WO2022068218A1 - 一种mems加速度传感器芯片的检测方法及装置 - Google Patents

一种mems加速度传感器芯片的检测方法及装置 Download PDF

Info

Publication number
WO2022068218A1
WO2022068218A1 PCT/CN2021/094562 CN2021094562W WO2022068218A1 WO 2022068218 A1 WO2022068218 A1 WO 2022068218A1 CN 2021094562 W CN2021094562 W CN 2021094562W WO 2022068218 A1 WO2022068218 A1 WO 2022068218A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
plate
value
electrode plate
acceleration sensor
Prior art date
Application number
PCT/CN2021/094562
Other languages
English (en)
French (fr)
Inventor
刘婧
冯方方
李宗伟
杨长春
周永健
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Priority to JP2022533625A priority Critical patent/JP7221453B2/ja
Priority to AU2021206818A priority patent/AU2021206818B1/en
Publication of WO2022068218A1 publication Critical patent/WO2022068218A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2856Internal circuit aspects, e.g. built-in test features; Test chips; Measuring material aspects, e.g. electro migration [EM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0862Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with particular means being integrated into a MEMS accelerometer structure for providing particular additional functionalities to those of a spring mass system

Definitions

  • the present application relates to the technical field of sensor performance analysis, and in particular, to a detection method and device for a MEMS acceleration sensor chip.
  • Micro Electro Mechanical Systems utilizes micro-nano processing technology to realize micro-mechanical structures on silicon wafers, which greatly reduces the size of devices, reduces energy consumption and improves reliability. Due to the adoption of silicon micromachining technology and semiconductor integrated circuit technology, mass production is easy to achieve and the cost is low. MEMS are widely used in consumer electronics, automotive electronics, biomedical and other fields because of their advantages of miniaturization, integration, low cost, and low power consumption. MEMS acceleration sensor is one of them.
  • the MEMS acceleration sensor chip After the MEMS acceleration sensor chip is designed and processed, its performance needs to be tested and analyzed to determine whether it meets the design requirements and can work normally. Because the cost of MEMS chip packaging often accounts for 70-80% of the cost of the entire MEMS acceleration sensor element. Therefore, preliminarily testing the performance of the MEMS acceleration sensor chip after the processing of the MEMS acceleration sensor chip, excluding the chips that cannot work normally, and screening out the MEMS acceleration sensor chip with good performance for packaging, has become an urgent problem to be solved at present.
  • the embodiments of the present application provide a detection method and device for a MEMS acceleration sensor chip, which are used to solve the problem that the existing MEMS acceleration sensor chip cannot be preliminarily excluded after the processing of the MEMS acceleration sensor chip is completed, resulting in high cost technology. question.
  • an embodiment of the present application provides a method for detecting a MEMS acceleration sensor chip, characterized in that the method includes: applying a variable DC voltage to the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip, so that the The second pole plate moves in the direction of the first pole plate; wherein, the first pole plate is a fixed pole plate, and the second pole plate is a movable pole plate; the AC voltage of the preset frequency is applied to the first pole plate and the second pole plate.
  • Diode plate to obtain the basic capacitance value and the pressure capacitance value between the first electrode plate and the second electrode plate; wherein, when the basic capacitance value is zero, the voltage value of the DC voltage is zero, the first electrode plate and the second electrode plate
  • the basic capacitance value and the pressure capacitance value between the MEMS acceleration sensor chips determine the voltage-capacitance characteristic curve, the turning voltage and the capacitance change value between the first plate and the second plate of the MEMS acceleration sensor chip; according to the first plate and the second plate
  • the basic capacitance value between the plates, the turning voltage, the capacitance change value and the voltage-capacitance characteristic curve are used to judge whether the MEMS acceleration sensor chip is normal.
  • An embodiment of the present application provides a detection method for a MEMS acceleration sensor chip.
  • the basic capacitance value, turning voltage, and capacitance change value of the MEMS acceleration sensor chip are obtained by measuring the capacitance value between two polar plates under different DC voltage values. Through the obtained basic capacitance value, turning voltage, and capacitance change value, analyze whether there are problems in the processing of the MEMS acceleration sensor, and determine which operation or process problems exist for subsequent improvement.
  • the method further includes: determining a basic capacitance value, a turning voltage, a capacitance change value, and a voltage-capacitance characteristic curve between the second plate and the third plate of the MEMS acceleration sensor chip;
  • the capacitance value, turning voltage, capacitance change value and the theoretical design value of the voltage-capacitance characteristic curve are compared to judge whether the MEMS acceleration sensor chip is normal.
  • a variable DC voltage is applied to the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip, so that the second electrode plate moves in the direction of the first electrode plate, which specifically includes : apply a variable DC voltage to the first and second polar plates of the MEMS acceleration sensor chip; adjust the DC voltage value based on the preset step voltage value so that the second polar plate faces the first polar plate The direction of movement; wherein, the moving distance of the second plate is determined by the current DC voltage value.
  • adjusting the output voltage value of the DC voltage based on a preset step voltage value, so that the second pole plate moves in the direction of the first pole plate specifically includes: based on the preset step voltage value Stepping the voltage value to adjust the DC voltage value so that different DC voltage values are obtained between the first electrode plate and the second electrode plate, so as to generate differences between the first electrode plate and the second electrode plate based on the different DC voltage values
  • the electrostatic force is used to overcome the elastic force generated by the deformation of the elastic beam caused by the movement of the second electrode plate; wherein, the elastic beam is a component connected to the second electrode plate of the MEMS acceleration sensor chip.
  • an AC voltage of a preset frequency is applied to the first electrode plate and the second electrode plate to obtain the basic capacitance value and the voltage between the first electrode plate and the second electrode plate.
  • the capacitance value specifically includes: applying an AC voltage of a preset frequency to the first plate and the second plate of the MEMS acceleration sensor chip, so that a current is generated between the first plate and the second plate; based on the generated The current information is used to calculate the basic capacitance value and the pressurized capacitance value between the first electrode plate and the second electrode plate; wherein, the current information includes the amplitude and phase of the current.
  • the breakover voltage is the formula When the result is equal to zero, the voltage value corresponding to V; among them, ⁇ is the dielectric constant of the medium between the first plate and the second plate, A is the plate area of the first plate and the second plate, and V is The DC voltage value applied between the first pole plate and the second pole plate, d is the pole plate distance between the first pole plate and the second pole plate, and k is the elastic coefficient of the elastic beam.
  • judging whether the MEMS acceleration sensor chip is normal according to the basic capacitance value, the turning voltage and the capacitance change value of the first electrode plate and the second electrode plate specifically includes: The basic capacitance value, turning voltage, capacitance change value and voltage-capacitance characteristic curve between one electrode plate and the second electrode plate, and the corresponding basic capacitance value between the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip, Turning voltage, capacitance change value and theoretical design value of the voltage-capacitance characteristic curve are compared; any one or more of the current basic capacitance value, turning voltage, capacitance change value and voltage-capacitance characteristic curve are compared with the corresponding When the difference between the basic capacitance value, the turning voltage, the capacitance change value, and the theoretical design value of the voltage-capacitance characteristic curve is greater than the preset threshold, it is determined that the MEMS acceleration sensor chip is abnormal.
  • the preset multiple of the absolute value of the peak value of the AC voltage is smaller than the absolute value of the DC voltage value.
  • the method before applying a variable DC voltage to the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip to move the second electrode plate toward the direction of the first electrode plate, The method further includes: arranging a first limit bump on the edge of the first surface of the first plate of the MEMS acceleration sensor chip, and disposing a second limit bump on the edge of the first surface of the third plate, to Avoid contacting the second electrode plate with the first electrode plate or the third electrode plate during the movement of the second electrode plate under the action of the DC voltage.
  • an embodiment of the present application also provides a detection device for a MEMS acceleration sensor chip, characterized in that the device includes: a voltage output module for applying a variable DC voltage to the first plate of the MEMS acceleration sensor chip and the second pole plate, so that the second pole plate moves in the direction of the first pole plate; wherein, the first pole plate is a fixed pole plate, and the second pole plate is a movable pole plate; the voltage output module is also used for The AC voltage of the preset frequency is added to the first pole plate and the second pole plate to obtain the basic capacitance value and the pressurized capacitance value between the first pole plate and the second pole plate; wherein, the basic capacitance value is a DC voltage When the voltage value is zero, the capacitance value between the first electrode plate and the second electrode plate, and the voltage value of the pressure capacitor value are not zero when the voltage value of the DC voltage is not zero, the capacitance value between the first electrode plate and the second electrode plate value; a determination module for determining the voltage between the first plate and
  • FIG. 1 is a schematic diagram of a simple structure of a MEMS acceleration sensor chip provided by an embodiment of the application;
  • FIG. 2 is a flowchart of a method for detecting a MEMS acceleration sensor chip provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a displacement direction of a MEMS acceleration sensor chip under a DC voltage provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a physical model of a MEMS acceleration sensor chip provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a capacitance-voltage characteristic curve of a MEMS acceleration sensor chip provided by an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a position limit bump of a MEMS acceleration sensor chip according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a detection device for a MEMS acceleration sensor chip according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a simple structure of a MEMS acceleration sensor chip provided by an embodiment of the present application.
  • the MEMS acceleration sensor chip is composed of three polar plates: a first electrode plate, a second electrode plate, and a third electrode plate.
  • the first pole plate and the third pole plate are fixed pole plates, and will not move under the action of external force.
  • the second pole plate is located in the middle of the first pole plate and the third pole plate, the second pole plate is movable, and is also referred to as a movable pole plate in the embodiment of the present application.
  • the first surface of the second electrode plate and the first surface of the first electrode plate form a plate capacitor with the same area of the upper and lower electrode plates, and the second surface of the second electrode plate and the first surface of the third electrode plate also form a Plate capacitors with equal upper and lower plate areas.
  • the first surface of the second electrode plate is opposite to the first surface of the first electrode plate, so that the second electrode plate and the first electrode plate form a first capacitor;
  • the first surfaces of the triode plates are arranged opposite to each other, so that the second electrode plate and the third electrode plate form a second capacitor.
  • the embodiments of the present application provide a method and device for detecting a MEMS acceleration sensor chip.
  • the basic capacitance value, turning voltage, and capacitance change value of the MEMS acceleration sensor chip are obtained by measuring the capacitance value between two polar plates under different voltages. If the error between the measured value and the corresponding theoretical design value is within a reasonable range, the MEMS acceleration sensor chip meets the design requirements. Otherwise, it is possible to analyze what problems exist in operation or technology during the processing of the MEMS acceleration sensor according to its basic capacitance value, turning voltage, capacitance change value, and voltage-capacitance characteristic curve, so as to facilitate subsequent improvement.
  • FIG. 2 is a flowchart of a detection method of a MEMS acceleration sensor chip provided by an embodiment of the present application.
  • a method for detecting a MEMS acceleration sensor chip provided by an embodiment of the present application specifically includes the following steps:
  • Step 101 adding the positive and negative electrodes of the variable DC voltage to the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip respectively, so that the second electrode plate moves toward the direction of the first electrode plate.
  • the variable DC voltage is a DC voltage whose voltage value can be adjusted, that is, a DC voltage with different voltage values.
  • the capacitance value of the plate capacitor formed by the first surface of the second pole plate and the first surface of the first pole plate wherein, C is the capacitance between the first pole plate and the second pole plate, and ⁇ is the first pole plate.
  • the positive pole of the DC voltage can be connected to the first plate of the MEMS acceleration sensor chip, and the negative pole of the DC voltage can be connected to the first plate of the MEMS acceleration sensor chip. It is connected to the second plate of the MEMS acceleration sensor chip; the negative electrode of the DC voltage can also be connected to the first plate of the MEMS acceleration sensor chip, and the positive electrode of the DC voltage can be connected to the second plate of the MEMS acceleration sensor chip.
  • the DC voltage value is adjusted based on the preset step voltage value, so that the second electrode plate faces the first electrode plate move in the direction.
  • the output voltage of the DC voltage is adjusted based on a preset step voltage value.
  • the preset step voltage value is the value of the output change of the DC voltage each time the DC voltage value is adjusted.
  • the preset step voltage value is 1V
  • each time the DC voltage value is adjusted the DC voltage value is increased by 1V or decreased by 1V.
  • the positive pole of the DC voltage is connected to the first plate of the MEMS acceleration sensor chip, and the negative pole of the DC voltage is connected to the second plate of the MEMS acceleration sensor chip, the first surface of the first plate is full of positive charges.
  • the first surface of the second electrode plate is full of negative charges; if the negative electrode of the DC voltage is connected to the first electrode plate of the MEMS acceleration sensor chip, and the positive electrode of the DC voltage is connected to the second electrode plate of the MEMS acceleration sensor chip, the first electrode The first surface of the plate is full of negative charges, and the first surface of the second plate is full of positive charges.
  • the first electrode plate is a fixed electrode plate and the second electrode plate is a moving electrode plate, whether the first surface of the first electrode plate is full of positive charges, the first surface of the second electrode plate is full of negative charges, or the first The first surface of the pole plate is full of negative charges, and the first surface of the second pole plate is full of positive charges, and the second pole plate will be due to the electrostatic force of mutual attraction between the pole plates, so that the second pole plate has a tendency to move towards the first pole. A trend of movement in the direction of the plate.
  • FIG. 3 is a schematic diagram of a displacement direction of a MEMS acceleration sensor chip under a DC voltage according to an embodiment of the present application.
  • the second electrode plate moves toward the first electrode plate.
  • the first electrode plate and the third electrode plate are both fixed electrode plates, it is assumed that the first electrode plate and the second electrode plate and the The distance between the second pole plate and the third pole plate is d 0 .
  • the distance between the first pole plate and the second pole plate is d 0 -x
  • the distance between the second pole plate and the third pole plate is d 0 +x.
  • FIG. 4 is a schematic diagram of a physical model of a MEMS acceleration sensor chip provided by an embodiment of the present application.
  • the MEMS acceleration sensor consists of a mass block, an elastic beam and a fixed frame.
  • the upper surface of the fixed frame is equivalent to the first pole plate or the third pole plate
  • the mass block is equivalent to the second pole plate
  • the lower surface of the fixed frame is equivalent to the third pole plate or the first pole plate.
  • the mass is connected to the frame by elastic beams. When the mass block moves, it will deform the elastic beam connected to the mass block, thereby generating elastic force, which can be equivalent to a spring structure.
  • the electrostatic force generated between the first pole plate and the second pole plate will make the second pole plate overcome the elastic force generated by the elastic beam strain, and make the second pole plate finally stop at the point where the elastic force and the electrostatic force between the pole plates are equal. Location.
  • the electrostatic force between the first pole plate and the second pole plate is
  • d 0 is the distance between the first pole plate and the second pole plate when the voltage value of the applied voltage between the first pole plate and the second pole plate is zero
  • x is the movement of the second pole plate towards the first pole plate distance
  • V is the DC voltage value added between the first pole plate and the second pole plate
  • k is the elastic coefficient of the elastic beam.
  • a variable DC voltage can also be applied to the second electrode plate and the third electrode plate of the MEMS acceleration sensor chip by the method provided in the above step 101, so that the second electrode plate faces the third electrode plate. The direction of the plate moves.
  • Step 102 Add the positive and negative electrodes of the AC voltage of the preset frequency to the first electrode plate and the second electrode plate, respectively, to obtain the basic capacitance value and the pressurized capacitance value between the first electrode plate and the second electrode plate.
  • the embodiment of the present application also applies an AC voltage of a preset frequency to the first electrode plate and the second electrode plate.
  • the capacitance values of the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip under different DC voltage values are measured by an AC voltage with a preset frequency.
  • the two output ends of the AC voltage of the preset frequency are respectively applied to the first plate and the second plate of the MEMS acceleration sensor chip, so that the first plate and the second plate are respectively applied.
  • a current is generated between the two electrode plates, and based on the generated current information, the basic capacitance value between the first electrode plate and the second electrode plate is calculated; wherein, the current information includes the amplitude and phase of the current.
  • the specific calculation principle of the capacitance value is as follows:
  • the MEMS acceleration sensor chip is measured once by the AC voltage of the preset frequency
  • the preset multiple of the absolute value of the peak value of the AC voltage is less than the absolute value of the DC voltage value; wherein, the preset multiple should be at least greater than one hundred, that is, the voltage value of the DC voltage should be It is more than two orders of magnitude greater than the peak value of the AC voltage, so as to prevent the position of the second electrode plate from moving due to the high AC voltage, thereby affecting the accuracy of the capacitance value measurement result.
  • the positive electrode and the negative electrode of the AC voltage of the preset frequency can also be added to the second electrode plate and the third electrode plate respectively by the method provided in the above step 102, so as to obtain the second electrode plate and the third electrode plate.
  • Step 103 based on the obtained basic capacitance value and pressurized capacitance value between the first electrode plate and the second electrode plate, determine the inflection voltage between the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip and the change in capacitance. value.
  • FIG. 5 is a schematic diagram of a capacitance-voltage characteristic curve of a MEMS acceleration sensor chip according to an embodiment of the present application.
  • the corresponding capacitance value is the basic capacitance value between the first electrode plate and the second electrode plate.
  • the capacitance value corresponding to the adjusted DC voltage value is the pressurized capacitance value between the first electrode plate and the second electrode plate.
  • the positive and negative semi-axes corresponding to the voltage in FIG. 5 are that the positive pole of the DC voltage is connected to the first pole plate, the negative pole is connected to the second pole plate, and the negative pole of the DC voltage is connected to the first pole plate, and the positive pole is connected to the first pole plate. in both cases of the second plate.
  • the turning voltage is the corresponding voltage value when the capacitance between the plates begins to change rapidly.
  • the specific calculation principle of the turning voltage is as follows:
  • the first limiting bumps are arranged on the edge of the first surface of the first plate of the MEMS acceleration sensor chip, and the second limiting bumps are arranged on the edge of the first surface of the third plate. point.
  • the capacitance value between the first pole plate and the second pole plate will not change. change.
  • the difference between the base capacitance value and the pressure capacitance value between the first electrode plate and the second electrode plate is called a capacitance change value.
  • FIG. 6 is a schematic structural diagram of a position limiting bump of a MEMS acceleration sensor chip according to an embodiment of the present application.
  • the limiting bumps 501 are disposed on the first surface of the first electrode plate and the first surface of the third electrode plate.
  • the size and shape of the limiting bumps can be adjusted according to the actual detection requirements. Not limited.
  • the second electrode of the MEMS acceleration sensor chip can also be determined based on the obtained basic capacitance value and the pressure capacitance value between the second electrode plate and the third electrode plate by the method provided in the above step 103 The transition voltage between the plate and the third plate and the change in capacitance.
  • the method is the same as determining the turning voltage and the capacitance change value between the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip, and details are not repeated here.
  • Step 104 Determine whether the MEMS acceleration sensor chip is normal according to the basic capacitance value, the turning voltage and the capacitance change value of the first electrode plate and the second electrode plate.
  • the difference between the current basic capacitance value and the theoretical design value of the corresponding basic capacitance value is greater than the preset threshold, it is determined that there is a problem in the process of processing the current MEMS acceleration sensor chip, thereby causing the structure of the MEMS acceleration sensor chip.
  • the parameters differ from the theoretical design values.
  • the difference between the current turning voltage and the theoretical design value of the corresponding turning voltage is greater than the preset threshold, it is also determined that there is a problem in the process of processing the current MEMS acceleration sensor chip, resulting in the structure of the MEMS acceleration sensor chip.
  • the parameters differ from the theoretical design values.
  • the second plate of the current MEMS acceleration sensor chip cannot normally move to the corresponding voltage value according to different voltage values. position; in this case, it means that there may be problems in the processing of the elastic beam, so that the second plate cannot move normally.
  • the MEMS acceleration sensor chip it is also possible to judge whether the MEMS acceleration sensor chip is normal according to the basic capacitance value, the turning voltage and the capacitance change value of the second electrode plate and the third electrode plate by the method provided in the above step 104 .
  • the specific method is the same as the method of passing the basic capacitance value, turning voltage, and capacitance change value of the first electrode plate and the second electrode plate, and will not be repeated here.
  • the MEMS acceleration sensor chip can be judged to be normal only when the voltage, capacitance change value, and C-V characteristic curve and the corresponding theoretical design value errors are all within a reasonable range.
  • the method for detecting a MEMS acceleration sensor chip provided by the present application can detect the MEMS acceleration sensor chip before packaging, and can also detect the MEMS acceleration sensor chip after packaging. In order to avoid the cost increase due to the packaging of the MEMS acceleration sensor chip that cannot work normally, it is recommended to test the MEMS acceleration sensor chip before it is packaged.
  • the method for detecting a MEMS acceleration sensor chip solves the problem that since the MEMS acceleration sensor chip can be mass-produced, the packaging cost of the MEMS acceleration sensor chip often accounts for 70-80% of the production of the entire MEMS acceleration sensor chip. Therefore, packaging the MEMS acceleration sensor chip that cannot work normally increases the cost.
  • a method for detecting a MEMS acceleration sensor chip provided by an embodiment of the present application realizes a preliminary test of the performance of a MEMS acceleration sensor chip before packaging, can exclude chips that cannot work normally, and select a MEMS acceleration sensor chip with good performance for packaging. , which greatly saves costs.
  • an embodiment of the present application also provides a detection device for a MEMS acceleration sensor chip, the schematic diagram of which is shown in FIG. 7 .
  • FIG. 7 is a schematic structural diagram of a detection device for a MEMS acceleration sensor chip according to an embodiment of the present application.
  • a detection device 700 for a MEMS acceleration sensor chip provided by an embodiment of the present application includes: a voltage output module 701 , a determination module 702 , and a determination module 703 .
  • FIG. 7 does not constitute a limitation on the detection device of the MEMS acceleration sensor chip. show more or fewer components, or combinations of certain components, or arrangements of different components.
  • the voltage output module 701 is used to apply a variable DC voltage to the first electrode plate and the second electrode plate of the MEMS acceleration sensor chip, so that the second electrode plate faces the first electrode plate
  • the MEMS acceleration sensor chip is the chip before packaging, the first electrode plate is a fixed electrode plate, and the second electrode plate is a moving electrode plate; the voltage output module 701 is also used to add the AC voltage of the preset frequency to the In the first pole plate and the second pole plate, to obtain the basic capacitance value and the pressurized capacitance value between the first pole plate and the second pole plate; wherein, when the basic capacitance value is zero when the voltage value of the DC voltage is zero, the first When the capacitance value between the first electrode plate and the second electrode plate, the pressurized capacitance value is not zero and the voltage value of the DC voltage is not zero, the capacitance value between the first electrode plate and the second electrode plate; the determining module 702 is used for Based on the obtained basic capacitance value and pressurized capacitance value between

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Sensors (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种MEMS加速度传感器芯片的检测方法及装置,方法包括:将可变直流电压以及将预设频率的交流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以获得第一极板与第二极板之间的基础电容值和加压电容值(101,102);基于获得的基础电容值和加压电容值,确定转折电压、电容变化值以及C-V特性曲线(103);根据第一极板与第二极板的基础电容值、转折电压、电容变化值以及C-V特性曲线,判断MEMS加速度传感器芯片是否正常(104)。用以解决现有的MEMS加速度传感器芯片在加工完成后,不能初步判断MEMS加速度传感器芯片是否正常的技术问题,实现了对加工完成后MEMS加速度传感器芯片的检测,极大的节约了成本。

Description

一种MEMS加速度传感器芯片的检测方法及装置 技术领域
本申请涉及传感器性能分析技术领域,尤其涉及一种MEMS加速度传感器芯片的检测方法及装置。
背景技术
微机电***(Micro Electro Mechanical Systems,MEMS)利用微纳米加工技术,在硅片上实现微型机械结构,大幅缩减了器件体积、降低了能耗并提高了可靠性。由于采用硅微加工技术和半导体集成电路工艺,易于实现批量生产,成本低。MEMS因其微型化、可集成、成本低、功耗低等优点广泛应用在消费电子、汽车电子、生物医疗等领域,MEMS加速度传感器便是其中一种。
MEMS加速度传感器芯片在设计、加工完成后,需要对其性能进行测试分析,以确定其是否满足设计要求、能否正常工作。由于MEMS芯片封装成本往往占整个MEMS加速度传感器元件成本的70~80%。因此,在MEMS加速度传感器芯片加工完成后对MEMS加速度传感器芯片性能进行初步测试,排除不能正常工作的芯片,筛选出性能良好的MEMS加速度传感器芯片进行封装,成为目前亟待解决的问题。
发明内容
本申请实施例提供了一种MEMS加速度传感器芯片的检测方法及装置,用以解决现有的MEMS加速度传感器芯片在加工完成后,不能初步排除非正常工作的MEMS加速度传感器芯片而导致成本高的技术问题。
一方面,本申请实施例提供了一种MEMS加速度传感器芯片的检测方法,其特征在于,方法包括:将可变直流电压加在MEMS加速度传感器芯片的第一 极板与第二极板,以使第二极板朝着第一极板的方向移动;其中,第一极板是固定极板,第二极板是可动极板;将预设频率的交流电压加在第一极板与第二极板,以获得第一极板与第二极板之间的基础电容值和加压电容值;其中,基础电容值为直流电压的电压值为零时,第一极板与第二极板之间的电容值,加压电容值为直流电压的电压值不为零时,第一极板与第二极板之间的电容值;基于获得的第一极板与第二极板之间的基础电容值和加压电容值,确定MEMS加速度传感器芯片第一极板与第二极板之间的电压-电容特性曲线、转折电压以及电容变化值;根据第一极板与第二极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线,判断MEMS加速度传感器芯片是否正常。
本申请实施例提供的一种MEMS加速度传感器芯片的检测方法,通过测量不同直流电压值下两极板间的电容值得到MEMS加速度传感器芯片的基础电容值、转折电压、电容变化值。通过得到的基础电容值、转折电压、电容变化值分析MEMS加速度传感器在加工过程中是否存在问题,以及确定存在哪些操作或工艺方面的问题,以便后续改进。
在本申请的一种实现方式中,方法还包括:确定MEMS加速度传感器芯片第二极板与第三极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线;将MEMS加速度传感器芯片第二极板与第三极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线与MEMS加速度传感器芯片第二极板与第三极板之间对应的基础电容值、转折电压、电容变化值以及电压-电容特性曲线的理论设计值进行对比,判断MEMS加速度传感器芯片是否正常。
在本申请的一种实现方式中,将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使第二极板朝着第一极板的方向移动,具体包括:将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板;基于预设的步进电压值,调整直流电压值,以使第二极板朝着第一极板的方向移动;其中,第二极板的移动距离由当前直流电压值决定。
在本申请的一种实现方式中,基于预设的步进电压值,调整直流电压的输 出电压值,以使第二极板朝着第一极板的方向移动,具体包括:基于预设的步进电压值调整直流电压值,以使第一极板与第二极板之间获得不同的直流电压值,以基于不同的直流电压值在第一极板与第二极板之间产生不同大小的静电力,用以克服基于第二极板移动引起弹性梁形变,所产生的弹性力;其中,弹性梁为连接在MEMS加速度传感器芯片第二极板上的组件。
在本申请的一种实现方式中,将预设频率的交流电压加在第一极板与第二极板,以获得第一极板与的第二极板之间的基础电容值和加压电容值,具体包括:将预设频率的交流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使第一极板与第二极板之间产生电流;基于所产生的电流信息,计算第一极板与第二极板之间的基础电容值和加压电容值;其中,电流信息包括电流的幅值及相位。
在本申请的一种实现方式中,转折电压为公式
Figure PCTCN2021094562-appb-000001
结果等于零的情况,V所对应的电压值;其中,ε为第一极板与第二极板间介质的介电常数,A为第一极板与第二极板的极板面积,V为加在第一极板与第二极板之间的直流电压值,d为第一极板与第二极板的极板间距,k为弹性梁的弹性系数。
在本申请的一种实现方式中,根据第一极板与第二极板的基础电容值、转折电压以及电容变化值,判断MEMS加速度传感器芯片是否正常,具体包括:将当前MEMS加速度传感器芯片第一极板与第二极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线,与MEMS加速度传感器芯片第一极板与第二极板之间对应的基础电容值、转折电压、电容变化值以及电压-电容特性曲线的理论设计值,进行对比;在当前基础电容值、转折电压、电容变化值以及电压-电容特性曲线中的任意一项或多项,与对应的基础电容值、转折电压、电容变化值以及电压-电容特性曲线的理论设计值的差值大于预设阈值的情况下,确定MEMS加速度传感器芯片不正常。
在本申请的一种实现方式中,在直流电压值不为零时,交流电压峰值绝对值的预设倍数小于直流电压值的绝对值。
在本申请的一种实现方式中,在将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使第二极板朝着第一极板的方向移动之前,方法还包括:在MEMS加速度传感器芯片的第一极板的第一表面的边缘设置第一限位凸点,以及在第三极板的第一表面的边缘设置第二限位凸点,用以避免在直流电压作用下使得第二极板移动过程中与第一极板或者第三极板接触。
另一方面,本申请实施例还提供了一种MEMS加速度传感器芯片的检测装置,其特征在于,装置包括:电压输出模块,用于将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使第二极板朝着第一极板的方向移动;其中,第一极板是固定极板,第二极板是可动极板;电压输出模块,还用于将预设频率的交流电压加在第一极板与第二极板,以获得第一极板与第二极板之间的基础电容值和加压电容值;其中,基础电容值为直流电压的电压值为零时,第一极板与第二极板之间的电容值,加压电容值为直流电压的电压值不为零时,第一极板与第二极板之间的电容值;确定模块,用于基于获得的第一极板与第二极板之间的基础电容值和加压电容值,确定MEMS加速度传感器芯片第一极板与第二极板之间的电压-电容特性曲线、转折电压以及电容变化值;判断模块用于,根据第一极板与第二极板的基础电容值、转折电压、电容变化值以及电压-电容特性曲线,判断MEMS加速度传感器芯片是否正常。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种MEMS加速度传感器芯片简易结构示意图;
图2为本申请实施例提供的一种MEMS加速度传感器芯片的检测方法流程图;
图3为本申请实施例提供的一种MEMS加速度传感器芯片在直流电压下的位移方向示意图;
图4为本申请实施例提供的一种MEMS加速度传感器芯片的物理模型示意图;
图5为本申请实施例提供的一种MEMS加速度传感器芯片的电容与电压特性曲线示意图;
图6为本申请实施例提供的一种MEMS加速度传感器芯片的限位凸点位置结构示意图;
图7为本申请实施例提供的一种MEMS加速度传感器芯片的检测装置结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的一种MEMS加速度传感器芯片简易结构示意图,MEMS加速度传感器芯片由第一极板、第二极板、第三极板三个极板构成。其中,第一极板与第三极板是固定极板,在外力作用下不会产生运动。第二极板位于第一极板与第三极板的中间位置,第二极板是可动的,在本申请实施例中也称第二极板为可动极板。第二极板的第一表面与第一极板的第一表面形成了一个上下极板面积相等的平板电容器,第二极板的第二表面与第三极板的第一表面同样形成了一个上下极板面积相等的平板电容器。其中,第二极板的第一表面与第一极板的第一表面相对设置,以使所述第二极板与第一极板形成第一电容; 第二极板的第二表面与第三极板的第一表面相对设置,以使所述第二极板与第三极板形成第二电容。
本申请实施例提供的一种MEMS加速度传感器芯片的检测方法及装置,通过测量不同电压下两极板间的电容值得到MEMS加速度传感器芯片的基础电容值、转折电压、电容变化值。如果实测值与相应的理论设计值的误差在合理范围内,则该MEMS加速度传感器芯片符合设计要求。否则,可以根据其基础电容值、转折电压、电容变化值以及电压-电容特性曲线分析MEMS加速度传感器加工过程中在操作或工艺方面存在哪些问题,以便后续改进。
下面继续详细的说明。
图2为本申请实施例提供的一种MEMS加速度传感器芯片的检测方法流程图。
如图2所示,本申请实施例提供的一种MEMS加速度传感器芯片的检测方法具体包括以下步骤:
步骤101、将可变直流电压的正极和负极分别加在MEMS加速度传感器芯片的第一极板与第二极板,以使第二极板朝着第一极板的方向移动。其中,可变直流电压是电压值可调节的直流电压,即具有不同电压值的直流电压。
由于MEMS加速度传感器芯片第二极板的第一表面与第一极板的第一表面(即第一极板与第二极板相对的两个表面)形成了一个面积相等的平板电容器。因此,由公式
Figure PCTCN2021094562-appb-000002
得知,第二极板的第一表面与第一极板的第一表面形成的平板电容器的电容值;其中,C为第一极板与第二极板间的电容量,ε为第一极板与第二极板间的介电常数,A为第一极板与第二极板的极板面积,d为第一极板与第二极板的极板间距。
为获得MEMS加速度传感器芯片的基础电容值、转折电压、电容变化值,首先需要将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板。
需要说明的是,在将直流电压加在MEMS加速度传感器芯片的第一极板与第二极板时,可以将直流电压的正极接在MEMS加速度传感器芯片的第一极板, 将直流电压的负极接在MEMS加速度传感器芯片的第二极板;也可以将直流电压的负极接在MEMS加速度传感器芯片的第一极板,将直流电压的正极接在MEMS加速度传感器芯片的第二极板。
在将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板之后,基于预设的步进电压值,调整直流电压值,以使第二极板朝着第一极板的方向移动。
具体地,基于预设的步进电压值,调整直流电压的输出电压。其中,预设的步进电压值为每次调整直流电压值时,对直流电压的输出改变值。例如,预设的步进电压值为1V,在每次调整直流电压值时,均使直流电压值增加1V或者减小1V。在MEMS加速度传感器芯片的第一极板与第二极板获得电压后(即加在MEMS加速度传感器芯片的第一极板与第二极板上的电压不为零后),第一极板和第二极板得到充电。
需要说明的是,如果直流电压的正极接在MEMS加速度传感器芯片的第一极板,直流电压的负极接在MEMS加速度传感器芯片的第二极板,则第一极板的第一表面充满正电荷,第二极板的第一表面充满负电荷;如果直流电压的负极接在MEMS加速度传感器芯片的第一极板,直流电压的正极接在MEMS加速度传感器芯片的第二极板,则第一极板的第一表面充满负电荷,第二极板的第一表面充满正电荷。
由于第一极板是固定极板,第二极板是移动极板,因此,不论是第一极板的第一表面充满正电荷,第二极板的第一表面充满负电荷,还是第一极板的第一表面充满负电荷,第二极板的第一表面充满正电荷,第二极板均会由于极板间产生的相互吸引的静电力,从而使第二极板有朝着第一极板方向运动的趋势。
图3为本申请实施例提供的一种MEMS加速度传感器芯片在直流电压下的位移方向示意图。
如图3所示,在第一极板与第二极板间加上电压值大小为V的电压后,第二极板朝向第一极板移动。另外,由于第一极板与第三极板均为固定极板,假 设在第一极板与第二极板所加的电压值为零的情况下,第一极板与第二极板以及第二极板与第三极板之间的距离均为d 0,在第二极板朝向第一极板移动x的情况下,第一极板与第二极板的极板间距为d 0-x,第二极板与第三极板的极板间距为d 0+x。
图4为本申请实施例提供的一种MEMS加速度传感器芯片的物理模型示意图。MEMS加速度传感器由质量块、弹性梁和固定框架组成。固定框架的上表面等效为第一极板或者第三极板,质量块等效为第二极板,固定框架的下表面等效为第三极板或者第一极板。质量块通过弹性梁连接到框架中。当质量块发生运动时,会使连接到质量块的弹性梁产生形变,由此产生弹性力,可以等效为一个弹簧结构。
第一极板与第二极板之间产生的静电力,会使第二极板克服弹性梁应变产生的弹性力,并使第二极板最终停在弹性力与极板间静电力相等的位置。
其中,第一极板与第二极板之间的静电力为
Figure PCTCN2021094562-appb-000003
弹性梁发生形变产生的弹力为F=kx。其中,d 0为第一极板与第二极板之间所加电压的电压值为零时,第一极板与第二极板距离;x为第二极板朝着第一极板运动的距离;V为加在第一极板与第二极板之间的直流电压值;k为弹性梁的弹性系数。
在本申请的一个实施例中,还可以通过上述步骤101提供的方法将可变直流电压加在MEMS加速度传感器芯片的第二极板与第三极板,以使第二极板朝着第三极板的方向移动。
步骤102、将预设频率的交流电压的正极和负极分别加在第一极板与第二极板,以获得第一极板与第二极板之间的基础电容值和加压电容值。
在将直流电压加在MEMS加速度传感器芯片的第一极板与第二极板后,本申请实施例还将预设频率的交流电压加在第一极板与第二极板。通过预设频率的交流电压,测量MEMS加速度传感器芯片第一极板与第二极板在不同直流电压值下的电容值。
具体地,在直流电压的电压值为零时,将预设频率的交流电压的两输出端分别加在MEMS加速度传感器芯片的第一极板与第二极板,以使第一极板与第二极板之间产生电流,基于所产生的电流信息,计算第一极板与第二极板之间的基础电容值;其中,所述电流信息包括电流的幅值及相位。
在本申请的一个实施例中,电容值的具体计算原理如下:
第一极板与第二极板之间的阻抗
Figure PCTCN2021094562-appb-000004
其中,Z的模值和辐角分别为:
Figure PCTCN2021094562-appb-000005
即R=|Z|cosθ Z,X=|Z|cosθ Z
在本申请的一个实施例中,基于预设的步进电压值,在每次改变直流电压值,并在第二极板稳定后,均通过预设频率的交流电压,测量一次MEMS加速度传感器芯片第一极板与第二极板在不同直流电压值下的加压电容值。需要说明的是,由于每次改变第一极板和第二极板间的直流电压值后,第二极板在静电力和弹性力作用下会产生一定距离的运动,从而引起第一极板与第二极板之间的距离发生变化,由公式
Figure PCTCN2021094562-appb-000006
可知,第一极板与第二极板之间的电容随第一极板与第二极板之间的距离发生变化,因此,第一极板与第二极板在不同直流电压值下的加压电容值也会随之变化。
还需要说明的是,在直流电压值不为零时,交流电压峰值绝对值的预设倍数小于直流电压值的绝对值;其中,预设倍数至少应该大于一百,即直流电压的电压值应该大于交流电压峰值两个数量级以上,从而避免交流电压过高而使第二极板的位置产生移动,而影响电容值测量结果的准确性。
在本申请的一个实施例中,还可以通过上述步骤102提供的方法将预设频率的交流电压的正极和负极分别加在第二极板与第三极板,以获得第二极板与第三极板之间的基础电容值和加压电容值。
步骤103、基于获得的第一极板与第二极板之间的基础电容值和加压电容值,确定MEMS加速度传感器芯片第一极板与第二极板之间的转折电压及与电容变化值。
在获得第一极板与第二极板之间的基础电容值和加压电容值之后,通过电压值与电容值的对应关系,绘制MEMS加速度传感器芯片第一极板与第二极板所对应的电压-电容特性曲线(C-V特性曲线)。
图5为本申请实施例提供的一种MEMS加速度传感器芯片的电容与电压特性曲线示意图。
如图5所示,直流电压值为0时,所对应的电容值为第一极板与第二极板之间的基础电容值。基于预设的步进电压值,调整后直流电压值所对应的电容值为第一极板与第二极板之间的加压电容值。需要说明的是,图5中电压所对应的正负半轴为直流电压的正极接在第一极板,负极接在第二极板,以及直流电压的负极接在第一极板,正极接在第二极板的两种情况。在本申请的一个实施例中,转折电压为极板间电容开始急速变化时,所对应的电压值,转折电压的具体计算原理如下:
第二极板所受的合力
Figure PCTCN2021094562-appb-000007
因此
Figure PCTCN2021094562-appb-000008
Figure PCTCN2021094562-appb-000009
时,
Figure PCTCN2021094562-appb-000010
此时若第二极板位置发生轻微扰动,如产生δd的微小位移时,在第二极板上所产生的合力和位移是反方向的。因此,可以把第二极板重新拉回到平衡位置。而当
Figure PCTCN2021094562-appb-000011
时,
Figure PCTCN2021094562-appb-000012
此时若第二极板位置发生轻微扰动,如产生δd的微小位移时。在第二极板上所产生的合力和位移是同方向的,因此会进一步将第二极板拉离平衡位置,从而使极板间距急速变化,对应极板间电容也急速变化。
因此,
Figure PCTCN2021094562-appb-000013
所对的电压即为转折电压,当
Figure PCTCN2021094562-appb-000014
时,有
Figure PCTCN2021094562-appb-000015
可以得出此时的
Figure PCTCN2021094562-appb-000016
因此有转折电压为
Figure PCTCN2021094562-appb-000017
在本申请的一个实施例中,为避免第二极板在急速变化向第一极板运动的过程中,与第一极板发生撞击,从而损坏第二极板。因此,本申请实施例在MEMS加速度传感器芯片的第一极板的第一表面的边缘设置了第一限位凸点,以及在第三极板的第一表面的边缘设置了第二限位凸点。在第二极板运动碰到限位凸点的情况下,由于限位凸点的限制,第二极板将无法继续向第一极板的方向运动。此时,如果继续基于步进电压值调整第一极板与第二极板间的直流电压值,由于第二极板位置不变,因此,第一极板与第二极板间电容值不发生变化。此时,第一极板与第二极板之间的基础电容值与加压电容值的差值称为电容变化值。
图6为本申请实施例提供的一种MEMS加速度传感器芯片的限位凸点位置结构示意图。
如图6所示,限位凸点501设置于第一极板的第一表面以及第三极板第一表面,限位凸点的大小及形状可根据实际检测需求进行调整,本申请在此不做限定。
在本申请的一个实施例中,还可以通过上述步骤103提供的方法基于获得的第二极板与第三极板之间的基础电容值和加压电容值,确定MEMS加速度传感器芯片第二极板与第三极板之间的转折电压及与电容变化值。方法与确定MEMS加速度传感器芯片第一极板与第二极板之间的转折电压及电容变化值相同,在此不再赘述。
步骤104、根据第一极板与第二极板的基础电容值、转折电压以及电容变化值,判断MEMS加速度传感器芯片是否正常。
在根据MEMS加速度传感器芯片的C-V特性曲线,得到MEMS加速度传感器芯片的转折电压和电容变化值之后,判断当前MEMS加速度传感器芯片的基础 电容值、转折电压、电容变化值以及C-V特性曲线,与对应的对应的基础电容值、转折电压、电容变化值以及C-V特性曲线的理论设计值的差值是否大于预设阈值。
在当前基础电容值与对应的基础电容值的理论设计值之间的差值大于预设阈值的情况下,确定在加工当前MEMS加速度传感器芯片的过程中存在问题,从而导致MEMS加速度传感器芯片的结构参数与理论设计值存在差别。
在当前转折电压与对应的转折电压的理论设计值之间的差值大于预设阈值的情况下,同样确定在加工当前MEMS加速度传感器芯片的过程中存在问题,从而导致了MEMS加速度传感器芯片的结构参数与理论设计值存在差别。
在当前电容变化值与对应的电容变化值的理论设计值之间的差值大于预设阈值的情况下,确定当前MEMS加速度传感器芯片的第二极板不能正常的按照不同的电压值移动到相应的位置;此种情况下,说明弹性梁的加工过程可能存在问题,使第二极板无法正常运动。
在当前C-V特性曲线各直流电压值对应的加压电容值与对应的C-V特性曲线的理论设计值中各直流电压值对应的加压电容值之间的差值大于预设阈值的情况下,以及在当前C-V特性曲线的整体形状与对应的C-V特性曲线的理论设计值的整体形状之间存在超出合理范围的误差的情况下,确定在加工当前MEMS加速度传感器芯片的过程中存在问题。
在本申请的一个实施例中,还可以通过上述步骤104提供的方法根据第二极板与第三极板的基础电容值、转折电压以及电容变化值,判断MEMS加速度传感器芯片是否正常。具体方法与通过第一极板与第二极板的基础电容值、转折电压、电容变化值方法相同,在此不再赘述。
需要说明的是,只有第一极板与第二极板之间的基础电容值、转折电压、电容变化值以及C-V特性曲线和第二极板与第三极板之间的基础电容值、转折电压、电容变化值以及C-V特性曲线与对应的理论设计值误差均在合理范围内时,才可以判定MEMS加速度传感器芯片正常。
还需要说明的是,本申请提供的一种MEMS加速度传感器芯片的检测方法,可以对封装前的MEMS加速度传感器芯片进行检测,也可以对封装后的MEMS加速度传感器芯片进行检测。为避免对不能正常工作的MEMS加速度传感器芯片进行封装使成本提升,建议在MEMS加速度传感器芯片封装前对其进行检测。
通过本申请实施例提供的一种MEMS加速度传感器芯片的检测方法,解决了由于MEMS加速度传感器芯片可批量化生产,MEMS加速度传感器芯片封装成本又往往占整个MEMS加速度传感器芯片生产的70~80%,因此对不能正常工作的MEMS加速度传感器芯片进行封装使成本提升的问题。本申请实施例提供的一种MEMS加速度传感器芯片的检测方法,实现了在封装前对MEMS加速度传感器芯片性能的初步测试,能够排除不能正常工作的芯片,筛选出性能良好的MEMS加速度传感器芯片进行封装,极大的节约了成本。
基于同样的发明构思,本申请实施例还提供了一种MEMS加速度传感器芯片的检测装置,其结构示意图如图7所示。
图7为本申请实施例提供的一种MEMS加速度传感器芯片的检测装置结构示意图。如图7所示,本申请实施例提供的一种MEMS加速度传感器芯片的检测装置700包括:电压输出模块701、确定模块702、判断模块703。
本领域技术人员可以理解,图7显示出的MEMS加速度传感器芯片的检测装置结构并不构成对MEMS加速度传感器芯片的检测装置的限定,实际上,MEMS加速度传感器芯片的检测装置可以包括比图7所示更多或更少的部件,或者组合某些部件,或者不同部件的布置。
在本申请的一个实施例中,电压输出模块701,用于将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使第二极板朝着第一极板的方向移动;其中,MEMS加速度传感器芯片是封装前的芯片,第一极板是固定极板,第二极板是移动极板;电压输出模块701,还用于将预设频率的交流电压加在第一极板与第二极板,以获得第一极板与第二极板之间的基础电容值和加压电容值;其中,基础电容值为直流电压的电压值为零时,第一极板与第二极 板之间的电容值,加压电容值为直流电压的电压值不为零时,第一极板与第二极板之间的电容值;确定模块702,用于基于获得的第一极板与第二极板之间的基础电容值和加压电容值,确定MEMS加速度传感器芯片第一极板与第二极板之间的转折电压及与电容变化值;判断模块703,用于根据第一极板与第二极板的基础电容值、转折电压以及电容变化值,判断MEMS加速度传感器芯片是否正常。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种MEMS加速度传感器芯片的检测方法,其特征在于,所述方法包括:将可变直流电压加在MEMS加速度传感器芯片的第一极板与第极板,以使所述第二极板朝着所述第一极板的方向移动;其中,所述第一极板是固定极板,所述第二极板是可动极板;将预设频率的交流电压加在所述第一极板与所述第二极板,以获得所述第一极板与所述第二极板之间的基础电容值和加压电容值;其中,所述基础电容值为所述直流电压的电压值为零时,所述第一极板与所述第二极板之间的电容值,所述加压电容值为所述直流电压的电压值不为零时,所述第一极板与所述第二极板之间的电容值;基于获得的所述第一极板与所述第二极板之间的基础电容值和加压电容值,确定所述MEMS加速度传感器芯片第一极板与第二极板之间的电压-电容特性曲线、转折电压以及电容变化值;根据所述第一极板与所述第二极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线,判断所述MEMS加速度传感器芯片是否正常。
  2. 根据权利要求1所述的一种MEMS加速度传感器芯片的检测方法,其特征在于,所述方法还包括:确定MEMS加速度传感器芯片第二极板与第三极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线;将所述MEMS加速度传感器芯片第二极板与第三极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线与MEMS加速度传感器芯片第二极板与第三极板之间对应的基础电容值、转折电压、电容变化值以及电压-电容特性曲线的理论设计值进行对比,判断所述MEMS加速度传感器芯片是否正常。
  3. 根据权利要求1所述的一种MEMS加速度传感器芯片的检测方法,其特征在于,所述将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使所述第二极板朝着所述第一极板的方向移动,具体包括:
    将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板;
    基于预设的步进电压值,调整所述直流电压值,以使所述第二极板朝着所述第一极板的方向移动;
    其中,所述第二极板的移动距离由当前直流电压值决定。
  4. 根据权利要求3所述的一种MEMS加速度传感器芯片的检测方法,其特征在于,所述基于预设的步进电压值,调整所述直流电压的输出电压值,以使所述第二极板朝着所述第一极板的方向移动,具体包括:
    基于预设的步进电压值调整直流电压值,以使所述第一极板与所述第二极板之间获得不同的直流电压值,以基于所述不同的直流电压值在所述第一极板与所述第二极板之间产生不同大小的静电力,用以克服基于第二极板移动引起弹性梁形变,所产生的弹性力;其中,所述弹性梁为连接在MEMS加速度传感器芯片第二极板上的组件。
  5. 根据权利要求1所述的一种MEMS加速度传感器芯片的检测方 法,其特征在于,所述将预设频率的交流电压加在所述第一极板与所述第二极板,以获得所述第一极板与所述的第二极板之间的基础电容值和加压电容值,具体包括:
    将预设频率的交流电压加在所述MEMS加速度传感器芯片的第一极板与第二极板,以使所述第一极板与所述第二极板之间产生电流;
    基于所产生的电流信息,计算所述第一极板与所述第二极板之间的基础电容值和加压电容值;其中,所述电流信息包括电流的幅值及相位。
  6. 根据权利要求1所述的一种MEMS加速度传感器芯片的检测方法,其特征在于,所述转折电压为公式
    Figure PCTCN2021094562-appb-100001
    结果等于零的情况,V所对应的电压值;
    其中,ε为所述第一极板与所述第二极板间介质的介电常数,A为所述第一极板与所述第二极板的极板面积,V为加在所述第一极板与所述第二极板之间的直流电压值,d为所述第一极板与所述第二极板的极板间距,k为所述弹性梁的弹性系数。
  7. 根据权利要求1所述的一种MEMS加速度传感器芯片的检测方法,其特征在于,所述根据所述第一极板与所述第二极板的基础电容值、转折电压以及电容变化值,判断所述MEMS加速度传感器芯片是否正常,具体包括:
    将当前所述MEMS加速度传感器芯片第一极板与第二极板之间的基础电容值、转折电压、电容变化值以及电压-电容特性曲线,与MEMS加速度传感器芯片第一极板与第二极板之间对应的基础电容值、转折 电压、电容变化值以及电压-电容特性曲线的理论设计值,进行对比;
    在当前所述基础电容值、转折电压、电容变化值以及电压-电容特性曲线中的任意一项或多项,与对应的基础电容值、转折电压、电容变化值以及电压-电容特性曲线的理论设计值的差值大于预设阈值的情况下,确定所述MEMS加速度传感器芯片不正常。
  8. 根据权利要求1所述的一种MEMS加速度传感器芯片的检测方法,其特征在于,在直流电压值不为零时,所述交流电压峰值绝对值的预设倍数小于所述直流电压值的绝对值。
  9. 根据权利要求1所述的一种MEMS加速度传感器芯片的检测方法,其特征在于,在将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使所述第二极板朝着所述第一极板的方向移动之前,所述方法还包括:
    在所述MEMS加速度传感器芯片的第一极板的第一表面的边缘设置第一限位凸点,以及在第三极板的第一表面的边缘设置第二限位凸点,用以避免在所述直流电压提供的电压值下使得所述第二极板移动过程中与所述第一极板或者所述第三极板接触。
  10. 一种MEMS加速度传感器芯片的检测装置,其特征在于,所述装置包括:
    电压输出模块,用于将可变直流电压加在MEMS加速度传感器芯片的第一极板与第二极板,以使所述第二极板朝着所述第一极板的方向移动;其中,所述第一极板是固定极板,所述第二极板是可动极板;
    所述电压输出模块,还用于将预设频率的交流电压加在所述第一 极板与所述第二极板,以获得所述第一极板与所述第二极板之间的基础电容值和加压电容值;其中,所述基础电容值为所述直流电压的电压值为零时,所述第一极板与所述第二极板之间的电容值,所述加压电容值为所述直流电压的电压值不为零时,所述第一极板与所述第二极板之间的电容值;
    确定模块,用于基于获得的所述第一极板与所述第二极板之间的基础电容值和加压电容值,确定所述MEMS加速度传感器芯片第一极板与第二极板之间的电压-电容特性曲线、转折电压以及电容变化值;
    判断模块用于,根据所述第一极板与所述第二极板的基础电容值、转折电压、电容变化值以及电压-电容特性曲线,判断所述MEMS加速度传感器芯片是否正常。
PCT/CN2021/094562 2021-04-26 2021-05-19 一种mems加速度传感器芯片的检测方法及装置 WO2022068218A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022533625A JP7221453B2 (ja) 2021-04-26 2021-05-19 Mems加速度センサチップの検出方法及び装置
AU2021206818A AU2021206818B1 (en) 2021-04-26 2021-05-19 Apparatus and method for detecting mems acceleration sensor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110455222.2 2021-04-26
CN202110455222.2A CN113203939B (zh) 2021-04-26 2021-04-26 一种mems加速度传感器芯片的检测方法及装置

Publications (1)

Publication Number Publication Date
WO2022068218A1 true WO2022068218A1 (zh) 2022-04-07

Family

ID=77028827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094562 WO2022068218A1 (zh) 2021-04-26 2021-05-19 一种mems加速度传感器芯片的检测方法及装置

Country Status (4)

Country Link
JP (1) JP7221453B2 (zh)
CN (1) CN113203939B (zh)
AU (1) AU2021206818B1 (zh)
WO (1) WO2022068218A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117214552A (zh) * 2023-09-22 2023-12-12 中国科学院长春光学精密机械与物理研究所 基于扭秤周期变化的导体表面电势测量方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047214B (zh) * 2022-03-17 2023-04-25 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片的检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060219536A1 (en) * 2005-03-29 2006-10-05 Agency For Science, Technology And Research Acceleration sensitive switch
CN103837706A (zh) * 2014-03-26 2014-06-04 中国科学院地质与地球物理研究所 检测微电子机械***加速度传感器芯片的特性的方法、装置和***
CN104977473A (zh) * 2014-04-09 2015-10-14 北京卓锐微技术有限公司 一种mems器件电容检测方法
CN105259372A (zh) * 2015-10-14 2016-01-20 华东光电集成器件研究所 晶圆级电容式加速度计自动测试***
CN109341744A (zh) * 2018-12-03 2019-02-15 华中科技大学 一种变面积式位移电容的检测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018561A1 (en) * 2008-03-26 2011-01-27 Hewlett-Packard Company Capacitive sensor having cyclic and absolute electrode sets
US9032777B2 (en) * 2011-09-16 2015-05-19 Robert Bosch Gmbh Linearity enhancement of capacitive transducers by auto-calibration using on-chip neutralization capacitors and linear actuation
CN103063879B (zh) * 2012-12-28 2014-11-05 苏州中盛纳米科技有限公司 Mems加速度传感器的多参数批量测试设备
JP6020711B2 (ja) * 2013-04-02 2016-11-02 富士電機株式会社 静電容量型センサ、及び非線形出力の補正方法
EP3324192B1 (en) * 2016-11-22 2019-04-10 NXP USA, Inc. Microelectromechanical systems device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060219536A1 (en) * 2005-03-29 2006-10-05 Agency For Science, Technology And Research Acceleration sensitive switch
CN103837706A (zh) * 2014-03-26 2014-06-04 中国科学院地质与地球物理研究所 检测微电子机械***加速度传感器芯片的特性的方法、装置和***
CN104977473A (zh) * 2014-04-09 2015-10-14 北京卓锐微技术有限公司 一种mems器件电容检测方法
CN105259372A (zh) * 2015-10-14 2016-01-20 华东光电集成器件研究所 晶圆级电容式加速度计自动测试***
CN109341744A (zh) * 2018-12-03 2019-02-15 华中科技大学 一种变面积式位移电容的检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117214552A (zh) * 2023-09-22 2023-12-12 中国科学院长春光学精密机械与物理研究所 基于扭秤周期变化的导体表面电势测量方法
CN117214552B (zh) * 2023-09-22 2024-03-22 中国科学院长春光学精密机械与物理研究所 基于扭秤周期变化的导体表面电势测量方法

Also Published As

Publication number Publication date
JP7221453B2 (ja) 2023-02-13
CN113203939B (zh) 2022-03-18
JP2022554028A (ja) 2022-12-27
CN113203939A (zh) 2021-08-03
AU2021206818B1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2022068218A1 (zh) 一种mems加速度传感器芯片的检测方法及装置
CN204495495U (zh) 一种三维力电容式触觉传感器单元
CN105491492B (zh) 一种自校准硅麦克风装置和校准方法
US9291638B2 (en) Substrate curvature compensation methods and apparatus
US20150096377A1 (en) Systems and methods to determine stiction failures in MEMS devices
WO1992017759A1 (en) Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method
CN210665355U (zh) 精密作动/感知双模式一体化的微机械梳齿结构
CN110455656B (zh) 精密作动/感知双模式一体化的微机械梳齿结构及检测方法
US9174837B2 (en) System and method for detecting surface charges of a MEMS device
CN107560573B (zh) 一种悬丝式可变刚度微纳测头
CN107990818A (zh) 一种新型悬丝式可变刚度微纳测头
CN100397085C (zh) 悬臂梁-质量块结构的吸合时间式数字加速度传感器
CN110906852A (zh) 一种压电执行器输出位移的自感知方法
CN201628722U (zh) 一种大检测电容的微惯性传感器
TWI558991B (zh) 判斷微機電系統裝置是否氣密的方法
CN109269531A (zh) 一种电容式微机械器件及其操作方法
Shavezipur et al. In-line adhesion monitoring and the effects of process variations on adhesion in MEMS
RU2797312C1 (ru) Пьезоэлектрический датчик давления ударных волн
CN111060232A (zh) 一种压电执行器输出力的自感知方法
CN113607975A (zh) 一种用于mems传感器的位置检测与校准装置
CN201365340Y (zh) 自检测硅微机械电容式麦克风
Thu et al. Design and Optimization of MEMS Comb Type Capacitive Accelerometer
CN111579132A (zh) 一种双路压力检测装置及方法
Wen et al. Surface micromachined polymer capacitive accelerometer array utilizing fringe electrical field
JP2021076580A (ja) 圧電アクチュエータの発生変位と発生力のセルフセンシング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873880

Country of ref document: EP

Kind code of ref document: A1