JP4638766B2 - Method for producing barium titanyl oxalate and method for producing barium titanate - Google Patents

Method for producing barium titanyl oxalate and method for producing barium titanate Download PDF

Info

Publication number
JP4638766B2
JP4638766B2 JP2005143868A JP2005143868A JP4638766B2 JP 4638766 B2 JP4638766 B2 JP 4638766B2 JP 2005143868 A JP2005143868 A JP 2005143868A JP 2005143868 A JP2005143868 A JP 2005143868A JP 4638766 B2 JP4638766 B2 JP 4638766B2
Authority
JP
Japan
Prior art keywords
oxalate
barium
titanyl oxalate
barium titanyl
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005143868A
Other languages
Japanese (ja)
Other versions
JP2006321722A (en
Inventor
秀樹 井上
孝宏 原
信司 田邉
武久 国枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2005143868A priority Critical patent/JP4638766B2/en
Publication of JP2006321722A publication Critical patent/JP2006321722A/en
Application granted granted Critical
Publication of JP4638766B2 publication Critical patent/JP4638766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、特に、圧電体、オプトエレクトロニクス材、誘電体、半導体、センサー等の機能性セラミックの原料として有用な蓚酸バリウムチタニルの製造方法及びこれを用いたチタン酸バリウムの製造方法に関するものである。   The present invention particularly relates to a method for producing barium titanyl oxalate useful as a raw material for functional ceramics such as piezoelectric materials, optoelectronic materials, dielectric materials, semiconductors, and sensors, and a method for producing barium titanate using the same. .

従来、チタン酸バリウムは固相法や水熱合成法、蓚酸塩法、アルコキシド法等の湿式方法で製造されている。このうち蓚酸塩法は、TiCl4とBaCl2との水溶液を、約80℃のH224水溶液に攪拌下に滴下して、BaとTiのモル比が1の蓚酸バリウムチタニルを得、該蓚酸バリウムチタニルを仮焼する方法が一般的である。この蓚酸塩法の特徴は、得られる蓚酸バリウムチタニルの組成が均一であり、また安定したモル比で目的物を収率良く得られることである。多くの場合そのモル比(Ba/Ti)は略1となっている。しかしながら、その反面、モル比(Ba/Ti)が1未満の蓚酸バリウムチタニルを収率良く、且つ安定した品質で得る事は困難である。またBaとTiのモル比が略1の場合は、仮焼温度に対するチタン酸バリウムの比表面積変化が大きく、微細なものを安定して得ることが難しいと言う問題もある。 Conventionally, barium titanate is produced by a wet method such as a solid phase method, a hydrothermal synthesis method, an oxalate method, or an alkoxide method. Among these, in the oxalate method, an aqueous solution of TiCl 4 and BaCl 2 is dropped into an aqueous solution of H 2 C 2 O 4 at about 80 ° C. with stirring to obtain barium titanyl oxalate having a Ba / Ti molar ratio of 1. A method of calcining the barium titanyl oxalate is general. The characteristics of this oxalate method are that the composition of the obtained barium titanyl oxalate is uniform and that the target product can be obtained in a stable molar ratio with a good yield. In many cases, the molar ratio (Ba / Ti) is about 1. However, on the other hand, it is difficult to obtain barium titanyl oxalate having a molar ratio (Ba / Ti) of less than 1 with good yield and stable quality. In addition, when the molar ratio of Ba and Ti is approximately 1, there is a problem that the specific surface area of barium titanate with respect to the calcining temperature is large and it is difficult to stably obtain a fine one.

例えば塩化バリウムの水溶液を、蓚酸とオキシ塩化チタンの混合物を含む水溶液に20〜60℃の範囲内の温度で激しくかきまぜながら滴下し、得られる沈澱物を仮焼する方法等が提案されている(特許文献1参照)。しかし、この方法で得られる蓚酸バリウムチタニルを、誘電体セラミック材料のチタン酸バリウム系セラミックの製造原料として用いる場合、特に好適な範囲のTiに対するBaのモル比(Ba/Ti)である0.990〜0.999のものが安定して得られにくいという課題がある。   For example, a method of dropping an aqueous solution of barium chloride into an aqueous solution containing a mixture of oxalic acid and titanium oxychloride while stirring vigorously at a temperature in the range of 20 to 60 ° C., and calcining the resulting precipitate has been proposed ( Patent Document 1). However, when the barium titanyl oxalate obtained by this method is used as a raw material for producing a barium titanate-based ceramic as a dielectric ceramic material, a particularly preferable range of the molar ratio of Ba to Ti (Ba / Ti) is 0.990. There exists a subject that the thing of -0.999 is hard to be obtained stably.

また本出願人も先に、蓚酸塩法により微粒のチタン酸バリウムを製造する方法として、平均粒径50〜300μmの蓚酸バリウムチタニルを水で洗浄する第一工程、該洗浄後の蓚酸バリウムチタニルをスラリーとした後、湿式粉砕処理して、平均粒径0.05〜1μmの蓚酸バリウムチタニルを得る第二工程、及び該平均粒径0.05〜1μmの蓚酸バリウムチタニルを700〜1200℃で仮焼する第三工程を有する方法を提案した(特許文献2参照)。   In addition, the present applicant has also first prepared a first step of washing barium titanyl oxalate having an average particle size of 50 to 300 μm with water as a method for producing fine barium titanate by the oxalate method, and the barium titanyl oxalate after the washing. After forming the slurry, a wet pulverization process is performed to obtain a barium titanyl oxalate having an average particle diameter of 0.05 to 1 μm, and the barium titanyl oxalate having an average particle diameter of 0.05 to 1 μm is temporarily prepared at 700 to 1200 ° C. The method which has the 3rd process to bake was proposed (refer patent document 2).

特開昭63−103827号公報JP 63-103827 A 特開2004−123431号公報JP 2004-123431 A

更に、本発明者らは、蓚酸塩法によりチタン酸バリウムを製造する方法について鋭意研究を進める中で、TiとBaのモル比において、Tiを過剰に含むTiリッチな蓚酸バリウムチタニルを仮焼すると、チタン酸バリウムを得る過程での仮焼温度に対する比表面積変化を小さく抑えられることを知見した。従来、蓚酸塩法を用いてTiを過剰に含む蓚酸バリウムチタニルを安定した品質で、且つ高収率で得ることは困難であった。   Furthermore, the inventors of the present invention are diligently researching a method for producing barium titanate by the oxalate method, and calcining Ti-rich barium titanyl oxalate containing Ti in excess in the molar ratio of Ti to Ba. It was found that the change in specific surface area with respect to the calcining temperature in the process of obtaining barium titanate can be kept small. Conventionally, it has been difficult to obtain barium titanyl oxalate containing an excess of Ti with stable quality and high yield using the oxalate method.

従って本発明の目的は、仮焼温度に対する比表面積変化を低く抑えられる蓚酸バリウムチタニルを、蓚酸塩法よって工業的に有利に製造する方法を提供することにある。また本発明の目的は、安定した品質のチタン酸バリウムの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for industrially advantageously producing barium titanyl oxalate, which can suppress a change in specific surface area with respect to the calcining temperature, by the oxalate method. Another object of the present invention is to provide a method for producing stable quality barium titanate.

本発明が提供しようとする第1の発明は、四塩化チタン及び塩化バリウムを含む水溶液(A液)を、少なくとも蓚酸イオン及びアンモニウムイオンを含む水溶液(B液)に添加し反応を行うことを特徴とする蓚酸バリウムチタニルの製造方法である。   The first invention to be provided by the present invention is characterized in that an aqueous solution (liquid A) containing titanium tetrachloride and barium chloride is added to an aqueous solution (liquid B) containing at least oxalate ions and ammonium ions to perform the reaction. This is a method for producing barium titanyl oxalate.

また、本発明が提供しようとする第2の発明は、四塩化チタン及び塩化バリウムを含む水溶液(A液)を、少なくとも蓚酸イオン及びアンモニウムイオンを含む水溶液(B液)に添加し反応を行い蓚酸バリウムチタニルを生成させ、生成した蓚酸バリウムチタニルを仮焼することを特徴とするチタン酸バリウムの製造方法である。   In addition, the second invention to be provided by the present invention is the addition of an aqueous solution (solution A) containing titanium tetrachloride and barium chloride to an aqueous solution (solution B) containing at least oxalate ions and ammonium ions, and performing a reaction. A method for producing barium titanate, characterized by producing barium titanyl and calcining the produced barium titanyl oxalate.

本発明によれば、仮焼温度に対する比表面積変化が低く抑えられる蓚酸バリウムチタニルを安定した品質で且つ高収率で得ることができる。また、このようにして得られた蓚酸バリウムチタニルを仮焼することにより、チタン酸バリウムを工業的に有利に製造することができる。   According to the present invention, it is possible to obtain barium titanyl oxalate having a low change in specific surface area with respect to the calcining temperature with a stable quality and a high yield. Moreover, barium titanate can be industrially advantageously produced by calcining the barium titanyl oxalate thus obtained.

以下、本発明をその好ましい実施形態に基づき説明する。本発明の製造方法は、四塩化チタン及び塩化バリウムを含む水溶液(A液)を、少なくとも蓚酸イオン及びアンモニウムイオンを含む水溶液(B液)に添加し反応を行うことを特徴とするものである。本発明の製造方法に従い製造される蓚酸バリウムチタニルは、好適にはTiに対するBaのモル比(以下、「Ba/Tiモル比」という)が1未満のものとなる。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The production method of the present invention is characterized in that an aqueous solution (liquid A) containing titanium tetrachloride and barium chloride is added to an aqueous solution (liquid B) containing at least oxalate ions and ammonium ions to carry out the reaction. The barium titanyl oxalate produced according to the production method of the present invention preferably has a molar ratio of Ba to Ti (hereinafter referred to as “Ba / Ti molar ratio”) of less than 1.

本発明で用いるA液は、四塩化チタン及び塩化バリウムを含む水溶液である。A液においては、四塩化チタン中のTiに対する塩化バリウム中のBaのモル比(Ba/Ti)が1.0〜1.5、特に1.05〜1.20であると、生成される蓚酸バリウムチタニルの組成が安定となるので好ましい。またA液においては、塩化バリウムの濃度が、Baとして0.5〜0.7モル/L、特に0.55〜0.65モル/Lで、四塩化チタンの濃度が、Tiとして0.4〜0.7モル/L、特に0.45〜0.65モル/Lであると、蓚酸バリウムチタニルが高収率で得られるので好ましい。   The liquid A used in the present invention is an aqueous solution containing titanium tetrachloride and barium chloride. In the liquid A, oxalic acid produced when the molar ratio (Ba / Ti) of Ba in barium chloride to Ti in titanium tetrachloride is 1.0 to 1.5, particularly 1.05 to 1.20. Since the composition of barium titanyl becomes stable, it is preferable. In the liquid A, the concentration of barium chloride is 0.5 to 0.7 mol / L as Ba, particularly 0.55 to 0.65 mol / L, and the concentration of titanium tetrachloride is 0.4 as Ti. -0.7 mol / L, especially 0.45-0.65 mol / L is preferred because barium titanyl oxalate is obtained in high yield.

一方のB液は、蓚酸イオン及びアンモニウムイオンを含む水溶液である。B液は、例えば、蓚酸イオン源となる化合物及びアンモニウムイオン源となる化合物を水に溶解し水溶液とする方法によって調製される(以下、「(1)の調製方法」という。)。或いは、蓚酸イオン源及びアンモニウムイオン源の両方の役割を持つ蓚酸アンモニウム又は/及び蓚酸水素アンモニウムを、所定量の蓚酸とともに水に溶解し水溶液とする方法によって調製される(以下、「(2)の調製方法」という。)。これらの調製方法のうち、(2)の調製方法で調製されたB液を用いることが、アンモニウムイオンの反応効率が高い点から好ましい。   One liquid B is an aqueous solution containing oxalate ions and ammonium ions. Liquid B is prepared, for example, by a method in which a compound serving as an oxalate ion source and a compound serving as an ammonium ion source are dissolved in water to form an aqueous solution (hereinafter referred to as “preparation method (1)”). Alternatively, it is prepared by a method in which ammonium oxalate or / and ammonium hydrogen oxalate having both the roles of an oxalate ion source and an ammonium ion source are dissolved in water together with a predetermined amount of oxalic acid to form an aqueous solution (hereinafter referred to as “ Preparation method "). Among these preparation methods, it is preferable to use the solution B prepared by the preparation method (2) from the viewpoint of high reaction efficiency of ammonium ions.

(1)の調製方法で使用する蓚酸イオン源となる化合物としては、例えば蓚酸、蓚酸ナトリウム、蓚酸水素ナトリウム、蓚酸カリウム、蓚酸水素カリウム、蓚酸リチウム、蓚酸水素リチウム等が挙げられる。これらの化合物は1種又は2種以上で使用される。   Examples of the oxalate ion source compound used in the preparation method (1) include oxalic acid, sodium oxalate, sodium hydrogen oxalate, potassium oxalate, potassium hydrogen oxalate, lithium oxalate, lithium hydrogen oxalate, and the like. These compounds are used alone or in combination of two or more.

一方、アンモニウムイオン源となる化合物としては、例えばアンモニア水、アンモニアガス、塩化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、アンモニウムイオンを含む有機酸塩等が挙げられる。これらの化合物は1種又は2種以上で使用される。アンモニウムイオンを含む有機酸塩としては、例えば、クエン酸アンモニウム、クエン酸水素アンモニウム、酢酸アンモニウム、ギ酸アンモニウム、マロン酸アンモニウム、コハク酸アンモニウム、マレイン酸アンモニウム、プロピオン酸アンモニウム、グルタル酸アンモニウム等のカルボン酸のアンモニウム塩が好ましい。   On the other hand, examples of the compound serving as an ammonium ion source include ammonia water, ammonia gas, ammonium chloride, ammonium carbonate, ammonium hydrogen carbonate, and organic acid salts containing ammonium ions. These compounds are used alone or in combination of two or more. Examples of organic acid salts containing ammonium ions include carboxylic acids such as ammonium citrate, ammonium hydrogen citrate, ammonium acetate, ammonium formate, ammonium malonate, ammonium succinate, ammonium maleate, ammonium propionate, and ammonium glutarate. The ammonium salt is preferred.

(1)及び(2)の調製方法において、B液に含有させるアンモニウムイオンの量は、蓚酸イオンに対するモル比で0より大きく5以下であることが好ましく、0.02〜0.50であることが更に好ましい。B液中に含有させるアンモニウムイオンの量が多くなるに従って、反応により得られる蓚酸バリウムチタニルにおけるBa/Tiモル比が低くなる傾向があるが、アンモニウムイオンが少量でも存在すれば、Ba/Tiモル比が1未満の蓚酸バリウムチタニルを得ることができる。従って、Ba/Tiモル比が1未満の蓚酸バリウムチタニルを得る観点から、B液に含有させるアンモニウムイオンの下限値は、蓚酸イオンに対するモル比で0より大きくすればよい。一方、アンモニウムイオンの量が、蓚酸イオンに対するモル比で5を超えると、生成される蓚酸バリウムチタニルにおけるBa/Tiモル比が、誘電体セラミック材料の製造原料等として少なくとも用いることができる範囲である0.9より小さくなる。なお、生成される蓚酸バリウムチタニルにおけるBa/Tiモル比が好ましくは0.990〜0.999であると、該蓚酸バリウムチタニルを原料とするチタン酸バリウムに、誘電体セラミック材料としての優れた誘電特性を付与することができる。この観点から、本発明においては、Ba/Tiモル比が前記範囲の蓚酸バリウムチタニルを生成させることが好ましい。この目的のために、B液におけるアンモニウムイオンの含有量は、蓚酸イオンに対するモル比で0.02〜0.50とすることが特に好ましい。   In the preparation methods of (1) and (2), the amount of ammonium ions contained in the liquid B is preferably more than 0 and 5 or less in terms of molar ratio to oxalate ions, and is 0.02 to 0.50. Is more preferable. As the amount of ammonium ions contained in the liquid B increases, the Ba / Ti molar ratio in the barium titanyl oxalate obtained by the reaction tends to decrease. However, if even a small amount of ammonium ions is present, the Ba / Ti molar ratio. Can be obtained. Therefore, from the viewpoint of obtaining barium titanyl oxalate having a Ba / Ti molar ratio of less than 1, the lower limit value of ammonium ions contained in the liquid B may be larger than 0 in terms of the molar ratio to oxalate ions. On the other hand, when the amount of ammonium ions exceeds 5 in terms of molar ratio to oxalate ions, the Ba / Ti molar ratio in the barium titanyl oxalate produced is within a range that can be used at least as a raw material for producing dielectric ceramic materials. Less than 0.9. In addition, when the Ba / Ti molar ratio in the generated barium titanyl oxalate is preferably 0.990 to 0.999, the barium titanate using the barium titanyl oxalate as a raw material has excellent dielectric properties as a dielectric ceramic material. Properties can be imparted. From this viewpoint, in the present invention, it is preferable to produce barium titanyl oxalate having a Ba / Ti molar ratio in the above range. For this purpose, the content of ammonium ions in the B liquid is particularly preferably 0.02 to 0.50 in terms of molar ratio to oxalate ions.

(1)及び(2)の調製方法において、具体的なB液の組成は、蓚酸イオン濃度が0.5〜1.8モル/L、特に1.5〜1.7モル/Lであり、アンモニウムイオン濃度が0.05〜2.5モル/L、特に0.06〜0.4モル/Lであると、組成の安定した蓚酸バリウムチタニルを高収率で得られる点で好ましい。   In the preparation methods of (1) and (2), the specific composition of the B liquid has an oxalate ion concentration of 0.5 to 1.8 mol / L, particularly 1.5 to 1.7 mol / L, Ammonium ion concentration of 0.05 to 2.5 mol / L, particularly 0.06 to 0.4 mol / L is preferred in that barium titanyl oxalate having a stable composition can be obtained in a high yield.

A液のB液への添加を、添加後の反応液における蓚酸に対するバリウムのモル比が0.3〜0.6、特に0.34〜0.54となるように行うと、組成の安定した蓚酸バリウムチタニルが高収率で得られるので好ましい。   When the addition of solution A to solution B was performed such that the molar ratio of barium to oxalic acid in the reaction solution after addition was 0.3 to 0.6, particularly 0.34 to 0.54, the composition was stable. Since barium titanyl oxalate is obtained in high yield, it is preferable.

A液のB液への添加は攪拌下に行うことが好ましい。攪拌速度は、添加開始から反応終了までの間に生成する蓚酸バリウムチタニルを含むスラリーが常に流動性を示す状態であればよく、特に限定されるものではない。   It is preferable to add the A liquid to the B liquid with stirring. The stirring speed is not particularly limited as long as the slurry containing barium titanyl oxalate generated between the start of addition and the end of the reaction always exhibits fluidity.

反応は、生成される蓚酸バリウムチタニル粒子の平均粒径が20〜300μmの範囲、特に50〜200μmの範囲となるように条件を設定することが好ましい。当該範囲の平均粒径を有する蓚酸バリウムチタニルは、結晶粒が大きいことに起因して、水で洗浄したときにBa及びTiの溶出が少ないという利点がある。その上、塩素等の不純物を効率的に除去できるという利点もある。平均粒径が20μm未満の蓚酸バリウムチタニルは、水で洗浄しても粒子中に取り込まれた塩素等の不純物を数百ppmレベルまで低減させ難い。また、Ba及びTiの溶出に起因して組成のバラツキが生じやすい。平均粒径が300μmを超える蓚酸バリウムチタニルは、以後の仮焼、粉砕工程において一次径への解砕が困難となり、粒径のバラツキが大きくなる傾向にある。なお、本発明において蓚酸バリウムチタニルの平均粒径とは、レーザー回折・散乱法粒度分布測定装置で測定した値をいう。   In the reaction, it is preferable to set conditions so that the average particle diameter of the generated barium titanyl oxalate particles is in the range of 20 to 300 μm, particularly in the range of 50 to 200 μm. Barium titanyl oxalate having an average particle size in the above range has an advantage that there is little elution of Ba and Ti when washed with water due to the large crystal grains. In addition, there is an advantage that impurities such as chlorine can be efficiently removed. Barium titanyl oxalate having an average particle size of less than 20 μm is difficult to reduce impurities such as chlorine incorporated into the particles to several hundred ppm level even when washed with water. In addition, the composition tends to vary due to the elution of Ba and Ti. Barium titanyl oxalate having an average particle diameter exceeding 300 μm tends to be difficult to disintegrate to the primary diameter in the subsequent calcination and pulverization steps, and the variation in particle diameter tends to increase. In the present invention, the average particle diameter of barium titanyl oxalate refers to a value measured with a laser diffraction / scattering particle size distribution analyzer.

本発明では、前記範囲内の平均粒径の蓚酸バリウムチタニルが生成されるように、各反応条件を設定することが好ましい。具体的には、反応系に連続的又は断続的に供給するA液の添加時間を長くとったり、添加温度を高くしたりすることにより、生成する蓚酸バリウムチタニルの粒径を大きくすることができる。この観点から、B液は、予め通常50〜90℃、好ましくは50〜70℃となるまで加温しておくことが好ましい。また、A液のB液への添加時間を好ましくは0.5〜5時間、更に好ましくは1〜4時間とし、且つ一定速度で連続的に行うと、得られる蓚酸バリウムチタニルにおけるTiとBaのモル比のバラツキが小さくなり、安定した品質のものとなる。更に、後述する熟成反応を行うことにより、前記範囲の平均粒径で、高純度な蓚酸バリウムチタニルを短時間で得ることができる。なお、A液の温度は特に限定されないが、B液の加熱温度と同様の範囲内にあると、反応操作が容易となるので好ましい。   In the present invention, it is preferable to set each reaction condition so that barium titanyl oxalate having an average particle diameter within the above range is generated. Specifically, the particle size of the barium titanyl oxalate produced can be increased by increasing the addition time of the liquid A supplied continuously or intermittently to the reaction system or by increasing the addition temperature. From this point of view, it is preferable that the liquid B is preliminarily heated up to usually 50 to 90 ° C., preferably 50 to 70 ° C. in advance. Moreover, when the addition time of the A liquid to the B liquid is preferably 0.5 to 5 hours, more preferably 1 to 4 hours, and continuously performed at a constant rate, Ti and Ba in the barium titanyl oxalate obtained are obtained. The variation in the molar ratio is reduced, and the product has a stable quality. Furthermore, highly purified barium titanyl oxalate having an average particle diameter in the above range can be obtained in a short time by performing an aging reaction described later. The temperature of the liquid A is not particularly limited, but it is preferable that the temperature is within the same range as the heating temperature of the liquid B because the reaction operation becomes easy.

A液の添加終了後、引き続き反応を行う(以下、「熟成反応」と呼ぶ。)。この熟成反応を行うと、生成する蓚酸バリウムチタニルの粒成長が抑制されると共に反応が完結するので、前記範囲内の平均粒径を有し、TiとBaのモル比のバラツキが少ない所望の蓚酸バリウムチタニルを得ることができる。   The reaction is continued after the addition of the liquid A (hereinafter referred to as “ripening reaction”). When this ripening reaction is performed, the grain growth of the barium titanyl oxalate produced is suppressed and the reaction is completed, so that the desired oxalic acid having an average particle diameter within the above range and less variation in the molar ratio of Ti and Ba. Barium titanyl can be obtained.

熟成条件は、熟成温度が通常は50℃以上、好ましくは50〜90℃である。熟成温度とは、A液添加後における反応液全体の温度をいう。熟成時間は好ましくは0.5〜10時間、更に好ましくは1〜5時間である。   The aging condition is that the aging temperature is usually 50 ° C. or higher, preferably 50 to 90 ° C. The aging temperature refers to the temperature of the entire reaction solution after addition of solution A. The aging time is preferably 0.5 to 10 hours, more preferably 1 to 5 hours.

熟成終了後は、常法により固液分離し、次いで水で洗浄する。洗浄方法は特に制限されるものではない。リパルプ等で洗浄を行うと洗浄効率がよいので好ましい。次いで、乾燥、必要により粉砕して蓚酸バリウムチタニルを得る。   After completion of aging, the solid and liquid are separated by a conventional method and then washed with water. The cleaning method is not particularly limited. Washing with repulp or the like is preferable because the washing efficiency is good. It is then dried and ground if necessary to obtain barium titanyl oxalate.

かくして得られる蓚酸バリウムチタニルの好ましい物性としては、平均粒径が20〜300μm、特に50〜200μmである。該蓚酸バリウムチタニルの組成は、BaとTiのモル比(Ba/Ti)が1未満、好ましくは0.990〜0.999である。   The preferred physical properties of the barium titanyl oxalate thus obtained have an average particle size of 20 to 300 μm, particularly 50 to 200 μm. The composition of the barium titanyl oxalate is such that the molar ratio of Ba to Ti (Ba / Ti) is less than 1, preferably 0.990 to 0.999.

本発明の製造方法で得られる蓚酸バリウムチタニルは、誘電体セラミック材料のチタン酸バリウム系セラミックの製造原料として好適に用いることが出来る。本発明のチタン酸バリウムの製造方法は以下の通りである。   Barium titanyl oxalate obtained by the production method of the present invention can be suitably used as a production raw material for a barium titanate-based ceramic of a dielectric ceramic material. The manufacturing method of the barium titanate of this invention is as follows.

本発明のチタン酸バリウムの製造方法は、前述の方法で得られた蓚酸バリウムチタニルを仮焼することを特徴とするものである。本発明では、必要により、更に微粒なチタン酸バリウムを得ることを目的として、仮焼を行う前に、蓚酸バリウムチタニルをボールミル、ビーズミル等の湿式で粉砕処理し、平均粒径が好ましくは0.01〜1μm、更に好ましくは0.05〜0.8μmとなるまで粉砕処理を行ってもよい。湿式粉砕処理で用いる溶媒としては、蓚酸バリウムチタニルに対して不活性であるものが用いられる。例えば、水、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド及びジエチルエーテル等が挙げられる。このうち、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド、ジエチルエーテル等の有機溶媒で、且つBa及びTiの溶出が少ないものを用いると、結晶性の高いペロブスカイト型チタン酸バリウムを得ることができるので好ましい。特にエタノールを用いると、結晶性の優れたチタン酸バリウムを、800〜950℃程度の低温域で安価に製造することができるので好ましい。   The method for producing barium titanate according to the present invention is characterized in that barium titanyl oxalate obtained by the above-described method is calcined. In the present invention, if necessary, the barium titanyl oxalate is pulverized by a wet method such as a ball mill or a bead mill before the calcination for the purpose of obtaining finer barium titanate, and the average particle size is preferably set to 0. You may grind | pulverize until it becomes 01-1 micrometer, More preferably, it is 0.05-0.8 micrometer. As the solvent used in the wet pulverization treatment, a solvent inert to barium titanyl oxalate is used. For example, water, methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate, dimethylformamide, diethyl ether and the like can be mentioned. Of these, organic solvents such as methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate, dimethylformamide, diethyl ether, etc., and those with low elution of Ba and Ti, A high perovskite type barium titanate can be obtained, which is preferable. It is particularly preferable to use ethanol because barium titanate having excellent crystallinity can be produced at a low temperature of about 800 to 950 ° C. at low cost.

最終製品に含まれる蓚酸由来の有機物は、材料の誘電体特性を損なうとともに、セラミック化のための熱工程における挙動の不安定要因となるので好ましくない。従って、本発明では仮焼により蓚酸バリウムチタニルを熱分解して目的とするチタン酸バリウムを得ると共に、蓚酸由来の有機物を十分除去する必要がある。仮焼条件は、仮焼温度が好ましくは600〜1200℃、更に好ましくは800〜1100℃である。仮焼温度が600℃未満では、単一相のチタン酸バリウムが得られにくい。一方、仮焼温度が1200℃を超えると、粒径のバラツキが大きくなる。仮焼時間は好ましくは2〜30時間、更に好ましくは5〜20時間である。仮焼の雰囲気は特に制限されず、大気中又は不活性ガス雰囲気中の何れであってもよい。   Organic substances derived from oxalic acid contained in the final product are not preferable because they impair the dielectric properties of the material and cause unstable behavior in the thermal process for ceramization. Therefore, in the present invention, it is necessary to thermally decompose barium titanyl oxalate by calcination to obtain the target barium titanate, and to sufficiently remove organic substances derived from oxalic acid. The calcination conditions are such that the calcination temperature is preferably 600 to 1200 ° C, more preferably 800 to 1100 ° C. When the calcining temperature is less than 600 ° C., it is difficult to obtain single-phase barium titanate. On the other hand, when the calcining temperature exceeds 1200 ° C., the variation in the particle size increases. The calcination time is preferably 2 to 30 hours, more preferably 5 to 20 hours. The atmosphere of calcination is not particularly limited, and may be either in the air or in an inert gas atmosphere.

仮焼は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度仮焼したものを粉砕し、次いで再仮焼を行ってもよい。   Calcination may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the temporarily calcined material may be pulverized and then re-calcined.

仮焼後、適宜冷却し、必要に応じ粉砕してチタン酸バリウムの粉末を得る。必要に応じて行われる粉砕は、仮焼して得られるチタン酸バリウムがもろくブロック状のものである場合等に適宜行うが、チタン酸バリウムの粒子自体は下記特定の平均粒径、BET比表面積を有するものである。即ち、前記で得られるチタン酸バリウムの粉末は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が好ましくは0.05〜5μm、更に好ましくは0.1〜2μmである。BET比表面積は、好ましくは1〜20m2/g、更に好ましくは2〜15m2/gである。更に、本発明の製造方法で得られるチタン酸バリウムの組成は、BaとTiのモル比(Ba/Ti)が1未満、特に0.990〜0.999であることが好ましい。 After calcination, the product is appropriately cooled and pulverized as necessary to obtain barium titanate powder. The pulverization performed as necessary is appropriately performed when the barium titanate obtained by calcination is in a brittle block shape, and the barium titanate particles themselves have the following specific average particle diameter and BET specific surface area. It is what has. That is, the barium titanate powder obtained above preferably has an average particle size determined from a scanning electron micrograph (SEM) of 0.05 to 5 μm, more preferably 0.1 to 2 μm. The BET specific surface area is preferably 1 to 20 m 2 / g, more preferably 2 to 15 m 2 / g. Furthermore, the composition of barium titanate obtained by the production method of the present invention is preferably such that the molar ratio of Ba to Ti (Ba / Ti) is less than 1, particularly 0.990 to 0.999.

本発明の製造方法で得られるチタン酸バリウムには、必要により誘電特性や温度特性を調製する目的で、副成分元素含有化合物を該チタン酸バリウムに添加し副成分元素を含有させることができる。用いることができる副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素の化合物が挙げられる。   The barium titanate obtained by the production method of the present invention can contain a subcomponent element by adding a subcomponent element-containing compound to the barium titanate for the purpose of adjusting dielectric characteristics and temperature characteristics as necessary. Examples of the subcomponent element-containing compound that can be used include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu rare earth elements. At least one selected from the group consisting of Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn Elemental compounds may be mentioned.

副成分元素含有化合物は無機物又は有機物のいずれであってもよい。例えば、前記の元素を含む酸化物、水酸化物、塩化物、硝酸塩、蓚酸塩、カルボン酸塩及びアルコキシド等が挙げられる。副成分元素含有化合物がSi元素を含有する化合物である場合は、前記酸化物等に加えて、シリカゾルや珪酸ナトリウム等も用いることができる。副成分元素含有化合物は1種又は2種以上適宜組み合わせて用いることができる。その添加量や添加化合物の組み合わせは、常法に従って行えばよい。   The subcomponent element-containing compound may be either inorganic or organic. Examples thereof include oxides, hydroxides, chlorides, nitrates, oxalates, carboxylates and alkoxides containing the above elements. When the subcomponent element-containing compound is a compound containing Si element, silica sol, sodium silicate, or the like can be used in addition to the oxide. The subcomponent element-containing compounds can be used alone or in combination of two or more. What is necessary is just to perform the combination of the addition amount and an addition compound according to a conventional method.

チタン酸バリウムに前記副成分元素を含有させるには、例えば、該チタン酸バリウムと該副成分元素含有化合物を均一混合後、焼成を行えばよい。或いは、蓚酸バリウムチタニルと前記副成分元素含有化合物を均一混合後、仮焼を行ってもよい。   In order to contain the subcomponent element in the barium titanate, for example, the barium titanate and the subcomponent element-containing compound may be uniformly mixed and then fired. Alternatively, barium titanyl oxalate and the subcomponent element-containing compound may be uniformly mixed and then calcined.

本発明に従い得られたチタン酸バリウムを用いて例えば積層セラミックコンデンサを製造する場合には、先ず、チタン酸バリウムの粉末を、前記した副成分元素を含め従来公知の添加剤、有機系バインダ、可塑剤、分散剤等の配合剤と共に適当な溶媒中に混合分散させてスラリー化し、シート成形を行う。これにより、積層セラミックコンデンサの製造に用いられるセラミックシートを得る。該セラミックシートから積層セラミックコンデンサを作製するには、先ず、該セラミックシートの一面に内部電極形成用導電ペーストを印刷する。乾燥後、複数枚の前記セラミックシートを積層し、厚み方向に圧着することにより積層体とする。次に、この積層体を加熱処理して脱バインダ処理を行い、焼成して焼成体を得る。さらに、該焼成体にNiペースト、Agペースト、ニッケル合金ペースト、銅ペースト、銅合金ペースト等を塗布し焼き付けて、積層コンデンサが得られる。   For example, when manufacturing a multilayer ceramic capacitor using the barium titanate obtained in accordance with the present invention, first, the barium titanate powder is mixed with a conventionally known additive, organic binder, plastic, A sheet is formed by mixing and dispersing in a suitable solvent together with a compounding agent such as an agent and a dispersant to form a slurry. Thereby, the ceramic sheet used for manufacture of a multilayer ceramic capacitor is obtained. In order to produce a multilayer ceramic capacitor from the ceramic sheet, first, an internal electrode forming conductive paste is printed on one surface of the ceramic sheet. After drying, a plurality of the ceramic sheets are laminated and pressed in the thickness direction to obtain a laminated body. Next, this laminate is heat treated to remove the binder, and fired to obtain a fired body. Further, a Ni capacitor, an Ag paste, a nickel alloy paste, a copper paste, a copper alloy paste or the like is applied to the fired body and baked to obtain a multilayer capacitor.

また、本発明に従い得られたチタン酸バリウムの粉末を、例えばエポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂に配合して、樹脂シート、樹脂フィルム、接着剤等とすると、プリント配線板や多層プリント配線板等の材料、内部電極と誘電体層との収縮差を抑制するための共材、電極セラミック回路基板、ガラスセラミックス回路基板、回路周辺材料及び無機EL用の誘電体材料として用いることができる。   In addition, when the barium titanate powder obtained according to the present invention is blended with a resin such as an epoxy resin, a polyester resin, or a polyimide resin to form a resin sheet, a resin film, an adhesive, or the like, a printed wiring board or a multilayer print It can be used as a material such as a wiring board, a co-material for suppressing the shrinkage difference between the internal electrode and the dielectric layer, an electrode ceramic circuit board, a glass ceramic circuit board, a circuit peripheral material, and a dielectric material for inorganic EL. .

また、本発明に従い得られたチタン酸バリウムは、排ガス除去、化学合成等の反応時に使用される触媒や、帯電防止、クリーニング効果を付与する印刷トナーの表面改質材として好適に用いることができる。   In addition, the barium titanate obtained according to the present invention can be suitably used as a catalyst used in reactions such as exhaust gas removal and chemical synthesis, and as a surface modifier for printing toner that imparts antistatic and cleaning effects. .

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

〔実施例1〜3及び比較例1〜2:蓚酸バリウムチタニルの製造〕
塩化バリウム2水塩、四塩化チタン水溶液、蓚酸2水塩、蓚酸アンモニウム1水塩及び純水を用いて、表1に示す組成のA液及びB液を調製した。次いで、B液を60℃に加温し、A液を室温(25℃)で120分かけて攪拌下にB液に添加した。添加量は表1に示す通りである。添加完了後の反応液におけるTi、Ba、蓚酸イオン、アンモニウムイオンのモル比は表2に示す通りである。添加完了後、更に60℃で1時間攪拌下に熟成した。冷却後、濾過して蓚酸バリウムチタニルを回収した。
[Examples 1-3 and Comparative Examples 1-2: Production of barium titanyl oxalate]
Liquid A and liquid B having the compositions shown in Table 1 were prepared using barium chloride dihydrate, titanium tetrachloride aqueous solution, oxalic acid dihydrate, ammonium oxalate monohydrate and pure water. Next, the liquid B was heated to 60 ° C., and the liquid A was added to the liquid B with stirring at room temperature (25 ° C.) over 120 minutes. The amount added is as shown in Table 1. The molar ratios of Ti, Ba, oxalate ions, and ammonium ions in the reaction solution after completion of addition are as shown in Table 2. After completion of the addition, the mixture was further aged with stirring at 60 ° C. for 1 hour. After cooling, it was filtered to recover barium titanyl oxalate.

Figure 0004638766
Figure 0004638766

Figure 0004638766
Figure 0004638766

次いで、回収した蓚酸バリウムチタニルを純水でリパルプして入念に洗浄した。その後105℃で2時間乾燥して蓚酸バリウムチタニルの粉末を得た。得られた蓚酸バリウムチタニルの諸物性を表3に示す。BaとTiのモル比は蛍光X線で測定した。平均粒径は、レーザー回折・散乱法粒度分布測定装置で測定した。塩素含有量はイオンクロマトグラフィー法で測定した。また、BaとTiの反応率を求め、その結果を表3に併記した。反応率とは、反応終了時に溶出しているBaとTiをICPで測定し、その溶出分を未反応分とし、仕込量からその未反応分を差し引いたものを反応分とし、仕込みの百分率として表わしたものである。この反応率が高い方が未反応で残存するBa及びTiの成分が少なく反応効率及び収率が高いことを示す。   The recovered barium titanyl oxalate was then repulped with pure water and washed carefully. Thereafter, it was dried at 105 ° C. for 2 hours to obtain barium titanyl oxalate powder. Table 3 shows the physical properties of the obtained barium titanyl oxalate. The molar ratio of Ba and Ti was measured by fluorescent X-ray. The average particle size was measured with a laser diffraction / scattering particle size distribution analyzer. The chlorine content was measured by ion chromatography. Moreover, the reaction rate of Ba and Ti was calculated | required, and the result was written together in Table 3. The reaction rate is measured by ICP for Ba and Ti eluting at the end of the reaction, and the elution amount is defined as the unreacted content. The reaction amount is obtained by subtracting the unreacted content from the charged amount. It is a representation. The higher the reaction rate, the less the unreacted Ba and Ti components, and the higher the reaction efficiency and yield.

Figure 0004638766
Figure 0004638766

表3の結果より、本発明の製造方法によれば、特に誘電体材料として有用な範囲のBa/Tiモル比を有する蓚酸バリウムチタニルが高反応率及び高収率で得られることが分かる。これに対して、比較例1では蓚酸バリウムチタニルにおけるBa/Tiモル比が1となってしまった。比較例2では、蓚酸バリウムチタニルにおけるBa/Tiモル比は1未満であるが、高反応率及び高収率を達成できなかった。   From the results of Table 3, it can be seen that according to the production method of the present invention, barium titanyl oxalate having a Ba / Ti molar ratio in a range particularly useful as a dielectric material can be obtained with a high reaction rate and a high yield. On the other hand, in Comparative Example 1, the Ba / Ti molar ratio in barium titanyl oxalate was 1. In Comparative Example 2, the Ba / Ti molar ratio in barium titanyl oxalate was less than 1, but a high reaction rate and high yield could not be achieved.

〔実施例4〜6及び比較例3:チタン酸バリウムの製造〕
実施例1〜3及び比較例1で得られた蓚酸バリウムチタニル試料の5gを、大気中、800℃で5時間又は1000℃で5時間仮焼した。冷却後、解砕してそれぞれチタン酸バリウムの粉末を得た。得られたチタン酸バリウムの諸物性を表4に示した。BaとTiのモル比、平均粒径は前記と同様な方法で求めた。比表面積はBET法で求めた。
[Examples 4 to 6 and Comparative Example 3: Production of barium titanate]
5 g of the barium titanyl oxalate sample obtained in Examples 1 to 3 and Comparative Example 1 was calcined in the air at 800 ° C. for 5 hours or 1000 ° C. for 5 hours. After cooling, it was crushed to obtain barium titanate powder. Various physical properties of the obtained barium titanate are shown in Table 4. The molar ratio of Ba and Ti and the average particle diameter were determined by the same method as described above. The specific surface area was determined by the BET method.

Figure 0004638766
Figure 0004638766

表4の結果より、Ba/Tiモル比が1の蓚酸バリウムチタニル(比較例1)を原料とするチタン酸バリウム(比較例3)は、仮焼温度に対する比表面積変化が大きくなっていることが分かる。これに対して本発明の蓚酸バリウムチタニル(実施例1〜3)を原料とするチタン酸バリウム(実施例4〜6)は、仮焼温度に対する比表面積変化が低く抑えられていることが分かる。
From the results of Table 4, it can be seen that barium titanate (Comparative Example 3) using barium titanyl oxalate (Comparative Example 1) having a Ba / Ti molar ratio of 1 has a large change in specific surface area with respect to the calcining temperature. I understand. In contrast, barium titanate (Examples 4 to 6) using barium titanyl oxalate (Examples 1 to 3) of the present invention as a raw material has a low change in specific surface area relative to the calcining temperature.

Claims (5)

四塩化チタン及び塩化バリウムを含む水溶液(A液)を、少なくとも蓚酸イオン及びアンモニウムイオンを含む水溶液(B液)に添加し反応を行うことを特徴とする蓚酸バリウムチタニルの製造方法。   A method for producing barium titanyl oxalate, which comprises reacting an aqueous solution (solution A) containing titanium tetrachloride and barium chloride with an aqueous solution (solution B) containing at least oxalate ions and ammonium ions. 前記B液のアンモニウムイオンの含有量は、蓚酸イオンに対するモル比で0より大きく5以下である請求項1記載の蓚酸バリウムチタニルの製造方法。   2. The method for producing barium titanyl oxalate according to claim 1, wherein the content of ammonium ions in the B liquid is greater than 0 and 5 or less in molar ratio to oxalate ions. 前記B液は蓚酸と、蓚酸アンモニウム又は蓚酸水素アンモニウムから調製された水溶液である請求項1又は2記載の蓚酸バリウムチタニルの製造方法。   The method for producing barium titanyl oxalate according to claim 1 or 2, wherein the solution B is an aqueous solution prepared from oxalic acid and ammonium oxalate or ammonium hydrogen oxalate. 反応により生成する蓚酸バリウムチタニル粒子の平均粒径が20〜300μmの範囲となるまで反応を行う請求項1乃至3の何れかに記載の蓚酸バリウムチタニルの製造方法。   The method for producing barium titanyl oxalate according to any one of claims 1 to 3, wherein the reaction is carried out until the average particle diameter of barium titanyl oxalate particles produced by the reaction is in the range of 20 to 300 µm. 四塩化チタン及び塩化バリウムを含む水溶液(A液)を、少なくとも蓚酸イオン及びアンモニウムイオンを含む水溶液(B液)に添加し反応を行い蓚酸バリウムチタニルを生成させ、生成した蓚酸バリウムチタニルを仮焼することを特徴とするチタン酸バリウムの製造方法。   An aqueous solution (liquid A) containing titanium tetrachloride and barium chloride is added to an aqueous solution (liquid B) containing at least oxalate ions and ammonium ions to react to produce barium titanyl oxalate, and the resulting barium titanyl oxalate is calcined. The manufacturing method of barium titanate characterized by the above-mentioned.
JP2005143868A 2005-05-17 2005-05-17 Method for producing barium titanyl oxalate and method for producing barium titanate Expired - Fee Related JP4638766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143868A JP4638766B2 (en) 2005-05-17 2005-05-17 Method for producing barium titanyl oxalate and method for producing barium titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143868A JP4638766B2 (en) 2005-05-17 2005-05-17 Method for producing barium titanyl oxalate and method for producing barium titanate

Publications (2)

Publication Number Publication Date
JP2006321722A JP2006321722A (en) 2006-11-30
JP4638766B2 true JP4638766B2 (en) 2011-02-23

Family

ID=37541653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143868A Expired - Fee Related JP4638766B2 (en) 2005-05-17 2005-05-17 Method for producing barium titanyl oxalate and method for producing barium titanate

Country Status (1)

Country Link
JP (1) JP4638766B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323537B2 (en) * 2009-03-05 2013-10-23 日本化学工業株式会社 Method for producing barium titanyl oxalate and method for producing barium titanate
CN103459319B (en) * 2011-04-01 2016-04-13 M技术株式会社 The manufacture method of oxygen titanium barium salt and barium titanate
CN104797543A (en) * 2012-11-30 2015-07-22 三星电机株式会社 Method for preparing barium titanate, and barium titanate prepared by same
JP6976053B2 (en) * 2016-12-14 2021-12-01 Tdk株式会社 Laminated electronic components
CN114496597B (en) * 2022-02-23 2024-05-28 滁州学院 Preparation method and application of electronic reinforced carbon nano-network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103323A (en) * 1989-09-14 1991-04-30 Tdk Corp Production of titanyl barium oxalate particle

Also Published As

Publication number Publication date
JP2006321722A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4759211B2 (en) Method for producing perovskite-type barium titanate powder
JP5270528B2 (en) Amorphous fine particle powder, method for producing the same, and perovskite-type barium titanate powder using the same
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4684657B2 (en) Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2013151516A (en) Method for producing barium titanyl oxalate, and method for producing barium titanate
JP7110305B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2010202610A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5119008B2 (en) Method for producing perovskite-type barium titanate powder
JP7110306B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
JP2010047428A (en) Titanium composite salt powder, method for producing the same, and method for producing perovskite type titanium composite oxide powder using the same
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
JP7102462B2 (en) Barium titanyl oxalate, its production method and barium titanate production method
TWI850426B (en) Titanium barium oxalate powder substituted with Me element, its production method and titanium-based calcium titanite-type ceramic raw material powder production method
JP2012077068A (en) Barium titanyl oxalate particle, method for producing the same and method for producing barium titanate
CN117645538A (en) Method for preparing alkali-catalyzed superfine barium titanyl oxalate and method for preparing barium titanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4638766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees