WO2022070551A1 - Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element - Google Patents

Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element Download PDF

Info

Publication number
WO2022070551A1
WO2022070551A1 PCT/JP2021/026455 JP2021026455W WO2022070551A1 WO 2022070551 A1 WO2022070551 A1 WO 2022070551A1 JP 2021026455 W JP2021026455 W JP 2021026455W WO 2022070551 A1 WO2022070551 A1 WO 2022070551A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
electrode
generation element
nanoparticles
substrate
Prior art date
Application number
PCT/JP2021/026455
Other languages
French (fr)
Japanese (ja)
Inventor
拓夫 安田
勝 中川
貴宏 中村
俊昭 早川
Original Assignee
株式会社Gceインスティチュート
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gceインスティチュート, 国立大学法人東北大学 filed Critical 株式会社Gceインスティチュート
Publication of WO2022070551A1 publication Critical patent/WO2022070551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a power generation element that converts thermal energy into electrical energy, a power generation device, an electronic device, and a method for manufacturing the power generation element.
  • thermoelectric element disclosed in Patent Document 1 has been proposed. Such a thermoelectric element is expected to be used for various purposes as compared with a configuration in which electric energy is generated by utilizing a temperature difference given to an electrode.
  • Patent Document 1 describes a thermoelectric conversion element having a first electrode layer and a second electrode layer arranged apart from each other, and a thermoelectric conversion layer in contact with the first electrode layer and the second electrode layer. It has been disclosed. Further, the thermoelectric conversion layer is composed of a coated conductive material in which the conductive material is coated with a non-conductive material and a thermoelectric conversion material containing a dispersion medium, and the specific resistance value of the coated conductive material is 1 ⁇ 10. It is disclosed that it is 1 to 1 ⁇ 10 9 ⁇ ⁇ m.
  • Patent Document 1 an alloy containing two or more kinds of materials is mentioned as an example of metal particles used for a thermoelectric conversion layer.
  • an alloy As the metal particles, it is expected that the element characteristics such as heat resistance will be improved.
  • the alloy may not be able to form a film containing organic molecules or the like on the surface depending on the conditions such as the type and ratio of the contained materials.
  • metal particles having insufficiently formed film are used for the thermoelectric conversion element, for example, the metal particles tend to aggregate in the gap, which may cause a decrease in power generation efficiency.
  • the present invention has been devised in view of the above-mentioned problems, and an object thereof is to manufacture a power generation element, a power generation device, an electronic device, and a power generation element capable of improving power generation efficiency. To provide a method.
  • the power generation element according to the first invention is a power generation element that converts thermal energy into electrical energy, is provided so as to face the first electrode and the first electrode, and has a work function different from that of the first electrode. It comprises a second electrode, an intermediate portion provided between the first electrode and the second electrode and containing nanoparticles containing two or more kinds of materials, and the nanoparticles are 20 wt% or more and 100 wt. It is characterized by containing less than% gold and containing a coating having a sulfur atom provided on the surface.
  • the power generation element according to the second invention is characterized in that, in the first invention, the nanoparticles further contain any one of platinum, rhodium, iridium, and palladium.
  • the power generation element according to the third invention is characterized in that, in the first invention, the nanoparticles contain only 20 wt% or more and 80 wt% or less of gold and 20 wt% or more and 80 wt% or less of platinum.
  • the power generation element according to the fourth invention is a first substrate separated from the second electrode and in contact with the first electrode, and a second substrate separated from the first electrode and in contact with the second electrode.
  • a support portion provided between the first substrate and the second substrate and in contact with the intermediate portion is further provided, and the support portion is at least one of the first substrate and the second substrate. It is characterized in that it is a partially oxidized product.
  • the power generation element according to the fifth invention further includes a first substrate separated from the second electrode and in contact with the first electrode, the first substrate being a semiconductor, and the first electrode. It is characterized by having a degenerate portion in contact with it.
  • the power generation device comprises the power generation element of the first invention, the first wiring electrically connected to the first electrode, and the second wiring electrically connected to the second electrode. It is characterized by being prepared.
  • the electronic device according to the seventh invention is characterized by including the power generation element of the first invention and an electronic component driven by using the power generation element as a power source.
  • the method for manufacturing a power generation element according to the eighth invention is a method for manufacturing a power generation element that converts thermal energy into electrical energy, and is a gap in which the first electrode and the second electrode having different work functions are fixed in a separated state.
  • the nanoparticle comprises a forming step and an intermediate portion forming step of forming an intermediate portion containing nanoparticles containing two or more kinds of materials between the first electrode and the second electrode. It is characterized by containing 20 wt% or more and less than 100 wt% of gold, and including a film having a sulfur atom provided on the surface.
  • the nanoparticles contain 20 wt% or more and less than 100 wt% of gold, and include a film having a sulfur atom provided on the surface. That is, the nanoparticles containing gold in the above range can be formed with a film on the surface. Therefore, the aggregation of nanoparticles provided between the electrodes can be suppressed. This makes it possible to improve the power generation efficiency.
  • the nanoparticles further contain any one of platinum, rhodium, iridium, and palladium. That is, by containing a material having a crystal structure similar to that of gold, the amount of grain boundaries generated can be suppressed. Therefore, the electrical resistance of the nanoparticles can be reduced. This makes it possible to further improve the power generation efficiency.
  • the nanoparticles contain 20 wt% or more and 80 wt% or less of gold, and 20 wt% or more and 80 wt% or less of platinum. Therefore, it is possible to promote power generation via nanoparticles. This makes it possible to further improve the power generation efficiency.
  • the support portion is obtained by oxidizing at least a part of the first substrate and the second substrate. Therefore, it is possible to suppress the variation in the gap between the electrodes as compared with the case where the support portion is provided by using a material different from the substrate. This makes it possible to stabilize the power generation efficiency.
  • the first substrate is a semiconductor and has a degenerate portion in contact with the first electrode. Therefore, the contact resistance between the first electrode and the first substrate can be reduced as compared with the case where the degenerate portion is not provided. This makes it possible to suppress an increase in the resistance of the entire element.
  • the power generation device includes a power generation element, a first wiring, and a second wiring. Therefore, it is possible to realize a power generation device with improved power generation efficiency.
  • the electronic device includes a power generation element and an electronic component. Therefore, it is possible to realize an electronic device with improved power generation efficiency.
  • the nanoparticles contain 20 wt% or more and less than 100 wt% of gold, and include a film having a sulfur atom provided on the surface. That is, the nanoparticles containing gold in the above range can be formed with a film on the surface. Therefore, after performing the intermediate portion forming step, the aggregation of nanoparticles between each electrode can be suppressed. This makes it possible to improve the power generation efficiency.
  • FIG. 1 (a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the present embodiment
  • FIG. 1 (b) is a schematic plan view along AA in FIG. 1 (a).
  • FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion.
  • FIG. 3 is a flowchart showing an example of a method for manufacturing a power generation element according to the present embodiment.
  • FIG. 4 is a schematic diagram showing an example of the nanoparticle generation process.
  • FIG. 5 is a schematic view showing an example of the film forming process.
  • 6 (a) to 6 (c) are schematic cross-sectional views showing an example of a gap forming step.
  • FIGS. 8 (e) to 8 (h) show a power generation device including the power generation element. It is a schematic block diagram which shows the example of the electronic device provided.
  • the height direction in which the electrodes are laminated is defined as the first direction Z
  • the plane direction intersecting with the first direction Z for example, one orthogonal plane direction is defined as the second direction X
  • the first direction Z and the second direction Z and the second direction Z are orthogonal to each other.
  • the configurations in each figure are schematically described for the sake of explanation, and for example, the size of each configuration, the comparison of the sizes in each configuration, and the like may be different from those in the figure.
  • FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in the present embodiment.
  • 1 (a) is a schematic cross-sectional view showing an example of a power generation element 1 and a power generation device 100 in the present embodiment
  • FIG. 1 (b) is a schematic plane along AA in FIG. 1 (a). It is a figure.
  • the power generation device 100 includes a power generation element 1, a first wiring 101, and a second wiring 102.
  • the power generation element 1 converts thermal energy into electrical energy.
  • the power generation device 100 provided with such a power generation element 1 is mounted on or installed in a heat source (not shown), and the electric energy generated from the power generation element 1 is transferred to the first wiring 101 and the first wiring 101 based on the heat energy of the heat source.
  • 2 Output to the load R via the wiring 102.
  • One end of the load R is electrically connected to the first wiring 101, and the other end is electrically connected to the second wiring 102.
  • the load R indicates, for example, an electrical device.
  • the load R is driven by using, for example, a power generation device 100 as a main power source or an auxiliary power source.
  • Examples of the heat source of the power generation element 1 include electronic devices or electronic components such as a CPU (Central Processing Unit), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, factory production equipment, human bodies, sunlight, and the like. And the ambient temperature and the like.
  • electronic devices, electronic components, light emitting elements, engines, production equipment, and the like are artificial heat sources.
  • the human body, sunlight, environmental temperature, etc. are natural heat sources.
  • the power generation device 100 provided with the power generation element 1 can be provided inside a mobile device such as an IoT (Internet of Things) device and a wearable device, or a self-standing sensor terminal, and can be used as a substitute for or an auxiliary of a battery. Further, the power generation device 100 can also be applied to a larger power generation device such as solar power generation.
  • the power generation element 1 converts, for example, the heat energy generated by the artificial heat source or the heat energy of the natural heat source into electric energy to generate an electric current.
  • the power generation element 1 is not only provided inside the power generation device 100, but the power generation element 1 itself can be provided inside the mobile device, the self-supporting sensor terminal, or the like. In this case, the power generation element 1 itself can be a substitute part or an auxiliary part of a battery such as the mobile device or the self-supporting sensor terminal.
  • the power generation element 1 includes a first electrode 11, a second electrode 12, and an intermediate portion 14.
  • the power generation element 1 may include, for example, a first substrate 15 and a second substrate 16, or may include a support portion 17.
  • the first electrode 11 and the second electrode 12 are provided so as to face each other.
  • the first electrode 11 and the second electrode 12 have different work functions.
  • the intermediate portion 14 is provided in a space 140 including a space (gap G) between the first electrode 11 and the second electrode 12.
  • the intermediate portion 14 contains nanoparticles 141.
  • Nanoparticle 141 contains two or more kinds of materials.
  • the nanoparticles 141 contain 20 wt% or more and less than 100 wt% gold.
  • the nanoparticles 141 include a coating 141a.
  • the coating 141a is provided on the surface of the nanoparticles 141 and has a sulfur atom.
  • the nanoparticles may contain less than 20 wt% gold, it may be difficult to form a film on the surface of the nanoparticles. In this case, when the nanoparticles are provided in a narrow space such as the gap G, the nanoparticles are likely to aggregate with each other, which may cause a decrease in power generation efficiency. Further, for example, when the nanoparticles contain 100 wt% of gold, the nanoparticles are composed of only one kind of material, so that it is not possible to realize the improvement of element characteristics such as the improvement of heat resistance expected when an alloy is used. ..
  • the nanoparticles 141 contain 20 wt% or more and less than 100 wt% of gold, and include a coating film 141a having a sulfur atom provided on the surface. That is, as shown in the first embodiment described later, the nanoparticles 141 containing gold in the above range can be formed with a coating film 141a on the surface. Therefore, the aggregation of nanoparticles provided between the electrodes 11 and 12 can be suppressed. This makes it possible to improve the power generation efficiency.
  • nanoparticles 141 may contain two types of materials: gold of 20 wt% or more and 80 wt% or less, and platinum of 20 wt% or more and 80 wt% or less.
  • the nanoparticles when the nanoparticles contain at least one of less than 20 wt% gold and more than 80 wt% platinum, it may be difficult to form a film on the surface of the nanoparticles, as described above. Further, for example, when the nanoparticles contain at least one of more than 80 wt% gold and less than 20 wt% platinum, there is a concern that the improvement in device characteristics expected for the alloy cannot be sufficiently obtained.
  • the nanoparticles 141 may contain two kinds of materials: gold of 20 wt% or more and 80 wt% or less, and platinum of 20 wt% or more and 80 wt% or less.
  • gold of 20 wt% or more and 80 wt% or less
  • platinum of 20 wt% or more and 80 wt% or less.
  • the nanoparticles 141 may be produced in the above range.
  • materials other than, for example, gold and platinum may be contained in an amount of about 1 wt%. Even in this case, the influence on the characteristics of the nanoparticles 141 is small. Therefore, if the main materials contained in the nanoparticles 141 are gold and platinum in the above range, power generation via the nanoparticles 141 can be promoted.
  • the first electrode 11 and the second electrode 12 are separated from each other in the first direction Z, for example, as shown in FIG. 1 (a).
  • the second electrode 12 has a work function different from that of the first electrode.
  • a plurality of the electrodes 11 and 12 may be provided, for example, extending in the second direction X and the third direction Y.
  • one second electrode 12 may be provided so as to face a plurality of first electrodes 11 at different positions.
  • one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
  • the material of the first electrode 11 and the second electrode 12 a material having conductivity is used.
  • materials having different work functions are used. The same material may be used for each of the electrodes 11 and 12, and in this case, they may have different work functions.
  • each of the electrodes 11 and 12 for example, a material made of a single element such as iron, aluminum, and copper may be used, or for example, an alloy material made of two or more kinds of elements may be used.
  • a non-metal conductive material may be used. Examples of the non-metal conductive material include silicon (Si: for example, p-type Si or n-type Si), carbon-based materials such as graphene, and the like.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 ⁇ m or less.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
  • the gap G indicating the distance between the first electrode 11 and the second electrode 12 indicates the length along the first direction Z, for example, as shown in FIG.
  • the gap G indicates the length along the first direction Z, for example, as shown in FIG.
  • the power generation efficiency of the power generation element 1 can be improved.
  • the thickness of the power generation element 1 along the first direction Z can be reduced. Therefore, it is desirable that the gap G is short.
  • Gap G is, for example, a finite value of 10 ⁇ m or less.
  • the gap G is, for example, 10 nm or more and 100 nm or less.
  • the gap G depends on, for example, the thickness of the support portion 17, and also depends on the arrangement conditions of the electrodes 11 and 12 when the electrodes 11 and 12 are provided on the same substrate, for example.
  • the intermediate portion 14 is provided in the space 140 formed between the electrodes 11 and 12.
  • the intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, or may be in contact with, for example, the side surfaces of the electrodes 11 and 12.
  • the intermediate portion 14 contains nanoparticles 141 and may also contain, for example, a solvent 142.
  • the intermediate portion 14 may contain, for example, a plurality of types of nanoparticles 141.
  • the nanoparticles 141 are dispersed in, for example, the solvent 142.
  • the particle size of the nanoparticles 141 is smaller than, for example, the gap G.
  • the particle size of the nanoparticles 141 is, for example, a finite value of 1/10 or less of the gap G.
  • the particle size of the nanoparticles 141 is 1/10 or less of the gap G, it becomes easy to form the intermediate portion 14 containing the nanoparticles 141 in the space 140. This makes it possible to improve workability when generating the power generation element 1.
  • the nanoparticles 141 contain, for example, a conductive material.
  • the value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12, and for example, the value of the work function of the first electrode 11. , It may be other than the value of the work function of the second electrode 12, and is arbitrary.
  • the nanoparticles 141 contain, for example, gold and one or more kinds of materials other than gold.
  • the material contained in the nanoparticles 141 for example, gold, platinum, rhodium, ruthenium, iridium, palladium and the like are used.
  • gold when gold is contained in the nanoparticles 141, it is preferable to use an alloy containing any one of platinum, rhodium, iridium, and palladium having a crystal structure (face-centered cubic lattice) similar to that of gold.
  • the amount of grain boundaries generated can be suppressed.
  • the power generation element 1 using such nanoparticles 141 can improve the power generation efficiency.
  • nanoparticles means those containing a plurality of particles.
  • the nanoparticles 141 include particles having a particle diameter of, for example, 2 nm or more and 10 nm or less.
  • the nanoparticles 141 may include, for example, particles having an average particle size (for example, D50) of 3 nm or more and 8 nm or less.
  • the average particle size can be measured, for example, by using a particle size distribution measuring instrument.
  • a particle size distribution measuring instrument using a laser diffraction / scattering method for example, Nanotrac Wave II-EX150 manufactured by Microtrac BEL
  • the coating 141a provided on the surface of the nanoparticles 141 has a sulfur atom. Since the sulfur atom has a high bond affinity with the gold atom, the coating 141a can be easily formed on the surface of the gold-containing nanoparticles 141.
  • a material having a thiol group or a disulfide group is used as the coating 141a.
  • a material having a thiol group an alkanethiol such as dodecanethiol is used.
  • a material having a disulfide group for example, alkane disulfide or the like is used.
  • the thickness of the coating film 141a is, for example, a finite value of 20 nm or less.
  • the solvent 142 for example, a liquid having a boiling point of 60 ° C. or higher can be used. Therefore, it is possible to suppress the vaporization of the solvent 142 even when the power generation element 1 is used in an environment of room temperature (for example, 15 ° C. to 35 ° C.) or higher. As a result, deterioration of the power generation element 1 due to the vaporization of the solvent 142 can be suppressed.
  • the liquid at least one of an organic solvent and water can be selected. Examples of the organic solvent include methanol, ethanol, toluene, xylene, tetradecane, alkanethiol and the like.
  • the solvent 142 for example, a liquid having a high electrical resistance value and an insulating property is used.
  • the intermediate portion 14 may contain, for example, the solvent 142 and only the nanoparticles 141.
  • the intermediate portion 14 contains only nanoparticles 141, it is not necessary to consider the vaporization of the solvent 142 even if the power generation element 1 is used in a high temperature environment. This makes it possible to suppress deterioration of the power generation element 1 in a high temperature environment.
  • the first substrate 15 is in contact with the first electrode 11 and is separated from the second electrode 12.
  • the first substrate 15 fixes the first electrode 11.
  • the second substrate 16 is in contact with the second electrode 12 and is separated from the first electrode 11.
  • the second substrate 16 fixes the second electrode 12.
  • the first substrate 15 and the second substrate 16 are provided, for example, with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, separated from each other in the first direction Z.
  • the thickness of each of the substrates 15 and 16 along the first direction Z is, for example, 10 ⁇ m or more and 2 mm or less.
  • the thickness of each of the substrates 15 and 16 can be set arbitrarily.
  • the shapes of the substrates 15 and 16 may be, for example, a square or a rectangular quadrangle, or may be a disk shape or the like, and can be arbitrarily set according to the intended use.
  • a plate-shaped member having an insulating property can be used, and for example, known members such as silicon, quartz, and Pyrex (registered trademark) can be used.
  • a film-like member may be used, and for example, known film-like members such as PET (polyethylene terephthalate), PC (polycarbonate), and polyimide may be used.
  • a member having conductivity can be used, and examples thereof include iron, aluminum, copper, or an alloy of aluminum and copper.
  • members such as conductive polymers may be used. When a conductive member is used for each of the substrates 15 and 16, wiring for connecting to each of the electrodes 11 and 12 becomes unnecessary.
  • the first substrate 15 when it is a semiconductor, it may have a degenerate portion in contact with the first electrode 11. In this case, the contact resistance between the first electrode and the first substrate can be reduced as compared with the case where the degenerate portion is not provided. Further, the first substrate 15 may have a degenerate portion on a surface different from the surface in contact with the first electrode 11. In this case, the contact resistance between the first substrate 15 and the wiring electrically connected (for example, the first wiring 101) can be reduced.
  • the contact resistance can be reduced by providing a degenerate portion on the contact surface of each of the substrates 15 and 16 which are in contact with each other due to the stacking of the power generation elements 1.
  • the degenerate portion described above is generated by, for example, ion-implanting an n-type dopant into a semiconductor at a high concentration, or coating a semiconductor with a material such as glass containing the n-type dopant and performing heat treatment after coating.
  • Examples of the impurities doped in the first substrate 15 of the semiconductor include known impurities such as P, As, and Sb for the n-type and B, Ba, and Al for the p-type. Further, if the concentration of impurities in the degenerate portion is, for example, 1 ⁇ 10 19 ions / cm 3 , electrons can be efficiently emitted.
  • the resistivity value of the first substrate 15 may be, for example, 1 ⁇ 10 -6 ⁇ ⁇ cm or more and 1 ⁇ 10 6 ⁇ ⁇ cm or less.
  • the specific resistance value of the first substrate 15 is less than 1 ⁇ 10 -6 ⁇ ⁇ cm, it is difficult to select the material. Further, if the specific resistance value of the first substrate 15 is larger than 1 ⁇ 10 6 ⁇ ⁇ cm, there is a concern that the current loss may increase.
  • the second substrate 16 may be a semiconductor. In this case, since it is the same as the above, the description thereof will be omitted.
  • the support portion 17 is provided between, for example, the first substrate 15 and the second substrate 16, and is in contact with the intermediate portion 14.
  • the support portion 17 is provided, for example, along the gap G.
  • the support portion 17 may be provided in contact with the electrodes 11 and 12, for example, and may be provided in contact with the substrates 15 and 16, for example, as shown in FIG. 1A, the first substrate 15 and the first. It may be provided in contact with the two electrodes 12.
  • the support portion 17 extends along the second direction X, for example, as shown in FIG. 1 (b).
  • the support portion 17 is provided, for example, to prevent leakage of the intermediate portion 14, and for example, the intermediate portion 14 can be sealed by providing a sealing portion 21 in contact with the side surface of the support portion 17.
  • the support portion 17 for example, a material having an insulating property is used.
  • the support portion 17 include silicon oxides and polymers.
  • the polymer include polyimide, PMMA (polymethylmethacrylate), polystyrene and the like.
  • the support portion 17 may be provided by oxidizing at least a part of, for example, the first substrate 15 and the second substrate 16. In this case, the support portion 17 can be easily provided.
  • the substrates 15 and 16 may be joined to each other so as to seal the intermediate portion 14 without providing the support portion 17.
  • the gap G can be maintained with high accuracy.
  • ⁇ Operation example of power generation element 1> when thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy.
  • the amount of current generated between the first electrode 11 and the second electrode 12 depends not only on the thermal energy but also on the difference between the work function of the second electrode 12 and the work function of the first electrode 11.
  • the amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and reducing the gap G.
  • the amount of electric energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and reducing the gap G.
  • the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current. ..
  • the "work function” indicates the minimum energy required to extract the electrons in the solid into a vacuum.
  • the work function shall be measured using, for example, ultraviolet photoelectron spectroscopy (UPS: Ultraviolet Photoelectron Spectroscopy), X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy), or Auger electron spectroscopy (AES: Auger Electron Spectroscopy). Can be done.
  • FIG. 3 is a flowchart showing an example of the manufacturing method of the power generation element 1 in the present embodiment.
  • the method for manufacturing the power generation element 1 includes a gap forming step S110 and an intermediate portion forming step S120, and may include, for example, a nanoparticle generation step S210 and a film forming step S220.
  • the nanoparticle generation step S210 produces nanoparticles 141 containing two or more kinds of materials.
  • the liquid 201 in which metal ions are dissolved is irradiated with a femtosecond pulse laser 203 to generate metal nanoparticles (nanoparticles 141).
  • the liquid 201 is a metal solvent in which metal ions are dissolved, and is contained in the housing 202.
  • the housing 202 is, for example, a quartz cuvette.
  • liquid 201 for example, water is used.
  • metal ion two or more kinds of metal ions such as gold, platinum, rhodium, ruthenium, iridium, and palladium are used.
  • the ratio of gold to platinum is 1: 1 (that is, the composition ratio of gold and platinum is 50 wt% and 50 wt%). It is possible to generate metal nanoparticles of the alloy.
  • the femtosecond pulse laser 203 is a laser beam emitted from a light source (not shown), is condensed by the condenser lens 204, and is irradiated to the liquid 201.
  • the femtosecond pulsed laser 203 is a pulsed laser with a very short time width (eg 10-15 seconds).
  • the femtosecond pulse laser 203 irradiates the liquid 201, water molecules in the liquid 201 are decomposed to generate radicals, and the generated radicals (for example, hydrogen radicals) reduce metal ions to form nanoparticles. 141 is generated.
  • the generated radicals for example, hydrogen radicals
  • the femtosecond pulse laser 203 can be generated using, for example, Spitfire Pro manufactured by Spectra Physics as a light source, and has, for example, the following characteristics.
  • Oscillation wavelength 800nm
  • Pulse width 100 fs Energy: 5-6mJ
  • Repeat frequency 100Hz (output 0.5-0.6W)
  • a laser having such characteristics is focused with, for example, NA 0.5 and irradiated for 30 minutes.
  • the film forming step S220 forms, for example, a film 141a having a sulfur atom on the surface of nanoparticles 141.
  • the liquid 201 containing the nanoparticles 141 produced in the nanoparticles generating step S210 is supplied into the mixing container 211.
  • the phase transfer solvent 206 is supplied into the mixing container 211, and the liquid 201 and the phase transfer solvent 206 are mixed.
  • the layer of the phase transfer solvent 206 may be separated on the layer of the liquid 201 containing the nanoparticles 141.
  • phase transfer solvent 206 for example, toluene and the like can be mentioned.
  • the phase transfer solvent 206 contains a surface modifier (dispersant) in order to form a film 141a on the surface of the nanoparticles 141.
  • a surface modifier dispersant
  • a material having a sulfur atom is used, and for example, a material having a thiol group or a disulfide group is used.
  • a material having a thiol group an alkanethiol such as dodecanethiol is used.
  • a material having a disulfide group for example, alkane disulfide or the like is used.
  • the concentration of the dispersant is, for example, 1.0 ⁇ 10-5 mol / dm 3 , and can be set arbitrarily.
  • the phase transfer solvent 206 in the mixing container 211 and the liquid 201 containing nanoparticles 141 are stirred.
  • This stirring is performed, for example, by applying vibration to the entire mixing container 211 for a certain period of time (for example, stirring by rotating the container itself).
  • the dispersant binds to the surface of the nanoparticles 141.
  • the interphase transfer solvent 206 and the liquid 201 may be agitated using a stirring rod, for example, a stirrer, or a centrifuge or the like.
  • the stirring time is preferably in the range of 5 minutes or more and 10 minutes or less.
  • the mixing container 211 stand still.
  • some nanoparticles 141 move to the phase transfer solvent 206 side.
  • the nanoparticles 141 tend to move from the liquid 201 into the phase transfer solvent 206.
  • the nanoparticles 141 tend to stay in the liquid 201 (for example, 141s and 141t in FIG. 5D). That is, the nanoparticles 141 containing the coating film 141a can be obtained by collecting the nanoparticles 141 in the phase transfer solvent 206.
  • the film forming step S220 may be carried out, and the nanoparticles 141 in the phase transfer solvent 206 may not be collected. In this case, it can be determined that the film 141a is not formed on the nanoparticles 141.
  • the first electrode 11 and the second electrode 12, which have different work functions, are fixed in a separated state.
  • the electrodes 11 and 12 are first formed.
  • the first electrode 11 is formed on, for example, the first substrate 15.
  • the second electrode 12 is formed on, for example, the second substrate 16.
  • Each of the electrodes 11 and 12 is formed by, for example, a known technique.
  • a support portion 17 may be formed on any of the substrates 15 and 16 and on the electrodes 11 and 12.
  • the support portion 17 is formed, for example, by a known technique.
  • the process is performed before the first electrode 11 is formed.
  • the first substrate 15 is annealed at a high temperature to form an oxide film on the first substrate 15.
  • a part of the oxide film is removed by applying a resist to the oxide film, exposure, an etching method, or the like, so that the remaining portion of the oxide film is formed as a support portion 17.
  • the first electrode 11 is formed on the first substrate 15 on which the support portion 17 is not formed.
  • the substrates 15 and 16 are cut by dicing as necessary. Then, for example, as shown in FIG. 6C, the substrates 15 and 16 are laminated with the first electrode 11 and the second electrode 12 facing each other. At this time, the support portion 17 is fixed to the second substrate 16 or the like by a known technique such as thermocompression bonding. As a result, the electrodes 11 and 12 are fixed in a separated state.
  • the intermediate portion forming step S120 forms an intermediate portion 14 containing nanoparticles 141 between the first electrode 11 and the second electrode 12.
  • the intermediate portion forming step S120 forms the intermediate portion 14 in the space 140.
  • the solvent 142 in which the nanoparticles 141 are dispersed is injected into the space 140 by using a known technique such as a capillary phenomenon.
  • the power generation element 1 in the present embodiment is formed by forming the sealing portion 21 or the like as shown in FIG. 1 (b), for example.
  • the power generation device 100 according to the present embodiment is formed by connecting, for example, the wirings 101, 102, etc. shown in FIG. 1A to the formed power generation element 1.
  • the first electrode 11 has a first main surface 11f in contact with the intermediate portion 14 and a second main surface 11s located on the surface opposite to the first main surface 11f. ..
  • the second main surface 11s is in contact with, for example, the first wiring 101.
  • the first electrode 11, the intermediate portion 14, and the second electrode 12 are combined into one element (1a, 1b, 1c, ... In FIG. 7B). -),
  • the laminated structure can be easily provided.
  • the material used for the above-mentioned first substrate 15 may be used. That is, for example, the first electrode 11 is a semiconductor, and may have a degenerate portion on at least one of the first main surface 11f and the second main surface 11s. Therefore, the contact resistance at the time of stacking can be reduced as compared with the case where the degenerate portion is not provided. This makes it possible to suppress an increase in the resistance of the entire power generation element 1.
  • the support portion 17 may be a partially oxidized version of the first electrode 11.
  • the variation of the gap G can be suppressed as compared with the case where the support portion 17 is provided by using a material different from that of the first electrode 11. This makes it possible to stabilize the power generation efficiency.
  • 8 (a) to 8 (d) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation element 1.
  • 8 (e) to 8 (h) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation device 100 including a power generation element 1.
  • the electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502, and an auxiliary power supply 503.
  • Each of the electronic device 500 and the electronic component 501 is an electrical device (electrical device).
  • the electronic component 501 is driven by using the main power supply 502 as a power source.
  • Examples of the electronic component 501 include a CPU, a motor, a sensor terminal, lighting, and the like.
  • the electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU).
  • the electronic component 501 includes, for example, at least one such as a motor, a sensor terminal, and lighting, the electronic device 500 includes an external master or a human-controllable electronic device.
  • the main power source 502 is, for example, a battery. Batteries also include rechargeable batteries.
  • the positive terminal (+) of the main power supply 502 is electrically connected to the Vcc terminal (Vcc) of the electronic component 501.
  • the negative terminal (-) of the main power supply 502 is electrically connected to the GND terminal (GND) of the electronic component 501.
  • the auxiliary power supply 503 is a power generation element 1.
  • the power generation element 1 includes at least one of the above-mentioned power generation elements 1.
  • the auxiliary power supply 503 is used in combination with the main power supply 502, for example, as a power source for assisting the main power supply 502 or as a power source for backing up the main power supply 502 when the capacity of the main power supply 502 is exhausted. be able to.
  • the main power source 502 is a rechargeable battery
  • the auxiliary power source 503 can also be used as a power source for charging the battery.
  • the main power source 502 may be the power generation element 1.
  • the electronic device 500 shown in FIG. 8B includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven by the power generation element 1.
  • the power generation element 1 is an independent power source (for example, an off-grid power source). Therefore, the electronic device 500 can be made, for example, a self-standing type (stand-alone type).
  • the power generation element 1 is an energy harvesting type (energy harvesting type).
  • the electronic device 500 shown in FIG. 8B does not require battery replacement.
  • the electronic component 501 may include the power generation element 1.
  • the anode of the power generation element 1 is electrically connected to, for example, the GND wiring of the circuit board (not shown).
  • the cathode of the power generation element 1 is electrically connected to, for example, a Vcc wiring of a circuit board (not shown).
  • the power generation element 1 can be used as an electronic component 501, for example, an auxiliary power supply 503.
  • the power generation element 1 can be used as, for example, the main power source 502 of the electronic component 501.
  • the electronic device 500 may include a power generation device 100.
  • the power generation device 100 includes a power generation element 1 as a source of electric energy.
  • the embodiment shown in FIG. 8D includes a power generation element 1 in which the electronic component 501 is used as the main power source 502.
  • the embodiment shown in FIG. 8 (h) includes a power generation device 100 in which the electronic component 501 is used as a main power source.
  • the electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made, for example, a self-standing type.
  • the self-supporting electronic component 501 can be effectively used, for example, in an electronic device including a plurality of electronic components and in which at least one electronic component is separated from another electronic component.
  • An example of such an electronic device 500 is a sensor.
  • the sensor includes a sensor terminal (slave) and a controller (master) away from the sensor terminal.
  • Each of the sensor terminal and the controller is an electronic component 501. If the sensor terminal includes the power generation element 1 or the power generation device 100, it becomes a self-supporting sensor terminal and does not need to be supplied with electric power by wire. Since the power generation element 1 or the power generation device 100 is an energy harvesting type, it is not necessary to replace the battery.
  • the sensor terminal can also be regarded as one of the electronic devices 500.
  • the sensor terminal considered to be the electronic device 500 further includes, for example, an IoT wireless tag, etc., in addition to the sensor terminal of the sensor.
  • the electronic device 500 uses a power generation element 1 that converts thermal energy into electrical energy and a power generation element 1 as a power source. It includes an electronic component 501 that can be driven.
  • the electronic device 500 may be an autonomous type (autonomous type) having an independent power supply. Examples of autonomous electronic devices include robots and the like. Further, the electronic component 501 provided with the power generation element 1 or the power generation device 100 may be an autonomous type having an independent power source. Examples of autonomous electronic components include movable sensor terminals and the like.
  • nanoparticles having the composition ratios shown in Examples 1 to 5, Comparative Example 1 and Comparative Example 2 were prepared and evaluated as samples, respectively.
  • Each sample was produced by a method according to the nanoparticle generation step S210 described above.
  • nanoparticle generation step S210 nanoparticles having different composition ratios were generated for each sample by changing the ratio of gold ions and platinum ions dissolved in the liquid.
  • the method according to the film forming step S220 described above was carried out, and the possibility of collecting the coated nanoparticles was used as the evaluation standard.
  • toluene was used as the phase transfer solvent and 1-dodecanethiol was used as the dispersant (material of the film).
  • the stirring time between the phase transfer solvent and the liquid was set to 5 minutes.
  • the standing time after stirring was set to 5 minutes.
  • the evaluation results of the first example are as described in "Whether or not nanoparticles can be collected after phase transfer" in Table 1.
  • coated nanoparticles could be collected.
  • Comparative Example 2 the coated nanoparticles could not be collected.
  • the composition ratio of gold was 100%, which was different from the alloy (containing two or more kinds of materials), and therefore, it was evaluated as a comparative example.
  • 1-dodecanethiol was provided as a film on the surface.
  • 1-dodecanethiol was used as a dispersant, but considering the characteristics of the sulfur atom (that is, it has a high binding affinity for the gold atom), at least a thiol group or a disulfide group was used. It can be assumed that the same result can be obtained even when the dispersant having the above is used.
  • an alloy of gold and platinum was used as a sample, but considering the above-mentioned characteristics of the sulfur atom, the same result can be obtained even when a material other than platinum is used. I can imagine.
  • the nanoparticles after film formation produced and collected in the first embodiment were injected into the power generation element, and the generated voltage was measured. From this result, it was possible to clarify the composition ratio of nanoparticles required for promoting power generation via nanoparticles. The details will be described below.
  • the nanoparticles corresponding to Example 1, Example 5, and Comparative Example 1 are dispersed in toluene, respectively.
  • the sample was evaluated as a sample.
  • the concentration of the nanoparticles dispersed in toluene was set to 20%.
  • two electrodes fixed to the substrate are prepared, a support portion is formed on one electrode, and the other electrode is laminated via the support portion, whereby the distance between the electrodes ( An element for measurement having a gap) of 10 ⁇ m was formed. Quartz was used as the material of the substrate. Further, aluminum and platinum were used as the materials for the two electrodes. In addition, Cytop (registered commercial) was used as the support part. For the gap, a small gap forming device between electrodes (manufactured by Sanmei Co., Ltd.) using a precision positioning stage was used, and the gap was measured from the capacitance between the electrodes.
  • Example 1 The sample was injected into the measurement element generated from the above, and the voltage was measured with a resistance of 500 k ⁇ connected.
  • the measurement results are as described in "Voltage" in Table 2.
  • the described values are relative values when the voltage obtained in Comparative Example 1 is 1. In Example 1 and Example 3, a value 2.3 times higher than that in Comparative Example 1 was obtained. Further, in Example 5, a value 2.4 times higher than that in Comparative Example 1 was obtained.
  • the voltage value of the power generation element increases when the nanoparticles contain 20 wt% or more and 80 wt% or less of gold and 20 wt% or more and 80 wt% or less of platinum.
  • the nanoparticles 141 contain 20 wt% or more and less than 100 wt% gold, and include a coating film 141a having a sulfur atom provided on the surface. That is, the nanoparticles 141 containing gold in the above range can be formed with a coating film 141a on the surface. Therefore, the aggregation of nanoparticles 141 provided between the electrodes 11 and 12 can be suppressed. This makes it possible to improve the power generation efficiency.
  • the nanoparticles 141 further contain any one of platinum, rhodium, iridium, and palladium. That is, by containing a material having a crystal structure similar to that of gold, the amount of grain boundaries generated can be suppressed. Therefore, the electrical resistance of the nanoparticles 141 can be reduced. This makes it possible to further improve the power generation efficiency.
  • the nanoparticles 141 contain 20 wt% or more and 80 wt% or less of gold, and 20 wt% or more and 80 wt% or less of platinum. Therefore, it is possible to promote power generation via nanoparticles 141. This makes it possible to further improve the power generation efficiency.
  • the support portion 17 is obtained by oxidizing at least a part of at least one of the first substrate 15 and the second substrate 16. Therefore, as compared with the case where the support portion 17 is provided by using a material different from the substrate 15, it is possible to suppress the variation of the gap G between the electrodes. This makes it possible to stabilize the power generation efficiency.
  • the first substrate 15 is a semiconductor and has a degenerate portion in contact with the first electrode 11. Therefore, the contact resistance between the first electrode 11 and the first substrate 15 can be reduced as compared with the case where the degenerate portion is not provided. This makes it possible to suppress an increase in the resistance of the entire element.
  • the power generation device 100 includes a power generation element 1, a first wiring 101, and a second wiring 102. Therefore, it is possible to realize a power generation device 100 with improved power generation efficiency.
  • the electronic device 500 includes a power generation element 1 and an electronic component 501. Therefore, it is possible to realize the electronic device 500 with improved power generation efficiency.
  • the nanoparticles 141 contain 20 wt% or more and less than 100 wt% gold, and include a coating film 141a having a sulfur atom provided on the surface. That is, the nanoparticles 141 containing gold in the above range can be formed with a coating film 141a on the surface. Therefore, after performing the intermediate portion forming step S120, the aggregation of nanoparticles 141 between the electrodes 11 and 12 can be suppressed. This makes it possible to improve the power generation efficiency.
  • Power generation element 11 First electrode 12: Second electrode 14: Intermediate part 15: First board 16: Second board 17: Support part 21: Sealing part 100: Power generation device 101: First wiring 102: Second Wiring 140: Space 141: Nanoparticle 141a: Coating 142: Solvent 201: Liquid 202: Housing 203: Femtosecond pulse laser 204: Condensing lens 206: Interphase transfer solvent 211: Mixing container 500: Electronic device 501: Electronic component 502: Main power supply 503: Auxiliary power supply G: Gap R: Load S110: Gap forming step S120: Intermediate portion forming step S210: Nanoparticle generation step S220: Film forming step Z: First direction X: Second direction Y: Third direction direction direction

Abstract

[Problem] To provide a power generation element, a power generation device, an electronic apparatus, and a method for manufacturing the power generation element which are capable of improving power generation efficiency. [Solution] A power generation element 1 converts thermal energy into electrical energy, the power generation element 1 being characterized by comprising: a first electrode 11; a second electrode 12 which is disposed to face the first electrode 11 and has a work function different from that of the first electrode 11; and an intermediate part 14 which is disposed between the first electrode 11 and the second electrode 12 and includes nanoparticles 141 containing at least two kinds of materials, wherein the nanoparticles 141 contain 20-100 wt% (exclusive of 100) of gold, and includes a film 141a having sulfur atoms provided on the surface thereof.

Description

発電素子、発電装置、電子機器、及び発電素子の製造方法Power generation elements, power generation devices, electronic devices, and methods for manufacturing power generation elements
 この発明は、熱エネルギーを電気エネルギーに変換する発電素子、発電装置、電子機器、及び発電素子の製造方法に関する。 The present invention relates to a power generation element that converts thermal energy into electrical energy, a power generation device, an electronic device, and a method for manufacturing the power generation element.
 近年、熱エネルギーを利用して電気エネルギーを生成する発電素子の開発が盛んに行われている。特に、電極の有する仕事関数の差分を利用した電気エネルギーの生成に関し、例えば特許文献1に開示された熱電素子等が提案されている。このような熱電素子は、電極に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。 In recent years, the development of power generation elements that generate electrical energy using thermal energy has been actively carried out. In particular, regarding the generation of electric energy using the difference in the work function of the electrodes, for example, a thermoelectric element disclosed in Patent Document 1 has been proposed. Such a thermoelectric element is expected to be used for various purposes as compared with a configuration in which electric energy is generated by utilizing a temperature difference given to an electrode.
 特許文献1には、互いに離れて配置された第1の電極層及び第2の電極層と、第1の電極層及び第2の電極層に接触する熱電変換層と、を有する熱電変換素子が開示されている。また、熱電変換層は、導電性材料が非導電性材料で被覆された被覆導電性材料と、分散媒とを含有する熱電変換材料からなり、被覆導電性材料の比抵抗値は、1×10~1×10Ω・mである旨が開示されている。 Patent Document 1 describes a thermoelectric conversion element having a first electrode layer and a second electrode layer arranged apart from each other, and a thermoelectric conversion layer in contact with the first electrode layer and the second electrode layer. It has been disclosed. Further, the thermoelectric conversion layer is composed of a coated conductive material in which the conductive material is coated with a non-conductive material and a thermoelectric conversion material containing a dispersion medium, and the specific resistance value of the coated conductive material is 1 × 10. It is disclosed that it is 1 to 1 × 10 9 Ω · m.
特開2019-212823号公報Japanese Unexamined Patent Publication No. 2019-214823
 特許文献1では、熱電変換層に用いられる金属粒子の一例として、2種類以上の材料を含有する合金が挙げられている。金属粒子として合金を用いることで、耐熱性向上等の素子特性の向上が期待されている。しかしながら、合金は、含有する材料の種類や割合等の条件に伴い、表面に有機分子等を含む被膜を形成できない場合がある。被膜の形成が不十分な金属粒子を熱電変換素子に用いた場合、例えばギャップ内において金属粒子が凝集し易くなり、発電効率の低下を引き起こす懸念が挙げられる。 In Patent Document 1, an alloy containing two or more kinds of materials is mentioned as an example of metal particles used for a thermoelectric conversion layer. By using an alloy as the metal particles, it is expected that the element characteristics such as heat resistance will be improved. However, the alloy may not be able to form a film containing organic molecules or the like on the surface depending on the conditions such as the type and ratio of the contained materials. When metal particles having insufficiently formed film are used for the thermoelectric conversion element, for example, the metal particles tend to aggregate in the gap, which may cause a decrease in power generation efficiency.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、発電効率の向上を図ることができる発電素子、発電装置、電子機器、及び発電素子の製造方法を提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object thereof is to manufacture a power generation element, a power generation device, an electronic device, and a power generation element capable of improving power generation efficiency. To provide a method.
 第1発明に係る発電素子は、熱エネルギーを電気エネルギーに変換する発電素子であって、第1電極と、前記第1電極と対向して設けられ、前記第1電極とは異なる仕事関数を有する第2電極と、前記第1電極と、前記第2電極との間に設けられ、2種類以上の材料を含有するナノ粒子を含む中間部と、を備え、前記ナノ粒子は、20wt%以上100wt%未満の金を含有し、表面に設けられた硫黄原子を有する被膜を含むことを特徴とする。 The power generation element according to the first invention is a power generation element that converts thermal energy into electrical energy, is provided so as to face the first electrode and the first electrode, and has a work function different from that of the first electrode. It comprises a second electrode, an intermediate portion provided between the first electrode and the second electrode and containing nanoparticles containing two or more kinds of materials, and the nanoparticles are 20 wt% or more and 100 wt. It is characterized by containing less than% gold and containing a coating having a sulfur atom provided on the surface.
 第2発明に係る発電素子は、第1発明において、前記ナノ粒子は、白金、ロジウム、イリジウム、パラジウムの何れかをさらに含有することを特徴とする。 The power generation element according to the second invention is characterized in that, in the first invention, the nanoparticles further contain any one of platinum, rhodium, iridium, and palladium.
 第3発明に係る発電素子は、第1発明において、前記ナノ粒子は、20wt%以上80wt%以下の金、及び20wt%以上80wt%以下の白金のみを含有することを特徴とする。 The power generation element according to the third invention is characterized in that, in the first invention, the nanoparticles contain only 20 wt% or more and 80 wt% or less of gold and 20 wt% or more and 80 wt% or less of platinum.
 第4発明に係る発電素子は、第1発明において、前記第2電極と離間し、前記第1電極と接する第1基板と、前記第1電極と離間し、前記第2電極と接する第2基板と、前記第1基板と、前記第2基板との間に設けられ、前記中間部と接する支持部と、をさらに備え、前記支持部は、前記第1基板及び前記第2基板の少なくとも何れかの一部を酸化したものであることを特徴とする。 In the first invention, the power generation element according to the fourth invention is a first substrate separated from the second electrode and in contact with the first electrode, and a second substrate separated from the first electrode and in contact with the second electrode. A support portion provided between the first substrate and the second substrate and in contact with the intermediate portion is further provided, and the support portion is at least one of the first substrate and the second substrate. It is characterized in that it is a partially oxidized product.
 第5発明に係る発電素子は、第1発明において、前記第2電極と離間し、前記第1電極と接する第1基板をさらに備え、前記第1基板は、半導体であり、前記第1電極と接する縮退部を有することを特徴とする。 In the first invention, the power generation element according to the fifth invention further includes a first substrate separated from the second electrode and in contact with the first electrode, the first substrate being a semiconductor, and the first electrode. It is characterized by having a degenerate portion in contact with it.
 第6発明に係る発電装置は、第1発明の発電素子と、前記第1電極と電気的に接続された第1配線と、前記第2電極と電気的に接続された第2配線と、を備えることを特徴とする。 The power generation device according to the sixth invention comprises the power generation element of the first invention, the first wiring electrically connected to the first electrode, and the second wiring electrically connected to the second electrode. It is characterized by being prepared.
 第7発明に係る電子機器は、第1発明の発電素子と、前記発電素子を電源に用いて駆動する電子部品とを備えることを特徴とする。 The electronic device according to the seventh invention is characterized by including the power generation element of the first invention and an electronic component driven by using the power generation element as a power source.
 第8発明に係る発電素子の製造方法は、熱エネルギーを電気エネルギーに変換する発電素子の製造方法であって、それぞれ仕事関数の異なる第1電極及び第2電極を、離間した状態で固定するギャップ形成工程と、前記第1電極と、前記第2電極との間に、2種類以上の材料を含有するナノ粒子を含む中間部を形成する中間部形成工程と、を備え、前記ナノ粒子は、20wt%以上100wt%未満の金を含有し、表面に設けられた硫黄原子を有する被膜を含むこと特徴とする。 The method for manufacturing a power generation element according to the eighth invention is a method for manufacturing a power generation element that converts thermal energy into electrical energy, and is a gap in which the first electrode and the second electrode having different work functions are fixed in a separated state. The nanoparticle comprises a forming step and an intermediate portion forming step of forming an intermediate portion containing nanoparticles containing two or more kinds of materials between the first electrode and the second electrode. It is characterized by containing 20 wt% or more and less than 100 wt% of gold, and including a film having a sulfur atom provided on the surface.
 第1発明~第7発明によれば、ナノ粒子は、20wt%以上100wt%未満の金を含有し、表面に設けられた硫黄原子を有する被膜を含む。即ち、上記範囲の割合で金を含有したナノ粒子には、表面に被膜を形成させることができる。このため、各電極の間に設けられたナノ粒子の凝集を、抑制することができる。これにより、発電効率の向上を図ることが可能となる。 According to the first to seventh inventions, the nanoparticles contain 20 wt% or more and less than 100 wt% of gold, and include a film having a sulfur atom provided on the surface. That is, the nanoparticles containing gold in the above range can be formed with a film on the surface. Therefore, the aggregation of nanoparticles provided between the electrodes can be suppressed. This makes it possible to improve the power generation efficiency.
 特に、第2発明によれば、ナノ粒子は、白金、ロジウム、イリジウム、パラジウムの何れかをさらに含有する。即ち、金と同様の結晶構造を持つ材料を含有することで、結晶粒界の発生量を抑制することができる。このため、ナノ粒子における電気的抵抗を低減させることができる。これにより、発電効率のさらなる向上を図ることが可能となる。 In particular, according to the second invention, the nanoparticles further contain any one of platinum, rhodium, iridium, and palladium. That is, by containing a material having a crystal structure similar to that of gold, the amount of grain boundaries generated can be suppressed. Therefore, the electrical resistance of the nanoparticles can be reduced. This makes it possible to further improve the power generation efficiency.
 特に、第3発明によれば、ナノ粒子は20wt%以上80wt%以下の金、及び20wt%以上80wt%以下の白金を含有する。このため、ナノ粒子を介した発電を促進させることができる。これにより、発電効率の更なる向上を図ることが可能となる。 In particular, according to the third invention, the nanoparticles contain 20 wt% or more and 80 wt% or less of gold, and 20 wt% or more and 80 wt% or less of platinum. Therefore, it is possible to promote power generation via nanoparticles. This makes it possible to further improve the power generation efficiency.
 特に、第4発明によれば、支持部は、第1基板及び第2基板の少なくとも何れかの一部を酸化したものである。このため、基板とは別の材料を用いて支持部を設けた場合に比べ、電極間のギャップのバラつきを抑制することができる。これにより、発電効率の安定化を図ることが可能となる。 In particular, according to the fourth invention, the support portion is obtained by oxidizing at least a part of the first substrate and the second substrate. Therefore, it is possible to suppress the variation in the gap between the electrodes as compared with the case where the support portion is provided by using a material different from the substrate. This makes it possible to stabilize the power generation efficiency.
 特に、第5発明によれば、第1基板は、半導体であり、第1電極と接する縮退部を有する。このため、縮退部を有しない場合に比べて、第1電極と第1基板との間における接触抵抗を低減させることができる。これにより、素子全体の抵抗の増加を抑制することが可能となる。 In particular, according to the fifth invention, the first substrate is a semiconductor and has a degenerate portion in contact with the first electrode. Therefore, the contact resistance between the first electrode and the first substrate can be reduced as compared with the case where the degenerate portion is not provided. This makes it possible to suppress an increase in the resistance of the entire element.
 特に、第6発明によれば、発電装置は、発電素子と、第1配線と、第2配線とを備える。このため、発電効率を向上させた発電装置を実現することが可能となる。 In particular, according to the sixth invention, the power generation device includes a power generation element, a first wiring, and a second wiring. Therefore, it is possible to realize a power generation device with improved power generation efficiency.
 特に、第7発明によれば、電子機器は、発電素子と、電子部品とを備える。このため、発電効率を向上させた電子機器を実現することが可能となる。 In particular, according to the seventh invention, the electronic device includes a power generation element and an electronic component. Therefore, it is possible to realize an electronic device with improved power generation efficiency.
 第8発明によれば、ナノ粒子は、20wt%以上100wt%未満の金を含有し、表面に設けられた硫黄原子を有する被膜を含む。即ち、上記範囲の割合で金を含有したナノ粒子には、表面に被膜を形成させることができる。このため、中間部形成工程を実施したあと、各電極の間におけるナノ粒子の凝集を、抑制することができる。これにより、発電効率の向上を図ることが可能となる。 According to the eighth invention, the nanoparticles contain 20 wt% or more and less than 100 wt% of gold, and include a film having a sulfur atom provided on the surface. That is, the nanoparticles containing gold in the above range can be formed with a film on the surface. Therefore, after performing the intermediate portion forming step, the aggregation of nanoparticles between each electrode can be suppressed. This makes it possible to improve the power generation efficiency.
図1(a)は、本実施形態における発電素子及び発電装置の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式平面図である。1 (a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the present embodiment, and FIG. 1 (b) is a schematic plan view along AA in FIG. 1 (a). .. 図2は、中間部の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion. 図3は、本実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of a method for manufacturing a power generation element according to the present embodiment. 図4は、ナノ粒子生成工程の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the nanoparticle generation process. 図5は、被膜形成工程の一例を示す模式図である。FIG. 5 is a schematic view showing an example of the film forming process. 図6(a)~図6(c)は、ギャップ形成工程の一例を示す模式断面図である。6 (a) to 6 (c) are schematic cross-sectional views showing an example of a gap forming step. 図7(a)、及び図7(b)は、本実施形態における発電素子及び発電装置の変形例を示す模式断面図である。7 (a) and 7 (b) are schematic cross-sectional views showing a modified example of the power generation element and the power generation device in the present embodiment. 図8(a)~図8(d)は、発電素子を備えた電子機器の例を示す模式ブロック図であり、図8(e)~図8(h)は、発電素子を含む発電装置を備えた電子機器の例を示す模式ブロック図である。8 (a) to 8 (d) are schematic block diagrams showing an example of an electronic device provided with a power generation element, and FIGS. 8 (e) to 8 (h) show a power generation device including the power generation element. It is a schematic block diagram which shows the example of the electronic device provided.
 以下、本発明の実施形態としての発電素子、発電装置、電子機器、及び発電素子の製造方法の一例について、図面を参照しながら説明する。なお、各図において、各電極が積層される高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図における構成は、説明のため模式的に記載されており、例えば各構成の大きさや、構成毎における大きさの対比等については、図とは異なってもよい。 Hereinafter, an example of a power generation element, a power generation device, an electronic device, and a method for manufacturing the power generation element as an embodiment of the present invention will be described with reference to the drawings. In each figure, the height direction in which the electrodes are laminated is defined as the first direction Z, and the plane direction intersecting with the first direction Z, for example, one orthogonal plane direction is defined as the second direction X, and the first direction Z and the second direction Z and the second direction Z. Let the third direction Y be another plane direction that intersects with each of the directions X, for example, is orthogonal to each other. Further, the configurations in each figure are schematically described for the sake of explanation, and for example, the size of each configuration, the comparison of the sizes in each configuration, and the like may be different from those in the figure.
(実施形態:発電素子1、発電装置100)
 図1は、本実施形態における発電素子1、及び発電装置100の一例を示す模式図である。図1(a)は、本実施形態における発電素子1、及び発電装置100の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式平面図である。
(Embodiment: power generation element 1, power generation device 100)
FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in the present embodiment. 1 (a) is a schematic cross-sectional view showing an example of a power generation element 1 and a power generation device 100 in the present embodiment, and FIG. 1 (b) is a schematic plane along AA in FIG. 1 (a). It is a figure.
(発電装置100)
 図1(a)に示すように、発電装置100は、発電素子1と、第1配線101と、第2配線102とを備える。発電素子1は、熱エネルギーを電気エネルギーに変換する。このような発電素子1を備えた発電装置100は、例えば、図示せぬ熱源に搭載又は設置され、熱源の熱エネルギーを元として、発電素子1から発生した電気エネルギーを、第1配線101及び第2配線102を介して負荷Rへ出力する。負荷Rの一端は第1配線101と電気的に接続され、他端は第2配線102と電気的に接続される。負荷Rは、例えば電気的な機器を示す。負荷Rは、例えば発電装置100を主電源又は補助電源に用いて駆動される。
(Power generation device 100)
As shown in FIG. 1A, the power generation device 100 includes a power generation element 1, a first wiring 101, and a second wiring 102. The power generation element 1 converts thermal energy into electrical energy. The power generation device 100 provided with such a power generation element 1 is mounted on or installed in a heat source (not shown), and the electric energy generated from the power generation element 1 is transferred to the first wiring 101 and the first wiring 101 based on the heat energy of the heat source. 2 Output to the load R via the wiring 102. One end of the load R is electrically connected to the first wiring 101, and the other end is electrically connected to the second wiring 102. The load R indicates, for example, an electrical device. The load R is driven by using, for example, a power generation device 100 as a main power source or an auxiliary power source.
 発電素子1の熱源としては、例えば、CPU(Central Processing Unit)等の電子デバイス又は電子部品、LED(Light Emitting Diode)等の発光素子、自動車等のエンジン、工場の生産設備、人体、太陽光、及び環境温度等が挙げられる。例えば、電子デバイス、電子部品、発光素子、エンジン、及び生産設備等は、人工熱源である。人体、太陽光、及び環境温度等は自然熱源である。発電素子1を備えた発電装置100は、例えばIoT(Internet of Things)デバイス及びウェアラブル機器等のモバイル機器や自立型センサ端末の内部に設けることができ、電池の代替又は補助として用いることができる。さらに、発電装置100は、太陽光発電等のような、より大型の発電装置への応用も可能である。 Examples of the heat source of the power generation element 1 include electronic devices or electronic components such as a CPU (Central Processing Unit), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, factory production equipment, human bodies, sunlight, and the like. And the ambient temperature and the like. For example, electronic devices, electronic components, light emitting elements, engines, production equipment, and the like are artificial heat sources. The human body, sunlight, environmental temperature, etc. are natural heat sources. The power generation device 100 provided with the power generation element 1 can be provided inside a mobile device such as an IoT (Internet of Things) device and a wearable device, or a self-standing sensor terminal, and can be used as a substitute for or an auxiliary of a battery. Further, the power generation device 100 can also be applied to a larger power generation device such as solar power generation.
(発電素子1)
 発電素子1は、例えば、上記人工熱源が発した熱エネルギー、又は上記自然熱源が持つ熱エネルギーを電気エネルギーに変換し、電流を生成する。発電素子1は、発電装置100内に設けるだけでなく、発電素子1自体を、上記モバイル機器や上記自立型センサ端末等の内部に設けることもできる。この場合、発電素子1自体が、上記モバイル機器又は上記自立型センサ端末等の、電池の代替部品又は補助部品となり得る。
(Power generation element 1)
The power generation element 1 converts, for example, the heat energy generated by the artificial heat source or the heat energy of the natural heat source into electric energy to generate an electric current. The power generation element 1 is not only provided inside the power generation device 100, but the power generation element 1 itself can be provided inside the mobile device, the self-supporting sensor terminal, or the like. In this case, the power generation element 1 itself can be a substitute part or an auxiliary part of a battery such as the mobile device or the self-supporting sensor terminal.
 発電素子1は、例えば図1(a)に示すように、第1電極11と、第2電極12と、中間部14とを備える。発電素子1は、例えば第1基板15と、第2基板16とを備えてもよいほか、支持部17を備えてもよい。 As shown in FIG. 1A, for example, the power generation element 1 includes a first electrode 11, a second electrode 12, and an intermediate portion 14. The power generation element 1 may include, for example, a first substrate 15 and a second substrate 16, or may include a support portion 17.
 第1電極11及び第2電極12は、互いに対向して設けられる。第1電極11及び第2電極12は、それぞれ異なる仕事関数を有する。中間部14は、例えば図2に示すように、第1電極11と、第2電極12との間(ギャップG)を含む空間140に設けられる。中間部14は、ナノ粒子141を含む。 The first electrode 11 and the second electrode 12 are provided so as to face each other. The first electrode 11 and the second electrode 12 have different work functions. As shown in FIG. 2, for example, the intermediate portion 14 is provided in a space 140 including a space (gap G) between the first electrode 11 and the second electrode 12. The intermediate portion 14 contains nanoparticles 141.
 ナノ粒子141は、2種類以上の材料を含有する。ナノ粒子141は、20wt%以上100wt%未満の金を含有する。ナノ粒子141は、被膜141aを含む。被膜141aは、ナノ粒子141の表面に設けられ、硫黄原子を有する。 Nanoparticle 141 contains two or more kinds of materials. The nanoparticles 141 contain 20 wt% or more and less than 100 wt% gold. The nanoparticles 141 include a coating 141a. The coating 141a is provided on the surface of the nanoparticles 141 and has a sulfur atom.
 例えばナノ粒子が、20wt%未満の金を含有する場合、ナノ粒子の表面に被膜を形成することが困難となる場合がある。この場合、ギャップGのような狭い空間にナノ粒子を設ける際、ナノ粒子同士の凝集が発生し易くなり、発電効率の低下を引き起こす懸念が挙げられる。また、例えばナノ粒子が、100wt%の金を含有する場合、1種類の材料のみからなるナノ粒子を示すため、合金を用いた場合に期待される耐熱性向上等の素子特性の向上を実現できない。 For example, if the nanoparticles contain less than 20 wt% gold, it may be difficult to form a film on the surface of the nanoparticles. In this case, when the nanoparticles are provided in a narrow space such as the gap G, the nanoparticles are likely to aggregate with each other, which may cause a decrease in power generation efficiency. Further, for example, when the nanoparticles contain 100 wt% of gold, the nanoparticles are composed of only one kind of material, so that it is not possible to realize the improvement of element characteristics such as the improvement of heat resistance expected when an alloy is used. ..
 これらに対し、本実施形態における発電素子1では、ナノ粒子141は、20wt%以上100wt%未満の金を含有し、表面に設けられた硫黄原子を有する被膜141aを含む。即ち、上記範囲の割合で金を含有したナノ粒子141には、後述する第1実施例に示すように、表面に被膜141aを形成させることができる。このため、各電極11、12の間に設けられたナノ粒子の凝集を、抑制することができる。これにより、発電効率の向上を図ることが可能となる。 On the other hand, in the power generation element 1 of the present embodiment, the nanoparticles 141 contain 20 wt% or more and less than 100 wt% of gold, and include a coating film 141a having a sulfur atom provided on the surface. That is, as shown in the first embodiment described later, the nanoparticles 141 containing gold in the above range can be formed with a coating film 141a on the surface. Therefore, the aggregation of nanoparticles provided between the electrodes 11 and 12 can be suppressed. This makes it possible to improve the power generation efficiency.
 上記のほか、例えばナノ粒子141は、20wt%以上80wt%以下の金、及び20wt%以上80wt%以下の白金の2種類の材料を含有してもよい。 In addition to the above, for example, nanoparticles 141 may contain two types of materials: gold of 20 wt% or more and 80 wt% or less, and platinum of 20 wt% or more and 80 wt% or less.
 例えばナノ粒子が、20wt%未満の金、及び80wt%を超える白金の少なくとも何れかを含有する場合、上記と同様に、ナノ粒子の表面に被膜を形成することが困難となる場合がある。また、例えばナノ粒子が、80wt%を超える金、20wt%未満の白金の少なくとも何れかを含有する場合、合金に期待される素子特性の向上を、十分に得られない懸念が挙げられる。 For example, when the nanoparticles contain at least one of less than 20 wt% gold and more than 80 wt% platinum, it may be difficult to form a film on the surface of the nanoparticles, as described above. Further, for example, when the nanoparticles contain at least one of more than 80 wt% gold and less than 20 wt% platinum, there is a concern that the improvement in device characteristics expected for the alloy cannot be sufficiently obtained.
 これらに対し、本実施形態における発電素子1では、例えばナノ粒子141は、20wt%以上80wt%以下の金、及び20wt%以上80wt%以下の白金の2種類の材料を含有してもよい。この場合、後述する第2実施例に示すように、ナノ粒子141を介した発電を促進させることができる。これにより、発電効率の更なる向上を図ることが可能となる。なお、上記範囲のナノ粒子141を生成する際、例えば金及び白金以外の材料が、1wt%程度含有する場合がある。この場合においても、ナノ粒子141の特性への影響は僅かである。このため、ナノ粒子141の含有する主な材料が、上記範囲の金及び白金であれば、ナノ粒子141を介した発電を促進させることができる。 On the other hand, in the power generation element 1 of the present embodiment, for example, the nanoparticles 141 may contain two kinds of materials: gold of 20 wt% or more and 80 wt% or less, and platinum of 20 wt% or more and 80 wt% or less. In this case, as shown in the second embodiment described later, it is possible to promote power generation via the nanoparticles 141. This makes it possible to further improve the power generation efficiency. When producing nanoparticles 141 in the above range, materials other than, for example, gold and platinum may be contained in an amount of about 1 wt%. Even in this case, the influence on the characteristics of the nanoparticles 141 is small. Therefore, if the main materials contained in the nanoparticles 141 are gold and platinum in the above range, power generation via the nanoparticles 141 can be promoted.
 以下、各構成についての詳細を説明する。 The details of each configuration will be explained below.
 <第1電極11、第2電極12>
 第1電極11及び第2電極12は、例えば図1(a)に示すように、第1方向Zに離間する。第2電極12は、第1電極とは異なる仕事関数を有する。各電極11、12は、例えば第2方向X及び第3方向Yに延在し、複数設けられてもよい。例えば1つの第2電極12は、複数の第1電極11とそれぞれ異なる位置で対向して設けられてもよい。また、例えば1つの第1電極11は、複数の第2電極12とそれぞれ異なる位置で対向して設けられてもよい。
<1st electrode 11, 2nd electrode 12>
The first electrode 11 and the second electrode 12 are separated from each other in the first direction Z, for example, as shown in FIG. 1 (a). The second electrode 12 has a work function different from that of the first electrode. A plurality of the electrodes 11 and 12 may be provided, for example, extending in the second direction X and the third direction Y. For example, one second electrode 12 may be provided so as to face a plurality of first electrodes 11 at different positions. Further, for example, one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
 第1電極11及び第2電極12の材料として、導電性を有する材料が用いられる。第1電極11及び第2電極12の材料として、それぞれ異なる仕事関数を有する材料が用いられる。なお、各電極11、12に同一の材料を用いてもよく、この場合、それぞれ異なる仕事関数を有していればよい。 As the material of the first electrode 11 and the second electrode 12, a material having conductivity is used. As the material of the first electrode 11 and the second electrode 12, materials having different work functions are used. The same material may be used for each of the electrodes 11 and 12, and in this case, they may have different work functions.
 各電極11、12の材料として、例えば鉄、アルミニウム、銅等の単一元素からなる材料が用いられるほか、例えば2種類以上の元素からなる合金の材料が用いられてもよい。各電極11、12の材料として、例えば非金属導電物が用いられてもよい。非金属導電物の例としては、シリコン(Si:例えばp型Si、あるいはn型Si)、及びグラフェン等のカーボン系材料等を挙げることができる。 As the material of each of the electrodes 11 and 12, for example, a material made of a single element such as iron, aluminum, and copper may be used, or for example, an alloy material made of two or more kinds of elements may be used. As the material of each of the electrodes 11 and 12, for example, a non-metal conductive material may be used. Examples of the non-metal conductive material include silicon (Si: for example, p-type Si or n-type Si), carbon-based materials such as graphene, and the like.
 第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上1μm以下である。第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上50nm以下でもよい。 The thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 μm or less. The thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
 第1電極11と、第2電極12との間の距離を示すギャップGは、例えば図2に示すように、第1方向Zに沿った長さを示す。例えばギャップGを短くすることで、発電素子1の発電効率を向上させることができる。また、例えばギャップGを短くすることで、発電素子1の第1方向Zに沿った厚さを薄くすることができる。これらのため、ギャップGは、短いほうが望ましい。 The gap G indicating the distance between the first electrode 11 and the second electrode 12 indicates the length along the first direction Z, for example, as shown in FIG. For example, by shortening the gap G, the power generation efficiency of the power generation element 1 can be improved. Further, for example, by shortening the gap G, the thickness of the power generation element 1 along the first direction Z can be reduced. Therefore, it is desirable that the gap G is short.
 ギャップGは、例えば10μm以下の有限値である。ギャップGは、例えば10nm以上100nm以下である。ギャップGは、例えば支持部17の厚さに依存するほか、例えば同一基板上に各電極11、12を設ける場合には、各電極11、12の配置条件に依存する。 Gap G is, for example, a finite value of 10 μm or less. The gap G is, for example, 10 nm or more and 100 nm or less. The gap G depends on, for example, the thickness of the support portion 17, and also depends on the arrangement conditions of the electrodes 11 and 12 when the electrodes 11 and 12 are provided on the same substrate, for example.
 <中間部14>
 中間部14は、各電極11、12の間に形成された空間140内に設けられる。中間部14は、各電極11、12の互いに対向する主面に接するほか、例えば各電極11、12の側面に接してもよい。
<Middle part 14>
The intermediate portion 14 is provided in the space 140 formed between the electrodes 11 and 12. The intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, or may be in contact with, for example, the side surfaces of the electrodes 11 and 12.
 中間部14は、ナノ粒子141を含むほか、例えば溶媒142を含んでもよい。中間部14は、例えば複数種類のナノ粒子141を含んでもよい。 The intermediate portion 14 contains nanoparticles 141 and may also contain, for example, a solvent 142. The intermediate portion 14 may contain, for example, a plurality of types of nanoparticles 141.
 ナノ粒子141は、例えば溶媒142内に分散される。ナノ粒子141の粒子径は、例えばギャップGよりも小さい。ナノ粒子141の粒子径は、例えばギャップGの1/10以下の有限値とされる。ナノ粒子141の粒子径を、ギャップGの1/10以下とすると、空間140内にナノ粒子141を含む中間部14を、形成しやすくなる。これにより、発電素子1を生成する際、作業性を向上させることが可能となる。 The nanoparticles 141 are dispersed in, for example, the solvent 142. The particle size of the nanoparticles 141 is smaller than, for example, the gap G. The particle size of the nanoparticles 141 is, for example, a finite value of 1/10 or less of the gap G. When the particle size of the nanoparticles 141 is 1/10 or less of the gap G, it becomes easy to form the intermediate portion 14 containing the nanoparticles 141 in the space 140. This makes it possible to improve workability when generating the power generation element 1.
 ナノ粒子141は、例えば導電物を含む。ナノ粒子141の仕事関数の値は、例えば、第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間にあるほか、例えば第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間以外であってもよく、任意である。 The nanoparticles 141 contain, for example, a conductive material. The value of the work function of the nanoparticles 141 is, for example, between the value of the work function of the first electrode 11 and the value of the work function of the second electrode 12, and for example, the value of the work function of the first electrode 11. , It may be other than the value of the work function of the second electrode 12, and is arbitrary.
 ナノ粒子141は、例えば金と、金以外の1種類以上の材料とを含有する。ナノ粒子141に含有される材料として、例えば金、白金、ロジウム、ルテニウム、イリジウム、パラジウム等が用いられる。特に、ナノ粒子141に金を含有する場合、金と同様の結晶構造(面心立方格子)を持つ白金、ロジウム、イリジウム、パラジウムの何れかを含有した合金とすることが好ましい。この場合、例えばナノ粒子141を形成する際、結晶粒界の発生量を抑制することができる。このようなナノ粒子141を用いた発電素子1は、発電効率の向上を図ることが可能となる。 The nanoparticles 141 contain, for example, gold and one or more kinds of materials other than gold. As the material contained in the nanoparticles 141, for example, gold, platinum, rhodium, ruthenium, iridium, palladium and the like are used. In particular, when gold is contained in the nanoparticles 141, it is preferable to use an alloy containing any one of platinum, rhodium, iridium, and palladium having a crystal structure (face-centered cubic lattice) similar to that of gold. In this case, for example, when forming nanoparticles 141, the amount of grain boundaries generated can be suppressed. The power generation element 1 using such nanoparticles 141 can improve the power generation efficiency.
 ここで、「ナノ粒子」とは、複数の粒子を含んだものを示す。ナノ粒子141は、例えば2nm以上10nm以下の粒子径を有する粒子を含む。ナノ粒子141は、例えば、平均粒径(例えばD50)が3nm以上8nm以下の粒子径を有する粒子を含んでもよい。平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、レーザー回折散乱法を用いた粒度分布計測器(例えばMicrotracBEL製Nanotrac WaveII-EX150等)を用いればよい。 Here, "nanoparticles" means those containing a plurality of particles. The nanoparticles 141 include particles having a particle diameter of, for example, 2 nm or more and 10 nm or less. The nanoparticles 141 may include, for example, particles having an average particle size (for example, D50) of 3 nm or more and 8 nm or less. The average particle size can be measured, for example, by using a particle size distribution measuring instrument. As the particle size distribution measuring instrument, for example, a particle size distribution measuring instrument using a laser diffraction / scattering method (for example, Nanotrac Wave II-EX150 manufactured by Microtrac BEL) may be used.
 ナノ粒子141の表面に設けられた被膜141aは、硫黄原子を有する。硫黄原子は、金原子に対して高い結合親和性を持つため、金を含有したナノ粒子141の表面において、被膜141aを容易に形成することができる。被膜141aとして、例えばチオール基又はジスルフィド基を有する材料が用いられる。チオール基を有する材料として、例えばドデカンチオール等のアルカンチオールが用いられる。ジスルフィド基を有する材料として、例えばアルカンジスルフィド等が用いられる。 The coating 141a provided on the surface of the nanoparticles 141 has a sulfur atom. Since the sulfur atom has a high bond affinity with the gold atom, the coating 141a can be easily formed on the surface of the gold-containing nanoparticles 141. As the coating 141a, for example, a material having a thiol group or a disulfide group is used. As a material having a thiol group, an alkanethiol such as dodecanethiol is used. As a material having a disulfide group, for example, alkane disulfide or the like is used.
 被膜141aの厚さは、例えば20nm以下の有限値である。このような被膜141aをナノ粒子141の表面に設けることで、例えば空間140内におけるナノ粒子141の凝集を抑制することができる。また、例えば電子が、第1電極11とナノ粒子141との間、及び第2電極12とナノ粒子141との間を、トンネル効果等を利用して移動する可能性を高めることが可能となる。 The thickness of the coating film 141a is, for example, a finite value of 20 nm or less. By providing such a coating 141a on the surface of the nanoparticles 141, for example, aggregation of the nanoparticles 141 in the space 140 can be suppressed. Further, for example, it is possible to increase the possibility that electrons move between the first electrode 11 and the nanoparticles 141 and between the second electrode 12 and the nanoparticles 141 by using the tunnel effect or the like. ..
 溶媒142には、例えば沸点が60℃以上の液体を用いることができる。このため、室温(例えば15℃~35℃)以上の環境下において、発電素子1を用いた場合であっても、溶媒142の気化を抑制することができる。これにより、溶媒142の気化に伴う発電素子1の劣化を抑制することができる。液体の例としては、有機溶媒及び水の少なくとも1つを選ぶことができる。有機溶媒の例としては、メタノール、エタノール、トルエン、キシレン、テトラデカン、及びアルカンチオール等を挙げることができる。なお、溶媒142として、例えば電気的抵抗値が高く、絶縁性である液体が用いられる。 For the solvent 142, for example, a liquid having a boiling point of 60 ° C. or higher can be used. Therefore, it is possible to suppress the vaporization of the solvent 142 even when the power generation element 1 is used in an environment of room temperature (for example, 15 ° C. to 35 ° C.) or higher. As a result, deterioration of the power generation element 1 due to the vaporization of the solvent 142 can be suppressed. As an example of the liquid, at least one of an organic solvent and water can be selected. Examples of the organic solvent include methanol, ethanol, toluene, xylene, tetradecane, alkanethiol and the like. As the solvent 142, for example, a liquid having a high electrical resistance value and an insulating property is used.
 なお、中間部14は、例えば溶媒142を含まず、ナノ粒子141のみを含むようにしてもよい。例えば中間部14が、ナノ粒子141のみを含む場合、発電素子1を高温環境下で用いても溶媒142の気化を考慮する必要が無い。これにより、高温環境下における発電素子1の劣化を抑制することが可能となる。 The intermediate portion 14 may contain, for example, the solvent 142 and only the nanoparticles 141. For example, when the intermediate portion 14 contains only nanoparticles 141, it is not necessary to consider the vaporization of the solvent 142 even if the power generation element 1 is used in a high temperature environment. This makes it possible to suppress deterioration of the power generation element 1 in a high temperature environment.
 <第1基板15、第2基板16>
 第1基板15は、例えば図1(a)に示すように、第1電極11と接し、第2電極12と離間する。第1基板15は、第1電極11を固定する。第2基板16は、第2電極12と接し、第1電極11と離間する。第2基板16は、第2電極12を固定する。第1基板15及び第2基板16は、例えば各電極11、12及び中間部14を挟み、第1方向Zに離間して設けられる。
<1st board 15, 2nd board 16>
As shown in FIG. 1A, for example, the first substrate 15 is in contact with the first electrode 11 and is separated from the second electrode 12. The first substrate 15 fixes the first electrode 11. The second substrate 16 is in contact with the second electrode 12 and is separated from the first electrode 11. The second substrate 16 fixes the second electrode 12. The first substrate 15 and the second substrate 16 are provided, for example, with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, separated from each other in the first direction Z.
 各基板15、16の第1方向Zに沿った厚さは、例えば10μm以上2mm以下である。各基板15、16の厚さは、任意に設定することができる。各基板15、16の形状は、例えば正方形や長方形の四角形のほか、円盤状等でもよく、用途に応じて任意に設定することができる。 The thickness of each of the substrates 15 and 16 along the first direction Z is, for example, 10 μm or more and 2 mm or less. The thickness of each of the substrates 15 and 16 can be set arbitrarily. The shapes of the substrates 15 and 16 may be, for example, a square or a rectangular quadrangle, or may be a disk shape or the like, and can be arbitrarily set according to the intended use.
 各基板15、16として、例えば絶縁性を有する板状の部材を用いることができ、例えばシリコン、石英、パイレックス(登録商標)等の公知の部材を用いることができる。各基板15、16は、例えばフィルム状の部材が用いられてもよく、例えばPET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等の公知のフィルム状部材が用いられてもよい。 As the substrates 15 and 16, for example, a plate-shaped member having an insulating property can be used, and for example, known members such as silicon, quartz, and Pyrex (registered trademark) can be used. For each of the substrates 15 and 16, for example, a film-like member may be used, and for example, known film-like members such as PET (polyethylene terephthalate), PC (polycarbonate), and polyimide may be used.
 各基板15、16として、例えば導電性を有する部材を用いることができ、例えば鉄、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。また、各基板15、16としては、例えばSi、GaN等の導電性を有する半導体の他、導電性高分子等の部材を用いてもよい。各基板15、16に導電性を有する部材を用いる場合、各電極11、12に接続するための配線が不要となる。 As the substrates 15 and 16, for example, a member having conductivity can be used, and examples thereof include iron, aluminum, copper, or an alloy of aluminum and copper. Further, as the substrates 15 and 16, in addition to semiconductors having conductivity such as Si and GaN, members such as conductive polymers may be used. When a conductive member is used for each of the substrates 15 and 16, wiring for connecting to each of the electrodes 11 and 12 becomes unnecessary.
 例えば、第1基板15が半導体の場合、第1電極11と接する縮退部を有してもよい。この場合、縮退部を有しない場合に比べて、第1電極と第1基板との間における接触抵抗を低減させることができる。また、第1基板15は、第1電極11と接する面とは異なる表面に、縮退部を有してもよい。この場合、第1基板15と電気的に接続される配線(例えば第1配線101)との接触抵抗を低減させることができる。 For example, when the first substrate 15 is a semiconductor, it may have a degenerate portion in contact with the first electrode 11. In this case, the contact resistance between the first electrode and the first substrate can be reduced as compared with the case where the degenerate portion is not provided. Further, the first substrate 15 may have a degenerate portion on a surface different from the surface in contact with the first electrode 11. In this case, the contact resistance between the first substrate 15 and the wiring electrically connected (for example, the first wiring 101) can be reduced.
 例えば図1(a)に示す発電素子1を複数用いて積層する場合、第1基板15及び第2基板16として、半導体を用いてもよい。この場合、各発電素子1の積層に伴い接する各基板15、16の接触面に縮退部を設けることで、接触抵抗を低減させることができる。 For example, when a plurality of power generation elements 1 shown in FIG. 1A are used for stacking, semiconductors may be used as the first substrate 15 and the second substrate 16. In this case, the contact resistance can be reduced by providing a degenerate portion on the contact surface of each of the substrates 15 and 16 which are in contact with each other due to the stacking of the power generation elements 1.
 上述した縮退部は、例えばn型のドーパントを高濃度に半導体にイオン注入することや、n型のドーパントを含むガラスなどの材料を半導体にコーティングし、コーティング後に熱処理を行うことによって生成される。 The degenerate portion described above is generated by, for example, ion-implanting an n-type dopant into a semiconductor at a high concentration, or coating a semiconductor with a material such as glass containing the n-type dopant and performing heat treatment after coating.
 なお、半導体の第1基板15にドープされる不純物として、n型であればP、As、Sb等、p型であればB、Ba、Al等の公知の不純物が挙げられる。また、縮退部の不純物の濃度は、例えば、1×1019イオン/cmであれば、電子を効率よく放出させることができる。 Examples of the impurities doped in the first substrate 15 of the semiconductor include known impurities such as P, As, and Sb for the n-type and B, Ba, and Al for the p-type. Further, if the concentration of impurities in the degenerate portion is, for example, 1 × 10 19 ions / cm 3 , electrons can be efficiently emitted.
 例えば、第1基板15が半導体の場合、第1基板15の比抵抗値は、例えば1×10-6Ω・cm以上1×10Ω・cm以下であればよい。第1基板15の比抵抗値が1×10-6Ω・cmを下回ると、材料の選定が難しい。また、第1基板15の比抵抗値が1×10Ω・cmよりも大きいと、電流のロスが増大する懸念がある。 For example, when the first substrate 15 is a semiconductor, the resistivity value of the first substrate 15 may be, for example, 1 × 10 -6 Ω · cm or more and 1 × 10 6 Ω · cm or less. When the specific resistance value of the first substrate 15 is less than 1 × 10 -6 Ω · cm, it is difficult to select the material. Further, if the specific resistance value of the first substrate 15 is larger than 1 × 10 6 Ω · cm, there is a concern that the current loss may increase.
 なお、上記では、第1基板15が半導体の場合について説明したが、第2基板16が半導体でもよい。この場合、上記と同様のため、説明を省略する。 Although the case where the first substrate 15 is a semiconductor has been described above, the second substrate 16 may be a semiconductor. In this case, since it is the same as the above, the description thereof will be omitted.
 <支持部17>
 支持部17は、例えば第1基板15と、第2基板16との間に設けられ、中間部14と接する。支持部17は、例えばギャップGに沿って設けられる。支持部17は、各電極11、12に接して設けられるほか、例えば各基板15、16に接して設けられてもよく、例えば図1(a)に示すように、第1基板15、及び第2電極12と接して設けられてもよい。
<Support part 17>
The support portion 17 is provided between, for example, the first substrate 15 and the second substrate 16, and is in contact with the intermediate portion 14. The support portion 17 is provided, for example, along the gap G. The support portion 17 may be provided in contact with the electrodes 11 and 12, for example, and may be provided in contact with the substrates 15 and 16, for example, as shown in FIG. 1A, the first substrate 15 and the first. It may be provided in contact with the two electrodes 12.
 支持部17は、例えば図1(b)に示すように、第2方向Xに沿って延在する。支持部17は、例えば中間部14の漏れを防ぐために設けられ、例えば支持部17の側面に接する封止部21を設けることで、中間部14を密閉することができる。 The support portion 17 extends along the second direction X, for example, as shown in FIG. 1 (b). The support portion 17 is provided, for example, to prevent leakage of the intermediate portion 14, and for example, the intermediate portion 14 can be sealed by providing a sealing portion 21 in contact with the side surface of the support portion 17.
 支持部17として、例えば絶縁性を有する材料が用いられる。支持部17として、例えばシリコン酸化物、及びポリマー等を挙げることができる。ポリマーの例としては、ポリイミド、PMMA(polymethyl methacrylate)、及びポリスチレン等を挙げることができる。 As the support portion 17, for example, a material having an insulating property is used. Examples of the support portion 17 include silicon oxides and polymers. Examples of the polymer include polyimide, PMMA (polymethylmethacrylate), polystyrene and the like.
 なお、支持部17は、例えば第1基板15及び第2基板16の少なくとも何れかの一部を、酸化させて設けられてもよい。この場合、支持部17を容易に設けることができる。 The support portion 17 may be provided by oxidizing at least a part of, for example, the first substrate 15 and the second substrate 16. In this case, the support portion 17 can be easily provided.
 なお、例えば支持部17を設けずに、中間部14を密閉するように、各基板15、16同士を接合してもよい。この場合、支持部17を形成する際のバラつきを考慮する必要が無いため、ギャップGを高精度に保つことができる。 Note that, for example, the substrates 15 and 16 may be joined to each other so as to seal the intermediate portion 14 without providing the support portion 17. In this case, since it is not necessary to consider the variation when forming the support portion 17, the gap G can be maintained with high accuracy.
 <発電素子1の動作例>
 例えば、熱エネルギーが発電素子1に与えられると、第1電極11と第2電極12との間に電流が発生し、熱エネルギーが電気エネルギーに変換される。第1電極11と第2電極12との間に発生する電流量は、熱エネルギーに依存する他、第2電極12の仕事関数と、第1電極11の仕事関数との差に依存する。
<Operation example of power generation element 1>
For example, when thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends not only on the thermal energy but also on the difference between the work function of the second electrode 12 and the work function of the first electrode 11.
 発生する電流量は、例えば第1電極11と第2電極12との仕事関数差を大きくすること、及びギャップGを小さくすることで、増やすことができる。例えば、発電素子1が発生させる電気エネルギーの量は、上記仕事関数差を大きくすること、及び上記ギャップGを小さくすること、の少なくとも何れか1つを考慮することで、増加させることができる。また、各電極11、12の間に、ナノ粒子141を設けることで、各電極11、12の間を移動する電子の量を増大させることができ、電流量の増加に繋げることが可能となる。 The amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and reducing the gap G. For example, the amount of electric energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and reducing the gap G. Further, by providing nanoparticles 141 between the electrodes 11 and 12, the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current. ..
 なお、「仕事関数」とは、固体内にある電子を真空中に取出すために必要な最小限のエネルギーを示す。仕事関数は、例えば、紫外光電子分光法(UPS:Ultraviolet Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)やオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて測定することができる。 The "work function" indicates the minimum energy required to extract the electrons in the solid into a vacuum. The work function shall be measured using, for example, ultraviolet photoelectron spectroscopy (UPS: Ultraviolet Photoelectron Spectroscopy), X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy), or Auger electron spectroscopy (AES: Auger Electron Spectroscopy). Can be done.
(実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図3は、本実施形態における発電素子1の製造方法の一例を示すフローチャートである。
(Embodiment: Manufacturing method of power generation element 1)
Next, an example of the manufacturing method of the power generation element 1 in the present embodiment will be described. FIG. 3 is a flowchart showing an example of the manufacturing method of the power generation element 1 in the present embodiment.
 発電素子1の製造方法は、ギャップ形成工程S110と、中間部形成工程S120とを備え、例えばナノ粒子生成工程S210と、被膜形成工程S220とを備えてもよい。 The method for manufacturing the power generation element 1 includes a gap forming step S110 and an intermediate portion forming step S120, and may include, for example, a nanoparticle generation step S210 and a film forming step S220.
 <ナノ粒子生成工程S210>
 ナノ粒子生成工程S210は、2種類以上の材料を含有するナノ粒子141を生成する。ナノ粒子生成工程S210は、例えば図4に示すように、金属イオンが溶解した液体201に、フェムト秒パルスレーザー203を照射して金属ナノ粒子(ナノ粒子141)を生成する。液体201は、金属イオンが溶解した金属溶媒であり、筐体202に入れられている。
<Nanoparticle generation step S210>
The nanoparticle generation step S210 produces nanoparticles 141 containing two or more kinds of materials. In the nanoparticle generation step S210, for example, as shown in FIG. 4, the liquid 201 in which metal ions are dissolved is irradiated with a femtosecond pulse laser 203 to generate metal nanoparticles (nanoparticles 141). The liquid 201 is a metal solvent in which metal ions are dissolved, and is contained in the housing 202.
 筐体202は、例えば石英キュベットである。液体201として、例えば水が用いられる。金属イオンとしては、金、白金、ロジウム、ルテニウム、イリジウム、パラジウム等の2種類以上の金属イオンが用いられる。例えば、金イオンと白金イオンとを1対1で溶解した液体201を用いる場合、金と白金との比率が1対1(即ち、金及び白金の組成割合が、50wt%及び50wt%)で構成された合金の金属ナノ粒子を生成することができる。 The housing 202 is, for example, a quartz cuvette. As the liquid 201, for example, water is used. As the metal ion, two or more kinds of metal ions such as gold, platinum, rhodium, ruthenium, iridium, and palladium are used. For example, when liquid 201 in which gold ions and platinum ions are dissolved in a ratio of 1: 1 is used, the ratio of gold to platinum is 1: 1 (that is, the composition ratio of gold and platinum is 50 wt% and 50 wt%). It is possible to generate metal nanoparticles of the alloy.
 フェムト秒パルスレーザー203は、図示しない光源から照射されるレーザービームであり、集光レンズ204により集光されて、液体201に照射される。フェムト秒パルスレーザー203は、非常に短い時間幅(例えば10-15秒)を有するパルスレーザーである。フェムト秒パルスレーザー203が液体201に照射されると、液体201中の水分子が分解されてラジカルが生成され、生成されたラジカル(例えば水素ラジカル)により金属イオンが還元されることにより、ナノ粒子141が生成される。このように、液体201にフェムト秒パルスレーザー203を照射することにより、2種類以上の材料を含有したナノ粒子141が生成される。 The femtosecond pulse laser 203 is a laser beam emitted from a light source (not shown), is condensed by the condenser lens 204, and is irradiated to the liquid 201. The femtosecond pulsed laser 203 is a pulsed laser with a very short time width (eg 10-15 seconds). When the femtosecond pulse laser 203 irradiates the liquid 201, water molecules in the liquid 201 are decomposed to generate radicals, and the generated radicals (for example, hydrogen radicals) reduce metal ions to form nanoparticles. 141 is generated. By irradiating the liquid 201 with the femtosecond pulse laser 203 in this way, nanoparticles 141 containing two or more kinds of materials are generated.
 フェムト秒パルスレーザー203は、例えばSpectra Physics社製のSpitfire Proを光源として生成することができ、例えば下記の特性を有するものである。
発振波長:800nm
パルス幅:100fs
エネルギー:5-6mJ
繰り返し周波数:100Hz(出力0.5-0.6W)
 このような特性のレーザーを、例えばNA0.5でフォーカシングして30分照射する。
The femtosecond pulse laser 203 can be generated using, for example, Spitfire Pro manufactured by Spectra Physics as a light source, and has, for example, the following characteristics.
Oscillation wavelength: 800nm
Pulse width: 100 fs
Energy: 5-6mJ
Repeat frequency: 100Hz (output 0.5-0.6W)
A laser having such characteristics is focused with, for example, NA 0.5 and irradiated for 30 minutes.
 <被膜形成工程S220>
 被膜形成工程S220は、例えばナノ粒子141の表面に、硫黄原子を有する被膜141aを形成する。被膜形成工程S220では、例えば図5(a)に示すように、混合容器211内に、ナノ粒子生成工程S210で生成されたナノ粒子141を含む液体201が供給される。
<Film forming step S220>
The film forming step S220 forms, for example, a film 141a having a sulfur atom on the surface of nanoparticles 141. In the film forming step S220, for example, as shown in FIG. 5A, the liquid 201 containing the nanoparticles 141 produced in the nanoparticles generating step S210 is supplied into the mixing container 211.
 次に、図5(b)に示すように、混合容器211内に、相間移動用溶媒206を供給し、液体201と、相間移動用溶媒206とを混合する。この時点では、例えばナノ粒子141を含む液体201の層の上に、相間移動用溶媒206の層が分離してもよい。 Next, as shown in FIG. 5B, the phase transfer solvent 206 is supplied into the mixing container 211, and the liquid 201 and the phase transfer solvent 206 are mixed. At this point, for example, the layer of the phase transfer solvent 206 may be separated on the layer of the liquid 201 containing the nanoparticles 141.
 なお、相間移動用溶媒206として、例えばトルエン等を挙げることができる。相間移動用溶媒206には、ナノ粒子141の表面に被膜141aを形成するために、表面修飾剤(分散剤)が含まれる。分散剤として、硫黄原子を有する材料が用いられ、例えばチオール基又はジスルフィド基を有する材料が用いられる。チオール基を有する材料として、例えばドデカンチオール等のアルカンチオールが用いられる。ジスルフィド基を有する材料として、例えばアルカンジスルフィド等が用いられる。分散剤の濃度は、例えば1.0×10-5mоl/dmであり、任意に設定できる。 As the phase transfer solvent 206, for example, toluene and the like can be mentioned. The phase transfer solvent 206 contains a surface modifier (dispersant) in order to form a film 141a on the surface of the nanoparticles 141. As the dispersant, a material having a sulfur atom is used, and for example, a material having a thiol group or a disulfide group is used. As a material having a thiol group, an alkanethiol such as dodecanethiol is used. As a material having a disulfide group, for example, alkane disulfide or the like is used. The concentration of the dispersant is, for example, 1.0 × 10-5 mol / dm 3 , and can be set arbitrarily.
 次に、図5(c)に示すように、混合容器211内の相間移動用溶媒206と、ナノ粒子141を含む液体201とを撹拌する。この撹拌は、例えば混合容器211全体に一定時間振動を与える(例えば、容器自体を回転させる等により撹拌する)ことにより行う。この撹拌の過程で、ナノ粒子141の表面に対して分散剤が結合する。なお、相間移動用溶媒206と液体201との撹拌は、撹拌棒を使用して撹拌するほか、例えば撹拌子を用いてもよく、遠心分離機等を用いてもよい。ここでの撹拌時間は、例えば5分とすることで、ナノ粒子141の表面に分散剤が結合し易くなる。また、撹拌時間を長くし過ぎると、粒子同士の物理的接触に起因して粒成長が起こる場合がある。このため、撹拌時間は、5分以上10分以下の範囲内であることが望ましい。 Next, as shown in FIG. 5 (c), the phase transfer solvent 206 in the mixing container 211 and the liquid 201 containing nanoparticles 141 are stirred. This stirring is performed, for example, by applying vibration to the entire mixing container 211 for a certain period of time (for example, stirring by rotating the container itself). In the process of this stirring, the dispersant binds to the surface of the nanoparticles 141. The interphase transfer solvent 206 and the liquid 201 may be agitated using a stirring rod, for example, a stirrer, or a centrifuge or the like. By setting the stirring time here to, for example, 5 minutes, the dispersant can be easily bonded to the surface of the nanoparticles 141. In addition, if the stirring time is too long, particle growth may occur due to physical contact between the particles. Therefore, the stirring time is preferably in the range of 5 minutes or more and 10 minutes or less.
 その後、混合容器211を静置する。混合容器211を5分程度静置することで、例えば図5(d)に示すように、一部のナノ粒子141が、相間移動用溶媒206側に移動する。ナノ粒子141の表面に被膜141aが形成されることで、ナノ粒子141が液体201から相間移動用溶媒206内に移動する傾向を示す。他方、ナノ粒子141の表面に被膜141aが形成されない場合、ナノ粒子141が液体201内に留まる傾向を示す(例えば図5(d)の141s、141t)。即ち、相間移動用溶媒206内のナノ粒子141を採取することで、被膜141aを含むナノ粒子141を取得することができる。 After that, let the mixing container 211 stand still. By allowing the mixing vessel 211 to stand for about 5 minutes, for example, as shown in FIG. 5D, some nanoparticles 141 move to the phase transfer solvent 206 side. By forming the coating 141a on the surface of the nanoparticles 141, the nanoparticles 141 tend to move from the liquid 201 into the phase transfer solvent 206. On the other hand, when the coating 141a is not formed on the surface of the nanoparticles 141, the nanoparticles 141 tend to stay in the liquid 201 (for example, 141s and 141t in FIG. 5D). That is, the nanoparticles 141 containing the coating film 141a can be obtained by collecting the nanoparticles 141 in the phase transfer solvent 206.
 例えば、被膜形成工程S220を実施し、相間移動用溶媒206内のナノ粒子141を採取できない場合がある。この場合、ナノ粒子141には被膜141aが形成されていないと判断することができる。 For example, the film forming step S220 may be carried out, and the nanoparticles 141 in the phase transfer solvent 206 may not be collected. In this case, it can be determined that the film 141a is not formed on the nanoparticles 141.
 <ギャップ形成工程S110>
 ギャップ形成工程S110は、それぞれ仕事関数の異なる第1電極11及び第2電極12を、離間した状態で固定する。ギャップ形成工程S110では、例えば図6(a)及び図6(b)に示すように、先ず各電極11、12を形成する。第1電極11は、例えば第1基板15上に形成する。第2電極12は、例えば第2基板16上に形成する。各電極11、12は、例えば公知の技術により形成される。
<Gap forming step S110>
In the gap forming step S110, the first electrode 11 and the second electrode 12, which have different work functions, are fixed in a separated state. In the gap forming step S110, for example, as shown in FIGS. 6A and 6B, the electrodes 11 and 12 are first formed. The first electrode 11 is formed on, for example, the first substrate 15. The second electrode 12 is formed on, for example, the second substrate 16. Each of the electrodes 11 and 12 is formed by, for example, a known technique.
 例えば、各基板15、16上、及び各電極11、12上の何れかには、支持部17を形成してもよい。支持部17は、例えば公知の技術により形成される。 For example, a support portion 17 may be formed on any of the substrates 15 and 16 and on the electrodes 11 and 12. The support portion 17 is formed, for example, by a known technique.
 なお、第1基板15の一部を酸化させて支持部17を形成する場合は、第1電極11を形成する前に行われる。先ず、第1基板15を高温でアニール処理して第1基板15に酸化膜を形成する。その後、酸化膜に対してレジスト塗布、露光、エッチング法等を用いて、酸化膜の一部を除去することで、酸化膜の残った部分が、支持部17として形成される。その後、支持部17の形成されていない第1基板15上に、第1電極11を形成する。 When a part of the first substrate 15 is oxidized to form the support portion 17, the process is performed before the first electrode 11 is formed. First, the first substrate 15 is annealed at a high temperature to form an oxide film on the first substrate 15. After that, a part of the oxide film is removed by applying a resist to the oxide film, exposure, an etching method, or the like, so that the remaining portion of the oxide film is formed as a support portion 17. After that, the first electrode 11 is formed on the first substrate 15 on which the support portion 17 is not formed.
 各電極11、12を形成後、必要に応じてダイシングにより各基板15、16を切断する。その後、例えば図6(c)に示すように、第1電極11と、第2電極12とを対向させた状態で、各基板15、16を積層する。この際、熱圧着等の公知の技術により、支持部17が、第2基板16等に固設される。これにより、各電極11、12が離間した状態で固定される。 After forming the electrodes 11 and 12, the substrates 15 and 16 are cut by dicing as necessary. Then, for example, as shown in FIG. 6C, the substrates 15 and 16 are laminated with the first electrode 11 and the second electrode 12 facing each other. At this time, the support portion 17 is fixed to the second substrate 16 or the like by a known technique such as thermocompression bonding. As a result, the electrodes 11 and 12 are fixed in a separated state.
 <中間部形成工程:S120>
 中間部形成工程S120は、第1電極11と、第2電極12との間に、ナノ粒子141を含む中間部14を形成する。中間部形成工程S120は、空間140に、中間部14を形成する。中間部14は、例えばナノ粒子141を分散させた溶媒142を、毛細管現象等の公知の技術を用いて空間140に注入する。
<Intermediate part forming step: S120>
The intermediate portion forming step S120 forms an intermediate portion 14 containing nanoparticles 141 between the first electrode 11 and the second electrode 12. The intermediate portion forming step S120 forms the intermediate portion 14 in the space 140. In the intermediate portion 14, for example, the solvent 142 in which the nanoparticles 141 are dispersed is injected into the space 140 by using a known technique such as a capillary phenomenon.
 その後、例えば図1(b)に示すような、封止部21等を形成することで、本実施形態における発電素子1が形成される。なお、形成された発電素子1に、例えば図1(a)に示す各配線101、102等を接続させることで、本実施形態における発電装置100が形成される。 After that, the power generation element 1 in the present embodiment is formed by forming the sealing portion 21 or the like as shown in FIG. 1 (b), for example. The power generation device 100 according to the present embodiment is formed by connecting, for example, the wirings 101, 102, etc. shown in FIG. 1A to the formed power generation element 1.
(実施形態:発電素子1、発電装置100の変形例)
 次に、本実施形態における発電素子1、及び発電装置100の変形例について説明する。上述した実施形態と、変形例との違いは、上述した第1電極11と、第1基板15とが、同一材料で構成されている点である。なお、上述した構成と同様の内容については、説明を省略する。
(Embodiment: Modification example of power generation element 1 and power generation device 100)
Next, a modification of the power generation element 1 and the power generation device 100 in the present embodiment will be described. The difference between the above-described embodiment and the modified example is that the above-mentioned first electrode 11 and the first substrate 15 are made of the same material. The description of the same contents as those described above will be omitted.
 例えば図7(a)に示すように、第1電極11は、中間部14と接する第1主面11fと、第1主面11fの反対側の表面に位置する第2主面11sとを有する。第2主面11sは、例えば第1配線101と接する。このような構成の場合、例えば図7(b)に示すように、第1電極11、中間部14、第2電極12を1つの素子(図7(b)では1a、1b、1c、・・・)として、容易に積層構造を設けることができる。 For example, as shown in FIG. 7A, the first electrode 11 has a first main surface 11f in contact with the intermediate portion 14 and a second main surface 11s located on the surface opposite to the first main surface 11f. .. The second main surface 11s is in contact with, for example, the first wiring 101. In the case of such a configuration, for example, as shown in FIG. 7B, the first electrode 11, the intermediate portion 14, and the second electrode 12 are combined into one element (1a, 1b, 1c, ... In FIG. 7B). -), The laminated structure can be easily provided.
 第1電極11として、上述した材料が用いられるほか、例えば上述した第1基板15に用いられる材料が用いられてもよい。即ち、例えば第1電極11は、半導体であり、第1主面11f及び第2主面11sの少なくとも何れかに縮退部を有してもよい。このため、縮退部を有しない場合に比べて、積層時における接触抵抗を低減させることができる。これにより、発電素子1全体の抵抗の増加を抑制することが可能となる。 In addition to the above-mentioned material being used as the first electrode 11, for example, the material used for the above-mentioned first substrate 15 may be used. That is, for example, the first electrode 11 is a semiconductor, and may have a degenerate portion on at least one of the first main surface 11f and the second main surface 11s. Therefore, the contact resistance at the time of stacking can be reduced as compared with the case where the degenerate portion is not provided. This makes it possible to suppress an increase in the resistance of the entire power generation element 1.
 上記のほか、例えば支持部17は、第1電極11の一部を酸化したものでもよい。この場合、第1電極11とは別の材料を用いて支持部17を設けた場合に比べ、ギャップGのバラつきを抑制することができる。これにより、発電効率の安定化を図ることが可能となる。 In addition to the above, for example, the support portion 17 may be a partially oxidized version of the first electrode 11. In this case, the variation of the gap G can be suppressed as compared with the case where the support portion 17 is provided by using a material different from that of the first electrode 11. This makes it possible to stabilize the power generation efficiency.
(実施形態:電子機器500)
 <電子機器500>
 上述した発電素子1及び発電装置100は、例えば電子機器に搭載することが可能である。以下、電子機器の実施形態のいくつかを説明する。
(Embodiment: Electronic Device 500)
<Electronic device 500>
The power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Hereinafter, some embodiments of the electronic device will be described.
 図8(a)~図8(d)は、発電素子1を備えた電子機器500の例を示す模式ブロック図である。図8(e)~図8(h)は、発電素子1を含む発電装置100を備えた電子機器500の例を示す模式ブロック図である。 8 (a) to 8 (d) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation element 1. 8 (e) to 8 (h) are schematic block diagrams showing an example of an electronic device 500 provided with a power generation device 100 including a power generation element 1.
 図8(a)に示すように、電子機器500(エレクトリックプロダクト)は、電子部品501(エレクトロニックコンポーネント)と、主電源502と、補助電源503と、を備えている。電子機器500及び電子部品501のそれぞれは、電気的な機器(エレクトリカルデバイス)である。 As shown in FIG. 8A, the electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502, and an auxiliary power supply 503. Each of the electronic device 500 and the electronic component 501 is an electrical device (electrical device).
 電子部品501は、主電源502を電源に用いて駆動される。電子部品501の例としては、例えば、CPU、モーター、センサ端末、及び照明等を挙げることができる。電子部品501が、例えばCPUである場合、電子機器500には、内蔵されたマスター(CPU)によって制御可能な電子機器が含まれる。電子部品501が、例えば、モーター、センサ端末、及び照明等の少なくとも1つを含む場合、電子機器500には、外部にあるマスター、あるいは人によって制御可能な電子機器が含まれる。 The electronic component 501 is driven by using the main power supply 502 as a power source. Examples of the electronic component 501 include a CPU, a motor, a sensor terminal, lighting, and the like. When the electronic component 501 is, for example, a CPU, the electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). When the electronic component 501 includes, for example, at least one such as a motor, a sensor terminal, and lighting, the electronic device 500 includes an external master or a human-controllable electronic device.
 主電源502は、例えば電池である。電池には、充電可能な電池も含まれる。主電源502のプラス端子(+)は、電子部品501のVcc端子(Vcc)と電気的に接続される。主電源502のマイナス端子(-)は、電子部品501のGND端子(GND)と電気的に接続される。 The main power source 502 is, for example, a battery. Batteries also include rechargeable batteries. The positive terminal (+) of the main power supply 502 is electrically connected to the Vcc terminal (Vcc) of the electronic component 501. The negative terminal (-) of the main power supply 502 is electrically connected to the GND terminal (GND) of the electronic component 501.
 補助電源503は、発電素子1である。発電素子1は、上述した発電素子1の少なくとも1つを含む。電子機器500において、補助電源503は、例えば主電源502と併用され、主電源502をアシストするための電源や、主電源502の容量が切れた場合、主電源502をバックアップするための電源として使うことができる。主電源502が充電可能な電池である場合には、補助電源503は、さらに、電池を充電するための電源としても使うことができる。 The auxiliary power supply 503 is a power generation element 1. The power generation element 1 includes at least one of the above-mentioned power generation elements 1. In the electronic device 500, the auxiliary power supply 503 is used in combination with the main power supply 502, for example, as a power source for assisting the main power supply 502 or as a power source for backing up the main power supply 502 when the capacity of the main power supply 502 is exhausted. be able to. When the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
 図8(b)に示すように、主電源502は、発電素子1とされてもよい。図8(b)に示す電子機器500は、主電源502として使用される発電素子1と、発電素子1を用いて駆動されることが可能な電子部品501と、を備えている。発電素子1は、独立した電源(例えばオフグリッド電源)である。このため、電子機器500は、例えば自立型(スタンドアローン型)にできる。しかも、発電素子1は、環境発電型(エナジーハーベスト型)である。図8(b)に示す電子機器500は、電池の交換が不要である。 As shown in FIG. 8B, the main power source 502 may be the power generation element 1. The electronic device 500 shown in FIG. 8B includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven by the power generation element 1. The power generation element 1 is an independent power source (for example, an off-grid power source). Therefore, the electronic device 500 can be made, for example, a self-standing type (stand-alone type). Moreover, the power generation element 1 is an energy harvesting type (energy harvesting type). The electronic device 500 shown in FIG. 8B does not require battery replacement.
 図8(c)に示すように、電子部品501が発電素子1を備えていてもよい。発電素子1のアノードは、例えば、回路基板(図示は省略する)のGND配線と電気的に接続される。発電素子1のカソードは、例えば、回路基板(図示は省略する)のVcc配線と電気的に接続される。この場合、発電素子1は、電子部品501の、例えば補助電源503として使うことができる。 As shown in FIG. 8C, the electronic component 501 may include the power generation element 1. The anode of the power generation element 1 is electrically connected to, for example, the GND wiring of the circuit board (not shown). The cathode of the power generation element 1 is electrically connected to, for example, a Vcc wiring of a circuit board (not shown). In this case, the power generation element 1 can be used as an electronic component 501, for example, an auxiliary power supply 503.
 図8(d)に示すように、電子部品501が発電素子1を備えている場合、発電素子1は、電子部品501の、例えば主電源502として使うことができる。 As shown in FIG. 8D, when the electronic component 501 includes the power generation element 1, the power generation element 1 can be used as, for example, the main power source 502 of the electronic component 501.
 図8(e)~図8(h)のそれぞれに示すように、電子機器500は、発電装置100を備えていてもよい。発電装置100は、電気エネルギーの源として発電素子1を含む。 As shown in each of FIGS. 8 (e) to 8 (h), the electronic device 500 may include a power generation device 100. The power generation device 100 includes a power generation element 1 as a source of electric energy.
 図8(d)に示した実施形態は、電子部品501が主電源502として使用される発電素子1を備えている。同様に、図8(h)に示した実施形態は、電子部品501が主電源として使用される発電装置100を備えている。これらの実施形態では、電子部品501が、独立した電源を持つ。このため、電子部品501を、例えば自立型とすることができる。自立型の電子部品501は、例えば、複数の電子部品を含み、かつ、少なくとも1つの電子部品が別の電子部品と離れているような電子機器に有効に用いることができる。そのような電子機器500の例は、センサである。センサは、センサ端末(スレーブ)と、センサ端末から離れたコントローラ(マスター)と、を備えている。センサ端末及びコントローラのそれぞれは、電子部品501である。センサ端末が、発電素子1又は発電装置100を備えていれば、自立型のセンサ端末となり、有線での電力供給の必要がない。発電素子1又は発電装置100は環境発電型であるので、電池の交換も不要である。センサ端末は、電子機器500の1つと見なすこともできる。電子機器500と見なされるセンサ端末には、センサのセンサ端末に加えて、例えば、IoTワイヤレスタグ等が、さらに含まれる。 The embodiment shown in FIG. 8D includes a power generation element 1 in which the electronic component 501 is used as the main power source 502. Similarly, the embodiment shown in FIG. 8 (h) includes a power generation device 100 in which the electronic component 501 is used as a main power source. In these embodiments, the electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made, for example, a self-standing type. The self-supporting electronic component 501 can be effectively used, for example, in an electronic device including a plurality of electronic components and in which at least one electronic component is separated from another electronic component. An example of such an electronic device 500 is a sensor. The sensor includes a sensor terminal (slave) and a controller (master) away from the sensor terminal. Each of the sensor terminal and the controller is an electronic component 501. If the sensor terminal includes the power generation element 1 or the power generation device 100, it becomes a self-supporting sensor terminal and does not need to be supplied with electric power by wire. Since the power generation element 1 or the power generation device 100 is an energy harvesting type, it is not necessary to replace the battery. The sensor terminal can also be regarded as one of the electronic devices 500. The sensor terminal considered to be the electronic device 500 further includes, for example, an IoT wireless tag, etc., in addition to the sensor terminal of the sensor.
 図8(a)~図8(h)のそれぞれに示した実施形態において共通することは、電子機器500は、熱エネルギーを電気エネルギーに変換する発電素子1と、発電素子1を電源に用いて駆動されることが可能な電子部品501と、を含むことである。 What is common to the embodiments shown in FIGS. 8 (a) to 8 (h) is that the electronic device 500 uses a power generation element 1 that converts thermal energy into electrical energy and a power generation element 1 as a power source. It includes an electronic component 501 that can be driven.
 電子機器500は、独立した電源を備えた自律型(オートノマス型)であってもよい。自律型の電子機器の例は、例えばロボット等を挙げることができる。さらに、発電素子1又は発電装置100を備えた電子部品501は、独立した電源を備えた自律型であってもよい。自律型の電子部品の例は、例えば可動センサ端末等を挙げることができる。 The electronic device 500 may be an autonomous type (autonomous type) having an independent power supply. Examples of autonomous electronic devices include robots and the like. Further, the electronic component 501 provided with the power generation element 1 or the power generation device 100 may be an autonomous type having an independent power source. Examples of autonomous electronic components include movable sensor terminals and the like.
(第1実施例)
 次に、本実施形態における発電素子1の第1実施例について説明する。
(First Example)
Next, the first embodiment of the power generation element 1 in this embodiment will be described.
 第1実施例では、組成割合条件の異なるナノ粒子を複数生成し、ナノ粒子に被膜が形成される度合いを確認した。この結果より、発電素子1の材料として用いる際、凝集を抑制できるナノ粒子の組成割合を、明確にすることができた。以下、詳細を説明する。 In the first example, a plurality of nanoparticles having different composition ratio conditions were generated, and the degree to which a film was formed on the nanoparticles was confirmed. From this result, it was possible to clarify the composition ratio of nanoparticles capable of suppressing aggregation when used as a material for the power generation element 1. The details will be described below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1実施例では、表1に示すように、実施例1~実施例5、比較例1及び比較例2に示す組成割合のナノ粒子を、試料としてそれぞれ準備して評価した。各試料は、上述したナノ粒子生成工程S210に準ずる方法により生成した。なお、ナノ粒子生成工程S210において、液体に溶解する金イオン及び白金イオンの比を変更させることで、試料毎に異なる組成割合のナノ粒子を生成した。 In the first example, as shown in Table 1, nanoparticles having the composition ratios shown in Examples 1 to 5, Comparative Example 1 and Comparative Example 2 were prepared and evaluated as samples, respectively. Each sample was produced by a method according to the nanoparticle generation step S210 described above. In the nanoparticle generation step S210, nanoparticles having different composition ratios were generated for each sample by changing the ratio of gold ions and platinum ions dissolved in the liquid.
 各試料の評価は、上述した被膜形成工程S220に準ずる方法を実施し、被膜したナノ粒子の採取可否を評価基準とした。なお、被膜形成工程S220を実施する際、相間移動用溶媒としてトルエンを用い、分散剤(被膜の材料)として1-ドデカンチオールを用いた。また、相間移動用溶媒と液体との撹拌時間は、5分とした。また、撹拌後の静置時間を5分とした。 For the evaluation of each sample, the method according to the film forming step S220 described above was carried out, and the possibility of collecting the coated nanoparticles was used as the evaluation standard. When the film forming step S220 was carried out, toluene was used as the phase transfer solvent and 1-dodecanethiol was used as the dispersant (material of the film). The stirring time between the phase transfer solvent and the liquid was set to 5 minutes. The standing time after stirring was set to 5 minutes.
 第1実施例の評価結果は、表1における「相間移動後のナノ粒子採取可否」に記載した通りである。実施例1~5、及び比較例1では、被膜したナノ粒子を採取可能であった。これに対し、比較例2では、被膜したナノ粒子を採取できなかった。なお、比較例1は、金の組成割合が100%であり、合金(2種類以上の材料を含有)とは異なるため、比較例として評価した。 The evaluation results of the first example are as described in "Whether or not nanoparticles can be collected after phase transfer" in Table 1. In Examples 1 to 5 and Comparative Example 1, coated nanoparticles could be collected. On the other hand, in Comparative Example 2, the coated nanoparticles could not be collected. In Comparative Example 1, the composition ratio of gold was 100%, which was different from the alloy (containing two or more kinds of materials), and therefore, it was evaluated as a comparative example.
 上記を踏まえ、ナノ粒子は、20wt%以上100wt%未満の金を含有した場合、表面に1-ドデカンチオールが被膜として設けられることを確認した。なお、第1実施例では、1-ドデカンチオールのみを分散剤として用いたが、硫黄原子の特徴(即ち、金原子に対して高い結合親和性を持つ)を踏まえると、少なくともチオール基又はジスルフィド基を有する分散剤を用いた場合においても、同様の結果を得られることが想定できる。また、第1実施例では、金と白金との合金を試料として用いたが、上述した硫黄原子の特徴を踏まえると、白金以外の材料を用いた場合においても、同様の結果を得られることが想定できる。 Based on the above, it was confirmed that when the nanoparticles contained 20 wt% or more and less than 100 wt% of gold, 1-dodecanethiol was provided as a film on the surface. In the first embodiment, only 1-dodecanethiol was used as a dispersant, but considering the characteristics of the sulfur atom (that is, it has a high binding affinity for the gold atom), at least a thiol group or a disulfide group was used. It can be assumed that the same result can be obtained even when the dispersant having the above is used. Further, in the first embodiment, an alloy of gold and platinum was used as a sample, but considering the above-mentioned characteristics of the sulfur atom, the same result can be obtained even when a material other than platinum is used. I can imagine.
(第2実施例)
 次に、本実施形態における発電素子1の第2実施例について説明する。
(Second Example)
Next, a second embodiment of the power generation element 1 in the present embodiment will be described.
 第2実施例では、第1実施例にて生成及び採取した、被膜形成後のナノ粒子を発電素子に注入し、発生する電圧を計測した。この結果より、ナノ粒子を介した発電を促進させる際に必要となるナノ粒子の組成割合を、明確にすることができた。以下、詳細を説明する。 In the second embodiment, the nanoparticles after film formation produced and collected in the first embodiment were injected into the power generation element, and the generated voltage was measured. From this result, it was possible to clarify the composition ratio of nanoparticles required for promoting power generation via nanoparticles. The details will be described below.
 第2実施例では、第1実施例にて生成及び採取した、それぞれ組成割合の異なるナノ粒子のうち、実施例1、実施例5、及び比較例1に対応するナノ粒子を、それぞれトルエンに分散させたものを試料として評価した。なお、トルエンに分散させたナノ粒子の濃度は、それぞれ20%とした。 In the second example, among the nanoparticles produced and collected in the first example having different composition ratios, the nanoparticles corresponding to Example 1, Example 5, and Comparative Example 1 are dispersed in toluene, respectively. The sample was evaluated as a sample. The concentration of the nanoparticles dispersed in toluene was set to 20%.
 また、第2実施例では、基板に固定された電極を2つ用意し、一方の電極上に支持部を形成し、支持部を介して他方の電極を積層することで、電極間の距離(ギャップ)を10μmとした計測用の素子を形成した。なお、基板の材料として、石英を用いた。また、2つの電極の材料として、アルミニウム及び白金を用いた。また、支持部としてサイトップ(登録商用)を用いた。なお、ギャップは、精密位置決めステージを利用した電極間微小ギャップ形成装置(株式会社三明製)を用い、電極間の静電容量からギャップを計測した。 Further, in the second embodiment, two electrodes fixed to the substrate are prepared, a support portion is formed on one electrode, and the other electrode is laminated via the support portion, whereby the distance between the electrodes ( An element for measurement having a gap) of 10 μm was formed. Quartz was used as the material of the substrate. Further, aluminum and platinum were used as the materials for the two electrodes. In addition, Cytop (registered commercial) was used as the support part. For the gap, a small gap forming device between electrodes (manufactured by Sanmei Co., Ltd.) using a precision positioning stage was used, and the gap was measured from the capacitance between the electrodes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記より生成した計測用の素子に試料を注入し、500kΩの抵抗を接続した状態で電圧を計測した。計測結果は、表2における「電圧」に記載した通りである。なお、記載した値は、比較例1にて得られた電圧を1としたときの相対値である。実施例1及び実施例3は、比較例1に比べて、2.3倍の値が得られた。また、実施例5は、比較例1に比べて、2.4倍の値が得られた。 The sample was injected into the measurement element generated from the above, and the voltage was measured with a resistance of 500 kΩ connected. The measurement results are as described in "Voltage" in Table 2. The described values are relative values when the voltage obtained in Comparative Example 1 is 1. In Example 1 and Example 3, a value 2.3 times higher than that in Comparative Example 1 was obtained. Further, in Example 5, a value 2.4 times higher than that in Comparative Example 1 was obtained.
 上記を踏まえ、ナノ粒子は、20wt%以上80wt%以下の金、及び20wt%以上80wt%以下の白金を含有した場合、発電素子の電圧値が上昇することを確認した。 Based on the above, it was confirmed that the voltage value of the power generation element increases when the nanoparticles contain 20 wt% or more and 80 wt% or less of gold and 20 wt% or more and 80 wt% or less of platinum.
 本実施形態によれば、ナノ粒子141は、20wt%以上100wt%未満の金を含有し、表面に設けられた硫黄原子を有する被膜141aを含む。即ち、上記範囲の割合で金を含有したナノ粒子141には、表面に被膜141aを形成させることができる。このため、各電極11、12の間に設けられたナノ粒子141の凝集を、抑制することができる。これにより、発電効率の向上を図ることが可能となる。 According to the present embodiment, the nanoparticles 141 contain 20 wt% or more and less than 100 wt% gold, and include a coating film 141a having a sulfur atom provided on the surface. That is, the nanoparticles 141 containing gold in the above range can be formed with a coating film 141a on the surface. Therefore, the aggregation of nanoparticles 141 provided between the electrodes 11 and 12 can be suppressed. This makes it possible to improve the power generation efficiency.
 また、本実施形態によれば、ナノ粒子141は、白金、ロジウム、イリジウム、パラジウムの何れかをさらに含有する。即ち、金と同様の結晶構造を持つ材料を含有することで、結晶粒界の発生量を抑制することができる。このため、ナノ粒子141における電気的抵抗を低減させることができる。これにより、発電効率のさらなる向上を図ることが可能となる。 Further, according to the present embodiment, the nanoparticles 141 further contain any one of platinum, rhodium, iridium, and palladium. That is, by containing a material having a crystal structure similar to that of gold, the amount of grain boundaries generated can be suppressed. Therefore, the electrical resistance of the nanoparticles 141 can be reduced. This makes it possible to further improve the power generation efficiency.
 また、本実施形態によれば、ナノ粒子141は20wt%以上80wt%以下の金、及び20wt%以上80wt%以下の白金を含有する。このため、ナノ粒子141を介した発電を促進させることができる。これにより、発電効率の更なる向上を図ることが可能となる。 Further, according to the present embodiment, the nanoparticles 141 contain 20 wt% or more and 80 wt% or less of gold, and 20 wt% or more and 80 wt% or less of platinum. Therefore, it is possible to promote power generation via nanoparticles 141. This makes it possible to further improve the power generation efficiency.
 また、本実施形態によれば、支持部17は、第1基板15及び第2基板16の少なくとも何れかの一部を酸化したものである。このため、基板15とは別の材料を用いて支持部17を設けた場合に比べ、電極間のギャップGのバラつきを抑制することができる。これにより、発電効率の安定化を図ることが可能となる。 Further, according to the present embodiment, the support portion 17 is obtained by oxidizing at least a part of at least one of the first substrate 15 and the second substrate 16. Therefore, as compared with the case where the support portion 17 is provided by using a material different from the substrate 15, it is possible to suppress the variation of the gap G between the electrodes. This makes it possible to stabilize the power generation efficiency.
 また、本実施形態によれば、第1基板15は、半導体であり、第1電極11と接する縮退部を有する。このため、縮退部を有しない場合に比べて、第1電極11と第1基板15との間における接触抵抗を低減させることができる。これにより、素子全体の抵抗の増加を抑制することが可能となる。 Further, according to the present embodiment, the first substrate 15 is a semiconductor and has a degenerate portion in contact with the first electrode 11. Therefore, the contact resistance between the first electrode 11 and the first substrate 15 can be reduced as compared with the case where the degenerate portion is not provided. This makes it possible to suppress an increase in the resistance of the entire element.
 また、本実施形態によれば、発電装置100は、発電素子1と、第1配線101と、第2配線102とを備える。このため、発電効率を向上させた発電装置100を実現することが可能となる。 Further, according to the present embodiment, the power generation device 100 includes a power generation element 1, a first wiring 101, and a second wiring 102. Therefore, it is possible to realize a power generation device 100 with improved power generation efficiency.
 また、本実施形態によれば、電子機器500は、発電素子1と、電子部品501とを備える。このため、発電効率を向上させた電子機器500を実現することが可能となる。 Further, according to the present embodiment, the electronic device 500 includes a power generation element 1 and an electronic component 501. Therefore, it is possible to realize the electronic device 500 with improved power generation efficiency.
 また、本実施形態における発電素子1の製造方法によれば、ナノ粒子141は、20wt%以上100wt%未満の金を含有し、表面に設けられた硫黄原子を有する被膜141aを含む。即ち、上記範囲の割合で金を含有したナノ粒子141には、表面に被膜141aを形成させることができる。このため、中間部形成工程S120を実施したあと、各電極11、12の間におけるナノ粒子141の凝集を、抑制することができる。これにより、発電効率の向上を図ることが可能となる。 Further, according to the method for manufacturing the power generation element 1 in the present embodiment, the nanoparticles 141 contain 20 wt% or more and less than 100 wt% gold, and include a coating film 141a having a sulfur atom provided on the surface. That is, the nanoparticles 141 containing gold in the above range can be formed with a coating film 141a on the surface. Therefore, after performing the intermediate portion forming step S120, the aggregation of nanoparticles 141 between the electrodes 11 and 12 can be suppressed. This makes it possible to improve the power generation efficiency.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
1    :発電素子
11   :第1電極
12   :第2電極
14   :中間部
15   :第1基板
16   :第2基板
17   :支持部
21   :封止部
100  :発電装置
101  :第1配線
102  :第2配線
140  :空間
141  :ナノ粒子
141a :被膜
142  :溶媒
201  :液体
202  :筐体
203  :フェムト秒パルスレーザー
204  :集光レンズ
206  :相間移動用溶媒
211  :混合容器
500  :電子機器
501  :電子部品
502  :主電源
503  :補助電源
G    :ギャップ
R    :負荷
S110 :ギャップ形成工程
S120 :中間部形成工程
S210 :ナノ粒子生成工程
S220 :被膜形成工程
Z    :第1方向
X    :第2方向
Y    :第3方向
1: Power generation element 11: First electrode 12: Second electrode 14: Intermediate part 15: First board 16: Second board 17: Support part 21: Sealing part 100: Power generation device 101: First wiring 102: Second Wiring 140: Space 141: Nanoparticle 141a: Coating 142: Solvent 201: Liquid 202: Housing 203: Femtosecond pulse laser 204: Condensing lens 206: Interphase transfer solvent 211: Mixing container 500: Electronic device 501: Electronic component 502: Main power supply 503: Auxiliary power supply G: Gap R: Load S110: Gap forming step S120: Intermediate portion forming step S210: Nanoparticle generation step S220: Film forming step Z: First direction X: Second direction Y: Third direction direction

Claims (8)

  1.  熱エネルギーを電気エネルギーに変換する発電素子であって、
     第1電極と、
     前記第1電極と対向して設けられ、前記第1電極とは異なる仕事関数を有する第2電極と、
     前記第1電極と、前記第2電極との間に設けられ、2種類以上の材料を含有するナノ粒子を含む中間部と、
     を備え、
     前記ナノ粒子は、
      20wt%以上100wt%未満の金を含有し、
      表面に設けられた硫黄原子を有する被膜を含むこと
     を特徴とする発電素子。
    A power generation element that converts thermal energy into electrical energy.
    With the first electrode
    A second electrode provided facing the first electrode and having a work function different from that of the first electrode, and a second electrode.
    An intermediate portion provided between the first electrode and the second electrode and containing nanoparticles containing two or more kinds of materials,
    Equipped with
    The nanoparticles are
    Contains 20 wt% or more and less than 100 wt% gold,
    A power generation element characterized by containing a film having a sulfur atom provided on the surface.
  2.  前記ナノ粒子は、白金、ロジウム、イリジウム、パラジウムの何れかをさらに含有すること
     を特徴とする請求項1記載の発電素子。
    The power generation element according to claim 1, wherein the nanoparticles further contain any one of platinum, rhodium, iridium, and palladium.
  3.  前記ナノ粒子は、
      20wt%以上80wt%以下の金、及び
      20wt%以上80wt%以下の白金
     の2種類の材料を含有すること
     を特徴とする請求項1記載の発電素子。
    The nanoparticles are
    The power generation element according to claim 1, further comprising two types of materials: gold of 20 wt% or more and 80 wt% or less, and platinum of 20 wt% or more and 80 wt% or less.
  4.  前記第2電極と離間し、前記第1電極と接する第1基板と、
     前記第1電極と離間し、前記第2電極と接する第2基板と、
     前記第1基板と、前記第2基板との間に設けられ、前記中間部と接する支持部と、
     をさらに備え、
     前記支持部は、前記第1基板及び前記第2基板の少なくとも何れかの一部を酸化したものであること
     を特徴とする請求項1記載の発電素子。
    A first substrate separated from the second electrode and in contact with the first electrode,
    A second substrate separated from the first electrode and in contact with the second electrode,
    A support portion provided between the first substrate and the second substrate and in contact with the intermediate portion,
    Further prepare
    The power generation element according to claim 1, wherein the support portion is obtained by oxidizing at least a part of the first substrate and the second substrate.
  5.  前記第2電極と離間し、前記第1電極と接する第1基板をさらに備え、
     前記第1基板は、半導体であり、前記第1電極と接する縮退部を有すること
     を特徴とする請求項1記載の発電素子。
    A first substrate separated from the second electrode and in contact with the first electrode is further provided.
    The power generation element according to claim 1, wherein the first substrate is a semiconductor and has a degenerate portion in contact with the first electrode.
  6.  請求項1記載の発電素子と、
     前記第1電極と電気的に接続された第1配線と、
     前記第2電極と電気的に接続された第2配線と、
     を備えること
     を特徴とする発電装置。
    The power generation element according to claim 1 and
    The first wiring electrically connected to the first electrode and
    The second wiring electrically connected to the second electrode and
    A power generation device characterized by being equipped with.
  7.  請求項1記載の発電素子と、
     前記発電素子を電源に用いて駆動する電子部品と
     を備えることを特徴とする電子機器。
    The power generation element according to claim 1 and
    An electronic device including electronic components that are driven by using the power generation element as a power source.
  8.  熱エネルギーを電気エネルギーに変換する発電素子の製造方法であって、
     それぞれ仕事関数の異なる第1電極及び第2電極を、離間した状態で固定するギャップ形成工程と、
     前記第1電極と、前記第2電極との間に、2種類以上の材料を含有するナノ粒子を含む中間部を形成する中間部形成工程と、
     を備え、
     前記ナノ粒子は、
      20wt%以上100wt%未満の金を含有し、
      表面に設けられた硫黄原子を有する被膜を含むこと
    を特徴とする発電素子の製造方法。
    It is a method of manufacturing a power generation element that converts thermal energy into electrical energy.
    A gap forming step of fixing the first electrode and the second electrode having different work functions in a separated state, and
    An intermediate portion forming step of forming an intermediate portion containing nanoparticles containing two or more kinds of materials between the first electrode and the second electrode.
    Equipped with
    The nanoparticles are
    Contains 20 wt% or more and less than 100 wt% gold,
    A method for manufacturing a power generation element, which comprises a film having a sulfur atom provided on the surface.
PCT/JP2021/026455 2020-09-30 2021-07-14 Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element WO2022070551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020164706A JP6845521B1 (en) 2020-09-30 2020-09-30 Power generation elements, power generation equipment, electronic devices, and methods for manufacturing power generation elements
JP2020-164706 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070551A1 true WO2022070551A1 (en) 2022-04-07

Family

ID=74860729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026455 WO2022070551A1 (en) 2020-09-30 2021-07-14 Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element

Country Status (3)

Country Link
JP (1) JP6845521B1 (en)
TW (1) TW202232875A (en)
WO (1) WO2022070551A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944168B1 (en) * 2021-05-31 2021-10-06 国立大学法人九州大学 Manufacturing methods for thermoelectric elements, power generators, electronic devices, and thermoelectric elements
JP7011361B1 (en) * 2021-09-10 2022-01-26 株式会社Gceインスティチュート Manufacturing method of power generation element, power generation element, power generation device, and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192190A (en) * 2013-03-26 2014-10-06 Fujifilm Corp Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric generation employing the same, and power source for sensor
JP2014209531A (en) * 2013-03-29 2014-11-06 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation, and power source for sensor
JP2014220286A (en) * 2013-05-02 2014-11-20 富士フイルム株式会社 Thermoelectric conversion element
US20150229013A1 (en) * 2014-02-13 2015-08-13 Joseph G. Birmingham Nanofluid contact potential difference battery
JP2018019042A (en) * 2016-07-29 2018-02-01 株式会社Gceインスティチュート Thermoelectric element and manufacturing method of thermoelectric element
JP2019179845A (en) * 2018-03-30 2019-10-17 株式会社Nbcメッシュテック Thermoelectric element and manufacturing method therefor
JP2019212823A (en) * 2018-06-06 2019-12-12 株式会社Nbcメッシュテック Thermoelectric element and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192190A (en) * 2013-03-26 2014-10-06 Fujifilm Corp Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric generation employing the same, and power source for sensor
JP2014209531A (en) * 2013-03-29 2014-11-06 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation, and power source for sensor
JP2014220286A (en) * 2013-05-02 2014-11-20 富士フイルム株式会社 Thermoelectric conversion element
US20150229013A1 (en) * 2014-02-13 2015-08-13 Joseph G. Birmingham Nanofluid contact potential difference battery
JP2018019042A (en) * 2016-07-29 2018-02-01 株式会社Gceインスティチュート Thermoelectric element and manufacturing method of thermoelectric element
JP2019179845A (en) * 2018-03-30 2019-10-17 株式会社Nbcメッシュテック Thermoelectric element and manufacturing method therefor
JP2019212823A (en) * 2018-06-06 2019-12-12 株式会社Nbcメッシュテック Thermoelectric element and manufacturing method therefor

Also Published As

Publication number Publication date
TW202232875A (en) 2022-08-16
JP6845521B1 (en) 2021-03-17
JP2022056772A (en) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2022070551A1 (en) Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element
EP3958456A1 (en) Power generation element, power generation device, electronic apparatus, and power generation element manufacturing method
JP6781437B1 (en) Power generation element and manufacturing method of power generation element
CN113574689A (en) Semiconductor integrated circuit device with power generating function
JP6942404B1 (en) Power generation elements, power generation equipment, electronic devices, power generation methods, and manufacturing methods of power generation elements
JP7384401B2 (en) Power generation element, power generation device, electronic equipment, and manufacturing method of power generation element
US20230108795A1 (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP7197857B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
KR102263151B1 (en) Semiconductor layer, oscillation element and method for manufacturing semiconductor layer
WO2021040023A1 (en) Photothermal conversion element, production method for same, photothermal power generation device, and micro-object aggregation system
WO2023038108A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
JP2020145303A (en) Thermoelectric element, semiconductor integrated circuit device with electric generator, electronic apparatus, and method of manufacturing thermoelectric element
JP7011361B1 (en) Manufacturing method of power generation element, power generation element, power generation device, and electronic device
JP7477075B2 (en) Power generating element, power generating device, electronic device, and method for manufacturing power generating element
JP2020068238A (en) Thermoelectric element, power generator, electronic apparatus, and manufacturing method for thermoelectric element
JP2022011906A (en) Power generation element, power generation device, electronic apparatus, and method for manufacturing power generation element
WO2023038107A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
JP2020047630A (en) Thermoelectric element, power generation device, electronic device, and manufacturing method of thermoelectric element
JP2020064947A (en) Thermoelectric element, power generator, electronic device, and manufacturing method of thermoelectric element
WO2023038104A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038105A1 (en) Method for producing power generation element, power generation element, power generation device and electronic device
WO2022097419A1 (en) Power generation element, control system, power generation device, electronic apparatus, and power generation method
JP7244043B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP2022063483A (en) Power generation element and power generation method
JP2022124833A (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874855

Country of ref document: EP

Kind code of ref document: A1