WO2022082435A1 - 基于多物联网模块的电动车防盗方法、装置和计算机设备 - Google Patents

基于多物联网模块的电动车防盗方法、装置和计算机设备 Download PDF

Info

Publication number
WO2022082435A1
WO2022082435A1 PCT/CN2020/122213 CN2020122213W WO2022082435A1 WO 2022082435 A1 WO2022082435 A1 WO 2022082435A1 CN 2020122213 W CN2020122213 W CN 2020122213W WO 2022082435 A1 WO2022082435 A1 WO 2022082435A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
module
iot
internet
modules
Prior art date
Application number
PCT/CN2020/122213
Other languages
English (en)
French (fr)
Inventor
蒋壮
张立新
魏科文
林侃
陈刚
Original Assignee
深圳市沃特沃德股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市沃特沃德股份有限公司 filed Critical 深圳市沃特沃德股份有限公司
Priority to PCT/CN2020/122213 priority Critical patent/WO2022082435A1/zh
Publication of WO2022082435A1 publication Critical patent/WO2022082435A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/02Mechanical actuation
    • G08B13/14Mechanical actuation by lifting or attempted removal of hand-portable articles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the present application relates to the technical field of anti-theft of electric vehicles, and in particular, to a method, device and computer equipment for anti-theft of electric vehicles based on multiple Internet of Things modules.
  • Existing electric vehicles are usually equipped with an Internet of Things module, which uploads the real-time location information of the electric vehicle to the remote server at a fixed frequency, so as to ensure that in the event of the electric vehicle being stolen, the user can communicate with the remote server through the Internet of Things module.
  • the associated corresponding APP can query the location information of the electric vehicle to realize the location of the electric vehicle, so as to facilitate the retrieval of the stolen electric vehicle.
  • the IoT module is removed after the electric vehicle is stolen, the user will not be able to retrieve the electric vehicle through location.
  • the main purpose of this application is to provide an anti-theft method, device and computer equipment for electric vehicles based on multiple Internet of Things modules, aiming to solve the problem that after the only single Internet of Things module of the existing electric vehicle is removed, it is impossible to retrieve the stolen goods through positioning. Disadvantages of electric vehicles.
  • the present application provides an anti-theft method for an electric vehicle based on multiple Internet of Things modules, the electric vehicle is deployed with at least two Internet of Things modules, and the anti-theft method includes:
  • the present application also provides an anti-theft device for an electric vehicle based on multiple IoT modules, the electric vehicle is deployed with at least two IoT modules, and the anti-theft device includes:
  • a first monitoring module for monitoring whether any one of the IoT modules is removed
  • a judging module for judging whether the electric vehicle is in a stolen state if it is detected that any one of the Internet of Things modules is removed;
  • the control module is used to wake up the IoT module that has not been removed if the electric vehicle is in a stolen state, and control the IoT module that has not been removed to send the positioning information of the electric vehicle to the cloud at a specified sending frequency server.
  • the present application further provides a computer device, including a memory and a processor, wherein a computer program is stored in the memory, wherein, when the processor executes the computer program, an electric motor based on multiple Internet of Things modules is implemented car anti-theft method;
  • the electric vehicle is deployed with at least two IoT modules, and the anti-theft method includes:
  • the present application further provides a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, an anti-theft method for an electric vehicle based on multiple Internet of Things modules is implemented, the The electric vehicle is deployed with at least two IoT modules, and the anti-theft method includes the following steps:
  • the present application provides an anti-theft method, device and computer equipment for an electric vehicle based on multiple IoT modules.
  • the electric vehicle is deployed with at least two IoT modules, and the system monitors in real time whether any IoT module is removed. If it is detected that any IoT module is removed, it is determined whether the electric vehicle is in a stolen state. If the electric vehicle is in a stolen state, wake up the IoT module that has not been removed, and control the IoT module that has not been removed to send the positioning information of the electric vehicle to the cloud server at a specified sending frequency.
  • the electric vehicle since the electric vehicle is deployed with multiple IoT modules, when it is detected that any of the IoT modules is removed and the electric vehicle is in a stolen state, the remaining IoT modules that have not been removed will be awakened in time, and the electric vehicle will be sent.
  • the location information is sent to the cloud server, so that the user can retrieve the stolen electric vehicle in time according to the location information.
  • FIG. 1 is a schematic diagram of steps of an electric vehicle anti-theft method based on multiple Internet of Things modules in an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a circuit connection between an IoT module and a main battery terminal in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an open circuit detection circuit of a single-channel Internet of Things module in an embodiment of the present application
  • FIG. 4 is a schematic circuit diagram of a plurality of Internet of Things modules disconnecting and disconnecting a motor in an embodiment of the present application
  • FIG. 5 is a block diagram of the overall structure of an electric vehicle anti-theft device based on multiple Internet of Things modules in an embodiment of the present application;
  • FIG. 6 is a schematic structural block diagram of a computer device according to an embodiment of the present application.
  • an embodiment of the present application provides an anti-theft method for an electric vehicle based on multiple IoT modules, where the electric vehicle is deployed with at least two IoT modules, and the anti-theft method includes:
  • the electric vehicle is deployed with at least two IoT modules.
  • each IoT module is deployed in different positions in the electric vehicle, so as to avoid the electric vehicle being stolen and completely removed by thieves at one time.
  • Each IoT module corresponds to a different initial sending frequency of positioning information.
  • the initial sending frequency of IoT module A is to send positioning information once a day
  • the initial sending frequency of IoT module B is to send positioning information every 4 hours.
  • the specific value of can be customized by the user, or it can be the default factory setting.
  • the on-board system of the electric vehicle monitors whether each IoT module is removed in real time through the detection circuit connected to the IoT module internally. If it is detected that any one of the IoT modules is removed, it is determined whether the electric vehicle is in a stolen state. Specifically, the in-vehicle system can detect whether the electric vehicle is in the starting state (for example, whether the engine is in working state); or, wake up all the IoT modules that have not been removed.
  • the initial sending frequency of the electric vehicle uploads the positioning information of the electric vehicle to the cloud server, and the in-vehicle system determines that the electric vehicle is in the Whether the position change occurs during the preset duration. If the in-vehicle system detects that the electric vehicle is not in the starting state, or the position of the electric vehicle has not changed within a preset period of time, it will determine that the electric vehicle is not currently in a stolen state. It may be that the user needs to perform daily maintenance operations and other processing.
  • the dismantled IoT module maintains the initial sending frequency, thereby effectively avoiding the misjudgment of the electric vehicle being stolen and reducing unnecessary power consumption.
  • the in-vehicle system detects that the electric vehicle is in a starting state, or the position of the electric vehicle changes within a preset time period, it is determined that the electric vehicle is currently in a stolen state. At this time, the in-vehicle system wakes up the IoT module that has not been removed, and sends a theft notification command to the cloud server.
  • the cloud server sends a control command to control the IoT module that has not been removed to send the positioning information to the cloud server according to the specified sending frequency.
  • the designated sending frequency is faster than the initial sending frequency, for example, the initial sending frequency is once every 4 hours, and the designated sending frequency is once every 5 minutes, so as to ensure that the user can keep the stolen electric vehicle running far away and the power supply of the IoT module is When the power is not exhausted, the positioning information of the electric vehicle can be obtained through the Internet of Things module that has not been removed, and tracked and searched accordingly, so as to retrieve the stolen electric vehicle.
  • This embodiment provides an anti-theft device for electric vehicles based on multiple Internet of Things modules.
  • the electric vehicle is deployed with at least two Internet of Things modules, and the system monitors in real time whether any one of the Internet of Things modules is removed. If it is detected that any IoT module is removed, wake up the IoT module that has not been removed, and determine whether the electric vehicle is in a stolen state. If the electric vehicle is in a stolen state, the IoT module that has not been removed is controlled to send the positioning information of the electric vehicle to the cloud server at a specified sending frequency.
  • the electric vehicle since the electric vehicle is deployed with multiple IoT modules, when it is detected that any of the IoT modules is removed and the electric vehicle is in a stolen state, the remaining IoT modules that have not been removed will be awakened in time, and the electric vehicle will be sent.
  • the location information is sent to the cloud server, so that the user can retrieve the stolen electric vehicle in time according to the location information.
  • the step of controlling the unremoved Internet of Things module to send the positioning information of the electric vehicle to the cloud server at a specified sending frequency includes:
  • S302 Receive the specified sending frequency fed back by the cloud server, and control the IoT module that has not been removed to send the positioning information to the cloud server according to the specified sending frequency.
  • a plurality of IoT modules are installed in the electric vehicle.
  • the positioning information of the electric vehicle will be sent to the cloud server according to the initial sending frequency; the rest of the IoT modules are in the sleep state and will not send the positioning information of the electric vehicle to the cloud server, so that when the electric vehicle is working normally, it can avoid unnecessary of power consumption.
  • the in-vehicle system detects that the electric vehicle is stolen, it sends a notification command to the cloud server, and the IoT module that has not been removed is in the state of receiving the command.
  • the cloud server After receiving the notification command sent by the in-vehicle system, the cloud server will issue the specified sending frequency to the in-vehicle system according to the settings.
  • the vehicle-mounted system controls the IoT module that has not been removed to change the initial sending frequency to the designated sending frequency, and sends the positioning information of the electric vehicle to the cloud server according to the designated sending frequency.
  • the designated sending frequency is faster than the initial sending frequency, so as to ensure that the user can use the IoT module that has not been removed as much as possible without running away after the electric vehicle is stolen and the power supply of the IoT module is not exhausted. Obtain the positioning information of electric vehicles, track and find vehicles, and retrieve stolen electric vehicles.
  • step of monitoring that any one of the Internet of Things modules is removed includes:
  • each IoT module on the electric vehicle is provided with an alarm sound detection port, which can actively receive the external alarm sound and change the working state according to the alarm sound. After the on-board system detects that any IoT module is removed, it will automatically trigger the alarm device on the electric vehicle, so that the alarm device sends an alarm sound.
  • the in-vehicle system When the in-vehicle system detects the alarm sound through the alarm sound detection port of the IoT module that has not been removed, it will automatically control the IoT module that has not been removed to enter the wake-up state from the sleep state (if the IoT module that has not been removed is in the wake-up state) module, the IoT module in the wake-up state does not change its state and is still in the wake-up state), so as to wake up the IoT module that has not been removed.
  • the IoT module is connected to the main battery of the electric vehicle through a 2-core coaxial cable, and the 2-core coaxial cable includes a load disconnection detection line;
  • the load disconnection detection line is connected to one end of the pull-up resistor R1 at one end of the main battery, and the other end of the pull-up resistor R1 is connected to the power supply; the load disconnection detection line is connected to the pull-down resistor at one end of the IoT module. One end of the resistor R2 is connected, and the other end of the pull-down resistor R2 is grounded;
  • the pull-up resistor R1 is connected in parallel with the source and the gate of the first PMOS transistor Q1, and the drain of the first PMOS transistor Q1 is connected to the alarm trigger terminal;
  • the steps include:
  • the load disconnection detection circuit of the single-channel IoT module is: a 2-core coaxial cable with a shielded ground layer is used between the main battery of the electric vehicle and the IoT module.
  • one of the 2-core coaxial cables is the power supply line, and the other is the load disconnection detection line.
  • the load-break detection line is connected to one end of the pull-up resistor R1 at one end of the main battery, and the other end of the pull-up resistor R1 is connected to the power supply.
  • the load break detection line is connected to one end of the pull-down resistor R2 at one end of the IoT module, and the other end of the pull-down resistor R2 is grounded.
  • Both ends of the pull-up resistor R1 are connected in parallel to the source and gate of the first PMOS transistor Q1, and the drain of the first PMOS transistor Q1 is connected to the ground through a second resistor R3 in series, and is simultaneously connected to the alarm trigger terminal.
  • the voltage on the load disconnection detection line is about half of the power supply, so the VGS voltage value on the first PMOS transistor Q1 is greater than the turn-on threshold voltage of the first PMOS transistor, the first PMOS transistor Q1 is turned on, and the drain of Q1 outputs a high voltage level, the alarm trigger terminal will not be triggered, and the electric vehicle alarm device will not alarm.
  • the pull-up resistor R1 and the pull-down resistor R2 are disconnected, so the voltage across the pull-up resistor R1 is 0, the first PMOS transistor Q1 is not turned on, and its drain output is low. level, thereby triggering the alarm device, so that the alarm device emits an alarm sound.
  • the load disconnection detection line is also connected to the anode of the Schottky diode DA at one end of the main battery, and the cathode of the Schottky diode DA is connected to the output wake-up control port of the alarm device;
  • the step of controlling the Internet of Things module in the sleep state among the Internet of Things modules that have not been removed to enter the wake-up state from the sleep state includes:
  • the load disconnection detection line is connected to the anode of the Schottky diode DA at one end of the main battery, and the cathode of the Schottky diode DA is connected to the output wake-up control port of the alarm device.
  • the output wake-up control port when the alarm device does not trigger an alarm, the output wake-up control port is in an open state or outputs a high level.
  • the output wake-up control port outputs a low-level pulse, and the Schottky diode DA will pull down the level of the load disconnection detection line, thereby awakening the IoT module corresponding to the load disconnection detection line, so that the unremoved The IoT module goes from sleep state to wake state.
  • the pull-down resistor R2 is connected in parallel with the source and the gate of the NMOS transistor Q2, and the drain of the NMOS transistor Q2 is connected to the interrupt detection port;
  • the interrupt detection of the IoT module is triggered, and the removed IoT module is controlled to enter the wake-up state from the sleep state.
  • both ends of the pull-down resistor R2 are connected in parallel to the source and gate of the NMOS transistor Q2, and the drain of the NMOS transistor Q2 is connected to the power supply through a third resistor R4 in series, and the Connect to the interrupt detection port.
  • the voltage across the pull-down resistor R2 is higher than the turn-on threshold voltage of the NMOS transistor Q2, the NMOS transistor Q2 is turned on, and its drain outputs a low level, the interrupt detection interface will not be triggered, and the IoT module works normally and sleep.
  • the load disconnection detection line When the load disconnection detection line is disconnected, the voltage across the pull-down resistor R2 is 0, and the NMOS transistor Q2 is not turned on. At this time, the drain of the NMOS transistor Q2 outputs a high level, thereby triggering the terminal detection of the IoT module through the interrupt detection interface. , so that the currently removed IoT module is immediately awakened (the removed IoT module still maintains a short-term power), and the state is converted from a sleep state to a wake-up state.
  • the step of controlling the unremoved Internet of Things module to send the positioning information of the electric vehicle to the cloud server at a specified sending frequency includes:
  • the in-vehicle system continuously monitors the number of connections (ie, the number that remains connected) of each unremoved IoT module. If the number of connections of each IoT module that has not been removed continues to decrease, when the on-board system detects that the number of connections has decreased to a preset value, for example, when the number of connections is reduced to 1, the on-board system will actively cut off the connection between the electric vehicle power module and the motor.
  • the connection between the electric vehicles makes the electric vehicles unable to travel by electricity, so as to prevent the user from completely losing the positioning information of the electric vehicle after the last IoT module is removed, resulting in the inability to retrieve the stolen electric vehicle.
  • the on-board system cuts off the connection between the power module and the motor, the remaining IoT modules that have not been removed still keep sending the positioning information of the electric vehicle to the cloud server.
  • the on-board system detects that the number of connections is reduced to a preset value, it can automatically change the sending frequency of the remaining IoT modules that have not been removed, so that the sending frequency of the remaining IoT modules that have not been removed is faster, ensuring that users can get More detailed positioning information of electric vehicles to retrieve stolen electric vehicles.
  • the number of the IoT modules is at least 3, and a single IoT module corresponds to a single first PMOS transistor Q1;
  • the drains of the first PMOS transistors Q1 are respectively connected in series with a group of diodes ( D1/D2/D3) and the first resistors (R9/R10/R11), and all of them are connected to one end of the voltage divider resistor R12;
  • Both ends of the voltage dividing resistor R12 are respectively connected to the base and the emitter of the transistor Q6, and the collector of the transistor Q6 is connected to the second PMOS transistor Q5;
  • the drain of the second PMOS transistor Q5 is connected to the control terminal or the power terminal of the engine;
  • the step of cutting off the connection between the power module of the electric vehicle and the electric motor includes:
  • the number of IoT modules deployed on the electric vehicle is at least three, and the load disconnection detection circuit of the single-channel IoT module is as described above, and each IoT module corresponds to a single first PMOS transistor Q1 .
  • the drain of each first PMOS transistor Q1 corresponds to a series of diodes (D1/D2/D3) and a first resistor (R9/R10/R11) respectively, and each first PMOS transistor Q1 is connected to one end of the voltage divider resistor R12 .
  • the voltage dividing resistor R12 is connected in parallel with the transistor Q6, and the two ends are respectively connected with the base and the emitter of the transistor Q6.
  • the collector of the transistor Q6 is connected to the second PMOS transistor Q5, and the drain of the second PMOS transistor Q5 is connected to the control terminal or the power terminal of the engine.
  • the voltage division on the voltage dividing resistor R12 is above the first threshold (such as 0.65V)
  • the transistor Q6 is turned on, and the second PMOS
  • the tube Q5 is also turned on, and the drain of the second PMOS tube Q5 is connected to the normal output voltage of the control terminal or the power terminal of the motor, so that the motor can work normally.
  • the voltage divider on the voltage divider resistor R12 is below the second threshold (such as 0.4V), and the transistor Q6 is not conductive at this time, resulting in the connection of the transistor Q6.
  • the second PMOS transistor Q5 is also not turned on, and the drain of the second PMOS transistor Q5 has no voltage output, thereby controlling the motor not to work and cutting off the connection between the motor and the power module.
  • one load disconnection detection line of the main battery end corresponding to a single IoT module is also connected to the anode of a Schottky diode (D4/D5/D6), and the cathode of the Schottky diode (D4/D5/D6) is connected to It is connected to the wake-up control port together.
  • the wake-up control port is open-circuit state or outputs a high level when it is not alarmed. When the alarm device alarms, a low-level pulse is output to wake up all undisconnected IoT modules.
  • an embodiment of the present application further provides an anti-theft device for an electric vehicle based on multiple IoT modules, the electric vehicle is deployed with at least two IoT modules, and the anti-theft device includes:
  • a first monitoring module 1 for monitoring whether any of the IoT modules is removed
  • Judging module 2 for judging whether the electric vehicle is in a stolen state if any one of the Internet of Things modules is detected to be removed;
  • the control module 3 is used to wake up the Internet of Things module that has not been removed if the electric vehicle is in a stolen state, and control the Internet of Things module that has not been removed to send the positioning information of the electric vehicle to the designated sending frequency. Cloud server.
  • the implementation process of the functions and functions of the first monitoring module 1, the judgment module 2, and the control module 3 in the above-mentioned anti-theft device can be found in the corresponding steps S1 to S3 in the above-mentioned anti-theft method for electric vehicles based on multiple Internet of Things modules. The implementation process is not repeated here.
  • control module 3 includes:
  • a sending unit configured to send a notification instruction to the cloud server
  • a first control unit configured to receive the specified sending frequency fed back by the cloud server, and control the IoT module that has not been dismantled to send the positioning information to the cloud server according to the specified sending frequency.
  • the implementation process of the functions and functions of the transmitting unit and the first control unit in the above-mentioned control module 3 is detailed in the implementation process corresponding to steps S301 to S302 in the above-mentioned multi-IoT module-based anti-theft method for electric vehicles. This will not be repeated here.
  • the judging module 2 includes:
  • a judging unit for judging whether an alarm sound is detected through the alarm sound detection port of the Internet of Things module
  • the wake-up unit is configured to control the IoT module in the sleep state among the IoT modules that have not been removed to enter the wake-up state from the sleep state if an alarm sound is detected.
  • the IoT module is connected to the main battery of the electric vehicle through a 2-core coaxial cable, and the 2-core coaxial cable includes a load disconnection detection line;
  • the load disconnection detection line is connected to one end of the pull-up resistor at one end of the main battery, and the other end of the pull-up resistor is connected to a power supply;
  • the load disconnection detection line is connected to one end of the pull-down resistor at one end of the IoT module, and the other end of the pull-down resistor is grounded;
  • the pull-up resistor is connected in parallel with the source and the gate of the first PMOS tube, and the drain of the first PMOS tube is connected with the alarm trigger terminal;
  • the judging unit includes:
  • the first trigger subunit is used for triggering the alarm device to emit an alarm sound when the drain of the first PMOS transistor outputs a low level.
  • the implementation process of the function and function of the first triggering subunit in the above judgment unit is detailed in the implementation process corresponding to step S2011 in the above-mentioned multi-IoT module-based electric vehicle anti-theft method, which will not be repeated here.
  • the load disconnection detection line is also connected to the anode of the Schottky diode at one end of the main battery, and the cathode of the Schottky diode is connected to the output wake-up control port of the alarm device;
  • the wake-up unit includes:
  • the second triggering sub-unit is used for, when the alarm device is triggered, the output wake-up control port outputs a low-level pulse, and the Schottky diode pulls down the level of the load disconnection detection line to wake up the uninitiated The IoT module in the sleeping state among the removed IoT modules enters the awake state.
  • the implementation process of the function and function of the second trigger sub-unit in the above-mentioned wake-up unit is detailed in the implementation process corresponding to step S3011 in the above-mentioned multi-IoT module-based electric vehicle anti-theft method, which will not be repeated here.
  • the pull-down resistor is connected in parallel with the source and the gate of the NMOS tube, and the drain of the NMOS tube is connected with the interrupt detection port;
  • the wake-up unit includes:
  • the third triggering subunit is used for triggering the interrupt detection of the IoT module when the drain of the NMOS transistor outputs a high level, and controlling the IoT module that has not been removed to enter a wake-up state from a sleep state.
  • both ends of the pull-down resistor R2 are connected in parallel to the source and gate of the NMOS transistor Q2, and the drain of the NMOS transistor Q2 is connected to the power supply through a third resistor R4 in series, and the Connect to the interrupt detection port.
  • the voltage across the pull-down resistor R2 is higher than the turn-on threshold voltage of the NMOS transistor Q2, the NMOS transistor Q2 is turned on, and its drain outputs a low level, the interrupt detection interface will not be triggered, and the IoT module works normally and sleep.
  • the load disconnection detection line When the load disconnection detection line is disconnected, the voltage across the pull-down resistor R2 is 0, and the NMOS transistor Q2 is not turned on. At this time, the drain of the NMOS transistor Q2 outputs a high level, thereby triggering the terminal detection of the IoT module through the interrupt detection interface. , so that the currently removed IoT module is immediately awakened (the removed IoT module still maintains a short-term power), and the state is converted from a sleep state to a wake-up state.
  • the anti-theft device also includes:
  • a second monitoring module 4 configured to continuously monitor the number of connections of the Internet of Things module that has not been removed;
  • the disconnection module 5 is used for disconnecting the connection between the power supply module of the electric vehicle and the electric motor when it is monitored that the number of connections is equal to a preset value.
  • the implementation process of the functions and functions of the second monitoring module 4 and the cut-off module 5 in the above-mentioned anti-theft device can be found in the implementation process corresponding to steps S4 to S5 in the above-mentioned anti-theft method for electric vehicles based on multiple Internet of Things modules. It is not repeated here.
  • the number of the IoT modules is at least 3, and a single IoT module corresponds to a single first PMOS transistor;
  • each of the first PMOS transistors are respectively connected in series with a group of diodes and a first resistor, and all of them are connected to one end of the voltage divider resistor;
  • Two ends of the voltage dividing resistor are respectively connected with the base and the emitter of the triode, and the collector of the triode is connected with the second PMOS tube;
  • the drain of the second PMOS tube is connected to the control terminal or the power terminal of the engine
  • the cut-off module 5 includes:
  • the second control unit is configured to control the motor to stop working when the drain of the second PMOS transistor has no voltage output.
  • the implementation process of the functions and functions of the second control unit in the cut-off module 5 can be found in the implementation process corresponding to step S01 in the above-mentioned multi-IoT module-based anti-theft method for electric vehicles, which will not be repeated here.
  • This embodiment provides an anti-theft method for an electric vehicle based on multiple IoT modules.
  • the electric vehicle is deployed with at least two IoT modules, and the system monitors in real time whether any IoT module is removed. If it is detected that any IoT module is removed, wake up the IoT module that has not been removed, and determine whether the electric vehicle is in a stolen state. If the electric vehicle is in a stolen state, the IoT module that has not been removed is controlled to send the positioning information of the electric vehicle to the cloud server at a specified sending frequency.
  • the electric vehicle since the electric vehicle is deployed with multiple IoT modules, when it is detected that any of the IoT modules is removed and the electric vehicle is in a stolen state, the remaining IoT modules that have not been removed will be awakened in time, and the electric vehicle will be sent.
  • the location information is sent to the cloud server, so that the user can retrieve the stolen electric vehicle in time according to the location information.
  • an embodiment of the present application further provides a computer device.
  • the computer device may be a server, and its internal structure may be as shown in FIG. 6 .
  • the computer device includes a processor, memory, a network interface and a database connected by a system bus. Among them, the processor of the computer design is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the nonvolatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer device is used to store data such as preset values.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection.
  • the computer program is executed by the processor, the functions of the anti-theft method for electric vehicles based on multiple Internet of Things modules in any of the above-mentioned embodiments are realized.
  • the electric vehicle is deployed with at least two Internet of Things modules, and the above-mentioned processor executes the steps of the above-mentioned anti-theft method for an electric vehicle based on multiple Internet of Things modules:
  • An embodiment of the present application further provides a computer-readable storage medium.
  • the storage medium may be a non-volatile storage medium or a volatile storage medium, on which a computer program is stored.
  • the computer program is executed by a processor
  • the electric vehicle is deployed with at least two Internet of Things modules, and the method is specifically:
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double-rate SDRAM (SSRSDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Burglar Alarm Systems (AREA)
  • Alarm Systems (AREA)

Abstract

一种基于多物联网模块的电动车防盗方法、装置和计算机设备,电动车设有多个物联网模块,该方法监测任意一个物联网模块是否被拆除,在监测到其中任意一个物联网模块被拆除且电动车处于被盗状态时,唤醒剩余未被拆除的物联网模块,并发送电动车的定位信息到云端服务器,使用户可以根据定位信息找回被盗电动车。

Description

基于多物联网模块的电动车防盗方法、装置和计算机设备 技术领域
本申请涉及电动车防盗技术领域,特别涉及一种基于多物联网模块的电动车防盗方法、装置和计算机设备。
背景技术
现有的电动车上通常会设置有一个物联网模块,该物联网模块以固定频率向远程服务器上传电动车的实时位置信息,以保证电动车在被盗的情况下,用户可以通过与远程服务器关联的相应APP,查询电动车的位置信息,实现定位电动车的位置,从而便于找回被盗的电动车。然而,如果电动车在被盗后,物联网模块被人拆除,则会导致用户无法通过定位找回电动车。
技术问题
本申请的主要目的为提供一种基于多物联网模块的电动车防盗方法、装置和计算机设备,旨在解决现有电动车仅有的单个物联网模块被拆除后,无法通过定位找回被盗电动车的弊端。
技术解决方案
为实现上述目的,第一方面,本申请提供了一种基于多物联网模块的电动车防盗方法,所述电动车部署有至少两个物联网模块,所述防盗方法包括:
监测任一所述物联网模块是否被拆除;
若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
第二方面,本申请还提供了一种基于多物联网模块的电动车防盗装置,所述电动车部署有至少两个物联网模块,所述防盗装置包括:
第一监测模块,用于监测任一所述物联网模块是否被拆除;
判断模块,用于若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
控制模块,用于若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
第三方面,本申请还提供一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,其中,所述处理器执行所述计算机程序时实现一种基于多物联网模块的电动车防盗方法;
其中,所述电动车部署有至少两个物联网模块,所述防盗方法包括:
监测任一所述物联网模块是否被拆除;
若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
第四方面,本申请还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现一种基于多物联网模块的电动车防盗方法,所述电动车部署有至少两个物联网模块,所述防盗方法包括以下步骤:
监测任一所述物联网模块是否被拆除;
若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
有益效果
本申请中提供的一种基于多物联网模块的电动车防盗方法、装置和计算机设备,电动车部署有至少两个物联网模块,***实时监测任意一个物联网模块是否被拆除。如果监测到任意一个物联网模块被拆除,则判断电动车是否处于被盗状态。如果电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制未被拆除的物联网模块以指定发送频率发送电动车的定位信息到云端服务器。本申请中,由于电动车部署有多个物联网模块,在监测到其中任意一个物联网模块被拆除并且电动车处于被盗状态时,及时唤醒剩余未被拆除的物联网模块,并发送电动车的定位信息到云端服务器,以便用户可以根据定位信息及时找回被盗电动车。
附图说明
图1是本申请一实施例中基于多物联网模块的电动车防盗方法步骤示意图;
图2是本申请一实施例中物联网模块与主电池端的电路连接示意图;
图3是本申请一实施例中单路物联网模块断路检测电路示意图;
图4是本申请一实施例中多个物联网模块断路及切断电动机的电路示意图;
图5是本申请一实施例中基于多物联网模块的电动车防盗装置整体结构框图;
图6是本申请一实施例的计算机设备的结构示意框图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,本申请一实施例中提供了一种基于多物联网模块的电动车防盗方法,所述电动车部署有至少两个物联网模块,所述防盗方法包括:
S1:监测任一所述物联网模块是否被拆除;
S2:若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
S3:若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
本实施例中,电动车部署有至少两个物联网模块,优选的,各个物联网模块分散部署于电动车内的不同位置,避免电动车被盗后,被盗贼一次性全部拆除。各个物联网模块分别对应不同的定位信息的初始发送频率,比如物联网模块A的初始发送频率为每天发送一次定位信息,物联网模块B的初始发送频率为每4小时发送一次定位信息,发送频率的具体值可以由用户自定义,也可以为默认出厂设置。在日常使用中,多个物联网模块中只有一个处于唤醒状态,能够正常按照预先设定的频率将电动车的定位信息上传到云端服务器;其余物联网模块处于睡眠状态,避免在不必要的情况下浪费电能。电动车的车载***通过内部与物联网模块连接的检测电路,实时监测各个物联网模块是否被拆除。如果监测到所有物联网模块中的任意一个被拆除时,则判断电动车是否处于被盗状态。具体地,车载***可以通过检测电动车是否处于启动状态(比如发动机是否处于工作状态);或者,唤醒当前所有未被拆除的物联网模块,各个未被拆除的物联网模块被唤醒后按照预设的初始发送频率将电动车的定位信息上传到云端服务器,车载***通过唤醒的物联网模块在较短的预设时长内(比如5分钟内)所获取的电动车的定位信息,判断电动车在该预设时长是否发生位置改变。如果车载***检测到电动车未处于启动状态,或者电动车在预设时长内没有发生位置改变,则判定电动车当前不是处于被盗状态,可能是用户需要执行日常维修操作等处理,各个未被拆除的物联网模块保持初始发送频率,从而有效避免误判电动车被盗的情况,减少了不必要的电量消耗。如果车载***检测到电动车处于启动状态,或者电动车在预设时长内发生位置改变,则判定电动车当前处于被盗状态。此时,车载***唤醒未被拆除的物联网模块,并发送被盗通知指令到云端服务器,通过云端服务器发送控制指令控制未被拆除的物联网模块按照指定发送频率将定位信息发送到云端服务器。其中,指定发送频率快于初始发送频率,比如初始发送频率为4小时一次,指定发送频率为5分钟一次,从而保证用户能够在被盗的电动车未跑远、并且物联网模块的供电电源的电量未耗尽的情况下,能够通过未被拆除的物联网模块获取电动车的定位信息,并据此进行跟踪寻找,从而实现找回被盗电动车。
本实施例提供的一种基于多物联网模块的电动车防盗装置,电动车部署有至少两个物联网模块,***实时监测任意一个物联网模块是否被拆除。如果监测到任意一个物联网模块被拆除,则唤醒未被拆除的物联网模块,并判断电动车是否处于被盗状态。如果电动车处于被盗状态,则控制未被拆除的物联网模块以指定发送频率发送电动车的定位信息到云端服务器。本申请中,由于电动车部署有多个物联网模块,在监测到其中任意一个物联网模块被拆除并且电动车处于被盗状态时,及时唤醒剩余未被拆除的物联网模块,并发送电动车的定位信息到云端服务器,以便用户可以根据定位信息及时找回被盗电动车。
进一步的,所述控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器的步骤,包括:
S301:发送通知指令到所述云端服务器;
S302:接收所述云端服务器反馈的所述指定发送频率,控制所述未被拆除的物联网模块按照所述指定发送频率将所述定位信息发送到所述云端服务器。
本实施例中,电动车内设置有多个物联网模块,在正常工作时(即车载***未检测到任意一个物联网模块被拆除时),各个物联网模块中仅有一个物联网模块处于唤醒状态,会将电动车的定位信息按照初始发送频率发送到云端服务器;其余物联网模块处于睡眠状态,不会发送电动车的定位信息到云端服务器,从而在电动车正常工作时,能够避免不必要的电量消耗。车载***在检测到电动车处于被盗状态时,发送通知指令到云端服务器,未被拆除的物联网模块则处于接收指令的状态。云端服务器在接收到车载***发送的通知指令后,会根据设定下发指定发送频率到车载***。车载***在接收到云端服务器反馈的指定发送频率后,控制未被拆除的物联网模块将初始发送频率改变为指定发送频率,将电动车的定位信息按照指定发送频率发送到云端服务器。其中,指定发送频率快于初始发送频率,从而保证用户能够在电动车被盗后未跑远、物联网模块的供电电量未耗尽的情况下,尽量多地利用未被拆除的物联网模块来获取电动车的定位信息,跟踪寻找车辆,找回被盗电动车。
进一步的,所述监测到任意一个所述物联网模块被拆除的步骤之后,包括:
S201:通过所述物联网模块的报警声检测口,判断是否检测到报警声音;
S202:若检测到报警声音,则控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态。
本实施例中,电动车上的各个物联网模块上均设置有报警声检测口,能够主动接收外界的报警声音,并根据报警声音改变工作状态。车载***在监测到任意一个物联网模块被拆除后,会自动触发电动车上的报警装置,从而使得报警装置发送报警声音。车载***通过未被拆除的物联网模块的报警声检测口检测到报警声音时,自动控制未被拆除的物联网模块从睡眠状态进入唤醒状态(如果未被拆除的物联网模块中存在处于唤醒状态的模块,则该处于唤醒状态的物联网模块不改变状态,仍处于唤醒状态),从而实现唤醒未被拆除的物联网模块。
进一步的,参见图2、图3,所述物联网模块通过2芯同轴线与所述电动车的主电池连接,所述2芯同轴线包括负载断路检测线;
所述负载断路检测线在所述主电池的一端与上拉电阻R1的一端连接,所述上拉电阻R1的另一端接电源;所述负载断路检测线在所述物联网模块的一端与下拉电阻R2的一端连接,所述下拉电阻R2的另一端接地;
所述上拉电阻R1与第一PMOS管Q1的源极和栅极并联连接,所述第一PMOS管Q1的漏极与报警触发端连接;
所述通过所述物联网模块的报警声检测口,判断是否检测到报警声音的步骤之前,包括:
S2011:当所述第一PMOS管Q1的漏极输出低电平时,触发所述报警装置发出报警声音。
参照图2、图3,本实施例中,单路物联网模块的负载断路检测电路为:电动车的主电池和物联网模块之间采用一根外层带屏蔽接地层的2芯同轴线进行连接,2芯同轴线其中一根芯线为电源线,另外一根芯线为负载断路检测线。负载断路检测线在主电池的一端与上拉电阻R1的一端连接,而上拉电阻R1的另一端则与电源连接。负载断路检测线在物联网模块的一端与下拉电阻R2的一端连接,而下拉电阻R2的另一端接地。上拉电阻R1的两端并联接于第一PMOS管Q1的源极和栅极,第一PMOS管Q1的漏极通过串联一个第二电阻R3接地、同时与报警触发端连接。由于上拉电阻R1和下拉电阻R2的阻值相近(可直接视为两者的阻值相等),正常工作状态下(即2芯同轴线没有被人为断开,物联网模块没有被拆除时),负载断路检测线上的电压约为电源的一半,因此第一PMOS管Q1上的VGS电压值大于第一PMOS的导通阈值电压,第一PMOS管Q1导通,Q1漏极输出高电平,报警触发端不会被触发,电动车报警装置不报警。当2芯同轴线被人为断开时,上拉电阻R1和下拉电阻R2断开,因此上拉电阻R1的两端电压为0,第一PMOS管Q1不导通,其漏极输出低电平,从而触发报警装置,使得报警装置发出报警声音。
进一步的,所述负载断路检测线在所述主电池的一端还与肖特基二极管DA的阳极连接,所述肖特基二极管DA的阴极与所述报警装置的输出唤醒控制端口连接;
所述控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态的步骤,包括:
S3011:当所述报警装置触发时,所述输出唤醒控制端口输出低电平脉冲,所述肖特基二极管DA拉低所述负载断路检测线的电平进而唤醒所述未被拆除的物联网模块中处于睡眠状态的物联网模块进入唤醒状态。
本实施例中,负载断路检测线在主电池的一端与肖特基二极管DA的阳极连接,并且肖特基二极管DA的阴极与报警装置的输出唤醒控制端口连接。其中,在报警装置未触发报警时,输出唤醒控制端口为开路状态或输出高电平。当报警装置被触发时,输出唤醒控制端口输出低电平脉冲,肖特基二极管DA会拉低负载断路检测线的电平,从而唤醒负载断路检测线对应的物联网模块,使得未被拆除的物联网模块从睡眠状态进入唤醒状态。
进一步的,所述下拉电阻R2与NMOS管Q2的源极和栅极并联连接,所述NMOS管Q2的漏极与中断检测口连接;
当所述NMOS管Q2的漏极输出高电平时,触发物联网模块的中断检测,控制被拆除的物联网模块从睡眠状态进入唤醒状态。
参照图3,本实施例中,在物联网模块端,下拉电阻R2的两端并联接于NMOS管Q2的源极和栅极,NMOS管Q2的漏极通过串联第三电阻R4到电源、并与中断检测口连接。正常工作状态下,下拉电阻R2的两端电压高于NMOS管Q2的导通阈值电压,NMOS管Q2导通,其漏极输出低电平,中断检测接口不会触发,物联网模块正常工作和睡眠。当负载断路检测线断路时,下拉电阻R2的两端电压为0,NMOS管Q2不导通,此时NMOS管Q2的漏极输出高电平,从而通过中断检测接口触发物联网模块的终端检测,进而使得当前被拆除的物联网模块被立刻唤醒(被拆除的物联网模块仍保持有短暂的电量),从睡眠状态转换为唤醒状态。
进一步的,所述控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器的步骤之后,包括:
S4:持续监测所述未被拆除的所述物联网模块的连接数量;
S5:在监测到所述连接数量等于预设值时,切断所述电动车的电源模块与电动机之间的连接。
本实施例中,各个未被拆除的物联网模块在将初始发送频率更改为指定发送频率后,车载***持续监测各个未被拆除的物联网模块的连接数量(即保持连通状态的数量)。如果各个未被拆除的物联网模块的连接数量在持续减少,当车载***检测到连接数量减少到预设值,比如连接数量减少到1个时,车载***则主动切断电动车电源模块与电动机之间的连接,从而使得电动车无法通过电力行走,避免在最后一个物联网模块被拆除后,用户彻底失去电动车的定位信息,导致无法寻回被盗电动车。在车载***切断电源模块与电动机的连接后,剩余未被拆除的物联网模块仍然保持将电动车的定位信息发送到云端服务器。优选的,车载***在检测到连接数量减少到预设值,可以自动更改剩余未被拆除的物联网模块的发送频率,使得剩余未被拆除的物联网模块的发送频率更快,保证用户能够得到电动车更详细的定位信息,寻回被盗电动车。
进一步的,所述物联网模块的数量至少为3个,单个物联网模块对应单个第一PMOS管Q1;
各所述第一PMOS管Q1的漏极分别对应串联一组二极管(      D1/D2/D3)和第一电阻(R9/R10/R11),并全部与分压电阻R12的一端连接;
所述分压电阻R12的两端分别与三极管Q6的基极和发射极连接,所述三极管Q6的集电极与第二PMOS管Q5连接;
所述第二PMOS管Q5的漏极与所述发动机的控制端或电源端连接;
所述切断所述电动车的电源模块与电动机之间的连接的步骤,包括:
S501:当所述第二PMOS管Q5的漏极无电压输出时,控制所述电动机停止工作。
参照图4,本实施例中,电动车上部署的物联网模块的数量至少为3个,单路物联网模块的负载断路检测电路如上所述,每个物联网模块对应单个第一PMOS管Q1。各个第一PMOS管Q1的漏极分别对应串联一组二极管(D1/D2/D3)和第一电阻(R9/R10/R11),并且各个第一PMOS管Q1均与分压电阻R12的一端连接。分压电阻R12并联在三极管Q6上,两端分别与三极管Q6的基极和发射极连接。三极管Q6的集电极与第二PMOS管Q5连接,而第二PMOS管Q5的漏极则与发动机的控制端或电源端连接。当电动车上有两个或两个以上的物联网模块没有发生断路时,分压电阻R12上的电压分压为第一阈值(比如0.65V)以上,此时三极管Q6导通,第二PMOS管Q5也导通,第二PMOS管Q5的漏极连接电动机的控制端或电源端正常输出电压,从而使得电动机正常工作。当两个或两个以上的物联网模块发生断路时,分压电阻R12上的电压分压为第二阈值(比如0.4V)以下,此时三极管Q6不导通,从而导致与三极管Q6连接的第二PMOS管Q5也不导通,第二PMOS管Q5的漏极无电压输出,从而控制电动机不工作,实现切断电动机与电源模块的连接。同时,单个物联网模块对应的主电池端的一路负载断路检测线上还分别接一个肖特基二极管(D4/D5/D6)的阳极,肖特基二极管(D4/D5/D6)的阴极连在一起接唤醒控制口,唤醒控制口在未报警时为开路状态或输出高电平,当报警装置报警时输出一低电平脉冲唤醒所有未断开的物联网模块。
参照图5,本申请一实施例中还提供了一种基于多物联网模块的电动车防盗装置,所述电动车部署有至少两个物联网模块,所述防盗装置包括:
第一监测模块1,用于监测任一所述物联网模块是否被拆除;
判断模块2,用于若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
控制模块3,用于若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
本实施例中,上述防盗装置中的第一监测模块1、判断模块2和控制模块3的功能和作用的实现过程具体详见上述基于多物联网模块的电动车防盗方法中对应步骤S1至S3的实现过程,在此不再赘述。
进一步的,所述控制模块3,包括:
发送单元,用于发送通知指令到所述云端服务器;
第一控制单元,用于接收所述云端服务器反馈的所述指定发送频率,控制所述未被拆除的物联网模块按照所述指定发送频率将所述定位信息发送到所述云端服务器。
本实施例中,上述控制模块3中的发送单元和第一控制单元的功能和作用的实现过程具体详见上述基于多物联网模块的电动车防盗方法中对应步骤S301至S302的实现过程,在此不再赘述。
进一步的,所述判断模块2,包括:
判断单元,用于通过所述物联网模块的报警声检测口,判断是否检测到报警声音;
唤醒单元,用于若检测到报警声音,则控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态。
本实施例中,上述判断模块2中的判断单元和唤醒单元的功能和作用的实现过程具体详见上述基于多物联网模块的电动车防盗方法中对应步骤S201至S202的实现过程,在此不再赘述。
进一步的,所述物联网模块通过2芯同轴线与所述电动车的主电池连接,所述2芯同轴线包括负载断路检测线;
所述负载断路检测线在所述主电池的一端与上拉电阻的一端连接,所述上拉电阻的另一端接电源;
所述负载断路检测线在所述物联网模块的一端与下拉电阻的一端连接,所述下拉电阻的另一端接地;
所述上拉电阻与第一PMOS管的源极和栅极并联连接,所述第一PMOS管的漏极与报警触发端连接;
所述判断单元包括:
第一触发子单元,用于当所述第一PMOS管的漏极输出低电平时,触发所述报警装置发出报警声音。
本实施例中,上述判断单元中的第一触发子单元的功能和作用的实现过程具体详见上述基于多物联网模块的电动车防盗方法中对应步骤S2011的实现过程,在此不再赘述。
进一步的,所述负载断路检测线在所述主电池的一端还与肖特基二极管的阳极连接,所述肖特基二极管的阴极与所述报警装置的输出唤醒控制端口连接;
所述唤醒单元,包括:
第二触发子单元,用于当所述报警装置触发时,所述输出唤醒控制端口输出低电平脉冲,所述肖特基二极管拉低所述负载断路检测线的电平进而唤醒所述未被拆除的物联网模块中处于睡眠状态的物联网模块进入唤醒状态。
本实施例中,上述唤醒单元中的第二触发子单元的功能和作用的实现过程具体详见上述基于多物联网模块的电动车防盗方法中对应步骤S3011的实现过程,在此不再赘述。
进一步的,所述下拉电阻与NMOS管的源极和栅极并联连接,所述NMOS管的漏极与中断检测口连接;
所述唤醒单元,包括:
第三触发子单元,用于当所述NMOS管的漏极输出高电平时,触发物联网模块的中断检测,控制所述未被拆除的物联网模块从睡眠状态进入唤醒状态。
参照图3,本实施例中,在物联网模块端,下拉电阻R2的两端并联接于NMOS管Q2的源极和栅极,NMOS管Q2的漏极通过串联第三电阻R4到电源、并与中断检测口连接。正常工作状态下,下拉电阻R2的两端电压高于NMOS管Q2的导通阈值电压,NMOS管Q2导通,其漏极输出低电平,中断检测接口不会触发,物联网模块正常工作和睡眠。当负载断路检测线断路时,下拉电阻R2的两端电压为0,NMOS管Q2不导通,此时NMOS管Q2的漏极输出高电平,从而通过中断检测接口触发物联网模块的终端检测,进而使得当前被拆除的物联网模块被立刻唤醒(被拆除的物联网模块仍保持有短暂的电量),从睡眠状态转换为唤醒状态。
进一步的,所述防盗装置,还包括:
第二监测模块4,用于持续监测所述未被拆除的所述物联网模块的连接数量;
切断模块5,用于在监测到所述连接数量等于预设值时,切断所述电动车的电源模块与电动机之间的连接。
本实施例中,上述防盗装置中的第二监测模块4和切断模块5的功能和作用的实现过程具体详见上述基于多物联网模块的电动车防盗方法中对应步骤S4至S5的实现过程,在此不再赘述。
进一步的,所述物联网模块的数量至少为3个,单个物联网模块对应单个第一PMOS管;
各所述第一PMOS管的漏极分别对应串联一组二极管和第一电阻,并全部与分压电阻的一端连接;
所述分压电阻的两端分别与三极管的基极和发射极连接,所述三极管的集电极与第二PMOS管连接;
所述第二PMOS管的漏极与所述发动机的控制端或电源端连接;
所述切断模块5,包括:
第二控制单元,用于当所述第二PMOS管的漏极无电压输出时,控制所述电动机停止工作。
本实施例中,上述切断模块5中的第二控制单元的功能和作用的实现过程具体详见上述基于多物联网模块的电动车防盗方法中对应步骤S01的实现过程,在此不再赘述。
本实施例提供的一种基于多物联网模块的电动车防盗方法,电动车部署有至少两个物联网模块,***实时监测任意一个物联网模块是否被拆除。如果监测到任意一个物联网模块被拆除,则唤醒未被拆除的物联网模块,并判断电动车是否处于被盗状态。如果电动车处于被盗状态,则控制未被拆除的物联网模块以指定发送频率发送电动车的定位信息到云端服务器。本申请中,由于电动车部署有多个物联网模块,在监测到其中任意一个物联网模块被拆除并且电动车处于被盗状态时,及时唤醒剩余未被拆除的物联网模块,并发送电动车的定位信息到云端服务器,以便用户可以根据定位信息及时找回被盗电动车。
参照图6,本申请实施例中还提供一种计算机设备,该计算机设备可以是服务器,其内部结构可以如图6所示。该计算机设备包括通过***总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设计的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作***、计算机程序和数据库。该内存储器为非易失性存储介质中的操作***和计算机程序的运行提供环境。该计算机设备的数据库用于存储预设值等数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现上述的任一实施例基于多物联网模块的电动车防盗方法的功能。
所述电动车部署有至少两个物联网模块,上述处理器执行上述基于多物联网模块的电动车防盗方法的步骤:
S1:监测任一所述物联网模块是否被拆除;
S2:若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
S3:若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
本申请一实施例还提供一种计算机可读存储介质,所述存储介质可以是非易失性存储介质,也可以是易失性存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述的任一实施例基于多物联网模块的电动车防盗方法,所述电动车部署有至少两个物联网模块,所述方法具体为:
S1:监测任一所述物联网模块是否被拆除;
S2:若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
S3:若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储与一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的和实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可以包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM通过多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双速据率SDRAM(SSRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种基于多物联网模块的电动车防盗方法,其特征在于,所述电动车部署有至少两个物联网模块,所述防盗方法包括:
    监测任一所述物联网模块是否被拆除;
    若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
    若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
  2. 根据权利要求1所述的基于多物联网模块的电动车防盗方法,其特征在于,所述控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器的步骤,包括:
    发送通知指令到所述云端服务器;
    接收所述云端服务器反馈的所述指定发送频率,控制所述未被拆除的物联网模块按照所述指定发送频率将所述定位信息发送到所述云端服务器。
  3. 根据权利要求1所述的基于多物联网模块的电动车防盗方法,其特征在于,所述监测到任意一个所述物联网模块被拆除的步骤之后,包括:
    通过所述物联网模块的报警声检测口,判断是否检测到报警声音;
    若检测到报警声音,则控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态。
  4. 根据权利要求3所述的基于多物联网模块的电动车防盗方法,其特征在于,所述物联网模块通过2芯同轴线与所述电动车的主电池连接,所述2芯同轴线包括负载断路检测线;
    所述负载断路检测线在所述主电池的一端与上拉电阻的一端连接,所述上拉电阻的另一端接电源;
    所述负载断路检测线在所述物联网模块的一端与下拉电阻的一端连接,所述下拉电阻的另一端接地;
    所述上拉电阻与第一PMOS管的源极和栅极并联连接,所述第一PMOS管的漏极与报警触发端连接;
    所述通过所述物联网模块的报警声检测口,判断是否检测到报警声音的步骤之前,包括:
    当所述第一PMOS管的漏极输出低电平时,触发所述报警装置发出报警声音。
  5. 根据权利要求4所述的基于多物联网模块的电动车防盗方法,其特征在于,所述负载断路检测线在所述主电池的一端还与肖特基二极管的阳极连接,所述肖特基二极管的阴极与所述报警装置的输出唤醒控制端口连接;
    所述控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态的步骤,包括:
    当所述报警装置触发时,所述输出唤醒控制端口输出低电平脉冲,所述肖特基二极管拉低所述负载断路检测线的电平进而唤醒所述未被拆除的物联网模块中处于睡眠状态的物联网模块进入唤醒状态。
  6. 根据权利要求5所述的基于多物联网模块的电动车防盗方法,其特征在于,所述控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器的步骤之后,包括:
    持续监测所述未被拆除的所述物联网模块的连接数量;
    在监测到所述连接数量等于预设值时,切断所述电动车的电源模块与电动机之间的连接。
  7. 根据权利要求6所述的基于多物联网模块的电动车防盗方法,其特征在于,所述物联网模块的数量至少为3个,单个物联网模块对应单个第一PMOS管;
    各所述第一PMOS管的漏极分别对应串联一组二极管和第一电阻,并全部与分压电阻的一端连接;
    所述分压电阻的两端分别与三极管的基极和发射极连接,所述三极管的集电极与第二PMOS管连接;
    所述第二PMOS管的漏极与所述发动机的控制端或电源端连接;
    所述切断所述电动车的电源模块与电动机之间的连接的步骤,包括:
    当所述第二PMOS管的漏极无电压输出时,控制所述电动机停止工作。
  8. 一种基于多物联网模块的电动车防盗装置,其特征在于,所述电动车部署有至少两个物联网模块,所述防盗装置包括:
    第一监测模块,用于监测任一所述物联网模块是否被拆除;
    判断模块,用于若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
    控制模块,用于若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
  9. 一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,其中,所述处理器执行所述计算机程序时实现一种基于多物联网模块的电动车防盗方法;
    其中,所述电动车部署有至少两个物联网模块,所述基于多物联网模块的电动车防盗方法包括:
    监测任一所述物联网模块是否被拆除;
    若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
    若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
  10. 根据权利要求9所述的计算机设备,其中,所述控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器的步骤,包括:
    发送通知指令到所述云端服务器;
    接收所述云端服务器反馈的所述指定发送频率,控制所述未被拆除的物联网模块按照所述指定发送频率将所述定位信息发送到所述云端服务器。
  11. 根据权利要求9所述的计算机设备,其中,所述监测到任意一个所述物联网模块被拆除的步骤之后,包括:
    通过所述物联网模块的报警声检测口,判断是否检测到报警声音;
    若检测到报警声音,则控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态。
  12. 根据权利要求11所述的计算机设备,其中,所述物联网模块通过2芯同轴线与所述电动车的主电池连接,所述2芯同轴线包括负载断路检测线;
    所述负载断路检测线在所述主电池的一端与上拉电阻的一端连接,所述上拉电阻的另一端接电源;
    所述负载断路检测线在所述物联网模块的一端与下拉电阻的一端连接,所述下拉电阻的另一端接地;
    所述上拉电阻与第一PMOS管的源极和栅极并联连接,所述第一PMOS管的漏极与报警触发端连接;
    所述通过所述物联网模块的报警声检测口,判断是否检测到报警声音的步骤之前,包括:
    当所述第一PMOS管的漏极输出低电平时,触发所述报警装置发出报警声音。
  13. 根据权利要求12所述的计算机设备,其中,所述负载断路检测线在所述主电池的一端还与肖特基二极管的阳极连接,所述肖特基二极管的阴极与所述报警装置的输出唤醒控制端口连接;
    所述控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态的步骤,包括:
    当所述报警装置触发时,所述输出唤醒控制端口输出低电平脉冲,所述肖特基二极管拉低所述负载断路检测线的电平进而唤醒所述未被拆除的物联网模块中处于睡眠状态的物联网模块进入唤醒状态。
  14. 根据权利要求13所述的计算机设备,其中,所述控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器的步骤之后,包括:
    持续监测所述未被拆除的所述物联网模块的连接数量;
    在监测到所述连接数量等于预设值时,切断所述电动车的电源模块与电动机之间的连接。
  15. 根据权利要求14所述的计算机设备,其中,所述物联网模块的数量至少为3个,单个物联网模块对应单个第一PMOS管;
    各所述第一PMOS管的漏极分别对应串联一组二极管和第一电阻,并全部与分压电阻的一端连接;
    所述分压电阻的两端分别与三极管的基极和发射极连接,所述三极管的集电极与第二PMOS管连接;
    所述第二PMOS管的漏极与所述发动机的控制端或电源端连接;
    所述切断所述电动车的电源模块与电动机之间的连接的步骤,包括:
    当所述第二PMOS管的漏极无电压输出时,控制所述电动机停止工作。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现一种基于多物联网模块的电动车防盗方法,所述电动车部署有至少两个物联网模块,所述基于多物联网模块的电动车防盗方法包括以下步骤:
    监测任一所述物联网模块是否被拆除;
    若监测到任意一个所述物联网模块被拆除,则判断所述电动车是否处于被盗状态;
    若所述电动车处于被盗状态,则唤醒未被拆除的物联网模块,并控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器。
  17. 根据权利要求16所述的计算机可读存储介质,其中,所述控制所述未被拆除的物联网模块以指定发送频率发送所述电动车的定位信息到云端服务器的步骤,包括:
    发送通知指令到所述云端服务器;
    接收所述云端服务器反馈的所述指定发送频率,控制所述未被拆除的物联网模块按照所述指定发送频率将所述定位信息发送到所述云端服务器。
  18. 根据权利要求16所述的计算机可读存储介质,其中,所述监测到任意一个所述物联网模块被拆除的步骤之后,包括:
    通过所述物联网模块的报警声检测口,判断是否检测到报警声音;
    若检测到报警声音,则控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态。
  19. 根据权利要求18所述的计算机可读存储介质,其中,所述物联网模块通过2芯同轴线与所述电动车的主电池连接,所述2芯同轴线包括负载断路检测线;
    所述负载断路检测线在所述主电池的一端与上拉电阻的一端连接,所述上拉电阻的另一端接电源;
    所述负载断路检测线在所述物联网模块的一端与下拉电阻的一端连接,所述下拉电阻的另一端接地;
    所述上拉电阻与第一PMOS管的源极和栅极并联连接,所述第一PMOS管的漏极与报警触发端连接;
    所述通过所述物联网模块的报警声检测口,判断是否检测到报警声音的步骤之前,包括:
    当所述第一PMOS管的漏极输出低电平时,触发所述报警装置发出报警声音。
  20. 根据权利要求19所述的计算机可读存储介质,其中,所述负载断路检测线在所述主电池的一端还与肖特基二极管的阳极连接,所述肖特基二极管的阴极与所述报警装置的输出唤醒控制端口连接;
    所述控制所述未被拆除的物联网模块中处于睡眠状态的物联网模块从睡眠状态进入唤醒状态的步骤,包括:
    当所述报警装置触发时,所述输出唤醒控制端口输出低电平脉冲,所述肖特基二极管拉低所述负载断路检测线的电平进而唤醒所述未被拆除的物联网模块中处于睡眠状态的物联网模块进入唤醒状态。
PCT/CN2020/122213 2020-10-20 2020-10-20 基于多物联网模块的电动车防盗方法、装置和计算机设备 WO2022082435A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122213 WO2022082435A1 (zh) 2020-10-20 2020-10-20 基于多物联网模块的电动车防盗方法、装置和计算机设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122213 WO2022082435A1 (zh) 2020-10-20 2020-10-20 基于多物联网模块的电动车防盗方法、装置和计算机设备

Publications (1)

Publication Number Publication Date
WO2022082435A1 true WO2022082435A1 (zh) 2022-04-28

Family

ID=81291286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122213 WO2022082435A1 (zh) 2020-10-20 2020-10-20 基于多物联网模块的电动车防盗方法、装置和计算机设备

Country Status (1)

Country Link
WO (1) WO2022082435A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811491A (zh) * 2009-02-24 2010-08-25 深圳市赛格导航科技股份有限公司 汽车多重智能防盗***及实现方法
CN102236955A (zh) * 2010-04-21 2011-11-09 任文华 报警电路装置
CN205256276U (zh) * 2015-11-06 2016-05-25 中润汇德(北京)科技有限公司 一种车载定位防盗***及车辆
KR20180078655A (ko) * 2016-12-30 2018-07-10 경일대학교산학협력단 스마트카에서 차량을 회수하기 위한 IoT 보안 장치, 이를 위한 방법 및 이 방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록매체
CN210403637U (zh) * 2019-09-27 2020-04-24 秦佳电气有限公司 一种数显可调定时开关
US10632965B1 (en) * 2019-04-30 2020-04-28 Ford Global Technologies, Llc Vehicle including theft recovery and theft data gathering functionality

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811491A (zh) * 2009-02-24 2010-08-25 深圳市赛格导航科技股份有限公司 汽车多重智能防盗***及实现方法
CN102236955A (zh) * 2010-04-21 2011-11-09 任文华 报警电路装置
CN205256276U (zh) * 2015-11-06 2016-05-25 中润汇德(北京)科技有限公司 一种车载定位防盗***及车辆
KR20180078655A (ko) * 2016-12-30 2018-07-10 경일대학교산학협력단 스마트카에서 차량을 회수하기 위한 IoT 보안 장치, 이를 위한 방법 및 이 방법을 수행하는 프로그램이 기록된 컴퓨터 판독 가능한 기록매체
US10632965B1 (en) * 2019-04-30 2020-04-28 Ford Global Technologies, Llc Vehicle including theft recovery and theft data gathering functionality
CN210403637U (zh) * 2019-09-27 2020-04-24 秦佳电气有限公司 一种数显可调定时开关

Similar Documents

Publication Publication Date Title
CN112380045B (zh) 车辆异常检测方法、装置、设备及存储介质
US9081565B2 (en) Communication network system for detect and wake up a network node that does not properly recognize a wake up frame
DE102017000714A1 (de) Verfahren, Batteriemanagementsystem und Fahrzeug für Auflade-Aufwachmodus
DE102005056947A1 (de) Fahrzeugsicherheitssystem
CN112511615B (zh) 一种实时监测整车网络休眠状况的网关控制方法
CN112269371B (zh) 一种车辆网络休眠异常事件监测方法
CN112261589A (zh) 基于多物联网模块的电动车防盗方法、装置和计算机设备
US9411609B2 (en) Electronic control apparatus
EP4206839A1 (en) Method for managing ecu on vehicle, and ecu and readable storage medium
CN114168401A (zh) 一种日志记录方法、装置及电子设备
CN113246887A (zh) 一种时序电路控制方法、装置、电子设备及存储介质
US6442702B1 (en) On-vehicle computer having function of protecting vehicular battery
CN111624902A (zh) 一种休眠和唤醒的控制方法及装置
WO2022082435A1 (zh) 基于多物联网模块的电动车防盗方法、装置和计算机设备
CN113448302A (zh) 一种车辆控制器的控制方法、装置及汽车
CN112389352A (zh) 一种整车静态电流管理***及方法
US20160049991A1 (en) Energy delivery on paths used for communnication
CN110797841A (zh) 供电管理装置、电子设备及管理装置控制方法
JP2014104937A (ja) 電子制御装置
US20150029626A1 (en) Controller area network node transceiver
JP6198175B2 (ja) 通信回路
CN114475475B (zh) 车辆蓄电池管理方法、装置、电子设备
KR20150117562A (ko) 외부장치를 이용한 차체제어모듈 제어 시스템 및 그 방법
CN113346607B (zh) 车载终端的供电管理方法、车载终端及计算机存储介质
JP2019129336A (ja) 電子制御装置、監視方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958018

Country of ref document: EP

Kind code of ref document: A1