in the examples was compared with the barium titanate obtained in the comparative example from the comparison of the average particle size, the BET specific surface area and the numerical values of c / a when calcined at the same temperature. It can be seen that barium acid acid is fine and highly crystalline. Further, as shown in FIG. 6, the barium titanate oxalate obtained in Example 6 was obtained as barium titanate at 700 ° C. by thermal weight analysis, whereas the barium titanyl oxalate obtained in Comparative Example 5 was obtained. It can be seen that barium titanate could not be obtained even at 700 ° C.

Claims (13)

  1.  シュウ酸を含有する溶液(A液)と、チタン源及びバリウム源を含有する溶液(B液)とを混合して、反応させることにより、シュウ酸バリウムチタニルを製造するシュウ酸バリウムチタニルの製造方法であり、
     反応液流路の一端側に、該A液と該B液とを別々に供給し、該反応流路内で、該A液と該B液を混合し、該反応液流路の他端側から、反応液を排出し、次いで、該反応液の固液分離を行うこと、
     該反応液流路内での該反応液の滞留時間が30秒以内であること、
    を特徴とするシュウ酸バリウムチタニルの製造方法。
    A method for producing barium oxalate titanyl oxalate by mixing and reacting a solution containing oxalic acid (solution A) with a solution containing a titanium source and a barium source (solution B). And
    The A solution and the B solution are separately supplied to one end side of the reaction solution flow path, the A solution and the B solution are mixed in the reaction flow path, and the other end side of the reaction solution flow path is mixed. Then, the reaction solution is discharged, and then the solid-liquid separation of the reaction solution is performed.
    The residence time of the reaction solution in the reaction solution flow path is within 30 seconds.
    A method for producing barium oxalate titanyl oxalate.
  2.  スタティックミキサーの一端側に、前記A液及び前記B液を別々に供給することにより、該スタティックミキサー内で、前記反応液流路を形成させることを特徴とする請求項1記載のシュウ酸バリウムチタニルの製造方法。 The barium oxalate titanyl oxalate according to claim 1, wherein the reaction liquid flow path is formed in the static mixer by separately supplying the liquid A and the liquid B to one end side of the static mixer. Manufacturing method.
  3.  連続フロー式のマイクロリアクターの反応液流路の一端側に、前記A液及び前記B液を別々に供給することにより、該マイクロリアクター内で、前記反応液流路を形成させることを特徴とする請求項1記載のシュウ酸バリウムチタニルの製造方法。 The reaction liquid flow path is formed in the microreactor by separately supplying the liquid A and the liquid B to one end side of the reaction liquid flow path of the continuous flow type microreactor. The method for producing barium titanyl oxalate according to claim 1.
  4.  シュウ酸を含有する溶液(A液)と、チタン源及びバリウム源を含有する溶液(B液)とを混合して、反応させることにより、シュウ酸バリウムチタニルを製造するシュウ酸バリウムチタニルの製造方法であり、
     反応液流路の一端側に、該A液と該B液とを別々に供給し、該反応液流路の一端側で、該A液と該B液とを混合し、反応液に渦流を発生させながら、該反応液を該反応液流路の他端側に移動させ、該反応液流路の他端側から、該反応液を排出し、次いで、該反応液の固液分離を行うこと、
    を特徴とするシュウ酸バリウムチタニルの製造方法。
    A method for producing barium oxalate titanyl oxalate, which comprises mixing and reacting a solution containing oxalic acid (liquid A) with a solution containing a titanium source and a barium source (solution B) to produce barium oxalate titanyl oxalate. And
    The solution A and the solution B are separately supplied to one end side of the reaction solution flow path, and the solution A and the solution B are mixed at one end side of the reaction solution flow path to create a vortex in the reaction solution. While generating, the reaction solution is moved to the other end side of the reaction solution flow path, the reaction solution is discharged from the other end side of the reaction solution flow path, and then the reaction solution is solid-liquid separated. thing,
    A method for producing barium oxalate titanyl oxalate.
  5.  前記反応液流路内での前記反応液の滞留時間が60秒以内であることを特徴とする請求項4記載のシュウ酸バリウムチタニルの製造方法。 The method for producing barium oxalate titanyl oxalate according to claim 4, wherein the residence time of the reaction solution in the reaction solution flow path is 60 seconds or less.
  6.  前記渦流が、テイラー渦流であることを特徴とする請求項4記載のシュウ酸バリウムチタニルの製造方法。 The method for producing barium oxalate titanyl oxalate according to claim 4, wherein the vortex is a Taylor vortex.
  7.  前記A液の溶媒が有機溶媒であることを特徴とする請求項1又は4記載のシュウ酸バリウムチタニルの製造方法。 The method for producing barium oxalate titanyl oxalate according to claim 1 or 4, wherein the solvent of the liquid A is an organic solvent.
  8.  前記A液の溶媒が、メタノール、エタノール、プロパノール、ブタノール、ジエチルエーテル、1,3-ブチレングリコール、エチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセロール、N,N-ジメチルホルムアミド及びアセトンからなる群から選ばれる1種又は2種以上であることを特徴とする請求項1又は4記載のシュウ酸バリウムチタニルの製造方法。 The solvent of the solution A is selected from the group consisting of methanol, ethanol, propanol, butanol, diethyl ether, 1,3-butylene glycol, ethylene glycol, propylene glycol, dipropylene glycol, glycerol, N, N-dimethylformamide and acetone. The method for producing barium titanyl oxalate according to claim 1 or 4, wherein the mixture is one kind or two or more kinds.
  9.  前記B液の溶媒が水であることを特徴とする請求項1又は4記載のシュウ酸バリウムチタニルの製造方法。 The method for producing barium oxalate titanyl oxalate according to claim 1 or 4, wherein the solvent of the liquid B is water.
  10.  前記B液中の前記チタン化合物が四塩化チタンであり、前記バリウム化合物が塩化バリウムであることを特徴とする請求項1又は4記載のシュウ酸バリウムチタニル
    の製造方法。
    The method for producing barium titanyl oxalate according to claim 1 or 4, wherein the titanium compound in the liquid B is titanium tetrachloride, and the barium compound is barium chloride.
  11.  前記A液と前記B液の混合温度が75℃以下であることを特徴とする請求項1又は4記載のシュウ酸バリウムチタニルの製造方法。 The method for producing barium oxalate titanyl oxalate according to claim 1 or 4, wherein the mixing temperature of the liquid A and the liquid B is 75 ° C. or lower.
  12.  生成されるシュウ酸バリウムチタニルの平均粒子径が1.0μm以下であることを特徴とする請求項1又は4記載のシュウ酸バリウムチタニルの製造方法。 The method for producing barium oxalate titanyl according to claim 1 or 4, wherein the average particle size of the barium oxalate titanyl produced is 1.0 μm or less.
  13.  請求項1~6いずれか1項記載の製造方法で得られたシュウ酸バリウムチタニルを焼成することを特徴とするチタン酸バリウムの製造方法。
     
    A method for producing barium titanate, which comprises calcining barium titanate oxalate obtained by the production method according to any one of claims 1 to 6.
PCT/JP2021/041717 2020-11-19 2021-11-12 Method for producing barium titanyl oxalate and method for producing barium titanate WO2022107695A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180078063.7A CN116507588A (en) 2020-11-19 2021-11-12 Method for producing barium titanyl oxalate and method for producing barium titanate
KR1020237016544A KR20230109634A (en) 2020-11-19 2021-11-12 Method for producing barium titanyl oxalate and method for producing barium titanate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-192357 2020-11-19
JP2020-192358 2020-11-19
JP2020192357A JP7110305B2 (en) 2020-11-19 2020-11-19 Method for producing barium titanyl oxalate and method for producing barium titanate
JP2020192358A JP7110306B2 (en) 2020-11-19 2020-11-19 Method for producing barium titanyl oxalate and method for producing barium titanate

Publications (1)

Publication Number Publication Date
WO2022107695A1 true WO2022107695A1 (en) 2022-05-27

Family

ID=81708824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041717 WO2022107695A1 (en) 2020-11-19 2021-11-12 Method for producing barium titanyl oxalate and method for producing barium titanate

Country Status (3)

Country Link
KR (1) KR20230109634A (en)
TW (1) TW202222763A (en)
WO (1) WO2022107695A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388719A (en) * 1989-08-30 1991-04-15 Tdk Corp Production of titanyl barium oxalate particles
JPH06254384A (en) * 1993-02-27 1994-09-13 Kao Corp Production of ceramic particulate and its apparatus
WO2012017752A1 (en) * 2010-08-02 2012-02-09 昭和電工株式会社 Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
WO2012137628A1 (en) * 2011-04-01 2012-10-11 エム・テクニック株式会社 Processes for producing barium titanyl salt and barium titanate
JP2013063867A (en) * 2011-09-15 2013-04-11 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2013151516A (en) * 2013-03-05 2013-08-08 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate, and method for producing barium titanate
CN110040770A (en) * 2019-06-10 2019-07-23 北京石油化工学院 A kind of method that microchannel continuity method prepares nano-level sphere barium titanate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434883B1 (en) 2001-08-14 2004-06-07 삼성전기주식회사 A method for the manufacturing of Barium-Titanate based Powder
JP5323537B2 (en) 2009-03-05 2013-10-23 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388719A (en) * 1989-08-30 1991-04-15 Tdk Corp Production of titanyl barium oxalate particles
JPH06254384A (en) * 1993-02-27 1994-09-13 Kao Corp Production of ceramic particulate and its apparatus
WO2012017752A1 (en) * 2010-08-02 2012-02-09 昭和電工株式会社 Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
WO2012137628A1 (en) * 2011-04-01 2012-10-11 エム・テクニック株式会社 Processes for producing barium titanyl salt and barium titanate
JP2013063867A (en) * 2011-09-15 2013-04-11 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2013151516A (en) * 2013-03-05 2013-08-08 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate, and method for producing barium titanate
CN110040770A (en) * 2019-06-10 2019-07-23 北京石油化工学院 A kind of method that microchannel continuity method prepares nano-level sphere barium titanate

Also Published As

Publication number Publication date
KR20230109634A (en) 2023-07-20
TW202222763A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP2006265003A (en) Composition for forming dielectric ceramic and dielectric ceramic material
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7110305B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7110306B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
Hwu et al. Characterization of dielectric barium titanate powders prepared by homogeneous precipitation chemical reaction for embedded capacitor applications
WO2022107695A1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2013151516A (en) Method for producing barium titanyl oxalate, and method for producing barium titanate
KR20100100654A (en) Process for preparation of barium titanyl oxalate and process for preparation of barium titanate
TWI694979B (en) Method for manufacturing barium titanate powder
JP5119007B2 (en) Method for producing perovskite-type barium titanate powder
WO2021251451A1 (en) Barium titanyl oxalate, method for producing same, and method for producing barium titanate
JP5119008B2 (en) Method for producing perovskite-type barium titanate powder
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JP6580932B2 (en) Method for producing barium titanate powder
JP2007169122A (en) Barium titanate powder, its production method, and barium titanate sintered compact
CN114127013B (en) Me element-substituted organic acid barium titanyl oxide, process for producing the same, and process for producing titanium perovskite ceramic raw material powder
JP2012077068A (en) Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
CN117645538A (en) Method for preparing alkali-catalyzed superfine barium titanyl oxalate and method for preparing barium titanate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078063.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894569

Country of ref document: EP

Kind code of ref document: A1