WO2022085331A1 - 操舵制御装置、操舵制御方法、操舵制御プログラム - Google Patents

操舵制御装置、操舵制御方法、操舵制御プログラム Download PDF

Info

Publication number
WO2022085331A1
WO2022085331A1 PCT/JP2021/033316 JP2021033316W WO2022085331A1 WO 2022085331 A1 WO2022085331 A1 WO 2022085331A1 JP 2021033316 W JP2021033316 W JP 2021033316W WO 2022085331 A1 WO2022085331 A1 WO 2022085331A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
actuator
control
steering control
control unit
Prior art date
Application number
PCT/JP2021/033316
Other languages
English (en)
French (fr)
Inventor
崇 青木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022085331A1 publication Critical patent/WO2022085331A1/ja
Priority to US18/302,650 priority Critical patent/US20230257020A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/0205Mechanical indicators, e.g. in or near steering wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • This disclosure relates to steering control technology in vehicles.
  • the technique of electrically controlling the steering angle of the steering member of a vehicle and the steering angle of a steering tire has become widespread.
  • the steering angle of the steering tire is controlled by the steering torque output to the steering tire via the electric actuator.
  • the locking device regulates the rotation of the steering tire in the locked state.
  • the lock device is configured to be in the locked state before the power is turned off in response to the vehicle stop command and to be released in the locked state in response to the vehicle start command.
  • the lock device does not operate in response to the vehicle stop command, the life can be secured.
  • the torque output to the steering tire via the electric actuator suddenly disappears in response to the energization cut to the electric actuator.
  • the steering tire is rapidly restored so as to eliminate the twist, the steering tire and the vehicle body supporting the steering tire vibrate in the vehicle.
  • the locking device is not activated, the steering member to which the vibration of the steering tire propagates also vibrates.
  • An object of the present disclosure is to provide a steering control device that suppresses the generation of vibration accompanying a vehicle stop command. Another object of the present disclosure is to provide a steering control method for suppressing the generation of vibration accompanying a stop command of a vehicle. Yet another object of the present disclosure is to provide a steering control program that suppresses the generation of vibration accompanying a vehicle stop command.
  • the first aspect of the present disclosure is a steering control device that links the movement of a steering member by a steering actuator and the movement of a steering tire by a steering actuator by control in a vehicle, and is a steering output from the steering actuator.
  • the steering control unit that controls the output torque and controls the actual steering angle of the steering member via the steering actuator, and the steering output torque output from the steering actuator are controlled, and the steering tire is controlled via the steering actuator.
  • It is equipped with a steering control unit that controls the actual steering angle, and the steering control unit is in interlocking control in which the steering control unit interlocks and controls the actual steering angle with respect to the actual steering angle in response to a vehicle stop command.
  • the steering output torque is gradually reduced, and the steering control unit and the steering control unit cut the energization to the steering actuator and the steering actuator, respectively, after the steering output torque is gradually reduced and controlled by the steering control unit.
  • the second aspect of the present disclosure is a steering control method in which the movement of the steering member by the steering actuator and the movement of the steering tire by the steering actuator are linked by control in the vehicle, and the steering output from the steering actuator is controlled.
  • the steering control process that controls the output torque and controls the actual steering angle of the steering member via the steering actuator, and the steering output torque that is output from the steering actuator is controlled, and the steering tire is controlled via the steering actuator.
  • the steering control process includes a steering control process for controlling the actual steering angle, and the steering control process is an interlocking control process in which the actual steering angle is interlocked with respect to the actual steering angle by the steering control process in response to a vehicle stop command.
  • the steering output torque is gradually reduced and controlled, and the steering control process and the steering control process cut the energization to the steering actuator and the steering actuator, respectively, after the steering output torque is gradually reduced and controlled by the steering control process.
  • the third aspect of the present disclosure is a steering control program including a command to be executed by a processor in order to link the movement of the steering member by the steering actuator and the movement of the steering tire by the steering actuator by control in the vehicle.
  • the command is a steering control process that controls the steering output torque output from the steering actuator and controls the actual steering angle of the steering member via the steering actuator, and the steering output torque output from the steering actuator.
  • the steering control process includes a steering control step of controlling and controlling the actual steering angle of the steering tire via the steering actuator, and the steering control process adjusts the actual steering angle by the steering control process in accordance with the vehicle stop command.
  • the steering output torque is gradually reduced, and the steering control process and the steering control process are steered after the steering output torque is gradually decreased and controlled by the steering control process.
  • the energization to the actuator and the steering actuator is cut off.
  • the steering output torque from the steering actuator is gradually reduced and controlled during the interlocking control in which the actual steering angle is interlocked with respect to the actual steering angle in response to the vehicle stop command.
  • the energization to the steering actuator and the steering actuator is cut off.
  • the twist of the steering tire can be gradually eliminated according to the gradual decrease control of the steering output torque, so that the steering tire is suddenly restored. It becomes difficult. Therefore, it is possible to suppress the generation of vibration of the steering tire and the vehicle body supporting the steering tire due to the restoration of the steering tire in accordance with the stop command.
  • the gradual reduction control of the steering output torque is realized during the interlocking control between the actual steering angle and the actual steering angle, the vibration of the steering member interlocking with the steering tire is also suppressed in accordance with the stop command. be able to.
  • the steering control device 1 As shown in FIG. 1, the steering control device 1 according to the first embodiment is mounted on the vehicle 2.
  • the vehicle 2 is capable of constantly or temporarily automatically traveling in the automatic driving mode.
  • the automated driving mode may be realized by autonomous driving control in which the system at the time of operation performs all driving tasks, such as conditional driving automation, advanced driving automation, or full luck automation.
  • the automated driving mode may be implemented in advanced driving assistance control in which the occupant performs some or all driving tasks, such as driving assistance or partial driving automation.
  • the automatic driving mode may be realized by combining or switching between the autonomous driving control and the advanced driving support control.
  • the steering actuator 3 includes a steering motor 30, a steering reducer 31, and a steering driver 32.
  • the steering actuator 3 is mechanically linked to the steering wheel 21 of the vehicle 2.
  • the steering actuator 3 controls the current applied to the electric steering motor 30 according to the output command Os from the steering control device 1 by the steering driver 32.
  • the steering actuator 3 generates steering torque by the steering motor 30 to which an electric current is applied.
  • the steering actuator 3 amplifies the steering torque generated by the steering motor 30 by a steering reducer 31 such as a planetary gear, and then outputs the torque.
  • the output steering torque is transmitted as a reaction force from the steering actuator 3 to the steering wheel 21, so that the actual steering angle ⁇ sr (see FIG. 1) of the steering wheel 21 can be changed.
  • the actual steering angle ⁇ sr and the target steering angle ⁇ st thereof are given a positive (plus) value on the right side and a negative (minus) value on the left side with respect to the front-rear direction of the vehicle 2, respectively. Similarly, positive and negative values are given to the output command Os to the steering actuator 3.
  • the steering actuator 4 includes a steering motor 40, a steering reducer 41, and a steering driver 42.
  • the steering actuator 4 is mechanically linked to the steering tire 20 of the vehicle 2.
  • the steering actuator 4 constitutes a steer-by-wire system that mechanically shuts off and electrically cooperates with the steering wheel 21 and the steering actuator 3.
  • the steering actuator 4 controls the current applied to the electric steering motor 40 according to the output command Ot from the steering control device 1 by the steering driver 42.
  • the steering actuator 4 generates steering torque by the steering motor 40 to which an electric current is applied.
  • the steering actuator 4 amplifies the steering torque generated by the steering motor 40 by a steering speed reducer 41 such as a rack gear, and then outputs the torque.
  • the output steering torque is transmitted as a driving force from the steering actuator 4 to the steering tire 20, so that the actual steering angle ⁇ tr (see FIG. 1) of the steering tire 20 changes.
  • the actual steering angle ⁇ tr and the target steering angle ⁇ tt thereof are given positive (plus) values on the right side and negative (minus) values on the left side of the vehicle 2 in the front-rear direction. Be done. Similarly, positive and negative values are given to the output command Ot to the steering actuator 4.
  • the sensor system 5 includes an outside world sensor 50 and an inside world sensor 51.
  • the outside world sensor 50 acquires information on the outside world, which is the surrounding environment of the vehicle 2.
  • the outside world sensor 50 may acquire outside world information by detecting an object existing in the outside world of the vehicle 2.
  • the object detection type external sensor 50 is, for example, at least one of a camera, a LiDAR (Light Detection and Ringing / Laser Imaging Detection and Ringing), a radar, a sonar, and the like.
  • the outside world sensor 50 may acquire outside world information by receiving a specific signal from a GNSS (Global Navigation Satellite System) artificial satellite or an ITS (Intelligent Transport Systems) roadside machine existing in the outside world of the vehicle 2.
  • the signal reception type external sensor 50 is at least one of, for example, a GNSS receiver, a telematics receiver, and the like.
  • the inner world sensor 51 acquires information on the inner world, which is the internal environment of the vehicle 2.
  • the inner world sensor 51 may acquire the inner world information by detecting a specific kinetic physical quantity in the inner world of the vehicle 2.
  • the physical quantity detection type internal sensor 51 is, for example, at least a sensor 52 among a steering torque sensor 52, a steering angle sensor 53, a steering angle sensor 54, a speed sensor, an acceleration sensor, an inertial sensor, a yaw rate sensor, a start sensor 55, and the like. , 53, 54, 55 and more.
  • the steering torque sensor 52 acquires the actual steering torque Tsr given to the steering wheel 21.
  • the steering angle sensor 53 acquires the actual steering angle ⁇ sr of the steering wheel 21.
  • the steering angle sensor 54 acquires the actual steering angle ⁇ tr of the steering tire 20.
  • the start sensor 55 outputs a start command for the vehicle 2 in response to the occupant of the vehicle 2 turning on the start switch.
  • the start sensor 55 outputs a stop command Oe of the vehicle 2 in response to the occupant of the vehicle 2 turning off the start switch.
  • the start sensor 55 outputs an idling stop command and a restart command when the vehicle 2 is idling stop.
  • the steering control device 1 is connected to the steering actuator 3, the steering actuator 4, and the sensor system 5 via at least one of a LAN (Local Area Network), a wire harness, an internal bus, and the like.
  • the steering control device 1 includes at least one dedicated computer.
  • the dedicated computer constituting the steering control device 1 may be an operation control ECU (Electronic Control Unit) that realizes operation control including an automatic operation mode.
  • the dedicated computer constituting the steering control device 1 may be at least one of a steering ECU that controls the steering actuator 3 and a steering ECU that controls the steering actuator 4.
  • the dedicated computer constituting the steering control device 1 may be a locator ECU that estimates the state quantity of the vehicle 2 including the position of the vehicle 2.
  • the dedicated computer constituting the steering control device 1 may be a navigation ECU for navigating the driving of the vehicle 2.
  • the dedicated computer constituting the steering control device 1 may be an HCU (HMI (Human Machine Interface) Control Unit) that controls the information presentation of the vehicle 2.
  • HCU Human Machine Interface
  • the steering control device 1 includes at least one memory 10 and one processor 12 by including such a dedicated computer.
  • the memory 10 non-transitory tangible stores at least one type of non-transitory substantive storage medium (non-transitory tangible), for example, a semiconductor memory, a magnetic medium, an optical medium, or the like, which stores a computer-readable program and data non-temporarily. storage medium).
  • the processor 12 includes, for example, at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a RISC (Reduced Instruction Set Computer) -CPU, and the like as a core.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • RISC Reduced Instruction Set Computer
  • the processor 12 executes a plurality of instructions included in the steering control program stored in the memory 10.
  • the steering control device 1 constructs a plurality of functional units, which are functional blocks for interlocking steering and steering by control in the vehicle 2, as shown in FIG.
  • the steering control program stored in the memory 10 causes the processor 12 to execute a plurality of instructions in order to interlock the steering and steering in the vehicle 2 by control, so that a plurality of functional units can be used. Will be built.
  • Such a plurality of functional units include a track generation unit 100, a steering control unit 110, and a steering control unit 120.
  • the orbit generation unit 100 generates a planned orbit Tz based on the input information from the sensor system 5 or the corresponding physical information.
  • the planned track Tz means a traveling track that defines a time-series change in the state quantity (hereinafter referred to as self-state quantity) in the vehicle 2.
  • the self-state quantity is a physical quantity including at least the position of the vehicle 2. Such a self-state quantity may include, for example, at least one of traveling speed, acceleration, yaw angle, and the like in addition to the position.
  • the trajectory generation unit 100 generates a control command required for the steering control unit 110 and the steering control unit 120. Specifically, the track generation unit 100 generates an automatic driving command Oa for executing the automatic driving mode in the driving control of the vehicle 2. The track generation unit 100 generates a stop command Oe for executing a stop control mode for stopping the vehicle 2 during the automatic driving mode in the operation control of the vehicle 2.
  • the stop command Oe in the automatic operation mode is at least one of a complete stop command for the vehicle 2, an idling stop command for the vehicle 2, a power stop command for the actuators 3 and 4, and the like.
  • the timing at which the track generation unit 100 outputs the stop command Oe may be any of immediately before the scheduled time when the track generation unit 100 determines to stop the vehicle 2, the scheduled time, and immediately after the scheduled time.
  • the stop command Oe for executing the stop control mode is output from the start sensor 55 during the manual operation mode.
  • the stop command Oe in the manual operation mode is at least one of the complete stop command of the vehicle 2 by the off operation of the start switch, the idling stop command of the vehicle 2, and the like.
  • the steering control unit 110 controls the steering output torque Tso output from the steering actuator 3, the control of the actual steering angle ⁇ sr via the steering actuator 3, and the control of the actual steering torque Tsr via the steering actuator 3. Selectively execute. Therefore, the steering control unit 110 has, as sub-functional units, a target steering angle selection unit 111, a target steering torque control unit 112, a steering angle follow-up control unit 113, a torque follow-up control unit 114, a steering current selection unit 115, and steering gradual reduction control. It has a part 116.
  • the stop command Oe and the scheduled trajectory Tz are input from the trajectory generation unit 100 to the target steering angle selection unit 111.
  • a stop command Oe is input from the start sensor 55 to the target steering angle selection unit 111.
  • the actual steering angle ⁇ tr is input from the steering angle sensor 54 to the target steering angle selection unit 111.
  • the target steering angle selection unit 111 selects the target steering angle ⁇ st, which is the control target of the actual steering angle ⁇ sr, based on these inputs.
  • the target steering angle selection unit 111 selects the target steering angle ⁇ st acquired so as to follow the planned trajectory Tz.
  • the target steering angle selection unit 111 executes interlocking control in which the actual steering angle ⁇ sr is interlocked with the actual steering angle ⁇ tr. .. In this interlocking control, the target steering angle selection unit 111 selects a conversion angle obtained by multiplying the actual turning angle ⁇ tr by a predetermined angle conversion ratio as the target steering angle ⁇ st.
  • the target steering angle ⁇ st is input from the target steering angle selection unit 111 to the steering angle tracking control unit 113.
  • the steering angle tracking control unit 113 executes steering angle tracking control such as PID control so that the actual steering angle ⁇ sr follows the target steering angle ⁇ st.
  • the steering angle tracking control unit 113 determines the candidate value of the steering current applied to the steering motor 30 as the first steering current candidate value Isc1.
  • the actual steering torque Tsr is input to the target steering torque control unit 112 from the steering torque sensor 52, and the target steering torque control unit 112 is rotated from the steering angle tracking control unit 122 of the steering control unit 120 described later.
  • the rudder current value It is input.
  • the target steering torque control unit 112 estimates the actual steering torque Ttr applied to the steering tire 20 based on the value obtained by multiplying the steering current value It by a predetermined torque conversion coefficient and the actual steering torque Tsr. .. Further, the target steering torque control unit 112 determines the target steering torque Tst corresponding to the estimated actual steering torque Ttr based on, for example, the map shown in FIG.
  • the target steering torque Tst is input from the target steering torque control unit 112 to the torque follow-up control unit 114.
  • the actual steering torque Tsr is input from the steering torque sensor 52 to the torque follow-up control unit 114.
  • the torque follow-up control unit 114 executes torque follow-up control such as PID control so that the actual steering torque Tsr follows the target steering torque Tst.
  • the torque follow-up control unit 114 determines the candidate value of the steering current applied to the steering motor 30 as the second steering current candidate value Isc2.
  • the stop command Oe and the automatic operation command Oa are input to the steering current selection unit 115 from the track generation unit 100.
  • a stop command Oe is input from the start sensor 55 to the steering current selection unit 115.
  • the first steering current candidate value Isc1 is input to the steering current selection unit 115 from the steering angle tracking control unit 113.
  • the second steering current candidate value Isc2 is input from the torque follow-up control unit 114.
  • the steering current selection unit 115 selects one of the first steering current candidate value Isc1 and the second steering current candidate value Isc2 as the steering current value Is according to the mode.
  • the steering current selection unit 115 selects the first steering current candidate value Isc1 as the steering current value Is. Further, even when the stop command Oe is input from the trajectory generation unit 100 or the start sensor 55, the steering current selection unit 115 selects the first steering current candidate value Isc1 as the steering current value Is. From these things, in the automatic driving mode and the stop control mode of the vehicle 2, the first steering current candidate value Isc1 is selected as the steering current value Is.
  • the steering current selection unit 115 selects the second steering current candidate value Isc2 as the steering current value Is.
  • the second steering current candidate value Isc2 is selected as the steering current value Is.
  • the steering current value Is is input from the steering current selection unit 115 to the steering tapering control unit 116.
  • the steering gradual reduction command Or is input to the steering gradual reduction control unit 116 from the steering gradual reduction control unit 123 of the steering control unit 120, which will be described later.
  • the steering tapering control unit 116 When the steering tapering command Or is not input, the steering tapering control unit 116 generates an output command Os for instructing the steering actuator 3 to apply the steering current value Is.
  • the steering current value Is is the first steering current candidate value Isc1
  • the actual steering angle ⁇ sr of the steering wheel 21 corresponds to the output command Os via the steering actuator 3 according to the generated output command Os. It is controlled by the angle.
  • the steering current value Is is the second steering current candidate value Isc2
  • the actual steering torque Tsr of the steering wheel 21 corresponds to the output command Os via the steering actuator 3 according to the generated output command Os. Is controlled by.
  • the steering gradual reduction control unit 116 issues an output command Os for instructing the steering actuator 3 to apply the current value adjusted by the gradual reduction control described in detail later. Generate.
  • the steering actuator 3 according to the generated output command Os controls the steering output torque Tso toward the steering wheel 21.
  • the steering control unit 120 selectively controls the steering output torque Tto output from the steering actuator 4 and the actual steering angle ⁇ tr via the steering actuator 4. Run. Therefore, the steering control unit 120 has a target steering angle selection unit 121, a steering angle tracking control unit 122, and a steering gradual reduction control unit 123.
  • the automatic operation command Oa and the planned track Tz are input from the track generation unit 100 to the target steering angle selection unit 121.
  • the actual steering angle ⁇ sr is input from the steering angle sensor 53 to the target steering angle selection unit 121.
  • the target turning angle selection unit 121 selects the target turning angle ⁇ tt, which is the control target of the actual turning angle ⁇ tr, based on these inputs.
  • the target turning angle selection unit 121 selects the target turning angle ⁇ tt acquired so as to follow the planned track Tz.
  • the target steering angle selection unit 121 executes interlocking control in which the actual steering angle ⁇ tr is interlocked with the actual steering angle ⁇ sr. In this interlocking control, the target steering angle selection unit 121 selects a conversion angle obtained by multiplying the actual steering angle ⁇ sr by a predetermined angle conversion ratio as the target steering angle ⁇ tt.
  • the target steering angle ⁇ tt is input from the target steering angle selection unit 121 to the steering angle tracking control unit 122.
  • the steering angle tracking control unit 122 executes steering angle tracking control such as PID control so that the actual steering angle ⁇ tr follows the target steering angle ⁇ tt.
  • the steering angle tracking control unit 122 determines the steering current value It applied to the steering motor 40.
  • the steering current value It is input from the steering angle tracking control unit 122 to the steering gradual reduction control unit 123.
  • a stop command Oe is input from the track generation unit 100 to the steering gradual reduction control unit 123.
  • a stop command Oe is input from the start sensor 55 to the steering gradual reduction control unit 123.
  • the steering gradual reduction control unit 123 generates an output command Ot for instructing the steering actuator 4 to apply the steering current value It.
  • the actual steering angle ⁇ tr of the steering tire 20 is controlled to an angle corresponding to the output command Ot via the steering actuator 4 according to the generated output command Ot.
  • the steering gradual reduction control unit 123 issues an output command Ot for instructing the steering actuator 4 to apply the current value adjusted by the gradual reduction control described in detail later. , Generate.
  • the steering actuator 4 according to the generated output command Ot controls the steering output torque Tto toward the steering tire 20.
  • the steering output torque Tto substantially coincides with the actual steering torque Ttr of the steering tire 20.
  • each "S" in FIG. 5 means a plurality of steps executed by a plurality of instructions included in a steering control program.
  • FIG. 6 except for the graph of the stop command Oe, the change with time of the value related to steering is shown by the solid line, and the change with time of the value related to steering is shown by the dotted line.
  • the target steering angle selection unit 111 selects the target steering angle ⁇ st so that the actual steering angle ⁇ sr is linked to the actual steering angle ⁇ tr in accordance with the stop command Oe.
  • the selected target steering angle ⁇ st is converted to the first steering current candidate value Isc1 by the steering angle tracking control unit 113, and the conversion value Isc1 is used as the steering current value Is in accordance with the stop command Oe. It is input from the selection unit 115 to the steering tapering control unit 116.
  • the steering gradual reduction control unit 123 executes the gradual reduction with respect to the steering current value It as shown in FIGS. 6 and 7 in response to the stop command Oe.
  • the steering gradual reduction control unit 123 stores the steering current value It at the time of input of the stop command Oe as the initial value It0 of the steering current value It to be gradually reduced.
  • the steering gradual reduction control unit 123 substantially continuously and gradually decreases the steering current value It from the initial value It0 so that the reduction rate of the steering current value It per unit time becomes constant.
  • the steering gradual reduction control unit 123 outputs an output command Ot instructing the gradual reduction of the steering current value It to the steering actuator 4.
  • the steering output torque Tto output from the steering actuator 4 to the steering tire 20 is controlled according to the output command Ot, so that the reduction rate per unit time is gradually reduced. ..
  • the steering gradual reduction control unit 123 finishes the gradual reduction of the steering current value It, and then sends the steering gradual reduction command Or to the steering gradual reduction control unit 116. Is output.
  • the gradual decrease of the steering current value It may be terminated when the steering current value It reaches a predetermined value close to the zero value.
  • the steering gradual reduction control unit 116 responds to the steering gradual reduction command Or as shown in FIGS.
  • the gradual decrease with respect to the steering current value Is is executed.
  • the steering gradual reduction control unit 116 stores the steering current value Is at the time of input of the steering gradual reduction command Or as the initial value Is0 of the steering current value Is to be gradually reduced. Further, the steering gradual decrease control unit 116 substantially continuously decreases the steering current value Is from the initial value Is0 so that the decrease rate of the steering current value Is per unit time becomes constant.
  • the steering gradual decrease control unit 116 outputs an output command Os that commands the gradual decrease of the steering current value Is to the steering actuator 3.
  • the steering output torque Tso output from the steering actuator 3 to the steering wheel 21 is controlled according to the output command Os, so that the reduction rate per unit time is gradually reduced.
  • the steering gradual decrease control unit 116 ends the gradual decrease of the steering current value Is.
  • the gradual decrease of the steering current value Is may be terminated when the steering current value Is reaches a predetermined value close to the zero value.
  • the steering gradual reduction control unit 123 cuts the energization from the steering driver 42 to the steering motor 40 in S104. ..
  • the steering gradual decrease control unit 116 cuts the energization from the steering driver 32 to the steering motor 30 in S105.
  • the execution time of S104 of the energization cut to the steering motor 30 and S105 of the energization cut to the steering motor 40 may be shifted back and forth (S104 is the previous example in FIGS. 5 and 6). It may be executed at substantially the same time.
  • the energization cut to the steering motor 30 and the energization cut to the steering motor 40 are such that the corresponding drivers 32 and 42 cut off the power supply (off in FIG. 6). It will be realized. However, when the applied current is gradually reduced to the zero value in S102 and S103, it can be considered that the energization cut is realized when the zero value is reached.
  • S101, S103, and S105 correspond to the steering control process
  • S102 and S104 correspond to the steering control process
  • the steering output torque Tto from the steering actuator 4 gradually decreases during the interlocking control in which the actual steering angle ⁇ sr is interlocked and controlled with respect to the actual steering angle ⁇ tr in accordance with the stop command Oe of the vehicle 2.
  • the energization to the steering actuator 4 and the steering actuator 3 is cut off, respectively.
  • the twist of the steering tire 20 can be gradually eliminated according to the gradual decrease control of the steering output torque Tto, so that the steering tire 20 can be untwisted. Rapid restoration is less likely to occur.
  • the vibration of the steering wheel 21 interlocking with the steering tire 20 is also a stop command. It can be suppressed with Oe.
  • the steering output torque Tto can be gradually and gradually reduced and controlled according to the gradually decreasing current by gradually reducing the current applied to the steering actuator 4. Therefore, it is possible to suppress the generation of vibration of the vehicle 2 due to the sudden restoration of the steering tire 20 in accordance with the stop command of the vehicle 2.
  • the steering output torque Tto can be gradually reduced to the zero value by gradually reducing the current applied to the steering actuator 4 to the zero value. Therefore, the gentle twisting of the steering tire 20 can be continuously eliminated until the steering output torque Tto reaches a zero value, and the effect of suppressing the generation of vibration accompanying the stop command of the vehicle can be enhanced.
  • the energization to the steering actuator 4 and the steering actuator 3 is cut. According to this, even if the steering output torque Tso remains after the interlocking control between the actual steering angle ⁇ sr and the actual steering angle ⁇ tr, the fluctuation and vibration of the steering wheel 21 due to the remaining torque Tso correspond to the gradual decrease. It can be mitigated by a gradual torque change. Therefore, it is possible to prevent the steering wheel 21 from being hindered by the effect of suppressing the generation of vibration accompanying the stop command Oe of the vehicle 2.
  • the steering output torque Tso can be gradually and gradually reduced and controlled according to the gradually decreasing current by gradually reducing the current applied to the steering actuator 3. Therefore, it is possible to prevent the steering wheel 21 from being hindered by the effect of suppressing the generation of vibration accompanying the stop command Oe of the vehicle 2.
  • the steering output torque Tso can be gradually reduced to a zero value by gradually reducing the current applied to the steering actuator 3 to a zero value. Therefore, the gradual decrease of the remaining steering output torque Tso can be continued until the steering output torque Tso becomes a zero value, and the deterrence of inhibition against the vibration generation accompanying the stop command Oe of the vehicle 2 can be enhanced.
  • the energization of the steering actuator 4 and the steering actuator 3 is cut off by power cutoff after the steering output torque Tto and the steering output torque Tso are gradually reduced and controlled. According to this, even if the power is cut off due to the stop command Oe, it is possible to suppress the vibration generation of the steering tire 20 and the vehicle body due to the restoration of the steering tire 20.
  • the second embodiment is a modification of the first embodiment.
  • the configurations of the steering gradual reduction control unit 123 and the steering gradual reduction control unit 116 are different from those in the first embodiment.
  • the steering gradual reduction control unit 123 of the second embodiment includes a low-pass filter in which a cutoff frequency lower than the resonance frequency of the steering system 6 shown in FIG. 8 is set.
  • the steering system 6 includes at least the steering tire 20 in the vehicle 2.
  • the steering system 6 may include a steering actuator 4.
  • the steering system 6 may include a driving member such as a tie rod, which is interposed between the steering actuator 4 and the steering tire 20.
  • the steering gradual reduction control unit 123 gradually reduces the steering current value It by passing through a low-pass filter. As a result, as shown in FIG. 9, in addition to the steering current value It itself, the rate of decrease of the steering current value It per unit time is gradually reduced.
  • the steering tapering control unit 116 of the second embodiment is configured to include a low-pass filter in which a predetermined cutoff frequency is set.
  • the steering gradual decrease control unit 116 gradually decreases the steering current value Is by passing through a low-pass filter.
  • the decrease rate of the steering current value Is per unit time is also gradually decreased.
  • the current applied to the steering actuator 4 is gradually reduced by passing the vehicle 2 through a low-pass filter having a cutoff frequency set lower than the resonance frequency of the steering system 6 including the steering tire 20. Will be done. According to this, the vibration generation of the steering system 6 and the vehicle body due to the restoration of the steering tire 20 can be suppressed in accordance with the stop command Oe.
  • the steering actuator 4 of the modified example may constitute a power steering system that is mechanically linked to the steering wheel 21 and the steering actuator 3 and can be controlled independently of the actuator 3.
  • the dedicated computer constituting the steering control device 1 may be at least one external center computer capable of communicating with the vehicle 2.
  • the dedicated computer constituting the steering control device 1 may include at least one of a digital circuit and an analog circuit as a processor.
  • the digital circuit is, for example, among ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), SOC (System on a Chip), PGA (Programmable Gate Array), CPLD (Complex Programmable Logic Device), and the like. , At least one type. Further, such a digital circuit may have a memory for storing a program.
  • the steering current value It may be gradually decreased intermittently instead of gradually decreasing the steering current value It.
  • the steering current value Is may be decreased intermittently instead of gradually decreasing the steering current value Is.
  • the steering current value It may be gradually reduced so that the reduction rate gradually increases. ..
  • the steering current value Is instead of gradually reducing the steering current value Is so that the reduction rate per unit time gradually decreases, the steering current value Is may be gradually reduced so that the reduction rate gradually increases.
  • the first embodiment and the second embodiment may be combined. Specifically, only one of the steering gradual reduction control unit 123 and the steering gradual reduction control unit 116 may gradually reduce the applied current by a low-pass filter according to the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

操舵制御装置(1)は、操舵アクチュエータ(3)から出力される操舵出力トルク(Tso)を制御し、操舵アクチュエータ(3)を介してステアリングホイールの実操舵角(θsr)を制御する操舵制御部(110)と、転舵アクチュエータ(4)から出力される転舵出力トルク(Tto)を制御し、転舵アクチュエータ(4)を介して転舵タイヤの実転舵角(θtr)を制御する転舵制御部(120)とを、備える。転舵制御部(120)は、車両の停止指令(Oe)に伴って操舵制御部(110)が実操舵角(θsr)を実転舵角(θtr)に対し連動制御する連動制御中に、転舵出力トルク(Tto)を漸減制御する。転舵制御部(120)及び操舵制御部(110)は、転舵制御部(120)による転舵出力トルク(Tto)の漸減制御後に、それぞれ転舵アクチュエータ(4)及び操舵アクチュエータ(3)への通電をカットする。

Description

操舵制御装置、操舵制御方法、操舵制御プログラム 関連出願の相互参照
 本開示は、2020年10月23日に出願された日本特許出願番号2020-178238号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両における操舵制御技術に、関する。
 近年、車両の操舵部材の操舵角と転舵タイヤの転舵角とを電気的に制御する技術が、広まってきている。例えば特許文献1に開示の技術では、電動アクチュエータを介して転舵タイヤへ出力される転舵トルクによって、転舵タイヤの転舵角が制御されるようになっている。また、特許文献1に開示の技術では、ロック状態においてロック装置が転舵タイヤの回転を規制する。ここでロック装置は、車両の停止指令に伴う電源オフ前にロック状態になると共に、車両の始動指令に伴ってロック状態を解除するように構成されている。
特開2019-098810号公報
 しかし、特許文献1に開示の技術では、車両の停止指令に伴って電源オフにより電動アクチュエータへの通電がカットされる際に転舵タイヤがねじれていると、当該ねじれにより転舵タイヤに生じている復元力は、ロック装置に作用し続けることとなる。そのため、転舵タイヤから電動アクチュエータまでの構成要素とロック装置とには、寿命の低下が懸念される。
 一方、車両の停止指令に伴ってロック装置が作動しない構成であれば、寿命は確保可能となる。しかし、この場合、電動アクチュエータを介して転舵タイヤに出力されるトルクは、電動アクチュエータへの通電カットに応じて、突然消失する。すると、転舵タイヤがねじれを解消するように急激に復元するため、車両において転舵タイヤ及びそれを支持する車体が振動してしまう。それと共にロック装置の非作動下では、転舵タイヤの振動が伝播する操舵部材も、振動してしまう。
 本開示の課題は、車両の停止指令に伴う振動の発生を抑制する操舵制御装置を、提供することにある。本開示の別の課題は、車両の停止指令に伴う振動の発生を抑制する操舵制御方法を、提供することにある。本開示のさらに別の課題は、車両の停止指令に伴う振動の発生を抑制する操舵制御プログラムを、提供することにある。
 以下、課題を解決するための本開示の技術的手段について、説明する。
 本開示の第一態様は、車両において、操舵アクチュエータによる操舵部材の運動と、転舵アクチュエータによる転舵タイヤの運動とを、制御により連動させる操舵制御装置であって、操舵アクチュエータから出力される操舵出力トルクを制御し、操舵アクチュエータを介して操舵部材の実操舵角を制御する操舵制御部と、転舵アクチュエータから出力される転舵出力トルクを制御し、転舵アクチュエータを介して転舵タイヤの実転舵角を制御する転舵制御部とを、備え、転舵制御部は、車両の停止指令に伴って操舵制御部が実操舵角を実転舵角に対し連動制御する連動制御中に、転舵出力トルクを漸減制御し、転舵制御部及び操舵制御部は、転舵制御部による転舵出力トルクの漸減制御後に、それぞれ転舵アクチュエータ及び操舵アクチュエータへの通電をカットする。
 本開示の第二態様は、車両において、操舵アクチュエータによる操舵部材の運動と、転舵アクチュエータによる転舵タイヤの運動とを、制御により連動させる操舵制御方法であって、操舵アクチュエータから出力される操舵出力トルクを制御し、操舵アクチュエータを介して操舵部材の実操舵角を制御する操舵制御工程と、転舵アクチュエータから出力される転舵出力トルクを制御し、転舵アクチュエータを介して転舵タイヤの実転舵角を制御する転舵制御工程とを、含み、転舵制御工程は、車両の停止指令に伴って操舵制御工程により実操舵角が実転舵角に対し連動制御される連動制御工程中に、転舵出力トルクを漸減制御し、転舵制御工程及び操舵制御工程は、転舵制御工程による転舵出力トルクの漸減制御後に、それぞれ転舵アクチュエータ及び操舵アクチュエータへの通電をカットする。
 本開示の第三態様は、車両において、操舵アクチュエータによる操舵部材の運動と、転舵アクチュエータによる転舵タイヤの運動とを、制御により連動させるために、プロセッサに実行させる命令を含む操舵制御プログラムであって、命令は、操舵アクチュエータから出力される操舵出力トルクを制御させ、操舵アクチュエータを介して操舵部材の実操舵角を制御させる操舵制御工程と、転舵アクチュエータから出力される転舵出力トルクを制御させ、転舵アクチュエータを介して転舵タイヤの実転舵角を制御させる転舵制御工程とを、含み、転舵制御工程は、車両の停止指令に伴って操舵制御工程により実操舵角を実転舵角に対し連動制御させる連動制御中に、転舵出力トルクを漸減制御させ、転舵制御工程及び操舵制御工程は、転舵制御工程による転舵出力トルクの漸減制御後に、それぞれ転舵アクチュエータ及び操舵アクチュエータへの通電をカットさせる。
 これら第一~第三態様によると、車両の停止指令に伴って実操舵角が実転舵角に対し連動制御される連動制御中に、転舵アクチュエータからの転舵出力トルクが漸減制御された後、転舵アクチュエータ及び操舵アクチュエータへの通電がそれぞれカットされる。これによれば、転舵アクチュエータ及び操舵アクチュエータへの通電カット前に、転舵出力トルクの漸減制御に応じて転舵タイヤのねじれが緩やかに解消され得るので、転舵タイヤの急激な復元は生じ難くなる。故に、転舵タイヤの復元による転舵タイヤ及びそれを支持する車体の振動発生を、停止指令に伴って抑制することができる。しかも、転舵出力トルクの漸減制御は、実操舵角と実転舵角との連動制御中に実現されることから、転舵タイヤと連動する操舵部材の振動も、停止指令に伴って抑制することができる。
第一実施形態による操舵制御装置の搭載された車両を示す模式図である。 第一実施形態による操舵制御装置の全体構成を示す模式図である。 第一実施形態による操舵制御装置の詳細構成を示すブロック図である。 第一実施形態による操舵制御部を説明するためのグラフである。 第一実施形態による操舵制御方法を示すフローチャートである。 第一実施形態による停止制御モードを示すグラフである。 第一実施形態による漸減制御を示すグラフである。 第二実施形態による操舵制御装置の搭載された車両を示す模式図である。 第二実施形態による漸減制御を示すグラフである。
 以下、複数の実施形態を図面に基づき説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことで、重複する説明を省略する場合がある。また、各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。さらに、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。
 (第一実施形態)
 図1に示すように第一実施形態による操舵制御装置1は、車両2に搭載される。車両2は、自動運転モードにおいて定常的又は一時的に自動走行可能となっている。ここで自動運転モードは、条件付運転自動化、高度運転自動化、又は完全運自動化といった、作動時のシステムが全ての運行タスクを実行する自律運転制御により、実現されてもよい。自動運転モードは、運転支援、又は部分運転自動化といった、乗員が一部又は全ての運転タスクを実行する高度運転支援制御において、実現されてもよい。自動運転モードは、それら自律運転制御と高度運転支援制御との組み合わせ又は切り替えにより、実現されてもよい。
 こうした車両2の車輪のうち、少なくとも一対設けられる転舵タイヤ20は、操舵制御装置1による制御に従って転舵可能となっている。車両2の操舵部材であるステアリングホイール21は、車室内の乗員により把持可能となっている。こうした車両2には、操舵制御装置1と共に、操舵アクチュエータ3と転舵アクチュエータ4とセンサ系5とが搭載されている。図2,3に示すように操舵アクチュエータ3は、操舵モータ30と操舵減速機31と操舵ドライバ32とを含んで構成される。操舵アクチュエータ3は、車両2のステアリングホイール21に対して、機械的に連携している。
 操舵アクチュエータ3は、操舵制御装置1からの出力指令Osに従って電動式の操舵モータ30へと印加する電流を、操舵ドライバ32により制御する。操舵アクチュエータ3は、電流の印加された操舵モータ30により、操舵トルクを発生させる。操舵アクチュエータ3は、操舵モータ30の発生した操舵トルクを、例えば遊星ギア等の操舵減速機31により増幅してから出力する。出力された操舵トルクが操舵アクチュエータ3からステアリングホイール21への反力として伝達されることで、ステアリングホイール21の実操舵角θsr(図1参照)が変化可能となっている。
 尚、実操舵角θsrと、それの目標操舵角θstとには、車両2の前後方向に対して右側では正(プラス)の値、また左側では負(マイナス)の値が、それぞれ与えられる。同様に、操舵アクチュエータ3への出力指令Osにも、正負の値が与えられる。
 転舵アクチュエータ4は、転舵モータ40と転舵減速機41と転舵ドライバ42とを含んで構成される。転舵アクチュエータ4は、車両2の転舵タイヤ20に対して、機械的に連携している。転舵アクチュエータ4は、ステアリングホイール21及び操舵アクチュエータ3に対して、機械的には遮断且つ電気的には連携する、ステアバイワイヤシステムを構成している。
 転舵アクチュエータ4は、操舵制御装置1からの出力指令Otに従って電動式の転舵モータ40へと印加する電流を、転舵ドライバ42により制御する。転舵アクチュエータ4は、電流の印加された転舵モータ40により、転舵トルクを発生させる。転舵アクチュエータ4は、転舵モータ40の発生した転舵トルクを、例えばラックギア等の転舵減速機41により増幅してから出力する。出力された転舵トルクが転舵アクチュエータ4から転舵タイヤ20への駆動力として伝達されることで、転舵タイヤ20の実転舵角θtr(図1参照)が変化する。
 尚、実転舵角θtrと、それの目標転舵角θttとには、車両2の前後方向に対して右側では正(プラス)の値、また左側では負(マイナス)の値が、それぞれ与えられる。同様に、転舵アクチュエータ4への出力指令Otにも、正負の値が与えられる。
 図1~3に示すようにセンサ系5は、外界センサ50と内界センサ51とを含んで構成される。外界センサ50は、車両2の周辺環境となる外界の情報を、取得する。外界センサ50は、車両2の外界に存在する物体を検知することで、外界情報を取得してもよい。物体検知タイプの外界センサ50は、例えばカメラ、LiDAR(Light Detection and Ranging / Laser Imaging Detection and Ranging)、レーダ、及びソナー等のうち、少なくとも一種類である。外界センサ50は、車両2の外界に存在するGNSS(Global Navigation Satellite System)の人工衛星又はITS(Intelligent Transport Systems)の路側機から特定信号を受信することで、外界情報を取得してもよい。信号受信タイプの外界センサ50は、例えばGNSS受信機、及びテレマティクス受信機等のうち、少なくとも一種類である。
 内界センサ51は、車両2の内部環境となる内界の情報を、取得する。内界センサ51は、車両2の内界において特定の運動物理量を検知することで、内界情報を取得してもよい。物理量検知タイプの内界センサ51は、例えば操舵トルクセンサ52、操舵角センサ53、転舵角センサ54、速度センサ、加速度センサ、慣性センサ、ヨーレートセンサ、及び始動センサ55等のうち、少なくともセンサ52,53,54,55を含んだ複数種類である。ここで操舵トルクセンサ52は、ステアリングホイール21へ与えられた実操舵トルクTsrを、取得する。操舵角センサ53は、ステアリングホイール21の実操舵角θsrを、取得する。転舵角センサ54は、転舵タイヤ20の実転舵角θtrを、取得する。始動センサ55は、車両2の乗員が始動スイッチをオン操作するのに応じて、車両2の始動指令を出力する。それと共に始動センサ55は、車両2の乗員が始動スイッチをオフ操作するのに応じて、車両2の停止指令Oeを出力する。さらに始動センサ55は、車両2がアイドリングストップの場合に、アイドリングストップ指令及び再始動指令を出力する。
 操舵制御装置1は、例えばLAN(Local Area Network)、ワイヤハーネス、及び内部バス等のうち、少なくとも一種類を介して操舵アクチュエータ3と転舵アクチュエータ4とセンサ系5とに接続されている。操舵制御装置1は、少なくとも一つの専用コンピュータを含んで構成される。操舵制御装置1を構成する専用コンピュータは、自動運転モードを含んだ運転制御を実現する、運転制御ECU(Electronic Control Unit)であってもよい。操舵制御装置1を構成する専用コンピュータは、操舵アクチュエータ3を制御する操舵ECUと、転舵アクチュエータ4を制御する転舵ECUとのうち、少なくとも一方であってもよい。操舵制御装置1を構成する専用コンピュータは、車両2の位置を含んだ、車両2の状態量を推定する、ロケータECUであってもよい。操舵制御装置1を構成する専用コンピュータは、車両2の運転をナビゲートするナビゲーションECUであってもよい。操舵制御装置1を構成する専用コンピュータは、車両2の情報提示を制御するHCU(HMI(Human Machine Interface) Control Unit)であってもよい。
 図1に示すように操舵制御装置1は、こうした専用コンピュータを含んで構成されることで、メモリ10及びプロセッサ12を少なくとも一つずつ有している。メモリ10は、コンピュータにより読み取り可能なプログラム及びデータを非一時的に記憶する、例えば半導体メモリ、磁気媒体、及び光学媒体等のうち、少なくとも一種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。プロセッサ12は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、及びRISC(Reduced Instruction Set Computer)-CPU等のうち、少なくとも一種類をコアとして含む。
 プロセッサ12は、メモリ10に記憶された操舵制御プログラムに含まれる複数の命令を、実行する。これにより操舵制御装置1は、車両2において操舵と転舵とを制御により連動させるための機能ブロックである機能部を、図3に示すように複数構築する。このように操舵制御装置1では、車両2における操舵及び転舵を制御により連動させるためにメモリ10に記憶された操舵制御プログラムが複数の命令をプロセッサ12に実行させることで、複数の機能部が構築される。こうした複数の機能部には、軌道生成部100、操舵制御部110、及び転舵制御部120が含まれる。
 軌道生成部100は、センサ系5からの入力情報又はそれに応じた物理情報に基づくことで、予定軌道Tzを生成する。予定軌道Tzとは、車両2における状態量(以下、自己状態量という)の時系列変化を規定した、走行軌道を意味する。自己状態量とは、少なくとも車両2の位置を含んだ、物理量である。こうした自己状態量は、例えば走行速度、加速度、及びヨー角等のうち、少なくとも一種類を位置に加えて含んでいてもよい。
 軌道生成部100は、操舵制御部110及び転舵制御部120に対して要求する制御指令を、生成する。具体的に軌道生成部100は、車両2の運転制御において自動運転モードを実行するための自動運転指令Oaを、生成する。軌道生成部100は、車両2の運転制御において自動運転モード中に車両2を停止する停止制御モードを実行するための停止指令Oeを、生成する。ここで自動運転モード中の停止指令Oeは、車両2の完全停止指令、車両2のアイドリングストップ指令、及び各アクチュエータ3,4の電源停止指令等のうち、少なくとも一種類である。軌道生成部100が停止指令Oeを出力するタイミングは、軌道生成部100が車両2の停止を決定する予定時刻の直前、予定時刻、及び予定時刻の直後のうち、いずれであってもよい。一方、車両2の運転制御において手動運転モード中には、停止制御モードを実行するための停止指令Oeが始動センサ55から出力される。ここで手動運転モード中の停止指令Oeは、始動スイッチのオフ操作による車両2の完全停止指令、及び車両2のアイドリングストップ指令等のうち、少なくとも一種類である。
 操舵制御部110は、操舵アクチュエータ3から出力される操舵出力トルクTsoの制御と、操舵アクチュエータ3を介した実操舵角θsrの制御と、操舵アクチュエータ3を介した実操舵トルクTsrの制御とを、選択的に実行する。そのために操舵制御部110は、サブ機能部として、目標操舵角選択部111、目標操舵トルク制御部112、操舵角追従制御部113、トルク追従制御部114、操舵電流選択部115、及び操舵漸減制御部116を有している。
 目標操舵角選択部111には、停止指令Oeと予定軌道Tzとが軌道生成部100から入力される。目標操舵角選択部111には、始動センサ55から停止指令Oeが入力される。目標操舵角選択部111には、転舵角センサ54から実転舵角θtrが入力される。目標操舵角選択部111は、これらの入力に基づいて、実操舵角θsrの制御目標である目標操舵角θstを選択する。
 具体的に、軌道生成部100又は始動センサ55から停止指令Oeが入力されていない場合に目標操舵角選択部111は、予定軌道Tzに従うように取得される目標操舵角θstを、選択する。一方、軌道生成部100又は始動センサ55から停止指令Oeが入力されている場合に目標操舵角選択部111は、実操舵角θsrを実転舵角θtrに対して連動させる連動制御を、実行する。この連動制御において目標操舵角選択部111は、実転舵角θtrに所定の角度変換比を乗算した変換角を、目標操舵角θstとして選択する。
 操舵角追従制御部113には、目標操舵角選択部111から目標操舵角θstが入力される。操舵角追従制御部113は、実操舵角θsrが目標操舵角θstに追従するように、例えばPID制御等の操舵角追従制御を実行する。この操舵角追従制御によって操舵角追従制御部113は、操舵モータ30へと印加される操舵電流の候補値を、第一操舵電流候補値Isc1として決定する。
 目標操舵トルク制御部112には、操舵トルクセンサ52から実操舵トルクTsrが入力されると共に、目標操舵トルク制御部112には、後述する転舵制御部120の転舵角追従制御部122から転舵電流値Itが入力される。目標操舵トルク制御部112は、転舵電流値Itに所定のトルク換算係数を乗算した値と、実操舵トルクTsrとに基づいて、転舵タイヤ20に加わっている実転舵トルクTtrを推定する。さらに目標操舵トルク制御部112は、推定された実転舵トルクTtrに対応する目標操舵トルクTstを、例えば図4に示すマップ等に基づいて決定する。
 図3に示すようにトルク追従制御部114には、目標操舵トルク制御部112から目標操舵トルクTstが入力される。トルク追従制御部114には、操舵トルクセンサ52から実操舵トルクTsrが入力される。トルク追従制御部114は、実操舵トルクTsrが目標操舵トルクTstに追従するように、例えばPID制御等のトルク追従制御を実行する。このトルク追従制御によってトルク追従制御部114は、操舵モータ30へと印加される操舵電流の候補値を、第二操舵電流候補値Isc2として決定する。
 操舵電流選択部115には、停止指令Oeと自動運転指令Oaとが軌道生成部100から入力される。操舵電流選択部115には、始動センサ55から停止指令Oeが入力される。操舵電流選択部115には、操舵角追従制御部113から第一操舵電流候補値Isc1が入力される。トルク追従制御部114から第二操舵電流候補値Isc2が入力される。操舵電流選択部115は、第一操舵電流候補値Isc1及び第二操舵電流候補値Isc2の一方を、モードに応じた操舵電流値Isとして選択する。
 具体的には、軌道生成部100から自動運転指令Oaが入力されている場合に操舵電流選択部115は、第一操舵電流候補値Isc1を操舵電流値Isとして選択する。また、軌道生成部100又は始動センサ55から停止指令Oeが入力されている場合にも操舵電流選択部115は、第一操舵電流候補値Isc1を操舵電流値Isとして選択する。これらのことから、車両2の自動運転モード及び停止制御モードにおいては、第一操舵電流候補値Isc1が操舵電流値Isとして選択される。
 一方、自動運転指令Oa及び停止指令Oeがいずれも入力されていない場合に操舵電流選択部115は、第二操舵電流候補値Isc2を操舵電流値Isとして選択する。これにより、車両2の手動運転モードにおいては、第二操舵電流候補値Isc2が操舵電流値Isとして選択される。
 操舵漸減制御部116には、操舵電流選択部115から操舵電流値Isが入力される。操舵漸減制御部116には、後述する転舵制御部120の転舵漸減制御部123から操舵漸減指令Orが入力される。操舵漸減指令Orが入力されていない場合に操舵漸減制御部116は、操舵電流値Isの印加を操舵アクチュエータ3へ指令するための出力指令Osを、生成する。その結果、操舵電流値Isが第一操舵電流候補値Isc1の場合には、生成された出力指令Osに従う操舵アクチュエータ3を介して、ステアリングホイール21の実操舵角θsrが当該出力指令Osと対応した角度に制御される。一方、操舵電流値Isが第二操舵電流候補値Isc2の場合には、生成された出力指令Osに従う操舵アクチュエータ3を介して、ステアリングホイール21の実操舵トルクTsrが当該出力指令Osと対応した角度に制御される。
 これらに対し、操舵漸減指令Orが入力されている場合に操舵漸減制御部116は、後に詳述する漸減制御によって調整された電流値の印加を操舵アクチュエータ3へ指令するための出力指令Osを、生成する。その結果、生成された出力指令Osに従う操舵アクチュエータ3は、ステアリングホイール21へ向けた操舵出力トルクTsoを制御する。
 図3に示すように転舵制御部120は、転舵アクチュエータ4から出力される転舵出力トルクTtoの制御と、転舵アクチュエータ4を介した実転舵角θtrの制御とを、選択的に実行する。そのために転舵制御部120は、目標転舵角選択部121、転舵角追従制御部122、及び転舵漸減制御部123を有している。
 目標転舵角選択部121には、自動運転指令Oaと予定軌道Tzとが軌道生成部100から入力される。目標転舵角選択部121には、操舵角センサ53から実操舵角θsrが入力される。目標転舵角選択部121は、これらの入力に基づいて、実転舵角θtrの制御目標である目標転舵角θttを選択する。
 具体的に、軌道生成部100から自動運転指令Oaが入力されている場合に目標転舵角選択部121は、予定軌道Tzに従うように取得される目標転舵角θttを、選択する。一方、軌道生成部100から自動運転指令Oaが入力されていない場合に目標転舵角選択部121は、実転舵角θtrを実操舵角θsrに対して連動させる連動制御を、実行する。この連動制御において目標転舵角選択部121は、実操舵角θsrに所定の角度変換比を乗算した変換角を、目標転舵角θttとして選択する。
 転舵角追従制御部122には、目標転舵角選択部121から目標転舵角θttが入力される。転舵角追従制御部122は、実転舵角θtrが目標転舵角θttに追従するように、例えばPID制御等の転舵角追従制御を実行する。この操舵角追従制御によって転舵角追従制御部122は、転舵モータ40へと印加される転舵電流値Itを決定する。
 転舵漸減制御部123には、転舵角追従制御部122から転舵電流値Itが入力される。転舵漸減制御部123には、軌道生成部100から停止指令Oeが入力される。転舵漸減制御部123には、始動センサ55から停止指令Oeが入力される。停止指令Oeが入力されていない場合に転舵漸減制御部123は、転舵電流値Itの印加を転舵アクチュエータ4へ指令するための出力指令Otを、生成する。その結果、生成された出力指令Otに従う転舵アクチュエータ4を介して、転舵タイヤ20の実転舵角θtrが当該出力指令Otと対応した角度に制御される。
 これに対し、停止指令Oeが入力されている場合に転舵漸減制御部123は、後に詳述する漸減制御によって調整された電流値の印加を転舵アクチュエータ4へ指令するための出力指令Otを、生成する。その結果、生成された出力指令Otに従う転舵アクチュエータ4は、転舵タイヤ20へ向けた転舵出力トルクTtoを制御する。このとき操舵出力トルクTtoは、転舵タイヤ20の実転舵トルクTtrと実質一致する。
 ここまで説明した軌道生成部100、操舵制御部110、及び転舵制御部120の共同により、操舵制御装置1が車両2の操舵及び転舵を制御により連動させる操舵制御方法のうち、停止制御モードにおいて実行される方法のフローを、図5~7を参照しつつ説明する。本フローは、軌道生成部100及び始動センサ55の一方からの停止指令Oeに応じて、開始される。尚、図5における各「S」は、操舵制御プログラムに含まれた複数命令により実行される複数ステップを、それぞれ意味する。図6は、停止指令Oeのグラフを除いて、転舵に関わる値の経時変化を実線により、また操舵に関わる値の経時変化を点線により、それぞれ示している。
 図5に示すS101では、停止指令Oeに伴って目標操舵角選択部111が、実操舵角θsrが実転舵角θtrに連動するように目標操舵角θstを選択する。その結果、選択された目標操舵角θstが操舵角追従制御部113により第一操舵電流候補値Isc1へ変換されることで、停止指令Oeに伴って当該変換値Isc1が操舵電流値Isとして操舵電流選択部115から操舵漸減制御部116へと入力される。これにより、操舵電流値Isを指令する出力指令Osが操舵アクチュエータ3へ出力されることで、図6に示すように、実操舵角θsrが実転舵角θtrに対し連動制御されることとなる。こうしたS101による連動制御は、後述のS103が開始するまで、継続される。これにより、後述のS102が連動制御中に実行されることになる。
 図5に示すようにS102では、停止指令Oeに応じて転舵漸減制御部123が、図6,7に示す如き転舵電流値Itに対する漸減を、実行する。このとき転舵漸減制御部123は、漸減させる転舵電流値Itの初期値It0として、停止指令Oeの入力時点での転舵電流値Itを記憶する。さらに転舵漸減制御部123は、単位時間当たりでの転舵電流値Itの減少率が一定となるように、初期値It0から実質連続的に漸減させる。転舵漸減制御部123は、こうした転舵電流値Itの漸減を指令する出力指令Otを、転舵アクチュエータ4へ出力する。これにより、転舵アクチュエータ4から転舵タイヤ20へ出力される転舵出力トルクTtoは、出力指令Otに従って制御されることで、単位時間当たりの減少率が一定となるように漸減することとなる。以上の結果、転舵電流値Itが零値(0)に到達すると、転舵漸減制御部123は、転舵電流値Itの漸減を終了してから、操舵漸減制御部116へ操舵漸減指令Orを出力する。尚、転舵電流値Itの漸減は、転舵電流値Itが零値に近い所定値に到達した時点で、終了してもよい。
 図5に示すようにS103では、転舵漸減制御部123による転舵電流値Itの漸減制御が終了した後、操舵漸減指令Orに応じて操舵漸減制御部116が、図6,7に示す如き操舵電流値Isに対する漸減を、実行する。このとき操舵漸減制御部116は、漸減させる操舵電流値Isの初期値Is0として、操舵漸減指令Orの入力時点での操舵電流値Isを記憶する。さらに操舵漸減制御部116は、単位時間当たりでの操舵電流値Isの減少率が一定となるように、初期値Is0から実質連続的に漸減させる。操舵漸減制御部116は、こうした操舵電流値Isの漸減を指令する出力指令Osを、操舵アクチュエータ3へ出力する。これにより、操舵アクチュエータ3からステアリングホイール21へ出力される操舵出力トルクTsoは、出力指令Osに従って制御されることで、単位時間当たりの減少率が一定となるように漸減することとなる。以上の結果、操舵電流値Isが零値(0)に到達すると、操舵漸減制御部116は、操舵電流値Isの漸減を終了する。尚、操舵電流値Isの漸減は、操舵電流値Isが零値に近い所定値に到達した時点で、終了してもよい。
 図5に示すように、操舵漸減制御部116による操舵電流値Isの漸減制御が終了した後、S104において転舵漸減制御部123は、転舵ドライバ42から転舵モータ40への通電をカットする。また、操舵漸減制御部116による操舵電流値Isの漸減制御が終了した後、S105において操舵漸減制御部116は、操舵ドライバ32から操舵モータ30への通電をカットする。ここで、操舵モータ30への通電カットのS104と転舵モータ40への通電カットのS105とは、実行時間が前後にずらされてもよいし(図5,6はS104が先の例)、実質同時に実行されてもよい。また、図6に示す本実施形態において操舵モータ30への通電カットと転舵モータ40への通電カットとは、それぞれ対応するドライバ32,42が電源を遮断(図6ではオフ)することで、実現される。但し、S102,S103で印加電流が零値まで漸減される場合、当該零値への到達時点で通電カットが実現されると考えることも可能である。
 このように本実施形態では、S101,S103,S105が操舵制御工程に相当し、S102,S104が転舵制御工程に相当する。
 (作用効果)
 以上説明した第一実施形態の作用効果を、以下に説明する。
 第一実施形態によると、車両2の停止指令Oeに伴って実操舵角θsrが実転舵角θtrに対し連動制御される連動制御中に、転舵アクチュエータ4からの転舵出力トルクTtoが漸減制御された後、転舵アクチュエータ4及び操舵アクチュエータ3への通電がそれぞれカットされる。これによれば、転舵アクチュエータ4及び操舵アクチュエータ3への通電カット前に、転舵出力トルクTtoの漸減制御に応じて転舵タイヤ20のねじれが緩やかに解消され得るので、転舵タイヤ20の急激な復元は生じ難くなる。故に、転舵タイヤ20の復元による転舵タイヤ20及びそれを支持する車体の振動発生を、停止指令Oeに伴って抑制することができる。しかも、転舵出力トルクTtoの漸減制御は、実操舵角θsrと実転舵角θtrとの連動制御中に実現されることから、転舵タイヤ20と連動するステアリングホイール21の振動も、停止指令Oeに伴って抑制することができる。
 第一実施形態では、転舵アクチュエータ4への印加電流の漸減により、転舵出力トルクTtoが当該漸減電流に合わせて緩やかに漸減制御され得る。故に、転舵タイヤ20の急激な復元による車両2の振動発生を、車両2の停止指令に伴って抑制することができる。
 第一実施形態では、転舵アクチュエータ4への印加電流が零値まで漸減されることで、転舵出力トルクTtoも零値にまで漸減制御され得る。故に、転舵タイヤ20の緩やかなねじれ解消を、転舵出力トルクTtoが零値となるまで継続して、車両の停止指令に伴う振動発生の抑制効果を高めることができる。
 第一実施形態では、操舵アクチュエータ3からの操舵出力トルクTsoが漸減制御された後、転舵アクチュエータ4及び操舵アクチュエータ3への通電がカットされる。これによれば、実操舵角θsrと実転舵角θtrとの連動制御後に操舵出力トルクTsoが残存していたとしても、当該残存トルクTsoによるステアリングホイール21の変動及び振動は、漸減に応じた緩やかなトルク変化によって緩和され得る。故に、車両2の停止指令Oeに伴う振動発生の抑制効果がステアリングホイール21において阻害されるのを、抑止することができる。
 第一実施形態では、操舵アクチュエータ3への印加電流の漸減により、操舵出力トルクTsoが当該漸減電流に合わせて緩やかに漸減制御され得る。故に、車両2の停止指令Oeに伴う振動発生の抑制効果がステアリングホイール21において阻害されるのを、抑止することができる。
 第一実施形態では、操舵アクチュエータ3への印加電流が零値まで漸減されることで、操舵出力トルクTsoも零値にまで漸減制御され得る。故に、残存した操舵出力トルクTsoの漸減を、操舵出力トルクTsoが零値となるまで継続して、車両2の停止指令Oeに伴う振動発生に対する阻害の抑止性を高めることができる。
 第一実施形態では、転舵アクチュエータ4及び操舵アクチュエータ3への通電は、転舵出力トルクTto及び操舵出力トルクTsoの漸減制御後に、電源遮断によってカットされることとなる。これによれば、停止指令Oeに伴う電源遮断にあっても、転舵タイヤ20の復元による転舵タイヤ20及び車体の振動発生を抑制することができる。
 (第二実施形態)
 図8,9に示すように第二実施形態は、第一実施形態の変形例である。第二実施形態では、転舵漸減制御部123及び操舵漸減制御部116の構成が第一実施形態と異なっている。
 第二実施形態の転舵漸減制御部123は、図8に示す転舵系6の共振周波数よりも低いカットオフ周波数が設定されるローパスフィルタを、含んで構成されている。ここで転舵系6は、車両2において転舵タイヤ20を少なくとも含む。転舵系6は、転舵アクチュエータ4を含んでいてもよい。また転舵系6は、転舵アクチュエータ4と転舵タイヤ20との間に介在する、例えばタイロッド等の駆動部材を含んでもよい。転舵電流値Itに対する漸減において転舵漸減制御部123は、ローパスフィルタを通すことによって転舵電流値Itを漸減させる。これにより図9に示すように、転舵電流値It自体に加え、転舵電流値Itの単位時間当たりでの減少率も漸減される。
 第二実施形態の操舵漸減制御部116は、所定のカットオフ周波数が設定されるローパスフィルタを、含んで構成されている。操舵電流値Isに対する漸減において操舵漸減制御部116は、ローパスフィルタを通すことによって操舵電流値Isを漸減させる。これにより図9に示すように、操舵電流値Is自体の漸減に加え、操舵電流値Isの単位時間当たりでの減少率も漸減される。
 (作用効果)
 以上説明した第二実施形態の作用効果を、以下に説明する。
 第二実施形態では、車両2において転舵タイヤ20を含む転舵系6の共振周波数よりも、低いカットオフ周波数の設定されるローパスフィルタを通すことで、転舵アクチュエータ4への印加電流が漸減される。これによれば、転舵タイヤ20の復元による転舵系6及び車体の振動発生を、停止指令Oeに伴って抑制することができる。
 (他の実施形態)
 以上、本開示の複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
 変形例の転舵アクチュエータ4は、ステアリングホイール21及び操舵アクチュエータ3に対して機械的に連携し且つ同アクチュエータ3とは独立に制御可能な、パワーステアリングシステムを構成していてもよい。
 変形例において操舵制御装置1を構成する専用コンピュータは、車両2との間にて通信可能な、少なくとも一つの外部センターコンピュータであってもよい。変形例において操舵制御装置1を構成する専用コンピュータは、デジタル回路及びアナログ回路のうち、少なくとも一方をプロセッサとして含んでいてもよい。ここでデジタル回路とは、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、SOC(System on a Chip)、PGA(Programmable Gate Array)、及びCPLD(Complex Programmable Logic Device)等のうち、少なくとも一種類である。またこうしたデジタル回路は、プログラムを格納したメモリを、有していてもよい。
 第一及び第二実施形態の変形例は、転舵電流値Itを実質連続的に漸減させる代わりに、断続的に転舵電流値Itを漸減させてもよい。第一及び第二実施形態の変形例は、操舵電流値Isを実質連続的に漸減させる代わりに、断続的に操舵電流値Isを減少させてもよい。
 第二実施形態の変形例は、単位時間当たりの減少率が漸減するように転舵電流値Itを漸減させる代わりに、当該減少率が漸増するように転舵電流値Itを漸減させてもよい。第二実施形態の変形例は、単位時間当たりの減少率が漸減するように操舵電流値Isを漸減させる代わりに、当該減少率が漸増するように操舵電流値Isを漸減させてもよい。
 変形例では、第一実施形態と第二実施形態とが組み合わされてもよい。具体的には、転舵漸減制御部123と操舵漸減制御部116とのうち一方のみが、第二実施形態に準じたローパスフィルタにより印加電流を漸減させてもよい。

Claims (17)

  1.  車両(2)において、操舵アクチュエータ(3)による操舵部材(21)の運動と、転舵アクチュエータ(4)による転舵タイヤ(20)の運動とを、制御により連動させる操舵制御装置(1)であって、
     前記操舵アクチュエータから出力される操舵出力トルク(Tso)を制御し、前記操舵アクチュエータを介して前記操舵部材の実操舵角(θsr)を制御する操舵制御部(110)と、
     前記転舵アクチュエータから出力される転舵出力トルク(Tto)を制御し、前記転舵アクチュエータを介して前記転舵タイヤの実転舵角(θtr)を制御する転舵制御部(120)とを、備え、
     前記転舵制御部は、前記車両の停止指令(Oe)に伴って前記操舵制御部が前記実操舵角を前記実転舵角に対し連動制御する連動制御中に、前記転舵出力トルクを漸減制御し、
     前記転舵制御部及び前記操舵制御部は、前記転舵制御部による前記転舵出力トルクの漸減制御後に、それぞれ前記転舵アクチュエータ及び前記操舵アクチュエータへの通電をカットする操舵制御装置。
  2.  前記転舵制御部は、前記転舵アクチュエータへの印加電流を漸減させることにより、前記転舵出力トルクを漸減制御する請求項1に記載の操舵制御装置。
  3.  前記転舵制御部は、前記転舵アクチュエータへの印加電流を零値まで漸減させる請求項2に記載の操舵制御装置。
  4.  前記転舵制御部は、前記車両において前記転舵タイヤを含む転舵系(6)の共振周波数よりも、低いカットオフ周波数の設定されるローパスフィルタを通すことにより、前記転舵アクチュエータへの印加電流を漸減させる請求項2又は3に記載の操舵制御装置。
  5.  前記操舵制御部が前記操舵出力トルクを漸減制御した後、前記転舵制御部及び前記操舵制御部がそれぞれ前記転舵アクチュエータ及び前記操舵アクチュエータへの通電をカットする請求項1~4のいずれか一項に記載の操舵制御装置。
  6.  前記操舵制御部は、前記操舵アクチュエータへの印加電流を漸減させることにより、前記操舵出力トルクを漸減制御する請求項5に記載の操舵制御装置。
  7.  前記操舵制御部は、前記操舵アクチュエータへの印加電流を零値まで漸減させる請求項6に記載の操舵制御装置。
  8.  前記転舵制御部及び前記操舵制御部は、それぞれ前記転舵アクチュエータ及び前記操舵アクチュエータへの通電を電源の遮断によりカットする請求項1~7のいずれか一項に記載の操舵制御装置。
  9.  車両(2)において、操舵アクチュエータ(3)による操舵部材(21)の運動と、転舵アクチュエータ(4)による転舵タイヤ(20)の運動とを、制御により連動させる操舵制御方法であって、
     前記操舵アクチュエータから出力される操舵出力トルク(Tso)を制御し、前記操舵アクチュエータを介して前記操舵部材の実操舵角(θsr)を制御する操舵制御工程(S101,S103,S105)と、
     前記転舵アクチュエータから出力される転舵出力トルク(Tto)を制御し、前記転舵アクチュエータを介して前記転舵タイヤの実転舵角(θtr)を制御する転舵制御工程(S102,S104)とを、含み、
     前記転舵制御工程は、前記車両の停止指令(Oe)に伴って前記操舵制御工程により前記実操舵角が前記実転舵角に対し連動制御される連動制御中に、前記転舵出力トルクを漸減制御し、
     前記転舵制御工程及び前記操舵制御工程は、前記転舵制御工程による前記転舵出力トルクの漸減制御後に、それぞれ前記転舵アクチュエータ及び前記操舵アクチュエータへの通電をカットする操舵制御方法。
  10.  前記転舵制御工程は、前記転舵アクチュエータへの印加電流を漸減させることにより、前記転舵出力トルクを漸減制御する請求項9に記載の操舵制御方法。
  11.  前記転舵制御工程は、前記転舵アクチュエータへの印加電流を零値まで漸減させる請求項10に記載の操舵制御方法。
  12.  前記転舵制御工程は、前記車両において前記転舵タイヤを含む転舵系(6)の共振周波数よりも低いカットオフ周波数の設定されるローパスフィルタを通すことにより、前記転舵アクチュエータへの印加電流を漸減させる請求項10又は11に記載の操舵制御方法。
  13.  前記操舵制御工程により前記操舵出力トルクが漸減制御された後、前記転舵制御工程及び前記操舵制御工程によりそれぞれ前記転舵アクチュエータ及び前記操舵アクチュエータへの通電がカットされる請求項9~12のいずれか一項に記載の操舵制御方法。
  14.  前記操舵制御工程は、前記操舵アクチュエータへの印加電流を漸減させることにより、前記操舵出力トルクを漸減制御する請求項13に記載の操舵制御方法。
  15.  前記操舵制御工程は、前記操舵アクチュエータへの印加電流を零値まで漸減させる請求項14に記載の操舵制御方法。
  16.  前記転舵制御工程及び前記操舵制御工程は、それぞれ前記転舵アクチュエータ及び前記操舵アクチュエータへの通電を電源の遮断によりカットする請求項9~15のいずれか一項に記載の操舵制御方法。
  17.  車両(2)において、操舵アクチュエータ(3)による操舵部材(21)の運動と、転舵アクチュエータ(4)による転舵タイヤ(20)の運動とを、制御により連動させるために、プロセッサ(12)に実行させる命令を含む操舵制御プログラムであって、
     前記命令は、
     前記操舵アクチュエータから出力される操舵出力トルク(Tso)を制御させ、前記操舵アクチュエータを介して前記操舵部材の実操舵角(θsr)を制御させる操舵制御工程(S101,S103,S105)と、
     前記転舵アクチュエータから出力される転舵出力トルク(Tto)を制御させ、前記転舵アクチュエータを介して前記転舵タイヤの実転舵角(θtr)を制御させる転舵制御工程(S102,S104)とを、含み、
     前記転舵制御工程は、前記車両の停止指令(Oe)に伴って前記操舵制御工程により前記実操舵角を前記実転舵角に対し連動制御させる連動制御中に、前記転舵出力トルクを漸減制御させ、
     前記転舵制御工程及び前記操舵制御工程は、前記転舵制御工程による前記転舵出力トルクの漸減制御後に、それぞれ前記転舵アクチュエータ及び前記操舵アクチュエータへの通電をカットさせる操舵制御プログラム。
PCT/JP2021/033316 2020-10-23 2021-09-10 操舵制御装置、操舵制御方法、操舵制御プログラム WO2022085331A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/302,650 US20230257020A1 (en) 2020-10-23 2023-04-18 Steering control device, steering control method, and computer program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178238A JP7388335B2 (ja) 2020-10-23 2020-10-23 操舵制御装置、操舵制御方法、操舵制御プログラム
JP2020-178238 2020-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/302,650 Continuation US20230257020A1 (en) 2020-10-23 2023-04-18 Steering control device, steering control method, and computer program product

Publications (1)

Publication Number Publication Date
WO2022085331A1 true WO2022085331A1 (ja) 2022-04-28

Family

ID=81289854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033316 WO2022085331A1 (ja) 2020-10-23 2021-09-10 操舵制御装置、操舵制御方法、操舵制御プログラム

Country Status (3)

Country Link
US (1) US20230257020A1 (ja)
JP (1) JP7388335B2 (ja)
WO (1) WO2022085331A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184739A (ja) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Steering Ltd パワーステアリング装置
WO2018047846A1 (ja) * 2016-09-06 2018-03-15 Ntn株式会社 回転伝達装置
WO2018088433A1 (ja) * 2016-11-11 2018-05-17 日本精工株式会社 電動パワーステアリング装置
JP2018090057A (ja) * 2016-12-01 2018-06-14 本田技研工業株式会社 乗員保持装置
JP2019127216A (ja) * 2018-01-26 2019-08-01 株式会社ジェイテクト 転舵制御装置
JP2020108327A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184739A (ja) * 2013-03-21 2014-10-02 Hitachi Automotive Systems Steering Ltd パワーステアリング装置
WO2018047846A1 (ja) * 2016-09-06 2018-03-15 Ntn株式会社 回転伝達装置
WO2018088433A1 (ja) * 2016-11-11 2018-05-17 日本精工株式会社 電動パワーステアリング装置
JP2018090057A (ja) * 2016-12-01 2018-06-14 本田技研工業株式会社 乗員保持装置
JP2019127216A (ja) * 2018-01-26 2019-08-01 株式会社ジェイテクト 転舵制御装置
JP2020108327A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 制御装置

Also Published As

Publication number Publication date
JP2022069191A (ja) 2022-05-11
US20230257020A1 (en) 2023-08-17
JP7388335B2 (ja) 2023-11-29

Similar Documents

Publication Publication Date Title
US10343718B2 (en) Driver assistance system for vehicle
CN110356471B (zh) 车辆控制***
WO2010116518A1 (ja) 車両の制御装置
JP2019156327A (ja) 車両の車線逸脱防止制御装置
WO2019043915A1 (ja) 車両並びにその制御装置及び制御方法
US11465674B2 (en) Steering apparatus
US20190233003A1 (en) Steering control device
JP6387915B2 (ja) 車両の運転支援制御装置
US11577781B2 (en) Vehicle control system
CN108216353B (zh) 车辆控制装置
WO2022085331A1 (ja) 操舵制御装置、操舵制御方法、操舵制御プログラム
US20220348253A1 (en) Steering control device, steering control method, and computer program product
US11939013B2 (en) Steering control device
US20200239066A1 (en) Vehicle control system
WO2022044769A1 (ja) 操舵制御装置、操舵制御方法、操舵制御プログラム
WO2018235930A1 (ja) 走行制御装置
US20230017841A1 (en) Steering control device, and steering control method
JP2019119298A (ja) 車両用制御装置
US11884260B2 (en) Vehicle control device
US20230127678A1 (en) Vehicle driving support device
JP7283410B2 (ja) 操舵制御装置、操舵制御方法、および操舵制御プログラム
JP2023144726A (ja) 運転支援システム、運転支援方法
CN117999209A (zh) 车辆用控制装置、车辆用控制程序以及车辆控制方法
JP2006062626A (ja) 車両用操舵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882472

Country of ref document: EP

Kind code of ref document: A1