WO2023038105A1 - Method for producing power generation element, power generation element, power generation device and electronic device - Google Patents

Method for producing power generation element, power generation element, power generation device and electronic device Download PDF

Info

Publication number
WO2023038105A1
WO2023038105A1 PCT/JP2022/033833 JP2022033833W WO2023038105A1 WO 2023038105 A1 WO2023038105 A1 WO 2023038105A1 JP 2022033833 W JP2022033833 W JP 2022033833W WO 2023038105 A1 WO2023038105 A1 WO 2023038105A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power generation
forming step
generation element
conductor layer
Prior art date
Application number
PCT/JP2022/033833
Other languages
French (fr)
Japanese (ja)
Inventor
博史 後藤
稔 坂田
拓夫 安田
ラーシュ マティアス アンダーソン
誠司 岡田
貴宏 中村
Original Assignee
株式会社Gceインスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021147809A external-priority patent/JP7011361B1/en
Application filed by 株式会社Gceインスティチュート filed Critical 株式会社Gceインスティチュート
Publication of WO2023038105A1 publication Critical patent/WO2023038105A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic device that eliminate the need for a temperature difference between electrodes when converting thermal energy into electrical energy.
  • Patent Document 1 discloses a generation step of generating nanoparticles dispersed in a solvent or an organic solvent using a femtosecond pulse laser, a first electrode portion forming step of forming a first electrode portion on a first substrate, a second electrode portion forming step of forming a second electrode portion on a second substrate; and the first substrate with the solvent or the organic solvent sandwiched between the first electrode portion and the second electrode portion. and a bonding step of bonding the second substrate and the like.
  • the present invention has been devised in view of the above-described problems, and its object is to provide a method for manufacturing a power generation element, a power generation element, a power generation device, and a power generation device capable of stabilizing the amount of power generation. It is to provide an electronic device.
  • a method for manufacturing a power generation element according to a first aspect of the present invention is a method for manufacturing a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, wherein the first electrode and the first electrode are An element forming step of forming a second electrode having a different work function and an intermediate portion sandwiched between the first electrode and the second electrode, wherein the intermediate portion contains fine particles, and the A non-conductor layer supporting the first electrode and the second electrode is included.
  • a method of manufacturing a power generation element according to a second invention is characterized in that, in the first invention, the element forming step includes a film forming step of forming the nonconductor layer.
  • a method for manufacturing a power generation element according to a third invention is characterized in that, in the second invention, the film forming step includes a coating step of coating a non-conductor material.
  • a method for manufacturing a power generating element according to a fourth aspect of the invention is the method according to the third aspect, wherein the film formation step includes a curing step of curing the nonconductor material to form the nonconductor layer after the coating step. characterized by
  • a method for manufacturing a power generation element according to a fifth aspect of the invention is characterized in that, in the third aspect of the invention or the fourth aspect of the invention, the film forming step includes forming the nonconductor layer on the first electrode. .
  • a method for manufacturing a power generating element according to a sixth invention is characterized in that, in the third invention or the fourth invention, the film forming step includes forming the nonconductor layer on a substrate.
  • a method for manufacturing a power generating element according to a seventh aspect of the invention is characterized in that, in the sixth aspect of the invention, the element forming step comprises: a substrate separating step of separating the substrate; and forming the first electrode before the substrate separating step. and a second electrode forming step of forming the second electrode after the substrate separating step.
  • a method for manufacturing a power generating element according to an eighth aspect of the invention is the method according to the sixth aspect, wherein the element forming step includes forming the first electrode after the substrate separating step of separating the substrate and the substrate separating step. It is characterized by including a first electrode forming step and a second electrode forming step of forming the second electrode after the substrate separating step.
  • a method for manufacturing a power generation element according to a ninth aspect of the invention is the method according to any one of the third to eighth aspects of the invention, wherein the film forming step includes a processing step of smoothing the surface of the non-conductor material after the coating step. characterized by comprising
  • a method for manufacturing a power generation element according to a tenth invention is the method according to any one of the third invention to the ninth invention, wherein the film forming step is a drying step of removing a diluent contained in the non-conductor material after the coating step. characterized by comprising
  • a power generation element according to the eleventh invention is characterized by being formed by the method for manufacturing a power generation element according to the first invention.
  • a power generating device includes the power generating element according to the eleventh aspect of the invention, a first wiring electrically connected to the first electrode, and a second wiring electrically connected to the second electrode. It is characterized by having
  • An electronic device is characterized by comprising the power generation element according to the eleventh invention and an electronic component driven by using the power generation element as a power supply.
  • the intermediate portion includes a non-conductor layer containing fine particles. That is, the non-conductor layer suppresses movement of the fine particles between the electrodes. For this reason, it is possible to prevent the fine particles from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the intermediate portion includes a non-conductor layer that supports the first electrode and the second electrode. Therefore, compared to the case where a solvent or the like is used instead of the non-conductive layer, there is no need to provide a support portion or the like for maintaining the distance (gap) between the electrodes, and the gap resulting from the formation accuracy of the support portion is eliminated. Distortion can be removed. This makes it possible to improve the amount of power generation.
  • the element forming step includes a film forming step of forming a non-conductor layer. That is, compared with the case where the material of the non-conductor layer is processed into layers and laminated, it becomes easier to form the non-conductor layer thinner and to narrow the distance (gap) between the electrodes. Therefore, the electric field generated between the electrodes can be increased. This makes it possible to further improve the power generation amount.
  • the film forming step includes a coating step of coating a non-conductor material. That is, the non-conductor layer can be formed over a larger area than the dry film forming method without requiring a vacuum device. Therefore, it is possible to increase the size of the power generating element. This makes it possible to further improve the power generation amount.
  • the film formation step includes a curing step of curing the non-conductor material to form a non-conductor layer after the application step. That is, the hardened non-conductor layer further suppresses movement of the particles between the electrodes. For this reason, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
  • the film forming step includes forming a non-conductor layer on the first electrode. That is, it is possible to easily improve the contact area of the interface between the non-conductor layer and the first electrode. Therefore, it is possible to suppress variations in resistance at the interface between the non-conductor layer and the first electrode. This makes it possible to further improve the power generation amount.
  • the film forming step includes forming a non-conductor layer on the substrate. That is, the first electrode is not affected by the formation of the non-conductor layer. For this reason, it is possible to suppress deterioration in quality such as a change in the work function of the first electrode, for example. This makes it possible to further improve the power generation amount.
  • the element forming step includes a substrate separating step of separating the substrates, a first electrode forming step of forming the first electrode before the substrate separating step, and a substrate separating step. and a second electrode forming step of forming a second electrode after. That is, before the first electrode is formed, the time during which the surface of the non-conductor layer in contact with the first electrode is exposed to the atmosphere can be reduced. For this reason, it is possible to suppress foreign matter from entering the non-conductor layer. As a result, it is possible to improve the non-defective product rate.
  • the element forming step includes a substrate separating step of separating the substrates, a first electrode forming step of forming the first electrode after the substrate separating step, and a substrate separating step. and a second electrode forming step of forming a second electrode later. That is, since the first electrode and the second electrode can be freely selected after separating the base material, the film forming process included in the plurality of element forming processes can be collectively carried out in advance. Therefore, the number of times the film forming process is performed can be reduced with respect to the number of times the element forming process is performed. This makes it possible to simplify the manufacturing process.
  • the film forming step includes a processing step of smoothing the surface of the non-conductor material after the coating step. That is, the contact area of the interface between the non-conductor layer and the first electrode or the interface between the non-conductor layer and the second electrode can be easily improved. Therefore, it is possible to suppress variation in resistance at the interface between the non-conductor layer and each electrode. This makes it possible to further improve the power generation amount.
  • the film forming process includes a drying process for removing the diluent contained in the non-conductor material after the coating process. That is, the region in which the diluent is contained in the non-conductor layer can be reduced, and the movement of fine particles via the diluent can be suppressed. For this reason, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
  • the power generator includes the power generation element according to the eleventh invention. Therefore, it is possible to realize a power generation device that stabilizes the power generation amount.
  • an electronic device includes the power generation element according to the eleventh invention. Therefore, it is possible to realize an electronic device that stabilizes the amount of power generation.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment
  • FIG. 1(b) is a schematic cross-sectional view along AA in FIG. 1(a).
  • FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion
  • FIG. 3(a) is a flowchart showing an example of a method for manufacturing a power generating element according to the first embodiment
  • FIG. 3(b) is a flowchart showing a first modification of the method for manufacturing a power generating element according to the first embodiment.
  • 4(a) to 4(d) are schematic cross-sectional views showing an example of the method for manufacturing the power generation element according to the first embodiment.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment
  • FIG. 1(b) is a schematic cross-sectional view along AA in FIG. 1(a).
  • FIG. 5 is a flow chart showing an example of a method for manufacturing a power generation element according to the second embodiment.
  • 6(a) and 6(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the second embodiment.
  • FIG. 7 is a flow chart showing an example of a method for manufacturing a power generating element according to the third embodiment.
  • 8(a) to 8(e) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the third embodiment.
  • 9(a) and 9(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the fourth embodiment.
  • FIGS. 13(a) to 13(d) are schematic block diagrams showing examples of electronic devices having power generation elements
  • FIGS. 13(e) to 13(h) show power generation devices including power generation elements. It is a schematic block diagram which shows the example of the electronic device provided.
  • the height direction in which each electrode is stacked is defined as a first direction Z
  • one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X.
  • a third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X.
  • the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
  • FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in this embodiment.
  • FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element 1 and a power generation device 100 in this embodiment
  • FIG. 1(b) is a schematic cross section along AA in FIG. 1(a). It is a diagram.
  • the power generation device 100 includes a power generation element 1 , first wiring 101 and second wiring 102 .
  • the power generation element 1 converts thermal energy into electrical energy.
  • the power generation device 100 including such a power generation element 1 is mounted or installed on a heat source (not shown), and based on the thermal energy of the heat source, the electrical energy generated from the power generation element 1 is transferred to the first wiring 101 and the second wiring 101. 2 output to the load R via the wiring 102 .
  • One end of the load R is electrically connected to the first wiring 101 and the other end is electrically connected to the second wiring 102 .
  • a load R indicates, for example, an electrical device.
  • the load R is driven, for example, using the generator 100 as a main power source or an auxiliary power source.
  • heat sources for the power generation element 1 include electronic devices or electronic parts such as CPUs (Central Processing Units), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, production equipment in factories, human bodies, sunlight, and environmental temperature.
  • electronic devices, electronic parts, light-emitting elements, engines, production equipment, etc. are artificial heat sources.
  • the human body, sunlight, ambient temperature, etc. are natural heat sources.
  • the power generation device 100 including the power generation element 1 can be provided inside mobile devices such as IoT (Internet of Things) devices and wearable devices and self-supporting sensor terminals, and can be used as an alternative or supplement to batteries. Furthermore, the power generation device 100 can also be applied to larger power generation devices such as solar power generation.
  • the power generation element 1 converts, for example, thermal energy generated by the artificial heat source or thermal energy possessed by the natural heat source into electrical energy to generate current.
  • the power generation element 1 can be provided not only inside the power generation device 100, but also inside the mobile device, the self-contained sensor terminal, or the like. In this case, the power generation element 1 itself can serve as an alternative or auxiliary part of the battery, such as the mobile device or the self-contained sensor terminal.
  • the power generation element 1 includes, for example, a first electrode 11, a second electrode 12, and an intermediate portion 14, as shown in FIG. 1(a).
  • the power generation element 1 may include at least one of the first substrate 15 and the second substrate 16, for example.
  • the first electrode 11 and the second electrode 12 are provided facing each other.
  • the first electrode 11 and the second electrode 12 have different work functions.
  • the intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 2, for example.
  • the intermediate portion 14 includes fine particles 141 and a non-conductor layer 142 .
  • the non-conductor layer 142 contains the fine particles 141 . In this case, movement of the particles 141 in the gap G is suppressed. Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the side of one of the electrodes 11 and 12 over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the non-conductor layer 142 is formed, for example, by curing a non-conductor material 142a.
  • the non-conductor layer 142 exhibits a solid, for example.
  • the non-conducting layer 142 may include, for example, diluent residue and uncured portions of the non-conducting material 142a.
  • the fine particles 141 are fixed in a dispersed state in the non-conductor layer 142, for example. In this case as well, it is possible to stabilize the power generation amount in the same manner as described above.
  • the intermediate portion 14 is provided on the first electrode 11 .
  • the second electrode 12 is provided on the non-conductor layer 142 . That is, the non-conductor layer 142 supports the first electrode 11 and the second electrode 12 .
  • the power generation element 1 that does not require a temperature difference between the electrodes (the first electrode 11 and the second electrode 12) when converting thermal energy into electrical energy, along the second direction X and the third direction Y
  • a liquid such as a solvent
  • the non-conductor layer 142 supports the first electrode 11 and the second electrode 12, so there is no need to provide a support portion or the like for maintaining the gap G, and the non-conductor layer 142 supports the first electrode 11 and the second electrode 12. It is possible to eliminate variations in the gap due to the accuracy of forming the parts. This makes it possible to increase the amount of power generation.
  • the fine particles 141 may come into contact with the support and aggregate around the support.
  • the power generating element 1 of the present embodiment it is possible to eliminate the state in which the fine particles 141 aggregate due to the supporting portion. This makes it possible to maintain a stable power generation amount.
  • the first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, as shown in FIG. 1(a), for example.
  • Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality.
  • one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions.
  • one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
  • a conductive material is used as the material of the first electrode 11 and the second electrode 12 .
  • materials for the first electrode 11 and the second electrode 12 for example, materials having different work functions are used. The same material may be used for the electrodes 11 and 12, and in this case, the electrodes 11 and 12 may have different work functions.
  • non-metallic conductor As the material of the electrodes 11 and 12, for example, a material composed of a single element such as iron, aluminum, or copper may be used, or an alloy material composed of, for example, two or more elements may be used.
  • a non-metallic conductor for example, may be used as the material of the electrodes 11 and 12 .
  • Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 ⁇ m or less.
  • the thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
  • a gap G that indicates the distance between the first electrode 11 and the second electrode 12 can be arbitrarily set by changing the thickness of the non-conductor layer 142 . For example, by narrowing the gap G, the electric field generated between the electrodes 11 and 12 can be increased, so that the power generation amount of the power generation element 1 can be increased. Further, for example, by narrowing the gap G, the thickness of the power generation element 1 along the first direction Z can be reduced.
  • the gap G is a finite value of 500 ⁇ m or less, for example.
  • the gap G is, for example, 10 nm or more and 1 ⁇ m or less.
  • variations in the gap G on the surfaces along the second direction X and the third direction Y may lead to a decrease in the power generation amount.
  • the gap G is larger than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken.
  • the gap G is preferably larger than 200 nm and 1 ⁇ m or less.
  • the intermediate portion 14 extends on a plane along the second direction X and the third direction Y, as shown in FIG. 1B, for example.
  • the intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 .
  • the intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
  • the fine particles 141 may be dispersed, for example, in the non-conductor layer 142 and partially exposed from the non-conductor layer 142 .
  • the particles 141 may be filled, for example, in the gap G, and the gaps between the particles 141 may be filled with the non-conductor layer 142 .
  • the particle diameter of the fine particles 141 is smaller than the gap G, for example.
  • the particle diameter of the fine particles 141 is set to a finite value of 1/10 or less of the gap G, for example. If the particle diameter of the fine particles 141 is set to 1/10 or less of the gap G, it becomes easier to form the intermediate portion 14 containing the fine particles 141 in the space 140 . This makes it possible to improve the workability when generating the power generation element 1 .
  • the fine particles 141 include particles having a particle diameter of, for example, 2 nm or more and 1000 nm or less.
  • the fine particles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 8 nm or less, or particles having an average particle diameter of 3 nm or more and 8 nm or less.
  • the median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer.
  • a particle size distribution measuring instrument for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
  • the fine particles 141 include, for example, a conductive material, and any material is used depending on the application.
  • the fine particles 141 may contain one type of material, or may contain a plurality of materials depending on the application.
  • the work function value of the fine particles 141 is, for example, between the work function value of the first electrode 11 and the work function value of the second electrode 12.
  • the work function value of the first electrode 11 and It may be other than between the value of the work function of the second electrode 12 and is arbitrary.
  • the fine particles 141 contain, for example, metal.
  • As the fine particles 141 for example, in addition to particles containing one kind of material such as gold or silver, particles of an alloy containing two or more kinds of materials may be used.
  • Fine particles 141 contain, for example, a metal oxide.
  • Examples of fine particles 141 containing metal oxides include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ), Copper oxide (CuO ) , zinc oxide (ZnO), yttria ( Y2O3 ), niobium oxide ( Nb2O5 ) , molybdenum oxide ( MoO3 ), indium oxide ( In2O3 ), tin oxide ( SnO2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), ceria (CeO 2 ), antimony oxide (Sb 2 O 5 , Sb 2 O 3 ), barium titanate ( BaTiO3 ), strontium titanate (SrT
  • the fine particles 141 may contain, for example, metal oxides other than magnetic substances.
  • the fine particles 141 may contain a metal oxide exhibiting a magnetic substance, the movement of the fine particles 141 may be restricted by the magnetic field generated due to the environment in which the power generating element 1 is installed. Therefore, by including a metal oxide other than a magnetic material, the fine particles 141 are not affected by the magnetic field caused by the external environment, and it is possible to suppress the decrease in the power generation amount over time.
  • the microparticles 141 include, for example, a coating 141a on the surface.
  • the thickness of the coating 141a is, for example, a finite value of 20 nm or less.
  • a material having, for example, a thiol group or a disulfide group is used as the coating 141a.
  • Alkanethiol such as dodecanethiol is used as the material having a thiol group.
  • a material having a disulfide group for example, an alkane disulfide or the like is used.
  • the non-conductor layer 142 is provided between the electrodes 11 and 12 and is in contact with the electrodes 11 and 12, for example.
  • the thickness of the non-conductor layer 142 is a finite value of 500 ⁇ m or less, for example.
  • the thickness of the non-conductor layer 142 affects the value and variation of the gap G described above. Therefore, for example, when the thickness of the non-conductor layer 142 is 200 nm or less, variations in the gap G in the planes along the second direction X and the third direction Y may lead to a decrease in power generation. Also, if the thickness of the non-conductor layer 142 is greater than 1 ⁇ m, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the thickness of the non-conductor layer 142 is preferably greater than 200 nm and equal to or less than 1 ⁇ m.
  • the non-conductor layer 142 may contain, for example, one type of material, or may contain a plurality of materials depending on the application. Materials described in ISO 1043-1 or JIS K 6899-1, for example, may be used as the non-conductor layer 142 .
  • the non-conductor layer 142 may include a plurality of layers containing different materials, for example, and may include a structure in which each layer is laminated. When the non-conductor layer 142 includes a plurality of layers, for example, particles 141 containing different materials may be included (eg, dispersed) in each layer.
  • the non-conductor layer 142 has insulating properties, for example. Any material can be used for the non-conductor layer 142 as long as it can suppress movement of the fine particles 141, but an organic polymer compound is preferable. When the non-conductor layer 142 contains an organic polymer compound, the non-conductor layer 142 can be formed flexibly, so that the power generating element 1 can be formed in a shape such as curved or bent according to the application.
  • organic polymer compounds include polyimides, polyamides, polyesters, polycarbonates, poly(meth)acrylates, radically polymerizable photo- or thermosetting resins, photo-cationically polymerizable photo- or thermosetting resins, epoxy resins, and acrylonitrile components.
  • An inorganic substance may be used as the non-conductor layer 142, for example.
  • inorganic substances include porous inorganic substances such as zeolite and diatomaceous earth, as well as cage-like molecules.
  • the first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, as shown in FIG. 1A, for example.
  • the first substrate 15 is, for example, in contact with the first electrode 11 and separated from the second electrode 12 .
  • the first substrate 15 fixes the first electrode 11 .
  • the second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 .
  • a second substrate 16 fixes the second electrode 12 .
  • each of the substrates 15 and 16 along the first direction Z is, for example, 10 ⁇ m or more and 2 mm or less.
  • the thickness of each substrate 15, 16 can be set arbitrarily.
  • the shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
  • the substrates 15 and 16 for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used.
  • a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
  • a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper.
  • a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
  • the first substrate 15 may have a degenerate portion that contacts the first electrode 11 .
  • the contact resistance between the first electrode 11 and the first substrate 15 can be reduced as compared with the case without the degenerate portion.
  • the first substrate 15 may have a recessed portion on a surface different from the surface in contact with the first electrode 11 . In this case, the contact resistance between the wiring (for example, the first wiring 101) electrically connected to the first substrate 15 can be reduced.
  • contact resistance can be reduced by providing contraction portions on the contact surfaces of the substrates 15 and 16 that are in contact with each other as the power generation elements 1 are stacked.
  • the above-mentioned degenerate portion is generated, for example, by ion-implanting an n-type dopant into a semiconductor at a high concentration, coating a semiconductor with a material such as glass containing an n-type dopant, and performing heat treatment after coating.
  • impurities to be doped into the semiconductor first substrate 15 known impurities such as P, As, Sb, etc. for n-type, and B, Ba, Al, etc. for p-type are mentioned. Further, electrons can be efficiently emitted when the impurity concentration in the degenerate portion is, for example, 1 ⁇ 10 19 ions/cm 3 .
  • the specific resistance value of the first substrate 15 may be, for example, 1 ⁇ 10 ⁇ 6 ⁇ cm or more and 1 ⁇ 10 6 ⁇ cm or less. If the resistivity value of the first substrate 15 is less than 1 ⁇ 10 ⁇ 6 ⁇ cm, it is difficult to select the material. Also, if the specific resistance value of the first substrate 15 is greater than 1 ⁇ 10 6 ⁇ cm, there is a concern that current loss may increase.
  • the second substrate 16 may be a semiconductor. In this case, the description is omitted because it is the same as the above.
  • the power generation element 1 may include only the first substrate 15 as shown in FIG. 12(a), or may include only the second substrate 16, for example. Further, as shown in FIG. 12B, for example, the power generation element 1 has a laminated structure in which the first electrode 11, the intermediate portion 14, and the second electrode 12 are laminated in this order without the respective substrates 15 and 16. (e.g. 1a, 1b, 1c, etc.), for example, a laminated structure comprising at least one of the substrates 15, 16 may be indicated.
  • ⁇ Example of operation of power generation element 1> For example, when thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends on thermal energy and also depends on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
  • the amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and by decreasing the gap G.
  • the amount of electrical energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and decreasing the gap G.
  • the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current.
  • the "work function” indicates the minimum energy required to extract electrons in a solid into a vacuum.
  • the work function is measured using, for example, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). can be done.
  • UPS ultraviolet photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • AES Auger electron spectroscopy
  • FIG. 3(a) is a flowchart showing an example of a method for manufacturing the power generation element 1 according to this embodiment.
  • 4(a) to 4(d) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • the method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
  • the element forming step S100 forms the first electrode 11, the intermediate portion 14, and the second electrode 12, respectively.
  • a plurality of first electrodes 11, intermediate portions 14, and second electrodes 12 may be formed.
  • the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique.
  • the element forming step S100 includes, for example, as shown in FIG. 3A, a first electrode forming step S110, an intermediate portion forming step S120, and a second electrode forming step S130.
  • the order in which steps S110, S120, and S130 are performed is arbitrary.
  • the first electrode forming step S110 forms the first electrode 11 .
  • the first electrode 11 is formed on the first substrate 15, as shown in FIG. 4A, for example.
  • the first electrode 11 is formed, for example, by a sputtering method or a vacuum deposition method under a reduced pressure environment, or is formed by using a known electrode forming technique.
  • the first electrode 11 may be formed by processing a stretched electrode material into an arbitrary size. In this case, the first substrate 15 may not be used.
  • the first electrode 11 may be formed on the first substrate 15, for example.
  • the first electrode 11 can be applied onto the first substrate 15, and the first substrate 15 and the first electrodes 11 can be rolled up.
  • the substrate may be cut into areas according to the application.
  • the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11, as shown in FIG. 4B, for example.
  • a non-conductor material 142a containing fine particles 141 is formed on the surface of the first electrode 11 to form a non-conductor layer 142.
  • the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
  • a known film forming method such as a dry film forming method (eg, sputtering method or vapor deposition method) or a wet film forming method (eg, coating method) is used.
  • the surface of the first electrode 11 is coated with the non-conductor material 142a by a known coating technique such as screen printing or spin coating.
  • the film thickness of the non-conductor material 142a can be arbitrarily set according to the design of the gap G described above.
  • the non-conductor material 142a a known polymeric material having insulating properties such as epoxy resin is used.
  • a thermosetting resin is used, and for example, an ultraviolet curable resin is used.
  • the non-conductor layer 142 may be formed by heating, UV irradiation, or the like on the applied non-conductor material 142a according to the properties of the non-conductor material 142a.
  • the non-conducting material 142a for example, a resin classified as a two-component adhesive according to JIS K 6800 may be used.
  • the non-conductor layer 142 may be formed by mixing the base material of the non-conductor material 142a and a curing agent, leaving the mixture at room temperature for a certain period of time to cure.
  • the non-conductor layer 142 may be formed by processing a solid material or the like into layers and laminating them. In this case, the mechanical strength of the non-conductor layer 142 is likely to be improved as compared with the case of using the film forming method described above. This makes it possible to improve the durability.
  • a nanoparticle material may be mixed in any inorganic material and laser irradiation may be performed. Thereby, the nanoparticles 141 dispersed in the insulating layer 142 are formed to form the intermediate portion 14 .
  • the second electrode forming step S130 forms the second electrode 12 on the non-conductor layer 142, as shown in FIG. 4C, for example.
  • the second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example.
  • the second electrode 12 is formed using a known electrode forming technique such as nanoimprinting.
  • the second electrode forming step S130 is formed, for example, on the surface of the non-conductor layer 142 by sputtering or vacuum deposition under a reduced pressure environment.
  • the main surface of the second electrode 12 is in contact with the non-conductor layer 142 without being exposed to the air or the like. Therefore, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
  • the surface of the second electrode 12 provided in advance on the second substrate 16 is brought into contact with the surface of the non-conductor layer 142 to form the second electrode 12. good too.
  • variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
  • the second substrate 16 when a film member is used as the second substrate 16, it can be realized by preparing the second substrate 16 coated with the second electrode 12.
  • the second substrate 16 and the second electrode 12 are wound into a roll. It can be prepared as is. After that, for example, before or after the sealing material forming step S140, which will be described later, it may be cut into areas according to the application.
  • the intermediate portion 14 and the second electrode 12 may be heated.
  • the heating of the intermediate portion 14 and the second electrode 12 may be performed, for example, instead of the heating in the intermediate portion forming step S120, or may be performed in addition to the heating in the intermediate portion forming step S120.
  • the surface of the nonconductor layer 142 in contact with the second electrode 12 is easily flattened. Therefore, it is possible to suppress the generation of a slight gap between the non-conductor layer 142 and the second electrode 12 . This makes it possible to increase the amount of power generation.
  • the sealing material forming step S140 may be performed after the element forming step S100.
  • the encapsulant 17 is formed in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12, as shown in FIG. 4D, for example.
  • the encapsulant 17 may be formed using a known technique such as nanoimprinting.
  • an insulating material is used, for example, a known insulating resin such as a fluorine-based insulating resin is used.
  • a known insulating resin such as a fluorine-based insulating resin is used.
  • the sealing material 17 is formed so as to cover the intermediate portion 14, the intermediate portion 14 is not exposed to the outside, so durability can be further improved.
  • the power generating element 1 in the present embodiment is formed by performing the steps described above.
  • a second substrate 16 shown in FIG. 1A may be formed on the second electrode 12 .
  • the power generator 100 in the present embodiment is formed.
  • FIG. 3(b) is a flow chart showing a first modification of the method for manufacturing the power generation element 1 according to this embodiment.
  • the intermediate portion forming step S120 in this modified example includes a film forming step S120a.
  • the film-forming step S ⁇ b>120 a forms the non-conductor layer 142 to form the intermediate portion 14 including the non-conductor layer 142 .
  • the film forming step S120 includes a dry film forming method and a wet film forming method among the methods used in the intermediate portion forming step S120 described above.
  • the non-conductor layer 142 may be formed on the surface of the first electrode 11 by a known coating technique such as screen printing or spin coating.
  • the non-conductor layer 142 may be formed on the first electrode 11, or the non-conductor layer 142 may be formed on a substrate or the like prepared in advance.
  • the non-conductor material 142a described above is formed on the surface of the first electrode 11 or the surface of the substrate, and the non-conductor layer 142 is formed by curing or drying the non-conductor material 142a. You may
  • the intermediate portion 14 includes a non-conductor layer 142 containing fine particles 141 . That is, the non-conductor layer 142 suppresses movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12). Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
  • the intermediate portion 14 includes the non-conductor layer 142 that supports the first electrode 11 and the second electrode 12 . Therefore, it is necessary to provide a supporting portion or the like for maintaining the distance (gap G) between the electrodes (the first electrode 11 and the second electrode 12) compared to the case where a solvent or the like is used instead of the non-conductor layer 142. Therefore, it is possible to eliminate the variation in the gap G caused by the accuracy of forming the supporting portion. This makes it possible to increase the amount of power generation.
  • the element forming step S100 includes the film forming step S120a of forming the non-conductor layer 142. That is, compared to the case where the material of the non-conductor layer 142 is processed into layers and laminated, the thickness of the non-conductor layer 142 can be easily formed thin, and the distance between the electrodes (first electrode 11, second electrode 12) ( It is easy to narrow the gap G). Therefore, the electric field generated between the electrodes (the first electrode 11 and the second electrode 12) can be increased. This makes it possible to further improve the power generation amount.
  • the film forming step S120a includes forming the non-conductor layer 142 on the first electrode 11 . That is, the contact area of the interface between the non-conductor layer 142 and the first electrode 11 can be easily improved. Therefore, variation in resistance at the interface between the non-conductor layer 142 and the first electrode 11 can be suppressed. This makes it possible to further improve the power generation amount.
  • the sealing material forming step S140 may form the sealing material 17 in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12 after the element forming step S100, for example. good. In this case, deterioration of the non-conductor layer 142 and the fine particles 141 due to the external environment can be suppressed. This makes it possible to improve the durability.
  • the second electrode forming step S130 may form the second electrode 12 on the surface of the non-conductor layer 142 under a reduced pressure environment. In this case, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
  • the second electrode forming step S130 may bring the surface of the second electrode 12 previously provided on the second substrate 16 into contact with the surface of the non-conductor layer 142. .
  • variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to improve the amount of power generation.
  • the non-conductor layer 142 may contain an organic polymer compound.
  • the non-conductor layer 142 can be formed flexibly. Thereby, it is possible to form the power generation element 1 having a shape according to the application.
  • the fine particles 141 may contain metal oxides other than magnetic substances. In this case, it is possible to suppress the decrease in the power generation amount over time without being affected by the magnetic field caused by the external environment.
  • FIG. 5 is a flow chart showing an example of a method for manufacturing a power generating element according to this embodiment.
  • 6(a) and 6(b) are schematic cross-sectional views showing an example of the method for manufacturing the power generating element according to this embodiment.
  • This embodiment differs from the above-described embodiments in that the film forming step S120a includes the coating step S120b and the curing step S120c. The steps other than the film formation step S120a are the same as the steps described above, and thus descriptions thereof are omitted.
  • the film forming step S120a includes a coating step S120b and a curing step S120c.
  • the film forming step S120a may include a curing step S120c after the coating step S120b and the second electrode forming step S130, as shown in FIG. 5, for example.
  • the film forming step S120a may include a curing step S120c before or after at least one of the first electrode forming step S110 and the second electrode forming step S130 after the coating step S120b. can be carried out separately.
  • the film forming step S120a may not include the curing step S120c, and the non-conductor layer 142 may be formed arbitrarily.
  • the applying step S120b applies, for example, the non-conductor material 142a.
  • the non-conductor material 142a is coated on the first electrode 11, as shown in FIG. 6A, for example.
  • the non-conductor material 142a is coated by a known coating technique such as a screen printing method or a spin coating method included in the wet film forming method described above.
  • ⁇ Curing step S120c> In the curing step S120c, for example, as shown in FIG. 6B, the non-conductor material 142a applied in the coating step S120b is cured to form a non-conductor layer 142. As shown in FIG. In the curing step S120c, the nonconductor layer 142 is formed by curing the nonconductor material 142a by a known curing method such as heating or UV irradiation as described above.
  • the non-conductor material 142a may not be completely cured, leaving an uncured portion.
  • the curing step S120c may be performed after the second electrode forming step S130.
  • the curing is facilitated while the contact area between the non-conductor layer 142 and the second electrode 12 is increased. Therefore, variations in resistance at the interfaces between the hardened non-conductor layer 142 and the electrodes 11 and 12 can be suppressed. This makes it possible to further improve the power generation amount.
  • the film forming step S120a includes a coating step S120b of coating the non-conductor material 142a. That is, the non-conductor layer 142 can be formed over a larger area than the dry film forming method without requiring a vacuum device. Therefore, the size of the power generation element 1 can be increased. This makes it possible to further improve the power generation amount.
  • the film formation step S120a includes a curing step S120c for curing the non-conductor material 142a to form the non-conductor layer 142 after the application step 120b. That is, the hardened non-conductor layer 142 further suppresses movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12). Therefore, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles 141 on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
  • FIG. 7 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • 8A to 8E are schematic cross-sectional views showing an example of a method for manufacturing the power generation element 1 according to this embodiment.
  • This embodiment includes the point that the applying step S120b is performed before the first electrode forming step S110 and the second electrode forming step S130, and the substrate separating step S120b' for separating the substrate 18 from the non-conductive material 142a. This is different from the above-described embodiment in this respect.
  • description is abbreviate
  • the film forming step S120a includes a substrate separating step S120b' for separating the substrate 18 from the applied non-conductive material 142a after the applying step S120b, as shown in FIG. 7, for example.
  • the coating step S120b is performed before the first electrode forming step S110 and the second electrode forming step S130, as shown in FIG. 7, for example.
  • the coating step S120b for example, as shown in FIG.
  • the first electrode 11 is formed before the substrate separation step S120b' described later.
  • the first electrode 11 is formed on the first main surface 142f of the non-conductive material 142a applied on the substrate 18, as shown in FIG. 8B, for example.
  • the applied nonconductor material 142a may be subjected to any method including the curing step S120c to form the nonconductor layer 142.
  • the first electrode forming step S110 may form the first electrode 11 on the first major surface 142f of the non-conductor layer 142 .
  • the surface of the first electrode 11 provided in advance on the first substrate 15 is brought into contact with the surface of the non-conductor layer 142 to form the first electrode. good.
  • the first electrode 11 is directly formed on the surface of the non-conductor layer 142
  • variations in the surface state of the first electrode 11 due to the surface state of the non-conductor layer 142 can be suppressed. This makes it possible to increase the amount of power generation.
  • ⁇ Base material separation step S120b'> the substrate 18 is separated from the non-conductor material 142a after the application step S120b and the first electrode formation step S110, as shown in FIG. 8C, for example. Note that the dotted arrow in FIG. 8C illustrates the direction in which the substrate 18 is separated.
  • the nonconductor layer 142 may be formed by performing any method including the curing step S120c on the applied nonconductor material 142a.
  • the substrate separating step S120b' may separate the substrate 18 from the non-conductor layer 142.
  • the second electrode 12 is formed after the substrate separation step S120b', as shown in FIGS. 8(c) and 8(d), for example.
  • the second electrode 12 is formed on the second main surface 142g of the non-conductor material 142a.
  • the nonconductor layer 142 may be formed by performing any method including the curing step S120c on the applied nonconductor material 142a.
  • the second electrode forming step S ⁇ b>130 may form the second electrode 12 on the second main surface 142 g of the nonconductor layer 142 .
  • ⁇ Curing step S120c> the non-conductor material 142a is cured to form the non-conductor layer 142 after the second electrode formation step S130, as shown in FIG. 8E, for example.
  • the curing step S120c may be performed after the applying step S120b, for example, before or after the first electrode forming step S120, the substrate separating step S120b′, and the second electrode forming step S130. can be carried out separately.
  • the deposition step S120a includes depositing the non-conductor layer 142 on the base material 18 . That is, the first electrode 11 is not affected by the formation of the non-conductor layer 142 . For this reason, quality deterioration such as a change in the work function of the first electrode 11 can be suppressed. This makes it possible to further improve the power generation amount.
  • the element forming step S100 includes the substrate separating step S120b′ for separating the substrate 18 and the first electrode forming step S120b′ for forming the first electrode 11 before the substrate separating step S120b′. It includes a step S110 and a second electrode forming step S130 of forming the second electrode 12 after the substrate separating step S120b'. That is, before the first electrode 11 is formed, the surface of the non-conductor layer 142 that is in contact with the first electrode 11 is exposed to the air for a short period of time. For this reason, it is possible to suppress the entry of foreign matter into the non-conductor layer 142 and the like. As a result, it is possible to improve the non-defective product rate.
  • FIG. 9(a) and 9(b) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
  • This embodiment is different from the above-described embodiments in that the substrate separating step S120b' is performed before the first electrode forming step S110.
  • the steps other than the substrate separating step S120b' and the first electrode forming step S110 are the same as the steps described above, and thus descriptions thereof are omitted.
  • the substrate 18 is separated from the non-conductor material 142a after the application step S120b and before the first electrode formation step S110, as shown in FIG. 9A, for example.
  • the dotted arrow in FIG. 9A illustrates the direction in which the substrate 18 is separated.
  • the first electrode 11 is formed after the substrate separation step S120b', as shown in FIGS. 9A and 9B, for example.
  • the first electrode 11 is formed on the first main surface 142f of the non-conductor material 142a separated from the substrate 18. As shown in FIG. 9B, the first electrode 11 is formed on the first main surface 142f of the non-conductor material 142a separated from the substrate 18. As shown in FIG. 9B, the first electrode 11 is formed on the first main surface 142f of the non-conductor material 142a separated from the substrate 18. As shown in FIG.
  • the above-described second electrode forming step S130 is performed.
  • the element forming step S100 includes a substrate separating step S120b′ for separating the substrate 18, and a first electrode forming step S110 for forming the first electrode 11 after the substrate separating step S120b′. and a second electrode forming step S130 of forming the second electrode 12 after the substrate separating step S120b′. That is, since the first electrode 11 and the second electrode 12 can be freely selected after the substrate 18 is separated, the film forming step S120a included in the plurality of element forming steps S100 can be collectively performed in advance. Therefore, the number of times the film formation step S120a is performed can be reduced with respect to the number of times the element formation step S100 is performed. This makes it possible to simplify the manufacturing process.
  • FIG. 10(a) and 10(b) are schematic cross-sectional views showing an example of a method for manufacturing the power generation element 1 according to this embodiment.
  • This embodiment differs from the above-described embodiments in that the film formation step S120a includes a processing step S120d for smoothing the surface of the non-conductor material 142a after the coating step S120b.
  • the steps other than the film formation step S120a are the same as the steps described above, and thus descriptions thereof are omitted.
  • the film forming step S120a includes a processing step S120d.
  • the film forming step S120a may include a curing step S120c after the coating step S120b, for example, after the processing step S120d, and the curing step S120c may be divided into a plurality of steps.
  • the surface of the non-conductor material 142a is smoothed.
  • the processing member 19 is applied to the second main surface 142g of the non-conductor material 142a, and, for example, as shown in FIG.
  • the surface of the non-conducting material 142a may be smoothed by a drawing method.
  • a water-repellent glass material is used as the processing member 19, for example.
  • the dotted arrow in FIG. 10(a) illustrates the direction in which the glass material is pulled out.
  • the processing step S120d is performed after the applying step S120b and before forming the second electrode 12 on the second main surface 142g of the non-conductor material 142a, as shown in FIGS. 10A and 10B, for example.
  • the surface of the second main surface 142g of the non-conductor material 142a may be smoothed.
  • the contact area of the interface between the non-conductor layer 142 and the second electrode 12 can be easily improved. Therefore, variation in resistance at the interface between the non-conductor layer 142 and the second electrode 12 can be suppressed. This makes it possible to improve the amount of power generation.
  • the surface of the first main surface 142f of the non-conductor material 142a is smoothed. May be processed.
  • the contact area of the interface between the non-conductor layer 142 and the first electrode 11 can be easily improved. Therefore, variation in resistance at the interface between the non-conductor layer 142 and the first electrode 11 can be suppressed. This makes it possible to improve the amount of power generation.
  • the film forming step S120a includes a processing step S120d for smoothing the surface of the non-conductor material 142a after the coating step S120b. That is, the contact area of the interface between the non-conductor layer 142 and the first electrode 11 or the interface between the non-conductor layer 142 and the second electrode 12 can be easily improved. Therefore, variations in resistance at the interfaces between the non-conductor layer 142 and the electrodes 11 and 12 can be suppressed. This makes it possible to further improve the power generation amount.
  • FIG. 11(a) is a flowchart showing an example of the method for manufacturing the power generation element 1 according to this embodiment
  • FIG. 11(b) is a flowchart showing a first modification of the method for manufacturing the power generation element 1 according to this embodiment. is.
  • This embodiment differs from the above-described embodiments in that the film formation step S120a includes a drying step S120e for removing the diluent contained in the non-conductor material 142a after the coating step S120b.
  • the steps other than the film formation step S120a are the same as the steps described above, and thus descriptions thereof are omitted.
  • the film formation step S120a includes a drying step S120e, as shown in FIGS. 11(a) to 11(b), for example.
  • the film forming step S120a may include a curing step S120c after the coating step S120b, for example, after the drying step S120e, and the curing step S120c may be divided into a plurality of steps.
  • the drying step S120e removes the diluent contained in the non-conducting material 142a, for example after the applying step 120b.
  • the drying step S120e is performed using a known drying device such as a hot air drying furnace.
  • the drying step S120e may not, for example, completely remove the diluent contained in the non-conductive material 142a, leaving a diluent residue.
  • the drying step S120e is performed before or after at least one of the first electrode forming step S110, the applying step S120b, the substrate separation step S120b', the processing step S120d, and the second electrode forming step S130, if the drying step S120e is after the coating step S120b. It may be divided into multiple parts and implemented.
  • the drying step S120e may be performed, for example, before the first electrode forming step S110.
  • the first electrode 11 is not affected by the drying of the non-conducting material 142a. Therefore, change in the work function of the first electrode 11 can be suppressed. This makes it possible to improve the amount of power generation.
  • the drying step S120e may be performed, for example, before the second electrode forming step S130.
  • the diluent is less likely to remain than when the second electrode 12 is formed on the second main surface 142g of the non-conductor material 142a. That is, the region containing the diluent in the intermediate portion 14 can be reduced, and the movement of the fine particles 141 via the diluent can be suppressed. Therefore, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles 141 on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
  • the drying step S120e may be performed, for example, after the second electrode forming step S130.
  • the contact area between the non-conductor layer 142 and the second electrode 12 can be easily improved compared to the case where the second electrode 12 is not formed on the second main surface 142g of the non-conductor material 142a. Therefore, variations in resistance at the interfaces between the non-conductor layer 142 and the electrodes 11 and 12 can be suppressed. This makes it possible to improve the amount of power generation.
  • the film forming step S120a includes a drying step S120e for removing the diluent contained in the non-conductor material 142a after the applying step 120b. That is, the region containing the diluent in the non-conductor layer 142 can be reduced, and the movement of the fine particles 141 via the diluent can be suppressed. Therefore, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles 141 on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
  • the power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Some embodiments of the electronic device are described below.
  • FIGS. 13(a) to 13(d) are schematic block diagrams showing an example of an electronic device 500 including the power generation element 1.
  • FIG. 13(e) to 13(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1.
  • FIG. 13(e) to 13(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1.
  • an electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502 and an auxiliary power supply 503 .
  • Each of the electronic device 500 and the electronic component 501 is an electrical device.
  • the electronic component 501 is driven using the main power supply 502 as a power supply.
  • Examples of the electronic component 501 include, for example, a CPU, motors, sensor terminals, lighting, and the like. If electronic component 501 is, for example, a CPU, electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). If the electronic components 501 include at least one of, for example, motors, sensor terminals, and lighting, the electronic device 500 includes electronic devices that can be controlled by an external master or person.
  • the main power supply 502 is, for example, a battery. Batteries also include rechargeable batteries. A plus terminal (+) of the main power supply 502 is electrically connected to a Vcc terminal (Vcc) of the electronic component 501 . A negative terminal ( ⁇ ) of the main power supply 502 is electrically connected to a GND terminal (GND) of the electronic component 501 .
  • Vcc Vcc terminal
  • GND GND terminal
  • the auxiliary power supply 503 is the power generation element 1.
  • the power generation element 1 includes at least one power generation element 1 described above.
  • the auxiliary power supply 503 is used, for example, together with the main power supply 502, and is used as a power supply for assisting the main power supply 502 or as a power supply for backing up the main power supply 502 when the capacity of the main power supply 502 runs out. be able to. If the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
  • the main power supply 502 may be the power generating element 1.
  • An electronic device 500 shown in FIG. 13B includes a power generation element 1 used as a main power supply 502 and an electronic component 501 that can be driven using the power generation element 1 .
  • the power generation element 1 is an independent power supply (for example, an off-grid power supply). Therefore, the electronic device 500 can be, for example, an independent type (standalone type).
  • the power generating element 1 is of the energy harvesting type.
  • the electronic device 500 shown in FIG. 13B does not require battery replacement.
  • the electronic component 501 may include the power generation element 1 as shown in FIG. 13(c).
  • the anode of the power generation element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown).
  • the cathode of the power generation element 1 is electrically connected to, for example, Vcc wiring of a circuit board (not shown).
  • the power generating element 1 can be used as, for example, an auxiliary power source 503 for the electronic component 501 .
  • the power generation element 1 can be used as the main power source 502 of the electronic component 501, for example.
  • the electronic device 500 may include the power generator 100.
  • the power generation device 100 includes a power generation element 1 as a source of electrical energy.
  • the embodiment shown in FIG. 13(d) includes a power generation element 1 in which an electronic component 501 is used as a main power supply 502.
  • the embodiment shown in FIG. 13(h) comprises a generator 100 in which electronic component 501 is used as the main power source.
  • electronic component 501 has an independent power supply. Therefore, the electronic component 501 can be made self-supporting, for example. Free-standing electronic component 501 can be effectively used, for example, in an electronic device that includes multiple electronic components and in which at least one electronic component is separate from another electronic component.
  • An example of such electronics 500 is a sensor.
  • the sensor has a sensor terminal (slave) and a controller (master) remote from the sensor terminal. Each of the sensor terminals and controller is an electronic component 501 .
  • a sensor terminal can also be regarded as one of the electronic devices 500 .
  • the sensor terminals considered electronic equipment 500 further include, for example, IoT wireless tags, etc., in addition to sensor terminals of sensors.
  • the electronic device 500 includes a power generation element 1 that converts thermal energy into electrical energy, and uses the power generation element 1 as a power source. and an electronic component 501 that can be driven.
  • the electronic device 500 may be an autonomous type with an independent power supply.
  • autonomous electronic devices include, for example, robots.
  • the electronic component 501 with the power generation element 1 or the power generation device 100 may be autonomous with an independent power supply.
  • autonomous electronic components include, for example, movable sensor terminals.

Abstract

[Problem] To provide a method for producing a power generation element, a power generation element, a power generation device and an electronic device which make it possible to improve power generation amount stability. [Solution] A method for producing a power generation element which makes it unnecessary to have a temperature difference between electrodes (first electrode 11, second electrode 12) when converting thermal energy to electric energy, said method being characterized by being provided with an element formation step for forming a first electrode 11, a second electrode 12 which has a different work function than does the first electrode 11, and an intermediate part 14 which is sandwiched between the first electrode 11 and the second electrode 12, and in that the intermediate part 14 includes a non-conductor layer which contains fine particles therein and supports the first electrode 11 and the second electrode 12. The element formation step is characterized by including a film formation step for forming the non-conductor layer.

Description

発電素子の製造方法、発電素子、発電装置、及び電子機器Method for manufacturing power generation element, power generation element, power generation device, and electronic device
 この発明は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法、発電素子、発電装置、及び電子機器に関する。 The present invention relates to a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic device that eliminate the need for a temperature difference between electrodes when converting thermal energy into electrical energy.
 近年、熱エネルギーを利用して電気エネルギーを生成する発電素子の開発が盛んに行われている。特に、電極間の温度差を不要とした発電素子に関し、例えば特許文献1に開示された発電素子等が提案されている。このような発電素子は、電極間に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。 In recent years, the development of power generation elements that generate electrical energy using thermal energy has been actively carried out. In particular, regarding a power generation element that does not require a temperature difference between electrodes, for example, a power generation element disclosed in Patent Document 1 has been proposed. Such a power generating element is expected to be used in various applications as compared with a configuration in which electric energy is generated by utilizing a temperature difference between electrodes.
 特許文献1には、フェムト秒パルスレーザーを用いて溶媒又は有機溶媒に分散されたナノ粒子を生成する生成工程と、第1基板に、第1電極部を形成する第1電極部形成工程と、第2基板に、第2電極部を形成する第2電極部形成工程と、前記第1電極部と前記第2電極部との間に前記溶媒又は前記有機溶媒を挟んだ状態で前記第1基板と前記第2基板とを接合する接合工程と、を備える発電素子の製造方法等が開示されている。 Patent Document 1 discloses a generation step of generating nanoparticles dispersed in a solvent or an organic solvent using a femtosecond pulse laser, a first electrode portion forming step of forming a first electrode portion on a first substrate, a second electrode portion forming step of forming a second electrode portion on a second substrate; and the first substrate with the solvent or the organic solvent sandwiched between the first electrode portion and the second electrode portion. and a bonding step of bonding the second substrate and the like.
特許第6781437号公報Japanese Patent No. 6781437
 ここで、特許文献1に開示された発電素子のように、ナノ粒子等の微粒子を分散させた溶媒を電極間に設けた場合、経時に伴い微粒子が一方の電極側に偏在する恐れがある。このため、電極間における電子の移動量が減少し、安定した発電量を得られない懸念が挙げられる。 Here, when a solvent in which fine particles such as nanoparticles are dispersed is provided between the electrodes as in the power generation element disclosed in Patent Document 1, the fine particles may be unevenly distributed on one electrode side over time. For this reason, there is a concern that the amount of electron transfer between the electrodes is reduced, and a stable amount of power generation cannot be obtained.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、発電量の安定化を図ることができる発電素子の製造方法、発電素子、発電装置、及び電子機器を提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and its object is to provide a method for manufacturing a power generation element, a power generation element, a power generation device, and a power generation device capable of stabilizing the amount of power generation. It is to provide an electronic device.
 第1発明に係る発電素子の製造方法は、熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法であって、第1電極、前記第1電極とは異なる仕事関数を有する第2電極、及び前記第1電極と前記第2電極との間に挟まれた中間部、をそれぞれ形成する素子形成工程を備え、前記中間部は、微粒子を内包し、前記第1電極及び前記第2電極を支持する不導体層を含むことを特徴とする。 A method for manufacturing a power generation element according to a first aspect of the present invention is a method for manufacturing a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy, wherein the first electrode and the first electrode are An element forming step of forming a second electrode having a different work function and an intermediate portion sandwiched between the first electrode and the second electrode, wherein the intermediate portion contains fine particles, and the A non-conductor layer supporting the first electrode and the second electrode is included.
 第2発明に係る発電素子の製造方法は、第1発明において、前記素子形成工程は、前記不導体層を成膜する成膜工程を含むことを特徴とする。 A method of manufacturing a power generation element according to a second invention is characterized in that, in the first invention, the element forming step includes a film forming step of forming the nonconductor layer.
 第3発明に係る発電素子の製造方法は、第2発明において、前記成膜工程は、不導体材料を塗布する塗布工程を含むことを特徴とする。 A method for manufacturing a power generation element according to a third invention is characterized in that, in the second invention, the film forming step includes a coating step of coating a non-conductor material.
 第4発明に係る発電素子の製造方法は、第3発明において、前記成膜工程は、前記塗布工程の後、前記不導体材料を硬化し、前記不導体層を成膜する硬化工程を含むことを特徴とする。 A method for manufacturing a power generating element according to a fourth aspect of the invention is the method according to the third aspect, wherein the film formation step includes a curing step of curing the nonconductor material to form the nonconductor layer after the coating step. characterized by
 第5発明に係る発電素子の製造方法は、第3発明又は第4発明において、前記成膜工程は、前記第1電極の上に前記不導体層を成膜することを含むことを特徴とする。 A method for manufacturing a power generation element according to a fifth aspect of the invention is characterized in that, in the third aspect of the invention or the fourth aspect of the invention, the film forming step includes forming the nonconductor layer on the first electrode. .
 第6発明に係る発電素子の製造方法は、第3発明又は第4発明において、前記成膜工程は、基材の上に前記不導体層を成膜することを含むことを特徴とする。 A method for manufacturing a power generating element according to a sixth invention is characterized in that, in the third invention or the fourth invention, the film forming step includes forming the nonconductor layer on a substrate.
 第7発明に係る発電素子の製造方法は、第6発明において、前記素子形成工程は、前記基材を離間する基材離間工程と、前記基材離間工程の前に、前記第1電極を形成する第1電極形成工程と、前記基材離間工程の後に、前記第2電極を形成する第2電極形成工程と、を含むことを特徴とする。 A method for manufacturing a power generating element according to a seventh aspect of the invention is characterized in that, in the sixth aspect of the invention, the element forming step comprises: a substrate separating step of separating the substrate; and forming the first electrode before the substrate separating step. and a second electrode forming step of forming the second electrode after the substrate separating step.
 第8発明に係る発電素子の製造方法は、第6発明において、前記素子形成工程は、前記基材を離間する基材離間工程と、前記基材離間工程の後に、前記第1電極を形成する第1電極形成工程と、前記基材離間工程の後に、前記第2電極を形成する第2電極形成工程と、を含むことを特徴とする。 A method for manufacturing a power generating element according to an eighth aspect of the invention is the method according to the sixth aspect, wherein the element forming step includes forming the first electrode after the substrate separating step of separating the substrate and the substrate separating step. It is characterized by including a first electrode forming step and a second electrode forming step of forming the second electrode after the substrate separating step.
 第9発明に係る発電素子の製造方法は、第3発明~第8発明の何れかにおいて、前記成膜工程は、前記塗布工程の後、前記不導体材料の表面を平滑に加工する加工工程を含むことを特徴とする。 A method for manufacturing a power generation element according to a ninth aspect of the invention is the method according to any one of the third to eighth aspects of the invention, wherein the film forming step includes a processing step of smoothing the surface of the non-conductor material after the coating step. characterized by comprising
 第10発明に係る発電素子の製造方法は、第3発明~第9発明の何れかにおいて、前記成膜工程は、前記塗布工程の後、前記不導体材料に含まれる希釈剤を除去する乾燥工程を含むことを特徴とする。 A method for manufacturing a power generation element according to a tenth invention is the method according to any one of the third invention to the ninth invention, wherein the film forming step is a drying step of removing a diluent contained in the non-conductor material after the coating step. characterized by comprising
 第11発明に係る発電素子は、第1発明記載の発電素子の製造方法により形成されることを特徴とする。 A power generation element according to the eleventh invention is characterized by being formed by the method for manufacturing a power generation element according to the first invention.
 第12発明に係る発電装置は、第11発明における発電素子と、前記第1電極と電気的に接続された第1配線と、前記第2電極と電気的に接続された第2配線と、を備えることを特徴とする。 A power generating device according to a twelfth aspect of the invention includes the power generating element according to the eleventh aspect of the invention, a first wiring electrically connected to the first electrode, and a second wiring electrically connected to the second electrode. It is characterized by having
 第13発明に係る電子機器は、第11発明における発電素子と、前記発電素子を電源に用いて駆動する電子部品とを備えることを特徴とする。 An electronic device according to a thirteenth invention is characterized by comprising the power generation element according to the eleventh invention and an electronic component driven by using the power generation element as a power supply.
 第1発明~第10発明によれば、中間部は、微粒子を内包する不導体層を含む。即ち、不導体層によって、電極間における微粒子の移動が抑制される。このため、経時に伴い微粒子が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 According to the first to tenth inventions, the intermediate portion includes a non-conductor layer containing fine particles. That is, the non-conductor layer suppresses movement of the fine particles between the electrodes. For this reason, it is possible to prevent the fine particles from becoming unevenly distributed on one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 また、第1発明~第10発明によれば、中間部は、第1電極及び第2電極を支持する不導体層を含む。このため、不導体層の代わりに溶媒等を用いた場合に比べて、電極間の距離(ギャップ)を維持するための支持部等を設ける必要がなく、支持部の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量の向上を図ることが可能となる。 Further, according to the first to tenth inventions, the intermediate portion includes a non-conductor layer that supports the first electrode and the second electrode. Therefore, compared to the case where a solvent or the like is used instead of the non-conductive layer, there is no need to provide a support portion or the like for maintaining the distance (gap) between the electrodes, and the gap resulting from the formation accuracy of the support portion is eliminated. Distortion can be removed. This makes it possible to improve the amount of power generation.
 特に、第2発明によれば、素子形成工程は、不導体層を成膜する成膜工程を含む。即ち、不導体層の材料を層状に加工して積層する場合に比べ、不導体層の厚さを薄く形成し易くなり、電極間の距離(ギャップ)を狭くし易い。このため、電極間に発生する電界を大きくすることができる。これにより、発電量のさらなる向上を図ることが可能となる。 In particular, according to the second invention, the element forming step includes a film forming step of forming a non-conductor layer. That is, compared with the case where the material of the non-conductor layer is processed into layers and laminated, it becomes easier to form the non-conductor layer thinner and to narrow the distance (gap) between the electrodes. Therefore, the electric field generated between the electrodes can be increased. This makes it possible to further improve the power generation amount.
 特に、第3発明によれば、成膜工程は、不導体材料を塗布する塗布工程を含む。即ち、真空装置を必要とせず、乾式成膜法と比べて大きな面積に対して不導体層を成膜することができる。このため、発電素子の大型化を図ることができる。これにより、発電量のさらなる向上を図ることができる。 In particular, according to the third invention, the film forming step includes a coating step of coating a non-conductor material. That is, the non-conductor layer can be formed over a larger area than the dry film forming method without requiring a vacuum device. Therefore, it is possible to increase the size of the power generating element. This makes it possible to further improve the power generation amount.
 特に、第4発明によれば、成膜工程は、塗布工程の後、不導体材料を硬化し、不導体層を成膜する硬化工程を含む。即ち、硬化された不導体層によって、電極間における微粒子の移動がさらに抑制される。このため、経時に伴い微粒子が一方の電極側に偏在し、電子の移動量が減少することをさらに抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 In particular, according to the fourth invention, the film formation step includes a curing step of curing the non-conductor material to form a non-conductor layer after the application step. That is, the hardened non-conductor layer further suppresses movement of the particles between the electrodes. For this reason, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
 特に、第5発明によれば、成膜工程は、第1電極の上に不導体層を成膜することを含む。即ち、不導体層と第1電極との界面の接触面積を向上し易くすることができる。このため、不導体層と第1電極との界面における抵抗のバラつきを抑制することができる。これにより、発電量のさらなる向上を図ることが可能となる。 In particular, according to the fifth invention, the film forming step includes forming a non-conductor layer on the first electrode. That is, it is possible to easily improve the contact area of the interface between the non-conductor layer and the first electrode. Therefore, it is possible to suppress variations in resistance at the interface between the non-conductor layer and the first electrode. This makes it possible to further improve the power generation amount.
 特に、第6発明によれば、成膜工程は、基材の上に不導体層を成膜することを含む。即ち、不導体層の成膜に伴う影響が第1電極に及ばない。このため、例えば第1電極の仕事関数の変化等の品質低下を抑制することができる。これにより、発電量のさらなる向上を図ることが可能となる。 In particular, according to the sixth invention, the film forming step includes forming a non-conductor layer on the substrate. That is, the first electrode is not affected by the formation of the non-conductor layer. For this reason, it is possible to suppress deterioration in quality such as a change in the work function of the first electrode, for example. This makes it possible to further improve the power generation amount.
 特に、第7発明によれば、素子形成工程は、基材を離間する基材離間工程と、基材離間工程の前に、第1電極を形成する第1電極形成工程と、基材離間工程の後に、第2電極を形成する第2電極形成工程と、を含む。即ち、第1電極が形成される前に、不導体層の表面のうち第1電極と接する表面が大気にさらされる時間を低減できる。このため、不導体層への異物の混入等を抑制することができる。これにより、良品率の向上を図ることが可能となる。 In particular, according to the seventh invention, the element forming step includes a substrate separating step of separating the substrates, a first electrode forming step of forming the first electrode before the substrate separating step, and a substrate separating step. and a second electrode forming step of forming a second electrode after. That is, before the first electrode is formed, the time during which the surface of the non-conductor layer in contact with the first electrode is exposed to the atmosphere can be reduced. For this reason, it is possible to suppress foreign matter from entering the non-conductor layer. As a result, it is possible to improve the non-defective product rate.
 特に、第8発明によれば、素子形成工程は、基材を離間する基材離間工程と、基材離間工程の後に、第1電極を形成する第1電極形成工程と、基材離間工程の後に、第2電極を形成する第2電極形成工程と、を含む。即ち、基材を離間した後に第1電極及び第2電極を自由に選択できるため、複数の素子形成工程に含まれる成膜工程を、予め一括で実施することができる。このため、素子形成工程の実施回数に対する、成膜工程の実施回数を低減できる。これにより、製造工程の簡略化を図ることが可能となる。 In particular, according to the eighth invention, the element forming step includes a substrate separating step of separating the substrates, a first electrode forming step of forming the first electrode after the substrate separating step, and a substrate separating step. and a second electrode forming step of forming a second electrode later. That is, since the first electrode and the second electrode can be freely selected after separating the base material, the film forming process included in the plurality of element forming processes can be collectively carried out in advance. Therefore, the number of times the film forming process is performed can be reduced with respect to the number of times the element forming process is performed. This makes it possible to simplify the manufacturing process.
 特に、第9発明によれば、成膜工程は、塗布工程の後、不導体材料の表面を平滑に加工する加工工程を含む。即ち、不導体層と第1電極との界面、又は不導体層と第2電極との界面の接触面積を向上し易くすることができる。このため、不導体層と各電極との界面における抵抗のバラつきを抑制することができる。これにより、発電量のさらなる向上を図ることが可能となる。 In particular, according to the ninth invention, the film forming step includes a processing step of smoothing the surface of the non-conductor material after the coating step. That is, the contact area of the interface between the non-conductor layer and the first electrode or the interface between the non-conductor layer and the second electrode can be easily improved. Therefore, it is possible to suppress variation in resistance at the interface between the non-conductor layer and each electrode. This makes it possible to further improve the power generation amount.
 特に、第10発明によれば、成膜工程は、塗布工程の後、不導体材料に含まれる希釈剤を除去する乾燥工程を含む。即ち、不導体層に希釈剤が含まれる領域を低減でき、希釈剤を介した微粒子の移動を抑制することができる。このため、経時に伴い微粒子が一方の電極側に偏在し、電子の移動量が減少することをさらに抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 In particular, according to the tenth invention, the film forming process includes a drying process for removing the diluent contained in the non-conductor material after the coating process. That is, the region in which the diluent is contained in the non-conductor layer can be reduced, and the movement of fine particles via the diluent can be suppressed. For this reason, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
 特に、第11発明によれば、発電量の安定化を図る発電素子の実現が可能となる。 In particular, according to the eleventh invention, it is possible to realize a power generation element that stabilizes the power generation amount.
 また、第11発明によれば、発電量の向上を図る発電素子の実現が可能となる。 Also, according to the eleventh invention, it is possible to realize a power generation element that improves the amount of power generation.
 特に、第12発明によれば、発電装置は、第11発明における発電素子を備える。このため、発電量の安定化を図る発電装置の実現が可能となる。 In particular, according to the twelfth invention, the power generator includes the power generation element according to the eleventh invention. Therefore, it is possible to realize a power generation device that stabilizes the power generation amount.
 特に、第13発明によれば、電子機器は、第11発明における発電素子を備える。このため、発電量の安定化を図る電子機器の実現が可能となる。 In particular, according to the thirteenth invention, an electronic device includes the power generation element according to the eleventh invention. Therefore, it is possible to realize an electronic device that stabilizes the amount of power generation.
図1(a)は、第1実施形態における発電素子、及び発電装置の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式断面図である。FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element and a power generation device in the first embodiment, and FIG. 1(b) is a schematic cross-sectional view along AA in FIG. 1(a). is. 図2は、中間部の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the intermediate portion. 図3(a)は、第1実施形態における発電素子の製造方法の一例を示すフローチャートであり、図3(b)は、第1実施形態における発電素子の製造方法の第1変形例を示すフローチャートである。FIG. 3(a) is a flowchart showing an example of a method for manufacturing a power generating element according to the first embodiment, and FIG. 3(b) is a flowchart showing a first modification of the method for manufacturing a power generating element according to the first embodiment. is. 図4(a)~図4(d)は、第1実施形態における発電素子の製造方法の一例を示す模式断面図である。4(a) to 4(d) are schematic cross-sectional views showing an example of the method for manufacturing the power generation element according to the first embodiment. 図5は、第2実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 5 is a flow chart showing an example of a method for manufacturing a power generation element according to the second embodiment. 図6(a)~図6(b)は、第2実施形態における発電素子の製造方法の一例を示す模式断面図である。6(a) and 6(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the second embodiment. 図7は、第3実施形態における発電素子の製造方法の一例を示すフローチャートである。FIG. 7 is a flow chart showing an example of a method for manufacturing a power generating element according to the third embodiment. 図8(a)~図8(e)は、第3実施形態における発電素子の製造方法の一例を示す模式断面図である。8(a) to 8(e) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the third embodiment. 図9(a)~図9(b)は、第4実施形態における発電素子の製造方法の一例を示す模式断面図である。9(a) and 9(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the fourth embodiment. 図10(a)~図10(b)は、第5実施形態における発電素子の製造方法の一例を示す模式断面図である。10(a) and 10(b) are schematic cross-sectional views showing an example of a method for manufacturing a power generation element according to the fifth embodiment. 図11(a)は、第6実施形態における発電素子の製造方法の一例を示すフローチャートであり、図11(b)は、第6実施形態における発電素子の製造方法の第1変形例を示すフローチャートである。FIG. 11(a) is a flow chart showing an example of a method for manufacturing a power generation element according to the sixth embodiment, and FIG. 11(b) is a flow chart showing a first modification of the method for manufacturing a power generation element according to the sixth embodiment. is. 図12(a)は、第1実施形態における発電素子、及び発電装置の第1変形例を示す模式断面図であり、図12(b)は、第1実施形態における発電素子、及び発電装置の第2変形例を示す模式断面図である。FIG. 12A is a schematic cross-sectional view showing a first modification of the power generation element and the power generation device in the first embodiment, and FIG. 12B is a schematic cross-sectional view of the power generation element and power generation device in the first embodiment. It is a schematic cross section which shows a 2nd modification. 図13(a)~図13(d)は、発電素子を備えた電子機器の例を示す模式ブロック図であり、図13(e)~図13(h)は、発電素子を含む発電装置を備えた電子機器の例を示す模式ブロック図である。FIGS. 13(a) to 13(d) are schematic block diagrams showing examples of electronic devices having power generation elements, and FIGS. 13(e) to 13(h) show power generation devices including power generation elements. It is a schematic block diagram which shows the example of the electronic device provided.
 以下、本発明の実施形態としての発電素子の製造方法、発電素子、発電装置、及び電子機器の一例について、図面を参照しながら説明する。なお、各図において、各電極が積層される高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図における構成は、説明のため模式的に記載されており、例えば各構成の大きさや、構成毎における大きさの対比等については、図とは異なってもよい。 Hereinafter, examples of a method for manufacturing a power generation element, a power generation element, a power generation device, and an electronic device as embodiments of the present invention will be described with reference to the drawings. In each figure, the height direction in which each electrode is stacked is defined as a first direction Z, and one planar direction that intersects, for example, is orthogonal to the first direction Z is defined as a second direction X. A third direction Y is another planar direction that intersects, for example, is orthogonal to each of the directions X. As shown in FIG. Also, the configuration in each drawing is schematically described for explanation, and for example, the size of each configuration and the comparison of the size of each configuration may differ from those in the drawings.
(第1実施形態:発電素子1、発電装置100)
 図1は、本実施形態における発電素子1、及び発電装置100の一例を示す模式図である。図1(a)は、本実施形態における発電素子1、及び発電装置100の一例を示す模式断面図であり、図1(b)は、図1(a)におけるA-Aに沿った模式断面図である。
(First Embodiment: Power Generation Element 1, Power Generation Device 100)
FIG. 1 is a schematic diagram showing an example of a power generation element 1 and a power generation device 100 in this embodiment. FIG. 1(a) is a schematic cross-sectional view showing an example of a power generation element 1 and a power generation device 100 in this embodiment, and FIG. 1(b) is a schematic cross section along AA in FIG. 1(a). It is a diagram.
(発電装置100)
 図1(a)に示すように、発電装置100は、発電素子1と、第1配線101と、第2配線102とを備える。発電素子1は、熱エネルギーを電気エネルギーに変換する。このような発電素子1を備えた発電装置100は、例えば、図示せぬ熱源に搭載又は設置され、熱源の熱エネルギーを元として、発電素子1から発生した電気エネルギーを、第1配線101及び第2配線102を介して負荷Rへ出力する。負荷Rの一端は第1配線101と電気的に接続され、他端は第2配線102と電気的に接続される。負荷Rは、例えば電気的な機器を示す。負荷Rは、例えば発電装置100を主電源又は補助電源に用いて駆動される。
(Power generator 100)
As shown in FIG. 1( a ), the power generation device 100 includes a power generation element 1 , first wiring 101 and second wiring 102 . The power generation element 1 converts thermal energy into electrical energy. For example, the power generation device 100 including such a power generation element 1 is mounted or installed on a heat source (not shown), and based on the thermal energy of the heat source, the electrical energy generated from the power generation element 1 is transferred to the first wiring 101 and the second wiring 101. 2 output to the load R via the wiring 102 . One end of the load R is electrically connected to the first wiring 101 and the other end is electrically connected to the second wiring 102 . A load R indicates, for example, an electrical device. The load R is driven, for example, using the generator 100 as a main power source or an auxiliary power source.
 発電素子1の熱源としては、例えば、CPU(Central Processing Unit)等の電子デバイス又は電子部品、LED(Light Emitting Diode)等の発光素子、自動車等のエンジン、工場の生産設備、人体、太陽光、及び環境温度等が挙げられる。例えば、電子デバイス、電子部品、発光素子、エンジン、及び生産設備等は、人工熱源である。人体、太陽光、及び環境温度等は自然熱源である。発電素子1を備えた発電装置100は、例えばIoT(Internet of Things)デバイス及びウェアラブル機器等のモバイル機器や自立型センサ端末の内部に設けることができ、電池の代替又は補助として用いることができる。さらに、発電装置100は、太陽光発電等のような、より大型の発電装置への応用も可能である。 Examples of heat sources for the power generation element 1 include electronic devices or electronic parts such as CPUs (Central Processing Units), light emitting elements such as LEDs (Light Emitting Diodes), engines such as automobiles, production equipment in factories, human bodies, sunlight, and environmental temperature. For example, electronic devices, electronic parts, light-emitting elements, engines, production equipment, etc. are artificial heat sources. The human body, sunlight, ambient temperature, etc. are natural heat sources. The power generation device 100 including the power generation element 1 can be provided inside mobile devices such as IoT (Internet of Things) devices and wearable devices and self-supporting sensor terminals, and can be used as an alternative or supplement to batteries. Furthermore, the power generation device 100 can also be applied to larger power generation devices such as solar power generation.
(発電素子1)
 発電素子1は、例えば、上記人工熱源が発した熱エネルギー、又は上記自然熱源が持つ熱エネルギーを電気エネルギーに変換し、電流を生成する。発電素子1は、発電装置100内に設けるだけでなく、発電素子1自体を、上記モバイル機器や上記自立型センサ端末等の内部に設けることもできる。この場合、発電素子1自体が、上記モバイル機器又は上記自立型センサ端末等の、電池の代替部品又は補助部品となり得る。
(Power generation element 1)
The power generation element 1 converts, for example, thermal energy generated by the artificial heat source or thermal energy possessed by the natural heat source into electrical energy to generate current. The power generation element 1 can be provided not only inside the power generation device 100, but also inside the mobile device, the self-contained sensor terminal, or the like. In this case, the power generation element 1 itself can serve as an alternative or auxiliary part of the battery, such as the mobile device or the self-contained sensor terminal.
 発電素子1は、例えば図1(a)に示すように、第1電極11と、第2電極12と、中間部14とを備える。発電素子1は、例えば第1基板15、及び第2基板16の少なくとも何れかを備えてもよい。 The power generation element 1 includes, for example, a first electrode 11, a second electrode 12, and an intermediate portion 14, as shown in FIG. 1(a). The power generation element 1 may include at least one of the first substrate 15 and the second substrate 16, for example.
 第1電極11及び第2電極12は、互いに対向して設けられる。第1電極11及び第2電極12は、それぞれ異なる仕事関数を有する。中間部14は、例えば図2に示すように、第1電極11と、第2電極12との間(ギャップG)を含む空間140に設けられる。 The first electrode 11 and the second electrode 12 are provided facing each other. The first electrode 11 and the second electrode 12 have different work functions. The intermediate portion 14 is provided in a space 140 including a gap G between the first electrode 11 and the second electrode 12, as shown in FIG. 2, for example.
 中間部14は、微粒子141と、不導体層142とを含む。不導体層142は、微粒子141を内包する。この場合、ギャップGにおける微粒子141の移動が抑制される。このため、経時に伴い微粒子141が一方の電極11、12側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 The intermediate portion 14 includes fine particles 141 and a non-conductor layer 142 . The non-conductor layer 142 contains the fine particles 141 . In this case, movement of the particles 141 in the gap G is suppressed. Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the side of one of the electrodes 11 and 12 over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 不導体層142は、例えば不導体材料142aを硬化させて形成される。不導体層142は、例えば固体を示す。不導体層142は、例えば希釈剤の残渣や、不導体材料142aの未硬化部を含んでもよい。また、微粒子141は、例えば不導体層142に分散された状態で固定される。この場合においても、上記と同様に、発電量の安定化を図ることが可能となる。 The non-conductor layer 142 is formed, for example, by curing a non-conductor material 142a. The non-conductor layer 142 exhibits a solid, for example. The non-conducting layer 142 may include, for example, diluent residue and uncured portions of the non-conducting material 142a. Also, the fine particles 141 are fixed in a dispersed state in the non-conductor layer 142, for example. In this case as well, it is possible to stabilize the power generation amount in the same manner as described above.
 中間部14は、第1電極11の上に設けられる。また、第2電極12は、不導体層142の上に設けられる。即ち、不導体層142は、第1電極11及び第2電極12を支持する。ここで、熱エネルギーを電気エネルギーに変換する際、電極間(第1電極11、第2電極12)の温度差を不要とする発電素子1では、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきを抑制することで、発電量の増加を図ることができる。この点、中間部として溶媒等の液体を用いる場合、ギャップGを維持するための支持部等を設ける必要がある。しかしながら、支持部等の形成に伴い、上記ギャップGのバラつきを大きくし得ることが懸念されていた。これに対し、本実施形態における発電素子1では、不導体層142は、第1電極11及び第2電極12を支持するため、ギャップGを維持するための支持部等を設ける必要がなく、支持部等の形成精度に起因するギャップのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。 The intermediate portion 14 is provided on the first electrode 11 . Also, the second electrode 12 is provided on the non-conductor layer 142 . That is, the non-conductor layer 142 supports the first electrode 11 and the second electrode 12 . Here, in the power generation element 1 that does not require a temperature difference between the electrodes (the first electrode 11 and the second electrode 12) when converting thermal energy into electrical energy, along the second direction X and the third direction Y By suppressing the variation in the gap G between the surfaces, it is possible to increase the amount of power generation. In this regard, when a liquid such as a solvent is used as the intermediate portion, it is necessary to provide a support portion or the like for maintaining the gap G. However, there has been a concern that the gap G may vary greatly with the formation of the supporting portion and the like. On the other hand, in the power generation element 1 of the present embodiment, the non-conductor layer 142 supports the first electrode 11 and the second electrode 12, so there is no need to provide a support portion or the like for maintaining the gap G, and the non-conductor layer 142 supports the first electrode 11 and the second electrode 12. It is possible to eliminate variations in the gap due to the accuracy of forming the parts. This makes it possible to increase the amount of power generation.
 また、ギャップを維持するための支持部等を設ける場合、支持部に微粒子141が接触し、支持部周辺に凝集する懸念が挙げられる。これに対し、本実施形態における発電素子1では、支持部に起因して微粒子141が凝集する状態を排除することができる。これにより、安定した発電量を維持することが可能となる。 Also, when providing a support or the like for maintaining the gap, there is a concern that the fine particles 141 may come into contact with the support and aggregate around the support. On the other hand, in the power generating element 1 of the present embodiment, it is possible to eliminate the state in which the fine particles 141 aggregate due to the supporting portion. This makes it possible to maintain a stable power generation amount.
 以下、各構成についての詳細を説明する。 The details of each configuration are described below.
 <第1電極11、第2電極12>
 第1電極11及び第2電極12は、例えば図1(a)に示すように、第1方向Zに離間する。各電極11、12は、例えば第2方向X及び第3方向Yに延在し、複数設けられてもよい。例えば1つの第2電極12は、複数の第1電極11とそれぞれ異なる位置で対向して設けられてもよい。また、例えば1つの第1電極11は、複数の第2電極12とそれぞれ異なる位置で対向して設けられてもよい。
<First Electrode 11, Second Electrode 12>
The first electrode 11 and the second electrode 12 are spaced apart in the first direction Z, as shown in FIG. 1(a), for example. Each of the electrodes 11 and 12 may extend in the second direction X and the third direction Y, for example, and may be provided in plurality. For example, one second electrode 12 may be provided facing the plurality of first electrodes 11 at different positions. Also, for example, one first electrode 11 may be provided facing the plurality of second electrodes 12 at different positions.
 第1電極11及び第2電極12の材料として、導電性を有する材料が用いられる。第1電極11及び第2電極12の材料として、例えばそれぞれ異なる仕事関数を有する材料が用いられる。なお、各電極11、12に同一の材料を用いてもよく、この場合、それぞれ異なる仕事関数を有していればよい。 A conductive material is used as the material of the first electrode 11 and the second electrode 12 . As materials for the first electrode 11 and the second electrode 12, for example, materials having different work functions are used. The same material may be used for the electrodes 11 and 12, and in this case, the electrodes 11 and 12 may have different work functions.
 各電極11、12の材料として、例えば鉄、アルミニウム、銅等の単一元素からなる材料が用いられるほか、例えば2種類以上の元素からなる合金の材料が用いられてもよい。各電極11、12の材料として、例えば非金属導電物が用いられてもよい。非金属導電物の例としては、シリコン(Si:例えばp型Si、あるいはn型Si)、及びグラフェン等のカーボン系材料等を挙げることができる。 As the material of the electrodes 11 and 12, for example, a material composed of a single element such as iron, aluminum, or copper may be used, or an alloy material composed of, for example, two or more elements may be used. A non-metallic conductor, for example, may be used as the material of the electrodes 11 and 12 . Examples of nonmetallic conductors include silicon (Si: for example, p-type Si or n-type Si) and carbon-based materials such as graphene.
 第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上1μm以下である。第1電極11及び第2電極12の第1方向Zに沿った厚さは、例えば4nm以上50nm以下でもよい。 The thickness of the first electrode 11 and the second electrode 12 along the first direction Z is, for example, 4 nm or more and 1 μm or less. The thickness of the first electrode 11 and the second electrode 12 along the first direction Z may be, for example, 4 nm or more and 50 nm or less.
 第1電極11と、第2電極12との間の距離を示すギャップGは、不導体層142の厚さを変更することで任意に設定することができる。例えばギャップGを狭くすることで、各電極11、12の間に発生する電界を大きくすることができるため、発電素子1の発電量を増加させることができる。また、例えばギャップGを狭くすることで、発電素子1の第1方向Zに沿った厚さを薄くすることができる。 A gap G that indicates the distance between the first electrode 11 and the second electrode 12 can be arbitrarily set by changing the thickness of the non-conductor layer 142 . For example, by narrowing the gap G, the electric field generated between the electrodes 11 and 12 can be increased, so that the power generation amount of the power generation element 1 can be increased. Further, for example, by narrowing the gap G, the thickness of the power generation element 1 along the first direction Z can be reduced.
 ギャップGは、例えば500μm以下の有限値である。ギャップGは、例えば10nm以上1μm以下である。例えばギャップGが200nm以下の場合、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきに起因する発電量の低下につながり得る。また、ギャップGが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、ギャップGは、200nmよりも大きく、1μm以下であることが好ましい。 The gap G is a finite value of 500 μm or less, for example. The gap G is, for example, 10 nm or more and 1 μm or less. For example, if the gap G is 200 nm or less, variations in the gap G on the surfaces along the second direction X and the third direction Y may lead to a decrease in the power generation amount. Also, if the gap G is larger than 1 μm, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the gap G is preferably larger than 200 nm and 1 μm or less.
 <中間部14>
 中間部14は、例えば図1(b)に示すように、第2方向X及び第3方向Yに沿った平面に延在する。中間部14は、各電極11、12の間に形成された空間140内に設けられる。中間部14は、各電極11、12の互いに対向する主面に接するほか、例えば各電極11、12の側面に接してもよい。
<Intermediate part 14>
The intermediate portion 14 extends on a plane along the second direction X and the third direction Y, as shown in FIG. 1B, for example. The intermediate portion 14 is provided within a space 140 formed between the electrodes 11 , 12 . The intermediate portion 14 may be in contact with the main surfaces of the electrodes 11 and 12 facing each other, and may also be in contact with the side surfaces of the electrodes 11 and 12, for example.
 微粒子141は、例えば不導体層142に分散され、一部が不導体層142から露出してもよい。微粒子141は、例えばギャップG内に充填され、微粒子141の隙間に不導体層142が充填されてもよい。微粒子141の粒子径は、例えばギャップGよりも小さい。微粒子141の粒子径は、例えばギャップGの1/10以下の有限値とされる。微粒子141の粒子径を、ギャップGの1/10以下とすると、空間140内に微粒子141を含む中間部14を、形成しやすくなる。これにより、発電素子1を生成する際、作業性を向上させることが可能となる。 The fine particles 141 may be dispersed, for example, in the non-conductor layer 142 and partially exposed from the non-conductor layer 142 . The particles 141 may be filled, for example, in the gap G, and the gaps between the particles 141 may be filled with the non-conductor layer 142 . The particle diameter of the fine particles 141 is smaller than the gap G, for example. The particle diameter of the fine particles 141 is set to a finite value of 1/10 or less of the gap G, for example. If the particle diameter of the fine particles 141 is set to 1/10 or less of the gap G, it becomes easier to form the intermediate portion 14 containing the fine particles 141 in the space 140 . This makes it possible to improve the workability when generating the power generation element 1 .
 ここで、「微粒子」とは、複数の粒子を含んだものを示す。微粒子141は、例えば2nm以上1000nm以下の粒子径を有する粒子を含む。微粒子141は、例えば、メディアン径(中央径:D50)が3nm以上8nm以下の粒子径を有する粒子を含んでもよいほか、例えば平均粒径が3nm以上8nm以下の粒子径を有する粒子を含んでもよい。メディアン径又は平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、動的光散乱法を用いた粒度分布計測器(例えばMalvern Panalytical 製ゼータサイザーUltra等)を用いればよい。 Here, "fine particles" refer to those containing multiple particles. The fine particles 141 include particles having a particle diameter of, for example, 2 nm or more and 1000 nm or less. The fine particles 141 may include, for example, particles having a median diameter (median diameter: D50) of 3 nm or more and 8 nm or less, or particles having an average particle diameter of 3 nm or more and 8 nm or less. . The median diameter or average particle diameter can be measured, for example, by using a particle size distribution analyzer. As the particle size distribution measuring instrument, for example, a particle size distribution measuring instrument using a dynamic light scattering method (eg, Zetasizer Ultra manufactured by Malvern Panalytical, etc.) may be used.
 微粒子141は、例えば導電物を含み、用途に応じて任意の材料が用いられる。微粒子141は、1種類の材料を含むほか、用途に応じて複数の材料を含んでもよい。微粒子141の仕事関数の値は、例えば、第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間にあるほか、例えば第1電極11の仕事関数の値と、第2電極12の仕事関数の値との間以外であってもよく、任意である。 The fine particles 141 include, for example, a conductive material, and any material is used depending on the application. The fine particles 141 may contain one type of material, or may contain a plurality of materials depending on the application. The work function value of the fine particles 141 is, for example, between the work function value of the first electrode 11 and the work function value of the second electrode 12. For example, the work function value of the first electrode 11 and It may be other than between the value of the work function of the second electrode 12 and is arbitrary.
 微粒子141は、例えば金属を含む。微粒子141として、例えば金、銀等の1種類の材料を含有する粒子のほか、例えば2種類以上の材料を含有した合金の粒子が用いられてもよい。 The fine particles 141 contain, for example, metal. As the fine particles 141, for example, in addition to particles containing one kind of material such as gold or silver, particles of an alloy containing two or more kinds of materials may be used.
 微粒子141は、例えば金属酸化物を含む。金属酸化物を含む微粒子141として、例えばジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe、Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、イットリア(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、セリア(CeO)、酸化アンチモン(Sb、Sb)、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸カルシウム(CaTiO)、チタン酸鉛(PbTiO)、チタン酸錫(SnTiO)、チタン酸カドミウム(CdTiO)、ジルコン酸ストロンチウム(SrZrO)などの、金属及びSiからなる群より選ばれる少なくとも何れか1つの元素の金属酸化物が用いられる。微粒子141は、例えば誘電体を含んでもよい。 Fine particles 141 contain, for example, a metal oxide. Examples of fine particles 141 containing metal oxides include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxides (Fe 2 O 3 , Fe 2 O 5 ), Copper oxide (CuO ) , zinc oxide (ZnO), yttria ( Y2O3 ), niobium oxide ( Nb2O5 ) , molybdenum oxide ( MoO3 ), indium oxide ( In2O3 ), tin oxide ( SnO2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), ceria (CeO 2 ), antimony oxide (Sb 2 O 5 , Sb 2 O 3 ), barium titanate ( BaTiO3 ), strontium titanate (SrTiO3), calcium titanate ( CaTiO3 ), lead titanate ( PbTiO3 ), tin titanate ( SnTiO3 ) , cadmium titanate ( CdTiO3 ) , strontium zirconate (SrZrO 3 ), or a metal oxide of at least one element selected from the group consisting of metals and Si. Particulate 141 may include, for example, a dielectric.
 微粒子141は、例えば磁性体を除く金属酸化物を含んでもよい。例えば微粒子141が、磁性体を示す金属酸化物を含む場合、発電素子1の設置された環境に起因して発生する磁場により、微粒子141の移動が制限され得る。このため、微粒子141は、磁性体を除く金属酸化物を含むことで、外部環境に起因する磁場の影響を受けずに、経時に伴う発電量の低下を抑制することが可能となる。 The fine particles 141 may contain, for example, metal oxides other than magnetic substances. For example, if the fine particles 141 contain a metal oxide exhibiting a magnetic substance, the movement of the fine particles 141 may be restricted by the magnetic field generated due to the environment in which the power generating element 1 is installed. Therefore, by including a metal oxide other than a magnetic material, the fine particles 141 are not affected by the magnetic field caused by the external environment, and it is possible to suppress the decrease in the power generation amount over time.
 微粒子141は、例えば被膜141aを表面に含む。被膜141aの厚さは、例えば20nm以下の有限値である。このような被膜141aを微粒子141の表面に設けることで、例えば不導体層142に分散させる際の凝集を抑制することができる。また、例えば電子が、第1電極11と微粒子141との間、複数の微粒子141の間、及び第2電極12と微粒子141との間を、トンネル効果等を利用して移動する可能性を高めることが可能となる。 The microparticles 141 include, for example, a coating 141a on the surface. The thickness of the coating 141a is, for example, a finite value of 20 nm or less. By providing such a film 141 a on the surface of the fine particles 141 , it is possible to suppress aggregation when dispersed in the non-conductor layer 142 , for example. Further, for example, electrons are more likely to move between the first electrode 11 and the microparticles 141, between the plurality of microparticles 141, and between the second electrode 12 and the microparticles 141 using the tunnel effect or the like. becomes possible.
 被膜141aとして、例えばチオール基又はジスルフィド基を有する材料が用いられる。チオール基を有する材料として、例えばドデカンチオール等のアルカンチオールが用いられる。ジスルフィド基を有する材料として、例えばアルカンジスルフィド等が用いられる。 A material having, for example, a thiol group or a disulfide group is used as the coating 141a. Alkanethiol such as dodecanethiol is used as the material having a thiol group. As a material having a disulfide group, for example, an alkane disulfide or the like is used.
 不導体層142は、各電極11、12の間に設けられ、例えば各電極11、12に接する。不導体層142の厚さは、例えば500μm以下の有限値である。不導体層142の厚さは、上述したギャップGの値やバラつきに影響する。このため、例えば不導体層142の厚さが200nm以下の場合、第2方向X及び第3方向Yに沿った面におけるギャップGのバラつきに起因する発電量の低下につながり得る。また、不導体層142の厚さが1μmよりも大きい場合、各電極11、12の間に発生する電界が弱まる可能性がある。これらのため、不導体層142の厚さは、200nmよりも大きく、1μm以下であることが好ましい。 The non-conductor layer 142 is provided between the electrodes 11 and 12 and is in contact with the electrodes 11 and 12, for example. The thickness of the non-conductor layer 142 is a finite value of 500 μm or less, for example. The thickness of the non-conductor layer 142 affects the value and variation of the gap G described above. Therefore, for example, when the thickness of the non-conductor layer 142 is 200 nm or less, variations in the gap G in the planes along the second direction X and the third direction Y may lead to a decrease in power generation. Also, if the thickness of the non-conductor layer 142 is greater than 1 μm, the electric field generated between the electrodes 11 and 12 may weaken. For these reasons, the thickness of the non-conductor layer 142 is preferably greater than 200 nm and equal to or less than 1 μm.
 不導体層142は、例えば1種類の材料を含むほか、用途に応じて複数の材料を含んでもよい。不導体層142として、例えばISO1043-1、又はJIS K 6899-1に記載の材料が用いられてもよい。不導体層142は、例えば異なる材料を含む複数の層を含み、各層を積層した構成を含んでもよい。不導体層142が複数の層を含む場合、例えば各層にはそれぞれ異なる材料を含む微粒子141が内包(例えば分散)されてもよい。 The non-conductor layer 142 may contain, for example, one type of material, or may contain a plurality of materials depending on the application. Materials described in ISO 1043-1 or JIS K 6899-1, for example, may be used as the non-conductor layer 142 . The non-conductor layer 142 may include a plurality of layers containing different materials, for example, and may include a structure in which each layer is laminated. When the non-conductor layer 142 includes a plurality of layers, for example, particles 141 containing different materials may be included (eg, dispersed) in each layer.
 不導体層142は、例えば絶縁性を有する。不導体層142に用いられる材料は、微粒子141の移動を抑制できる材料であれば、任意であるが、有機高分子化合物が好ましい。不導体層142が有機高分子化合物を含む場合、不導体層142をフレキシブルに形成できるため、湾曲や屈曲等の用途に応じた形状を有する発電素子1を形成することができる。 The non-conductor layer 142 has insulating properties, for example. Any material can be used for the non-conductor layer 142 as long as it can suppress movement of the fine particles 141, but an organic polymer compound is preferable. When the non-conductor layer 142 contains an organic polymer compound, the non-conductor layer 142 can be formed flexibly, so that the power generating element 1 can be formed in a shape such as curved or bent according to the application.
 有機高分子化合物としては、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ラジカル重合系の光または熱硬化性樹脂、光カチオン重合系の光または熱硬化性樹脂、あるいはエポキシ樹脂、アクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ポリスチレン、ノボラック樹脂、ポリフッ化ビニリデンなどを用いることができる。 Examples of organic polymer compounds include polyimides, polyamides, polyesters, polycarbonates, poly(meth)acrylates, radically polymerizable photo- or thermosetting resins, photo-cationically polymerizable photo- or thermosetting resins, epoxy resins, and acrylonitrile components. can be used, such as copolymers containing
 なお、例えば不導体層142として、無機物質が用いられてもよい。無機物質として、例えばゼオライトや珪藻土等の多孔無機物質のほか、籠状分子等が挙げられる。 An inorganic substance may be used as the non-conductor layer 142, for example. Examples of inorganic substances include porous inorganic substances such as zeolite and diatomaceous earth, as well as cage-like molecules.
 <第1基板15、第2基板16>
 第1基板15及び第2基板16は、例えば図1(a)に示すように、各電極11、12及び中間部14を挟み、第1方向Zに離間して設けられる。第1基板15は、例えば第1電極11と接し、第2電極12と離間する。第1基板15は、第1電極11を固定する。第2基板16は、第2電極12と接し、第1電極11と離間する。第2基板16は、第2電極12を固定する。
<First Substrate 15, Second Substrate 16>
The first substrate 15 and the second substrate 16 are spaced apart in the first direction Z with the electrodes 11 and 12 and the intermediate portion 14 interposed therebetween, as shown in FIG. 1A, for example. The first substrate 15 is, for example, in contact with the first electrode 11 and separated from the second electrode 12 . The first substrate 15 fixes the first electrode 11 . The second substrate 16 is in contact with the second electrode 12 and separated from the first electrode 11 . A second substrate 16 fixes the second electrode 12 .
 各基板15、16の第1方向Zに沿った厚さは、例えば10μm以上2mm以下である。各基板15、16の厚さは、任意に設定することができる。各基板15、16の形状は、例えば正方形や長方形の四角形のほか、円盤状等でもよく、用途に応じて任意に設定することができる。 The thickness of each of the substrates 15 and 16 along the first direction Z is, for example, 10 μm or more and 2 mm or less. The thickness of each substrate 15, 16 can be set arbitrarily. The shape of each of the substrates 15 and 16 may be, for example, square, rectangular, or disk-like, and can be arbitrarily set according to the application.
 各基板15、16として、例えば絶縁性を有する板状の部材を用いることができ、例えばシリコン、石英、パイレックス(登録商標)等の公知の部材を用いることができる。各基板15、16は、例えばフィルム状の部材が用いられてもよく、例えばPET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等の公知のフィルム状部材が用いられてもよい。 As the substrates 15 and 16, for example, plate-shaped members having insulation properties can be used, and known members such as silicon, quartz, and Pyrex (registered trademark) can be used. For each of the substrates 15 and 16, for example, a film-like member may be used, and for example, a known film-like member such as PET (polyethylene terephthalate), PC (polycarbonate), polyimide, or the like may be used.
 各基板15、16として、例えば導電性を有する部材を用いることができ、例えば鉄、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。また、各基板15、16としては、例えばSi、GaN等の導電性を有する半導体の他、導電性高分子等の部材を用いてもよい。各基板15、16に導電性を有する部材を用いる場合、各電極11、12に接続するための配線が不要となる。 For the substrates 15 and 16, for example, a member having conductivity can be used, such as iron, aluminum, copper, or an alloy of aluminum and copper. As the substrates 15 and 16, for example, a member such as a conductive polymer may be used in addition to a conductive semiconductor such as Si or GaN. If conductive members are used for the substrates 15 and 16, wiring for connecting to the electrodes 11 and 12 becomes unnecessary.
 例えば、第1基板15が半導体の場合、第1電極11と接する縮退部を有してもよい。この場合、縮退部を有しない場合に比べて、第1電極11と第1基板15との間における接触抵抗を低減させることができる。また、第1基板15は、第1電極11と接する面とは異なる表面に、縮退部を有してもよい。この場合、第1基板15と電気的に接続される配線(例えば第1配線101)との接触抵抗を低減させることができる。 For example, if the first substrate 15 is a semiconductor, it may have a degenerate portion that contacts the first electrode 11 . In this case, the contact resistance between the first electrode 11 and the first substrate 15 can be reduced as compared with the case without the degenerate portion. Also, the first substrate 15 may have a recessed portion on a surface different from the surface in contact with the first electrode 11 . In this case, the contact resistance between the wiring (for example, the first wiring 101) electrically connected to the first substrate 15 can be reduced.
 例えば図1(a)に示す発電素子1を複数用いて積層する場合、第1基板15及び第2基板16として、半導体を用いてもよい。この場合、各発電素子1の積層に伴い接する各基板15、16の接触面に縮退部を設けることで、接触抵抗を低減させることができる。 For example, when stacking a plurality of power generation elements 1 shown in FIG. In this case, contact resistance can be reduced by providing contraction portions on the contact surfaces of the substrates 15 and 16 that are in contact with each other as the power generation elements 1 are stacked.
 上述した縮退部は、例えばn型のドーパントを高濃度に半導体にイオン注入することや、n型のドーパントを含むガラスなどの材料を半導体にコーティングし、コーティング後に熱処理を行うことによって生成される。 The above-mentioned degenerate portion is generated, for example, by ion-implanting an n-type dopant into a semiconductor at a high concentration, coating a semiconductor with a material such as glass containing an n-type dopant, and performing heat treatment after coating.
 なお、半導体の第1基板15にドープされる不純物として、n型であればP、As、Sb等、p型であればB、Ba、Al等の公知の不純物が挙げられる。また、縮退部の不純物の濃度は、例えば、1×1019イオン/cmであれば、電子を効率よく放出させることができる。 As impurities to be doped into the semiconductor first substrate 15, known impurities such as P, As, Sb, etc. for n-type, and B, Ba, Al, etc. for p-type are mentioned. Further, electrons can be efficiently emitted when the impurity concentration in the degenerate portion is, for example, 1×10 19 ions/cm 3 .
 例えば、第1基板15が半導体の場合、第1基板15の比抵抗値は、例えば1×10-6Ω・cm以上1×10Ω・cm以下であればよい。第1基板15の比抵抗値が1×10-6Ω・cmを下回ると、材料の選定が難しい。また、第1基板15の比抵抗値が1×10Ω・cmよりも大きいと、電流のロスが増大する懸念がある。 For example, when the first substrate 15 is a semiconductor, the specific resistance value of the first substrate 15 may be, for example, 1×10 −6 Ω·cm or more and 1×10 6 Ω·cm or less. If the resistivity value of the first substrate 15 is less than 1×10 −6 Ω·cm, it is difficult to select the material. Also, if the specific resistance value of the first substrate 15 is greater than 1×10 6 Ω·cm, there is a concern that current loss may increase.
 なお、上記では、第1基板15が半導体の場合について説明したが、第2基板16が半導体でもよい。この場合、上記と同様のため、説明を省略する。 In addition, although the case where the first substrate 15 is a semiconductor has been described above, the second substrate 16 may be a semiconductor. In this case, the description is omitted because it is the same as the above.
 なお、発電素子1は、例えば図12(a)に示すように第1基板15のみを備えるほか、第2基板16のみを備えてもよい。また、発電素子1は、例えば図12(b)に示すように、各基板15、16を備えずに、第1電極11、中間部14、及び第2電極12の順に複数積層された積層構造(例えば1a、1b、1c等)を示すほか、例えば各基板15、16の少なくとも何れかを備えた積層構造を示してもよい。 The power generation element 1 may include only the first substrate 15 as shown in FIG. 12(a), or may include only the second substrate 16, for example. Further, as shown in FIG. 12B, for example, the power generation element 1 has a laminated structure in which the first electrode 11, the intermediate portion 14, and the second electrode 12 are laminated in this order without the respective substrates 15 and 16. (e.g. 1a, 1b, 1c, etc.), for example, a laminated structure comprising at least one of the substrates 15, 16 may be indicated.
 <発電素子1の動作例>
 例えば、熱エネルギーが発電素子1に与えられると、第1電極11と第2電極12との間に電流が発生し、熱エネルギーが電気エネルギーに変換される。第1電極11と第2電極12との間に発生する電流量は、熱エネルギーに依存する他、第2電極12の仕事関数と、第1電極11の仕事関数との差に依存する。
<Example of operation of power generation element 1>
For example, when thermal energy is applied to the power generation element 1, a current is generated between the first electrode 11 and the second electrode 12, and the thermal energy is converted into electrical energy. The amount of current generated between the first electrode 11 and the second electrode 12 depends on thermal energy and also depends on the difference between the work function of the second electrode 12 and the work function of the first electrode 11 .
 発生する電流量は、例えば第1電極11と第2電極12との仕事関数差を大きくすること、及びギャップGを小さくすることで、増やすことができる。例えば、発電素子1が発生させる電気エネルギーの量は、上記仕事関数差を大きくすること、及び上記ギャップGを小さくすること、の少なくとも何れか1つを考慮することで、増加させることができる。また、各電極11、12の間に、微粒子141を設けることで、各電極11、12の間を移動する電子の量を増大させることができ、電流量の増加に繋げることが可能となる。 The amount of current generated can be increased, for example, by increasing the work function difference between the first electrode 11 and the second electrode 12 and by decreasing the gap G. For example, the amount of electrical energy generated by the power generation element 1 can be increased by considering at least one of increasing the work function difference and decreasing the gap G. Further, by providing the fine particles 141 between the electrodes 11 and 12, the amount of electrons moving between the electrodes 11 and 12 can be increased, which can lead to an increase in the amount of current.
 なお、「仕事関数」とは、固体内にある電子を真空中に取出すために必要な最小限のエネルギーを示す。仕事関数は、例えば、紫外光電子分光法(UPS:Ultraviolet Photoelectron Spectroscopy)、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)やオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて測定することができる。なお、「仕事関数」として、発電素子1の各構成を対象とした実測値が用いられるほか、例えば材料に対して計測された公知の値が用いられてもよい。  The "work function" indicates the minimum energy required to extract electrons in a solid into a vacuum. The work function is measured using, for example, ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), or Auger electron spectroscopy (AES). can be done. As the “work function”, in addition to using an actual measurement value for each configuration of the power generation element 1, for example, a known value measured for a material may be used.
(第1実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図3(a)は、本実施形態における発電素子1の製造方法の一例を示すフローチャートである。また、図4(a)~図4(d)は、本実施形態における発電素子1の製造方法の一例を示す模式断面図である。
(First Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generating element 1 according to this embodiment will be described. FIG. 3(a) is a flowchart showing an example of a method for manufacturing the power generation element 1 according to this embodiment. 4(a) to 4(d) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment.
 発電素子1の製造方法は、素子形成工程S100を備え、例えば封止材形成工程S140を備えてもよい。 The method for manufacturing the power generating element 1 includes an element forming step S100, and may include, for example, a sealing material forming step S140.
 <素子形成工程S100>
 素子形成工程S100は、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば第1電極11、中間部14、及び第2電極12をそれぞれ複数形成してもよい。素子形成工程S100では、例えば公知の形成技術を用いて、第1電極11、中間部14、及び第2電極12をそれぞれ形成する。素子形成工程S100は、例えば図3(a)に示すように、第1電極形成工程S110と、中間部形成工程S120と、第2電極形成工程S130とを含む。なお、各工程S110、S120、S130を実施する順番は、任意である。
<Element formation step S100>
The element forming step S100 forms the first electrode 11, the intermediate portion 14, and the second electrode 12, respectively. In the element formation step S100, for example, a plurality of first electrodes 11, intermediate portions 14, and second electrodes 12 may be formed. In the element forming step S100, the first electrode 11, the intermediate portion 14, and the second electrode 12 are formed using, for example, a known forming technique. The element forming step S100 includes, for example, as shown in FIG. 3A, a first electrode forming step S110, an intermediate portion forming step S120, and a second electrode forming step S130. The order in which steps S110, S120, and S130 are performed is arbitrary.
 <第1電極形成工程S110>
 第1電極形成工程S110は、第1電極11を形成する。第1電極形成工程S110は、例えば図4(a)に示すように、第1基板15の上に第1電極11を形成する。第1電極11は、例えば減圧環境下におけるスパッタリング法又は真空蒸着法により形成されるほか、公知の電極形成技術を用いて形成される。なお、第1電極形成工程S110では、例えば第1基板15の代わりに、延伸された電極材料を任意の大きさに加工することで、第1電極11を形成してもよい。この場合、第1基板15を用いなくてもよい。
<First Electrode Forming Step S110>
The first electrode forming step S110 forms the first electrode 11 . In the first electrode forming step S110, the first electrode 11 is formed on the first substrate 15, as shown in FIG. 4A, for example. The first electrode 11 is formed, for example, by a sputtering method or a vacuum deposition method under a reduced pressure environment, or is formed by using a known electrode forming technique. In the first electrode forming step S110, for example, instead of the first substrate 15, the first electrode 11 may be formed by processing a stretched electrode material into an arbitrary size. In this case, the first substrate 15 may not be used.
 第1電極形成工程S110は、例えば第1基板15の上に、第1電極11を形成してもよい。例えば第1基板15としてフィルム状の部材を用いた場合、第1電極11を第1基板15の上に塗布し、第1基板15及び第1電極11をロール状に巻き取ることができる。その後、例えば後述する中間部形成工程S120、第2電極形成工程S130、及び封止材形成工程S140の少なくとも何れかの前後において、用途に応じた面積に切断してもよい。 In the first electrode forming step S110, the first electrode 11 may be formed on the first substrate 15, for example. For example, when a film member is used as the first substrate 15, the first electrode 11 can be applied onto the first substrate 15, and the first substrate 15 and the first electrodes 11 can be rolled up. After that, for example, before or after at least one of an intermediate portion forming step S120, a second electrode forming step S130, and a sealing material forming step S140, which will be described later, the substrate may be cut into areas according to the application.
 <中間部形成工程S120>
 中間部形成工程S120は、例えば図4(b)に示すように、第1電極11の上に、不導体層142を含む中間部14を形成する。中間部形成工程S120は、例えば微粒子141を内包する不導体材料142aを、第1電極11の表面に形成し、不導体層142を形成する。これにより、微粒子141を内包する不導体層142を含む中間部14が形成される。
<Intermediate portion forming step S120>
In the intermediate portion forming step S120, the intermediate portion 14 including the non-conductor layer 142 is formed on the first electrode 11, as shown in FIG. 4B, for example. In the intermediate portion forming step S120, for example, a non-conductor material 142a containing fine particles 141 is formed on the surface of the first electrode 11 to form a non-conductor layer 142. As shown in FIG. Thereby, the intermediate portion 14 including the non-conductor layer 142 containing the fine particles 141 is formed.
 中間部形成工程S120は、例えば乾式成膜方法(例えばスパッタ法や蒸着法)や、湿式成膜方法(例えば塗布方法)等の公知の成膜方法が用いられる。中間部形成工程S120は、例えばスクリーン印刷法やスピンコート法等の公知の塗布技術により、第1電極11の表面に不導体材料142aを塗布する。不導体材料142aを塗布する膜厚は、上述したギャップGの設計に伴い任意に設定することができる。 For the intermediate portion forming step S120, a known film forming method such as a dry film forming method (eg, sputtering method or vapor deposition method) or a wet film forming method (eg, coating method) is used. In the intermediate portion forming step S120, the surface of the first electrode 11 is coated with the non-conductor material 142a by a known coating technique such as screen printing or spin coating. The film thickness of the non-conductor material 142a can be arbitrarily set according to the design of the gap G described above.
 不導体材料142aとして、エポキシ樹脂等のような公知の絶縁性を有する高分子材料が用いられる。不導体材料142aとして、熱硬化性樹脂が用いられるほか、例えば紫外線硬化樹脂が用いられる。中間部形成工程S120は、不導体材料142aの特性に応じて、塗布された不導体材料142aに対して加熱やUV照射等を行い、不導体層142を形成してもよい。 As the non-conductor material 142a, a known polymeric material having insulating properties such as epoxy resin is used. As the non-conducting material 142a, a thermosetting resin is used, and for example, an ultraviolet curable resin is used. In the intermediate portion forming step S120, the non-conductor layer 142 may be formed by heating, UV irradiation, or the like on the applied non-conductor material 142a according to the properties of the non-conductor material 142a.
 不導体材料142aとして、例えばJIS K 6800に記載の二液形接着剤に分類される樹脂を用いてもよい。中間部形成工程S120は、不導体材料142aの主剤と硬化剤とを混合し、一定時間常温放置して硬化させ、不導体層142を形成してもよい。 As the non-conducting material 142a, for example, a resin classified as a two-component adhesive according to JIS K 6800 may be used. In the intermediate portion forming step S120, the non-conductor layer 142 may be formed by mixing the base material of the non-conductor material 142a and a curing agent, leaving the mixture at room temperature for a certain period of time to cure.
 中間部形成工程S120は、上述した成膜方法のほか、例えば固形材料等を層状に加工し、積層することで不導体層142を形成してもよい。この場合、上述した成膜法を用いる場合に比べて、不導体層142の機械的強度が向上し易い。これにより、耐久性の向上を図ることが可能となる。 In the intermediate portion forming step S120, in addition to the film forming method described above, for example, the non-conductor layer 142 may be formed by processing a solid material or the like into layers and laminating them. In this case, the mechanical strength of the non-conductor layer 142 is likely to be improved as compared with the case of using the film forming method described above. This makes it possible to improve the durability.
 中間部形成工程S120は、例えば任意の無機物質材料の中にナノ粒子材料を混ぜ、レーザ照射を実施してもよい。これにより、絶縁層142内に分散されたナノ粒子141が形成され、中間部14を形成される。 In the intermediate portion forming step S120, for example, a nanoparticle material may be mixed in any inorganic material and laser irradiation may be performed. Thereby, the nanoparticles 141 dispersed in the insulating layer 142 are formed to form the intermediate portion 14 .
 <第2電極形成工程S130>
 第2電極形成工程S130は、例えば図4(c)に示すように、不導体層142の上に、第2電極12を形成する。第2電極12は、例えば第1電極11よりも低い仕事関数を有する材料を用いて形成される。第2電極12は、例えばナノインプリンティング法等の公知の電極形成技術を用いて形成される。
<Second electrode forming step S130>
The second electrode forming step S130 forms the second electrode 12 on the non-conductor layer 142, as shown in FIG. 4C, for example. The second electrode 12 is formed using a material having a work function lower than that of the first electrode 11, for example. The second electrode 12 is formed using a known electrode forming technique such as nanoimprinting.
 第2電極形成工程S130は、例えば不導体層142の表面に、減圧環境下でスパッタリング法又は真空蒸着法により形成される。この場合、第2電極12を形成した時点で、第2電極12の主面が大気等に曝されずに不導体層142に接する。このため、第2電極12の仕事関数の変動を抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 The second electrode forming step S130 is formed, for example, on the surface of the non-conductor layer 142 by sputtering or vacuum deposition under a reduced pressure environment. In this case, when the second electrode 12 is formed, the main surface of the second electrode 12 is in contact with the non-conductor layer 142 without being exposed to the air or the like. Therefore, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
 第2電極形成工程S130は、例えば予め第2基板16の上に設けられた第2電極12の表面と、不導体層142の表面とを当接させることで、第2電極12を形成してもよい。この場合、不導体層142の表面に直接第2電極12を形成する場合に比べて、不導体層142の表面状態に起因する第2電極12の表面状態のバラつきを抑制することができる。これにより、発電量の増加を図ることが可能となる。 In the second electrode forming step S130, for example, the surface of the second electrode 12 provided in advance on the second substrate 16 is brought into contact with the surface of the non-conductor layer 142 to form the second electrode 12. good too. In this case, variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to increase the amount of power generation.
 例えば第2基板16としてフィルム状の部材を用いた場合、第2電極12を塗布した第2基板16を準備することで実現でき、例えば第2基板16及び第2電極12をロール状に巻き取った状態で準備してもよい。その後、例えば後述する封止材形成工程S140の前後において、用途に応じた面積に切断してもよい。 For example, when a film member is used as the second substrate 16, it can be realized by preparing the second substrate 16 coated with the second electrode 12. For example, the second substrate 16 and the second electrode 12 are wound into a roll. It can be prepared as is. After that, for example, before or after the sealing material forming step S140, which will be described later, it may be cut into areas according to the application.
 なお、第2電極形成工程S130は、例えば不導体層142の上に、第2電極12を形成したあと、中間部14及び第2電極12を加熱してもよい。中間部14及び第2電極12の加熱は、例えば中間部形成工程S120における加熱の代わりに実施してもよく、中間部形成工程S120における加熱に加えて実施してもよい。この場合、不導体層142における第2電極12と接する表面が平坦化され易くなる。このため、不導体層142と、第2電極12との間における僅かな隙間の発生を抑制することができる。これにより、発電量の増加を図ることが可能となる。 In addition, in the second electrode forming step S130, for example, after the second electrode 12 is formed on the non-conductor layer 142, the intermediate portion 14 and the second electrode 12 may be heated. The heating of the intermediate portion 14 and the second electrode 12 may be performed, for example, instead of the heating in the intermediate portion forming step S120, or may be performed in addition to the heating in the intermediate portion forming step S120. In this case, the surface of the nonconductor layer 142 in contact with the second electrode 12 is easily flattened. Therefore, it is possible to suppress the generation of a slight gap between the non-conductor layer 142 and the second electrode 12 . This makes it possible to increase the amount of power generation.
 <封止材形成工程S140>
 例えば素子形成工程S100の後に、封止材形成工程S140を実施してもよい。封止材形成工程S140は、例えば図4(d)に示すように、第1電極11、中間部14、及び第2電極12と接する封止材17を形成する。封止材17は、例えばナノインプリンティング法等の公知の技術を用いて形成してもよい。
<Sealing Material Forming Step S140>
For example, the sealing material forming step S140 may be performed after the element forming step S100. In the encapsulant forming step S140, the encapsulant 17 is formed in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12, as shown in FIG. 4D, for example. The encapsulant 17 may be formed using a known technique such as nanoimprinting.
 封止材17として、絶縁性材料が用いられ、例えばフッ素系絶縁性樹脂等の公知の絶縁性樹脂が用いられる。封止材17を形成することで、外部環境に起因する不導体層142及び微粒子141の劣化を抑制することができる。これにより、耐久性の向上を図ることが可能となる。 As the sealing material 17, an insulating material is used, for example, a known insulating resin such as a fluorine-based insulating resin is used. By forming the sealing material 17, deterioration of the non-conductor layer 142 and the fine particles 141 caused by the external environment can be suppressed. This makes it possible to improve the durability.
 特に、中間部14を覆うように封止材17を形成する場合、中間部14が外部に晒されないため、耐久性のさらなる向上を図ることが可能となる。 In particular, when the sealing material 17 is formed so as to cover the intermediate portion 14, the intermediate portion 14 is not exposed to the outside, so durability can be further improved.
 上述した各工程を実施することで、本実施形態における発電素子1が形成される。なお、例えば図1(a)に示す第2基板16を、第2電極12の上に形成してもよい。また、例えば各配線101、102等を形成することで、本実施形態における発電装置100が形成される。 The power generating element 1 in the present embodiment is formed by performing the steps described above. In addition, for example, a second substrate 16 shown in FIG. 1A may be formed on the second electrode 12 . Further, for example, by forming the wirings 101, 102, etc., the power generator 100 in the present embodiment is formed.
(第1実施形態:発電素子1の製造方法の第1変形例)
 次に、本実施形態における発電素子1の製造方法の第1変形例を説明する。図3(b)は、本実施形態における発電素子1の製造方法の第1変形例を示すフローチャートである。
(First Embodiment: First Modification of Method for Manufacturing Power Generation Element 1)
Next, a first modification of the method for manufacturing the power generating element 1 according to this embodiment will be described. FIG. 3(b) is a flow chart showing a first modification of the method for manufacturing the power generation element 1 according to this embodiment.
 本変形例における中間部形成工程S120は、成膜工程S120aを含む。成膜工程S120aは、不導体層142を成膜し、不導体層142を含む中間部14を形成する。 The intermediate portion forming step S120 in this modified example includes a film forming step S120a. The film-forming step S<b>120 a forms the non-conductor layer 142 to form the intermediate portion 14 including the non-conductor layer 142 .
 <成膜工程S120a>
 成膜工程S120は、上述した中間部形成工程S120において用いられる方法のうち、乾式成膜方法、及び湿式成膜方法を含む。成膜工程S120aは、例えばスクリーン印刷法やスピンコート法等の公知の塗布技術により、第1電極11の表面に不導体層142を成膜してもよい。
<Film Forming Step S120a>
The film forming step S120 includes a dry film forming method and a wet film forming method among the methods used in the intermediate portion forming step S120 described above. In the film formation step S120a, the non-conductor layer 142 may be formed on the surface of the first electrode 11 by a known coating technique such as screen printing or spin coating.
 成膜工程S120aは、例えば第1電極11の上に不導体層142を成膜するほか、予め用意された基材等の上に不導体層142を成膜してもよい。成膜工程S120は、例えば上述した不導体材料142aを、第1電極11の表面又は基材等の表面に形成し、不導体材料142aを硬化や乾燥等の処理により不導体層142を成膜してもよい。 In the film formation step S120a, for example, the non-conductor layer 142 may be formed on the first electrode 11, or the non-conductor layer 142 may be formed on a substrate or the like prepared in advance. In the film formation step S120, for example, the non-conductor material 142a described above is formed on the surface of the first electrode 11 or the surface of the substrate, and the non-conductor layer 142 is formed by curing or drying the non-conductor material 142a. You may
 本実施形態によれば、中間部14は、微粒子141を内包する不導体層142を含む。即ち、不導体層142によって、電極間(第1電極11、第2電極12)における微粒子141の移動が抑制される。このため、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することを抑制することができる。これにより、発電量の安定化を図ることが可能となる。 According to the present embodiment, the intermediate portion 14 includes a non-conductor layer 142 containing fine particles 141 . That is, the non-conductor layer 142 suppresses movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12). Therefore, it is possible to prevent the fine particles 141 from becoming unevenly distributed on the one electrode side over time and reducing the amount of movement of electrons. This makes it possible to stabilize the power generation amount.
 また、本実施形態によれば、中間部14は、第1電極11及び第2電極12を支持する不導体層142を含む。このため、不導体層142の代わりに溶媒等を用いた場合に比べて、電極間(第1電極11、第2電極12)の距離(ギャップG)を維持するための支持部等を設ける必要がなく、支持部の形成精度に起因するギャップGのバラつきを除くことができる。これにより、発電量の増加を図ることが可能となる。 Also, according to the present embodiment, the intermediate portion 14 includes the non-conductor layer 142 that supports the first electrode 11 and the second electrode 12 . Therefore, it is necessary to provide a supporting portion or the like for maintaining the distance (gap G) between the electrodes (the first electrode 11 and the second electrode 12) compared to the case where a solvent or the like is used instead of the non-conductor layer 142. Therefore, it is possible to eliminate the variation in the gap G caused by the accuracy of forming the supporting portion. This makes it possible to increase the amount of power generation.
 また、本実施形態によれば、素子形成工程S100は、不導体層142を成膜する成膜工程S120aを含む。即ち、不導体層142の材料を層状に加工して積層する場合に比べ、不導体層142の厚さを薄く形成し易くなり、電極間(第1電極11、第2電極12)の距離(ギャップG)を狭くし易い。このため、電極間(第1電極11、第2電極12)に発生する電界を大きくすることができる。これにより、発電量のさらなる向上を図ることが可能となる。 Further, according to the present embodiment, the element forming step S100 includes the film forming step S120a of forming the non-conductor layer 142. That is, compared to the case where the material of the non-conductor layer 142 is processed into layers and laminated, the thickness of the non-conductor layer 142 can be easily formed thin, and the distance between the electrodes (first electrode 11, second electrode 12) ( It is easy to narrow the gap G). Therefore, the electric field generated between the electrodes (the first electrode 11 and the second electrode 12) can be increased. This makes it possible to further improve the power generation amount.
 本実施形態によれば、成膜工程S120aは、第1電極11の上に不導体層142を成膜することを含む。即ち、不導体層142と第1電極11との界面の接触面積を向上し易くすることができる。このため、不導体層142と第1電極11との界面における抵抗のバラつきを抑制することができる。これにより、発電量のさらなる向上を図ることが可能となる。 According to the present embodiment, the film forming step S120a includes forming the non-conductor layer 142 on the first electrode 11 . That is, the contact area of the interface between the non-conductor layer 142 and the first electrode 11 can be easily improved. Therefore, variation in resistance at the interface between the non-conductor layer 142 and the first electrode 11 can be suppressed. This makes it possible to further improve the power generation amount.
 また、本実施形態によれば、封止材形成工程S140は、例えば素子形成工程S100のあと、第1電極11、中間部14、及び第2電極12と接する封止材17を形成してもよい。この場合、外部環境に起因する不導体層142及び微粒子141の劣化を抑制することができる。これにより、耐久性の向上を図ることが可能となる。 Further, according to the present embodiment, the sealing material forming step S140 may form the sealing material 17 in contact with the first electrode 11, the intermediate portion 14, and the second electrode 12 after the element forming step S100, for example. good. In this case, deterioration of the non-conductor layer 142 and the fine particles 141 due to the external environment can be suppressed. This makes it possible to improve the durability.
 また、本実施形態によれば、第2電極形成工程S130は、不導体層142の表面に、減圧環境下で第2電極12を形成してもよい。この場合、第2電極12の仕事関数の変動を抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 Further, according to the present embodiment, the second electrode forming step S130 may form the second electrode 12 on the surface of the non-conductor layer 142 under a reduced pressure environment. In this case, fluctuations in the work function of the second electrode 12 can be suppressed. This makes it possible to further stabilize the power generation amount.
 また、本実施形態によれば、第2電極形成工程S130は、予め第2基板16の上に設けられた第2電極12の表面と、不導体層142の表面とを当接させてもよい。この場合、不導体層142の表面に直接第2電極12を形成する場合に比べて、不導体層142の表面状態に起因する第2電極12の表面状態のバラつきを抑制することができる。これにより、発電量の向上を図ることが可能となる。 Further, according to the present embodiment, the second electrode forming step S130 may bring the surface of the second electrode 12 previously provided on the second substrate 16 into contact with the surface of the non-conductor layer 142. . In this case, variations in the surface state of the second electrode 12 due to the surface state of the non-conductor layer 142 can be suppressed compared to the case where the second electrode 12 is formed directly on the surface of the non-conductor layer 142 . This makes it possible to improve the amount of power generation.
 また、本実施形態によれば、不導体層142は、有機高分子化合物を含んでもよい。この場合、不導体層142をフレキシブルに成膜できる。これにより、用途に応じた形状を有する発電素子1を形成することが可能となる。 Further, according to this embodiment, the non-conductor layer 142 may contain an organic polymer compound. In this case, the non-conductor layer 142 can be formed flexibly. Thereby, it is possible to form the power generation element 1 having a shape according to the application.
 また、本実施形態によれば、微粒子141は、磁性体を除く金属酸化物を含んでもよい。この場合、外部環境に起因する磁場の影響を受けずに、経時に伴う発電量の低下を抑制することが可能となる。 Further, according to the present embodiment, the fine particles 141 may contain metal oxides other than magnetic substances. In this case, it is possible to suppress the decrease in the power generation amount over time without being affected by the magnetic field caused by the external environment.
(第2実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図5は、本実施形態における発電素子の製造方法の一例を示すフローチャートである。また、図6(a)~図6(b)は、本実施形態における発電素子の製造方法の一例を示す模式断面図である。本実施形態は、成膜工程S120aが、塗布工程S120bと硬化工程S120cとを含む点で、上述した実施形態とは異なる。なお、成膜工程S120a以外の各工程は、上述した各工程と同様のため、説明を省略する。
(Second Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generating element 1 according to this embodiment will be described. FIG. 5 is a flow chart showing an example of a method for manufacturing a power generating element according to this embodiment. 6(a) and 6(b) are schematic cross-sectional views showing an example of the method for manufacturing the power generating element according to this embodiment. This embodiment differs from the above-described embodiments in that the film forming step S120a includes the coating step S120b and the curing step S120c. The steps other than the film formation step S120a are the same as the steps described above, and thus descriptions thereof are omitted.
 <成膜工程S120a>
 成膜工程S120aは、塗布工程S120bと硬化工程S120cとを含む。成膜工程S120aは、例えば図5に示すように、塗布工程S120b及び第2電極形成工程S130の後に硬化工程S120cを含んでもよい。成膜工程S120aは、塗布工程S120bの後であれば、例えば第1電極形成工程S110、及び第2電極形成工程S130の少なくとも何れかの前後において硬化工程S120cを含んでもよく、硬化工程S120cを複数に分けて実施してもよい。また、成膜工程S120aは、硬化工程S120cを含まなくてもよく、任意に不導体層142を成膜してもよい。
<Film Forming Step S120a>
The film forming step S120a includes a coating step S120b and a curing step S120c. The film forming step S120a may include a curing step S120c after the coating step S120b and the second electrode forming step S130, as shown in FIG. 5, for example. The film forming step S120a may include a curing step S120c before or after at least one of the first electrode forming step S110 and the second electrode forming step S130 after the coating step S120b. can be carried out separately. In addition, the film forming step S120a may not include the curing step S120c, and the non-conductor layer 142 may be formed arbitrarily.
 <塗布工程S120b>
 塗布工程S120bは、例えば不導体材料142aを塗布する。塗布工程S120bは、例えば図6(a)に示すように、第1電極11の上に不導体材料142aを塗布する。塗布工程S120bは、例えば上述した湿式成膜方法に含まれるスクリーン印刷法やスピンコート法等の公知の塗布技術により、不導体材料142aを塗布する。
<Coating step S120b>
The applying step S120b applies, for example, the non-conductor material 142a. In the coating step S120b, the non-conductor material 142a is coated on the first electrode 11, as shown in FIG. 6A, for example. In the coating step S120b, the non-conductor material 142a is coated by a known coating technique such as a screen printing method or a spin coating method included in the wet film forming method described above.
 <硬化工程S120c>
 硬化工程S120cは、例えば図6(b)に示すように、塗布工程S120bにおいて塗布した不導体材料142aを硬化し、不導体層142を成膜する。硬化工程S120cは、例えば上述した加熱やUV照射等の公知の硬化方法により不導体材料142aを硬化させ、不導体層142を成膜する。
<Curing step S120c>
In the curing step S120c, for example, as shown in FIG. 6B, the non-conductor material 142a applied in the coating step S120b is cured to form a non-conductor layer 142. As shown in FIG. In the curing step S120c, the nonconductor layer 142 is formed by curing the nonconductor material 142a by a known curing method such as heating or UV irradiation as described above.
 硬化工程S120cは、例えば不導体材料142aを完全に硬化せず、未硬化部を残してもよい。 In the curing step S120c, for example, the non-conductor material 142a may not be completely cured, leaving an uncured portion.
 硬化工程S120cは、第2電極形成工程S130の後に実施してもよい。この場合、不導体層142の上面に第2電極12が形成されていない場合に比べて、不導体層142と第2電極12の接触面積が向上した状態で硬化し易くなる。このため、硬化された不導体層142と各電極11、12との界面における抵抗のバラつきを抑制することができる。これにより、発電量のさらなる向上を図ることが可能となる。 The curing step S120c may be performed after the second electrode forming step S130. In this case, compared to the case where the second electrode 12 is not formed on the upper surface of the non-conductor layer 142, the curing is facilitated while the contact area between the non-conductor layer 142 and the second electrode 12 is increased. Therefore, variations in resistance at the interfaces between the hardened non-conductor layer 142 and the electrodes 11 and 12 can be suppressed. This makes it possible to further improve the power generation amount.
 本実施形態によれば、成膜工程S120aは、不導体材料142aを塗布する塗布工程S120bを含む。即ち、真空装置を必要とせず、乾式成膜法と比べて大きな面積に対して不導体層142を成膜することができる。このため、発電素子1の大型化を図ることができる。これにより、発電量のさらなる向上を図ることができる。 According to the present embodiment, the film forming step S120a includes a coating step S120b of coating the non-conductor material 142a. That is, the non-conductor layer 142 can be formed over a larger area than the dry film forming method without requiring a vacuum device. Therefore, the size of the power generation element 1 can be increased. This makes it possible to further improve the power generation amount.
 また、本実施形態によれば、成膜工程S120aは、塗布工程120bの後、不導体材料142aを硬化し、不導体層142を成膜する硬化工程S120cを含む。即ち、硬化された不導体層142によって、電極間(第1電極11、第2電極12)における微粒子141の移動がさらに抑制される。このため、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することをさらに抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 Further, according to the present embodiment, the film formation step S120a includes a curing step S120c for curing the non-conductor material 142a to form the non-conductor layer 142 after the application step 120b. That is, the hardened non-conductor layer 142 further suppresses movement of the fine particles 141 between the electrodes (the first electrode 11 and the second electrode 12). Therefore, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles 141 on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
(第3実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図7は、本実施形態における発電素子1の製造方法の一例を示すフローチャートである。図8(a)~図8(e)は、本実施形態における発電素子1の製造方法の一例を示す模式断面図である。本実施形態は、塗布工程S120bが第1電極形成工程S110及び第2電極形成工程S130の前に実施される点、及び不導体材料142aから基材18を離間する基材離間工程S120b’を含む点で、上述した実施形態とは異なる。なお、各工程について、上述した内容と同様の場合は、説明を省略する。
(Third Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generating element 1 according to this embodiment will be described. FIG. 7 is a flow chart showing an example of a method for manufacturing the power generating element 1 according to this embodiment. 8A to 8E are schematic cross-sectional views showing an example of a method for manufacturing the power generation element 1 according to this embodiment. This embodiment includes the point that the applying step S120b is performed before the first electrode forming step S110 and the second electrode forming step S130, and the substrate separating step S120b' for separating the substrate 18 from the non-conductive material 142a. This is different from the above-described embodiment in this respect. In addition, description is abbreviate|omitted when it is the same as that of the content mentioned above about each process.
 <成膜工程S120a>
 成膜工程S120aは、例えば図7に示すように、塗布工程S120bの後に、塗布された不導体材料142aから基材18を離間する基材離間工程S120b’を含む。
<Film Forming Step S120a>
The film forming step S120a includes a substrate separating step S120b' for separating the substrate 18 from the applied non-conductive material 142a after the applying step S120b, as shown in FIG. 7, for example.
 <塗布工程S120b>
 塗布工程S120bは、例えば図7に示すように、第1電極形成工程S110及び第2電極形成工程S130の前に実施される。塗布工程S120bは、例えば図8(a)に示すように、基材18の上に不導体材料142aを塗布する。
<Coating step S120b>
The coating step S120b is performed before the first electrode forming step S110 and the second electrode forming step S130, as shown in FIG. 7, for example. In the coating step S120b, for example, as shown in FIG.
 <第1電極形成工程S110>
 第1電極形成工程S110は、例えば図8(b)及び図8(c)に示すように、後述する基材離間工程S120b’の前に、第1電極11を形成する。第1電極形成工程S110は、例えば図8(b)に示すように、基材18の上に塗布された不導体材料142aの第1主面142fの上に、第1電極11を形成する。
<First Electrode Forming Step S110>
In the first electrode forming step S110, as shown in FIGS. 8B and 8C, for example, the first electrode 11 is formed before the substrate separation step S120b' described later. In the first electrode forming step S110, the first electrode 11 is formed on the first main surface 142f of the non-conductive material 142a applied on the substrate 18, as shown in FIG. 8B, for example.
 成膜工程S120aは、例えば第1電極形成工程S110の前に、塗布された不導体材料142aに硬化工程S120cを含む任意の方法を実施して、不導体層142を成膜してもよい。この場合、第1電極形成工程S110は、不導体層142の第1主面142fの上に、第1電極11を形成してもよい。 In the film formation step S120a, for example, before the first electrode formation step S110, the applied nonconductor material 142a may be subjected to any method including the curing step S120c to form the nonconductor layer 142. In this case, the first electrode forming step S110 may form the first electrode 11 on the first major surface 142f of the non-conductor layer 142 .
 第1電極形成工程S120は、例えば予め第1基板15の上に設けられた第1電極11の表面と、不導体層142の表面とを当接させることで、第1電極を形成してもよい。この場合、不導体層142の表面に直接第1電極11を形成する場合に比べて、不導体層142の表面状態に起因する第1電極11の表面状態のバラつきを抑制することができる。これにより、発電量の増加を図ることが可能となる。 In the first electrode forming step S120, for example, the surface of the first electrode 11 provided in advance on the first substrate 15 is brought into contact with the surface of the non-conductor layer 142 to form the first electrode. good. In this case, compared with the case where the first electrode 11 is directly formed on the surface of the non-conductor layer 142, variations in the surface state of the first electrode 11 due to the surface state of the non-conductor layer 142 can be suppressed. This makes it possible to increase the amount of power generation.
 <基材離間工程S120b’>
 基材離間工程S120b’は、例えば図8(c)に示すように、塗布工程S120b及び第1電極形成工程S110の後に、不導体材料142aから基材18を離間する。なお、図8(c)の点線で示す矢印は、基材18を離間する方向を例示している。
<Base material separation step S120b'>
In the substrate separation step S120b′, the substrate 18 is separated from the non-conductor material 142a after the application step S120b and the first electrode formation step S110, as shown in FIG. 8C, for example. Note that the dotted arrow in FIG. 8C illustrates the direction in which the substrate 18 is separated.
 成膜工程S120aは、例えば基材離間工程S120b’の前に、塗布された不導体材料142aに硬化工程S120cを含む任意の方法を実施して、不導体層142を成膜してもよい。この場合、基材離間工程S120b’は、不導体層142から基材18を離間してもよい。 In the film formation step S120a, for example, before the substrate separation step S120b', the nonconductor layer 142 may be formed by performing any method including the curing step S120c on the applied nonconductor material 142a. In this case, the substrate separating step S120b' may separate the substrate 18 from the non-conductor layer 142. FIG.
 <第2電極形成工程S130>
 第2電極形成工程S130は、例えば図8(c)及び図8(d)に示すように、基材離間工程S120b’の後に、第2電極12を形成する。第2電極形成工程S130は、例えば図8(d)に示すように、不導体材料142aの第2主面142gに、第2電極12を形成する。
<Second electrode forming step S130>
In the second electrode forming step S130, the second electrode 12 is formed after the substrate separation step S120b', as shown in FIGS. 8(c) and 8(d), for example. In the second electrode forming step S130, for example, as shown in FIG. 8D, the second electrode 12 is formed on the second main surface 142g of the non-conductor material 142a.
 成膜工程S120aは、例えば第2電極形成工程S130の前に、塗布された不導体材料142aに硬化工程S120cを含む任意の方法を実施して、不導体層142を成膜してもよい。この場合、第2電極形成工程S130は、不導体層142の第2主面142gの上に、第2電極12を形成してもよい。 In the film formation step S120a, for example, before the second electrode formation step S130, the nonconductor layer 142 may be formed by performing any method including the curing step S120c on the applied nonconductor material 142a. In this case, the second electrode forming step S<b>130 may form the second electrode 12 on the second main surface 142 g of the nonconductor layer 142 .
 <硬化工程S120c>
 硬化工程S120cは、例えば図8(e)に示すように、第2電極形成工程S130の後に、不導体材料142aを硬化し、不導体層142を成膜する。硬化工程S120cは、塗布工程S120bの後であれば、例えば第1電極形成工程S120、基材離間工程S120b’、及び第2電極形成工程S130の前後の少なくとも何れかにおいて実施してもよく、複数に分けて実施してもよい。
<Curing step S120c>
In the curing step S120c, the non-conductor material 142a is cured to form the non-conductor layer 142 after the second electrode formation step S130, as shown in FIG. 8E, for example. The curing step S120c may be performed after the applying step S120b, for example, before or after the first electrode forming step S120, the substrate separating step S120b′, and the second electrode forming step S130. can be carried out separately.
 本実施形態によれば、成膜工程S120aは、基材18の上に不導体層142を成膜することを含む。即ち、不導体層142の成膜に伴う影響が第1電極11に及ばない。このため、例えば第1電極11の仕事関数の変化等の品質低下を抑制することができる。これにより、発電量のさらなる向上を図ることが可能となる。 According to this embodiment, the deposition step S120a includes depositing the non-conductor layer 142 on the base material 18 . That is, the first electrode 11 is not affected by the formation of the non-conductor layer 142 . For this reason, quality deterioration such as a change in the work function of the first electrode 11 can be suppressed. This makes it possible to further improve the power generation amount.
 また、本実施形態によれば、素子形成工程S100は、基材18を離間する基材離間工程S120b’と、基材離間工程S120b’の前に、第1電極11を形成する第1電極形成工程S110と、基材離間工程S120b’の後に、第2電極12を形成する第2電極形成工程S130と、を含む。即ち、第1電極11が形成される前に、不導体層142の表面のうち第1電極11と接する表面が大気にさらされる時間を低減できる。このため、不導体層142への異物の混入等を抑制することができる。これにより、良品率の向上を図ることが可能となる。 Further, according to the present embodiment, the element forming step S100 includes the substrate separating step S120b′ for separating the substrate 18 and the first electrode forming step S120b′ for forming the first electrode 11 before the substrate separating step S120b′. It includes a step S110 and a second electrode forming step S130 of forming the second electrode 12 after the substrate separating step S120b'. That is, before the first electrode 11 is formed, the surface of the non-conductor layer 142 that is in contact with the first electrode 11 is exposed to the air for a short period of time. For this reason, it is possible to suppress the entry of foreign matter into the non-conductor layer 142 and the like. As a result, it is possible to improve the non-defective product rate.
(第4実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図9(a)~図9(b)は、本実施形態における発電素子1の製造方法の一例を示す模式断面図である。本実施形態は、第1電極形成工程S110の前に基材離間工程S120b’を実施する点で、上述した実施形態とは異なる。なお、基材離間工程S120b’及び第1電極形成工程S110以外の各工程は、上述した各工程と同様のため、説明を省略する。
(Fourth Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generating element 1 according to this embodiment will be described. 9(a) and 9(b) are schematic cross-sectional views showing an example of a method for manufacturing the power generating element 1 according to this embodiment. This embodiment is different from the above-described embodiments in that the substrate separating step S120b' is performed before the first electrode forming step S110. The steps other than the substrate separating step S120b' and the first electrode forming step S110 are the same as the steps described above, and thus descriptions thereof are omitted.
 <基材離間工程S120b’>
 基材離間工程S120b’は、例えば図9(a)に示すように、塗布工程S120bの後で、かつ第1電極形成工程S110の前に、不導体材料142aから基材18を離間する。なお、図9(a)の点線の矢印は、基材18を離間する方向を例示している。
<Base material separation step S120b'>
In the substrate separation step S120b', the substrate 18 is separated from the non-conductor material 142a after the application step S120b and before the first electrode formation step S110, as shown in FIG. 9A, for example. Note that the dotted arrow in FIG. 9A illustrates the direction in which the substrate 18 is separated.
 <第1電極形成工程S110>
 第1電極形成工程S110は、例えば図9(a)及び図9(b)に示すように、基材離間工程S120b’の後に、第1電極11を形成する。第1電極形成工程S110は、例えば図9(b)に示すように、基材18から離間された不導体材料142aの第1主面142fの上に、第1電極11を形成する。
<First Electrode Forming Step S110>
In the first electrode forming step S110, the first electrode 11 is formed after the substrate separation step S120b', as shown in FIGS. 9A and 9B, for example. In the first electrode forming step S110, for example, as shown in FIG. 9B, the first electrode 11 is formed on the first main surface 142f of the non-conductor material 142a separated from the substrate 18. As shown in FIG.
 なお、第1電極形成工程S110のあと、上述した第2電極形成工程S130を実施する。 After the first electrode forming step S110, the above-described second electrode forming step S130 is performed.
 本実施形態によれば、素子形成工程S100は、基材18を離間する基材離間工程S120b’と、基材離間工程S120b’の後に、第1電極11を形成する第1電極形成工程S110と、基材離間工程S120b’の後に、第2電極12を形成する第2電極形成工程S130と、を含む。即ち、基材18を離間した後に第1電極11及び第2電極12を自由に選択できるため、複数の素子形成工程S100に含まれる成膜工程S120aを、予め一括で実施することができる。このため、素子形成工程S100の実施回数に対する、成膜工程S120aの実施回数を低減できる。これにより、製造工程の簡略化を図ることが可能となる。 According to the present embodiment, the element forming step S100 includes a substrate separating step S120b′ for separating the substrate 18, and a first electrode forming step S110 for forming the first electrode 11 after the substrate separating step S120b′. and a second electrode forming step S130 of forming the second electrode 12 after the substrate separating step S120b′. That is, since the first electrode 11 and the second electrode 12 can be freely selected after the substrate 18 is separated, the film forming step S120a included in the plurality of element forming steps S100 can be collectively performed in advance. Therefore, the number of times the film formation step S120a is performed can be reduced with respect to the number of times the element formation step S100 is performed. This makes it possible to simplify the manufacturing process.
(第5実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図10(a)~図10(b)は、本実施形態における発電素子1の製造方法の一例を示す模式断面図である。本実施形態は、成膜工程S120aが、塗布工程S120bの後、不導体材料142aの表面を平滑に加工する加工工程S120dを含む点で、上述した実施形態とは異なる。なお、成膜工程S120a以外の各工程は、上述した各工程と同様のため、説明を省略する。
(Fifth Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generating element 1 according to this embodiment will be described. 10(a) and 10(b) are schematic cross-sectional views showing an example of a method for manufacturing the power generation element 1 according to this embodiment. This embodiment differs from the above-described embodiments in that the film formation step S120a includes a processing step S120d for smoothing the surface of the non-conductor material 142a after the coating step S120b. The steps other than the film formation step S120a are the same as the steps described above, and thus descriptions thereof are omitted.
 <成膜工程S120a>
 成膜工程S120aは、加工工程S120dを含む。成膜工程S120aは、塗布工程S120bの後であれば、例えば加工工程S120dの後に、硬化工程S120cを含んでもよく、硬化工程S120cを複数に分けて実施してもよい。
 <加工工程S120d>
<Film Forming Step S120a>
The film forming step S120a includes a processing step S120d. The film forming step S120a may include a curing step S120c after the coating step S120b, for example, after the processing step S120d, and the curing step S120c may be divided into a plurality of steps.
<Processing step S120d>
 加工工程S120dは、例えば塗布工程S120bの後、不導体材料142aの表面を平滑に加工する。 In the processing step S120d, for example, after the coating step S120b, the surface of the non-conductor material 142a is smoothed.
 加工工程S120dは、例えば図10(a)に示すように、加工部材19を不導体材料142aの第2主面142gにあてがい、例えば図10(b)に示すように、加工部材19を平行に引き抜く方法により、不導体材料142aの表面を平滑に加工してもよい。加工部材19として、例えば撥水性を有するガラス材が用いられる。なお、図10(a)の点線の矢印は、ガラス材を引き抜く方向を例示している。 In the processing step S120d, for example, as shown in FIG. 10A, the processing member 19 is applied to the second main surface 142g of the non-conductor material 142a, and, for example, as shown in FIG. The surface of the non-conducting material 142a may be smoothed by a drawing method. As the processing member 19, for example, a water-repellent glass material is used. In addition, the dotted arrow in FIG. 10(a) illustrates the direction in which the glass material is pulled out.
 加工工程S120dは、例えば図10(a)~図10(b)に示すように、塗布工程S120bの後で、かつ不導体材料142aの第2主面142gに第2電極12を形成する前に、不導体材料142aの第2主面142gの表面を平滑に加工してもよい。この場合、不導体層142と第2電極12との界面の接触面積を向上し易くすることができる。このため、不導体層142と第2電極12との界面における抵抗のバラつきを抑制することができる。これにより、発電量の向上を図ることが可能となる。 The processing step S120d is performed after the applying step S120b and before forming the second electrode 12 on the second main surface 142g of the non-conductor material 142a, as shown in FIGS. 10A and 10B, for example. , the surface of the second main surface 142g of the non-conductor material 142a may be smoothed. In this case, the contact area of the interface between the non-conductor layer 142 and the second electrode 12 can be easily improved. Therefore, variation in resistance at the interface between the non-conductor layer 142 and the second electrode 12 can be suppressed. This makes it possible to improve the amount of power generation.
 加工工程S120dは、例えば塗布工程S120bの後で、かつ不導体材料142aの第1主面142fに第1電極11を形成する前に、不導体材料142aの第1主面142fの表面を平滑に加工してもよい。この場合、不導体層142と第1電極11との界面の接触面積を向上し易くすることができる。このため、不導体層142と第1電極11との界面における抵抗のバラつきを抑制することができる。これにより、発電量の向上を図ることが可能となる。 In the processing step S120d, for example, after the applying step S120b and before forming the first electrodes 11 on the first main surface 142f of the non-conductor material 142a, the surface of the first main surface 142f of the non-conductor material 142a is smoothed. May be processed. In this case, the contact area of the interface between the non-conductor layer 142 and the first electrode 11 can be easily improved. Therefore, variation in resistance at the interface between the non-conductor layer 142 and the first electrode 11 can be suppressed. This makes it possible to improve the amount of power generation.
 本実施形態によれば、成膜工程S120aは、塗布工程S120bの後、不導体材料142aの表面を平滑に加工する加工工程S120dを含む。即ち、不導体層142と第1電極11との界面、又は不導体層142と第2電極12との界面の接触面積を向上し易くすることができる。このため、不導体層142と各電極11、12との界面における抵抗のバラつきを抑制することができる。これにより、発電量のさらなる向上を図ることが可能となる。 According to this embodiment, the film forming step S120a includes a processing step S120d for smoothing the surface of the non-conductor material 142a after the coating step S120b. That is, the contact area of the interface between the non-conductor layer 142 and the first electrode 11 or the interface between the non-conductor layer 142 and the second electrode 12 can be easily improved. Therefore, variations in resistance at the interfaces between the non-conductor layer 142 and the electrodes 11 and 12 can be suppressed. This makes it possible to further improve the power generation amount.
(第6実施形態:発電素子1の製造方法)
 次に、本実施形態における発電素子1の製造方法の一例を説明する。図11(a)は、本実施形態における発電素子1の製造方法の一例を示すフローチャートであり、図11(b)は、本実施形態における発電素子1の製造方法の第1変形例を示すフローチャートである。本実施形態は、成膜工程S120aが、塗布工程S120bの後、不導体材料142aに含まれる希釈剤を除去する乾燥工程S120eを含む点で、上述した実施形態とは異なる。なお、成膜工程S120a以外の各工程は、上述した各工程と同様のため、説明を省略する。
(Sixth Embodiment: Manufacturing Method of Power Generation Element 1)
Next, an example of a method for manufacturing the power generating element 1 according to this embodiment will be described. FIG. 11(a) is a flowchart showing an example of the method for manufacturing the power generation element 1 according to this embodiment, and FIG. 11(b) is a flowchart showing a first modification of the method for manufacturing the power generation element 1 according to this embodiment. is. This embodiment differs from the above-described embodiments in that the film formation step S120a includes a drying step S120e for removing the diluent contained in the non-conductor material 142a after the coating step S120b. The steps other than the film formation step S120a are the same as the steps described above, and thus descriptions thereof are omitted.
 <成膜工程S120a>
 成膜工程S120aは、例えば図11(a)~図11(b)に示すように、乾燥工程S120eを含む。成膜工程S120aは、塗布工程S120bの後であれば、例えば乾燥工程S120eの後に、硬化工程S120cを含んでもよく、硬化工程S120cを複数に分けて実施してもよい。
<Film Forming Step S120a>
The film formation step S120a includes a drying step S120e, as shown in FIGS. 11(a) to 11(b), for example. The film forming step S120a may include a curing step S120c after the coating step S120b, for example, after the drying step S120e, and the curing step S120c may be divided into a plurality of steps.
 <乾燥工程S120e>
 乾燥工程S120eは、例えば塗布工程120bの後、不導体材料142aに含まれる希釈剤を除去する。乾燥工程S120eは、例えば熱風乾燥炉等の公知の乾燥機器を用いて実施される。乾燥工程S120eは、例えば不導体材料142aに含まれる希釈剤を完全に除去せず、希釈剤の残渣を残してもよい。
<Drying step S120e>
The drying step S120e removes the diluent contained in the non-conducting material 142a, for example after the applying step 120b. The drying step S120e is performed using a known drying device such as a hot air drying furnace. The drying step S120e may not, for example, completely remove the diluent contained in the non-conductive material 142a, leaving a diluent residue.
 乾燥工程S120eは、塗布工程S120bの後であれば、第1電極形成工程S110、塗布工程S120b、基材離間工程S120b’加工工程S120d、及び第2電極形成工程S130の少なくとも何れかの前後において実施してもよく、複数に分けて実施してもよい。 The drying step S120e is performed before or after at least one of the first electrode forming step S110, the applying step S120b, the substrate separation step S120b', the processing step S120d, and the second electrode forming step S130, if the drying step S120e is after the coating step S120b. It may be divided into multiple parts and implemented.
 乾燥工程S120eは、例えば第1電極形成工程S110の前に実施してもよい。この場合、不導体材料142aの乾燥に伴う影響が第1電極11に及ばない。このため、第1電極11の仕事関数の変化を抑制することができる。これにより、発電量の向上を図ることが可能となる。 The drying step S120e may be performed, for example, before the first electrode forming step S110. In this case, the first electrode 11 is not affected by the drying of the non-conducting material 142a. Therefore, change in the work function of the first electrode 11 can be suppressed. This makes it possible to improve the amount of power generation.
 乾燥工程S120eは、例えば第2電極形成工程S130の前に実施してもよい。この場合、不導体材料142aの第2主面142gに第2電極12が形成された場合に比べて、希釈剤が残留しにくくなる。即ち、中間部14に希釈剤が含まれる領域を低減でき、希釈剤を介した微粒子141の移動を抑制することができる。このため、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することをさらに抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 The drying step S120e may be performed, for example, before the second electrode forming step S130. In this case, the diluent is less likely to remain than when the second electrode 12 is formed on the second main surface 142g of the non-conductor material 142a. That is, the region containing the diluent in the intermediate portion 14 can be reduced, and the movement of the fine particles 141 via the diluent can be suppressed. Therefore, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles 141 on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
 乾燥工程S120eは、例えば第2電極形成工程S130の後に実施してもよい。この場合、不導体材料142aの第2主面142gに第2電極12が形成されていない場合に比べて、不導体層142と第2電極12の接触面積が向上し易くなる。このため、不導体層142と各電極11、12との界面における抵抗のバラつきを抑制することができる。これにより、発電量の向上を図ることが可能となる。 The drying step S120e may be performed, for example, after the second electrode forming step S130. In this case, the contact area between the non-conductor layer 142 and the second electrode 12 can be easily improved compared to the case where the second electrode 12 is not formed on the second main surface 142g of the non-conductor material 142a. Therefore, variations in resistance at the interfaces between the non-conductor layer 142 and the electrodes 11 and 12 can be suppressed. This makes it possible to improve the amount of power generation.
 本実施形態によれば、成膜工程S120aは、塗布工程120bの後、不導体材料142aに含まれる希釈剤を除去する乾燥工程S120eを含む。即ち、不導体層142に希釈剤が含まれる領域を低減でき、希釈剤を介した微粒子141の移動を抑制することができる。このため、経時に伴い微粒子141が一方の電極側に偏在し、電子の移動量が減少することをさらに抑制することができる。これにより、発電量のさらなる安定化を図ることが可能となる。 According to this embodiment, the film forming step S120a includes a drying step S120e for removing the diluent contained in the non-conductor material 142a after the applying step 120b. That is, the region containing the diluent in the non-conductor layer 142 can be reduced, and the movement of the fine particles 141 via the diluent can be suppressed. Therefore, it is possible to further suppress the decrease in the amount of movement of electrons due to uneven distribution of the fine particles 141 on the one electrode side over time. This makes it possible to further stabilize the power generation amount.
(実施形態:電子機器500)
 <電子機器500>
 上述した発電素子1及び発電装置100は、例えば電子機器に搭載することが可能である。以下、電子機器の実施形態のいくつかを説明する。
(Embodiment: electronic device 500)
<Electronic device 500>
The power generation element 1 and the power generation device 100 described above can be mounted on, for example, an electronic device. Some embodiments of the electronic device are described below.
 図13(a)~図13(d)は、発電素子1を備えた電子機器500の例を示す模式ブロック図である。図13(e)~図13(h)は、発電素子1を含む発電装置100を備えた電子機器500の例を示す模式ブロック図である。 FIGS. 13(a) to 13(d) are schematic block diagrams showing an example of an electronic device 500 including the power generation element 1. FIG. 13(e) to 13(h) are schematic block diagrams showing an example of an electronic device 500 having a power generation device 100 including the power generation element 1. FIG.
 図13(a)に示すように、電子機器500(エレクトリックプロダクト)は、電子部品501(エレクトロニックコンポーネント)と、主電源502と、補助電源503と、を備えている。電子機器500及び電子部品501のそれぞれは、電気的な機器(エレクトリカルデバイス)である。 As shown in FIG. 13( a ), an electronic device 500 (electric product) includes an electronic component 501 (electronic component), a main power supply 502 and an auxiliary power supply 503 . Each of the electronic device 500 and the electronic component 501 is an electrical device.
 電子部品501は、主電源502を電源に用いて駆動される。電子部品501の例としては、例えば、CPU、モーター、センサ端末、及び照明等を挙げることができる。電子部品501が、例えばCPUである場合、電子機器500には、内蔵されたマスター(CPU)によって制御可能な電子機器が含まれる。電子部品501が、例えば、モーター、センサ端末、及び照明等の少なくとも1つを含む場合、電子機器500には、外部にあるマスター、あるいは人によって制御可能な電子機器が含まれる。 The electronic component 501 is driven using the main power supply 502 as a power supply. Examples of the electronic component 501 include, for example, a CPU, motors, sensor terminals, lighting, and the like. If electronic component 501 is, for example, a CPU, electronic device 500 includes an electronic device that can be controlled by a built-in master (CPU). If the electronic components 501 include at least one of, for example, motors, sensor terminals, and lighting, the electronic device 500 includes electronic devices that can be controlled by an external master or person.
 主電源502は、例えば電池である。電池には、充電可能な電池も含まれる。主電源502のプラス端子(+)は、電子部品501のVcc端子(Vcc)と電気的に接続される。主電源502のマイナス端子(-)は、電子部品501のGND端子(GND)と電気的に接続される。 The main power supply 502 is, for example, a battery. Batteries also include rechargeable batteries. A plus terminal (+) of the main power supply 502 is electrically connected to a Vcc terminal (Vcc) of the electronic component 501 . A negative terminal (−) of the main power supply 502 is electrically connected to a GND terminal (GND) of the electronic component 501 .
 補助電源503は、発電素子1である。発電素子1は、上述した発電素子1の少なくとも1つを含む。電子機器500において、補助電源503は、例えば主電源502と併用され、主電源502をアシストするための電源や、主電源502の容量が切れた場合、主電源502をバックアップするための電源として使うことができる。主電源502が充電可能な電池である場合には、補助電源503は、さらに、電池を充電するための電源としても使うことができる。 The auxiliary power supply 503 is the power generation element 1. The power generation element 1 includes at least one power generation element 1 described above. In the electronic device 500, the auxiliary power supply 503 is used, for example, together with the main power supply 502, and is used as a power supply for assisting the main power supply 502 or as a power supply for backing up the main power supply 502 when the capacity of the main power supply 502 runs out. be able to. If the main power source 502 is a rechargeable battery, the auxiliary power source 503 can also be used as a power source for charging the battery.
 図13(b)に示すように、主電源502は、発電素子1とされてもよい。図13(b)に示す電子機器500は、主電源502として使用される発電素子1と、発電素子1を用いて駆動されることが可能な電子部品501と、を備えている。発電素子1は、独立した電源(例えばオフグリッド電源)である。このため、電子機器500は、例えば自立型(スタンドアローン型)にできる。しかも、発電素子1は、環境発電型(エナジーハーベスト型)である。図13(b)に示す電子機器500は、電池の交換が不要である。 As shown in FIG. 13(b), the main power supply 502 may be the power generating element 1. An electronic device 500 shown in FIG. 13B includes a power generation element 1 used as a main power supply 502 and an electronic component 501 that can be driven using the power generation element 1 . The power generation element 1 is an independent power supply (for example, an off-grid power supply). Therefore, the electronic device 500 can be, for example, an independent type (standalone type). Moreover, the power generating element 1 is of the energy harvesting type. The electronic device 500 shown in FIG. 13B does not require battery replacement.
 図13(c)に示すように、電子部品501が発電素子1を備えていてもよい。発電素子1のアノードは、例えば、回路基板(図示は省略する)のGND配線と電気的に接続される。発電素子1のカソードは、例えば、回路基板(図示は省略する)のVcc配線と電気的に接続される。この場合、発電素子1は、電子部品501の、例えば補助電源503として使うことができる。 The electronic component 501 may include the power generation element 1 as shown in FIG. 13(c). The anode of the power generation element 1 is electrically connected to, for example, a GND wiring of a circuit board (not shown). The cathode of the power generation element 1 is electrically connected to, for example, Vcc wiring of a circuit board (not shown). In this case, the power generating element 1 can be used as, for example, an auxiliary power source 503 for the electronic component 501 .
 図13(d)に示すように、電子部品501が発電素子1を備えている場合、発電素子1は、電子部品501の、例えば主電源502として使うことができる。 As shown in FIG. 13(d), when the electronic component 501 includes the power generation element 1, the power generation element 1 can be used as the main power source 502 of the electronic component 501, for example.
 図13(e)~図13(h)のそれぞれに示すように、電子機器500は、発電装置100を備えていてもよい。発電装置100は、電気エネルギーの源として発電素子1を含む。 As shown in each of FIGS. 13(e) to 13(h), the electronic device 500 may include the power generator 100. FIG. The power generation device 100 includes a power generation element 1 as a source of electrical energy.
 図13(d)に示した実施形態は、電子部品501が主電源502として使用される発電素子1を備えている。同様に、図13(h)に示した実施形態は、電子部品501が主電源として使用される発電装置100を備えている。これらの実施形態では、電子部品501が、独立した電源を持つ。このため、電子部品501を、例えば自立型とすることができる。自立型の電子部品501は、例えば、複数の電子部品を含み、かつ、少なくとも1つの電子部品が別の電子部品と離れているような電子機器に有効に用いることができる。そのような電子機器500の例は、センサである。センサは、センサ端末(スレーブ)と、センサ端末から離れたコントローラ(マスター)と、を備えている。センサ端末及びコントローラのそれぞれは、電子部品501である。センサ端末が、発電素子1又は発電装置100を備えていれば、自立型のセンサ端末となり、有線での電力供給の必要がない。発電素子1又は発電装置100は環境発電型であるので、電池の交換も不要である。センサ端末は、電子機器500の1つと見なすこともできる。電子機器500と見なされるセンサ端末には、センサのセンサ端末に加えて、例えば、IoTワイヤレスタグ等が、さらに含まれる。 The embodiment shown in FIG. 13(d) includes a power generation element 1 in which an electronic component 501 is used as a main power supply 502. Similarly, the embodiment shown in FIG. 13(h) comprises a generator 100 in which electronic component 501 is used as the main power source. In these embodiments, electronic component 501 has an independent power supply. Therefore, the electronic component 501 can be made self-supporting, for example. Free-standing electronic component 501 can be effectively used, for example, in an electronic device that includes multiple electronic components and in which at least one electronic component is separate from another electronic component. An example of such electronics 500 is a sensor. The sensor has a sensor terminal (slave) and a controller (master) remote from the sensor terminal. Each of the sensor terminals and controller is an electronic component 501 . If the sensor terminal is provided with the power generation element 1 or the power generation device 100, it becomes a self-supporting sensor terminal and does not require a wired power supply. Since the power generation element 1 or the power generation device 100 is of the energy harvesting type, it is not necessary to replace the battery. A sensor terminal can also be regarded as one of the electronic devices 500 . The sensor terminals considered electronic equipment 500 further include, for example, IoT wireless tags, etc., in addition to sensor terminals of sensors.
 図13(a)~図13(h)のそれぞれに示した実施形態において共通することは、電子機器500は、熱エネルギーを電気エネルギーに変換する発電素子1と、発電素子1を電源に用いて駆動されることが可能な電子部品501と、を含むことである。 Common to the embodiments shown in FIGS. 13(a) to 13(h) is that the electronic device 500 includes a power generation element 1 that converts thermal energy into electrical energy, and uses the power generation element 1 as a power source. and an electronic component 501 that can be driven.
 電子機器500は、独立した電源を備えた自律型(オートノマス型)であってもよい。自律型の電子機器の例は、例えばロボット等を挙げることができる。さらに、発電素子1又は発電装置100を備えた電子部品501は、独立した電源を備えた自律型であってもよい。自律型の電子部品の例は、例えば可動センサ端末等を挙げることができる。 The electronic device 500 may be an autonomous type with an independent power supply. Examples of autonomous electronic devices include, for example, robots. Furthermore, the electronic component 501 with the power generation element 1 or the power generation device 100 may be autonomous with an independent power supply. Examples of autonomous electronic components include, for example, movable sensor terminals.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
1    :発電素子
11   :第1電極
12   :第2電極
14   :中間部
15   :第1基板
16   :第2基板
17   :封止材
18   :基材
19   :加工部材
100  :発電装置
101  :第1配線
102  :第2配線
140  :空間
141  :微粒子
141a :被膜
142  :不導体層
142a :不導体材料
142f :第1主面
142g :第2主面
500  :電子機器
501  :電子部品
502  :主電源
503  :補助電源
G    :ギャップ
R    :負荷
S100 :素子形成工程
S110 :第1電極形成工程
S120 :中間部形成工程
S120a:成膜工程
S120b:塗布工程
S120c:硬化工程
S120d:加工工程
S120e:乾燥工程
S130 :第2電極形成工程
S140 :封止材形成工程
Z    :第1方向
X    :第2方向
Y    :第3方向
1: power generation element 11: first electrode 12: second electrode 14: intermediate portion 15: first substrate 16: second substrate 17: sealing material 18: base material 19: processed member 100: power generation device 101: first wiring 102: Second wiring 140: Space 141: Fine particles 141a: Coating 142: Non-conductor layer 142a: Non-conductor material 142f: First main surface 142g: Second main surface 500: Electronic device 501: Electronic component 502: Main power source 503: Auxiliary power supply G: Gap R: Load S100: Element forming step S110: First electrode forming step S120: Intermediate portion forming step S120a: Film forming step S120b: Coating step S120c: Curing step S120d: Processing step S120e: Drying step S130: 2-electrode forming step S140: sealing material forming step Z: first direction X: second direction Y: third direction

Claims (13)

  1.  熱エネルギーを電気エネルギーに変換する際、電極間の温度差を不要とする発電素子の製造方法であって、
      第1電極、
      前記第1電極とは異なる仕事関数を有する第2電極、及び
      前記第1電極と前記第2電極との間に挟まれた中間部、
     をそれぞれ形成する素子形成工程を備え、
     前記中間部は、微粒子を内包し、前記第1電極及び前記第2電極を支持する不導体層を含むこと
     を特徴とする発電素子の製造方法。
    A method for manufacturing a power generation element that does not require a temperature difference between electrodes when converting thermal energy into electrical energy,
    a first electrode;
    a second electrode having a work function different from that of the first electrode; and an intermediate portion sandwiched between the first electrode and the second electrode;
    An element forming step for forming each,
    The method of manufacturing a power generation element, wherein the intermediate portion includes a non-conductor layer that contains fine particles and supports the first electrode and the second electrode.
  2.  前記素子形成工程は、前記不導体層を成膜する成膜工程を含むこと
     を特徴とする請求項1記載の発電素子の製造方法。
    2. The method of manufacturing a power generating element according to claim 1, wherein said element forming step includes a film forming step of forming said non-conductor layer.
  3.  前記成膜工程は、不導体材料を塗布する塗布工程を含むこと
     を特徴とする請求項2記載の発電素子の製造方法。
    3. The method of manufacturing a power generation element according to claim 2, wherein the film forming step includes a coating step of coating a non-conductive material.
  4.  前記成膜工程は、前記塗布工程の後、前記不導体材料を硬化し、前記不導体層を成膜する硬化工程を含むこと
     を特徴とする請求項3記載の発電素子の製造方法。
    4. The method of manufacturing a power generation element according to claim 3, wherein the film formation step includes a curing step of curing the non-conductor material to form the non-conductor layer after the coating step.
  5.  前記成膜工程は、前記第1電極の上に前記不導体層を成膜することを含むこと
     を特徴とする請求項3又は4記載の発電素子の製造方法。
    5. The method of manufacturing a power generating element according to claim 3, wherein the film forming step includes forming the non-conductor layer on the first electrode.
  6.  前記成膜工程は、基材の上に前記不導体層を成膜することを含むこと
     を特徴とする請求項3又は4記載の発電素子の製造方法。
    5. The method of manufacturing a power generation element according to claim 3, wherein the film forming step includes forming the nonconductor layer on a substrate.
  7.  前記素子形成工程は、
      前記基材を離間する基材離間工程と、
      前記基材離間工程の前に、前記第1電極を形成する第1電極形成工程と、
      前記基材離間工程の後に、前記第2電極を形成する第2電極形成工程と、
     を含むこと
     を特徴とする請求項6記載の発電素子の製造方法。
    The element forming step includes
    a substrate separating step of separating the substrates;
    a first electrode forming step of forming the first electrode before the substrate separating step;
    a second electrode forming step of forming the second electrode after the substrate separating step;
    7. The method of manufacturing a power generating element according to claim 6, comprising:
  8.  前記素子形成工程は、
      前記基材を離間する基材離間工程と、
      前記基材離間工程の後に、前記第1電極を形成する第1電極形成工程と、
      前記基材離間工程の後に、前記第2電極を形成する第2電極形成工程と、
     を含むこと
     を特徴とする請求項6記載の発電素子の製造方法。
    The element forming step includes
    a substrate separating step of separating the substrates;
    a first electrode forming step of forming the first electrode after the substrate separating step;
    a second electrode forming step of forming the second electrode after the substrate separating step;
    7. The method of manufacturing a power generating element according to claim 6, comprising:
  9.  前記成膜工程は、前記塗布工程の後、前記不導体材料の表面を平滑に加工する加工工程を含むこと
     を特徴とする請求項3~8のうち何れか1項記載の発電素子の製造方法。
    The method for manufacturing a power generating element according to any one of claims 3 to 8, wherein the film forming step includes a processing step of smoothing the surface of the nonconductor material after the coating step. .
  10.  前記成膜工程は、前記塗布工程の後、前記不導体材料に含まれる希釈剤を除去する乾燥工程を含むこと
     を特徴とする請求項3~9のうち何れか1項記載の発電素子の製造方法。
    The manufacturing of the power generation element according to any one of claims 3 to 9, wherein the film forming step includes a drying step of removing a diluent contained in the nonconductor material after the coating step. Method.
  11.  請求項1記載の発電素子の製造方法により形成された発電素子。 A power generation element formed by the method for manufacturing a power generation element according to claim 1.
  12.  請求項11記載の発電素子と、
     前記第1電極と電気的に接続された第1配線と、
     前記第2電極と電気的に接続された第2配線と、
     を備えること
     を特徴とする発電装置。
    The power generation element according to claim 11;
    a first wiring electrically connected to the first electrode;
    a second wiring electrically connected to the second electrode;
    A power generation device comprising:
  13.  請求項11記載の発電素子と、
     前記発電素子を電源に用いて駆動する電子部品と
     を備えること
     を特徴とする電子機器。
    The power generation element according to claim 11;
    An electronic device comprising: an electronic component driven by using the power generation element as a power supply.
PCT/JP2022/033833 2021-09-10 2022-09-09 Method for producing power generation element, power generation element, power generation device and electronic device WO2023038105A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-147809 2021-09-10
JP2021147809A JP7011361B1 (en) 2021-09-10 2021-09-10 Manufacturing method of power generation element, power generation element, power generation device, and electronic device
JP2021-211371 2021-12-24
JP2021211371 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023038105A1 true WO2023038105A1 (en) 2023-03-16

Family

ID=85506382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033833 WO2023038105A1 (en) 2021-09-10 2022-09-09 Method for producing power generation element, power generation element, power generation device and electronic device

Country Status (1)

Country Link
WO (1) WO2023038105A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273948A (en) * 2005-03-28 2006-10-12 Mitsui Chemicals Inc Thermally-conductive resin composition and use of the same
JP2010245299A (en) * 2009-04-06 2010-10-28 Three M Innovative Properties Co Composite thermoelectric material and method of manufacturing the same
WO2019088002A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273948A (en) * 2005-03-28 2006-10-12 Mitsui Chemicals Inc Thermally-conductive resin composition and use of the same
JP2010245299A (en) * 2009-04-06 2010-10-28 Three M Innovative Properties Co Composite thermoelectric material and method of manufacturing the same
WO2019088002A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method

Similar Documents

Publication Publication Date Title
WO2019088002A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088003A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
JP7473222B2 (en) Power generating element, power generating device, electronic device, and method for manufacturing power generating element
CN111081863B (en) Flexible composite film nano generator and preparation method thereof
WO2022254892A1 (en) Thermoelectric element, power generation device, electronic apparatus, and method for manufacturing thermoelectric element
JP6942404B1 (en) Power generation elements, power generation equipment, electronic devices, power generation methods, and manufacturing methods of power generation elements
WO2023038105A1 (en) Method for producing power generation element, power generation element, power generation device and electronic device
JP7384401B2 (en) Power generation element, power generation device, electronic equipment, and manufacturing method of power generation element
WO2023038102A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
JP7197857B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
WO2023038107A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
WO2023038108A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038099A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038103A1 (en) Power generation element, method for manufacturing power generation element, power generation device, and electronic apparatus
WO2023038106A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2023038104A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
KR20240054350A (en) Manufacturing method of power generation elements, power generation elements, power generation devices and electronic devices
KR20240054352A (en) Power generation elements, manufacturing methods of power generation elements, power generation devices, and electronic devices
WO2023286363A1 (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element
CN117981497A (en) Method for manufacturing power generating element, power generating device, and electronic device
TW202209715A (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP7197855B2 (en) Thermoelectric element manufacturing method
CN117941489A (en) Power generating element, method for manufacturing power generating element, power generating device, and electronic device
JP2023157549A (en) Power generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867426

Country of ref document: EP

Kind code of ref document: A1