WO2023038104A1 - Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus - Google Patents

Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus Download PDF

Info

Publication number
WO2023038104A1
WO2023038104A1 PCT/JP2022/033832 JP2022033832W WO2023038104A1 WO 2023038104 A1 WO2023038104 A1 WO 2023038104A1 JP 2022033832 W JP2022033832 W JP 2022033832W WO 2023038104 A1 WO2023038104 A1 WO 2023038104A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power generation
forming step
lead
laminate
Prior art date
Application number
PCT/JP2022/033832
Other languages
French (fr)
Japanese (ja)
Inventor
博史 後藤
稔 坂田
拓夫 安田
ラーシュ マティアス アンダーソン
誠司 岡田
貴宏 中村
Original Assignee
株式会社Gceインスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021147809A external-priority patent/JP7011361B1/en
Application filed by 株式会社Gceインスティチュート filed Critical 株式会社Gceインスティチュート
Publication of WO2023038104A1 publication Critical patent/WO2023038104A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic device that eliminate the need for a temperature difference between electrodes when converting thermal energy into electrical energy.
  • Patent Document 1 discloses a generation step of generating nanoparticles dispersed in a solvent or an organic solvent using a femtosecond pulse laser, a first electrode portion forming step of forming a first electrode portion on a first substrate, a second electrode portion forming step of forming a second electrode portion on a second substrate; and the first substrate with the solvent or the organic solvent sandwiched between the first electrode portion and the second electrode portion. and a bonding step of bonding the second substrate and the like.
  • the present invention has been devised in view of the above-described problems, and its object is to provide a method for manufacturing a power generation element, a power generation element, a power generation device, and a power generation device capable of stabilizing the amount of power generation. It is to provide an electronic device.
  • a method for manufacturing a power generation element is a method for manufacturing a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, and comprises: a first electrode; An element forming step of forming an element having an intermediate portion including a layer and a second electrode having a work function different from that of the first electrode, wherein the element forming step includes laminating a plurality of the elements to form a laminate and a lead wire forming step of forming a first lead wire and a second lead wire electrically connected to at least one element.
  • a method for manufacturing a power generation element according to a second aspect of the invention is characterized in that, in the first aspect of the invention, the lead wire forming step includes forming the first lead wires electrically connected to the plurality of first electrodes, The second lead wiring electrically connected to the two electrodes is formed.
  • a method for manufacturing a power generation element according to a third aspect of the invention is the first aspect of the invention, wherein the lead wire forming step forms the first lead wire electrically connected to only one first electrode, It is characterized in that the second lead-out wiring electrically connected to only two electrodes is formed.
  • a method for manufacturing a power generation element according to a fourth aspect of the invention is the method according to any one of the first to third aspects of the invention, wherein the lead wire forming step includes forming the first lead wire and the second lead wire on the side surface of the laminate.
  • the first extraction wiring is electrically connected to either the first electrode or the second electrode exposed on the side surface of the laminate.
  • a method for manufacturing a power generation element according to a fifth aspect of the invention is characterized in that, in the first aspect, the laminate forming step comprises: the first electrode of a first laminate obtained by laminating a plurality of the elements; The first laminate and the second laminate are laminated such that the first electrodes of the two laminates are electrically connected.
  • a power generation element is a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, and comprises a laminate including a plurality of laminated elements, and at least one a first lead wire and a second lead wire electrically connected to the element, the element including a first electrode and a non-conductor layer provided on the first electrode and containing fine particles; and a second electrode provided on the intermediate portion and having a work function different from that of the first electrode.
  • a power generation element is the power generating element according to the sixth aspect, wherein the first lead-out wiring is electrically connected to the plurality of first electrodes, and the second lead-out wiring is electrically connected to the plurality of second electrodes. characterized by being connected to
  • a power generation element according to an eighth invention is the power generation element according to the sixth invention, wherein the first lead wire is electrically connected to only one of the first electrodes, and the second lead wire is electrically connected to only one of the second electrodes. It is characterized by being electrically connected.
  • a power generation element is the power generation element according to any one of the sixth to eighth aspects, wherein the first lead wire and the second lead wire extend along the side surface of the laminate, and the first lead wire extends along the side surface of the laminate.
  • a wiring is electrically connected to one of the first electrode and the second electrode exposed on the side surface of the laminate.
  • a power generation element according to a tenth invention is characterized in that, in any one of the sixth to eighth inventions, the non-conductor layer supports the first electrode and the second electrode.
  • a power generation element is the power generation element according to the sixth aspect, comprising: a first laminate in which a plurality of the elements are laminated; and a second laminate in which the plurality of elements are laminated while being laminated on the first laminate.
  • the first electrode of the first laminate and the first electrode of the second laminate are electrically connected.
  • a power generating device includes the power generating element according to the sixth aspect of the invention, a first wiring electrically connected to the first lead wiring, and a second wiring electrically connected to the second lead wiring. , is provided.
  • An electronic device is characterized by comprising the power generation element according to the sixth invention and an electronic component driven by using the power generation element as a power supply.
  • the element forming step forms an element having an intermediate portion including a non-conductor layer containing fine particles. That is, the non-conductor layer suppresses movement of the fine particles between the electrodes. For this reason, it is possible to prevent the fine particles from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the lead wire forming step includes forming the first lead wires electrically connected to the plurality of first electrodes and forming the second lead wires electrically connected to the plurality of second electrodes. Form wiring. Therefore, the power generating element becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
  • the lead wire forming step includes forming a first lead wire electrically connected to one first electrode and forming a second lead wire electrically connected to one second electrode. to form Therefore, the power generation element becomes a series type power generation element. As a result, it is possible to achieve a higher voltage than in the case of parallel-type power generating elements.
  • the lead wire forming step includes extending the first lead wire and the second lead wire along the side surface of the laminate.
  • the first lead wiring is electrically connected to either the first electrode or the second electrode exposed on the side surface of the laminate. That is, the first lead wiring can be connected to either the first electrode or the second electrode without being provided inside the power generating element. This enables simplification of the manufacturing process.
  • the first electrode of the first laminate in which the plurality of elements are laminated and the first electrode of the second laminate in which the plurality of elements are laminated are electrically connected.
  • the first laminate and the second laminate are laminated such that Therefore, the first stacked body electrically connected in series and the second stacked body electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved.
  • the intermediate portion includes a non-conductor layer containing fine particles. That is, the non-conductor layer suppresses movement of the fine particles between the electrodes. For this reason, it is possible to prevent the fine particles from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the first lead-out wiring is electrically connected to the plurality of first electrodes
  • the second lead-out wiring is electrically connected to the plurality of second electrodes. Therefore, the power generating element becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
  • the first lead wire is electrically connected to only one of the first electrodes
  • the second lead wire is electrically connected to only one of the second electrodes. Therefore, the power generation element becomes a series type power generation element. As a result, it is possible to achieve a higher voltage than in the case of parallel-type power generating elements.
  • the first lead wire and the second lead wire extend along the side surface of the laminate, and the first lead wire includes the first electrode and the second electrode exposed on the side surface of the laminate. electrically connected to any of the electrodes. That is, since the first lead-out wiring is not provided inside the power generation element, it is possible to easily perform repairs associated with deterioration of the first lead-out wiring. This makes it possible to extend the usable period of the power generating element.
  • the nonconductor layer supports the first electrode and the second electrode. Therefore, compared to the case where a solvent or the like is used instead of the non-conductive layer, there is no need to provide a support portion or the like for maintaining the distance (gap) between the electrodes, and the gap resulting from the formation accuracy of the support portion is eliminated. Distortion can be removed. This makes it possible to suppress variations in the amount of power generation.
  • the first laminated body in which a plurality of elements are laminated, and the second laminated body laminated on the first laminated body and in which a plurality of elements are laminated The one electrode and the first electrode of the second laminate are electrically connected. Therefore, the first stacked body electrically connected in series and the second stacked body electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved.
  • the power generator includes the power generation element according to the sixth invention. Therefore, it is possible to realize a power generation device that stabilizes the power generation amount.
  • an electronic device includes the power generation element according to the sixth invention. Therefore, it is possible to realize an electronic device that stabilizes the amount of power generation.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment
  • FIG. 1(b) is a schematic cross-sectional view along AA in FIG. 1(a).
  • FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion
  • FIG. 3 is a flow chart showing an example of a method for manufacturing a power generation element according to the first embodiment
  • 4(a) to 4(d) are schematic cross-sectional views showing an example of the method for manufacturing the power generation element according to the first embodiment.
  • FIG. 5A is a schematic cross-sectional view showing a first modification of the power generation element and the power generation device in the first embodiment
  • FIG. 5B is a schematic cross-sectional view of the power generation element and the power generation device in the first embodiment. It is a schematic cross section which shows a 2nd modification.
  • FIG. 6A is a schematic cross-sectional view showing a first example of the power generation element and the power generation device according to the second embodiment
  • FIG. 6C is a schematic cross-sectional view showing two examples
  • FIG. 6C is a schematic cross-sectional view showing a third example of the power generation element and the power generation device in the second embodiment.
  • FIG. 7 is a flow chart showing an example of a method for manufacturing a power generation element according to the second embodiment.
  • FIG. 8(a) to 8(d) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the second embodiment.
  • FIG. 9 is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the third embodiment.
  • FIG. 10 is a flow chart showing an example of a method for manufacturing a power generation element according to the third embodiment.
  • 11(a) to 11(f) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the third embodiment.
  • 12(a) to 12(c) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the third embodiment.
  • FIG. 13A is a schematic cross-sectional view showing a first example of the power generation element and the power generation device according to the fourth embodiment
  • FIG. It is a schematic cross section showing two examples.
  • FIG. 14 is a flow chart showing an example of a method for manufacturing a power generation element according to the fourth embodiment.
  • 15(a) and 15(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the fourth embodiment.
  • 16(a) and 16(b) are schematic cross-sectional views showing an example of the method for manufacturing the power generating element according to the fourth embodiment.
  • FIG. 17 is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the fifth embodiment.
  • FIG. 18(a) to 18(d) are schematic cross-sectional views showing an example of a method for manufacturing a power generating element according to the fifth embodiment.
  • 19(a) and 19(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the fifth embodiment.
  • FIG. 20 is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the sixth embodiment.
  • 21(a) and 21(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the sixth embodiment.
  • FIG. 22 is a schematic cross-sectional view showing a power generation element according to the seventh embodiment.
  • FIG. 23 is a schematic cross-sectional view showing a power generation element according to the eighth embodiment.
  • FIGS. 24(a) to 24(d) are schematic block diagrams showing examples of electronic devices having power generation elements, and FIGS. 24(e) to 24(h) show power generation devices including power generation elements. It is a schematic block diagram which shows the example of the electronic device provided.
  • the height direction in which each electrode is stacked is defined as a first direction Z
  • one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X.
  • a third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X.
  • the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
  • FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in the first embodiment.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of the power generation element 1 and the power generation device 100 in the first embodiment
  • FIG. 1(b) is a schematic diagram along AA in FIG. 1(a). It is a sectional view.
  • the power generation device 100 includes a power generation element 1 , first wiring 101 and second wiring 102 .
  • the power generation element 1 converts thermal energy into electrical energy.
  • the power generation device 100 including such a power generation element 1 is mounted or installed on a heat source (not shown), and based on the thermal energy of the heat source, the electrical energy generated from the power generation element 1 is transferred to the first wiring 101 and the second wiring 101. 2 output to the load R via the wiring 102 .
  • One end of the load R is electrically connected to the first wiring 101 and the other end is electrically connected to the second wiring 102 .
  • a load R indicates, for example, an electrical device.
  • the load R is driven, for example, using the generator 100 as a main power source or an auxiliary power source.
  • heat sources for the power generation element 1 include electronic devices or electronic parts such as CPUs (Central Processing Units), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, production equipment in factories, human bodies, sunlight, and environmental temperature.
  • electronic devices, electronic parts, light-emitting elements, engines, production equipment, etc. are artificial heat sources.
  • the human body, sunlight, ambient temperature, etc. are natural heat sources.
  • the power generation device 100 including the power generation element 1 can be provided inside mobile devices such as IoT (Internet of Things) devices and wearable devices and self-supporting sensor terminals, and can be used as an alternative or supplement to batteries. Furthermore, the power generation device 100 can also be applied to larger power generation devices such as solar power generation.
  • the power generation element 1 converts, for example, thermal energy generated by the artificial heat source or thermal energy possessed by the natural heat source into electrical energy to generate current.
  • the power generation element 1 can be provided not only inside the power generation device 100, but also inside the mobile device, the self-contained sensor terminal, or the like. In this case, the power generation element 1 itself can serve as an alternative or auxiliary part of the battery, such as the mobile device or the self-contained sensor terminal.
  • the power generation element 1 includes, for example, a first electrode 11, a second electrode 12, and an intermediate portion 14, as shown in FIG. 1(a).
  • the power generation element 1 may include at least one of the first substrate 15 and the second substrate 16, for example.
  • the first electrode 11 and the second electrode 12 are provided facing each other.
  • the first electrode 11 and the second electrode 12 have different work functions.
  • the intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 2, for example.
  • the intermediate portion 14 includes, for example, fine particles 141 and a non-conductor layer 142 .
  • the non-conductor layer 142 contains the fine particles 141 .
  • movement of the particles 141 in the gap G is suppressed by the non-conductor layer 142 . Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the side of one of the electrodes 11 and 12 over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the non-conductor layer 142 is formed, for example, by curing a non-conductor material.
  • the non-conductor layer 142 exhibits a solid, for example.
  • the non-conducting layer 142 may include, for example, diluent residue and uncured portions of the non-conducting material.
  • the fine particles 141 are fixed in a dispersed state in the non-conductor layer 142, for example. In this case as well, it is possible to stabilize the power generation amount in the same manner as described above.
  • the intermediate portion 14 is provided on the first electrode 11 .
  • the second electrode 12 is provided on the non-conductor layer 142 . That is, the non-conductor layer 142 supports the first electrode 11 and the second electrode 12 .
  • the amount of power generation can be increased.
  • a liquid such as a solvent is used as the intermediate portion, it is necessary to provide a support portion or the like for maintaining the gap G.
  • the gap G may vary greatly with the formation of the supporting portion and the like.
  • the non-conductor layer 142 supports the first electrode 11 and the second electrode 12, so there is no need to provide a support portion or the like for maintaining the gap G, and the non-conductor layer 142 supports the first electrode 11 and the second electrode 12. It is possible to eliminate variations in the gap due to the accuracy of forming the parts. This makes it possible to increase the amount of power generation.
  • the fine particles 141 may come into contact with the support and aggregate around the support.
  • the power generating element 1 of the present embodiment it is possible to eliminate the state in which the fine particles 141 aggregate due to the supporting portion. This makes it possible to maintain a stable power generation amount.
  • the first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, as shown in FIG. 1(a), for example.
  • Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality.
  • one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions.
  • one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
  • a conductive material is used as the material of the first electrode 11 and the second electrode 12 .
  • materials for the first electrode 11 and the second electrode 12 for example, materials having different work functions are used. The same material may be used for the electrodes 11 and 12, and in this case, the electrodes 11 and 12 may have different work functions.
  • non-metallic conductor As the material of the electrodes 11 and 12, for example, a material composed of a single element such as iron, aluminum, or copper may be used, or an alloy material composed of, for example, two or more elements may be used.
  • a non-metallic conductor for example, may be used as the material of the electrodes 11 and 12 .
  • Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 ⁇ m or less.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 500 nm or less.
  • a gap G that indicates the distance between the first electrode 11 and the second electrode 12 can be arbitrarily set by changing the thickness of the non-conductor layer 142 . For example, by narrowing the gap G, the electric field generated between the electrodes 11 and 12 can be increased, so that the power generation amount of the power generation element 1 can be increased. Further, for example, by narrowing the gap G, the thickness of the power generation element 1 along the first direction Z can be reduced.
  • the gap G is a finite value of 500 ⁇ m or less, for example.
  • the gap G is, for example, 10 nm or more and 1 ⁇ m or less.
  • the gap G is 200 nm or less, the possibility of contact between the first electrode 11 and the second electrode 12 increases.
  • the gap G is larger than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken.
  • the gap G is preferably larger than 200 nm and 1 ⁇ m or less.
  • the intermediate portion 14 extends on a plane along the second direction X and the third direction Y, as shown in FIG. 1B, for example.
  • the intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 .
  • the intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
  • the fine particles 141 may be dispersed in the non-conductor layer 142 and partially exposed from the non-conductor layer 142, for example.
  • the particles 141 may be filled in the gap G, for example, and the non-conductor layer 142 may be provided in the gaps between the particles 141 .
  • the particle diameter of the fine particles 141 is smaller than the gap G, for example.
  • the particle diameter of the fine particles 141 is set to a finite value of 1/10 or less of the gap G, for example. If the particle diameter of the fine particles 141 is set to 1/10 or less of the gap G, it becomes easier to form the intermediate portion 14 containing the fine particles 141 in the space 140 . This makes it possible to improve the workability when generating the power generation element 1 .
  • the fine particles 141 include particles having a particle diameter of, for example, 2 nm or more and 1000 nm or less.
  • the fine particles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 20 nm or less, or particles having an average particle diameter of 3 nm or more and 20 nm or less.
  • the median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer.
  • a particle size distribution measuring instrument for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
  • the fine particles 141 include, for example, a conductive material, and any material is used depending on the application.
  • the fine particles 141 may contain one type of material, or may contain a plurality of materials depending on the application.
  • the work function value of the fine particles 141 is, for example, between the work function value of the first electrode 11 and the work function value of the second electrode 12.
  • the work function value of the first electrode 11 and It may be other than between the value of the work function of the second electrode 12 and is arbitrary.
  • the fine particles 141 contain, for example, metal.
  • As the fine particles 141 for example, in addition to particles containing one kind of material such as gold or silver, particles of an alloy containing two or more kinds of materials may be used.
  • Fine particles 141 contain, for example, a metal oxide.
  • fine particles 141 containing metal oxides include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ), Copper oxide (CuO ) , zinc oxide (ZnO), yttria ( Y2O3 ), niobium oxide ( Nb2O5 ) , molybdenum oxide ( MoO3 ), indium oxide ( In2O3 ), tin oxide ( SnO2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), ceria (CeO 2 ), antimony oxide (Sb 2 O 5 , Sb 2 O 3 ), a metal oxide of at least one element selected from the group consisting of metals and Si is used.
  • the fine particles 141 may contain, for example, metal oxides other than magnetic substances.
  • the fine particles 141 may contain a metal oxide exhibiting a magnetic substance, the movement of the fine particles 141 may be restricted by the magnetic field generated due to the environment in which the power generating element 1 is installed. Therefore, by including a metal oxide other than a magnetic material, the fine particles 141 are not affected by the magnetic field caused by the external environment, and it is possible to suppress the decrease in the power generation amount over time.
  • the microparticles 141 include, for example, a coating 141a on the surface.
  • the thickness of the coating 141a is, for example, a finite value of 20 nm or less.
  • a material having, for example, a thiol group or a disulfide group is used as the coating 141a.
  • Alkanethiol such as dodecanethiol is used as the material having a thiol group.
  • a material having a disulfide group for example, an alkane disulfide or the like is used.
  • the non-conductor layer 142 is provided between the electrodes 11 and 12 and is in contact with the electrodes 11 and 12, for example.
  • the thickness of the non-conductor layer 142 is a finite value of 500 ⁇ m or less, for example.
  • the thickness of the non-conductor layer 142 affects the value and variation of the gap G described above. Therefore, for example, when the thickness of the non-conductor layer 142 is 200 nm or less, the possibility of contact between the first electrode 11 and the second electrode 12 increases. Also, if the thickness of the non-conductor layer 142 is greater than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the thickness of the non-conductor layer 142 is preferably greater than 200 nm and equal to or less than 1 ⁇ m.
  • the non-conductor layer 142 may contain, for example, one type of material, or may contain a plurality of materials depending on the application. Materials described in ISO 1043-1 or JIS K 6899-1, for example, may be used as the non-conductor layer 142 .
  • the non-conductor layer 142 may include a plurality of layers containing different materials, for example, and may include a structure in which each layer is laminated. When the non-conductor layer 142 includes a plurality of layers, for example, particles 141 containing different materials may be included (eg, dispersed) in each layer.
  • the non-conductor layer 142 has insulating properties.
  • the material used for the non-conductor layer 142 is arbitrary as long as it is an insulating material that can fix the fine particles 141 in a dispersed state, but an organic polymer compound is preferable.
  • the non-conductor layer 142 contains an organic polymer compound, the non-conductor layer 142 can be formed flexibly, so that the power generating element 1 can be formed in a shape such as curved or bent according to the application.
  • organic polymer compounds include polyimides, polyamides, polyesters, polycarbonates, poly(meth)acrylates, radically polymerizable photo- or thermosetting resins, photo-cationically polymerizable photo- or thermosetting resins, epoxy resins, and acrylonitrile components.
  • An inorganic substance may be used as the non-conductor layer 142, for example.
  • inorganic substances include porous inorganic substances such as zeolite and diatomaceous earth, as well as cage-like molecules.
  • the first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, as shown in FIG. 1A, for example.
  • the first substrate 15 is, for example, in contact with the first electrode 11 and separated from the second electrode 12 .
  • the first substrate 15 fixes the first electrode 11 .
  • the second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 .
  • a second substrate 16 fixes the second electrode 12 .
  • each of the substrates 15 and 16 along the first direction Z is, for example, 10 ⁇ m or more and 2 mm or less.
  • the thickness of each substrate 15, 16 can be set arbitrarily.
  • the shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
  • the substrates 15 and 16 for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used.
  • a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
  • a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper.
  • a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
  • the first substrate 15 may have a degenerate portion that contacts the first electrode 11 .
  • the contact resistance between the first electrode 11 and the first substrate 15 can be reduced as compared with the case without the degenerate portion.
  • the first substrate 15 may have a recessed portion on a surface different from the surface in contact with the first electrode 11 . In this case, the contact resistance between the wiring (for example, the first wiring 101) electrically connected to the first substrate 15 can be reduced.
  • contact resistance can be reduced by providing contraction portions on the contact surfaces of the substrates 15 and 16 that are in contact with each other as the power generation elements 1 are stacked.
  • the above-mentioned degenerate portion is generated, for example, by ion-implanting an n-type dopant into a semiconductor at a high concentration, coating a semiconductor with a material such as glass containing an n-type dopant, and performing heat treatment after coating.
  • impurities to be doped into the semiconductor first substrate 15 known impurities such as P, As, Sb, etc. for n-type, and B, Ba, Al, etc. for p-type are mentioned. Further, electrons can be efficiently emitted when the impurity concentration in the degenerate portion is, for example, 1 ⁇ 10 19 ions/cm 3 .
  • the specific resistance value of the first substrate 15 may be, for example, 1 ⁇ 10 ⁇ 6 ⁇ cm or more and 1 ⁇ 10 6 ⁇ cm or less. If the resistivity value of the first substrate 15 is less than 1 ⁇ 10 ⁇ 6 ⁇ cm, it is difficult to select the material. Also, if the specific resistance value of the first substrate 15 is greater than 1 ⁇ 10 6 ⁇ cm, there is a concern that current loss may increase.
  • the second substrate 16 may be a semiconductor. In this case, the description is omitted because it is the same as the above.
  • the power generation element 1 may include only the first substrate 15 as shown in FIG. 5(a), or may include only the second substrate 16, for example.
  • the power generation element 1 has a laminated structure in which a plurality of the first electrode 11, the intermediate portion 14, and the second electrode 12 are laminated in this order without the respective substrates 15 and 16. (e.g. 1a, 1b, 1c, etc.), for example, a laminated structure comprising at least one of the substrates 15, 16 may be indicated.
  • ⁇ Example of operation of power generation element 1> For example, when thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends on thermal energy and also depends on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
  • the amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and by decreasing the gap G.
  • the amount of electrical energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and decreasing the gap G.
  • the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current.
  • the "work function” indicates the minimum energy required to extract electrons in a solid into a vacuum.
  • the work function is measured using, for example, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). can be done.
  • UPS ultraviolet photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • AES Auger electron spectroscopy
  • FIG. 3 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to the first embodiment.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • ⁇ Element formation step S100> In the device forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed to form the device. In the element forming step S100, for example, a plurality of first electrodes 11, intermediate portions 14, and second electrodes 12 may be laminated. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element formation step S100 includes, for example, a first electrode formation step S110, an intermediate portion formation step S120, and a second electrode formation step S130.
  • the first electrode forming step S110 forms the first electrode 11 .
  • the first electrode 11 is formed on the first substrate 15, as shown in FIG. 4A, for example.
  • the first electrode 11 is formed, for example, by a sputtering method or a vacuum deposition method under a reduced pressure environment, or is formed by using a known electrode forming technique.
  • the first electrode 11 may be formed by processing a stretched electrode material into an arbitrary size. In this case, the first substrate 15 may not be used.
  • the first electrode 11 when a film-like member is used as the first substrate 15, the first electrode 11 can be applied onto the first substrate 15, and the first substrate 15 and the first electrodes 11 can be rolled up. After that, for example, before or after at least one of an intermediate portion forming step S120, a second electrode forming step S130, and a sealing material forming step S140, which will be described later, the substrate may be cut into areas according to the application.
  • the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11, as shown in FIG. 4B, for example.
  • a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142.
  • FIG. 1 the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
  • an insulating material is applied to the surface of the first electrode 11 by a known coating technique such as screen printing or spin coating.
  • the thickness of the insulating material to be applied can be arbitrarily set according to the design of the gap G described above.
  • the non-conductor layer 142 may be formed by performing heating, UV irradiation, or the like on the applied insulating material according to the properties of the insulating material.
  • a fine particle material may be mixed in any inorganic material and laser irradiation may be performed. As a result, fine particles 141 dispersed in the non-conductor layer 142 are formed, forming the intermediate portion 14 .
  • the second electrode forming step S130 forms the second electrode 12 on the non-conductor layer 142, as shown in FIG. 4C, for example.
  • the second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example.
  • the second electrode 12 is formed using a known electrode forming technique such as screen printing or vapor deposition.
  • the second electrode forming step S130 is formed, for example, on the surface of the non-conductor layer 142 by sputtering or vacuum deposition under a reduced pressure environment.
  • the main surface of the second electrode 12 is in contact with the non-conductor layer 142 without being exposed to the air or the like. Therefore, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
  • the surface of the second electrode 12 provided in advance on the second substrate 16 is brought into contact with the surface of the non-conductor layer 142 to form the second electrode 12. good too.
  • variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
  • the second substrate 16 when a film member is used as the second substrate 16, it can be realized by preparing the second substrate 16 coated with the second electrode 12.
  • the second substrate 16 and the second electrode 12 are wound into a roll. It can be prepared as is. After that, for example, before or after the sealing material forming step S140, which will be described later, it may be cut into areas according to the application.
  • the intermediate portion 14 and the second electrode 12 may be heated.
  • the heating of the intermediate portion 14 and the second electrode 12 may be performed, for example, instead of the heating in the intermediate portion forming step S120, or may be performed in addition to the heating in the intermediate portion forming step S120.
  • the surface of the nonconductor layer 142 in contact with the second electrode 12 is easily flattened. Therefore, it is possible to suppress the generation of a slight gap between the non-conductor layer 142 and the second electrode 12 . This makes it possible to increase the amount of power generation.
  • the sealing material forming step S140 may be performed after the second electrode forming step S130.
  • the sealing material 17 is formed in contact with at least one of the first electrode 11, the intermediate portion 14 and the second electrode 12, as shown in FIG.
  • the encapsulant 17 is formed using a known technique such as a molding method.
  • an insulating material is used, for example, a known insulating resin such as a fluorine-based insulating resin is used.
  • a known insulating resin such as a fluorine-based insulating resin is used.
  • the sealing material 17 is formed so as to cover the intermediate portion 14, the intermediate portion 14 is not exposed to the outside, so durability can be further improved.
  • the power generating element 1 in the present embodiment is formed by performing the steps described above.
  • a second substrate 16 shown in FIG. 1A may be formed on the second electrode 12 .
  • the power generator 100 in the present embodiment is formed.
  • the element forming step S100 forms an element including the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 . That is, movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12) is suppressed. Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the sealing material 17 in contact with at least one of the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed. may be formed.
  • the sealing material 17 in contact with at least one of the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • the sealing material 17 in contact with at least one of the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • the sealing material 17 in contact with at least one of the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • the sealing material 17 in contact with at least one of the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • deterioration of the non-conductor layer 142 and the fine particles 141 due to the external environment can be suppressed. This makes it possible to improve the durability.
  • the second electrode forming step S130 may form the second electrode 12 on the surface of the non-conductor layer 142 under a reduced pressure environment. In this case, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
  • the second electrode forming step S130 includes bringing the surface of the second electrode 12 provided on the second substrate 16 in advance and the surface of the non-conductor layer 142 into contact with each other. may contain.
  • variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
  • the non-conductor layer 142 may contain an organic polymer compound, for example.
  • the non-conductor layer 142 can be formed flexibly. Thereby, it is possible to form the power generation element 1 having a shape according to the application.
  • the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is provided. That is, the non-conductor layer 142 suppresses movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12). Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the non-conductor layer 142 supports the first electrode 11 and the second electrode 12 . Therefore, compared to the case where a solvent or the like is used instead of the non-conductor layer 142, there is no need to provide a support portion or the like for maintaining the distance (gap) between the electrodes, and the gap caused by the formation accuracy of the support portion is eliminated. can be eliminated. This makes it possible to suppress variations in the amount of power generation.
  • the fine particles 141 may contain metal oxides other than magnetic substances. In this case, it is possible to suppress the decrease in the power generation amount over time without being affected by the magnetic field caused by the external environment.
  • FIG. 6A is a schematic cross-sectional view showing a first example of the power generation element 1 and the power generation device 100 in the second embodiment
  • FIG. 6B is a schematic cross-sectional view showing the power generation element 1 and the power generation
  • FIG. 6C is a schematic cross-sectional view showing a second example of the device 100
  • FIG. 6C is a schematic cross-sectional view showing a third example of the power generation element 1 and the power generation device 100 in the second embodiment.
  • the power generation element 1 includes a laminate 3 including a plurality of laminated elements (for example, elements 1a, 1b, and 1c), A first lead wire 18a and a second lead wire 18b electrically connected to at least one element are provided.
  • the power generation element 1 may include at least one of a first substrate 15 and a second substrate 16, as shown in FIGS. 6(a) and 6(b), for example.
  • the first substrate 15 and the second substrate 16 may be omitted, for example, as shown in FIG. 6(c).
  • the laminate 3 is formed by laminating a plurality of elements each having a first electrode 11 , a second electrode 12 , and an intermediate portion 14 in the first direction Z. As shown in FIG. As shown in FIGS. 6A and 6C, in the laminate 3, one first electrode 11 and one second electrode 12 are alternately laminated in the first direction Z. As shown in FIGS. As shown in FIG. 6B, in the laminate 3, a pair of first electrodes 11 and a pair of second electrodes 12 are alternately laminated in the first direction Z. As shown in FIG. The first electrode 11 , the second electrode 12 , and the intermediate portion 14 are exposed on the side surface of the laminate 3 .
  • Lead wiring 18 is electrically connected to each of electrodes 11 and 12 .
  • the lead wire 18 has a first lead wire 18a and a second lead wire 18b.
  • the first extraction wiring 18 a is electrically connected to the first wiring 101 via the first terminal 111 .
  • the second lead wiring 18 b is electrically connected to the second wiring 102 via the second terminal 112 .
  • the first lead wire 18a is separated from the second electrode 12 with the insulating portion 19 interposed therebetween.
  • the second lead wire 18b is separated from the first electrode 11 with the insulating portion 19 interposed therebetween.
  • a conductive material such as gold, copper, nickel, or the like is used for each lead wiring 18a, 18b.
  • As the insulating portion 19 a known insulating material is used, for example, an insulating resin such as a fluorine-based insulating resin is used.
  • the first extraction wiring 18a is electrically connected to the plurality of first electrodes 11.
  • the second extraction wiring 18b is electrically connected to the multiple second electrodes 12 .
  • the power generation element 1 becomes a parallel type power generation element having the laminate 3 .
  • the first lead-out wiring 18 a extends in the first direction Z and extends along the side surface of the laminate 3 .
  • the first lead-out wiring 18 a is electrically connected to one of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 .
  • the lead wiring 18a is electrically connected to the first electrode 11, for example.
  • the first lead-out wiring 18a since the first lead-out wiring 18a is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the first lead-out wiring 18a. This makes it possible to extend the usable period of the power generating element.
  • the first lead wiring 18 a may be electrically connected to the second electrode 12 .
  • the second lead wire 18b extends in the first direction Z and extends along the side surface of the laminate 3.
  • the second lead wire 18 b is electrically connected to the other of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 .
  • the lead wiring 18a is electrically connected to the first electrode 11, for example.
  • the second lead-out wiring 18b since the second lead-out wiring 18b is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the second lead-out wiring 18b. This makes it possible to extend the usable period of the power generating element.
  • the second lead-out wiring 18 b may be electrically connected to the first electrode 11 .
  • the first lead-out wiring 18 a and the second lead-out wiring 18 b are covered with the sealing material 17 .
  • the sealing material 17 is formed so as to cover the first lead-out wiring 18a and the second lead-out wiring 18b, since the first lead-out wiring 18a and the second lead-out wiring 18b are not exposed to the outside, the durability can be further improved. It is possible to plan
  • FIG. 7 is a flow chart showing an example of a method for manufacturing the power generation element 1 according to the second embodiment.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • ⁇ Element formation step S100> In the element forming step S100, a first electrode 11, an intermediate portion 14, and a second electrode 12 are formed to form an element, and a plurality of elements (for example, elements 1a, 1b, and 1c) are stacked to form a laminate 3. Form.
  • the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element formation step S100 includes, for example, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, a laminate formation step S131, and a lead wire formation step S132.
  • the first electrode forming step S110 forms the first electrode 11 .
  • the first electrode 11 is formed on the first substrate 15, as shown in FIG. 8A, for example.
  • the insulating portion 19 is formed on the first substrate 15. As shown in FIG.
  • the intermediate portion forming step S ⁇ b>120 forms the intermediate portion 14 including the nonconductor layer 142 on the first electrode 11 .
  • a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142.
  • FIG. As a result, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
  • the second electrode forming step S130 forms the second electrode 12 on the nonconductor layer 142 .
  • the second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example. Thereby, the element 1a including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • ⁇ Laminate formation step S131> In the laminate forming step S131, as shown in FIG. 8B, a plurality of elements (for example, elements 1a, 1b, and 1c) each including a first electrode 11, an intermediate portion 14, and a second electrode 12 are laminated and laminated. form the body 3; In the laminate forming step S131, for example, the first electrode 11 is formed on the first substrate 15 in the element 1b. An intermediate portion 14 including a non-conductor layer 142 is formed on the first electrode 11 in the element 1b. A second electrode 12 is formed on the non-conductor layer 142 in the element 1b. Thereby, the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • elements 1a, 1b, and 1c each including a first electrode 11, an intermediate portion 14, and a second electrode 12 are laminated and laminated. form the body 3;
  • the first electrode 11 is formed on the first substrate 15 in the element 1b.
  • the laminate 3 is formed by repeatedly performing the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130.
  • a first lead wire 18a and a second lead wire 18b electrically connected to at least one element are formed.
  • first lead-out lines 18a electrically connected to the plurality of first electrodes 11 are formed, and second lead-out lines 18b electrically connected to the plurality of second electrodes 12 are formed. do.
  • the first lead wire 18a and the second lead wire 18b electrically connected to at least one of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 are laminated. It extends along the side of the body 3.
  • the lead-out line forming step S132 electrically connects the first lead-out line 18a to one of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 .
  • the lead-out line forming step S132 electrically connects the second lead-out line 18b to the other of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 .
  • the lead wires 18a and 18b are formed by using a known wire forming technique such as sputtering.
  • the encapsulant formation step S140 may be performed after the lead wire formation step S132.
  • the encapsulant 17 is formed so as to cover the first lead-out wiring 18a and the second lead-out wiring 18b.
  • the sealing material forming step S140 may form the sealing material 17 in contact with the first electrode 11 , the intermediate portion 14 and the second electrode 12 .
  • the power generating element 1 in the present embodiment is formed by performing the steps described above.
  • the second substrate 16 may be formed on the second electrode 12 .
  • the power generator 100 in the present embodiment is formed.
  • the lead-out line forming step S132 forms the first lead-out lines 18a electrically connected to the plurality of first electrodes 11 and electrically connected to the plurality of second electrodes 12.
  • a second lead-out wiring 18b is formed. Therefore, the power generating element 1 becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
  • the lead-out line forming step S132 includes extending the first lead-out line 18a and the second lead-out line 18b along the side surface of the laminate 3, and the first lead-out line 18a is It is electrically connected to either the first electrode 11 or the second electrode 12 exposed on the side surface of the laminate 3 . That is, the first lead wire 18 a can be connected to either the first electrode 11 or the second electrode 12 without being provided inside the power generation element 1 . This enables simplification of the manufacturing process.
  • the lead wire forming step S132 includes extending the first lead wire 18a and the second lead wire 18b along the side surface of the laminate 3, and the second lead wire 18b is , may be electrically connected to either the first electrode 11 or the second electrode 12 exposed on the side surface of the laminate 3 .
  • the second lead wiring 18b can be connected to either the first electrode 11 or the second electrode 12 without being provided inside the power generation element 1 . This enables simplification of the manufacturing process.
  • the first lead-out wiring 18a and the second lead-out wiring 18b extend along the side surface of the laminate 3, and the first lead-out wiring 18a extends along the first electrode 11 and the second electrode. 12 are electrically connected. That is, since the first lead-out wiring 18a is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the first lead-out wiring 18a. This makes it possible to extend the usable period of the power generating element.
  • the first lead-out wiring 18a and the second lead-out wiring 18b extend along the side surfaces of the laminate 3, and the second lead-out wiring 18b extends along the first electrode 11 and the second electrode. 12 may be electrically connected. That is, since the second lead-out wiring 18b is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the second lead-out wiring 18b. This makes it possible to extend the usable period of the power generating element.
  • FIG. 9 is a schematic cross-sectional view showing an example of the power generation element 1 and the power generation device 100 in the third embodiment.
  • the power generation element 1 includes, for example, a first electrode 11, a second electrode 12, an intermediate portion 14, and a lead wire 18, as shown in FIG.
  • the power generation element 1 may further include a wiring layer 23 .
  • the power generation element 1 may include at least one of the first substrate 15 and the second substrate 16 .
  • the lead wiring 18 is provided, for example, in a through hole 25 penetrating through the substrates 15 and 16 in the first direction Z, and electrically connected to the electrodes 11 and 12 and the wiring layer 23 .
  • the lead wiring 18 is provided, for example, by filling each through hole 25 .
  • the lead wiring 18 may be provided, for example, on the inner peripheral surface of each through hole 25 .
  • the lead wiring 18 may be in contact with the intermediate portion 14 .
  • the through hole 25 has a first through hole 25 a penetrating through the first substrate 15 and a second through hole 25 b penetrating through the second substrate 16 .
  • the lead wire 18 has, for example, at least one of a first lead wire 18a and a second lead wire 18b.
  • the first lead wiring 18a is electrically connected to the first electrode 11 and the first wiring layer 23a through a first through hole 25a penetrating through the first substrate 15 . Therefore, the connection point between the first lead wire 18 a and the first electrode 11 is provided inside the power generation element 1 .
  • the second lead wiring 18b is electrically connected to the second electrode 12 and the second wiring layer 23b via a second through hole 25b passing through the second substrate 16. As shown in FIG. Therefore, the connection point between the second lead wire 18 b and the second electrode 12 is provided inside the power generation element 1 .
  • the connection point is a portion of the lead wires 18a and 18b that is particularly susceptible to deterioration.
  • the lead wiring 18 is provided, for example, by filling each through hole 25 .
  • the lead wiring 18 may be provided, for example, on the inner peripheral surface of each through hole 25 and may be formed with a thickness of 100 nm or more and 10 ⁇ m or less.
  • a conductive material such as gold, copper, or nickel is used as the material of the lead-out wiring 18 .
  • the wiring layer 23 is provided on the outer side (surface) of the power generation element 1 .
  • the wiring layer 23 has, for example, at least one of a first wiring layer 23a and a second wiring layer 23b.
  • the first wiring layer 23a is provided on the main surface of the first substrate 15 that faces the main surface on which the first electrode 11 is provided. That is, the first substrate 15 is sandwiched between the first wiring layer 23 a and the first electrode 11 .
  • the first wiring layer 23a is formed to cover the first lead-out wiring 18a.
  • the second wiring layer 23b is provided on the main surface of the second substrate 16 that faces the main surface on which the second electrode 12 is provided. That is, the second substrate 16 is sandwiched between the second wiring layer 23 b and the second electrode 12 .
  • the second wiring layer 23b is formed to cover the second lead-out wiring 18b.
  • the thickness of the wiring layer 23 along the first direction Z is, for example, 100 nm or more and 10 ⁇ m or less.
  • a conductive material is used, for example, gold is used, and a layered body of gold and chromium or a layered body of gold and nickel is used.
  • FIG. 10 is a flow chart showing an example of a method for manufacturing the power generation element 1 according to this embodiment.
  • 11(a) to 12(c) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • ⁇ Element formation step S100> In the device forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed to form the device. In the element forming step S100, for example, a plurality of first electrodes 11, intermediate portions 14, and second electrodes 12 may be laminated. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, and a second electrode formation step S130.
  • the element formation step S100 may further include, for example, a wiring layer formation step S133.
  • the lead wire forming step S132 As shown in FIG. 11A, the first through hole 25a is formed in the first substrate 15, and the first lead wire 18a is formed in the first through hole 25a. Further, in the lead-out wiring forming step S132, as shown in FIG. 11B, the second through-hole 25b is formed in the second substrate 16, and the second lead-out wiring 18b is formed in the second through-hole 25b. One or more of the through holes 25a and 25b and the lead wirings 18a and 18b are provided.
  • the first wiring layer 23a is formed on one main surface of the first substrate 15 so as to cover the first lead wiring 18a.
  • the second wiring layer 23b is formed on one main surface of the second substrate 16 so as to cover the second lead wiring 18b.
  • Each of the wiring layers 23a and 23b is formed in, for example, a rectangular shape when viewed from the first direction Z, and the shape is arbitrary.
  • the first electrode 11 is formed on the first substrate 15, as shown in FIG. 11(e). Thereby, the first electrode 11 is electrically connected to the first extraction wiring 18a.
  • the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11, as shown in FIG. 12(a).
  • a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142.
  • FIG. 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
  • the second electrode forming step S130 forms the second electrode 12 on the intermediate portion 14, as shown in FIG. 12(b).
  • the second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example.
  • the second electrode 12 is formed on the second substrate 16 in advance, as shown in FIG. 11(f). Thereby, the second electrode 12 is electrically connected to the second extraction wiring 18b.
  • the second electrode 12 formed on the second substrate 16 is formed on the non-conductor layer 142 .
  • the nonconductor layer 142 supports the first electrode 11 and the second electrode 12 .
  • the sealing material forming step S140 may be performed after the second electrode forming step S130.
  • the sealing material 17 is formed in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12, as shown in FIG.
  • the power generating element 1 in the present embodiment is formed by performing the steps described above.
  • the second substrate 16 may be omitted.
  • the power generator 100 in the present embodiment is formed.
  • a lead wire forming step S132 may be provided for forming the first lead wire 18a that penetrates the first substrate 15 and is electrically connected to the first electrode 11. Therefore, the first lead wire 18 a can be connected to the first electrode 11 on the inner side of the power generation element 1 . This makes it possible to suppress deterioration of the first extraction wiring 18 a connected to the first electrode 11 .
  • a lead wire forming step S132 may be provided for forming the second lead wire 18b that penetrates the second substrate 16 and is electrically connected to the second electrode 12. Therefore, the second lead wiring 18b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the second lead-out wiring 18b connected to the second electrode 12 .
  • a wiring layer forming step S133 may be provided for forming the first wiring layer 23a on one main surface of the first substrate 15 so as to cover the first lead wiring 18a, for example.
  • the first lead wiring 18a is not exposed to the outside. This makes it possible to further suppress deterioration of the first lead-out wiring 18 a connected to the first electrode 11 .
  • a wiring layer forming step S133 may be provided to form the second wiring layer 23b on one main surface of the second substrate 16 so as to cover the second lead wiring 18b, for example.
  • the second lead wiring 18b is not exposed to the outside. This makes it possible to further suppress deterioration of the second extraction wiring 18b connected to the second electrode 12 .
  • FIG. 13A is a schematic cross-sectional view showing a first example of the power generation element 1 and the power generation device 100 in the fourth embodiment
  • FIG. FIG. 4 is a schematic cross-sectional view showing a second example of the device 100;
  • the power generating element 1 includes a laminate 3 including a plurality of laminated elements (for example, elements 1a and 1b) and at least one element electrically connected to each other.
  • a first lead-out wiring 18a and a second lead-out wiring 18b are provided.
  • the power generation element 1 includes at least one of a first substrate 15 and a second substrate 16, as shown in FIG. 13, for example.
  • the laminated body 3 is formed by laminating a plurality of elements each including a first electrode 11 in contact with the first substrate 15 , a second electrode 12 , and an intermediate portion 14 in the first direction Z. As shown in FIG.
  • the first lead wire 18 a penetrates the first substrate 15 and is electrically connected to only one first electrode 11 .
  • the second lead-out wiring 18b penetrates the second substrate 16 and is electrically connected to only one second electrode 12 .
  • the power generation element 1 becomes a series type power generation element.
  • a second wiring layer 23b is formed between the second substrate 16 of the element 1a and the first substrate 15 of the element 1b.
  • the second lead-out wiring 18b in the element 1a and the first lead-out wiring 18a in the element 1b are electrically connected through the second wiring layer 23b.
  • the second lead-out wiring 18b in the element 1a and the first lead-out wiring 18a in the element 1b may be electrically connected via the first wiring layer 23a.
  • the first lead wire 18a penetrates the first substrate 15 and is electrically connected to the plurality of first electrodes 11.
  • the first lead wiring 18 a is electrically connected to the first electrode 11 through a first through hole 25 a penetrating through the first substrate 15 .
  • the second lead wiring 18 b penetrates the first substrate 15 and is electrically connected to the plurality of second electrodes 12 .
  • the second lead wiring 18 b is electrically connected to the second electrode 12 via a first through hole 25 a that penetrates the first substrate 15 .
  • the power generation element 1 becomes a parallel type power generation element.
  • the first lead-out wiring 18 a and the second lead-out wiring 18 b may pass through the second substrate 16 .
  • FIG. 14 is a flow chart showing an example of a method for manufacturing the power generation element 1 according to the fourth embodiment.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • ⁇ Element formation step S100> elements are formed by forming the first electrode 11, the intermediate portion 14, and the second electrode 12 in contact with the first substrate 15, respectively, and a plurality of elements (for example, elements 1a and 1b) are laminated. form the body 3;
  • the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, and a laminate formation step S131.
  • the element formation step S100 may further include, for example, a wiring layer formation step S133.
  • the element forming step S100 includes the lead wire forming step S132, the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130. to form the element 1a.
  • ⁇ Laminate formation step S131> In the laminate forming step S131, for example, as shown in FIG. For example, the elements 1a and 1b) are stacked to form a laminate 3.
  • FIG. In the laminate forming step S131 for example, the first electrode 11 is formed on the first substrate 15 in the element 1b.
  • An intermediate portion 14 including a non-conductor layer 142 is formed on the first electrode 11 in the element 1b.
  • a second electrode 12 is formed on the non-conductor layer 142 in the element 1b. Thereby, the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • the second wiring layer 23b is formed on the second substrate 16 of the element 1a, and the first substrate 15 of the element 1b is formed on the second wiring layer 23b.
  • the element 1b is laminated on the element 1a to form the laminated body 3.
  • the second lead-out wiring 18b of the second substrate 16 in the element 1a and the first lead-out wiring 18a of the first substrate 15 in the element 1b are electrically connected through the second wiring layer 23b.
  • the wiring layer forming step S133 includes, for example, as shown in FIG. A first wiring layer 23 a is formed on one main surface of 15 .
  • the second wiring layer 23b is formed on one main surface of the second substrate 16 arranged on the outermost side of the laminate 3 so as to cover the second lead wiring 18b.
  • the sealing material forming step S140 may be performed after the wiring layer forming step S133.
  • the sealing material 17 is formed in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12, as shown in FIG. 16B, for example.
  • the lead wire forming step S132 forms the first lead wire 18a electrically connected to only one first electrode 11 and electrically connected to only one second electrode 12.
  • a second lead-out wiring 18b to be connected is formed. Therefore, the power generating element 1 becomes a series type power generating element. As a result, it is possible to achieve a higher voltage than in the case of parallel-type power generating elements.
  • the lead-out line forming step S132 forms the first lead-out lines 18a electrically connected to the plurality of first electrodes 11 and electrically connected to the plurality of second electrodes 12.
  • a second lead-out wiring 18b is formed. Therefore, the power generating element 1 becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
  • a lead wire forming step S132 may be provided for forming the first lead wire 18a that penetrates the first substrate 15 and is electrically connected to the first electrode 11. Therefore, the first lead wire 18 a can be connected to the first electrode 11 on the inner side of the power generation element 1 . This makes it possible to suppress deterioration of the first extraction wiring 18 a connected to the first electrode 11 .
  • a lead wire forming step S132 may be provided for forming the second lead wire 18b that penetrates the second substrate 16 and is electrically connected to the second electrode 12. Therefore, the second lead wiring 18b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the second lead-out wiring 18b connected to the second electrode 12 .
  • the first electrode 11 and the second electrode 12 are in contact with each other on both sides of the first substrate 15 .
  • the first electrode 11 and the second electrode 12 on both sides of the first substrate 15 are electrically connected to each other through the first lead wiring 18a.
  • the power generation element 1 has an intermediate portion 14 formed between a first electrode 11 in contact with one first substrate 15 and a second electrode 12 in contact with the other first substrate 15 .
  • the first lead-out wiring 18 a penetrates the first substrate 15 and is electrically connected to the first electrode 11 and the second electrode 12 .
  • the first electrode 11 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
  • the second electrode 12 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • ⁇ Element formation step S100> In the device forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed to form the device. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, and a second electrode formation step S130.
  • the element formation step S100 may further include, for example, a wiring layer formation step S133.
  • first electrode forming step S110 the first electrode 11 and the second electrode 12 are formed so as to sandwich the first substrate 15, as shown in FIG. 18(b). Thereby, the first electrode 11 and the second electrode 12 are electrically connected to the first extraction wiring 18a. A plurality of first substrates 15 are formed on which the first electrodes 11 and the second electrodes 12 are in contact.
  • the first wiring layer 23a is formed so as to cover the second electrode 12 of the first substrate 15 on one side. Further, in the wiring layer forming step S133, as shown in FIG. 18D, the first wiring layer 23a is formed so as to cover the first electrodes 11 of the other first substrate 15. Then, as shown in FIG.
  • the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11 in contact with one of the first substrates 15, as shown in FIG. 19(a).
  • a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142.
  • FIG. 1 the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
  • ⁇ Second electrode forming step S130> In the second electrode forming step S130, as shown in FIG. 19B, the second electrode 12 is formed on the intermediate portion 14 so as to be in contact with the other first substrate 15. As shown in FIG. In the second electrode forming step S130, the second electrode 12 formed on the second substrate 16 is formed on the non-conductor layer 142, as shown in FIG. 19(b). In the second electrode forming step S ⁇ b>130 , the nonconductor layer 142 supports the first electrode 11 and the second electrode 12 .
  • the sealing material forming step S140 may be performed after the second electrode forming step S130.
  • the sealing material forming step S ⁇ b>140 forms the sealing material 17 in contact with the first electrode 11 , the intermediate portion 14 , and the second electrode 12 .
  • the power generating element 1 in the present embodiment is formed by performing the steps described above. Further, for example, by forming the wirings 101, 102, etc., the power generator 100 in the present embodiment is formed.
  • a plurality of first substrates 15 on both sides of which the first electrodes 11 and the second electrodes 12 electrically connected via the first lead-out wirings 18a are in contact with one of the first substrates and an intermediate portion 14 formed between the first electrode in contact with the first substrate and the second electrode in contact with the other first substrate. Therefore, the first substrates 15 on both sides of the intermediate portion 14 can be used without discrimination. Thereby, it becomes possible to improve the manufacturing efficiency of the power generation element 1 .
  • the first electrode 11 and the second electrode 12 are in contact with each other on both sides of the first substrate 15, as in the fifth embodiment.
  • the first electrode 11 and the second electrode 12 on both sides of the first substrate 15 are electrically connected to each other through the first lead wiring 18a.
  • the power generation element 1 has an intermediate portion 14 formed between a first electrode 11 in contact with one first substrate 15 and a second electrode 12 in contact with the other first substrate 15 .
  • the first lead-out wiring 18 a penetrates the first substrate 15 and is electrically connected to the first electrode 11 and the second electrode 12 .
  • the first electrode 11 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
  • the second electrode 12 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • ⁇ Element formation step S100> elements are formed by forming the first electrode 11, the intermediate portion 14, and the second electrode 12 in contact with the first substrate 15, respectively, and a plurality of elements (for example, elements 1a and 1b) are laminated. form the body 3;
  • the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, and a laminate formation step S131.
  • the element formation step S100 may further include, for example, a wiring layer formation step S133.
  • the element forming step S100 includes the lead-out line forming step S132, the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130. to form the element 1a.
  • ⁇ Laminate formation step S131> In the laminate formation step S131, as shown in FIG. 21B, for example, an element including a first electrode 11, an intermediate portion 14, and a second electrode 12 in contact with the first substrate 15 is formed, and a plurality of elements (for example, the elements 1a and 1b) are stacked to form a laminate 3.
  • FIG. 1B the laminate forming step S131, the intermediate portion 14 including the non-conductor layer 142 in the element 1b is formed on the first electrode 11 in contact with the first substrate 15, for example.
  • the second electrode 12 is formed on the non-conductor layer 142 in the element 1b. Thereby, the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • a plurality of first substrates 15 on both sides of which the first electrodes 11 and the second electrodes 12 electrically connected via the first lead-out wirings 18a are in contact with one of the first substrates 15 and an intermediate portion 14 formed between a first electrode 11 in contact with the first substrate 15 and a second electrode 12 in contact with the first substrate 15 on the other side. Therefore, the first substrates 15 on both sides of the intermediate portion 14 can be used without discrimination. Thereby, it becomes possible to improve the manufacturing efficiency of the power generation element 1 .
  • the element forming step S100 includes a layered body forming step S131 for forming the layered body 3 in which the plurality of elements 1a and 1b are layered. Since the first electrode 11 and the second electrode 12 are in contact with both sides of the first substrate 15 of the device, when stacking the plurality of devices 1a and 1b, the first substrate 15 and the second electrode 11 are in contact only with the first electrode 11. The distance between the two intermediate portions 14 in the laminate 3 can be reduced compared to the case of stacking elements using the second substrate 16 with which only the second substrate 12 is in contact. This makes it possible to reduce the thickness of the power generation element 1 .
  • a first laminate 3a in which the elements 1a and 1b are laminated and a second laminate 3b in which the elements 1c and 1d are laminated are laminated.
  • the first laminate 3a electrically connected in series and the second laminate 3b electrically connected in series can be formed.
  • the first electrode 11 of the first stacked body 3a and the first electrode 11 of the second stacked body 3b are electrically connected, for example, by contacting each other.
  • the first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b may be electrically connected by a wiring layer or the like.
  • the second electrode 12 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
  • the first electrode 11 and the second electrode 12 are in contact with each other on both sides of the first substrate 15 .
  • the first electrode 11 and the second electrode 12 on both sides of the first substrate 15 are electrically connected to each other through the first lead wiring 18a.
  • the power generation element 1 has an intermediate portion 14 formed between a first electrode 11 in contact with one first substrate 15 and a second electrode 12 in contact with the other first substrate 15 .
  • the first lead-out wiring 18 a penetrates, for example, the first substrate 15 and is electrically connected to the first electrode 11 and the second electrode 12 . Note that the first lead-out wiring 18 a may be provided on the side surface of the first substrate 15 .
  • the first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b which are electrically connected to each other, are connected via the first terminal 111 to at least one of the first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b.
  • Wiring 101 is electrically connected.
  • the second wiring 102 is electrically connected to the second electrode 12 of the first laminate 3a and the second electrode 12 of the second laminate 3b through the second terminal 112. be. Therefore, the first laminate 3a electrically connected in series and the second laminate 3b electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • ⁇ Element formation step S100> In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 in contact with the first substrate 15 are respectively formed to form elements, and a plurality of elements (for example, elements 1a and 1b) are stacked to form a second electrode. A first laminate 3a and a second laminate 3b in which a plurality of elements (for example, elements 1c and 1d) are laminated are laminated.
  • the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, and a laminate formation step S131.
  • the element formation step S100 may further include, for example, a wiring layer formation step S133.
  • step S100 for example, as shown in FIG. Form 1a. Similarly, an element 1c is formed.
  • ⁇ Laminate formation step S131> In the laminate forming step S131, for example, as shown in FIG. , 1b) to form a laminate 3 (first laminate 3a).
  • the laminate forming step S131 the intermediate portion 14 including the non-conductor layer 142 in the element 1b is formed on the first electrode 11 in contact with the first substrate 15, for example.
  • the second electrode 12 is formed on the non-conductor layer 142 in the element 1b.
  • the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
  • a plurality of elements for example, elements 1c and 1d
  • the lead-out wiring forming step S132, the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130 are repeatedly performed, so that the first laminated body A body 3a and a second laminate 3b are formed.
  • the first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b are electrically connected to form the first laminate 3a and the second laminate 3b. to stack.
  • a new first electrode 11 (the first electrode 11 of the element 1d) electrically connected to the first electrode 11 of the element 1b of the first laminate 3a is formed, and the element The element 1d may be formed by forming the intermediate portion 14 and the second electrode 12 on the first electrode 11 of the element 1d, and the element 1c may be formed on the element 1d.
  • 1 electrode 11 is electrically connected, and the first laminate 3a and the second laminate 3b are laminated. Therefore, the first laminate 3a electrically connected in series and the second laminate 3b electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved.
  • the first laminate 3a and the second laminate 3b are laminated. Therefore, space can be saved.
  • At least one of the pair of electrodes 11 and 12 includes an electrode protection film provided on the surface on the intermediate portion 14 side.
  • the electrode protection film includes at least one of a first electrode protection film 11a and a second electrode protection film 12a, as shown in FIG. 22, for example.
  • the first electrode protective film 11 a is provided on the surface of the first electrode 11 .
  • the second electrode protection film 12 a is provided on the surface of the second electrode 12 .
  • the electrode protection film is provided between the pair of electrodes 11 and 12 and the intermediate portion 14 .
  • the electrodes 11 and 12 having an electrode protective film on their surfaces are separated from the intermediate portion 14 via the electrode protective film.
  • the electrode protective film has a thickness of, for example, about 0.1 nm to 1 ⁇ m.
  • the thickness of the electrode protective film is preferably 0.1 nm to 500 nm, for example.
  • the thickness of the electrode protective film is less than 0.1 nm, it is difficult to form the electrode protective film.
  • the thickness of the electrode protective film exceeds 500 nm, it may become difficult to receive electrons between the fine particles 141 and the electrodes 11 and 12 . Therefore, if the thickness of the electrode protective film is 0.1 nm to 500 nm, the effect on the reception of electrons between the fine particles 141 and the electrodes 11 and 12 can be suppressed.
  • a non-conducting material is used as the electrode protective film.
  • non-conductive materials include known polymer compounds, such as polystyrene, AS resin, ABS resin, poly(acrylic acid), poly(acrylic acid ester), poly(methacrylic acid), poly(methacrylic acid ester), polyethylene. Examples include terephthalate, polyethylene naphthalate, polycarbonate, and copolymers thereof.
  • At least one of the pair of electrodes 11 and 12 includes an electrode protection film provided on the surface on the intermediate portion 14 side. Therefore, chemical changes such as oxidation of the electrodes 11 and 12 over time can be suppressed as compared with the case where no electrode protective film is provided on the surfaces of the electrodes 11 and 12 . This makes it possible to further stabilize the power generation amount.
  • the power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Some embodiments of the electronic device are described below.
  • 24(a) to 24(d) are schematic block diagrams showing an example of an electronic device 500 including the power generation element 1.
  • FIG. 24(e) to 24(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1.
  • FIG. 24(e) to 24(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1.
  • an electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502 and an auxiliary power supply 503 .
  • Each of the electronic device 500 and the electronic component 501 is an electrical device.
  • the electronic component 501 is driven using the main power supply 502 as a power supply.
  • Examples of the electronic component 501 include, for example, a CPU, motors, sensor terminals, lighting, and the like. If electronic component 501 is, for example, a CPU, electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). If the electronic components 501 include at least one of, for example, motors, sensor terminals, and lighting, the electronic device 500 includes electronic devices that can be controlled by an external master or person.
  • the main power supply 502 is, for example, a battery. Batteries also include rechargeable batteries. A plus terminal (+) of the main power supply 502 is electrically connected to a Vcc terminal (Vcc) of the electronic component 501 . A negative terminal ( ⁇ ) of the main power supply 502 is electrically connected to a GND terminal (GND) of the electronic component 501 .
  • Vcc Vcc terminal
  • GND GND terminal
  • the auxiliary power supply 503 is the power generation element 1.
  • the power generation element 1 includes at least one power generation element 1 described above.
  • the auxiliary power supply 503 is used, for example, together with the main power supply 502, and is used as a power supply for assisting the main power supply 502 or as a power supply for backing up the main power supply 502 when the capacity of the main power supply 502 runs out. be able to. If the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
  • the main power source 502 may be the power generating element 1.
  • An electronic device 500 shown in FIG. 24( b ) includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven using the power generation element 1 .
  • the power generation element 1 is an independent power supply (for example, an off-grid power supply). Therefore, the electronic device 500 can be, for example, an independent type (standalone type).
  • the power generating element 1 is of the energy harvesting type.
  • the electronic device 500 shown in FIG. 24(b) does not require battery replacement.
  • the electronic component 501 may include the power generating element 1 as shown in FIG. 24(c).
  • the anode of the power generation element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown).
  • the cathode of the power generation element 1 is electrically connected to, for example, Vcc wiring of a circuit board (not shown).
  • the power generating element 1 can be used as, for example, an auxiliary power source 503 for the electronic component 501 .
  • the power generation element 1 can be used as the main power source 502 of the electronic component 501, for example.
  • the electronic device 500 may include the power generator 100.
  • the power generation device 100 includes a power generation element 1 as a source of electrical energy.
  • the embodiment shown in FIG. 24(d) comprises a power generation element 1 in which an electronic component 501 is used as a main power supply 502.
  • the embodiment shown in FIG. 24(h) comprises a generator 100 in which an electronic component 501 is used as the main power source.
  • electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made self-supporting, for example. Free-standing electronic component 501 can be effectively used, for example, in an electronic device that includes multiple electronic components and in which at least one electronic component is separate from another electronic component.
  • An example of such electronics 500 is a sensor.
  • the sensor has a sensor terminal (slave) and a controller (master) remote from the sensor terminal.
  • Each of the sensor terminals and controller is an electronic component 501 .
  • a sensor terminal can also be regarded as one of the electronic devices 500 .
  • the sensor terminals considered electronic equipment 500 further include, for example, IoT wireless tags, etc., in addition to sensor terminals of sensors.
  • the electronic device 500 includes a power generation element 1 that converts thermal energy into electrical energy, and uses the power generation element 1 as a power source. and an electronic component 501 that can be driven.
  • the electronic device 500 may be an autonomous type with an independent power supply.
  • autonomous electronic devices include, for example, robots.
  • the electronic component 501 with the power generation element 1 or the power generation device 100 may be autonomous with an independent power supply.
  • autonomous electronic components include, for example, movable sensor terminals.
  • Reference Signs List 1 Power generating element 11 : First electrode 12 : Second electrode 14 : Intermediate portion 15 : First substrate 16 : Second substrate 17 : Sealing material 18 : Lead wire 18a : First lead wire 18b : Second lead wire 19 : Insulator 100 : Power generator 101 : First wiring 102 : Second wiring 140 : Space 141 : Fine particles 141a : Film 142 : Non-conductor layer 500 : Electronic device 501 : Electronic component 502 : Main power source 503 : Auxiliary power source G : Gap R: load S100: element forming step S110: first electrode forming step S120: intermediate portion forming step S130: second electrode forming step S131: laminate forming step S132: lead wire forming step S140: encapsulant forming step Z: second 1st direction X: 2nd direction Y: 3rd direction

Abstract

[Problem] To provide a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic apparatus with which it is possible to stabilize the amount of power generated. [Solution] A method for manufacturing a power generation element that does not require a temperature difference between electrodes during conversion of thermal energy into electric energy, the method comprising an element forming step for forming an element comprising a first electrode 11, an intermediate portion 14 including a non-conductor layer 142 incorporating fine particles 141, and a second electrode 12 having a work function different from that of the first electrode 11. The element forming step includes a stack forming step for forming a stack 3 by stacking layers of a plurality of elements, and a lead-out wire forming step for forming a first lead-out wire 18a and a second lead-out wire 18b that are electrically connected to at least one element.

Description

発電素子の製造方法、発電素子、発電装置、及び電子機器Method for manufacturing power generation element, power generation element, power generation device, and electronic device
 この発明は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法、発電素子、発電装置、及び電子機器に関する。 The present invention relates to a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic device that eliminate the need for a temperature difference between electrodes when converting thermal energy into electrical energy.
 近年、熱エネルギーを利用して電気エネルギーを生成する発電素子の開発が盛んに行われている。特に、電極間の温度差を不要とした発電素子に関し、例えば特許文献1に開示された発電素子等が提案されている。このような発電素子は、電極間に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。 In recent years, the development of power generation elements that generate electrical energy using thermal energy has been actively carried out. In particular, regarding a power generation element that does not require a temperature difference between electrodes, for example, a power generation element disclosed in Patent Document 1 has been proposed. Such a power generating element is expected to be used in various applications as compared with a configuration in which electric energy is generated by utilizing a temperature difference between electrodes.
 特許文献1には、フェムト秒パルスレーザーを用いて溶媒又は有機溶媒に分散されたナノ粒子を生成する生成工程と、第1基板に、第1電極部を形成する第1電極部形成工程と、第2基板に、第2電極部を形成する第2電極部形成工程と、前記第1電極部と前記第2電極部との間に前記溶媒又は前記有機溶媒を挟んだ状態で前記第1基板と前記第2基板とを接合する接合工程と、を備える発電素子の製造方法等が開示されている。 Patent Document 1 discloses a generation step of generating nanoparticles dispersed in a solvent or an organic solvent using a femtosecond pulse laser, a first electrode portion forming step of forming a first electrode portion on a first substrate, a second electrode portion forming step of forming a second electrode portion on a second substrate; and the first substrate with the solvent or the organic solvent sandwiched between the first electrode portion and the second electrode portion. and a bonding step of bonding the second substrate and the like.
特許第6781437号公報Japanese Patent No. 6781437
 ここで、特許文献1に開示された発電素子のように、ナノ粒子を分散させた溶媒を電極間に設けた場合、経時に伴いナノ粒子が一方の電極側に偏在する恐れがある。このため、電極間における電子の移動量が減少し、安定した発電量を得られない懸念が挙げられる。 Here, when a solvent in which nanoparticles are dispersed is provided between electrodes as in the power generation element disclosed in Patent Document 1, the nanoparticles may be unevenly distributed on one electrode side over time. For this reason, there is a concern that the amount of electron transfer between the electrodes is reduced, and a stable amount of power generation cannot be obtained.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、発電量の安定化を図ることができる発電素子の製造方法、発電素子、発電装置、及び電子機器を提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and its object is to provide a method for manufacturing a power generation element, a power generation element, a power generation device, and a power generation device capable of stabilizing the amount of power generation. It is to provide an electronic device.
 第1発明に係る発電素子の製造方法は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法であって、第1電極、微粒子を内包する不導体層を含む中間部、及び、前記第1電極とは異なる仕事関数を有する第2電極を備える素子を形成する素子形成工程を備え、前記素子形成工程は、複数の前記素子を積層して積層体を形成する積層体形成工程と、少なくとも1つの前記素子に電気的に接続される第1引き出し配線及び第2引き出し配線を形成する引き出し配線形成工程と、を備えることを特徴とする。 A method for manufacturing a power generation element according to a first aspect of the invention is a method for manufacturing a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, and comprises: a first electrode; An element forming step of forming an element having an intermediate portion including a layer and a second electrode having a work function different from that of the first electrode, wherein the element forming step includes laminating a plurality of the elements to form a laminate and a lead wire forming step of forming a first lead wire and a second lead wire electrically connected to at least one element.
 第2発明に係る発電素子の製造方法は、第1発明において、前記引き出し配線形成工程は、複数の前記第1電極に電気的に接続される前記第1引き出し配線を形成し、複数の前記第2電極に電気的に接続される前記第2引き出し配線を形成することを特徴とする。 A method for manufacturing a power generation element according to a second aspect of the invention is characterized in that, in the first aspect of the invention, the lead wire forming step includes forming the first lead wires electrically connected to the plurality of first electrodes, The second lead wiring electrically connected to the two electrodes is formed.
 第3発明に係る発電素子の製造方法は、第1発明において、前記引き出し配線形成工程は、1つの第1電極のみに電気的に接続される前記第1引き出し配線を形成し、1つの前記第2電極のみに電気的に接続される前記第2引き出し配線を形成することを特徴とする。 A method for manufacturing a power generation element according to a third aspect of the invention is the first aspect of the invention, wherein the lead wire forming step forms the first lead wire electrically connected to only one first electrode, It is characterized in that the second lead-out wiring electrically connected to only two electrodes is formed.
 第4発明に係る発電素子の製造方法は、第1発明~第3発明の何れかにおいて、前記引き出し配線形成工程は、前記第1引き出し配線及び前記第2引き出し配線を、前記積層体の側面に沿って延在させることを含み、前記第1引き出し配線は、前記積層体の側面に露出した前記第1電極及び前記第2電極の何れかに電気的に接続されることを特徴とする。 A method for manufacturing a power generation element according to a fourth aspect of the invention is the method according to any one of the first to third aspects of the invention, wherein the lead wire forming step includes forming the first lead wire and the second lead wire on the side surface of the laminate. The first extraction wiring is electrically connected to either the first electrode or the second electrode exposed on the side surface of the laminate.
 第5発明に係る発電素子の製造方法は、第1発明において、前記積層体形成工程は、複数の前記素子を積層した第1積層体の前記第1電極と、複数の前記素子を積層した第2積層体の前記第1電極とが電気的に接続されるように、前記第1積層体と前記第2積層体とを積層することを特徴とする。  A method for manufacturing a power generation element according to a fifth aspect of the invention is characterized in that, in the first aspect, the laminate forming step comprises: the first electrode of a first laminate obtained by laminating a plurality of the elements; The first laminate and the second laminate are laminated such that the first electrodes of the two laminates are electrically connected. 
 第6発明に係る発電素子は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子であって、それぞれ積層された複数の素子を含む積層体と、少なくとも1つの前記素子と電気的に接続された第1引き出し配線及び第2引き出し配線と、を備え、前記素子は、第1電極と、前記第1電極の上に設けられ、微粒子を内包する不導体層を含む中間部と、前記中間部の上に設けられ、前記第1電極とは異なる仕事関数を有する第2電極と、を含むことを特徴とする。 A power generation element according to a sixth aspect of the present invention is a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, and comprises a laminate including a plurality of laminated elements, and at least one a first lead wire and a second lead wire electrically connected to the element, the element including a first electrode and a non-conductor layer provided on the first electrode and containing fine particles; and a second electrode provided on the intermediate portion and having a work function different from that of the first electrode.
 第7発明に係る発電素子は、第6発明において、前記第1引き出し配線は、複数の前記第1電極と電気的に接続され、前記第2引き出し配線は、複数の前記第2電極と電気的に接続されることを特徴とする。 A power generation element according to a seventh aspect is the power generating element according to the sixth aspect, wherein the first lead-out wiring is electrically connected to the plurality of first electrodes, and the second lead-out wiring is electrically connected to the plurality of second electrodes. characterized by being connected to
 第8発明に係る発電素子は、第6発明において、前記第1引き出し配線は、1つの前記第1電極のみと電気的に接続され、前記第2引き出し配線は、1つの前記第2電極のみと電気的に接続されることを特徴とする。 A power generation element according to an eighth invention is the power generation element according to the sixth invention, wherein the first lead wire is electrically connected to only one of the first electrodes, and the second lead wire is electrically connected to only one of the second electrodes. It is characterized by being electrically connected.
 第9発明に係る発電素子は、第6発明~第8発明の何れかにおいて、前記第1引き出し配線及び前記第2引き出し配線は、前記積層体の側面に沿って延在し、前記第1引き出し配線は、前記積層体の側面に露出した前記第1電極及び前記第2電極の何れかに電気的に接続されることを特徴とする。 A power generation element according to a ninth aspect is the power generation element according to any one of the sixth to eighth aspects, wherein the first lead wire and the second lead wire extend along the side surface of the laminate, and the first lead wire extends along the side surface of the laminate. A wiring is electrically connected to one of the first electrode and the second electrode exposed on the side surface of the laminate.
 第10発明に係る発電素子は、第6発明~第8発明の何れかにおいて、前記不導体層は、前記第1電極及び前記第2電極を支持することを特徴とする。 A power generation element according to a tenth invention is characterized in that, in any one of the sixth to eighth inventions, the non-conductor layer supports the first electrode and the second electrode.
 第11発明に係る発電素子は、第6発明において、複数の前記素子を積層した第1積層体と、前記第1積層体に積層されるとともに複数の前記素子を積層した第2積層体とを備え、前記第1積層体の前記第1電極と前記第2積層体の前記第1電極とが電気的に接続されることを特徴とする。 A power generation element according to an eleventh aspect of the present invention is the power generation element according to the sixth aspect, comprising: a first laminate in which a plurality of the elements are laminated; and a second laminate in which the plurality of elements are laminated while being laminated on the first laminate. The first electrode of the first laminate and the first electrode of the second laminate are electrically connected.
 第12発明に係る発電装置は、第6発明における発電素子と、前記第1引き出し配線と電気的に接続された第1配線と、前記第2引き出し配線と電気的に接続された第2配線と、を備えることを特徴とする。 A power generating device according to a twelfth aspect of the invention includes the power generating element according to the sixth aspect of the invention, a first wiring electrically connected to the first lead wiring, and a second wiring electrically connected to the second lead wiring. , is provided.
 第13発明に係る電子機器は、第6発明における発電素子と、前記発電素子を電源に用いて駆動する電子部品とを備えることを特徴とする。 An electronic device according to a thirteenth invention is characterized by comprising the power generation element according to the sixth invention and an electronic component driven by using the power generation element as a power supply.
 第1発明~第5発明によれば、素子形成工程は、微粒子を内包する不導体層を含む中間部を備える素子を形成する。即ち、不導体層により、電極間における微粒子の移動が抑制される。このため、経時に伴い微粒子が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 According to the first to fifth inventions, the element forming step forms an element having an intermediate portion including a non-conductor layer containing fine particles. That is, the non-conductor layer suppresses movement of the fine particles between the electrodes. For this reason, it is possible to prevent the fine particles from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 特に、第2発明によれば、引き出し配線形成工程は、複数の第1電極に電気的に接続される第1引き出し配線を形成し、複数の第2電極に電気的に接続される第2引き出し配線を形成する。このため、発電素子は、並列型の発電素子となる。これにより、直列型の発電素子の場合と比べて、高電流化を図ることができる。 In particular, according to the second aspect of the invention, the lead wire forming step includes forming the first lead wires electrically connected to the plurality of first electrodes and forming the second lead wires electrically connected to the plurality of second electrodes. Form wiring. Therefore, the power generating element becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
 特に第3発明によれば、引き出し配線形成工程は、1つの第1電極に電気的に接続される第1引き出し配線を形成し、1つの第2電極に電気的に接続される第2引き出し配線を形成する。このため、発電素子は、直列型の発電素子となる。これにより、並列型の発電素子の場合と比べて、高電圧化を図ることができる。 In particular, according to the third aspect of the invention, the lead wire forming step includes forming a first lead wire electrically connected to one first electrode and forming a second lead wire electrically connected to one second electrode. to form Therefore, the power generation element becomes a series type power generation element. As a result, it is possible to achieve a higher voltage than in the case of parallel-type power generating elements.
 特に第4発明によれば、引き出し配線形成工程は、第1引き出し配線及び第2引き出し配線を、積層体の側面に沿って延在させることを含む。また、第1引き出し配線は、積層体の側面に露出した第1電極及び第2電極の何れかに電気的に接続される。即ち、第1引き出し配線は、発電素子の内部側に設けることなく、第1電極及び第2電極の何れかに接続することができる。これにより、製造工程の簡略化が可能となる。 In particular, according to the fourth aspect of the invention, the lead wire forming step includes extending the first lead wire and the second lead wire along the side surface of the laminate. Also, the first lead wiring is electrically connected to either the first electrode or the second electrode exposed on the side surface of the laminate. That is, the first lead wiring can be connected to either the first electrode or the second electrode without being provided inside the power generating element. This enables simplification of the manufacturing process.
 特に第5発明によれば、積層体形成工程は、複数の素子を積層した第1積層体の第1電極と、複数の素子を積層した第2積層体の第1電極とが電気的に接続されるように、第1積層体と第2積層体とを積層する。このため、電気的に直列型に接続された第1積層体と、電気的に直列型の第2積層体とを、電気的に並列型に接続することができる。これにより、更なる高電流化を図ることができる。 In particular, according to the fifth invention, in the laminate forming step, the first electrode of the first laminate in which the plurality of elements are laminated and the first electrode of the second laminate in which the plurality of elements are laminated are electrically connected. The first laminate and the second laminate are laminated such that Therefore, the first stacked body electrically connected in series and the second stacked body electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved.
 第6発明~第10発明によれば、中間部は、微粒子を内包する不導体層を含む。即ち、不導体層により、電極間における微粒子の移動が抑制される。このため、経時に伴い微粒子が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 According to the sixth to tenth inventions, the intermediate portion includes a non-conductor layer containing fine particles. That is, the non-conductor layer suppresses movement of the fine particles between the electrodes. For this reason, it is possible to prevent the fine particles from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 特に、第7発明によれば、第1引き出し配線は、複数の第1電極と電気的に接続され、第2引き出し配線は、複数の第2電極と電気的に接続される。このため、発電素子は、並列型の発電素子となる。これにより、直列型の発電素子の場合と比べて、高電流化を図ることができる。 Particularly, according to the seventh invention, the first lead-out wiring is electrically connected to the plurality of first electrodes, and the second lead-out wiring is electrically connected to the plurality of second electrodes. Therefore, the power generating element becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
 特に第8発明によれば、第1引き出し配線は、1つの前記第1電極のみと電気的に接続され、第2引き出し配線は、1つの前記第2電極のみと電気的に接続される。このため、発電素子は、直列型の発電素子となる。これにより、並列型の発電素子の場合と比べて、高電圧化を図ることができる。 Especially according to the eighth invention, the first lead wire is electrically connected to only one of the first electrodes, and the second lead wire is electrically connected to only one of the second electrodes. Therefore, the power generation element becomes a series type power generation element. As a result, it is possible to achieve a higher voltage than in the case of parallel-type power generating elements.
 特に、第9発明によれば、第1引き出し配線及び第2引き出し配線は、積層体の側面に沿って延在し、第1引き出し配線は、積層体の側面に露出した第1電極及び第2電極の何れかに電気的に接続される。即ち、第1引き出し配線は、発電素子の内部側に設けられないため、第1引き出し配線の劣化に伴う修理を容易に実施することができる。これにより、発電素子における利用可能期間の長期化を図ることが可能となる。 In particular, according to the ninth invention, the first lead wire and the second lead wire extend along the side surface of the laminate, and the first lead wire includes the first electrode and the second electrode exposed on the side surface of the laminate. electrically connected to any of the electrodes. That is, since the first lead-out wiring is not provided inside the power generation element, it is possible to easily perform repairs associated with deterioration of the first lead-out wiring. This makes it possible to extend the usable period of the power generating element.
 特に、第10発明によれば、不導体層は、第1電極及び第2電極を支持する。このため、不導体層の代わりに溶媒等を用いた場合に比べて、電極間の距離(ギャップ)を維持するための支持部等を設ける必要がなく、支持部の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量のバラつきを抑制することが可能となる。 In particular, according to the tenth invention, the nonconductor layer supports the first electrode and the second electrode. Therefore, compared to the case where a solvent or the like is used instead of the non-conductive layer, there is no need to provide a support portion or the like for maintaining the distance (gap) between the electrodes, and the gap resulting from the formation accuracy of the support portion is eliminated. Distortion can be removed. This makes it possible to suppress variations in the amount of power generation.
 特に、第11発明によれば、複数の素子を積層した第1積層体と、第1積層体に積層されるとともに複数の素子を積層した第2積層体とを備え、第1積層体の第1電極と第2積層体の第1電極とが電気的に接続される。このため、電気的に直列型に接続された第1積層体と、電気的に直列型の第2積層体とを、電気的に並列型に接続することができる。これにより、更なる高電流化を図ることができる。  In particular, according to the eleventh aspect, the first laminated body in which a plurality of elements are laminated, and the second laminated body laminated on the first laminated body and in which a plurality of elements are laminated, The one electrode and the first electrode of the second laminate are electrically connected. Therefore, the first stacked body electrically connected in series and the second stacked body electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved. 
 特に、第12発明によれば、発電装置は、第6発明における発電素子を備える。このため、発電量の安定化を図る発電装置の実現が可能となる。 In particular, according to the twelfth invention, the power generator includes the power generation element according to the sixth invention. Therefore, it is possible to realize a power generation device that stabilizes the power generation amount.
 特に、第13発明によれば、電子機器は、第6発明における発電素子を備える。このため、発電量の安定化を図る電子機器の実現が可能となる。 In particular, according to the thirteenth invention, an electronic device includes the power generation element according to the sixth invention. Therefore, it is possible to realize an electronic device that stabilizes the amount of power generation.
図1(a)は、第1実施形態における発電素子、及び発電装置の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式断面図である。FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment, and FIG. 1(b) is a schematic cross-sectional view along AA in FIG. 1(a). is. 図2は、中間部の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion. 図3は、第1実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 3 is a flow chart showing an example of a method for manufacturing a power generation element according to the first embodiment. 図4(a)~図4(d)は、第1実施形態における発電素子の製造方法の一例を示す模式断面図である。4(a) to 4(d) are schematic cross-sectional views showing an example of the method for manufacturing the power generation element according to the first embodiment. 図5(a)は、第1実施形態における発電素子、及び発電装置の第1変形例を示す模式断面図であり、図5(b)は、第1実施形態における発電素子、及び発電装置の第2変形例を示す模式断面図である。FIG. 5A is a schematic cross-sectional view showing a first modification of the power generation element and the power generation device in the first embodiment, and FIG. 5B is a schematic cross-sectional view of the power generation element and the power generation device in the first embodiment. It is a schematic cross section which shows a 2nd modification. 図6(a)は、第2実施形態における発電素子、及び発電装置の第1例を示す模式断面図であり、図6(b)は、第2実施形態における発電素子、及び発電装置の第2例を示す模式断面図であり、図6(c)は、第2実施形態における発電素子、及び発電装置の第3例を示す模式断面図である。FIG. 6A is a schematic cross-sectional view showing a first example of the power generation element and the power generation device according to the second embodiment, and FIG. FIG. 6C is a schematic cross-sectional view showing two examples, and FIG. 6C is a schematic cross-sectional view showing a third example of the power generation element and the power generation device in the second embodiment. 図7は、第2実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 7 is a flow chart showing an example of a method for manufacturing a power generation element according to the second embodiment. 図8(a)~図8(d)は、第2実施形態における発電素子の製造方法の一例を示す模式断面図である。8(a) to 8(d) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the second embodiment. 図9は、第3実施形態における発電素子、及び発電装置の一例を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the third embodiment. 図10は、第3実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 10 is a flow chart showing an example of a method for manufacturing a power generation element according to the third embodiment. 図11(a)~図11(f)は、第3実施形態における発電素子の製造方法の一例を示す模式断面図である。11(a) to 11(f) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the third embodiment. 図12(a)~図12(c)は、第3実施形態における発電素子の製造方法の一例を示す模式断面図である。12(a) to 12(c) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the third embodiment. 図13(a)は、第4実施形態における発電素子、及び発電装置の第1例を示す模式断面図であり、図13(b)は、第4実施形態における発電素子、及び発電装置の第2例を示す模式断面図である。FIG. 13A is a schematic cross-sectional view showing a first example of the power generation element and the power generation device according to the fourth embodiment, and FIG. It is a schematic cross section showing two examples. 図14は、第4実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 14 is a flow chart showing an example of a method for manufacturing a power generation element according to the fourth embodiment. 図15(a)~図15(b)は、第4実施形態における発電素子の製造方法の一例を示す模式断面図である。15(a) and 15(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the fourth embodiment. 図16(a)~図16(b)は、第4実施形態における発電素子の製造方法の一例を示す模式断面図である。16(a) and 16(b) are schematic cross-sectional views showing an example of the method for manufacturing the power generating element according to the fourth embodiment. 図17は、第5実施形態における発電素子、及び発電装置の一例を示す模式断面図である。FIG. 17 is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the fifth embodiment. 図18(a)~図18(d)は、第5実施形態における発電素子の製造方法の一例を示す模式断面図である。18(a) to 18(d) are schematic cross-sectional views showing an example of a method for manufacturing a power generating element according to the fifth embodiment. 図19(a)~図19(b)は、第5実施形態における発電素子の製造方法の一例を示す模式断面図である。19(a) and 19(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the fifth embodiment. 図20は、第6実施形態における発電素子、及び発電装置の一例を示す模式断面図である。FIG. 20 is a schematic cross-sectional view showing an example of a power generation element and a power generation device according to the sixth embodiment. 図21(a)~図21(b)は、第6実施形態における発電素子の製造方法の一例を示す模式断面図である。21(a) and 21(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the sixth embodiment. 図22は、第7実施形態における発電素子を示す模式断面図である。FIG. 22 is a schematic cross-sectional view showing a power generation element according to the seventh embodiment. 図23は、第8実施形態における発電素子を示す模式断面図である。FIG. 23 is a schematic cross-sectional view showing a power generation element according to the eighth embodiment. 図24(a)~図24(d)は、発電素子を備えた電子機器の例を示す模式ブロック図であり、図24(e)~図24(h)は、発電素子を含む発電装置を備えた電子機器の例を示す模式ブロック図である。FIGS. 24(a) to 24(d) are schematic block diagrams showing examples of electronic devices having power generation elements, and FIGS. 24(e) to 24(h) show power generation devices including power generation elements. It is a schematic block diagram which shows the example of the electronic device provided.
 以下、本発明の実施形態としての発電素子の製造方法、発電素子、発電装置、及び電子機器の一例について、図面を参照しながら説明する。なお、各図において、各電極が積層される高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図における構成は、説明のため模式的に記載されており、例えば各構成の大きさや、構成毎における大きさの対比等については、図とは異なってもよい。 Hereinafter, examples of a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic device as embodiments of the present invention will be described with reference to the drawings. In each figure, the height direction in which each electrode is stacked is defined as a first direction Z, and one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X. A third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X. As shown in FIG. Also, the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
(第1実施形態:発電素子1、発電装置100)
 図1は、第1実施形態における発電素子1、及び発電装置100の一例を示す模式図である。図1(a)は、第1実施形態における発電素子1、及び発電装置100の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式断面図である。
(First Embodiment: Power Generation Element 1, Power Generation Device 100)
FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in the first embodiment. FIG. 1(a) is a schematic cross-sectional view showing an example of the power generation element 1 and the power generation device 100 in the first embodiment, and FIG. 1(b) is a schematic diagram along AA in FIG. 1(a). It is a sectional view.
(発電装置100)
 図1(a)に示すように、発電装置100は、発電素子1と、第1配線101と、第2配線102とを備える。発電素子1は、熱エネルギーを電気エネルギーに変換する。このような発電素子1を備えた発電装置100は、例えば、図示せぬ熱源に搭載又は設置され、熱源の熱エネルギーを元として、発電素子1から発生した電気エネルギーを、第1配線101及び第2配線102を介して負荷Rへ出力する。負荷Rの一端は第1配線101と電気的に接続され、他端は第2配線102と電気的に接続される。負荷Rは、例えば電気的な機器を示す。負荷Rは、例えば発電装置100を主電源又は補助電源に用いて駆動される。
(Power generator 100)
As shown in FIG. 1( a ), the power generation device 100 includes a power generation element 1 , first wiring 101 and second wiring 102 . The power generation element 1 converts thermal energy into electrical energy. For example, the power generation device 100 including such a power generation element 1 is mounted or installed on a heat source (not shown), and based on the thermal energy of the heat source, the electrical energy generated from the power generation element 1 is transferred to the first wiring 101 and the second wiring 101. 2 output to the load R via the wiring 102 . One end of the load R is electrically connected to the first wiring 101 and the other end is electrically connected to the second wiring 102 . A load R indicates, for example, an electrical device. The load R is driven, for example, using the generator 100 as a main power source or an auxiliary power source.
 発電素子1の熱源としては、例えば、CPU(Central Processing Unit)等の電子デバイス又は電子部品、LED(Light Emitting Diode)等の発光素子、自動車等のエンジン、工場の生産設備、人体、太陽光、及び環境温度等が挙げられる。例えば、電子デバイス、電子部品、発光素子、エンジン、及び生産設備等は、人工熱源である。人体、太陽光、及び環境温度等は自然熱源である。発電素子1を備えた発電装置100は、例えばIoT(Internet of Things)デバイス及びウェアラブル機器等のモバイル機器や自立型センサ端末の内部に設けることができ、電池の代替又は補助として用いることができる。さらに、発電装置100は、太陽光発電等のような、より大型の発電装置への応用も可能である。 Examples of heat sources for the power generation element 1 include electronic devices or electronic parts such as CPUs (Central Processing Units), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, production equipment in factories, human bodies, sunlight, and environmental temperature. For example, electronic devices, electronic parts, light-emitting elements, engines, production equipment, etc. are artificial heat sources. The human body, sunlight, ambient temperature, etc. are natural heat sources. The power generation device 100 including the power generation element 1 can be provided inside mobile devices such as IoT (Internet of Things) devices and wearable devices and self-supporting sensor terminals, and can be used as an alternative or supplement to batteries. Furthermore, the power generation device 100 can also be applied to larger power generation devices such as solar power generation.
(発電素子1)
 発電素子1は、例えば、上記人工熱源が発した熱エネルギー、又は上記自然熱源が持つ熱エネルギーを電気エネルギーに変換し、電流を生成する。発電素子1は、発電装置100内に設けるだけでなく、発電素子1自体を、上記モバイル機器や上記自立型センサ端末等の内部に設けることもできる。この場合、発電素子1自体が、上記モバイル機器又は上記自立型センサ端末等の、電池の代替部品又は補助部品となり得る。
(Power generation element 1)
The power generation element 1 converts, for example, thermal energy generated by the artificial heat source or thermal energy possessed by the natural heat source into electrical energy to generate current. The power generation element 1 can be provided not only inside the power generation device 100, but also inside the mobile device, the self-contained sensor terminal, or the like. In this case, the power generation element 1 itself can serve as an alternative or auxiliary part of the battery, such as the mobile device or the self-contained sensor terminal.
 発電素子1は、例えば図1(a)に示すように、第1電極11と、第2電極12と、中間部14とを備える。発電素子1は、例えば第1基板15、及び第2基板16の少なくとも何れかを備えてもよい。 The power generation element 1 includes, for example, a first electrode 11, a second electrode 12, and an intermediate portion 14, as shown in FIG. 1(a). The power generation element 1 may include at least one of the first substrate 15 and the second substrate 16, for example.
 第1電極11及び第2電極12は、互いに対向して設けられる。第1電極11及び第2電極12は、それぞれ異なる仕事関数を有する。中間部14は、例えば図2に示すように、第1電極11と、第2電極12との間(ギャップG)を含む空間140に設けられる。 The first electrode 11 and the second electrode 12 are provided facing each other. The first electrode 11 and the second electrode 12 have different work functions. The intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 2, for example.
 中間部14は、例えば微粒子141と、不導体層142とを含む。不導体層142は、微粒子141を内包する。この場合、不導体層142により、ギャップGにおける微粒子141の移動が抑制される。このため、経時に伴い微粒子141が一方の電極11、12側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 The intermediate portion 14 includes, for example, fine particles 141 and a non-conductor layer 142 . The non-conductor layer 142 contains the fine particles 141 . In this case, movement of the particles 141 in the gap G is suppressed by the non-conductor layer 142 . Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the side of one of the electrodes 11 and 12 over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 不導体層142は、例えば不導体材料を硬化させて形成される。不導体層142は、例えば固体を示す。不導体層142は、例えば希釈剤の残渣や、不導体材料の未硬化部を含んでもよい。また、微粒子141は、例えば不導体層142に分散された状態で固定される。この場合においても、上記と同様に、発電量の安定化を図ることが可能となる。 The non-conductor layer 142 is formed, for example, by curing a non-conductor material. The non-conductor layer 142 exhibits a solid, for example. The non-conducting layer 142 may include, for example, diluent residue and uncured portions of the non-conducting material. Also, the fine particles 141 are fixed in a dispersed state in the non-conductor layer 142, for example. In this case as well, it is possible to stabilize the power generation amount in the same manner as described above.
 中間部14は、第1電極11の上に設けられる。また、第2電極12は、不導体層142の上に設けられる。即ち、不導体層142は、第1電極11及び第2電極12を支持する。ここで、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子1では、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきを抑制することで、発電量の増加を図ることができる。この点、中間部として溶媒等の液体を用いる場合、ギャップGを維持するための支持部等を設ける必要がある。しかしながら、支持部等の形成に伴い、上記ギャップGのバラつきを大きくし得ることが懸念されていた。これに対し、本実施形態における発電素子1では、不導体層142は、第1電極11及び第2電極12を支持するため、ギャップGを維持するための支持部等を設ける必要がなく、支持部等の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。 The intermediate portion 14 is provided on the first electrode 11 . Also, the second electrode 12 is provided on the non-conductor layer 142 . That is, the non-conductor layer 142 supports the first electrode 11 and the second electrode 12 . Here, in the power generation element 1 that does not require a temperature difference between the electrodes when converting thermal energy into electrical energy, by suppressing variations in the gap G on the surfaces along the second direction X and the third direction Y, , the amount of power generation can be increased. In this regard, when a liquid such as a solvent is used as the intermediate portion, it is necessary to provide a support portion or the like for maintaining the gap G. However, there has been a concern that the gap G may vary greatly with the formation of the supporting portion and the like. On the other hand, in the power generation element 1 of the present embodiment, the non-conductor layer 142 supports the first electrode 11 and the second electrode 12, so there is no need to provide a support portion or the like for maintaining the gap G, and the non-conductor layer 142 supports the first electrode 11 and the second electrode 12. It is possible to eliminate variations in the gap due to the accuracy of forming the parts. This makes it possible to increase the amount of power generation.
 また、ギャップを維持するための支持部等を設ける場合、支持部に微粒子141が接触し、支持部周辺に凝集する懸念が挙げられる。これに対し、本実施形態における発電素子1では、支持部に起因して微粒子141が凝集する状態を排除することができる。これにより、安定した発電量を維持することが可能となる。 Also, when providing a support or the like for maintaining the gap, there is a concern that the fine particles 141 may come into contact with the support and aggregate around the support. On the other hand, in the power generating element 1 of the present embodiment, it is possible to eliminate the state in which the fine particles 141 aggregate due to the supporting portion. This makes it possible to maintain a stable power generation amount.
 以下、各構成についての詳細を説明する。 The details of each configuration are described below.
 <第1電極11、第2電極12>
 第1電極11及び第2電極12は、例えば図1(a)に示すように、第1方向Zに離間する。各電極11、12は、例えば第2方向X及び第3方向Yに延在し、複数設けられてもよい。例えば1つの第2電極12は、複数の第1電極11とそれぞれ異なる位置で対向して設けられてもよい。また、例えば1つの第1電極11は、複数の第2電極12とそれぞれ異なる位置で対向して設けられてもよい。
<First Electrode 11, Second Electrode 12>
The first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, as shown in FIG. 1(a), for example. Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality. For example, one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions. Also, for example, one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
 第1電極11及び第2電極12の材料として、導電性を有する材料が用いられる。第1電極11及び第2電極12の材料として、例えばそれぞれ異なる仕事関数を有する材料が用いられる。なお、各電極11、12に同一の材料を用いてもよく、この場合、それぞれ異なる仕事関数を有していればよい。 A conductive material is used as the material of the first electrode 11 and the second electrode 12 . As materials for the first electrode 11 and the second electrode 12, for example, materials having different work functions are used. The same material may be used for the electrodes 11 and 12, and in this case, the electrodes 11 and 12 may have different work functions.
 各電極11、12の材料として、例えば鉄、アルミニウム、銅等の単一元素からなる材料が用いられるほか、例えば2種類以上の元素からなる合金の材料が用いられてもよい。各電極11、12の材料として、例えば非金属導電物が用いられてもよい。非金属導電物の例としては、シリコン(Si:例えばp型Si、あるいはn型Si)、及びグラフェン等のカーボン系材料等を挙げることができる。 As the material of the electrodes 11 and 12, for example, a material composed of a single element such as iron, aluminum, or copper may be used, or an alloy material composed of, for example, two or more elements may be used. A non-metallic conductor, for example, may be used as the material of the electrodes 11 and 12 . Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
 第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上1μm以下である。第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上500nm以下でもよい。 The thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 μm or less. The thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 500 nm or less.
 第1電極11と、第2電極12との間の距離を示すギャップGは、不導体層142の厚さを変更することで任意に設定することができる。例えばギャップGを狭くすることで、各電極11、12の間に発生する電界を大きくすることができるため、発電素子1の発電量を増加させることができる。また、例えばギャップGを狭くすることで、発電素子1の第1方向Zに沿った厚さを薄くすることができる。 A gap G that indicates the distance between the first electrode 11 and the second electrode 12 can be arbitrarily set by changing the thickness of the non-conductor layer 142 . For example, by narrowing the gap G, the electric field generated between the electrodes 11 and 12 can be increased, so that the power generation amount of the power generation element 1 can be increased. Further, for example, by narrowing the gap G, the thickness of the power generation element 1 along the first direction Z can be reduced.
 ギャップGは、例えば500μm以下の有限値である。ギャップGは、例えば10nm以上1μm以下である。例えばギャップGが200nm以下の場合、第1電極11と第2電極12とが接触する可能性が高くなる。また、ギャップGが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、ギャップGは、200nmよりも大きく、1μm以下であることが好ましい。 The gap G is a finite value of 500 μm or less, for example. The gap G is, for example, 10 nm or more and 1 μm or less. For example, when the gap G is 200 nm or less, the possibility of contact between the first electrode 11 and the second electrode 12 increases. Also, if the gap G is larger than 1 μm, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the gap G is preferably larger than 200 nm and 1 μm or less.
 <中間部14>
 中間部14は、例えば図1(b)に示すように、第2方向X及び第3方向Yに沿った平面に延在する。中間部14は、各電極11、12の間に形成された空間140内に設けられる。中間部14は、各電極11、12の互いに対向する主面に接するほか、例えば各電極11、12の側面に接してもよい。
<Intermediate part 14>
The intermediate portion 14 extends on a plane along the second direction X and the third direction Y, as shown in FIG. 1B, for example. The intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 . The intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
 微粒子141は、不導体層142に分散され、例えば一部が不導体層142から露出してもよい。微粒子141は、例えばギャップG内に充填され、微粒子141の隙間に不導体層142が設けられてもよい。微粒子141の粒子径は、例えばギャップGよりも小さい。微粒子141の粒子径は、例えばギャップGの1/10以下の有限値とされる。微粒子141の粒子径を、ギャップGの1/10以下とすると、空間140内に微粒子141を含む中間部14を、形成しやすくなる。これにより、発電素子1を生成する際、作業性を向上させることが可能となる。 The fine particles 141 may be dispersed in the non-conductor layer 142 and partially exposed from the non-conductor layer 142, for example. The particles 141 may be filled in the gap G, for example, and the non-conductor layer 142 may be provided in the gaps between the particles 141 . The particle diameter of the fine particles 141 is smaller than the gap G, for example. The particle diameter of the fine particles 141 is set to a finite value of 1/10 or less of the gap G, for example. If the particle diameter of the fine particles 141 is set to 1/10 or less of the gap G, it becomes easier to form the intermediate portion 14 containing the fine particles 141 in the space 140 . This makes it possible to improve the workability when generating the power generation element 1 .
 ここで、「微粒子」とは、複数の粒子を含んだものを示す。微粒子141は、例えば2nm以上1000nm以下の粒子径を有する粒子を含む。微粒子141は、例えば、メディアン径(中央径:D50)が3nm以上20nm以下の粒子径を有する粒子を含んでもよいほか、例えば平均粒径が3nm以上20nm以下の粒子径を有する粒子を含んでもよい。メディアン径又は平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、動的光散乱法を用いた粒度分布計測器(例えばMalvern Panalytical 製ゼータサイザーUltra等)を用いればよい。 Here, "fine particles" refer to those containing multiple particles. The fine particles 141 include particles having a particle diameter of, for example, 2 nm or more and 1000 nm or less. The fine particles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 20 nm or less, or particles having an average particle diameter of 3 nm or more and 20 nm or less. . The median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer. As the particle size distribution measuring instrument, for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
 微粒子141は、例えば導電物を含み、用途に応じて任意の材料が用いられる。微粒子141は、1種類の材料を含むほか、用途に応じて複数の材料を含んでもよい。微粒子141の仕事関数の値は、例えば、第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間にあるほか、例えば第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間以外であってもよく、任意である。 The fine particles 141 include, for example, a conductive material, and any material is used depending on the application. The fine particles 141 may contain one type of material, or may contain a plurality of materials depending on the application. The work function value of the fine particles 141 is, for example, between the work function value of the first electrode 11 and the work function value of the second electrode 12. For example, the work function value of the first electrode 11 and It may be other than between the value of the work function of the second electrode 12 and is arbitrary.
 微粒子141は、例えば金属を含む。微粒子141として、例えば金、銀等の1種類の材料を含有する粒子のほか、例えば2種類以上の材料を含有した合金の粒子が用いられてもよい。 The fine particles 141 contain, for example, metal. As the fine particles 141, for example, in addition to particles containing one kind of material such as gold or silver, particles of an alloy containing two or more kinds of materials may be used.
 微粒子141は、例えば金属酸化物を含む。金属酸化物を含む微粒子141として、例えばジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe、Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、イットリア(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、セリア(CeO)、酸化アンチモン(Sb、Sb)などの、金属及びSiからなる群より選ばれる少なくとも何れか1つの元素の金属酸化物が用いられる。微粒子141は、例えば誘電体を含んでもよい。 Fine particles 141 contain, for example, a metal oxide. Examples of fine particles 141 containing metal oxides include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ), Copper oxide (CuO ) , zinc oxide (ZnO), yttria ( Y2O3 ), niobium oxide ( Nb2O5 ) , molybdenum oxide ( MoO3 ), indium oxide ( In2O3 ), tin oxide ( SnO2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), ceria (CeO 2 ), antimony oxide (Sb 2 O 5 , Sb 2 O 3 ), a metal oxide of at least one element selected from the group consisting of metals and Si is used. Particulate 141 may include, for example, a dielectric.
 微粒子141は、例えば磁性体を除く金属酸化物を含んでもよい。例えば微粒子141が、磁性体を示す金属酸化物を含む場合、発電素子1の設置された環境に起因して発生する磁場により、微粒子141の移動が制限され得る。このため、微粒子141は、磁性体を除く金属酸化物を含むことで、外部環境に起因する磁場の影響を受けずに、経時に伴う発電量の低下を抑制することが可能となる。 The fine particles 141 may contain, for example, metal oxides other than magnetic substances. For example, if the fine particles 141 contain a metal oxide exhibiting a magnetic substance, the movement of the fine particles 141 may be restricted by the magnetic field generated due to the environment in which the power generating element 1 is installed. Therefore, by including a metal oxide other than a magnetic material, the fine particles 141 are not affected by the magnetic field caused by the external environment, and it is possible to suppress the decrease in the power generation amount over time.
 微粒子141は、例えば被膜141aを表面に含む。被膜141aの厚さは、例えば20nm以下の有限値である。このような被膜141aを微粒子141の表面に設けることで、例えば不導体層142に分散させる際の凝集を抑制することができる。また、このような被膜141aを微粒子141の表面に設けることで、微粒子141が第1電極11及び第2電極12の少なくとも何れかに直接接触するのを防止することが可能となる。 The microparticles 141 include, for example, a coating 141a on the surface. The thickness of the coating 141a is, for example, a finite value of 20 nm or less. By providing such a film 141 a on the surface of the fine particles 141 , it is possible to suppress aggregation when dispersed in the non-conductor layer 142 , for example. In addition, by providing such coating 141 a on the surface of the fine particles 141 , it is possible to prevent the fine particles 141 from directly contacting at least one of the first electrode 11 and the second electrode 12 .
 被膜141aとして、例えばチオール基又はジスルフィド基を有する材料が用いられる。チオール基を有する材料として、例えばドデカンチオール等のアルカンチオールが用いられる。ジスルフィド基を有する材料として、例えばアルカンジスルフィド等が用いられる。 A material having, for example, a thiol group or a disulfide group is used as the coating 141a. Alkanethiol such as dodecanethiol is used as the material having a thiol group. As a material having a disulfide group, for example, an alkane disulfide or the like is used.
 不導体層142は、各電極11、12の間に設けられ、例えば各電極11、12に接する。不導体層142の厚さは、例えば500μm以下の有限値である。不導体層142の厚さは、上述したギャップGの値やバラつきに影響する。このため、例えば不導体層142の厚さが200nm以下の場合、第1電極11と第2電極12とが接触する可能性が高くなる。また、不導体層142の厚さが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、不導体層142の厚さは、200nmよりも大きく、1μm以下であることが好ましい。 The non-conductor layer 142 is provided between the electrodes 11 and 12 and is in contact with the electrodes 11 and 12, for example. The thickness of the non-conductor layer 142 is a finite value of 500 μm or less, for example. The thickness of the non-conductor layer 142 affects the value and variation of the gap G described above. Therefore, for example, when the thickness of the non-conductor layer 142 is 200 nm or less, the possibility of contact between the first electrode 11 and the second electrode 12 increases. Also, if the thickness of the non-conductor layer 142 is greater than 1 μm, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the thickness of the non-conductor layer 142 is preferably greater than 200 nm and equal to or less than 1 μm.
 不導体層142は、例えば1種類の材料を含むほか、用途に応じて複数の材料を含んでもよい。不導体層142として、例えばISO1043-1、又はJIS K 6899-1に記載の材料が用いられてもよい。不導体層142は、例えば異なる材料を含む複数の層を含み、各層を積層した構成を含んでもよい。不導体層142が複数の層を含む場合、例えば各層にはそれぞれ異なる材料を含む微粒子141が内包(例えば分散)されてもよい。 The non-conductor layer 142 may contain, for example, one type of material, or may contain a plurality of materials depending on the application. Materials described in ISO 1043-1 or JIS K 6899-1, for example, may be used as the non-conductor layer 142 . The non-conductor layer 142 may include a plurality of layers containing different materials, for example, and may include a structure in which each layer is laminated. When the non-conductor layer 142 includes a plurality of layers, for example, particles 141 containing different materials may be included (eg, dispersed) in each layer.
 不導体層142は、絶縁性を有する。不導体層142に用いられる材料は、微粒子141を分散した状態で固定できる絶縁性材料であれば、任意であるが、有機高分子化合物が好ましい。不導体層142が有機高分子化合物を含む場合、不導体層142をフレキシブルに形成できるため、湾曲や屈曲等の用途に応じた形状を有する発電素子1を形成することができる。 The non-conductor layer 142 has insulating properties. The material used for the non-conductor layer 142 is arbitrary as long as it is an insulating material that can fix the fine particles 141 in a dispersed state, but an organic polymer compound is preferable. When the non-conductor layer 142 contains an organic polymer compound, the non-conductor layer 142 can be formed flexibly, so that the power generating element 1 can be formed in a shape such as curved or bent according to the application.
 有機高分子化合物としては、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ラジカル重合系の光または熱硬化性樹脂、光カチオン重合系の光または熱硬化性樹脂、あるいはエポキシ樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ポリスチレン、ノボラック樹脂、ポリフッ化ビニリデンなどを用いることができる。 Examples of organic polymer compounds include polyimides, polyamides, polyesters, polycarbonates, poly(meth)acrylates, radically polymerizable photo- or thermosetting resins, photo-cationically polymerizable photo- or thermosetting resins, epoxy resins, and acrylonitrile components. can be used, such as copolymers containing
 なお、例えば不導体層142として、無機物質が用いられてもよい。無機物質として、例えばゼオライトや珪藻土等の多孔無機物質のほか、籠状分子等が挙げられる。 An inorganic substance may be used as the non-conductor layer 142, for example. Examples of inorganic substances include porous inorganic substances such as zeolite and diatomaceous earth, as well as cage-like molecules.
 <第1基板15、第2基板16>
 第1基板15及び第2基板16は、例えば図1(a)に示すように、各電極11、12及び中間部14を挟み、第1方向Zに離間して設けられる。第1基板15は、例えば第1電極11と接し、第2電極12と離間する。第1基板15は、第1電極11を固定する。第2基板16は、第2電極12と接し、第1電極11と離間する。第2基板16は、第2電極12を固定する。
<First Substrate 15, Second Substrate 16>
The first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, as shown in FIG. 1A, for example. The first substrate 15 is, for example, in contact with the first electrode 11 and separated from the second electrode 12 . The first substrate 15 fixes the first electrode 11 . The second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 . A second substrate 16 fixes the second electrode 12 .
 各基板15、16の第1方向Zに沿った厚さは、例えば10μm以上2mm以下である。各基板15、16の厚さは、任意に設定することができる。各基板15、16の形状は、例えば正方形や長方形の四角形のほか、円盤状等でもよく、用途に応じて任意に設定することができる。 The thickness of each of the substrates 15 and 16 along the first direction Z is, for example, 10 μm or more and 2 mm or less. The thickness of each substrate 15, 16 can be set arbitrarily. The shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
 各基板15、16として、例えば絶縁性を有する板状の部材を用いることができ、例えばシリコン、石英、パイレックス(登録商標)等の公知の部材を用いることができる。各基板15、16は、例えばフィルム状の部材が用いられてもよく、例えばPET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等の公知のフィルム状部材が用いられてもよい。 As the substrates 15 and 16, for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used. For each of the substrates 15 and 16, for example, a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
 各基板15、16として、例えば導電性を有する部材を用いることができ、例えば鉄、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。また、各基板15、16としては、例えばSi、GaN等の導電性を有する半導体の他、導電性高分子等の部材を用いてもよい。各基板15、16に導電性を有する部材を用いる場合、各電極11、12に接続するための配線が不要となる。 For the substrates 15 and 16, for example, a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper. As the substrates 15 and 16, for example, a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
 例えば、第1基板15が半導体の場合、第1電極11と接する縮退部を有してもよい。この場合、縮退部を有しない場合に比べて、第1電極11と第1基板15との間における接触抵抗を低減させることができる。また、第1基板15は、第1電極11と接する面とは異なる表面に、縮退部を有してもよい。この場合、第1基板15と電気的に接続される配線(例えば第1配線101)との接触抵抗を低減させることができる。 For example, if the first substrate 15 is a semiconductor, it may have a degenerate portion that contacts the first electrode 11 . In this case, the contact resistance between the first electrode 11 and the first substrate 15 can be reduced as compared with the case without the degenerate portion. Also, the first substrate 15 may have a recessed portion on a surface different from the surface in contact with the first electrode 11 . In this case, the contact resistance between the wiring (for example, the first wiring 101) electrically connected to the first substrate 15 can be reduced.
 例えば図1(a)に示す発電素子1を複数用いて積層する場合、第1基板15及び第2基板16として、半導体を用いてもよい。この場合、各発電素子1の積層に伴い接する各基板15、16の接触面に縮退部を設けることで、接触抵抗を低減させることができる。 For example, when stacking a plurality of power generation elements 1 shown in FIG. In this case, contact resistance can be reduced by providing contraction portions on the contact surfaces of the substrates 15 and 16 that are in contact with each other as the power generation elements 1 are stacked.
 上述した縮退部は、例えばn型のドーパントを高濃度に半導体にイオン注入することや、n型のドーパントを含むガラスなどの材料を半導体にコーティングし、コーティング後に熱処理を行うことによって生成される。 The above-mentioned degenerate portion is generated, for example, by ion-implanting an n-type dopant into a semiconductor at a high concentration, coating a semiconductor with a material such as glass containing an n-type dopant, and performing heat treatment after coating.
 なお、半導体の第1基板15にドープされる不純物として、n型であればP、As、Sb等、p型であればB、Ba、Al等の公知の不純物が挙げられる。また、縮退部の不純物の濃度は、例えば、1×1019イオン/cmであれば、電子を効率よく放出させることができる。 As impurities to be doped into the semiconductor first substrate 15, known impurities such as P, As, Sb, etc. for n-type, and B, Ba, Al, etc. for p-type are mentioned. Further, electrons can be efficiently emitted when the impurity concentration in the degenerate portion is, for example, 1×10 19 ions/cm 3 .
 例えば、第1基板15が半導体の場合、第1基板15の比抵抗値は、例えば1×10-6Ω・cm以上1×10Ω・cm以下であればよい。第1基板15の比抵抗値が1×10-6Ω・cmを下回ると、材料の選定が難しい。また、第1基板15の比抵抗値が1×10Ω・cmよりも大きいと、電流のロスが増大する懸念がある。 For example, when the first substrate 15 is a semiconductor, the specific resistance value of the first substrate 15 may be, for example, 1×10 −6 Ω·cm or more and 1×10 6 Ω·cm or less. If the resistivity value of the first substrate 15 is less than 1×10 −6 Ω·cm, it is difficult to select the material. Also, if the specific resistance value of the first substrate 15 is greater than 1×10 6 Ω·cm, there is a concern that current loss may increase.
 なお、上記では、第1基板15が半導体の場合について説明したが、第2基板16が半導体でもよい。この場合、上記と同様のため、説明を省略する。 In addition, although the case where the first substrate 15 is a semiconductor has been described above, the second substrate 16 may be a semiconductor. In this case, the description is omitted because it is the same as the above.
 なお、発電素子1は、例えば図5(a)に示すように第1基板15のみを備えるほか、第2基板16のみを備えてもよい。また、発電素子1は、例えば図5(b)に示すように、各基板15、16を備えずに、第1電極11、中間部14、及び第2電極12の順に複数積層された積層構造(例えば1a、1b、1c等)を示すほか、例えば各基板15、16の少なくとも何れかを備えた積層構造を示してもよい。 The power generation element 1 may include only the first substrate 15 as shown in FIG. 5(a), or may include only the second substrate 16, for example. Moreover, as shown in FIG. 5B, for example, the power generation element 1 has a laminated structure in which a plurality of the first electrode 11, the intermediate portion 14, and the second electrode 12 are laminated in this order without the respective substrates 15 and 16. (e.g. 1a, 1b, 1c, etc.), for example, a laminated structure comprising at least one of the substrates 15, 16 may be indicated.
 <発電素子1の動作例>
 例えば、熱エネルギーが発電素子1に与えられると、第1電極11と第2電極12との間に電流が発生し、熱エネルギーが電気エネルギーに変換される。第1電極11と第2電極12との間に発生する電流量は、熱エネルギーに依存する他、第2電極12の仕事関数と、第1電極11の仕事関数との差に依存する。
<Example of operation of power generation element 1>
For example, when thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends on thermal energy and also depends on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
 発生する電流量は、例えば第1電極11と第2電極12との仕事関数差を大きくすること、及びギャップGを小さくすることで、増やすことができる。例えば、発電素子1が発生させる電気エネルギーの量は、上記仕事関数差を大きくすること、及び上記ギャップGを小さくすること、の少なくとも何れか1つを考慮することで、増加させることができる。また、各電極11、12の間に、微粒子141を設けることで、各電極11、12の間を移動する電子の量を増大させることができ、電流量の増加に繋げることが可能となる。 The amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and by decreasing the gap G. For example, the amount of electrical energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and decreasing the gap G. Further, by providing the fine particles 141 between the electrodes 11 and 12, the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current.
 なお、「仕事関数」とは、固体内にある電子を真空中に取出すために必要な最小限のエネルギーを示す。仕事関数は、例えば、紫外光電子分光法(UPS:Ultraviolet Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)やオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて測定することができる。なお、「仕事関数」として、発電素子1の各構成を対象とした実測値が用いられるほか、例えば材料に対して計測された公知の値が用いられてもよい。  The "work function" indicates the minimum energy required to extract electrons in a solid into a vacuum. The work function is measured using, for example, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). can be done. As the “work function”, in addition to using an actual measurement value for each configuration of the power generation element 1, for example, a known value measured for a material may be used.
(第1実施形態:発電素子1の製造方法)
 次に、第1実施形態における発電素子1の製造方法の一例を説明する。図3は、第1実施形態における発電素子1の製造方法の一例を示すフローチャートである。
(First Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generation element 1 according to the first embodiment will be described. FIG. 3 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to the first embodiment.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1電極11、中間部14、及び第2電極12をそれぞれ形成して素子を形成する。素子形成工程S100は、例えば第1電極11、中間部14、及び第2電極12をそれぞれ複数積層してもよい。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130とを含む。
<Element formation step S100>
In the device forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed to form the device. In the element forming step S100, for example, a plurality of first electrodes 11, intermediate portions 14, and second electrodes 12 may be laminated. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element formation step S100 includes, for example, a first electrode formation step S110, an intermediate portion formation step S120, and a second electrode formation step S130.
 <第1電極形成工程S110>
 第1電極形成工程S110は、第1電極11を形成する。第1電極形成工程S110は、例えば図4(a)に示すように、第1基板15の上に第1電極11を形成する。第1電極11は、例えば減圧環境下におけるスパッタリング法又は真空蒸着法により形成されるほか、公知の電極形成技術を用いて形成される。なお、第1電極形成工程S110では、例えば第1基板15の代わりに、延伸された電極材料を任意の大きさに加工することで、第1電極11を形成してもよい。この場合、第1基板15を用いなくてもよい。
<First Electrode Forming Step S110>
The first electrode forming step S110 forms the first electrode 11 . In the first electrode forming step S110, the first electrode 11 is formed on the first substrate 15, as shown in FIG. 4A, for example. The first electrode 11 is formed, for example, by a sputtering method or a vacuum deposition method under a reduced pressure environment, or is formed by using a known electrode forming technique. In the first electrode forming step S110, for example, instead of the first substrate 15, the first electrode 11 may be formed by processing a stretched electrode material into an arbitrary size. In this case, the first substrate 15 may not be used.
 例えば第1基板15としてフィルム状の部材を用いた場合、第1電極11を第1基板15の上に塗布し、第1基板15及び第1電極11をロール状に巻き取ることができる。その後、例えば後述する中間部形成工程S120、第2電極形成工程S130、及び封止材形成工程S140の少なくとも何れかの前後において、用途に応じた面積に切断してもよい。 For example, when a film-like member is used as the first substrate 15, the first electrode 11 can be applied onto the first substrate 15, and the first substrate 15 and the first electrodes 11 can be rolled up. After that, for example, before or after at least one of an intermediate portion forming step S120, a second electrode forming step S130, and a sealing material forming step S140, which will be described later, the substrate may be cut into areas according to the application.
 <中間部形成工程S120>
 中間部形成工程S120は、例えば図4(b)に示すように、第1電極11の上に、不導体層142を含む中間部14を形成する。中間部形成工程S120は、例えば微粒子141を内包した不導体材料を、第1電極11の表面に塗布し、不導体材料を硬化させることで不導体層142を形成する。これにより、微粒子141を内包した不導体層142を含む中間部14が形成される。
<Intermediate portion forming step S120>
In the intermediate portion forming step S120, the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11, as shown in FIG. 4B, for example. In the intermediate portion forming step S120, for example, a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142. FIG. As a result, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
 中間部形成工程S120は、例えばスクリーン印刷法やスピンコート法等の公知の塗布技術により、第1電極11の表面に絶縁材料を塗布する。絶縁材料を塗布する膜厚は、上述したギャップGの設計に伴い任意に設定することができる。 In the intermediate portion forming step S120, an insulating material is applied to the surface of the first electrode 11 by a known coating technique such as screen printing or spin coating. The thickness of the insulating material to be applied can be arbitrarily set according to the design of the gap G described above.
 絶縁材料として、エポキシ樹脂等のような公知の絶縁性を有する高分子材料が用いられる。絶縁材料として、熱硬化性樹脂が用いられるほか、例えば紫外線硬化樹脂が用いられる。中間部形成工程S120は、絶縁材料の特性に応じて、塗布された絶縁材料に対して加熱やUV照射等を行い、不導体層142を形成してもよい。 As the insulating material, a polymer material with known insulating properties such as epoxy resin is used. As an insulating material, a thermosetting resin is used, and for example, an ultraviolet curable resin is used. In the intermediate portion forming step S120, the non-conductor layer 142 may be formed by performing heating, UV irradiation, or the like on the applied insulating material according to the properties of the insulating material.
 中間部形成工程S120は、例えば任意の無機物質材料の中に微粒子材料を混ぜ、レーザ照射を実施してもよい。これにより、不導体層142内に分散された微粒子141が形成され、中間部14を形成される。 In the intermediate portion forming step S120, for example, a fine particle material may be mixed in any inorganic material and laser irradiation may be performed. As a result, fine particles 141 dispersed in the non-conductor layer 142 are formed, forming the intermediate portion 14 .
 <第2電極形成工程S130>
 第2電極形成工程S130は、例えば図4(c)に示すように、不導体層142の上に、第2電極12を形成する。第2電極12は、例えば第1電極11よりも低い仕事関数を有する材料を用いて形成される。第2電極12は、例えばスクリーン印刷法、蒸着法等の公知の電極形成技術を用いて形成される。
<Second electrode forming step S130>
The second electrode forming step S130 forms the second electrode 12 on the non-conductor layer 142, as shown in FIG. 4C, for example. The second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example. The second electrode 12 is formed using a known electrode forming technique such as screen printing or vapor deposition.
 第2電極形成工程S130は、例えば不導体層142の表面に、減圧環境下でスパッタリング法又は真空蒸着法により形成される。この場合、第2電極12を形成した時点で、第2電極12の主面が大気等に曝されずに不導体層142に接する。このため、第2電極12の仕事関数の変動を抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 The second electrode forming step S130 is formed, for example, on the surface of the non-conductor layer 142 by sputtering or vacuum deposition under a reduced pressure environment. In this case, when the second electrode 12 is formed, the main surface of the second electrode 12 is in contact with the non-conductor layer 142 without being exposed to the air or the like. Therefore, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
 第2電極形成工程S130は、例えば予め第2基板16の上に設けられた第2電極12の表面と、不導体層142の表面とを当接させることで、第2電極12を形成してもよい。この場合、不導体層142の表面に直接第2電極12を形成する場合に比べて、不導体層142の表面状態に起因する第2電極12の表面状態のバラつきを抑制することができる。これにより、発電量の増加を図ることが可能となる。 In the second electrode forming step S130, for example, the surface of the second electrode 12 provided in advance on the second substrate 16 is brought into contact with the surface of the non-conductor layer 142 to form the second electrode 12. good too. In this case, variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
 例えば第2基板16としてフィルム状の部材を用いた場合、第2電極12を塗布した第2基板16を準備することで実現でき、例えば第2基板16及び第2電極12をロール状に巻き取った状態で準備してもよい。その後、例えば後述する封止材形成工程S140の前後において、用途に応じた面積に切断してもよい。 For example, when a film member is used as the second substrate 16, it can be realized by preparing the second substrate 16 coated with the second electrode 12. For example, the second substrate 16 and the second electrode 12 are wound into a roll. It can be prepared as is. After that, for example, before or after the sealing material forming step S140, which will be described later, it may be cut into areas according to the application.
 なお、第2電極形成工程S130は、例えば不導体層142の上に、第2電極12を形成したあと、中間部14及び第2電極12を加熱してもよい。中間部14及び第2電極12の加熱は、例えば中間部形成工程S120における加熱の代わりに実施してもよく、中間部形成工程S120における加熱に加えて実施してもよい。この場合、不導体層142における第2電極12と接する表面が平坦化され易くなる。このため、不導体層142と、第2電極12との間における僅かな隙間の発生を抑制することができる。これにより、発電量の増加を図ることが可能となる。 In addition, in the second electrode forming step S130, for example, after the second electrode 12 is formed on the non-conductor layer 142, the intermediate portion 14 and the second electrode 12 may be heated. The heating of the intermediate portion 14 and the second electrode 12 may be performed, for example, instead of the heating in the intermediate portion forming step S120, or may be performed in addition to the heating in the intermediate portion forming step S120. In this case, the surface of the nonconductor layer 142 in contact with the second electrode 12 is easily flattened. Therefore, it is possible to suppress the generation of a slight gap between the non-conductor layer 142 and the second electrode 12 . This makes it possible to increase the amount of power generation.
 <封止材形成工程S140>
 例えば第2電極形成工程S130のあと、封止材形成工程S140を実施してもよい。封止材形成工程S140は、例えば図4(d)に示すように、第1電極11、中間部14、及び第2電極12の少なくとも何れかと接する封止材17を形成する。封止材17は、モールディング法等の公知の技術を用いて形成される。
<Sealing Material Forming Step S140>
For example, the sealing material forming step S140 may be performed after the second electrode forming step S130. In the sealing material forming step S140, the sealing material 17 is formed in contact with at least one of the first electrode 11, the intermediate portion 14 and the second electrode 12, as shown in FIG. The encapsulant 17 is formed using a known technique such as a molding method.
 封止材17として、絶縁性材料が用いられ、例えばフッ素系絶縁性樹脂等の公知の絶縁性樹脂が用いられる。封止材17を形成することで、外部環境に起因する不導体層142及び微粒子141の劣化を抑制することができる。これにより、耐久性の向上を図ることが可能となる。 As the sealing material 17, an insulating material is used, for example, a known insulating resin such as a fluorine-based insulating resin is used. By forming the sealing material 17, deterioration of the non-conductor layer 142 and the fine particles 141 caused by the external environment can be suppressed. This makes it possible to improve the durability.
 特に、中間部14を覆うように封止材17を形成する場合、中間部14が外部に晒されないため、耐久性のさらなる向上を図ることが可能となる。 In particular, when the sealing material 17 is formed so as to cover the intermediate portion 14, the intermediate portion 14 is not exposed to the outside, so durability can be further improved.
 上述した各工程を実施することで、本実施形態における発電素子1が形成される。なお、例えば図1(a)に示す第2基板16を、第2電極12の上に形成してもよい。また、例えば各配線101、102等を形成することで、本実施形態における発電装置100が形成される。 The power generating element 1 in the present embodiment is formed by performing the steps described above. In addition, for example, a second substrate 16 shown in FIG. 1A may be formed on the second electrode 12 . Further, for example, by forming the wirings 101, 102, etc., the power generator 100 in the present embodiment is formed.
 本実施形態によれば、素子形成工程S100は、微粒子141を内包する不導体層142を含む中間部14を備える素子を形成する。即ち、電極間(第1電極11、第2電極12)における微粒子141の移動が抑制される。このため、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 According to this embodiment, the element forming step S100 forms an element including the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 . That is, movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12) is suppressed. Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 また、本実施形態によれば、例えば封止材形成工程S140は、第2電極形成工程S130のあと、第1電極11、中間部14、及び第2電極12の少なくとも何れかと接する封止材17を形成してもよい。この場合、外部環境に起因する不導体層142及び微粒子141の劣化を抑制することができる。これにより、耐久性の向上を図ることが可能となる。 Further, according to the present embodiment, for example, in the sealing material forming step S140, after the second electrode forming step S130, the sealing material 17 in contact with at least one of the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed. may be formed. In this case, deterioration of the non-conductor layer 142 and the fine particles 141 due to the external environment can be suppressed. This makes it possible to improve the durability.
 また、本実施形態によれば、例えば第2電極形成工程S130は、不導体層142の表面に、減圧環境下で第2電極12を形成してもよい。この場合、第2電極12の仕事関数の変動を抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 Further, according to the present embodiment, for example, the second electrode forming step S130 may form the second electrode 12 on the surface of the non-conductor layer 142 under a reduced pressure environment. In this case, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
 また、本実施形態によれば、例えば第2電極形成工程S130は、予め第2基板16の上に設けられた第2電極12の表面と、不導体層142の表面とを当接させることを含んでもよい。この場合、不導体層142の表面に直接第2電極12を形成する場合に比べて、不導体層142の表面状態に起因する第2電極12の表面状態のバラつきを抑制することができる。これにより、発電量の増加を図ることが可能となる。 Further, according to the present embodiment, for example, the second electrode forming step S130 includes bringing the surface of the second electrode 12 provided on the second substrate 16 in advance and the surface of the non-conductor layer 142 into contact with each other. may contain. In this case, variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
 また、本実施形態によれば、例えば不導体層142は、有機高分子化合物を含んでもよい。この場合、不導体層142をフレキシブルに形成できる。これにより、用途に応じた形状を有する発電素子1を形成することが可能となる。 Also, according to the present embodiment, the non-conductor layer 142 may contain an organic polymer compound, for example. In this case, the non-conductor layer 142 can be formed flexibly. Thereby, it is possible to form the power generation element 1 having a shape according to the application.
 また、本実施形態によれば、微粒子141を内包する不導体層142を含む中間部14を備える。即ち、不導体層142により、電極間(第1電極11、第2電極12)における微粒子141の移動が抑制される。このため、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 Further, according to this embodiment, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is provided. That is, the non-conductor layer 142 suppresses movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12). Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 また、本実施形態によれば、不導体層142は、第1電極11及び第2電極12を支持する。このため、不導体層142の代わりに溶媒等を用いた場合に比べて、電極間の距離(ギャップ)を維持するための支持部等を設ける必要がなく、支持部の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量のバラつきを抑制することが可能となる。 Also, according to this embodiment, the non-conductor layer 142 supports the first electrode 11 and the second electrode 12 . Therefore, compared to the case where a solvent or the like is used instead of the non-conductor layer 142, there is no need to provide a support portion or the like for maintaining the distance (gap) between the electrodes, and the gap caused by the formation accuracy of the support portion is eliminated. can be eliminated. This makes it possible to suppress variations in the amount of power generation.
 また、本実施形態によれば、例えば微粒子141は、磁性体を除く金属酸化物を含んでもよい。この場合、外部環境に起因する磁場の影響を受けずに、経時に伴う発電量の低下を抑制することが可能となる。 Also, according to the present embodiment, for example, the fine particles 141 may contain metal oxides other than magnetic substances. In this case, it is possible to suppress the decrease in the power generation amount over time without being affected by the magnetic field caused by the external environment.
(第2実施形態:発電素子1、発電装置100)
 図6(a)は、第2実施形態における発電素子1、及び発電装置100の第1例を示す模式断面図であり、図6(b)は、第2実施形態における発電素子1、及び発電装置100の第2例を示す模式断面図であり、図6(c)は、第2実施形態における発電素子1、及び発電装置100の第3例を示す模式断面図である。以下、第1実施形態と同様の構成については、詳細な説明を省略する。
(Second Embodiment: Power Generation Element 1, Power Generation Device 100)
FIG. 6A is a schematic cross-sectional view showing a first example of the power generation element 1 and the power generation device 100 in the second embodiment, and FIG. 6B is a schematic cross-sectional view showing the power generation element 1 and the power generation FIG. 6C is a schematic cross-sectional view showing a second example of the device 100, and FIG. 6C is a schematic cross-sectional view showing a third example of the power generation element 1 and the power generation device 100 in the second embodiment. Hereinafter, detailed description of the same configuration as in the first embodiment will be omitted.
 図6(a)、図6(b)及び図6(c)に示すように、発電素子1は、それぞれ積層された複数の素子(例えば素子1a、1b、1c)を含む積層体3と、少なくとも1つの素子と電気的に接続された第1引き出し配線18a及び第2引き出し配線18bと、を備える。発電素子1は、発電素子1は、例えば図6(a)及び図6(b)に示すように、第1基板15、及び第2基板16の少なくとも何れかを備えてもよい。発電素子1は、例えば図6(c)に示すように、第1基板15、及び第2基板16が省略されてもよい。 As shown in FIGS. 6A, 6B, and 6C, the power generation element 1 includes a laminate 3 including a plurality of laminated elements (for example, elements 1a, 1b, and 1c), A first lead wire 18a and a second lead wire 18b electrically connected to at least one element are provided. The power generation element 1 may include at least one of a first substrate 15 and a second substrate 16, as shown in FIGS. 6(a) and 6(b), for example. In the power generation element 1, the first substrate 15 and the second substrate 16 may be omitted, for example, as shown in FIG. 6(c).
 <積層体3>
 積層体3は、第1電極11と、第2電極12と、中間部14とを備える素子を第1方向Zに複数積層して形成される。図6(a)及び図6(c)に示すように、積層体3は、1つの第1電極11と、1つの第2電極12とが、第1方向Zに交互に積層される。図6(b)に示すように、積層体3は、一対の第1電極11と、一対の第2電極12とが、第1方向Zに交互に積層される。積層体3の側面には、第1電極11と、第2電極12と、中間部14と、が露出される。
<Laminate 3>
The laminate 3 is formed by laminating a plurality of elements each having a first electrode 11 , a second electrode 12 , and an intermediate portion 14 in the first direction Z. As shown in FIG. As shown in FIGS. 6A and 6C, in the laminate 3, one first electrode 11 and one second electrode 12 are alternately laminated in the first direction Z. As shown in FIGS. As shown in FIG. 6B, in the laminate 3, a pair of first electrodes 11 and a pair of second electrodes 12 are alternately laminated in the first direction Z. As shown in FIG. The first electrode 11 , the second electrode 12 , and the intermediate portion 14 are exposed on the side surface of the laminate 3 .
 <引き出し配線18>
 引き出し配線18は、各電極11、12と電気的に接続される。引き出し配線18は、第1引き出し配線18aと、第2引き出し配線18bと、を有する。第1引き出し配線18aは、第1端子111を介して第1配線101に電気的に接続される。第2引き出し配線18bは、第2端子112を介して第2配線102に電気的に接続される。第1引き出し配線18aは、絶縁部19を挟んで、第2電極12と離間する。第2引き出し配線18bは、絶縁部19を挟んで、第1電極11と離間する。各引き出し配線18a、18bとして、導電性材料が用いられ、例えば金、銅、ニッケル等が用いられる。絶縁部19として、公知の絶縁材料が用いられ、例えばフッ素系絶縁性樹脂等の絶縁性樹脂が用いられる。
<Extraction wiring 18>
Lead wiring 18 is electrically connected to each of electrodes 11 and 12 . The lead wire 18 has a first lead wire 18a and a second lead wire 18b. The first extraction wiring 18 a is electrically connected to the first wiring 101 via the first terminal 111 . The second lead wiring 18 b is electrically connected to the second wiring 102 via the second terminal 112 . The first lead wire 18a is separated from the second electrode 12 with the insulating portion 19 interposed therebetween. The second lead wire 18b is separated from the first electrode 11 with the insulating portion 19 interposed therebetween. A conductive material such as gold, copper, nickel, or the like is used for each lead wiring 18a, 18b. As the insulating portion 19, a known insulating material is used, for example, an insulating resin such as a fluorine-based insulating resin is used.
 第1引き出し配線18aは、複数の第1電極11と電気的に接続される。第2引き出し配線18bは、複数の第2電極12と電気的に接続される。このとき、発電素子1は、積層体3を有する並列型の発電素子となる。 The first extraction wiring 18a is electrically connected to the plurality of first electrodes 11. The second extraction wiring 18b is electrically connected to the multiple second electrodes 12 . At this time, the power generation element 1 becomes a parallel type power generation element having the laminate 3 .
 第1引き出し配線18aは、第1方向Zに延在し、積層体3の側面に沿って延在する。第1引き出し配線18aは、積層体3の側面に露出した第1電極11及び第2電極12の何れか一方に電気的に接続される。引き出し配線18aは、例えば第1電極11に電気的に接続される。この場合、第1引き出し配線18aは、発電素子1の内部側に設けられないため、第1引き出し配線18aの劣化に伴う修理を容易に実施することができる。これにより、発電素子における利用可能期間の長期化を図ることが可能となる。なお、第1引き出し配線18aは、第2電極12に電気的に接続されてもよい。 The first lead-out wiring 18 a extends in the first direction Z and extends along the side surface of the laminate 3 . The first lead-out wiring 18 a is electrically connected to one of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 . The lead wiring 18a is electrically connected to the first electrode 11, for example. In this case, since the first lead-out wiring 18a is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the first lead-out wiring 18a. This makes it possible to extend the usable period of the power generating element. Note that the first lead wiring 18 a may be electrically connected to the second electrode 12 .
 第2引き出し配線18bは、第1方向Zに延在し、積層体3の側面に沿って延在する。第2引き出し配線18bは、積層体3の側面に露出した第1電極11及び第2電極12の何れか他方に電気的に接続される。引き出し配線18aは、例えば第1電極11に電気的に接続される。この場合、第2引き出し配線18bは、発電素子1の内部側に設けられないため、第2引き出し配線18bの劣化に伴う修理を容易に実施することができる。これにより、発電素子における利用可能期間の長期化を図ることが可能となる。なお、第1引き出し配線18aが第2電極12に電気的に接続される場合、第2引き出し配線18bは、第1電極11に電気的に接続されてもよい。 The second lead wire 18b extends in the first direction Z and extends along the side surface of the laminate 3. The second lead wire 18 b is electrically connected to the other of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 . The lead wiring 18a is electrically connected to the first electrode 11, for example. In this case, since the second lead-out wiring 18b is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the second lead-out wiring 18b. This makes it possible to extend the usable period of the power generating element. Note that when the first lead-out wiring 18 a is electrically connected to the second electrode 12 , the second lead-out wiring 18 b may be electrically connected to the first electrode 11 .
 第1引き出し配線18a及び第2引き出し配線18bは、封止材17により覆われる。特に、第1引き出し配線18a及び第2引き出し配線18bを覆うように封止材17を形成する場合、第1引き出し配線18a及び第2引き出し配線18bが外部に晒されないため、耐久性のさらなる向上を図ることが可能となる。 The first lead-out wiring 18 a and the second lead-out wiring 18 b are covered with the sealing material 17 . In particular, when the sealing material 17 is formed so as to cover the first lead-out wiring 18a and the second lead-out wiring 18b, since the first lead-out wiring 18a and the second lead-out wiring 18b are not exposed to the outside, the durability can be further improved. It is possible to plan
(第2実施形態:発電素子1の製造方法)
 次に、第2実施形態における発電素子1の製造方法の一例を説明する。図7は、第2実施形態における発電素子1の製造方法の一例を示すフローチャートである。
(Second Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generation element 1 according to the second embodiment will be described. FIG. 7 is a flow chart showing an example of a method for manufacturing the power generation element 1 according to the second embodiment.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1電極11、中間部14、及び第2電極12をそれぞれ形成して素子を形成し、複数の素子(例えば素子1a、1b、1c)を積層して積層体3を形成する。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、積層体形成工程S131と、引き出し配線形成工程S132と、を備える。
<Element formation step S100>
In the element forming step S100, a first electrode 11, an intermediate portion 14, and a second electrode 12 are formed to form an element, and a plurality of elements (for example, elements 1a, 1b, and 1c) are stacked to form a laminate 3. Form. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element formation step S100 includes, for example, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, a laminate formation step S131, and a lead wire formation step S132.
 <第1電極形成工程S110>
 第1電極形成工程S110は、第1電極11を形成する。第1電極形成工程S110は、例えば図8(a)に示すように、第1基板15の上に第1電極11を形成する。また、第1電極形成工程S110は、第1基板15の上に絶縁部19を形成する。
<First Electrode Forming Step S110>
The first electrode forming step S110 forms the first electrode 11 . In the first electrode forming step S110, the first electrode 11 is formed on the first substrate 15, as shown in FIG. 8A, for example. Also, in the first electrode forming step S110, the insulating portion 19 is formed on the first substrate 15. As shown in FIG.
 <中間部形成工程S120>
 中間部形成工程S120は、第1電極11の上に、不導体層142を含む中間部14を形成する。中間部形成工程S120は、例えば微粒子141を内包した不導体材料を、第1電極11の表面に塗布し、不導体材料を硬化させることで不導体層142を形成する。これにより、微粒子141を内包した不導体層142を含む中間部14が形成される。
<Intermediate portion forming step S120>
The intermediate portion forming step S<b>120 forms the intermediate portion 14 including the nonconductor layer 142 on the first electrode 11 . In the intermediate portion forming step S120, for example, a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142. FIG. As a result, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
 <第2電極形成工程S130>
 第2電極形成工程S130は、不導体層142の上に、第2電極12を形成する。第2電極12は、例えば第1電極11よりも低い仕事関数を有する材料を用いて形成される。これにより、第1電極11、中間部14、及び、第2電極12を含む素子1aを形成する。
<Second electrode forming step S130>
The second electrode forming step S130 forms the second electrode 12 on the nonconductor layer 142 . The second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example. Thereby, the element 1a including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
 <積層体形成工程S131>
 積層体形成工程S131は、図8(b)に示すように、第1電極11、中間部14、及び、第2電極12を含む素子(例えば素子1a、1b、1c)を複数積層して積層体3を形成する。積層体形成工程S131では、例えば素子1bにおける第1基板15の上に第1電極11を形成する。素子1bにおける第1電極11の上に、不導体層142を含む中間部14を形成する。素子1bにおける不導体層142の上に、第2電極12を形成する。これにより、第1電極11、中間部14、及び、第2電極12を含む素子1bを形成する。そして、素子1aの第2電極12に、素子1bの第1基板15を形成し、素子1aに素子1bを積層する。同様に、素子1cを形成し、素子1bに素子1cを積層する。このように、積層体形成工程S131では、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、を繰り返し行うことで、積層体3を形成する。
<Laminate formation step S131>
In the laminate forming step S131, as shown in FIG. 8B, a plurality of elements (for example, elements 1a, 1b, and 1c) each including a first electrode 11, an intermediate portion 14, and a second electrode 12 are laminated and laminated. form the body 3; In the laminate forming step S131, for example, the first electrode 11 is formed on the first substrate 15 in the element 1b. An intermediate portion 14 including a non-conductor layer 142 is formed on the first electrode 11 in the element 1b. A second electrode 12 is formed on the non-conductor layer 142 in the element 1b. Thereby, the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed. Then, the first substrate 15 of the element 1b is formed on the second electrode 12 of the element 1a, and the element 1b is laminated on the element 1a. Similarly, the element 1c is formed, and the element 1c is stacked on the element 1b. Thus, in the laminate forming step S131, the laminate 3 is formed by repeatedly performing the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130.
 <引き出し配線形成工程S132>
 引き出し配線形成工程S132は、図8(c)に示すように、少なくとも1つの素子に電気的に接続される第1引き出し配線18a及び第2引き出し配線18bを形成する。引き出し配線形成工程S132は、例えば複数の第1電極11に電気的に接続される第1引き出し配線18aを形成し、複数の第2電極12に電気的に接続される第2引き出し配線18bを形成する。引き出し配線形成工程S132は、例えば積層体3の側面に露出した第1電極11及び第2電極12の少なくとも何れかに電気的に接続される第1引き出し配線18a及び第2引き出し配線18bを、積層体3の側面に沿って延在させる。引き出し配線形成工程S132は、第1引き出し配線18aを、積層体3の側面に露出した第1電極11及び第2電極12の何れか一方に電気的に接続する。引き出し配線形成工程S132は、第2引き出し配線18bを、積層体3の側面に露出した第1電極11及び第2電極12の何れか他方に電気的に接続する。引き出し配線形成工程S132は、例えばスパッタリング法等の公知の配線形成技術を用いて各引き出し配線18a、18bを形成する。
<Extraction Wiring Forming Step S132>
In the lead wire forming step S132, as shown in FIG. 8C, a first lead wire 18a and a second lead wire 18b electrically connected to at least one element are formed. In the lead-out line forming step S132, for example, first lead-out lines 18a electrically connected to the plurality of first electrodes 11 are formed, and second lead-out lines 18b electrically connected to the plurality of second electrodes 12 are formed. do. In the lead wire forming step S132, for example, the first lead wire 18a and the second lead wire 18b electrically connected to at least one of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 are laminated. It extends along the side of the body 3. The lead-out line forming step S132 electrically connects the first lead-out line 18a to one of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 . The lead-out line forming step S132 electrically connects the second lead-out line 18b to the other of the first electrode 11 and the second electrode 12 exposed on the side surface of the laminate 3 . In the lead wire forming step S132, the lead wires 18a and 18b are formed by using a known wire forming technique such as sputtering.
 <封止材形成工程S140>
 例えば引き出し配線形成工程S132のあと、封止材形成工程S140を実施してもよい。封止材形成工程S140は、例えば図8(d)に示すように、第1引き出し配線18a及び第2引き出し配線18bを覆うように封止材17を形成する。なお、封止材形成工程S140は、第1電極11、中間部14、及び第2電極12と接する封止材17を形成してもよい。
<Sealing Material Forming Step S140>
For example, the encapsulant formation step S140 may be performed after the lead wire formation step S132. In the encapsulant forming step S140, as shown in FIG. 8D, for example, the encapsulant 17 is formed so as to cover the first lead-out wiring 18a and the second lead-out wiring 18b. In addition, the sealing material forming step S140 may form the sealing material 17 in contact with the first electrode 11 , the intermediate portion 14 and the second electrode 12 .
 上述した各工程を実施することで、本実施形態における発電素子1が形成される。なお、例えば第2基板16を、第2電極12の上に形成してもよい。また、例えば各配線101、102等を形成することで、本実施形態における発電装置100が形成される。 The power generating element 1 in the present embodiment is formed by performing the steps described above. In addition, for example, the second substrate 16 may be formed on the second electrode 12 . Further, for example, by forming the wirings 101, 102, etc., the power generator 100 in the present embodiment is formed.
 特に、本実施形態によれば、引き出し配線形成工程S132は、複数の第1電極11に電気的に接続される第1引き出し配線18aを形成し、複数の第2電極12に電気的に接続される第2引き出し配線18bを形成する。このため、発電素子1は、並列型の発電素子となる。これにより、直列型の発電素子の場合と比べて、高電流化を図ることができる。 In particular, according to the present embodiment, the lead-out line forming step S132 forms the first lead-out lines 18a electrically connected to the plurality of first electrodes 11 and electrically connected to the plurality of second electrodes 12. A second lead-out wiring 18b is formed. Therefore, the power generating element 1 becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
 特に、本実施形態によれば、引き出し配線形成工程S132は、積層体3の側面に沿って第1引き出し配線18a及び第2引き出し配線18bを延在させることを含み、第1引き出し配線18aは、積層体3の側面に露出した第1電極11及び第2電極12の何れかと電気的に接続される。即ち、第1引き出し配線18aは、発電素子1の内部側に設けることなく、第1電極11及び第2電極12の何れかに接続することができる。これにより、製造工程の簡略化が可能となる。 In particular, according to the present embodiment, the lead-out line forming step S132 includes extending the first lead-out line 18a and the second lead-out line 18b along the side surface of the laminate 3, and the first lead-out line 18a is It is electrically connected to either the first electrode 11 or the second electrode 12 exposed on the side surface of the laminate 3 . That is, the first lead wire 18 a can be connected to either the first electrode 11 or the second electrode 12 without being provided inside the power generation element 1 . This enables simplification of the manufacturing process.
 特に、本実施形態によれば、例えば引き出し配線形成工程S132は、積層体3の側面に沿って第1引き出し配線18a及び第2引き出し配線18bを延在させることを含み、第2引き出し配線18bは、積層体3の側面に露出した第1電極11及び第2電極12の何れかと電気的に接続されてもよい。即ち、第2引き出し配線18bは、発電素子1の内部側に設けることなく、第1電極11及び第2電極12の何れかに接続することができる。これにより、製造工程の簡略化が可能となる。 In particular, according to the present embodiment, for example, the lead wire forming step S132 includes extending the first lead wire 18a and the second lead wire 18b along the side surface of the laminate 3, and the second lead wire 18b is , may be electrically connected to either the first electrode 11 or the second electrode 12 exposed on the side surface of the laminate 3 . In other words, the second lead wiring 18b can be connected to either the first electrode 11 or the second electrode 12 without being provided inside the power generation element 1 . This enables simplification of the manufacturing process.
 特に、本実施形態によれば、例えば第1引き出し配線18a及び第2引き出し配線18bは、積層体3の側面に沿って延在し、第1引き出し配線18aは、第1電極11及び第2電極12の何れかと電気的に接続される。即ち、第1引き出し配線18aは、発電素子1の内部側に設けられないため、第1引き出し配線18aの劣化に伴う修理を容易に実施することができる。これにより、発電素子における利用可能期間の長期化を図ることが可能となる。 In particular, according to this embodiment, for example, the first lead-out wiring 18a and the second lead-out wiring 18b extend along the side surface of the laminate 3, and the first lead-out wiring 18a extends along the first electrode 11 and the second electrode. 12 are electrically connected. That is, since the first lead-out wiring 18a is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the first lead-out wiring 18a. This makes it possible to extend the usable period of the power generating element.
 特に、本実施形態によれば、例えば第1引き出し配線18a及び第2引き出し配線18bは、積層体3の側面に沿って延在し、第2引き出し配線18bは、第1電極11及び第2電極12の何れかと電気的に接続されてもよい。即ち、第2引き出し配線18bは、発電素子1の内部側に設けられないため、第2引き出し配線18bの劣化に伴う修理を容易に実施することができる。これにより、発電素子における利用可能期間の長期化を図ることが可能となる。 In particular, according to the present embodiment, for example, the first lead-out wiring 18a and the second lead-out wiring 18b extend along the side surfaces of the laminate 3, and the second lead-out wiring 18b extends along the first electrode 11 and the second electrode. 12 may be electrically connected. That is, since the second lead-out wiring 18b is not provided inside the power generation element 1, it is possible to easily repair the deterioration of the second lead-out wiring 18b. This makes it possible to extend the usable period of the power generating element.
(第3実施形態:発電素子1、発電装置100)
 図9は、第3実施形態における発電素子1、及び発電装置100の一例を示す模式断面図である。
(Third Embodiment: Power Generation Element 1, Power Generation Device 100)
FIG. 9 is a schematic cross-sectional view showing an example of the power generation element 1 and the power generation device 100 in the third embodiment.
 発電素子1は、例えば図9に示すように、第1電極11と、第2電極12と、中間部14と、引き出し配線18と、を備える。発電素子1は、更に配線層23を備えてもよい。発電素子1は、第1基板15、及び第2基板16の少なくとも何れかを備えてもよい。 The power generation element 1 includes, for example, a first electrode 11, a second electrode 12, an intermediate portion 14, and a lead wire 18, as shown in FIG. The power generation element 1 may further include a wiring layer 23 . The power generation element 1 may include at least one of the first substrate 15 and the second substrate 16 .
 <引き出し配線18>
 引き出し配線18は、例えば各基板15、16に第1方向Zに貫通される貫通孔25に設けられ、各電極11、12及び配線層23と電気的に接続される。引き出し配線18は、例えば各貫通孔25に充填されて設けられる。また、引き出し配線18は、例えば各貫通孔25の内周面に設けられてもよい。引き出し配線18は、中間部14と接してもよい。貫通孔25は、第1基板15を貫通する第1貫通孔25aと、第2基板16を貫通する第2貫通孔25bと、を有する。
<Extraction wiring 18>
The lead wiring 18 is provided, for example, in a through hole 25 penetrating through the substrates 15 and 16 in the first direction Z, and electrically connected to the electrodes 11 and 12 and the wiring layer 23 . The lead wiring 18 is provided, for example, by filling each through hole 25 . Also, the lead wiring 18 may be provided, for example, on the inner peripheral surface of each through hole 25 . The lead wiring 18 may be in contact with the intermediate portion 14 . The through hole 25 has a first through hole 25 a penetrating through the first substrate 15 and a second through hole 25 b penetrating through the second substrate 16 .
 引き出し配線18は、例えば第1引き出し配線18a及び第2引き出し配線18bの少なくとも何れかを有する。第1引き出し配線18aは、第1基板15を貫通する第1貫通孔25aを介して、第1電極11及び第1配線層23aと電気的に接続される。このため、第1引き出し配線18aと第1電極11との接続箇所は、発電素子1の内部側に設けられる。第2引き出し配線18bは、第2基板16を貫通する第2貫通孔25bを介して、第2電極12及び第2配線層23bと電気的に接続される。このため、第2引き出し配線18bと第2電極12との接続箇所は、発電素子1の内部側に設けられる。上記接続箇所は、各引き出し配線18a、18bのうち特に劣化し易い部分であり、接続箇所を発電素子1の内部側に設けることで、発電素子1の耐久性を高めることが可能となる。 The lead wire 18 has, for example, at least one of a first lead wire 18a and a second lead wire 18b. The first lead wiring 18a is electrically connected to the first electrode 11 and the first wiring layer 23a through a first through hole 25a penetrating through the first substrate 15 . Therefore, the connection point between the first lead wire 18 a and the first electrode 11 is provided inside the power generation element 1 . The second lead wiring 18b is electrically connected to the second electrode 12 and the second wiring layer 23b via a second through hole 25b passing through the second substrate 16. As shown in FIG. Therefore, the connection point between the second lead wire 18 b and the second electrode 12 is provided inside the power generation element 1 . The connection point is a portion of the lead wires 18a and 18b that is particularly susceptible to deterioration.
 引き出し配線18は、例えば各貫通孔25に充填されて設けられる。なお、引き出し配線18は、例えば各貫通孔25の内周面に設けられ、100nm以上10μm以下の厚さで形成されてもよい。引き出し配線18の材料として、導電性材料が用いられ、例えば金、銅、ニッケル等が用いられる。 The lead wiring 18 is provided, for example, by filling each through hole 25 . The lead wiring 18 may be provided, for example, on the inner peripheral surface of each through hole 25 and may be formed with a thickness of 100 nm or more and 10 μm or less. A conductive material such as gold, copper, or nickel is used as the material of the lead-out wiring 18 .
 <配線層23>
 配線層23は、発電素子1の外部側(表面)に設けられる。
<Wiring layer 23>
The wiring layer 23 is provided on the outer side (surface) of the power generation element 1 .
 配線層23は、例えば第1配線層23a及び第2配線層23bの少なくとも何れかを有する。第1配線層23aは、第1基板15における第1電極11が設けられる主面に対向する主面上に設けられる。すなわち、第1基板15は、第1配線層23aと第1電極11との間に挟まれる。第1配線層23aは、第1引き出し配線18aを覆うように形成される。第2配線層23bは、第2基板16における第2電極12が設けられる主面に対向する主面上に設けられる。すなわち、第2基板16は、第2配線層23bと第2電極12との間に挟まれる。第2配線層23bは、第2引き出し配線18bを覆うように形成される。 The wiring layer 23 has, for example, at least one of a first wiring layer 23a and a second wiring layer 23b. The first wiring layer 23a is provided on the main surface of the first substrate 15 that faces the main surface on which the first electrode 11 is provided. That is, the first substrate 15 is sandwiched between the first wiring layer 23 a and the first electrode 11 . The first wiring layer 23a is formed to cover the first lead-out wiring 18a. The second wiring layer 23b is provided on the main surface of the second substrate 16 that faces the main surface on which the second electrode 12 is provided. That is, the second substrate 16 is sandwiched between the second wiring layer 23 b and the second electrode 12 . The second wiring layer 23b is formed to cover the second lead-out wiring 18b.
 配線層23の第1方向Zに沿った厚さは、例えば100nm以上10μm以下である。配線層23の材料として、導電性材料が用いられ、例えば金が用いられるほか、金及びクロムの積層体、又は金及びニッケルの積層体が用いられる。 The thickness of the wiring layer 23 along the first direction Z is, for example, 100 nm or more and 10 μm or less. As a material of the wiring layer 23, a conductive material is used, for example, gold is used, and a layered body of gold and chromium or a layered body of gold and nickel is used.
 <第3実施形態:発電素子1の製造方法>
 次に、発電素子1の製造方法の一例を、説明する。図10は、本実施形態に係る発電素子1の製造方法の一例を示すフローチャートである。図11(a)~図12(c)は、本実施形態に係る発電素子1の製造方法の一例を示す模式断面図である。
<Third Embodiment: Manufacturing Method of Power Generation Element 1>
Next, an example of a method for manufacturing the power generation element 1 will be described. FIG. 10 is a flow chart showing an example of a method for manufacturing the power generation element 1 according to this embodiment. 11(a) to 12(c) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1電極11、中間部14、及び第2電極12をそれぞれ形成して素子を形成する。素子形成工程S100は、例えば第1電極11、中間部14、及び第2電極12をそれぞれ複数積層してもよい。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130とを備える。素子形成工程S100は、例えば配線層形成工程S133を更に備えてもよい。
<Element formation step S100>
In the device forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed to form the device. In the element forming step S100, for example, a plurality of first electrodes 11, intermediate portions 14, and second electrodes 12 may be laminated. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, and a second electrode formation step S130. The element formation step S100 may further include, for example, a wiring layer formation step S133.
 <引き出し配線形成工程S132>
 引き出し配線形成工程S132は、図11(a)に示すように、第1基板15に第1貫通孔25aを形成し、第1貫通孔25aに第1引き出し配線18aを形成する。また、引き出し配線形成工程S132は、図11(b)に示すように、第2基板16に第2貫通孔25bを形成し、第2貫通孔25bに第2引き出し配線18bを形成する。各貫通孔25a、25b及び各引き出し配線18a、18bは、1つ以上設けられる。
<Extraction Wiring Forming Step S132>
In the lead wire forming step S132, as shown in FIG. 11A, the first through hole 25a is formed in the first substrate 15, and the first lead wire 18a is formed in the first through hole 25a. Further, in the lead-out wiring forming step S132, as shown in FIG. 11B, the second through-hole 25b is formed in the second substrate 16, and the second lead-out wiring 18b is formed in the second through-hole 25b. One or more of the through holes 25a and 25b and the lead wirings 18a and 18b are provided.
 <配線層形成工程S133>
 次に、配線層形成工程S133は、図11(c)に示すように、第1引き出し配線18aを覆うように、第1基板15における一方の主面に第1配線層23aを形成する。また、配線層形成工程S133は、図11(d)に示すように、第2引き出し配線18bを覆うように、第2基板16における一方の主面に第2配線層23bを形成する。各配線層23a、23bは、例えば第1方向Zから見て、例えば四角形状に形成され、形状は任意である。
<Wiring Layer Forming Step S133>
Next, in the wiring layer forming step S133, as shown in FIG. 11C, the first wiring layer 23a is formed on one main surface of the first substrate 15 so as to cover the first lead wiring 18a. In the wiring layer forming step S133, as shown in FIG. 11D, the second wiring layer 23b is formed on one main surface of the second substrate 16 so as to cover the second lead wiring 18b. Each of the wiring layers 23a and 23b is formed in, for example, a rectangular shape when viewed from the first direction Z, and the shape is arbitrary.
 <第1電極形成工程S110>
 第1電極形成工程S110は、図11(e)に示すように、第1基板15の上に第1電極11を形成する。これにより、第1電極11は、第1引き出し配線18aに電気的に接続される。
<First Electrode Forming Step S110>
In the first electrode forming step S110, the first electrode 11 is formed on the first substrate 15, as shown in FIG. 11(e). Thereby, the first electrode 11 is electrically connected to the first extraction wiring 18a.
 <中間部形成工程S120>
 中間部形成工程S120は、図12(a)に示すように、第1電極11の上に、不導体層142を含む中間部14を形成する。中間部形成工程S120は、例えば微粒子141を内包した不導体材料を、第1電極11の表面に塗布し、不導体材料を硬化させることで不導体層142を形成する。これにより、微粒子141を内包した不導体層142を含む中間部14が形成される。
<Intermediate portion forming step S120>
In the intermediate portion forming step S120, the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11, as shown in FIG. 12(a). In the intermediate portion forming step S120, for example, a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142. FIG. As a result, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
 <第2電極形成工程S130>
 第2電極形成工程S130は、図12(b)に示すように、中間部14の上に、第2電極12を形成する。第2電極12は、例えば第1電極11よりも低い仕事関数を有する材料を用いて形成される。また、第2電極形成工程S130は、図11(f)に示すように、予め第2基板16の上に第2電極12を形成しておく。これにより、第2電極12は、第2引き出し配線18bに電気的に接続される。そして、図12(b)に示すように、第2基板16の上に形成された第2電極12を、不導体層142の上に形成する。第2電極形成工程S130は、不導体層142が第1電極11及び第2電極12を支持する。
<Second electrode forming step S130>
The second electrode forming step S130 forms the second electrode 12 on the intermediate portion 14, as shown in FIG. 12(b). The second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example. In the second electrode forming step S130, the second electrode 12 is formed on the second substrate 16 in advance, as shown in FIG. 11(f). Thereby, the second electrode 12 is electrically connected to the second extraction wiring 18b. Then, as shown in FIG. 12B, the second electrode 12 formed on the second substrate 16 is formed on the non-conductor layer 142 . In the second electrode forming step S<b>130 , the nonconductor layer 142 supports the first electrode 11 and the second electrode 12 .
 <封止材形成工程S140>
 例えば第2電極形成工程S130のあと、封止材形成工程S140を実施してもよい。封止材形成工程S140は、例えば図12(c)に示すように、第1電極11、中間部14、及び第2電極12と接する封止材17を形成する。
<Sealing Material Forming Step S140>
For example, the sealing material forming step S140 may be performed after the second electrode forming step S130. In the sealing material forming step S140, the sealing material 17 is formed in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12, as shown in FIG.
 上述した各工程を実施することで、本実施形態における発電素子1が形成される。なお、例えば第2基板16については省略することもできる。また、例えば各配線101、102等を形成することで、本実施形態における発電装置100が形成される。 The power generating element 1 in the present embodiment is formed by performing the steps described above. In addition, for example, the second substrate 16 may be omitted. Further, for example, by forming the wirings 101, 102, etc., the power generator 100 in the present embodiment is formed.
 特に、本実施形態によれば、例えば第1基板15を貫通し、第1電極11と電気的に接続される第1引き出し配線18aを形成する引き出し配線形成工程S132を備えてもよい。このため、第1引き出し配線18aは、発電素子1の内部側で第1電極11と接続させることができる。これにより、第1電極11と接続される第1引き出し配線18aの劣化を抑制することが可能となる。 In particular, according to the present embodiment, for example, a lead wire forming step S132 may be provided for forming the first lead wire 18a that penetrates the first substrate 15 and is electrically connected to the first electrode 11. Therefore, the first lead wire 18 a can be connected to the first electrode 11 on the inner side of the power generation element 1 . This makes it possible to suppress deterioration of the first extraction wiring 18 a connected to the first electrode 11 .
 特に、本実施形態によれば、例えば第2基板16を貫通し、第2電極12と電気的に接続される第2引き出し配線18bを形成する引き出し配線形成工程S132を備えてもよい。このため、第2引き出し配線18bは、発電素子1の内部側で第2電極12と接続させることができる。これにより、第2電極12と接続される第2引き出し配線18bの劣化を抑制することが可能となる。 In particular, according to the present embodiment, for example, a lead wire forming step S132 may be provided for forming the second lead wire 18b that penetrates the second substrate 16 and is electrically connected to the second electrode 12. Therefore, the second lead wiring 18b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the second lead-out wiring 18b connected to the second electrode 12 .
 特に、本実施形態によれば、例えば第1引き出し配線18aを覆うように、第1基板15における一方の主面に第1配線層23aを形成する配線層形成工程S133を備えてもよい。この場合、第1引き出し配線18aは、外部に晒されない。これにより、第1電極11と接続される第1引き出し配線18aの劣化を更に抑制することが可能となる。 In particular, according to the present embodiment, a wiring layer forming step S133 may be provided for forming the first wiring layer 23a on one main surface of the first substrate 15 so as to cover the first lead wiring 18a, for example. In this case, the first lead wiring 18a is not exposed to the outside. This makes it possible to further suppress deterioration of the first lead-out wiring 18 a connected to the first electrode 11 .
 特に、本実施形態によれば、例えば第2引き出し配線18bを覆うように、第2基板16における一方の主面に第2配線層23bを形成する配線層形成工程S133を備えてもよい。この場合、第2引き出し配線18bは、外部に晒されない。これにより、第2電極12と接続される第2引き出し配線18bの劣化を更に抑制することが可能となる。 In particular, according to the present embodiment, a wiring layer forming step S133 may be provided to form the second wiring layer 23b on one main surface of the second substrate 16 so as to cover the second lead wiring 18b, for example. In this case, the second lead wiring 18b is not exposed to the outside. This makes it possible to further suppress deterioration of the second extraction wiring 18b connected to the second electrode 12 .
(第4実施形態:発電素子1、発電装置100)
 図13(a)は、第4実施形態における発電素子1、及び発電装置100の第1例を示す模式断面図であり、図13(b)は、第4実施形態における発電素子1、及び発電装置100の第2例を示す模式断面図である。
(Fourth Embodiment: Power Generation Element 1, Power Generation Device 100)
FIG. 13A is a schematic cross-sectional view showing a first example of the power generation element 1 and the power generation device 100 in the fourth embodiment, and FIG. FIG. 4 is a schematic cross-sectional view showing a second example of the device 100;
 図13(a)及び図13(b)に示すように、発電素子1は、それぞれ積層された複数の素子(例えば素子1a、1b)を含む積層体3と、少なくとも1つの素子と電気的に接続された第1引き出し配線18a及び第2引き出し配線18bと、を備える。発電素子1は、例えば図13に示すように、第1基板15、及び第2基板16の少なくとも何れかを備える。 As shown in FIGS. 13A and 13B, the power generating element 1 includes a laminate 3 including a plurality of laminated elements (for example, elements 1a and 1b) and at least one element electrically connected to each other. A first lead-out wiring 18a and a second lead-out wiring 18b are provided. The power generation element 1 includes at least one of a first substrate 15 and a second substrate 16, as shown in FIG. 13, for example.
 <積層体3>
 積層体3は、第1基板15に接する第1電極11と、第2電極12と、中間部14とを備える素子を第1方向Zに複数積層して形成される。
<Laminate 3>
The laminated body 3 is formed by laminating a plurality of elements each including a first electrode 11 in contact with the first substrate 15 , a second electrode 12 , and an intermediate portion 14 in the first direction Z. As shown in FIG.
 <引き出し配線18>
 図13(a)に示すように、第1引き出し配線18aは、第1基板15を貫通し、1つの第1電極11のみと電気的に接続される。第2引き出し配線18bは、第2基板16を貫通し、1つの第2電極12のみと電気的に接続される。このとき、発電素子1は、直列型の発電素子となる。素子1aにおける第2基板16と、素子1bにおける第1基板15との間には、例えば第2配線層23bが形成される。素子1aにおける第2引き出し配線18bと、素子1bにおける第1引き出し配線18aとがこの第2配線層23bを介して電気的に接続される。なお、素子1aにおける第2引き出し配線18bと、素子1bにおける第1引き出し配線18aとが第1配線層23aを介して電気的に接続されてもよい。
<Extraction wiring 18>
As shown in FIG. 13( a ), the first lead wire 18 a penetrates the first substrate 15 and is electrically connected to only one first electrode 11 . The second lead-out wiring 18b penetrates the second substrate 16 and is electrically connected to only one second electrode 12 . At this time, the power generation element 1 becomes a series type power generation element. A second wiring layer 23b, for example, is formed between the second substrate 16 of the element 1a and the first substrate 15 of the element 1b. The second lead-out wiring 18b in the element 1a and the first lead-out wiring 18a in the element 1b are electrically connected through the second wiring layer 23b. The second lead-out wiring 18b in the element 1a and the first lead-out wiring 18a in the element 1b may be electrically connected via the first wiring layer 23a.
 図13(b)に示すように、第1引き出し配線18aは、第1基板15を貫通し、複数の第1電極11と電気的に接続される。詳細には、第1引き出し配線18aは、第1基板15を貫通する第1貫通孔25aを介して、第1電極11と電気的に接続される。第2引き出し配線18bは、第1基板15を貫通し、複数の第2電極12と電気的に接続される。詳細には、第2引き出し配線18bは、第1基板15を貫通する第1貫通孔25aを介して、第2電極12と電気的に接続される。このとき、発電素子1は、並列型の発電素子となる。なお、第1引き出し配線18a及び第2引き出し配線18bは、第2基板16を貫通してもよい。 As shown in FIG. 13(b), the first lead wire 18a penetrates the first substrate 15 and is electrically connected to the plurality of first electrodes 11. As shown in FIG. Specifically, the first lead wiring 18 a is electrically connected to the first electrode 11 through a first through hole 25 a penetrating through the first substrate 15 . The second lead wiring 18 b penetrates the first substrate 15 and is electrically connected to the plurality of second electrodes 12 . Specifically, the second lead wiring 18 b is electrically connected to the second electrode 12 via a first through hole 25 a that penetrates the first substrate 15 . At this time, the power generation element 1 becomes a parallel type power generation element. The first lead-out wiring 18 a and the second lead-out wiring 18 b may pass through the second substrate 16 .
(第4実施形態:発電素子1の製造方法)
 次に、第4実施形態における発電素子1の製造方法の一例を説明する。図14は、第4実施形態における発電素子1の製造方法の一例を示すフローチャートである。
(Fourth Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generation element 1 according to the fourth embodiment will be described. FIG. 14 is a flow chart showing an example of a method for manufacturing the power generation element 1 according to the fourth embodiment.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1基板15に接する第1電極11、中間部14、及び第2電極12をそれぞれ形成して素子を形成し、複数の素子(例えば素子1a、1b)を積層した積層体3を形成する。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、積層体形成工程S131と、を備える。素子形成工程S100は、例えば配線層形成工程S133を更に備えてもよい。
<Element formation step S100>
In the element forming step S100, elements are formed by forming the first electrode 11, the intermediate portion 14, and the second electrode 12 in contact with the first substrate 15, respectively, and a plurality of elements (for example, elements 1a and 1b) are laminated. form the body 3; In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, and a laminate formation step S131. The element formation step S100 may further include, for example, a wiring layer formation step S133.
 素子形成工程S100は、例えば図15(a)に示すように、上述した引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、を行い、素子1aを形成する。 For example, as shown in FIG. 15(a), the element forming step S100 includes the lead wire forming step S132, the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130. to form the element 1a.
 <積層体形成工程S131>
 積層体形成工程S131は、例えば図15(b)に示すように、第1基板15に接する第1電極11、中間部14、及び、第2電極12を備える素子を形成し、複数の素子(例えば素子1a、1b)を積層して積層体3を形成する。積層体形成工程S131では、例えば素子1bにおける第1基板15の上に第1電極11を形成する。素子1bにおける第1電極11の上に、不導体層142を含む中間部14を形成する。素子1bにおける不導体層142の上に、第2電極12を形成する。これにより、第1電極11、中間部14、及び、第2電極12を含む素子1bを形成する。そして、素子1aの第2基板16に第2配線層23bを形成し、第2配線層23bに素子1bの第1基板15を形成する。これにより、素子1aに素子1bを積層し、積層体3を形成する。このとき、素子1aにおける第2基板16の第2引き出し配線18bと、素子1bにおける第1基板15の第1引き出し配線18aとを第2配線層23bを介して電気的に接続する。このように、積層体形成工程S131では、引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、を繰り返し行うことで、積層体3を形成する。
<Laminate formation step S131>
In the laminate forming step S131, for example, as shown in FIG. For example, the elements 1a and 1b) are stacked to form a laminate 3. FIG. In the laminate forming step S131, for example, the first electrode 11 is formed on the first substrate 15 in the element 1b. An intermediate portion 14 including a non-conductor layer 142 is formed on the first electrode 11 in the element 1b. A second electrode 12 is formed on the non-conductor layer 142 in the element 1b. Thereby, the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed. Then, the second wiring layer 23b is formed on the second substrate 16 of the element 1a, and the first substrate 15 of the element 1b is formed on the second wiring layer 23b. As a result, the element 1b is laminated on the element 1a to form the laminated body 3. Next, as shown in FIG. At this time, the second lead-out wiring 18b of the second substrate 16 in the element 1a and the first lead-out wiring 18a of the first substrate 15 in the element 1b are electrically connected through the second wiring layer 23b. As described above, in the laminate formation step S131, the laminate 3 to form
 <配線層形成工程S133>
 例えば積層体形成工程S131のあと、配線層形成工程S133は、例えば図16(a)に示すように、第1引き出し配線18aを覆うように、積層体3の最も外側に配置される第1基板15における一方の主面に第1配線層23aを形成する。また、配線層形成工程S133は、第2引き出し配線18bを覆うように、積層体3の最も外側に配置される第2基板16における一方の主面に第2配線層23bを形成する。
<Wiring Layer Forming Step S133>
For example, after the laminate forming step S131, the wiring layer forming step S133 includes, for example, as shown in FIG. A first wiring layer 23 a is formed on one main surface of 15 . In the wiring layer forming step S133, the second wiring layer 23b is formed on one main surface of the second substrate 16 arranged on the outermost side of the laminate 3 so as to cover the second lead wiring 18b.
 <封止材形成工程S140>
 例えば配線層形成工程S133のあと、封止材形成工程S140を実施してもよい。封止材形成工程S140は、例えば図16(b)に示すように、第1電極11、中間部14、及び第2電極12と接する封止材17を形成する。
<Sealing Material Forming Step S140>
For example, the sealing material forming step S140 may be performed after the wiring layer forming step S133. In the sealing material forming step S140, the sealing material 17 is formed in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12, as shown in FIG. 16B, for example.
 特に、本実施形態によれば、引き出し配線形成工程S132は、1つの第1電極11のみに電気的に接続される第1引き出し配線18aを形成し、1つの第2電極12のみに電気的に接続される第2引き出し配線18bを形成する。このため、発電素子1は、直列型の発電素子となる。これにより、並列型の発電素子の場合と比べて、高電圧化を図ることができる。 In particular, according to the present embodiment, the lead wire forming step S132 forms the first lead wire 18a electrically connected to only one first electrode 11 and electrically connected to only one second electrode 12. A second lead-out wiring 18b to be connected is formed. Therefore, the power generating element 1 becomes a series type power generating element. As a result, it is possible to achieve a higher voltage than in the case of parallel-type power generating elements.
 特に、本実施形態によれば、引き出し配線形成工程S132は、複数の第1電極11に電気的に接続される第1引き出し配線18aを形成し、複数の第2電極12に電気的に接続される第2引き出し配線18bを形成する。このため、発電素子1は、並列型の発電素子となる。これにより、直列型の発電素子の場合と比べて、高電流化を図ることができる。 In particular, according to the present embodiment, the lead-out line forming step S132 forms the first lead-out lines 18a electrically connected to the plurality of first electrodes 11 and electrically connected to the plurality of second electrodes 12. A second lead-out wiring 18b is formed. Therefore, the power generating element 1 becomes a parallel type power generating element. As a result, a higher current can be achieved as compared with the case of a series type power generating element.
 特に、本実施形態によれば、例えば第1基板15を貫通し、第1電極11と電気的に接続される第1引き出し配線18aを形成する引き出し配線形成工程S132を備えてもよい。このため、第1引き出し配線18aは、発電素子1の内部側で第1電極11と接続させることができる。これにより、第1電極11と接続される第1引き出し配線18aの劣化を抑制することが可能となる。 In particular, according to the present embodiment, for example, a lead wire forming step S132 may be provided for forming the first lead wire 18a that penetrates the first substrate 15 and is electrically connected to the first electrode 11. Therefore, the first lead wire 18 a can be connected to the first electrode 11 on the inner side of the power generation element 1 . This makes it possible to suppress deterioration of the first extraction wiring 18 a connected to the first electrode 11 .
 特に、本実施形態によれば、例えば第2基板16を貫通し、第2電極12と電気的に接続される第2引き出し配線18bを形成する引き出し配線形成工程S132を備えてもよい。このため、第2引き出し配線18bは、発電素子1の内部側で第2電極12と接続させることができる。これにより、第2電極12と接続される第2引き出し配線18bの劣化を抑制することが可能となる。 In particular, according to the present embodiment, for example, a lead wire forming step S132 may be provided for forming the second lead wire 18b that penetrates the second substrate 16 and is electrically connected to the second electrode 12. Therefore, the second lead wiring 18b can be connected to the second electrode 12 inside the power generation element 1 . This makes it possible to suppress deterioration of the second lead-out wiring 18b connected to the second electrode 12 .
(第5実施形態:発電素子1、発電装置100)
 次に、第5実施形態における発電素子1について説明する。上述した実施形態と、本実施形態における発電素子1との違いは、図17に示すように、第1引き出し配線18aを介して電気的に接続される第1電極11と第2電極12とが両側に接する第1基板15を複数備える点である。なお、上述した構成と同様の内容については、説明を省略する。
(Fifth Embodiment: Power Generation Element 1, Power Generation Device 100)
Next, the power generation element 1 according to the fifth embodiment will be described. The difference between the above-described embodiment and the power generation element 1 in this embodiment is that, as shown in FIG. The point is that a plurality of first substrates 15 are provided in contact with both sides. In addition, description is abbreviate|omitted about the content similar to the structure mentioned above.
 本実施形態における発電素子1では、第1基板15を挟んで両側に第1電極11と第2電極12とが接する。第1基板15を挟んで両側の第1電極11と第2電極12とは、第1引き出し配線18aを介して互いに電気的に接続される。発電素子1は、一方の第1基板15に接する第1電極11と、他方の第1基板15に接する第2電極12と、の間に中間部14が形成される。 In the power generating element 1 of this embodiment, the first electrode 11 and the second electrode 12 are in contact with each other on both sides of the first substrate 15 . The first electrode 11 and the second electrode 12 on both sides of the first substrate 15 are electrically connected to each other through the first lead wiring 18a. The power generation element 1 has an intermediate portion 14 formed between a first electrode 11 in contact with one first substrate 15 and a second electrode 12 in contact with the other first substrate 15 .
 第1引き出し配線18aは、第1基板15を貫通し、第1電極11と第2電極12とに電気的に接続される。 The first lead-out wiring 18 a penetrates the first substrate 15 and is electrically connected to the first electrode 11 and the second electrode 12 .
 発電素子1の最も外側に配置される第1電極11は、第1配線層23aが設けられてもよい。発電素子1の最も外側に配置される第2電極12は、第1配線層23aが設けられてもよい。 The first electrode 11 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a. The second electrode 12 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
 <第5実施形態:発電素子1の製造方法>
 次に、発電素子1の製造方法の一例を、説明する。図18(a)~図19(b)は、本実施形態に係る発電素子1の製造方法の一例を示す模式断面図である。
<Fifth Embodiment: Manufacturing Method of Power Generation Element 1>
Next, an example of a method for manufacturing the power generation element 1 will be described. 18(a) to 19(b) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1電極11、中間部14、及び第2電極12をそれぞれ形成して素子を形成する。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130とを備える。素子形成工程S100は、例えば配線層形成工程S133を更に備えてもよい。
<Element formation step S100>
In the device forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed to form the device. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, and a second electrode formation step S130. The element formation step S100 may further include, for example, a wiring layer formation step S133.
 <引き出し配線形成工程S132>
 引き出し配線形成工程S132は、図18(a)に示すように、第1基板15に第1貫通孔25aを形成し、第1貫通孔25aに第1引き出し配線18aを形成する。
<Extraction Wiring Forming Step S132>
In the lead wire forming step S132, as shown in FIG. 18A, the first through hole 25a is formed in the first substrate 15, and the first lead wire 18a is formed in the first through hole 25a.
 <第1電極形成工程S110>
 第1電極形成工程S110は、図18(b)に示すように、第1基板15を挟むように、第1電極11と第2電極12とを形成する。これにより、第1電極11と第2電極12は、第1引き出し配線18aに電気的に接続される。第1電極11と第2電極12とが接する第1基板15を複数形成する。
<First Electrode Forming Step S110>
In the first electrode forming step S110, the first electrode 11 and the second electrode 12 are formed so as to sandwich the first substrate 15, as shown in FIG. 18(b). Thereby, the first electrode 11 and the second electrode 12 are electrically connected to the first extraction wiring 18a. A plurality of first substrates 15 are formed on which the first electrodes 11 and the second electrodes 12 are in contact.
 <配線層形成工程S133>
 次に、配線層形成工程S133は、図18(c)に示すように、一方の第1基板15の第2電極12を覆うように第1配線層23aを形成する。また、配線層形成工程S133は、図18(d)に示すように、他方の第1基板15の第1電極11を覆うように第1配線層23aを形成する。
<Wiring Layer Forming Step S133>
Next, in the wiring layer forming step S133, as shown in FIG. 18C, the first wiring layer 23a is formed so as to cover the second electrode 12 of the first substrate 15 on one side. Further, in the wiring layer forming step S133, as shown in FIG. 18D, the first wiring layer 23a is formed so as to cover the first electrodes 11 of the other first substrate 15. Then, as shown in FIG.
 <中間部形成工程S120>
 中間部形成工程S120は、図19(a)に示すように、一方の第1基板15に接する第1電極11の上に、不導体層142を含む中間部14を形成する。中間部形成工程S120は、例えば微粒子141を内包した不導体材料を、第1電極11の表面に塗布し、不導体材料を硬化させることで不導体層142を形成する。これにより、微粒子141を内包した不導体層142を含む中間部14が形成される。
<Intermediate portion forming step S120>
In the intermediate portion forming step S120, the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11 in contact with one of the first substrates 15, as shown in FIG. 19(a). In the intermediate portion forming step S120, for example, a non-conducting material containing fine particles 141 is applied to the surface of the first electrode 11, and the non-conducting material is cured to form the non-conducting layer 142. FIG. As a result, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
 <第2電極形成工程S130>
 第2電極形成工程S130は、図19(b)に示すように、中間部14の上に、他方の第1基板15に接する第2電極12を形成する。第2電極形成工程S130は、図19(b)に示すように、第2基板16の上に形成された第2電極12を、不導体層142の上に形成する。第2電極形成工程S130は、不導体層142が第1電極11及び第2電極12を支持する。
<Second electrode forming step S130>
In the second electrode forming step S130, as shown in FIG. 19B, the second electrode 12 is formed on the intermediate portion 14 so as to be in contact with the other first substrate 15. As shown in FIG. In the second electrode forming step S130, the second electrode 12 formed on the second substrate 16 is formed on the non-conductor layer 142, as shown in FIG. 19(b). In the second electrode forming step S<b>130 , the nonconductor layer 142 supports the first electrode 11 and the second electrode 12 .
 <封止材形成工程S140>
 例えば第2電極形成工程S130のあと、封止材形成工程S140を実施してもよい。封止材形成工程S140は、第1電極11、中間部14、及び第2電極12と接する封止材17を形成する。
<Sealing Material Forming Step S140>
For example, the sealing material forming step S140 may be performed after the second electrode forming step S130. The sealing material forming step S<b>140 forms the sealing material 17 in contact with the first electrode 11 , the intermediate portion 14 , and the second electrode 12 .
 上述した各工程を実施することで、本実施形態における発電素子1が形成される。また、例えば各配線101、102等を形成することで、本実施形態における発電装置100が形成される。 The power generating element 1 in the present embodiment is formed by performing the steps described above. Further, for example, by forming the wirings 101, 102, etc., the power generator 100 in the present embodiment is formed.
 特に、本実施形態によれば、第1引き出し配線18aを介して電気的に接続される第1電極11と第2電極12が両側に接する複数の第1基板15と、一方の前記第1基板に接する前記第1電極と他方の前記第1基板に接する前記第2電極との間に形成される中間部14と、を備える素子を形成する。このため、中間部14を挟んで両側の第1基板15を区別することなく用いることができる。これにより、発電素子1の製造効率を向上させることが可能となる。 In particular, according to this embodiment, a plurality of first substrates 15 on both sides of which the first electrodes 11 and the second electrodes 12 electrically connected via the first lead-out wirings 18a are in contact with one of the first substrates and an intermediate portion 14 formed between the first electrode in contact with the first substrate and the second electrode in contact with the other first substrate. Therefore, the first substrates 15 on both sides of the intermediate portion 14 can be used without discrimination. Thereby, it becomes possible to improve the manufacturing efficiency of the power generation element 1 .
(第6実施形態:発電素子1、発電装置100)
 次に、第6実施形態における発電素子1について説明する。上述した実施形態と、本実施形態における発電素子1との違いは、図20に示すように、第1引き出し配線18aを介して電気的に接続される第1電極11と第2電極12とが両側に接する複数の第1基板15を備えた複数の素子を積層した積層体3を形成する点である。なお、上述した構成と同様の内容については、説明を省略する。
(Sixth Embodiment: Power Generation Element 1, Power Generation Device 100)
Next, the power generation element 1 according to the sixth embodiment will be described. The difference between the above-described embodiment and the power generation element 1 in this embodiment is that, as shown in FIG. The point is that the laminate 3 is formed by laminating a plurality of elements provided with a plurality of first substrates 15 in contact with both sides. In addition, description is abbreviate|omitted about the content similar to the structure mentioned above.
 本実施形態における発電素子1では、第5実施形態と同様に、第1基板15を挟んで両側に第1電極11と第2電極12とが接する。第1基板15を挟んで両側の第1電極11と第2電極12とは、第1引き出し配線18aを介して互いに電気的に接続される。発電素子1は、一方の第1基板15に接する第1電極11と、他方の第1基板15に接する第2電極12と、の間に中間部14が形成される。 In the power generating element 1 of this embodiment, the first electrode 11 and the second electrode 12 are in contact with each other on both sides of the first substrate 15, as in the fifth embodiment. The first electrode 11 and the second electrode 12 on both sides of the first substrate 15 are electrically connected to each other through the first lead wiring 18a. The power generation element 1 has an intermediate portion 14 formed between a first electrode 11 in contact with one first substrate 15 and a second electrode 12 in contact with the other first substrate 15 .
 第1引き出し配線18aは、第1基板15を貫通し、第1電極11と第2電極12とに電気的に接続される。 The first lead-out wiring 18 a penetrates the first substrate 15 and is electrically connected to the first electrode 11 and the second electrode 12 .
 発電素子1の最も外側に配置される第1電極11は、第1配線層23aが設けられてもよい。発電素子1の最も外側に配置される第2電極12は、第1配線層23aが設けられてもよい。 The first electrode 11 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a. The second electrode 12 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
(第6実施形態:発電素子1の製造方法)
 次に、第6実施形態における発電素子1の製造方法の一例を説明する。
(Sixth Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generation element 1 according to the sixth embodiment will be described.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1基板15に接する第1電極11、中間部14、及び第2電極12をそれぞれ形成して素子を形成し、複数の素子(例えば素子1a、1b)を積層した積層体3を形成する。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、積層体形成工程S131と、を備える。素子形成工程S100は、例えば配線層形成工程S133を更に備えてもよい。
<Element formation step S100>
In the element forming step S100, elements are formed by forming the first electrode 11, the intermediate portion 14, and the second electrode 12 in contact with the first substrate 15, respectively, and a plurality of elements (for example, elements 1a and 1b) are laminated. form the body 3; In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, and a laminate formation step S131. The element formation step S100 may further include, for example, a wiring layer formation step S133.
 素子形成工程S100は、例えば図21(a)に示すように、上述した引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、を行い、素子1aを形成する。 For example, as shown in FIG. 21(a), the element forming step S100 includes the lead-out line forming step S132, the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130. to form the element 1a.
 <積層体形成工程S131>
 積層体形成工程S131は、例えば図21(b)に示すように、第1基板15に接する第1電極11、中間部14、及び、第2電極12を備える素子を形成し、複数の素子(例えば素子1a、1b)を積層して積層体3を形成する。積層体形成工程S131では、例えば第1基板15に接する第1電極11の上に、素子1bにおける不導体層142を含む中間部14を形成する。そして、素子1bにおける不導体層142の上に、第2電極12を形成する。これにより、第1電極11、中間部14、及び、第2電極12を含む素子1bを形成する。
<Laminate formation step S131>
In the laminate formation step S131, as shown in FIG. 21B, for example, an element including a first electrode 11, an intermediate portion 14, and a second electrode 12 in contact with the first substrate 15 is formed, and a plurality of elements ( For example, the elements 1a and 1b) are stacked to form a laminate 3. FIG. In the laminate forming step S131, the intermediate portion 14 including the non-conductor layer 142 in the element 1b is formed on the first electrode 11 in contact with the first substrate 15, for example. Then, the second electrode 12 is formed on the non-conductor layer 142 in the element 1b. Thereby, the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed.
 このように、積層体形成工程S131では、引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、を繰り返し行うことで、積層体3を形成する。 As described above, in the laminate formation step S131, the laminate 3 to form
 特に、本実施形態によれば、第1引き出し配線18aを介して電気的に接続される第1電極11と第2電極12が両側に接する複数の第1基板15と、一方の第1基板15に接する第1電極11と他方の第1基板15に接する第2電極12との間に形成される中間部14と、を備える素子1aと素子1bとを積層した積層体3を形成する。このため、中間部14を挟んで両側の第1基板15を区別することなく用いることができる。これにより、発電素子1の製造効率を向上させることが可能となる。 In particular, according to the present embodiment, a plurality of first substrates 15 on both sides of which the first electrodes 11 and the second electrodes 12 electrically connected via the first lead-out wirings 18a are in contact with one of the first substrates 15 and an intermediate portion 14 formed between a first electrode 11 in contact with the first substrate 15 and a second electrode 12 in contact with the first substrate 15 on the other side. Therefore, the first substrates 15 on both sides of the intermediate portion 14 can be used without discrimination. Thereby, it becomes possible to improve the manufacturing efficiency of the power generation element 1 .
 また、本実施形態によれば、素子形成工程S100は、複数の素子1a、1bを積層した積層体3を形成する積層体形成工程S131を備える。素子は第1基板15の両側に第1電極11と第2電極12とが接するため、複数の素子1a、1bを積層する際に、第1電極11のみが接する第1基板15と第2電極12のみが接する第2基板16とを用いた素子を積層する場合と比べて、積層体3における2つの中間部14の距離を低減することができる。これにより、発電素子1の厚さを低減することが可能となる。 Further, according to the present embodiment, the element forming step S100 includes a layered body forming step S131 for forming the layered body 3 in which the plurality of elements 1a and 1b are layered. Since the first electrode 11 and the second electrode 12 are in contact with both sides of the first substrate 15 of the device, when stacking the plurality of devices 1a and 1b, the first substrate 15 and the second electrode 11 are in contact only with the first electrode 11. The distance between the two intermediate portions 14 in the laminate 3 can be reduced compared to the case of stacking elements using the second substrate 16 with which only the second substrate 12 is in contact. This makes it possible to reduce the thickness of the power generation element 1 .
(第7実施形態:発電素子1、発電装置100)
 次に、第7実施形態における発電素子1について説明する。上述した実施形態と、本実施形態における発電素子1との違いは、図22に示すように、複数の素子を積層した積層体3を複数積層する点である。なお、上述した構成と同様の内容については、説明を省略する。
(Seventh Embodiment: Power Generation Element 1, Power Generation Device 100)
Next, the power generation element 1 according to the seventh embodiment will be described. The difference between the above-described embodiment and the power generation element 1 in this embodiment is that, as shown in FIG. 22, a plurality of laminates 3 each having a plurality of laminated elements are laminated. In addition, description is abbreviate|omitted about the content similar to the structure mentioned above.
 本実施形態における発電素子1では、素子1aと素子1bとを積層した第1積層体3aと、素子1cと素子1dとを積層した第2積層体3bと、を積層する。これにより、電気的に直列型に接続された第1積層体3aと、電気的に直列型の第2積層体3bとを、形成できる。第1積層体3aの第1電極11と、第2積層体3bの第1電極11とは、例えば互いに接触されることにより電気的に接続される。第1積層体3aの第1電極11と、第2積層体3bの第1電極11とは、配線層等により電気的に接続されてもよい。発電素子1の最も外側に配置される第2電極12は、第1配線層23aが設けられてもよい。 In the power generation element 1 of the present embodiment, a first laminate 3a in which the elements 1a and 1b are laminated and a second laminate 3b in which the elements 1c and 1d are laminated are laminated. Thereby, the first laminate 3a electrically connected in series and the second laminate 3b electrically connected in series can be formed. The first electrode 11 of the first stacked body 3a and the first electrode 11 of the second stacked body 3b are electrically connected, for example, by contacting each other. The first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b may be electrically connected by a wiring layer or the like. The second electrode 12 arranged on the outermost side of the power generation element 1 may be provided with the first wiring layer 23a.
 第1基板15を挟んで両側に第1電極11と第2電極12とが接する。第1基板15を挟んで両側の第1電極11と第2電極12とは、第1引き出し配線18aを介して互いに電気的に接続される。発電素子1は、一方の第1基板15に接する第1電極11と、他方の第1基板15に接する第2電極12と、の間に中間部14が形成される。 The first electrode 11 and the second electrode 12 are in contact with each other on both sides of the first substrate 15 . The first electrode 11 and the second electrode 12 on both sides of the first substrate 15 are electrically connected to each other through the first lead wiring 18a. The power generation element 1 has an intermediate portion 14 formed between a first electrode 11 in contact with one first substrate 15 and a second electrode 12 in contact with the other first substrate 15 .
 第1引き出し配線18aは、例えば第1基板15を貫通し、第1電極11と第2電極12とに電気的に接続される。なお、第1引き出し配線18aは、第1基板15の側面に設けられてもよい。 The first lead-out wiring 18 a penetrates, for example, the first substrate 15 and is electrically connected to the first electrode 11 and the second electrode 12 . Note that the first lead-out wiring 18 a may be provided on the side surface of the first substrate 15 .
 発電装置100では、互いに電気的に接続された第1積層体3aの第1電極11と、第2積層体3bの第1電極11との少なくとも何れかに、第1端子111を介して第1配線101が電気的に接続される。また、発電装置100では、互いに第1積層体3aの第2電極12と、第2積層体3bの第2電極12とに、第2端子112を介して第2配線102が電気的に接続される。このため、電気的に直列型に接続された第1積層体3aと、電気的に直列型の第2積層体3bとを、電気的に並列型に接続することができる。これにより、更なる高電流化を図ることができる。 In the power generation device 100, the first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b, which are electrically connected to each other, are connected via the first terminal 111 to at least one of the first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b. Wiring 101 is electrically connected. In the power generation device 100, the second wiring 102 is electrically connected to the second electrode 12 of the first laminate 3a and the second electrode 12 of the second laminate 3b through the second terminal 112. be. Therefore, the first laminate 3a electrically connected in series and the second laminate 3b electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved.
(第7実施形態:発電素子1の製造方法)
 次に、第7実施形態における発電素子1の製造方法の一例を説明する。
(Seventh Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generation element 1 according to the seventh embodiment will be described.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1基板15に接する第1電極11、中間部14、及び第2電極12をそれぞれ形成して素子を形成し、複数の素子(例えば素子1a、1b)を積層した第1積層体3aと、複数の素子(例えば素子1c、1d)を積層した第2積層体3bと、を積層する。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、積層体形成工程S131と、を備える。素子形成工程S100は、例えば配線層形成工程S133を更に備えてもよい。
<Element formation step S100>
In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 in contact with the first substrate 15 are respectively formed to form elements, and a plurality of elements (for example, elements 1a and 1b) are stacked to form a second electrode. A first laminate 3a and a second laminate 3b in which a plurality of elements (for example, elements 1c and 1d) are laminated are laminated. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element formation step S100 includes, for example, a lead wire formation step S132, a first electrode formation step S110, an intermediate portion formation step S120, a second electrode formation step S130, and a laminate formation step S131. The element formation step S100 may further include, for example, a wiring layer formation step S133.
 素子形成工程S100は、例えば図22に示すように、上述した引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、を行い、素子1aを形成する。同様に、素子1cを形成する。 In the element forming step S100, for example, as shown in FIG. Form 1a. Similarly, an element 1c is formed.
 <積層体形成工程S131>
 積層体形成工程S131は、例えば図22に示すように、第1基板15に接する第1電極11、中間部14、及び、第2電極12を備える素子を形成し、複数の素子(例えば素子1a、1b)を積層して積層体3(第1積層体3a)を形成する。積層体形成工程S131では、例えば第1基板15に接する第1電極11の上に、素子1bにおける不導体層142を含む中間部14を形成する。そして、素子1bにおける不導体層142の上に、第2電極12を形成する。これにより、第1電極11、中間部14、及び、第2電極12を含む素子1bを形成する。同様に、複数の素子(例えば素子1c、1d)を積層して積層体3(第2積層体3b)を形成する。
<Laminate formation step S131>
In the laminate forming step S131, for example, as shown in FIG. , 1b) to form a laminate 3 (first laminate 3a). In the laminate forming step S131, the intermediate portion 14 including the non-conductor layer 142 in the element 1b is formed on the first electrode 11 in contact with the first substrate 15, for example. Then, the second electrode 12 is formed on the non-conductor layer 142 in the element 1b. Thereby, the element 1b including the first electrode 11, the intermediate portion 14, and the second electrode 12 is formed. Similarly, a plurality of elements (for example, elements 1c and 1d) are stacked to form a laminate 3 (second laminate 3b).
 このように、積層体形成工程S131では、引き出し配線形成工程S132と、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130と、を繰り返し行うことで、第1積層体3aと、第2積層体3bと、を形成する。 As described above, in the laminate forming step S131, the lead-out wiring forming step S132, the first electrode forming step S110, the intermediate portion forming step S120, and the second electrode forming step S130 are repeatedly performed, so that the first laminated body A body 3a and a second laminate 3b are formed.
 積層体形成工程S131では、第1積層体3aの第1電極11と、第2積層体3bの第1電極11と、を電気的に接続し、第1積層体3aと第2積層体3bとを積層する。 In the laminate forming step S131, the first electrode 11 of the first laminate 3a and the first electrode 11 of the second laminate 3b are electrically connected to form the first laminate 3a and the second laminate 3b. to stack.
 なお、積層体形成工程S131では、第1積層体3aの素子1bの第1電極11に、電気的に接続される新たな第1電極11(素子1dの第1電極11)を形成し、素子1dの第1電極11に中間部14と第2電極12とを形成した素子1dを形成し、素子1dに素子1cを形成してもよい。 In addition, in the laminate forming step S131, a new first electrode 11 (the first electrode 11 of the element 1d) electrically connected to the first electrode 11 of the element 1b of the first laminate 3a is formed, and the element The element 1d may be formed by forming the intermediate portion 14 and the second electrode 12 on the first electrode 11 of the element 1d, and the element 1c may be formed on the element 1d.
 特に、本実施形態によれば、複数の素子(1a、1b)を積層した第1積層体3aの第1電極11と、複数の素子(1c、1d)を積層した第2積層体3bの第1電極11とを電気的に接続し、第1積層体3aと第2積層体3bとを積層する。このため、電気的に直列型に接続された第1積層体3aと、電気的に直列型の第2積層体3bとを、電気的に並列型に接続することができる。これにより、更なる高電流化を図ることができる。 In particular, according to the present embodiment, the first electrode 11 of the first laminate 3a in which the plurality of elements (1a, 1b) are laminated and the second electrode 11 of the second laminate 3b in which the plurality of elements (1c, 1d) are laminated. 1 electrode 11 is electrically connected, and the first laminate 3a and the second laminate 3b are laminated. Therefore, the first laminate 3a electrically connected in series and the second laminate 3b electrically connected in series can be electrically connected in parallel. As a result, a higher current can be achieved.
 また、本実施形態によれば、第1積層体3aと第2積層体3bとを積層している。このため、省スペース化を図ることができる。 Further, according to this embodiment, the first laminate 3a and the second laminate 3b are laminated. Therefore, space can be saved.
(第8実施形態:発電素子1、発電装置100)
 次に、第8実施形態における発電素子1について説明する。上述した実施形態と、本実施形態における発電素子1との違いは、電極保護膜が設けられる点である。なお、上述した構成と同様の内容については、説明を省略する。
(Eighth Embodiment: Power Generation Element 1, Power Generation Device 100)
Next, the power generation element 1 according to the eighth embodiment will be described. The difference between the above-described embodiment and the power generating element 1 in this embodiment is that an electrode protection film is provided. In addition, description is abbreviate|omitted about the content similar to the structure mentioned above.
 本実施形態における発電素子1では、一対の電極11、12の少なくとも何れかは、中間部14側の表面に設けられた電極保護膜を含む。電極保護膜は、例えば図22に示すように、第1電極保護膜11a及び第2電極保護膜12aの少なくとも何れかを含む。第1電極保護膜11aは、第1電極11の表面に設けられる。第2電極保護膜12aは、第2電極12の表面に設けられる。 In the power generating element 1 of the present embodiment, at least one of the pair of electrodes 11 and 12 includes an electrode protection film provided on the surface on the intermediate portion 14 side. The electrode protection film includes at least one of a first electrode protection film 11a and a second electrode protection film 12a, as shown in FIG. 22, for example. The first electrode protective film 11 a is provided on the surface of the first electrode 11 . The second electrode protection film 12 a is provided on the surface of the second electrode 12 .
 電極保護膜は、一対の電極11、12と、中間部14との間に設けられる。例えば電極保護膜が表面に設けられた電極11、12は、電極保護膜を介して中間部14と離間する。 The electrode protection film is provided between the pair of electrodes 11 and 12 and the intermediate portion 14 . For example, the electrodes 11 and 12 having an electrode protective film on their surfaces are separated from the intermediate portion 14 via the electrode protective film.
 電極保護膜は、例えば0.1nm~1μm程度の厚みを有する。電極保護膜の厚みは、例えば0.1nm~500nmであることが好ましい。電極保護膜の厚みが0.1nm未満の場合、電極保護膜の形成が難しい。また、電極保護膜の厚みが500nmを超える場合、微粒子141と各電極11、12との間における電子の享受が困難となり得る。従って、電極保護膜の厚みが0.1nm~500nmであれば、微粒子141と各電極11、12との間における電子の享受に与える影響を抑えることができる。 The electrode protective film has a thickness of, for example, about 0.1 nm to 1 μm. The thickness of the electrode protective film is preferably 0.1 nm to 500 nm, for example. When the thickness of the electrode protective film is less than 0.1 nm, it is difficult to form the electrode protective film. Moreover, when the thickness of the electrode protective film exceeds 500 nm, it may become difficult to receive electrons between the fine particles 141 and the electrodes 11 and 12 . Therefore, if the thickness of the electrode protective film is 0.1 nm to 500 nm, the effect on the reception of electrons between the fine particles 141 and the electrodes 11 and 12 can be suppressed.
 電極保護膜として、不導体材料が用いられる。不導体材料として、公知の高分子化合物が挙げられ、例えばポリスチレン、AS樹脂、ABS樹脂、ポリ(アクリル酸)、ポリ(アクリル酸エステル)、ポリ(メタクリル酸)、ポリ(メタクリル酸エステル)、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、及びそれらの共重合体等が挙げられる。 A non-conducting material is used as the electrode protective film. Examples of non-conductive materials include known polymer compounds, such as polystyrene, AS resin, ABS resin, poly(acrylic acid), poly(acrylic acid ester), poly(methacrylic acid), poly(methacrylic acid ester), polyethylene. Examples include terephthalate, polyethylene naphthalate, polycarbonate, and copolymers thereof.
 本実施形態によれば、一対の電極11、12の少なくとも何れかは、中間部14側の表面に設けられた電極保護膜を含む。このため、電極11、12の表面に電極保護膜を設けない場合に比べて、経時に伴う電極11、12の酸化等の化学変化を抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 According to this embodiment, at least one of the pair of electrodes 11 and 12 includes an electrode protection film provided on the surface on the intermediate portion 14 side. Therefore, chemical changes such as oxidation of the electrodes 11 and 12 over time can be suppressed as compared with the case where no electrode protective film is provided on the surfaces of the electrodes 11 and 12 . This makes it possible to further stabilize the power generation amount.
(実施形態:電子機器500)
 <電子機器500>
 上述した発電素子1及び発電装置100は、例えば電子機器に搭載することが可能である。以下、電子機器の実施形態のいくつかを説明する。
(Embodiment: electronic device 500)
<Electronic device 500>
The power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Some embodiments of the electronic device are described below.
 図24(a)~図24(d)は、発電素子1を備えた電子機器500の例を示す模式ブロック図である。図24(e)~図24(h)は、発電素子1を含む発電装置100を備えた電子機器500の例を示す模式ブロック図である。 24(a) to 24(d) are schematic block diagrams showing an example of an electronic device 500 including the power generation element 1. FIG. 24(e) to 24(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1. FIG.
 図24(a)に示すように、電子機器500(エレクトリックプロダクト)は、電子部品501(エレクトロニックコンポーネント)と、主電源502と、補助電源503と、を備えている。電子機器500及び電子部品501のそれぞれは、電気的な機器(エレクトリカルデバイス)である。 As shown in FIG. 24( a ), an electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502 and an auxiliary power supply 503 . Each of the electronic device 500 and the electronic component 501 is an electrical device.
 電子部品501は、主電源502を電源に用いて駆動される。電子部品501の例としては、例えば、CPU、モーター、センサ端末、及び照明等を挙げることができる。電子部品501が、例えばCPUである場合、電子機器500には、内蔵されたマスター(CPU)によって制御可能な電子機器が含まれる。電子部品501が、例えば、モーター、センサ端末、及び照明等の少なくとも1つを含む場合、電子機器500には、外部にあるマスター、あるいは人によって制御可能な電子機器が含まれる。 The electronic component 501 is driven using the main power supply 502 as a power supply. Examples of the electronic component 501 include, for example, a CPU, motors, sensor terminals, lighting, and the like. If electronic component 501 is, for example, a CPU, electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). If the electronic components 501 include at least one of, for example, motors, sensor terminals, and lighting, the electronic device 500 includes electronic devices that can be controlled by an external master or person.
 主電源502は、例えば電池である。電池には、充電可能な電池も含まれる。主電源502のプラス端子(+)は、電子部品501のVcc端子(Vcc)と電気的に接続される。主電源502のマイナス端子(-)は、電子部品501のGND端子(GND)と電気的に接続される。 The main power supply 502 is, for example, a battery. Batteries also include rechargeable batteries. A plus terminal (+) of the main power supply 502 is electrically connected to a Vcc terminal (Vcc) of the electronic component 501 . A negative terminal (−) of the main power supply 502 is electrically connected to a GND terminal (GND) of the electronic component 501 .
 補助電源503は、発電素子1である。発電素子1は、上述した発電素子1の少なくとも1つを含む。電子機器500において、補助電源503は、例えば主電源502と併用され、主電源502をアシストするための電源や、主電源502の容量が切れた場合、主電源502をバックアップするための電源として使うことができる。主電源502が充電可能な電池である場合には、補助電源503は、さらに、電池を充電するための電源としても使うことができる。 The auxiliary power supply 503 is the power generation element 1. The power generation element 1 includes at least one power generation element 1 described above. In the electronic device 500, the auxiliary power supply 503 is used, for example, together with the main power supply 502, and is used as a power supply for assisting the main power supply 502 or as a power supply for backing up the main power supply 502 when the capacity of the main power supply 502 runs out. be able to. If the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
 図24(b)に示すように、主電源502は、発電素子1とされてもよい。図24(b)に示す電子機器500は、主電源502として使用される発電素子1と、発電素子1を用いて駆動されることが可能な電子部品501と、を備えている。発電素子1は、独立した電源(例えばオフグリッド電源)である。このため、電子機器500は、例えば自立型(スタンドアローン型)にできる。しかも、発電素子1は、環境発電型(エナジーハーベスト型)である。図24(b)に示す電子機器500は、電池の交換が不要である。 As shown in FIG. 24(b), the main power source 502 may be the power generating element 1. An electronic device 500 shown in FIG. 24( b ) includes a power generation element 1 used as a main power source 502 and an electronic component 501 that can be driven using the power generation element 1 . The power generation element 1 is an independent power supply (for example, an off-grid power supply). Therefore, the electronic device 500 can be, for example, an independent type (standalone type). Moreover, the power generating element 1 is of the energy harvesting type. The electronic device 500 shown in FIG. 24(b) does not require battery replacement.
 図24(c)に示すように、電子部品501が発電素子1を備えていてもよい。発電素子1のアノードは、例えば、回路基板(図示は省略する)のGND配線と電気的に接続される。発電素子1のカソードは、例えば、回路基板(図示は省略する)のVcc配線と電気的に接続される。この場合、発電素子1は、電子部品501の、例えば補助電源503として使うことができる。 The electronic component 501 may include the power generating element 1 as shown in FIG. 24(c). The anode of the power generation element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown). The cathode of the power generation element 1 is electrically connected to, for example, Vcc wiring of a circuit board (not shown). In this case, the power generating element 1 can be used as, for example, an auxiliary power source 503 for the electronic component 501 .
 図24(d)に示すように、電子部品501が発電素子1を備えている場合、発電素子1は、電子部品501の、例えば主電源502として使うことができる。 As shown in FIG. 24(d), when the electronic component 501 includes the power generation element 1, the power generation element 1 can be used as the main power source 502 of the electronic component 501, for example.
 図24(e)~図24(h)のそれぞれに示すように、電子機器500は、発電装置100を備えていてもよい。発電装置100は、電気エネルギーの源として発電素子1を含む。 As shown in each of FIGS. 24(e) to 24(h), the electronic device 500 may include the power generator 100. FIG. The power generation device 100 includes a power generation element 1 as a source of electrical energy.
 図24(d)に示した実施形態は、電子部品501が主電源502として使用される発電素子1を備えている。同様に、図24(h)に示した実施形態は、電子部品501が主電源として使用される発電装置100を備えている。これらの実施形態では、電子部品501が、独立した電源を持つ。このため、電子部品501を、例えば自立型とすることができる。自立型の電子部品501は、例えば、複数の電子部品を含み、かつ、少なくとも1つの電子部品が別の電子部品と離れているような電子機器に有効に用いることができる。そのような電子機器500の例は、センサである。センサは、センサ端末(スレーブ)と、センサ端末から離れたコントローラ(マスター)と、を備えている。センサ端末及びコントローラのそれぞれは、電子部品501である。センサ端末が、発電素子1又は発電装置100を備えていれば、自立型のセンサ端末となり、有線での電力供給の必要がない。発電素子1又は発電装置100は環境発電型であるので、電池の交換も不要である。センサ端末は、電子機器500の1つと見なすこともできる。電子機器500と見なされるセンサ端末には、センサのセンサ端末に加えて、例えば、IoTワイヤレスタグ等が、さらに含まれる。 The embodiment shown in FIG. 24(d) comprises a power generation element 1 in which an electronic component 501 is used as a main power supply 502. Similarly, the embodiment shown in FIG. 24(h) comprises a generator 100 in which an electronic component 501 is used as the main power source. In these embodiments, electronic component 501 has an independent power source. Therefore, the electronic component 501 can be made self-supporting, for example. Free-standing electronic component 501 can be effectively used, for example, in an electronic device that includes multiple electronic components and in which at least one electronic component is separate from another electronic component. An example of such electronics 500 is a sensor. The sensor has a sensor terminal (slave) and a controller (master) remote from the sensor terminal. Each of the sensor terminals and controller is an electronic component 501 . If the sensor terminal is provided with the power generation element 1 or the power generation device 100, it becomes a self-supporting sensor terminal and does not require a wired power supply. Since the power generation element 1 or the power generation device 100 is of the energy harvesting type, it is unnecessary to replace the battery. A sensor terminal can also be regarded as one of the electronic devices 500 . The sensor terminals considered electronic equipment 500 further include, for example, IoT wireless tags, etc., in addition to sensor terminals of sensors.
 図24(a)~図24(h)のそれぞれに示した実施形態において共通することは、電子機器500は、熱エネルギーを電気エネルギーに変換する発電素子1と、発電素子1を電源に用いて駆動されることが可能な電子部品501と、を含むことである。 Common to the embodiments shown in FIGS. 24(a) to 24(h) is that the electronic device 500 includes a power generation element 1 that converts thermal energy into electrical energy, and uses the power generation element 1 as a power source. and an electronic component 501 that can be driven.
 電子機器500は、独立した電源を備えた自律型(オートノマス型)であってもよい。自律型の電子機器の例は、例えばロボット等を挙げることができる。さらに、発電素子1又は発電装置100を備えた電子部品501は、独立した電源を備えた自律型であってもよい。自律型の電子部品の例は、例えば可動センサ端末等を挙げることができる。 The electronic device 500 may be an autonomous type with an independent power supply. Examples of autonomous electronic devices include, for example, robots. Furthermore, the electronic component 501 with the power generation element 1 or the power generation device 100 may be autonomous with an independent power supply. Examples of autonomous electronic components include, for example, movable sensor terminals.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
1    :発電素子
11   :第1電極
12   :第2電極
14   :中間部
15   :第1基板
16   :第2基板
17   :封止材
18   :引き出し配線
18a  :第1引き出し配線
18b  :第2引き出し配線
19   :絶縁部
100  :発電装置
101  :第1配線
102  :第2配線
140  :空間
141  :微粒子
141a :被膜
142  :不導体層
500  :電子機器
501  :電子部品
502  :主電源
503  :補助電源
G    :ギャップ
R    :負荷
S100 :素子形成工程
S110 :第1電極形成工程
S120 :中間部形成工程
S130 :第2電極形成工程
S131 :積層体形成工程
S132 :引き出し配線形成工程
S140 :封止材形成工程
Z    :第1方向
X    :第2方向
Y    :第3方向
Reference Signs List 1: Power generating element 11 : First electrode 12 : Second electrode 14 : Intermediate portion 15 : First substrate 16 : Second substrate 17 : Sealing material 18 : Lead wire 18a : First lead wire 18b : Second lead wire 19 : Insulator 100 : Power generator 101 : First wiring 102 : Second wiring 140 : Space 141 : Fine particles 141a : Film 142 : Non-conductor layer 500 : Electronic device 501 : Electronic component 502 : Main power source 503 : Auxiliary power source G : Gap R: load S100: element forming step S110: first electrode forming step S120: intermediate portion forming step S130: second electrode forming step S131: laminate forming step S132: lead wire forming step S140: encapsulant forming step Z: second 1st direction X: 2nd direction Y: 3rd direction

Claims (13)

  1.  熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法であって、
     第1電極、
     微粒子を内包する不導体層を含む中間部、及び、
     前記第1電極とは異なる仕事関数を有する第2電極
     を備える素子を形成する素子形成工程を備え、
     前記素子形成工程は、
      複数の前記素子を積層して積層体を形成する積層体形成工程と、
      少なくとも1つの前記素子に電気的に接続される第1引き出し配線及び第2引き出し配線を形成する引き出し配線形成工程と、を備えること
     を特徴とする発電素子の製造方法。
    A method for manufacturing a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy,
    a first electrode;
    an intermediate portion including a non-conductor layer containing fine particles, and
    an element forming step of forming an element comprising a second electrode having a work function different from that of the first electrode;
    The element forming step includes
    a stack forming step of stacking a plurality of the elements to form a stack;
    A method of manufacturing a power generation element, comprising: a lead wire forming step of forming a first lead wire and a second lead wire electrically connected to at least one of the elements.
  2.  前記引き出し配線形成工程は、複数の前記第1電極に電気的に接続される前記第1引き出し配線を形成し、複数の前記第2電極に電気的に接続される前記第2引き出し配線を形成すること
     を特徴とする請求項1記載の発電素子の製造方法。
    The extraction wiring forming step forms the first extraction wiring electrically connected to the plurality of first electrodes, and forms the second extraction wiring electrically connected to the plurality of second electrodes. The method of manufacturing the power generating element according to claim 1, characterized by:
  3.  前記引き出し配線形成工程は、1つの第1電極のみに電気的に接続される前記第1引き出し配線を形成し、1つの前記第2電極のみに電気的に接続される前記第2引き出し配線を形成すること
     を特徴とする請求項1記載の発電素子の製造方法。
    The lead wire forming step forms the first lead wire electrically connected to only one first electrode, and forms the second lead wire electrically connected to only one second electrode. The method of manufacturing a power generating element according to claim 1, characterized by:
  4.  前記引き出し配線形成工程は、前記第1引き出し配線及び前記第2引き出し配線を、前記積層体の側面に沿って延在させることを含み、
     前記第1引き出し配線は、前記積層体の側面に露出した前記第1電極及び前記第2電極の何れかに電気的に接続されること
     を特徴とする請求項1~3の何れか1項記載の発電素子の製造方法。
    The step of forming lead wires includes extending the first lead wires and the second lead wires along side surfaces of the laminate,
    4. The method according to any one of claims 1 to 3, wherein the first lead-out wiring is electrically connected to one of the first electrode and the second electrode exposed on the side surface of the laminate. A method for manufacturing a power generation element.
  5.  前記積層体形成工程は、
      複数の前記素子を積層した第1積層体の前記第1電極と、複数の前記素子を積層した第2積層体の前記第1電極とが電気的に接続されるように、前記第1積層体と前記第2積層体とを積層すること
     を特徴とする請求項1記載の発電素子の製造方法。
    The laminate forming step includes
    The first laminate is electrically connected to the first electrode of the first laminate in which the plurality of elements are laminated and the first electrode of the second laminate in which the plurality of elements are laminated. and the second laminate are laminated together.
  6.  熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子であって、
     それぞれ積層された複数の素子を含む積層体と、
     少なくとも1つの前記素子と電気的に接続された第1引き出し配線及び第2引き出し配線と、を備え、
     前記素子は、
      第1電極と、
      前記第1電極の上に設けられ、微粒子を内包する不導体層を含む中間部と、
      前記中間部の上に設けられ、前記第1電極とは異なる仕事関数を有する第2電極と、を含むこと
     を特徴とする発電素子。
    A power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy,
    a laminate including a plurality of stacked elements;
    a first lead wire and a second lead wire electrically connected to at least one element;
    The element is
    a first electrode;
    an intermediate portion provided on the first electrode and including a non-conductive layer containing fine particles;
    and a second electrode provided on the intermediate portion and having a work function different from that of the first electrode.
  7.  前記第1引き出し配線は、複数の前記第1電極と電気的に接続され、
     前記第2引き出し配線は、複数の前記第2電極と電気的に接続されること
     を特徴とする請求項6記載の発電素子。
    the first extraction wiring is electrically connected to the plurality of first electrodes;
    7. The power generation element according to claim 6, wherein the second lead wiring is electrically connected to the plurality of second electrodes.
  8.  前記第1引き出し配線は、1つの前記第1電極のみと電気的に接続され、
     前記第2引き出し配線は、1つの前記第2電極のみと電気的に接続されること
     を特徴とする請求項6記載の発電素子。
    the first extraction wiring is electrically connected to only one of the first electrodes,
    7. The power generation element according to claim 6, wherein the second lead wiring is electrically connected to only one of the second electrodes.
  9.  前記第1引き出し配線及び前記第2引き出し配線は、前記積層体の側面に沿って延在し、
     前記第1引き出し配線は、前記積層体の側面に露出した前記第1電極及び前記第2電極の何れかに電気的に接続されること
     を特徴とする請求項6~8の何れか1項記載の発電素子。
    the first lead-out wiring and the second lead-out wiring extend along the side surface of the laminate,
    9. The method according to any one of claims 6 to 8, wherein the first lead wiring is electrically connected to one of the first electrode and the second electrode exposed on the side surface of the laminate. power generation element.
  10.  前記不導体層は、前記第1電極及び前記第2電極を支持すること
     を特徴とする請求項6~8の何れか1項記載の発電素子。
    The power generation element according to any one of claims 6 to 8, wherein the non-conductor layer supports the first electrode and the second electrode.
  11.  複数の前記素子を積層した第1積層体と、前記第1積層体に積層されるとともに複数の前記素子を積層した第2積層体とを備え、
     前記第1積層体の前記第1電極と前記第2積層体の前記第1電極とが電気的に接続されること
     を特徴とする請求項6記載の発電素子。
    A first laminate in which a plurality of the elements are laminated, and a second laminate in which a plurality of the elements are laminated while being laminated on the first laminate,
    The power generation element according to claim 6, wherein the first electrode of the first laminate and the first electrode of the second laminate are electrically connected.
  12.  請求項6記載の発電素子と、
     前記第1引き出し配線と電気的に接続された第1配線と、
     前記第2引き出し配線と電気的に接続された第2配線と、
     を備えること
     を特徴とする発電装置。
    The power generation element according to claim 6;
    a first wiring electrically connected to the first lead wiring;
    a second wiring electrically connected to the second lead wiring;
    A power generation device comprising:
  13.  請求項6記載の発電素子と、
     前記発電素子を電源に用いて駆動する電子部品と
     を備えること
     を特徴とする電子機器。
    The power generation element according to claim 6;
    An electronic device comprising: an electronic component driven by using the power generation element as a power supply.
PCT/JP2022/033832 2021-09-10 2022-09-09 Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus WO2023038104A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-147809 2021-09-10
JP2021147809A JP7011361B1 (en) 2021-09-10 2021-09-10 Manufacturing method of power generation element, power generation element, power generation device, and electronic device
JP2022001327 2022-01-06
JP2022-001327 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023038104A1 true WO2023038104A1 (en) 2023-03-16

Family

ID=85506367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033832 WO2023038104A1 (en) 2021-09-10 2022-09-09 Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2023038104A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245299A (en) * 2009-04-06 2010-10-28 Three M Innovative Properties Co Composite thermoelectric material and method of manufacturing the same
WO2019088002A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
JP2020064947A (en) * 2018-10-16 2020-04-23 株式会社Gceインスティチュート Thermoelectric element, power generator, electronic device, and manufacturing method of thermoelectric element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245299A (en) * 2009-04-06 2010-10-28 Three M Innovative Properties Co Composite thermoelectric material and method of manufacturing the same
WO2019088002A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
JP2020064947A (en) * 2018-10-16 2020-04-23 株式会社Gceインスティチュート Thermoelectric element, power generator, electronic device, and manufacturing method of thermoelectric element

Similar Documents

Publication Publication Date Title
WO2020213558A1 (en) Power generation element, power generation device, electronic apparatus, and power generation element manufacturing method
WO2019088002A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088003A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
WO2020235254A1 (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP6942404B1 (en) Power generation elements, power generation equipment, electronic devices, power generation methods, and manufacturing methods of power generation elements
JP7197857B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
WO2023038104A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038106A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023038107A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
WO2023038099A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038108A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038103A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
WO2023038105A1 (en) Method for producing power generation element, power generation element, power generation device and electronic device
WO2023038102A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023286363A1 (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element
JP7197855B2 (en) Thermoelectric element manufacturing method
KR20240054350A (en) Manufacturing method of power generation elements, power generation elements, power generation devices and electronic devices
WO2023038109A1 (en) Power generation function-equipped secondary battery
WO2022097419A1 (en) Power generation element, control system, power generation device, electronic apparatus, and power generation method
JP2023157549A (en) Power generating device
WO2023038110A1 (en) Power generation system
KR20240054352A (en) Power generation elements, manufacturing methods of power generation elements, power generation devices, and electronic devices
JP7197856B2 (en) Thermoelectric element manufacturing method
JP7473222B2 (en) Power generating element, power generating device, electronic device, and method for manufacturing power generating element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867425

Country of ref document: EP

Kind code of ref document: A1