WO2022065625A1 - 열가소성 수지 조성물 및 이의 성형품 - Google Patents

열가소성 수지 조성물 및 이의 성형품 Download PDF

Info

Publication number
WO2022065625A1
WO2022065625A1 PCT/KR2021/006523 KR2021006523W WO2022065625A1 WO 2022065625 A1 WO2022065625 A1 WO 2022065625A1 KR 2021006523 W KR2021006523 W KR 2021006523W WO 2022065625 A1 WO2022065625 A1 WO 2022065625A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
weight
compound
aromatic vinyl
Prior art date
Application number
PCT/KR2021/006523
Other languages
English (en)
French (fr)
Inventor
조왕래
성다은
김태훈
박춘호
안용희
장정민
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210064033A external-priority patent/KR20220039543A/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US17/760,994 priority Critical patent/US20220363888A1/en
Priority to CN202180005522.9A priority patent/CN114555695B/zh
Priority to JP2022518306A priority patent/JP7391197B2/ja
Priority to EP21863089.5A priority patent/EP4011966A4/en
Publication of WO2022065625A1 publication Critical patent/WO2022065625A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/18Spheres

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article thereof, and more particularly, has excellent processability at a low temperature of less than 200 ° C compared to conventional ASA resin, and surface defects such as flow marks or peeling occur even during co-extrusion with PVC resin
  • the present invention relates to a thermoplastic resin composition and a molded article thereof, which have excellent processing stability, low energy consumption, and small viscosity change even with changes in extrusion RPM, and excellent heat resistance.
  • the acrylate compound-styrene-acrylonitrile copolymer (hereinafter referred to as 'ASA resin') has weather resistance, aging resistance, chemical resistance, rigidity, impact resistance, and processability. It is widely used in the field.
  • ASA resin is widely used for PVC co-extrusion, and specific uses include window profiles, decking boards, roofing, siding, and the like.
  • extrusion or injection processing is basically performed at a processing temperature of 200 to 240 ° C
  • PVC resin the PVC resin is easily carbonized at a high temperature of 200 ° C.
  • co-extrusion processing of PVC resin must be made.
  • the viscosity of the ASA resin rapidly increases, so that the ASA resin layer is not properly covered on the PVC resin layer during co-extrusion with the PVC resin. Surface defects such as peeling that the resin is not covered may occur.
  • the viscosity of the ASA resin rapidly changes according to the change in the RPM of the extruder, so that the processing window is narrow.
  • the low viscosity even at low processing temperature does not cause surface defects such as flow marks or peeling during co-extrusion processing with PVC resin. There is a need for development, etc.
  • the present invention has excellent processability at a low temperature of less than 200 °C compared to the conventional ASA resin, and does not cause surface defects such as flow marks or peeling even during co-extrusion with PVC resin.
  • An object of the present invention is to provide a thermoplastic resin composition and a molded article thereof having low consumption, excellent processing stability due to small viscosity change even with changes in extrusion RPM, and excellent heat resistance.
  • the present invention provides (A) an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-1) comprising an acrylate rubber having an average particle diameter of 50 to 150 nm and an average particle diameter 10 to 70% by weight of a graft copolymer comprising an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-2) containing an acrylate rubber having a thickness of 300 to 600 nm; and (B) a high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol (B-1) and a low molecular weight having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol An aromatic vinyl compound-vinyl cyan compound copolymer (B-2) containing 30 to 90 wt% of a non-grafted copolymer, and
  • the present invention provides (A) an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-1) comprising an acrylate rubber having an average particle diameter of 50 to 150 nm and an average particle diameter of 300 to 600 nm 10 to 70% by weight of an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-2) containing acrylate rubber; and (B) a high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol (B-1) and a low molecular weight having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol An aromatic vinyl compound-vinyl cyan compound copolymer (B-2) containing 30 to 90 wt% of a non-graft copolymer, and under conditions of barrel temperature of 190 ° C, die temperature of 200 ° C, and
  • the present invention provides (A) an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-1) comprising an acrylate rubber having an average particle diameter of 50 to 150 nm and an average particle diameter of 300 to 600 nm 10 to 70% by weight of an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-2) containing acrylate rubber; and (B) a high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol (B-1) and a low molecular weight having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol Aromatic vinyl compound-vinyl cyan compound copolymer (B-2) 30 to 90 weight % of the non-graft copolymer comprising; 100 parts by weight of a base resin, 0.1 to 10 parts by weight of a polyamide resin,
  • the thermoplastic resin composition may not include a thermoplastic resin having a glass transition temperature of 125° C. or higher.
  • the present invention can provide a molded article comprising the thermoplastic resin composition of the present invention.
  • the present invention compared to the conventional ASA resin, it has excellent processability at a low temperature of less than 200 ° C. Even when co-extruded with PVC resin, surface defects such as flow marks or peeling do not occur, energy consumption is small, and the extrusion RPM is changed. There is an effect of providing a thermoplastic resin composition excellent in processing stability and heat resistance as well as a molded article thereof due to a small change in viscosity.
  • FIG. 1 schematically shows the definition, calculation method, and meaning of the degree of asymmetry Rsk according to the present invention. And, it is possible to evaluate which of the peaks and valleys on the surface form the majority of the surface.
  • the upper figure of FIG. 1 is a graph showing the expression and meaning of the root mean square deviation (Rq), where Z means the peak height, and l means the average section length (sampling length).
  • the lower figure of FIG. 1 is a graph showing the formula for calculating the asymmetry Rsk and its meaning.
  • the distribution of The present invention is a gist of the present invention that when the asymmetry Rsk is adjusted within a predetermined range, a rough feeling away from the plastic feeling is realized on the surface of the product.
  • thermoplastic resin composition of the present disclosure and a molded article thereof will be described in detail.
  • the present inventors mix two or more types of acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymers having different average particle diameters of rubber in a predetermined ratio, and a predetermined high molecular weight aromatic vinyl polymer excluding heat-resistant aromatic vinyl polymer, and When a predetermined low molecular weight aromatic vinyl polymer is mixed in a predetermined content range so that the pressure gradient value or the discharge rate value applied to the extruder of the thermoplastic resin composition becomes a predetermined value, co-extrusion with the PVC resin at a low temperature of less than 200 ° C. It was confirmed that the surface defects such as flow marks or peeling did not occur even during the operation, and the energy consumption and heat resistance were excellent, and based on this, further research was conducted to complete the present invention.
  • the thermoplastic resin composition of the present invention includes (A) an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-1) comprising an acrylate rubber having an average particle diameter of 50 to 150 nm and an average particle diameter of 300 to 600 10 to 70% by weight of a graft copolymer including an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-2) containing an acrylate rubber of nm; and (B) a high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol (B-1) and a low molecular weight having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol An aromatic vinyl compound-vinyl cyan compound copolymer (B-2) containing 30 to 90 wt% of a non-grafted copolymer, and the extrusion R
  • thermoplastic resin composition applied to the single screw extruder for sheet molding is 130 or less.
  • thermoplastic resin composition of the present invention comprises (A) an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-1) containing an acrylate rubber having an average particle diameter of 50 to 150 nm and an average particle diameter of 300 10 to 70 wt% of a graft copolymer comprising an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-2) containing an acrylate rubber having a thickness of 600 nm; and (B) a high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol (B-1) and a low molecular weight having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol An aromatic vinyl compound-vinyl cyan compound copolymer (B-2) containing 30 to 90 wt% of a non-graft copoly
  • thermoplastic resin composition with excellent processing stability and excellent heat resistance as it can effectively cover PVC resin without significant change in viscosity in a wide processing window, and does not cause surface defects such as flow marks or peeling, and has low energy consumption. There is an advantage of providing a molded article thereof.
  • thermoplastic resin composition of the present invention comprises (A) an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-1) containing an acrylate rubber having an average particle diameter of 50 to 150 nm and an average particle diameter of 300 10 to 70 wt% of a graft copolymer comprising an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-2) containing an acrylate rubber having a thickness of 600 nm; and (B) a high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol (B-1) and a low molecular weight having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol 100 parts by weight of a base resin, 0.1 to 10 parts by weight of a polyamide resin, and 0.1 to 5 parts by weight of an inorganic pigment
  • the molding temperature means the highest temperature among the temperatures set in the temperature control zone of the barrel in the extrusion or injection device (or process), that is, the zones, and generally refers to the temperature of the die in the barrel. and the temperature of the adjacent zone.
  • the barrel temperature means a molding temperature
  • the barrel part means a zone in which the temperature is directly controlled by a heating device in the barrel, and although not limited thereto, it usually consists of a plurality of temperature control zones.
  • the temperature of the barrel part is sequentially described from the temperature control zone or the first temperature control zone adjacent to the inlet (hopper) into which the thermoplastic resin composition is put, to the temperature control zone or the last temperature control zone adjacent to the die.
  • the die temperature means the temperature set at the die nozzle, that is, the temperature of the die nozzle during extrusion or injection
  • the die part refers to a region where the temperature is directly controlled by the heating device in the die, which is limited Although not normally, it consists of a plurality of temperature control zones. At this time, the temperature of the die part is sequentially described from the temperature control zone or the first temperature control zone adjacent to the barrel to the last temperature control zone or the nozzle of the die.
  • thermoplastic resin composition of the present disclosure will be described in detail as follows.
  • the acrylate rubber of the (A-1) graft copolymer may have, for example, an average particle diameter of 50 to 150 nm, preferably 50 to 130 nm, more preferably 100 to 130 nm, and the thermoplastic finally manufactured within this range. Excellent impact strength and appearance quality can be imparted to the resin composition.
  • the average particle diameter can be measured using dynamic light scattering, and in detail, Nicomp 380 equipment (product name, manufacturer: PSS) is used to Gaussian mode intensity (intensity) value can be measured with At this time, as a specific example of measurement, the sample is prepared by diluting 0.1 g of Latex (TSC 35-50wt%) 1,000-5,000 times with deionized or distilled water, that is, diluting it appropriately so as not to significantly deviate from the Intensity Setpoint 300kHz, and putting it in a glass tube, and measure it.
  • TSC 35-50wt% Latex
  • deionized or distilled water that is, diluting it appropriately so as not to significantly deviate from the Intensity Setpoint 300kHz, and putting it in a glass tube, and measure it.
  • the method is auto-dilution and measured with a flow cell
  • the measurement mode is dynamic light scattering method/Intensity 300KHz/Intensity-weight Gaussian Analysis
  • the setting value is temperature 23°C, measuring wavelength 632.8nm, channel width It can measure as 10 microseconds.
  • the (A-1) graft copolymer may be, for example, 5 to 30% by weight, preferably 10 to 25% by weight, more preferably 10 to 20% by weight, based on the total weight of the thermoplastic resin composition, in this range It has excellent co-extrusion workability, mechanical properties such as impact strength, tensile strength, and elongation, as well as excellent appearance quality and surface hardness.
  • the (A-1) graft copolymer may include, for example, 40 to 60 wt% of an acrylate rubber, 20 to 40 wt% of an aromatic vinyl compound, and 10 to 20 wt% of a vinyl cyanide compound, within this range It has an excellent effect of appearance quality and surface hardness.
  • the (A-1) graft copolymer may include 45 to 55 wt% of an acrylate rubber, 30 to 40 wt% of an aromatic vinyl compound, and 10 to 20 wt% of a vinyl cyanide compound, within this range It has an excellent effect on appearance quality and surface hardness.
  • a polymer including a certain compound means a polymer polymerized including the compound, and a unit in the polymerized polymer is derived from the compound.
  • the (A-1) graft copolymer may be prepared by, for example, emulsion polymerization, and in this case, the appearance quality and surface hardness are excellent.
  • the acrylate may be, for example, at least one selected from the group consisting of alkyl acrylates having 2 to 8 carbon atoms in the alkyl group, preferably an alkyl acrylate having 4 to 8 carbon atoms in the alkyl group, more preferably butyl acryl late or ethylhexyl acrylate.
  • the aromatic vinyl compound may be, for example, at least one selected from the group consisting of styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, and p-tert-butylstyrene, and is preferably styrene.
  • the vinyl cyan compound may be, for example, at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethyl acrylonitrile and isopropyl acrylonitrile, preferably acrylonitrile.
  • the emulsion polymerization is not particularly limited if the emulsion graft polymerization method is commonly carried out in the art to which the present invention belongs.
  • the acrylate rubber of the (A-2) graft copolymer may have, for example, an average particle diameter of 300 to 600 nm, preferably 350 to 600 nm, and even more preferably 350 to 550 nm, and the tensile strength within this range, There is an excellent effect of mechanical strength such as elongation and impact strength.
  • the (A-2) graft copolymer may be, for example, 15 to 35 wt%, preferably 20 to 30 wt%, more preferably 20 to 25 wt%, based on the total weight of the thermoplastic resin composition, in this range It has excellent co-extrusion workability, mechanical properties such as impact strength, tensile strength, and elongation, as well as excellent appearance quality and surface hardness.
  • the (A-2) graft copolymer may include, for example, 40 to 60% by weight of an acrylate rubber, 25 to 45% by weight of an aromatic vinyl compound, and 10 to 20% by weight of a vinyl cyanide compound, within this range Mechanical strength such as tensile strength, elongation and impact strength is excellent.
  • the (A-1) graft copolymer may include 45 to 55 wt% of an acrylate rubber, 30 to 40 wt% of an aromatic vinyl compound, and 10 to 20 wt% of a vinyl cyanide compound, within this range It has excellent mechanical strength such as tensile strength, elongation and impact strength.
  • the graft copolymer (A-2) may be prepared by, for example, emulsion polymerization, and in this case, mechanical strength such as tensile strength, elongation and impact strength is excellent.
  • the emulsion polymerization is not particularly limited if the emulsion graft polymerization method is commonly carried out in the art to which the present invention belongs.
  • the acrylate may be, for example, at least one selected from the group consisting of alkyl acrylates having 2 to 8 carbon atoms in the alkyl group, preferably an alkyl acrylate having 4 to 8 carbon atoms in the alkyl group, more preferably butyl acryl late or ethylhexyl acrylate.
  • the aromatic vinyl compound may be, for example, at least one selected from the group consisting of styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, and p-tert-butylstyrene, and is preferably styrene.
  • the vinyl cyan compound may be, for example, at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethyl acrylonitrile and isopropyl acrylonitrile, preferably acrylonitrile.
  • the (A-1) graft copolymer and the (A-2) graft copolymer have, for example, a total weight of 10 to 70% by weight, preferably 20 to 50% by weight, more preferably 30 to 40% by weight. It may be a weight %, and there is an advantage of excellent low-temperature processability within this range and excellent appearance quality.
  • the (A-1) graft copolymer may preferably be included in an amount smaller than that of the (A-2) graft copolymer, and more preferably the (A-1) graft copolymer and the (A-1) graft copolymer.
  • the graft copolymer may have a weight ratio of 1:1.2 to 1:2.5, more preferably 1:1.4 to 1:2.5, even more preferably 1:1.5 to 1:2, within this range. It has the advantage of excellent low-temperature processability and excellent appearance quality.
  • the weight ratio of A and B means the weight ratio of A:B.
  • high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer of the present description may preferably be an aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol, more preferably An aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 190,000 g/mol, more preferably an aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 180,000 g/mol, even more preferably is an aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 170,000 g/mol, and has excellent mechanical strength such as impact strength and excellent heat resistance within this range.
  • the B-1) high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer is preferably in the total weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer. It is included in an amount of 20 to 55% by weight, more preferably 25 to 50% by weight, and in this case, there is an advantage of excellent heat resistance without impairing excellent low-temperature workability.
  • the weight average molecular weight may be measured using GPC (Gel Permeation Chromatography, waters breeze), and as a specific example, GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as the eluent. ) can be measured as a relative value with respect to a standard PS (standard polystyrene) sample.
  • GPC Gel Permeation Chromatography, waters breeze
  • THF tetrahydrofuran
  • solvent THF
  • column temperature 40°C
  • flow rate 0.3ml/min
  • sample concentration 20mg/ml
  • injection amount 5 ⁇ l
  • column model 1xPLgel 10 ⁇ m MiniMix-B (250x4.6mm) + 1xPLgel 10 ⁇ m MiniMix-B (250x4.6mm) + 1xPLgel 10 ⁇ m MiniMix-B Guard (50x4.6mm)
  • equipment name Agilent 1200 series system
  • Refractive index detector Agilent G1362 RID
  • RI temperature 35°C
  • data processing Agilent ChemStation S/W
  • test method Mn, Mw and PDI
  • the B-1) high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer comprises, for example, 65 to 80% by weight of an aromatic vinyl compound and 20 to 35% by weight of a vinyl cyanide compound, preferably 67 to 35% by weight of an aromatic vinyl compound. 80% by weight and 20 to 33% by weight of a vinyl cyan compound, and more preferably 70 to 75% by weight of an aromatic vinyl compound and 25 to 30% by weight of a vinyl cyan compound, and within this range, mechanical It has the advantage of being excellent in strength and low-temperature processability.
  • the aromatic vinyl compound may be, for example, at least one selected from the group consisting of styrene, m-methylstyrene, p-methylstyrene, and p-tert-butylstyrene, and is preferably styrene.
  • the vinyl cyan compound may be, for example, at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethyl acrylonitrile and isopropyl acrylonitrile, preferably acrylonitrile.
  • the B-1) high molecular weight aromatic vinyl polymer may be prepared by, for example, suspension polymerization, emulsion polymerization, solution polymerization or bulk polymerization, and is preferably prepared by bulk polymerization, in which case it has excellent heat resistance and fluidity. It works.
  • suspension polymerization, emulsion polymerization, solution polymerization, and bulk polymerization are not particularly limited in the case of solution polymerization and bulk polymerization methods commonly performed in the art to which the present invention pertains, respectively.
  • B-2) low molecular weight aromatic vinyl compound-vinyl cyan compound copolymer of the present description may preferably be an aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol, More preferably, an aromatic vinyl compound having a weight average molecular weight of 80,000 to 110,000 g/mol - vinyl cyanide copolymer (B-2a), an aromatic vinyl compound having a weight average molecular weight of greater than 110,000 g/mol to 110,000 g/mol or less - vinyl At least one selected from the group consisting of a cyanide compound copolymer (B-2b) and an aromatic vinyl compound having a weight average molecular weight of more than 110,000 g/mol to less than 160,000 g/mol-vinyl cyan compound copolymer (B-2c), and more Preferably, an aromatic vinyl compound having a weight average molecular weight of 80,000 to 110,000 g/mol -vin
  • the B-2) low molecular weight aromatic vinyl compound-vinyl cyan compound copolymer is preferably based on the total weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer. 5 to 30% by weight, more preferably 5 to 35% by weight, there is an excellent effect of chemical resistance, impact strength, tensile strength, low temperature workability within this range.
  • the B-2a) aromatic vinyl compound-vinyl cyan compound copolymer is preferably 10 based on the total weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer to 30% by weight, more preferably 10 to 25% by weight, more preferably 10 to 20% by weight, there is an excellent effect of chemical resistance, impact strength, tensile strength and low temperature workability within this range.
  • the B-2b) aromatic vinyl compound-vinyl cyan compound copolymer is preferably 10 based on the total weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer. to 30% by weight, more preferably 10 to 25% by weight, more preferably 10 to 20% by weight, there is an excellent effect of chemical resistance, impact strength, tensile strength and low temperature workability within this range.
  • the B-2c) aromatic vinyl compound-vinyl cyan compound copolymer is preferably 10 based on the total weight of the (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer. to 40% by weight, more preferably 20 to 40% by weight, more preferably 20 to 35% by weight, there is an excellent effect of chemical resistance, impact strength, tensile strength and low temperature workability within this range.
  • the B-2) low molecular weight aromatic vinyl compound-vinyl cyan compound copolymer preferably comprises 65 to 80 wt% of an aromatic vinyl compound and 20 to 35 wt% of a vinyl cyanide compound, more preferably an aromatic vinyl compound 67 to 80% by weight and 20 to 33% by weight of a vinyl cyanide compound, and more preferably 70 to 75% by weight of an aromatic vinyl compound and 25 to 30% by weight of a vinyl cyanide compound, within this range In chemical resistance, impact strength, tensile strength, and workability are excellent.
  • the aromatic vinyl compound may be, for example, at least one selected from the group consisting of styrene, m-methylstyrene, p-methylstyrene, and p-tert-butylstyrene, and is preferably styrene.
  • the vinyl cyan compound may be, for example, at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethyl acrylonitrile and isopropyl acrylonitrile, preferably acrylonitrile.
  • the low molecular weight aromatic vinyl polymer may be prepared by, for example, suspension polymerization, emulsion polymerization, solution polymerization or bulk polymerization, and is preferably prepared by bulk polymerization, in which case, excellent heat resistance and fluidity are obtained. .
  • suspension polymerization, emulsion polymerization, solution polymerization, and bulk polymerization are not particularly limited in the case of solution polymerization and bulk polymerization methods commonly performed in the art to which the present invention pertains, respectively.
  • the (B) non-grafted copolymer is preferably included in an amount of 30 to 90% by weight based on the total weight of the (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer. and more preferably 40 to 80% by weight, more preferably 50 to 70% by weight, even more preferably 50 to 60% by weight, and both low-temperature processability and heat resistance within this range have excellent effects .
  • the polyamide resin of the present disclosure is preferably 0.1 to 10 parts by weight, based on a total of 100 parts by weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer, more Preferably it is 1 to 10 parts by weight, more preferably 3 to 9 parts by weight, and most preferably 4 to 7 parts by weight. There is an advantage.
  • the polyamide resin preferably has a relative viscosity (96% sulfuric acid solution) of 2.5 or less, and a specific example is 2.0 to 2.5, and a preferred example is 2.2 to 2.5, and within this range, mechanical properties, weather resistance, processability, etc. are equal or more. It has an excellent matte characteristic while maintaining it.
  • the relative viscosity can be measured with a Ubbelohde viscometer by the ISO 307 sulfuric acid method. Specifically, a solution prepared by dissolving 1 g of a sample to be measured in 100 ml of an aqueous solution of sulfuric acid having a concentration of 96% by weight is measured with a Brookfield rotational viscometer (Brookfield). rotational viscometer) can be used to measure at 20 °C.
  • polyamide resin examples include polyamide 6, polyamide 66 (PA 6.6), polyamide 46, polyamide ll, polyamide 12, polyamide 610, polyamide 612, polyamide 6/66, polyamide 6/612 , Polyamide MXD6, Polyamide 6/MXD6, Polyamide 66/MXD6, Polyamide 6T, Polyamide 6I, Polyamide 6/6T, Polyamide 6/6I, Polyamide 66/6T, Polyamide 66/6I, Poly Amide 6/6T/6I, Polyamide 66/6T/6I, Polyamide 9T, Polyamide 9I, Polyamide 6/9T, Polyamide 6/9I, Polyamide 66/9T, Polyamide 6/12/9T, Poly It may be at least one selected from the group consisting of amide 66/12/9T, polyamide 6/12/9I and polyamide 66/12/6I, preferably polyamide 6, polyamide 12, and polyamide 66 It is at least one selected from the group consisting of polyamide 66, and in this case, mechanical properties, weather resistance, processability,
  • the method for preparing the polyamide resin is not particularly limited as long as it is a polymerization method commonly carried out in the art to which the present invention pertains, and may be commercially purchased and used if it meets the definition of polyamide according to the present invention.
  • the inorganic pigment of the present disclosure is preferably 0.1 to 5 parts by weight, more preferably 0.1 to 5 parts by weight based on a total of 100 parts by weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer It may be included in an amount of 0.1 to 2 parts by weight, more preferably 0.1 to 1 parts by weight, and still more preferably 0.3 to 0.8 parts by weight, and within this range, the weather resistance and hiding power are excellent.
  • the inorganic pigment may be, for example, at least one selected from the group consisting of a metal compound such as Ti, Pb, Fe, Cr, and carbon black, and the metal compound is preferably a metal oxide or a metal hydroxide, Examples include TiO 2 , zinc oxide (Zinc Oxide) as a white inorganic pigment; Carbon black, graphite as black inorganic pigments; IOR, Cadmium Red, Red Lead (Pb3O4) as red inorganic pigment; Chrome Yellow, Zinc Chromate, Cadmium Y. as yellow inorganic pigments; and at least one selected from the group consisting of Chrome Green and Zinc Green as the green inorganic pigment, and the most preferred inorganic pigment may be TiO 2 which is a white inorganic pigment.
  • a metal compound such as Ti, Pb, Fe, Cr, and carbon black
  • the metal compound is preferably a metal oxide or a metal hydroxide
  • Examples include TiO 2 , zinc oxide (Zinc Oxide) as a white in
  • thermoplastic resin composition of the present invention may preferably include a lubricant, an antioxidant and a UV stabilizer.
  • the lubricant may be included in an amount of 0.1 to 3 parts by weight based on 100 parts by weight of the total of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer, and more Preferably it may be included in an amount of 0.3 to 1 part by weight, more preferably 0.3 to 0.8 part by weight, and within this range, there is an advantage in that both impact strength and fluidity are excellent while implementing a rough feeling on the surface.
  • the lubricant is preferably at least one selected from the group consisting of an ester lubricant, a metal salt lubricant, a carboxylic acid lubricant, a hydrocarbon lubricant, and an amide lubricant, more preferably an amide lubricant, and more preferably It is a steramide-based lubricant, and most preferably is alkylene bis (steramide) having 1 to 10 carbon atoms in the alkylene, and in this case, there is an advantage in that both the impact strength and the fluidity are excellent while realizing a rough feeling on the surface.
  • the steramide-based lubricant may include steramide and a steramide substituent in which at least one of hydrogen is substituted with another substituent.
  • ester-based lubricant metal salt-based lubricant, carboxylic acid-based lubricant, hydrocarbon-based lubricant, and amide-based lubricant are not particularly limited if each of the materials is commonly used as a corresponding type of lubricant in the technical field to which the present invention belongs.
  • the antioxidant is preferably at least one selected from the group consisting of phenolic antioxidants and phosphorus antioxidants, and more preferably a mixture of phenolic antioxidants and phosphorus antioxidants.
  • the phenolic antioxidant and the phosphorus antioxidant are preferably 0.1 to 2 parts by weight based on a total of 100 parts by weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer, respectively. It may include parts by weight, more preferably 0.1 to 1 parts by weight, respectively, and more preferably 0.2 to 0.6 parts by weight, respectively, within this range, while implementing a rough feeling on the surface, antioxidant effect has an excellent effect.
  • the phenolic antioxidant is preferably tetrakis[ethylene-3-(3,5-di-t-butyl-hydroxyphenyl)propionate](IR-1010), octadecyl 3-(3,5- di-t-butyl-4-hydroxyphenyl)propionate (IR-1076), pentaerythritol tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], and 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, more preferably octadecyl 3-(3 ,5-di-t-butyl-4-hydroxyphenyl)propionate (IR-1076) has an excellent antioxidant effect while realizing a rough feeling on the surface within this range.
  • the phosphorus-based antioxidant is preferably tris (2,4-di-tertbutylphenyl) phosphite (tris (2,4-di-tertbutylphenyl) phosphite), tris (nonylphenyl) phosphite (Tris (nonylphenyl) It may be at least one selected from the group consisting of phosphite; TNPP) and di-(2,4-di-tert-butylphenyl) pentaerythritol diphosphide (Di-(2,4-di-t-butylphenyl) pentaerythritol diphosphite) and more preferably tris (2,4-di-tert-butylphenyl) phosphite, and within this range, a rough feeling is realized on the surface and an excellent antioxidant effect is obtained.
  • TNPP di-(2,4-di-tert-butylphen
  • the UV stabilizer is preferably at least one selected from the group consisting of a benzotriazole-based UV stabilizer and a HALS-based UV stabilizer, and more preferably, a mixture of a benzotriazole-based UV stabilizer and a HALS-based UV stabilizer is used.
  • the ultraviolet stabilizer is preferably 0.1 to 2 parts by weight of a benzotriazole-based ultraviolet stabilizer based on a total of 100 parts by weight of (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer and 0.1 to 2 parts by weight of a HALS-based UV stabilizer, more preferably 0.2 to 1 parts by weight of a benzotriazole-based UV stabilizer and 0.2 to 1 parts by weight of a HALS-based UV stabilizer, more preferably benzotriazole It may contain 0.3 to 0.8 parts by weight of a sol-based UV stabilizer and 0.3 to 0.8 parts by weight of a HALS-based UV stabilizer, and within this range, a rough feeling is realized on the surface and excellent light resistance is obtained.
  • the benzotriazole-based UV stabilizer may be, for example, a hydroxybenzotriazole-based compound, preferably a 2-(2'-hydroxyphenyl)benzotriazole-based compound, and more preferably a 2-(2'- Hydroxy-5'-methylphenyl)benzotriazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(5'-tert-butyl-2' -Hydroxyphenyl)benzotriazole, 2-(2'-hydroxyl-5'-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole, 2-(3',5'-di -tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole, 2- (3'-tert-butyl-2'-hydroxy-5'-methylphenyl-5-chlorobenzotriazole, 2- (3'-sec-butyl-5
  • the HALS-based UV stabilizer is preferably 1,1-bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(2,2,6,6-tetramethyl-4-pi).
  • Peridyl) sebacate bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1-octyloxy-2,2,6,6-tetramethyl-4- piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)-N-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate , 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid condensation product, N,N'-bis(2,2,6,6- Linear or cyclic condensation product of tetramethyl-4-piperidyl)hexamethylene diamine and 4-tert-octylamino-2,6-d
  • thermoplastic resin composition of the present disclosure may optionally include heat stabilizers, dyes, pigments (except inorganic pigments), colorants, mold release agents, antistatic agents, antibacterial agents, processing aids, metal deactivators, flame retardants, flame retardants, anti-drip agents, if necessary.
  • At least one selected from the group consisting of anti-friction agents and anti-wear agents, (A) acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer and (B) non-graft copolymer based on a total of 100 parts by weight based on 0.01 to 5 parts by weight, 0.05 to 3 parts by weight, 0.1 to 2 parts by weight, or 0.5 to 1 parts by weight may further include, within this range, the effect that the corresponding physical properties are well implemented without reducing the desired effect in the present invention within this range there is
  • thermoplastic resin composition of the present disclosure is preferably applied to a single screw extruder for sheet molding (die form: T-Die) when the extrusion RPM is changed from 20 to 60 under the conditions of a barrel temperature of 190 ° C. and a die temperature of 200 ° C. may have a pressure gradient of 130 or less, more preferably 100 to 130, and more preferably 110 to 130, and within this range, there is an advantage in that the viscosity change according to shear is small and processing stability is excellent.
  • the thermoplastic resin composition is preferably prepared at a barrel temperature of 190°C, a die temperature of 200°C, and extrusion RPM of 50 for 1 minute and 30 seconds.
  • the discharge rate calculated as the discharge amount of the thermoplastic resin composition discharged through the T-die of the single screw T-Die extruder is 18 g/min or more, more preferably 18 to 19.5 g/min, still more preferably 18 to 19.0 g It may be /min, and there is an advantage of excellent processability and economical efficiency within this range.
  • the thermoplastic resin composition may preferably have a capillary viscosity of 2,500 to 3,200 Pa ⁇ s at 190° C. and a shear range of 100/s, more preferably 2,600 to 3,100 Pa ⁇ s, and still more preferably 2,700 to 3,000 Pa ⁇ s, and within this range, there is an advantage of excellent workability and economical efficiency.
  • the thermoplastic resin composition preferably has a storage modulus of 70,000 to 150,000 MPa at a temperature condition of 190° C., a strain condition of 0.1% and a frequency condition of 10 rad/s at a frequency condition of 10 rad/s, more preferably 80,000 to 140,000 MPa, more preferably 90,000 to 130,000 MPa, within this range, the adhesion to the PVC resin surface is excellent, so that the ASA resin is well covered on the PVC resin surface, layer separation does not occur, and there is an advantage of excellent workability.
  • the thermoplastic resin composition may preferably have an asymmetry Rsk (200° C.) of 0 to 0.5, more preferably 0 to 0.4, still more preferably 0 to 0.3, still more preferably 0.05 to 0.2, most preferably It is 0.08 to 0.15, and within this range, mechanical properties and workability, etc. are not deteriorated, and the weather resistance is excellent, and in particular, a rough feeling is implemented on the surface of the product to have an effect of having a luxurious appearance deviating from the artificial plastic feeling.
  • Rsk 200° C.
  • the thermoplastic resin composition may preferably have asymmetry Rsk (220° C.) of 0.65 to 1.35, more preferably 0.7 to 1.2, still more preferably 0.7 to 1.3, still more preferably 0.7 to 1.0, most preferably It is 0.74 to 0.9, and the mechanical properties and workability, etc. are not deteriorated within this range, and the weather resistance is excellent, and in particular, a rough feeling is implemented on the surface of the product, and there is an effect of having a luxurious appearance deviating from the artificial plastic feeling.
  • asymmetry Rsk (220° C.) of 0.65 to 1.35, more preferably 0.7 to 1.2, still more preferably 0.7 to 1.3, still more preferably 0.7 to 1.0, most preferably It is 0.74 to 0.9, and the mechanical properties and workability, etc. are not deteriorated within this range, and the weather resistance is excellent, and in particular, a rough feeling is implemented on the surface of the product, and there is an effect of having a luxurious appearance deviating from the artificial plastic feeling
  • the thermoplastic resin composition may not preferably contain a thermoplastic resin having a glass transition temperature of 125° C. or higher, and more preferably an alpha-methylstyrene-vinyl cyan compound copolymer and a methacrylate-aromatic vinyl compound-vinyl cyan compound copolymer. It may not include at least one selected from the group consisting of coalescing, and more preferably does not include both the alpha-methylstyrene-vinyl cyan compound copolymer and the methacrylate-aromatic vinyl compound-vinyl cyan compound copolymer, In this case, there is an advantage in that the low-temperature workability at less than 200°C does not decrease.
  • the glass transition temperature (Tg) may be measured by a method conventionally measured in the technical field to which the present invention belongs, and as a specific example, it may be measured by a Differential Scanning Calorimeter (DSC) based on ASTM D 3418.
  • DSC Differential Scanning Calorimeter
  • thermoplastic resin not only does not include a given thermoplastic resin, but also means that the thermoplastic resin is not included at all, and the injection effect of the thermoplastic resin is very insignificant and does not affect the effect of the thermoplastic resin composition of the present invention at all. It also means less than the amount, and specific examples may be less than 3 wt%, less than 2 wt%, less than 1 wt%, less than 0.5 wt%, or less than 0.1 wt%.
  • heat-resistant SAN resins such as alpha-methylstyrene-acrylonitrile copolymer not only have high viscosity at low temperatures, but also have severe viscosity changes with RPM, so when added to the thermoplastic resin composition of the present invention, low-temperature processing conditions It may be preferable to exclude according to the above-described definition in the thermoplastic resin composition of the present invention, since low-temperature processability is decreased by increasing the viscosity in
  • thermoplastic resin composition may preferably be a decking material, and in this case, it has the advantage of greatly satisfying all of the physical properties required for the decking material.
  • the thermoplastic resin composition preferably has a heat resistance of 80 °C or higher, more preferably 82 °C or higher, even more preferably 84 °C or higher, as measured under a load of 18.6 kgf in accordance with ASTM D648, and a preferred example is 80 to 90 °C. °C, a more preferred example may be 82 to 90 °C, while ensuring sufficient heat resistance within this range, there is an excellent effect of low-temperature processability at less than 200 °C.
  • the thermoplastic resin composition may preferably be a matte thermoplastic resin composition having a film gloss of 15 or less measured at 60° with a gloss meter VG7000, more preferably 10 or less, and still more preferably 8 It may be the following matte thermoplastic resin composition, and within this range, there is an effect of excellent balance of physical properties while excellent matting properties. Accordingly, the thermoplastic resin composition of the present disclosure may also be referred to as a matte thermoplastic resin composition.
  • the method for producing the thermoplastic resin composition of the present invention preferably comprises (A) an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-1) comprising an acrylate rubber having an average particle diameter of 50 to 150 nm; 10 to 70 wt% of an acrylate-aromatic vinyl compound-vinyl cyan compound graft copolymer (A-2) containing acrylate rubber having an average particle diameter of 300 to 600 nm; and (B) a high molecular weight aromatic vinyl compound-vinyl cyan compound copolymer having a weight average molecular weight of 160,000 to 200,000 g/mol (B-1) and a low molecular weight having a weight average molecular weight of 80,000 g/mol or more and less than 160,000 g/mol An aromatic vinyl compound-vinyl cyan compound copolymer (B-2) containing 30 to 90 wt% of a non-grafted copolymer, and the extrusion RPM is changed
  • the pressure gradient applied to the single screw extruder for sheet molding is 130 or less, it is characterized in that it comprises the step of preparing pellets using an extrusion kneader under the conditions of 220 to 280 ° C.
  • 200 compared to the conventional ASA resin Excellent processability at low temperatures below °C, no surface defects such as flow marks or peeling occur even during coextrusion with PVC resin, and energy consumption is low.
  • thermoplastic resin composition excellent in this and also excellent in heat resistance.
  • the conditions of the barrel temperature of 190 °C and the die temperature of 200 °C may be, for example, barrel temperature 50, 190, 190, 190 °C, and die temperature 200, 200, 200 °C conditions.
  • thermoplastic resin composition shares all the technical characteristics of the aforementioned thermoplastic resin composition. Therefore, a description of the overlapping portion will be omitted.
  • the step of preparing the pellets using the extrusion kneader is preferably under 220 to 290 °C, more preferably under 250 to 290 °C, even more preferably under 270 to 290 °C may be carried out, and in this case, the temperature means the temperature set in the cylinder.
  • the extrusion kneader is not particularly limited if it is an extrusion kneader commonly used in the art to which the present invention belongs, and may preferably be a twin-screw extrusion kneader.
  • the molded article of the present base material is characterized in that it contains the thermoplastic resin composition of the present base material, and in this case, it has excellent processability at a low temperature of less than 200 ° C compared to conventional ASA resin. There is no surface defect and low energy consumption, and even with a small amount of ASA resin, PVC resin can be effectively covered, so it is economical and has excellent heat resistance.
  • the molded article may preferably be an exterior material, more preferably a co-extrusion extrusion molded article or an injection molded article, more preferably a co-extrusion molded article with PVC resin, and specific examples include a siding material, decking ( decking material, roofing material, sliding door material or window material, most preferred example is decking material.
  • the molded article may be prepared, for example, by co-extruding the thermoplastic resin composition of the present invention at a molding temperature of less than 200 ° C, preferably 180 ° C or more to less than 200 ° C, more preferably 190 to 199 ° C. And within this range, there is an economic advantage because the surface defect does not occur and the energy consumption is small.
  • the molded article may be manufactured by extruding or injecting the thermoplastic resin composition of the present disclosure at a molding temperature of 190 to 250 °C, preferably at 190 to 230 °C, more preferably at 190 to 220 °C. there is.
  • thermoplastic resin composition of the present disclosure its manufacturing method and molded article, other conditions or equipment not explicitly described may be appropriately selected within the range commonly practiced in the art, and it is specified that there is no particular limitation do.
  • A-1) Graft copolymer butyl acrylate-styrene-acrylonitrile copolymer having an average particle diameter of acrylate rubber of 130 nm (butyl acrylate 50% by weight, styrene 35% by weight, and acrylonitrile 15% by weight)
  • A-2) Graft copolymer butyl acrylate-styrene-acrylonitrile copolymer having an average particle diameter of acrylate rubber of 500 nm (butyl acrylate 50% by weight, styrene 35% by weight, and acrylonitrile 15% by weight)
  • Pellets were prepared by kneading and extrusion at 280 °C.
  • a sheet of 0.15T was manufactured using a single screw T-die extruder at a barrel temperature of 50, 190, 190, 190 °C, and a die part temperature of 200, 200, 200 °C with the produced pellets to obtain gloss and surface roughness values. was measured.
  • the prepared pellets were injected at a molding temperature of 220° C. to prepare a specimen for measuring physical properties, and tensile strength and impact strength were measured using this.
  • Pressure gradient Single screw extruder for sheet molding (manufactured by Collin, E20T product) when changing the extrusion RPM from 20 to 60 under conditions of barrel temperature 50, 190, 190, 190 °C and die temperature 200, 200, 200 °C ) was measured by the pressure of the thermoplastic resin composition.
  • the pressure gradient the RPM is raised to 60 first, and the resin flows while waiting until the temperature of the internal adapter of the extruder is stabilized. When the temperature is stabilized, the pressure displayed on the extruder is recorded. Since temperature affects the viscosity of the resin, data must be taken after confirming that the temperature is constant. In the same manner, the pressure was recorded while sequentially reducing the RPM to 20. The gradient obtained by drawing a logarithmic trend line on the graph of the pressure change with respect to the obtained RPM was used as the pressure gradient value.
  • Discharge rate It was calculated as the discharge amount of the thermoplastic resin composition discharged through the T-die for 1 minute and 30 seconds under the conditions of barrel temperature 50, 190, 190, 190 ° C, die temperature 200, 200, 200 ° C, and extrusion RPM 50 .
  • Capillary viscosity (Pa ⁇ s) A capillary rheometer (GOETTFERT, RG-75) was used, and flow viscosity was measured in a shear range of 10/s to 2000/s at 190 ° C. At this time, the data in the shear range 100/s was used for the analysis result, and the sample was dried in an oven at 80° C. for 3 hours or more before analysis to remove the effect of viscosity due to moisture.
  • GOETTFERT GOETTFERT, RG-75
  • Asymmetry Rsk Referring to FIG. 1 below, the optical profiler system (Nano View NV-2700, manufacturer: Nano System) was used as the equipment, and the analysis conditions were 20 times the objective lens ⁇ eyepiece in WSI Envelope mode. Scanning was performed over a range of ⁇ 40 ⁇ m using a 1x lens. Measurements were carried out for 5 points after the sample was flatly fixed on the stage. For the measured values, the average value for 5 points was calculated using the formula to find the root mean square deviation (Rq) shown in the upper figure and the asymmetry Rsk shown in the lower figure.
  • Rq root mean square deviation
  • the degree of asymmetry (Rsk, 200 °C) is uniformly extruded to a thickness of 0.15T through a 15-pi film extruder at a barrel temperature of 50, 190, 190, 190 °C and a die temperature of 200, 200, 200 °C It is a value measured by the method presented above after the Rsk, and the degree of asymmetry (Rsk, 220 °C) is 15 pie at the barrel temperature 50, 200, 210, 210 °C and the die part temperature 220, 220, 230 °C of the prepared pellets. It is a value measured by the method presented above after uniformly extruding to a thickness of 0.15T through a film extruder.
  • Example comparative example One 2 3 4 5 6 One 2 3 4 5 A-1 13 13 13 13 15 17 25 13 13 13 13 A-2 23 23 23 23 19 17 15 25 23 23 23 B-1 15 25 58 B-2 20 58 B-3 20 30 20 41 58 B-4 38 43 33 28 40 40 B-5 54 15 D 6 6 6 6 6 6 6 6 6 6 6 6 TiO 2 pigment 0.6 0.6 0.6 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 RPM 60 326 288 295 292 291 281 370 311 275 282 296 50 310 271 277 273 275 264 346 290 255 266 276 40 289 249 252 248 252 242 310 259 228 242 252 30 248 213 217 209 218 210 264 215 202 210 220 20 189 157 166 157 163 160 193 154 171 167 170 inclination 126.16 119.76 118.2 124.13 117.09
  • thermoplastic resin composition (see Examples 1 to 6) according to the present invention has excellent processability even at a low temperature of less than 200 ° C., compared to Comparative Examples 1 to 5, which have different configurations, resulting in flow marks and peeling. It was confirmed that no surface defects such as surface defects occurred, energy consumption was small, and viscosity was small even with changes in extrusion RPM, so processing stability was excellent, and even heat resistance was excellent. Comparative Examples 1 and 2 using the resin have poor processability and economic feasibility due to poor discharge rate, etc., and Comparative Examples 3 to 5 using only low molecular weight SAN resins with different types have poor heat resistance (HDT). there was.
  • HDT heat resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명은 열가소성 수지 조성물 및 이의 성형품에 관한 것으로, 보다 상세하게는 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하고, 배럴 온도 190 ℃ 및 다이 온도 200 ℃ 조건 하에 압출 RPM을 20에서 60까지 변화시킬 때 시트성형용 싱글 스크류 압출기에 걸리는 열가소성 수지 조성물의 압력 기울기가 130 이하인 것을 특징으로 하는 열가소성 수지 조성물 인 열가소성 수지 조성물 및 이의 성형품에 관한 것이다. 본 발명에 따르면, 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 및 ASA 수지의 소비량이 적어져 경제성이 우수하며, 더불어 내열도까지 우수한 열가소성 수지 조성물 및 이의 성형품을 제공하는 효과가 있다. [대표도] 도 1

Description

열가소성 수지 조성물 및 이의 성형품
〔출원(들)과의 상호 인용〕
본 출원은 2020.09.22 일자 한국특허출원 제 10-2020-0122542 호 및 그를 토대로 2021.05.18 일자로 재출원한 한국특허출원 제 10-2021-0064033 호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물 및 이의 성형품에 관한 것으로, 보다 상세하게는 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비량이 적으며, 압출 RPM 변화에도 점도 변화가 적어 가공 안정성이 우수하며, 더불어 내열도까지 우수한 열가소성 수지 조성물 및 이의 성형품에 관한 것이다.
아크릴레이트 화합물-스티렌-아크릴로니트릴 공중합체(이하, 'ASA 수지'라 함)는 내후성, 내노화성, 내화학성, 강성, 내충격성 및 가공성을 두루 갖추고 있으며, 용도가 다양하여 자동차, 잡화 및 건자재 분야 등에서 광범위하게 사용된다.
특히 건자재와 관련해서 ASA 수지는 PVC 공압출 용도로 많이 사용되고 있고, 구체적인 용도로는 윈도우 프로파일, 데크 보드(decking board), 루핑(roofing), 사이딩(siding) 등이 있다.
종래의 ASA 수지의 경우 기본적으로 200 내지 240 ℃의 가공 온도에서 압출 또는 사출 가공이 이루어지는 반면, PVC 수지의 경우에는 200 ℃ 이상의 고온에서 PVC 수지가 쉽게 탄화되는 문제로 인해 200 ℃ 미만의 낮은 온도에서 PVC 수지의 공압출 가공이 이루어져야 하는 제한이 있다. 하지만, 200 ℃ 미만의 낮은 온도에서는 ASA 수지의 점도가 급격하게 증가하므로 PVC 수지와의 공압출 시 ASA 수지층이 PVC 수지층 위에 제대로 덮이지 않게 되어 발생하는 플로우 마크(flow mark)나 부분적으로 ASA 수지가 덮이지 않는 필링(peeling) 등의 표면 불량이 발생할 수 있다. 또한, 압출기 RPM 변화에 따라 ASA 수지의 점도가 급격하게 변하여 가공 윈도우가 좁은 단점이 있다.
플로우 마크나 필링과 같은 문제들은 압출기 다이의 온도 또는 압출기 배럴의 온도를 높이거나, 또는 ASA 수지의 압출 RPM을 높여 ASA의 전단 발열을 조절함으로써 해결 가능하나, 압출 온도를 올리는 것은 많은 에너지가 요구되고, ASA 수지의 RPM을 올리는 것은 압출기에 걸리는 토크가 높아져 기기에 걸리는 부하가 증가하는 단점이 있다.
따라서, 낮은 가공 온도에서도 점도가 낮아 PVC 수지와의 공압출 가공 시 플로우 마크나 필링 등의 표면 불량이 발생하지 않으면서도, 적은 에너지 소비 및 PVC 수지와의 공압출 가공이 용이하여 경제성이 뛰어난 ASA 수지 등의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
KR 2009-0095764 A
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비량이 적으며, 압출 RPM 변화에도 점도 변화가 적어 가공 안정성이 우수하며, 더불어 내열도까지 우수한 열가소성 수지 조성물 및 이의 성형품을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하고, 배럴 온도 190 ℃ 및 다이 온도 200 ℃ 조건 하에 압출 RPM을 20에서 60까지 변화시킬 때 시트성형용 싱글 스크류 압출기에 걸리는 열가소성 수지 조성물의 압력 기울기가 130 이하인 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
또한, 본 발명은 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하고, 배럴 온도 190 ℃, 다이 온도 200 ℃ 및 압출 RPM 50 조건 하에 1분 30초간 T-다이를 통해 토출되는 열가소성 수지 조성물의 토출량으로 계산되는 토출속도가 18 g/min 이상인 것을 특징으로 하는 열가소성 수지 조성물을 제공할 수 있다.
또한, 본 발명은 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%;를 포함하는 베이스 수지 100 중량부, 폴리아마이드 수지 0.1 내지 10 중량부 및 무기 안료 0.1 내지 5 중량부를 포함하는 것을 특징으로 하는 열가소성 수지 조성물을 제공할 수 있다.
상기 열가소성 수지 조성물은 바람직하게는 유리전이온도 125 ℃ 이상의 열가소성 수지를 포함하지 않을 수 있다.
또한, 본 발명은 본 기재의 열가소성 수지 조성물을 포함하는 것을 특징으로 하는 성형품을 제공할 수 있다.
본 발명에 따르면, 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비량이 적으며, 압출 RPM 변화에도 점도 변화가 적어 가공 안정성이 우수하며, 더불어 내열도까지 우수한 열가소성 수지 조성물 및 이의 성형품을 제공하는 효과가 있다.
도 1은 본 발명에 따른 비대칭도 Rsk에 대한 정의, 계산법 및 의미를 도식적으로 나타낸 것으로, 비대칭도 Rsk는 통계 집단의 도수 분포도(histogram)에서 평균값에 대한 비대칭 방향과 그 정도를 나타내는 특성 값으로 정의되고, 형상적으로 표면에 봉우리(peak)와 골(valley) 중 어느 것이 표면의 대부분을 이루고 있는지를 평가할 수 있다. 특히, 도 1의 상측 그림은 평균 제곱근 편차(Rq)를 구하는 식과 그 의미를 나타내는 그래프로 Z은 봉우리 높이를 의미하고, ℓ는 평균 구간 길이(Sampling length)를 의미한다. 또한 도 1의 하측 그림은 비대칭도 Rsk를 구하는 식과 그 의미를 나타내는 그래프로, 비대칭도 Rsk가 0 보다 커질수록 평균선을 기준으로 봉우리 분포가 많아지는 것을 의미하며, 0 보다 작아질수록 평균선 기준으로 골의 분포가 많아지는 것을 의미한다. 본 발명은 비대칭도 Rsk를 소정 범위 내로 조정할 때 제품 표면에 플라스틱 느낌에서 벗어난 거친 느낌이 구현되는 것을 요지로 한다.
이하 본 기재의 열가소성 수지 조성물 및 이의 성형품을 상세하게 설명한다.
본 발명자들은 고무의 평균입경이 다른 2종 이상의 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체를 소정 비율로 배합하고, 여기에 내열 방향족 비닐 중합체가 배제된 소정의 고 분자량 방향족 비닐 중합체와 소정의 저 분자량 방향족 비닐 중합체를 소정의 함량 범위로 혼합하여 열가소성 수지 조성물의 압출기에 걸리는 압력 기울기 값이나 토출속도 값 등을 소정 값이 되게 할 때, 200 ℃ 미만의 저온에서 PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고, 에너지 소비 및 내열도가 뛰어난 것을 확인하고, 이를 토대로 더욱 연구에 매진하여 본 발명을 완성하게 되었다.
본 발명의 열가소성 수지 조성물은 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하고, 배럴 온도 190 ℃ 및 다이 온도 200 ℃ 조건 하에 압출 RPM을 20에서 60까지 변화시킬 때 시트성형용 싱글 스크류 압출기에 걸리는 열가소성 수지 조성물의 압력 기울기가 130 이하인 것을 특징으로 하고, 이러한 경우 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비 및 ASA 수지의 투입량이 적어져 경제성이 우수하며, 더불어 내열도까지 우수한 열가소성 수지 조성물 및 이의 성형품을 제공하는 이점이 있다.
또한, 본 발명의 열가소성 수지 조성물은 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하고, 배럴 온도 190 ℃, 다이 온도 200 ℃ 및 압출 RPM 50 조건 하에 1분 30초간 T-다이를 통해 토출되는 열가소성 수지 조성물의 토출량으로 계산되는 토출속도가 18 g/min 이상인 것을 특징으로 하고, 이러한 경우 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비량이 적으며, 넓은 가공 윈도우에서 점도의 큰 변화 없이 PVC 수지를 효과적으로 덮을 수 있어 가공 안정성이 뛰어나고, 또한 내열도까지 우수한 열가소성 수지 조성물 및 이의 성형품을 제공하는 이점이 있다.
또한, 본 발명의 열가소성 수지 조성물은 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하는 베이스 수지 100 중량부, 폴리아마이드 수지 0.1 내지 10 중량부 및 무기 안료 0.1 내지 5 중량부를 포함하는 것을 특징으로 하고, 이러한 경우 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고, 넓은 가공 윈도우에서 점도의 큰 변화 없이 PVC 수지를 효과적으로 덮을 수 있어 가공 안정성이 뛰어나고, 나아가 내열도까지 우수한 열가소성 수지 조성물 및 이의 성형품을 제공하는 이점이 있다.
본 기재에서 성형온도는 별도로 정의하지 않는 이상 압출 또는 사출 장치(또는 공정)에서 배럴의 온도제어구역, 즉 존(zones)에 설정된 온도 중 가장 높은 온도를 의미하고, 일반적으로 배럴에서 다이(die)와 인접한 존의 온도를 의미한다.
본 기재에서 배럴 온도는 별도로 정의하지 않는 이상 성형온도를 의미하고, 배럴부는 배럴에서 가열 장치에 의해 직접 온도가 제어되는 구역을 의미하며, 제한되는 것은 아니지만 통상 복수의 온도제어구역으로 이루어진다. 이때 배럴부의 온도는 열가소성 수지 조성물을 투입하는 투입구(호퍼)에 인접한 온도제어구역 또는 제1 온도제어구역부터, 다이에 인접한 온도제어구역 또는 마지막 온도제어구역까지, 순차적으로 기재한다.
본 기재에서 다이 온도는 별도로 정의하지 않는 이상 다이 노즐에 설정된 온도, 즉 압출 또는 사출 시 다이 노즐의 온도를 의미하고, 다이부는 다이에서 가열 장치에 의해 직접 온도가 제어되는 구역을 의미하며, 제한되는 것은 아니지만 통상 복수의 온도제어구역으로 이루어진다. 이때 다이부의 온도는 배럴과 인접한 온도제어구역 또는 제1 온도제어구역부터, 다이의 마지막 온도제어구역 또는 노즐까지, 순차적으로 기재한다.
이하, 본 기재의 열가소성 수지 조성물을 구성하는 각 성분을 상세히 살펴보면 다음과 같다.
(A-1) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체
상기 (A-1) 그라프트 공중합체의 아크릴레이트 고무는 일례로 평균입경이 50 내지 150nm, 바람직하게는 50 내지 130nm, 보다 바람직하게는 100 내지 130nm일 수 있고, 이 범위 내에서 최종 제조되는 열가소성 수지 조성물에 우수한 충격강도 및 외관 품질을 부여할 수 있다.
본 기재에서 평균입경은 동적 광산란법(dynamic light scattering)을 이용하여 측정할 수 있고, 상세하게는 Nicomp 380 장비(제품명, 제조사: PSS)를 이용하여 가우시안(Gaussian) 모드로 인텐서티(intensity) 값으로 측정할 수 있다. 이때 구체적인 측정예로, 샘플은 Latex(TSC 35-50wt%) 0.1g을 탈이온수 또는 증류수로 1,000-5,000배 희석하여, 즉 Intensity Setpoint 300kHz을 크게 벗어나지 않도록 적절히 희석하여 glass tube에 넣어 준비하고, 측정방법은 Auto-dilution하여 flow cell로 측정하며, 측정모드는 동적 광산란법(dynamic light scattering)법/Intensity 300KHz/Intensity-weight Gaussian Analysis로 하고, setting 값은 온도 23℃, 측정 파장 632.8nm, channel width 10μsec으로 하여 측정할 수 있다.
상기 (A-1) 그라프트 공중합체는 일례로 열가소성 수지 조성물 총 중량에 대하여 5 내지 30 중량%, 바람직하게는 10 내지 25 중량%, 보다 바람직하게는 10 내지 20 중량%일 수 있고, 이 범위 내에서 공압출 가공성이 뛰어나면서 충격강도, 인장강도, 신율 등의 기계적 물성, 외관 품질 및 표면 경도가 우수한 효과가 있다.
상기 (A-1) 그라프트 공중합체는 일례로 아크릴레이트 고무 40 내지 60 중량%, 방향족 비닐 화합물 20 내지 40 중량% 및 비닐시안 화합물 10 내지 20 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 외관 품질 및 표면 경도가 우수한 효과가 있다.
바람직한 예로, 상기 (A-1) 그라프트 공중합체는 아크릴레이트 고무 45 내지 55 중량%, 방향족 비닐 화합물 30 내지 40 중량% 및 비닐시안 화합물 10 내지 20 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 외관 품질 및 표면 경도가 우수한 효과가 있다.
본 기재에서 어떤 화합물을 포함하여 이루어진 중합체란 그 화합물을 포함하여 중합된 중합체를 의미하는 것으로, 중합된 중합체 내 단위체가 그 화합물로부터 유래한다.
상기 (A-1) 그라프트 공중합체는 일례로 유화 중합으로 제조될 수 있고, 이 경우 외관 품질 및 표면 경도가 우수한 효과가 있다.
상기 아크릴레이트는 일례로 알킬기의 탄소수가 2 내지 8개인 알킬 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 알킬기의 탄소수가 4 내지 8 개인 알킬 아크릴레이트이며, 더욱 바람직하게는 부틸 아크릴레이트 또는 에틸헥실 아크릴레이트이다.
상기 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, m-메틸스티렌, p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 스티렌이다.
상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아크릴로니트릴이다.
상기 유화 중합은 본 발명이 속한 기술분야에서 통상적으로 실시되는 유화 그라프트 중합 방법에 의하는 경우 특별히 제한되지 않는다.
(A-2) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체
상기 (A-2) 그라프트 공중합체의 아크릴레이트 고무는 일례로 평균입경이 300 내지 600nm, 바람직하게는 350 내지 600nm, 보다 더 바람직하게는 350 내지 550nm일 수 있고, 이 범위 내에서 인장강도, 신율 및 충격강도 등과 같은 기계적 강도가 우수한 효과가 있다.
상기 (A-2) 그라프트 공중합체는 일례로 열가소성 수지 조성물 총 중량에 대하여 15 내지 35 중량%, 바람직하게는 20 내지 30 중량%, 보다 바람직하게는 20 내지 25 중량%일 수 있고, 이 범위 내에서 공압출 가공성이 뛰어나면서 충격강도, 인장강도, 신율 등의 기계적 물성, 외관 품질 및 표면 경도가 우수한 효과가 있다.
상기 (A-2) 그라프트 공중합체는 일례로 아크릴레이트 고무 40 내지 60 중량%, 방향족 비닐 화합물 25 내지 45 중량% 및 비닐시안 화합물 10 내지 20 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 인장강도, 신율 및 충격강도 등과 같은 기계적 강도가 우수한 효과가 있다.
바람직한 예로, 상기 (A-1) 그라프트 공중합체는 아크릴레이트 고무 45 내지 55 중량%, 방향족 비닐 화합물 30 내지 40 중량% 및 비닐시안 화합물 10 내지 20 중량%를 포함하여 이루어질 수 있고, 이 범위 내에서 인장강도, 신율 및 충격강도 등과 같은 기계적 강도가 우수한 효과가 있다.
상기 (A-2) 그라프트 공중합체는 일례로 유화 중합으로 제조될 수 있고, 이 경우 인장강도, 신율 및 충격강도 등과 같은 기계적 강도가 우수한 효과가 있다.
상기 유화 중합은 본 발명이 속한 기술분야에서 통상적으로 실시되는 유화 그라프트 중합 방법에 의하는 경우 특별히 제한되지 않는다.
상기 아크릴레이트는 일례로 알킬기의 탄소수가 2 내지 8개인 알킬 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 알킬기의 탄소수가 4 내지 8 개인 알킬 아크릴레이트이며, 더욱 바람직하게는 부틸 아크릴레이트 또는 에틸헥실 아크릴레이트이다.
상기 방향족 비닐 화합물은 일례로 스티렌, α-메틸스티렌, m-메틸스티렌, p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 스티렌이다.
상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아크릴로니트릴이다.
상기 (A-1) 그라프트 공중합체 및 상기 (A-2) 그라프트 공중합체는 일례로 중량의 합이 10 내지 70 중량%, 바람직하게는 20 내지 50 중량%, 보다 바람직하게는 30 내지 40 중량%일 수 있고, 이 범위 내에서 저온 가공성이 뛰어나 외관 품질이 뛰어난 이점이 있다.
상기 (A-1) 그라프트 공중합체는 바람직하게는 상기 (A-2) 그라프트 공중합체 보다 적은 양으로 포함될 수 있고, 보다 바람직하게는 상기 (A-1) 그라프트 공중합체 및 상기 (A-2) 그라프트 공중합체는 중량비가 1:1.2 내지 1:2.5, 더욱 바람직하게는 1:1.4 내지 1:2.5, 보다 더 바람직하게는 1: 1.5 내지 1:2일 수 있고, 이 범위 내에서 저온 가공성이 뛰어나 외관 품질이 뛰어난 이점이 있다.
본 기재에서 A와 B의 중량비는 A:B의 중량비를 의미한다.
B-1) 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체
본 기재의 B-1) 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 중량 평균 분자량이 160,000 내지 200,000 g/mol인 방향족 비닐 화합물-비닐시안 화합물 공중합체일 수 있고, 보다 바람직하게는 중량 평균 분자량이 160,000 내지 190,000 g/mol인 방향족 비닐 화합물-비닐시안 화합물 공중합체, 더욱 바람직하게는 중량 평균 분자량이 160,000 내지 180,000 g/mol인 방향족 비닐 화합물-비닐시안 화합물 공중합체, 보다 더 바람직하게는 중량 평균 분자량이 160,000 내지 170,000 g/mol인 방향족 비닐 화합물-비닐시안 화합물 공중합체이며, 이 범위 내에서 충격 강도와 같은 기계적 강도가 우수하면서도 내열도가 우수한 이점이 있다.
상기 B-1) 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 중량에 대하여 20 내지 55 중량%, 보다 바람직하게는 25 내지 50 중량%로 포함되고, 이 경우 뛰어난 저온 가공성이 훼손되지 않으면서도 내열도가 우수한 이점이 있다.
본 기재에서 중량 평균분자량은 별도로 정의하지 않는 이상 GPC(Gel Permeation Chromatography, waters breeze)를 이용하여 측정할 수 있고, 구체적인 예로 용출액으로 THF(테트라하이드로퓨란)을 사용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다. 이때 구체적인 측정예로, 용매: THF, 컬럼온도: 40℃, 유속: 0.3ml/min, 시료 농도: 20mg/ml, 주입량: 5㎕, 컬럼 모델: 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B Guard(50x4.6mm), 장비명: Agilent 1200 series system, Refractive index detector: Agilent G1362 RID, RI 온도: 35℃, 데이터 처리: Agilent ChemStation S/W, 시험방법(Mn, Mw 및 PDI): OECD TG 118 조건으로 측정할 수 있다.
상기 B-1) 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체는 일례로 방향족 비닐 화합물 65 내지 80 중량% 및 비닐시안 화합물 20 내지 35 중량%를 포함하여 이루어지고, 바람직하게는 방향족 비닐 화합물 67 내지 80 중량% 및 비닐시안 화합물 20 내지 33 중량%를 포함하여 이루어지며, 보다 바람직하게는 방향족 비닐 화합물 70 내지 75 중량% 및 비닐시안 화합물 25 내지 30 중량%를 포함하여 이루어지고, 이 범위 내에서 기계적 강도와 저온 가공성이 우수한 이점이 있다.
상기 방향족 비닐 화합물은 일례로 스티렌, m-메틸스티렌, p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 스티렌이다.
상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아크릴로니트릴이다.
상기 B-1) 고 분자량 방향족 비닐 중합체는 일례로 현탁 중합, 유화 중합, 용액 중합 또는 괴상(bulk) 중합으로 제조될 수 있고, 바람직하게는 괴상 중합으로 제조되며, 이 경우 내열성 및 유동성 등이 우수한 효과가 있다.
상기 현탁 중합, 유화 중합, 용액 중합 및 괴상 중합은 각각 본 발명이 속한 기술분야에서 통상적으로 실시되는 용액 중합 및 괴상 중합 방법에 의하는 경우 특별히 제한되지 않는다.
B-2) 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체
본 기재의 B-2) 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만인 방향족 비닐 화합물-비닐시안 화합물 공중합체일 수 있고, 보다 바람직하게는 중량 평균 분자량이 80,000 내지 110,000 g/mol인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2a), 중량 평균 분자량이 110,000 g/mol 초과 내지 110,000 g/mol 이하인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2b) 및 중량 평균 분자량이 110,000 g/mol 초과 내지 160,000 g/mol 미만인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2c)로 이루어진 군으로부터 선택된 1종 이상이며, 더욱 바람직하게는 중량 평균 분자량이 80,000 내지 110,000 g/mol인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2a) 또는 중량 평균 분자량이 110,000 g/mol 초과 내지 160,000 g/mol 미만인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2c)이고, 이 범위 내에서 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비 가 적어져 경제성이 우수한 이점이 있다.
상기 B-2) 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 중량에 대하여 5 내지 30 중량%, 보다 바람직하게는 5 내지 35 중량%로 포함되고, 이 범위 내에서 내화학성, 충격강도, 인장강도, 저온 가공성이 우수한 효과가 있다.
상기 B-2a) 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 중량에 대하여 10 내지 30 중량%, 보다 바람직하게는 10 내지 25 중량%, 더욱 바람직하게는 10 내지 20 중량%로 포함되고, 이 범위 내에서 내화학성, 충격강도, 인장강도, 저온 가공성이 우수한 효과가 있다.
상기 B-2b) 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 중량에 대하여 10 내지 30 중량%, 보다 바람직하게는 10 내지 25 중량%, 더욱 바람직하게는 10 내지 20 중량%로 포함되고, 이 범위 내에서 내화학성, 충격강도, 인장강도, 저온 가공성이 우수한 효과가 있다.
상기 B-2c) 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 중량에 대하여 10 내지 40 중량%, 보다 바람직하게는 20 내지 40 중량%, 더욱 바람직하게는 20 내지 35 중량%로 포함되고, 이 범위 내에서 내화학성, 충격강도, 인장강도, 저온 가공성이 우수한 효과가 있다.
상기 B-2) 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체는 바람직하게는 방향족 비닐 화합물 65 내지 80 중량% 및 비닐시안 화합물 20 내지 35 중량%를 포함하여 이루어지고, 보다 바람직하게는 방향족 비닐 화합물 67 내지 80 중량% 및 비닐시안 화합물 20 내지 33 중량%를 포함하여 이루어지며, 더욱 바람직하게는 방향족 비닐 화합물 70 내지 75 중량% 및 비닐시안 화합물 25 내지 30 중량%를 포함하여 이루어지고, 이 범위 내에서 내화학성과 충격강도가 인장강도, 가공성이 우수한 효과가 있다.
상기 방향족 비닐 화합물은 일례로 스티렌, m-메틸스티렌, p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 스티렌이다.
상기 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아크릴로니트릴이다.
상기 B-2) 저 분자량 방향족 비닐 중합체는 일례로 현탁 중합, 유화 중합, 용액 중합 또는 괴상 중합으로 제조될 수 있고, 바람직하게는 괴상 중합으로 제조되며, 이 경우 내열성 및 유동성 등이 우수한 효과가 있다.
상기 현탁 중합, 유화 중합, 용액 중합 및 괴상 중합은 각각 본 발명이 속한 기술분야에서 통상적으로 실시되는 용액 중합 및 괴상 중합 방법에 의하는 경우 특별히 제한되지 않는다.
상기 (B) 비그라프트 공중합체는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 중량에 대하여 30 내지 90 중량%로 포함되고, 보다 바람직하게는 40 내지 80 중량%, 더욱 바람직하게는 50 내지 70 중량%, 보다 더 바람직하게는 50 내지 60 중량%일 수 있고, 이 범위 내에서 저온 가공성 및 내열성이 모두 뛰어난 효과가 있다.
폴리아마이드 수지
본 기재의 폴리아마이드 수지는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 0.1 내지 10 중량부, 보다 바람직하게는 1 내지 10 중량부, 더욱 바람직하게는 3 내지 9 중량부, 가장 바람직하게는 4 내지 7 중량부이고, 이 범위 내에서 기계적 물성 및 저온 가공성 등이 동등 이상으로 유지되면서도 무광 특성이 우수한 이점이 있다.
상기 폴리아마이드 수지는 바람직하게는 상대 점도(황산 96% 용액)가 2.5 이하이고, 구체적인 예로 2.0 내지 2.5, 바람직한 예로, 2.2 내지 2.5이며, 이 범위 내에서 기계적 물성, 내후성 및 가공성 등이 동등 이상으로 유지되면서도 무광 특성이 우수한 효과가 있다.
본 기재에서 상대 점도는 ISO 307 황산법에 의해 Ubbelohde 점도계로 측정할 수 있고, 구체적으로 설명하면 96 중량% 농도의 황산 수용액 100ml에 측정하고자 하는 시료 1g을 용해시켜 제조된 용액을 브룩필드 회전 점도계(Brookfield rotational viscometer)를 이용하여 20℃에서 측정할 수 있다.
상기 폴리아마이드 수지는 구체적인 예로 폴리아마이드 6, 폴리아마이드 66(PA 6.6), 폴리아마이드 46, 폴리아마이드 ll, 폴리아마이드 12, 폴리아마이드 610, 폴리아마이드 612, 폴리아마이드 6/66, 폴리아마이드 6/612, 폴리아마이드 MXD6, 폴리아마이드 6/MXD6, 폴리아마이드 66/MXD6, 폴리아마이드 6T, 폴리아마이드 6I, 폴리아마이드 6/6T, 폴리아마이드 6/6I, 폴리아마이드 66/6T, 폴리아마이드 66/6I, 폴리아마이드 6/6T/6I, 폴리아마이드 66/6T/6I, 폴리아마이드 9T, 폴리아마이드 9I, 폴리아마이드 6/9T, 폴리아마이드 6/9I, 폴리아마이드 66/9T, 폴리아마이드 6/12/9T, 폴리아마이드 66/12/9T, 폴리아마이드 6/12/9I 및 폴리아마이드 66/12/6I으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 폴리아마이드 6, 폴리아마이드 12 및 폴리아마이드 66으로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 폴리아마이드 66이며, 이 경우 기계적 물성, 내후성 및 가공성 등이 동등 이상으로 유지되면서도 무광 특성이 우수한 효과가 있다.
상기 폴리아마이드 수지의 제조방법은 본 발명이 속한 기술분야에서 통상적으로 실시되는 중합 방법인 경우 특별히 제한되지 않고, 본 발명에 따른 폴리아마이드의 정의에 부합하는 경우 상업적으로 구입해서 사용해도 무방하다.
무기 안료
본 기재의 무기 안료는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 바람직하게는 0.1 내지 5 중량부, 보다 바람직하게는 0.1 내지 2 중량부, 더욱 바람직하게는 0.1 내지 1 중량부, 보다 더 바람직하게는 0.3 내지 0.8 중량부로 포함될 수 있고, 이 범위 내에서 내후성 및 은폐력이 우수한 효과가 있다.
상기 무기 안료는 일례로 Ti, Pb, Fe, Cr 등의 금속 화합물 및 카본블랙으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 상기 금속 화합물은 바람직하게는 금속 산화물 또는 금속 수산화물이며, 상기 무기 안료의 구체적인 예로는, 백색 무기 안료로 TiO2, 산화아연(Zinc Oxide); 흑색 무기 안료로 카본 블랙, 그래파이트; 적색 무기 안료로 IOR, Cadmium Red, Red Lead(Pb3O4); 황색 무기 안료로 Chrome Yellow, Zinc Chromate, Cadmium Y.; 및 녹색 무기 안료로 Chrome Green, Zinc Green로 이루어진 군으로부터 선택된 1종 이상이 있고, 가장 바람직한 무기 안료는 백색 무기 안료인 TiO2일 수 있다.
첨가제
본 기재의 열가소성 수지 조성물은 바람직하게는 활제, 산화방지제 및 자외선 안정제를 포함할 수 있다.
상기 활제는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 0.1 내지 3 중량부로 포함할 수 있고, 보다 바람직하게는 0.3 내지 1 중량부로 포함할 수 있으며, 더욱 바람직하게 0.3 내지 0.8 중량부로 포함할 수 있고, 이 범위 내에서 표면에 거친 느낌을 구현하면서도 충격강도 및 유동성이 모두 우수한 이점이 있다.
상기 활제는 바람직하게는 에스테르계 활제, 금속염계 활제, 카르복실산계 활제, 탄화수소계 활제 및 아마이드계 활제로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 바람직하게는 아마이드계 활제이며, 더욱 바람직하게는 스테라미드계 활제이고, 가장 바람직하게는 알킬렌의 탄소수가 1 내지 10인 알킬렌 비스(스테라미드)이며, 이 경우 표면에 거친 느낌을 구현하면서도 충격강도 및 유동성이 모두 우수한 이점이 있다.
본 기재에서 스테라미드계 활제는 스테라미드(stearamide) 및 이의 수소 중 1 이상이 다른 치환기로 치환된 스테라미드 치환체를 포함할 수 있다.
상기 에스테르계 활제, 금속염계 활제, 카르복실산계 활제, 탄화수소계 활제 및 아마이드계 활제는 각각 본 발명이 속한 기술분야에서 통상적으로 해당 종류의 활제로 사용되는 물질인 경우 특별히 제한되지 않는다.
상기 산화방지제는 바람직하게는 페놀계 산화방지제 및 인계 산화방지제로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 페놀계 산화방지제와 인계 산화방지제의 혼합이다.
상기 페놀계 산화방지제와 인계 산화방지제는 바람직하게는 각각 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 0.1 내지 2 중량부를 포함할 수 있고, 보다 바람직하게는 각각 0.1 내지 1 중량부로 포함할 수 있으며, 더욱 바람직하게 각각 0.2 내지 0.6 중량부로 포함할 수 있고, 이 범위 내에서 표면에 거친 느낌을 구현하면서도 산화방지 효과가 우수한 효과가 있다.
상기 페놀계 산화방지제는 바람직하게는 테트라키스[에틸렌-3-(3,5-다이-t-부틸-하이드록시 페닐)프로피오네이트](IR-1010), 옥타데실 3-(3,5-다이-t-부틸-4-하이드록시페닐)프로피오네이트(IR-1076), 펜타에리스리톨 테트라키스[3-(3,5-디-t-부틸-4-히드록시페닐)프로피오네이트], 및 1,3,5-트리메틸-2,4,6-트리스(3,5-디-t-부틸-4-히드록시벤질)벤젠 중에서 선택된 1 이상이고, 보다 바람직하게는 옥타데실 3-(3,5-다이-t-부틸-4-하이드록시페닐)프로피오네이트(IR-1076)이며, 이 범위 내에서 표면에 거친 느낌을 구현하면서도 산화방지 효과가 우수한 효과가 있다.
상기 인계 산화방지제는 바람직하게는 트리스(2,4-디-터셔리-부틸페닐) 포스파이트(tris(2,4-di-tertbutylphenyl) phosphite), 트리스(노닐페닐) 포스파이트(Tris(nonylphenyl) phosphite; TNPP) 및 디-(2,4-디-터셔리-부틸페닐) 펜타에리스리톨 디포스파이드(Di-(2,4-di-t-butylphenyl) pentaerythritol diphosphite)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 바람직하게는 트리스(2,4-디-터셔리-부틸페닐) 포스파이트이며, 이 범위 내에서 표면에 거친 느낌을 구현하면서도 산화방지 효과가 우수한 효과가 있다.
상기 자외선 안정제는 바람직하게는 벤조트리아졸계 자외선 안정제 및 HALS계 자외선 안정제로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 벤조트리아졸계 자외선 안정제와 HALS계 자외선 안정제를 혼합 사용하는 것이다.
상기 자외선 안정제는 바람직하게는 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 벤조트리아졸계 자외선 안정제 0.1 내지 2 중량부 및 HALS계 자외선 안정제 0.1 내지 2 중량부를 포함할 수 있고, 보다 바람직하게는 벤조트리아졸계 자외선 안정제 0.2 내지 1 중량부 및 HALS계 자외선 안정제 0.2 내지 1 중량부를 포함할 수 있으며, 더욱 바람직하게는 벤조트리아졸계 자외선 안정제 0.3 내지 0.8 중량부 및 HALS계 자외선 안정제 0.3 내지 0.8 중량부를 포함할 수 있고, 이 범위 내에서 표면에 거친 느낌을 구현하면서도 내광성이 우수한 효과가 있다.
상기 벤조트리아졸계 자외선 안정제는 일례로 하이드록시벤조트리아졸계 화합물일 수 있고, 바람직하게는 2-(2'-하이드록시페닐)벤조트리아졸계 화합물일 수 있으며, 보다 바람직하게는 2-(2'-하이드록시-5'-메틸페닐)벤조트리아졸, 2-(3',5'-디-tert-부틸-2'-하이드록시페닐)벤조트리아졸, 2-(5'-tert-부틸-2'-하이드록시페닐)벤조트리아졸, 2-(2'-하이드록시-5'-(1,1,3,3-테트라메틸부틸)페닐)벤조트리아졸, 2-(3',5'-디-tert-부틸-2'-하이드록시페닐)-5-클로로벤조트리아졸, 2-(3'-tert-부틸-2'-하이드록시-5'-메틸페닐-5-클로로벤조트리아졸, 2-(3'-sec-부틸-5'-tert-부틸-2'-하이드록시페닐)벤조트리아졸, 2-(2'-하이드록시-4'-옥틸옥시페닐)벤조트리아졸, 2-(3',5'-디-tert-아밀-2'-하이드록시페닐)벤조트리아졸, 2-(3',5'-비스(α,α-디메틸벤질)-2'-하이드록시페닐)벤조트리아졸, 2-(3'-tert-부틸-2'-하이드록시-5'-(2-옥틸옥시-카보닐에틸)페닐)-5-클로로벤조트리아졸, 2-(3'-tert-부틸-5'-[2-(2-에틸헥실옥시)카보닐에틸]-2'-하이드록시페닐)-5-클로로벤조트리아졸, 2-(3'-tert-부틸-2'-하이드록시-5'-(2-메톡시카보닐에틸)페닐)-5-클로로벤조트리아졸, 2-(3'-tert-부틸-2'-하이드록시-5'-(2-메톡시카보닐에틸)페닐)벤조트리아졸, 2-(3'-tert-부틸-2'-하이드록시-5'-(2-옥틸옥시카보닐에틸)페닐)벤조트리아졸, 2-(3'-tert-부틸-5'-[2-(2-에틸헥실옥시)카보닐에틸]-2'-하이드록시페닐)벤조트리아졸, 2-(3'-도데실-2'-하이드록시-5'-메틸페닐)벤조트리아졸, 2-(3'-tert-부틸-2'-하이드록시-5'-(2-이소옥틸옥시카보닐에틸)페닐벤조트리아졸, 2,2'-메틸렌비스[4-(1,1,3,3-테트라메틸부틸)-6-벤조트리아졸-2-일페놀], 및 2-[3'-tert-부틸-5'-(2-메톡시카보닐에틸)-2'-하이드록시페닐]-2H-벤조트리아졸과 폴리에틸렌글리콜의 에스테르 교환 생성물로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 범위 내에서 표면에 거친 느낌을 구현하면서도 내광성이 우수한 효과가 있다.
상기 HALS 계 자외선 안정제는 바람직하게 1,1-비스(2,2,6,6-테트라메틸-4-피페리딜)숙시네이트, 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트, 비스(1,2,2,6,6-펜타메틸-4-피페리딜)세바케이트, 비스(1-옥틸옥시-2,2,6,6-테트라메틸-4-피페리딜)세바케이트, 비스(1,2,2,6,6-펜타메틸-4-피페리딜)-N-부틸-3,5-디-tert-부틸-4-하이드록시벤질말로네이트, 1-(2-하이드록시에틸)-2,2,6,6-테트라메틸-4-하이드록시피페리딘과 숙신산의 축합 생성물, N,N'-비스(2,2,6,6-테트라메틸-4-피페리딜)헥사메틸렌 디아민과 4-tert-옥틸아미노-2,6-디-클로로-1,3,5-트리아진의 선형 또는 고리형 축합 생성물, 트리스(2,2,6,6-테트라메틸-4-피페리딜)니트릴로트리아세테이트, 테트라키스(2,2,6,6-테트라메틸-4-피페리딜)-1,2,3,4-부탄 테트라카복실레이트, 1,1'-(1,2-에탄디일)-비스(3,3,5,5-테트라메틸피페라진온), 4-벤조일-2,2,6,6-테트라메틸피페리딘, 4-스테아릴옥시-2,2,6,6-테트라메틸피페리딘, N,N'-비스(2,2,6,6-테트라메틸-4-피페리딜)헥사메틸렌 디아민과 4-모르포리노-2,6-디클로로-1,3,5-트리아진의 선형 또는 고리형 축합 생성물, 및 7,7,9,9-테트라메틸-2-사이클로운데실-1-옥사-3,8-디아자-4-옥소스피로-[4,5]데칸과 에피클로로하이드린의 반응 생성물로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이드(Bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate), 2-(2H-벤조트리아졸-2-yl)-4-(-(1,1,3,3-테트라메틸뷰틸)페놀(2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) 또는 이들의 혼합일 수 있으며, 이 범위 내에서 표면에 거친 느낌을 구현하면서도 내광성이 우수한 효과가 있다.
본 기재의 열가소성 수지 조성물은 필요에 따라 선택적으로 열안정제, 염료, 안료(단, 무기 안료는 제외됨), 착색제, 이형제, 대전방지제, 항균제, 가공조제, 금속 불활성화제, 난연제, 억연제, 적하방지제, 내마찰제 및 내마모제로 이루어진 군으로부터 선택된 1종 이상을 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 0.01 내지 5 중량부, 0.05 내지 3 중량부, 0.1 내지 2 중량부 또는 0.5 내지 1 중량부로 더 포함할 수 있고, 이 범위 내에서 본 발명에서 목적하는 효과를 저하시키지 않으면서도 해당하는 물성이 잘 구현되는 효과가 있다.
열가소성 수지 조성물
본 기재의 열가소성 수지 조성물은 바람직하게는 배럴 온도 190 ℃ 및 다이 온도 200 ℃ 조건 하에 압출 RPM을 20에서 60까지 변화시킬 때 시트성형용 싱글 스크류 압출기(다이 형태: T-Die)에 걸리는 열가소성 수지 조성물의 압력 기울기가 130 이하, 보다 바람직하게는 100 내지 130, 더욱 바람직하게는 110 내지 130일 수 있고, 이 범위 내에서 전단(shear)에 따른 점도 변화가 작아 가공 안정성이 우수한 이점이 있다.
상기 열가소성 수지 조성물은 바람직하게는 배럴 온도 190 ℃, 다이 온도 200 ℃ 및 압출 RPM 50 조건 하에 1분 30초간 싱글 스크류 T-Die 압출기의 T-다이를 통해 토출되는 열가소성 수지 조성물의 토출량으로 계산되는 토출속도가 18 g/min 이상, 보다 바람직하게는 18 내지 19.5 g/min, 더욱 바람직하게는 18 내지 19.0 g/min일 수 있고, 이 범위 내에서 가공성 및 경제성이 뛰어난 이점이 있다.
상기 열가소성 수지 조성물은 바람직하게는 190 ℃ 조건 및 Shear range 100/s에서의 모세관 점도가 2,500 내지 3,200 Pa·s일 수 있고, 보다 바람직하게는 2,600 내지 3,100 Pa·s, 더욱 바람직하게는 2,700 내지 3,000 Pa·s이며, 이 범위 내에서 가공성 및 경제성이 뛰어난 이점이 있다.
상기 열가소성 수지 조성물은 바람직하게는 온도 조건 190 ℃, Strain 조건 0.1% 및 Frequency 조건 10 rad/s에서의 저장 탄성률(Geometry는 25mm Parallel Plate)이 70,000 내지 150,000 MPa일 수 있고, 보다 바람직하게는 80,000 내지 140,000 MPa, 더욱 바람직하게는 90,000 내지 130,000 MPa이며, 이 범위 내에서 PVC 수지 표면에 대한 점착성이 우수하여 PVC 수지 표면에 ASA 수지가 잘 덮여지며 층 분리가 발생하지 않고, 가공성이 뛰어난 이점이 있다.
상기 열가소성 수지 조성물은 바람직하게는 비대칭도 Rsk(200℃)가 0 내지 0.5일 수 있고, 보다 바람직하게는 0 내지 0.4, 더욱 바람직하게는 0 내지 0.3, 보다 더 바람직하게는 0.05 내지 0.2, 가장 바람직하게는 0.08 내지 0.15이고, 이 범위 내에서 기계적 물성 및 가공성 등이 저하되지 않으면서, 내후성이 우수하고, 특히 제품 표면에 거친 느낌을 구현하여 인위적인 플라스틱 느낌에서 벗어난 고급스러운 외관을 갖는 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 비대칭도 Rsk(220℃)가 0.65 내지 1.35일 수 있고, 보다 바람직하게는 0.7 내지 1.2, 더욱 바람직하게는 0.7 내지 1.3, 보다 더 바람직하게는 0.7 내지 1.0, 가장 바람직하게는 0.74 내지 0.9이고, 이 범위 내에서 기계적 물성 및 가공성 등이 저하되지 않으면서, 내후성이 우수하고, 특히 제품 표면에 거친 느낌을 구현하여 인위적인 플라스틱 느낌에서 벗어난 고급스러운 외관을 갖는 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 유리전이온도 125 ℃ 이상의 열가소성 수지를 포함하지 않을 수 있고, 보다 바람직하게는 알파-메틸스티렌-비닐시안 화합물 공중합체 및 메타크릴레이트-방향족 비닐 화합물-비닐시안 화합물 공중합체로 이루어진 군으로부터 선택된 1종 이상을 포함하지 않을 수 있으며, 더욱 바람직하게는 알파-메틸스티렌-비닐시안 화합물 공중합체 및 메타크릴레이트-방향족 비닐 화합물-비닐시안 화합물 공중합체를 모두 포함하지 않고, 이 경우 200 ℃ 미만에서의 저온 가공성이 저하되지 않는 이점이 있다.
본 기재에서 유리전이온도(Tg)는 본 발명이 속한 기술분야에서 통상적으로 측정하는 방법에 의하여 측정될 수 있고, 구체적인 예로 ASTM D 3418에 의거하여 DSC(Differential Scanning Calorimeter)로 측정될 수 있다.
본 기재에서 소정 열가소성 수지를 포함하지 않는다는 의미는 그 열가소성 수지를 전혀 포함하지 않은 것을 의미할 뿐만 아니라 그 열가소성 수지의 투입 효과가 극히 미미하여 본 발명의 열가소성 수지 조성물의 효과에 전혀 영향을 미치지 않는 정도의 양 이하인 것도 의미하고, 구체적인 예로 3 중량% 미만, 2 중량% 미만, 1 중량% 미만, 0.5 중량% 미만 또는 0.1 중량% 미만일 수 있다. 구체예로서 설명하면, 알파-메틸스티렌-아크릴로니트릴 공중합체와 같은 내열 SAN 수지는 저온에서의 점도가 높을 뿐만 아니라 RPM에 따른 점도 변화가 심해서, 본 발명의 열가소성 수지 조성물에 첨가하면 저온 가공 조건에서의 점도를 증가시켜 저온 가공성이 떨어지고, 가공 윈도우까지 좁아져 가공 안정성이 나빠지므로, 본 발명의 열가소성 수지 조성물에서는 상술한 정의에 따라 배제하는 것이 바람직할 수 있다.
상기 열가소성 수지 조성물은 바람직하게는 데킹(decking) 재료일 수 있고, 이 경우 데킹 재료에 요구되는 물성을 모두 크게 만족시키는 이점이 있다.
상기 열가소성 수지 조성물은 바람직하게는 ASTM D648에 의거하여 18.6kgf 하중 하에서 측정한 내열도가 80 ℃ 이상, 보다 바람직하게는 82 ℃ 이상, 더욱 바람직하게는 84 ℃ 이상일 수 있고, 바람직한 예로는 80 내지 90 ℃, 보다 바람직한 예로는 82 내지 90 ℃일 수 있고, 이 범위 내에서 충분한 내열성이 확보되면서도 200 ℃ 미만에서의 저온 가공성이 우수한 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 글로스 미터 VG7000으로 60°에서 측정한 필름 글로스(film gloss)가 15 이하인 무광 열가소성 수지 조성물일 수 있고, 보다 바람직하게는 상기 필름 글로스가 10 이하, 더욱 바람직하게는 8 이하의 무광 열가소성 수지 조성물일 수 있으며, 이 범위 내에서 무광 특성이 우수하면서도 물성 밸런스가 뛰어난 효과가 있다. 이에 본 기재의 열가소성 수지 조성물은 무광 열가소성 수지 조성물로도 지칭될 수 있다.
본 발명의 열가소성 수지 조성물의 제조방법은 바람직하게는 (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및 (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하고, 배럴 온도 190 ℃ 및 다이 온도 200 ℃ 조건 하에 압출 RPM을 20에서 60까지 변화시킬 때 시트성형용 싱글 스크류 압출기에 걸리는 압력 기울기가 130 이하인 열가소성 수지 조성물을 220 내지 280 ℃ 조건 하에 압출 혼련기를 사용하여 펠렛으로 제조하는 단계를 포함하는 것을 특징으로 하고, 이러한 경우 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비량이 적으며, ASA 수지의 적은 투입량으로도 PVC 수지를 효과적으로 덮을 수 있어 경제성이 뛰어나고, 또한 내열도까지 우수한 열가소성 수지 조성물을 제공하는 이점이 있다.
상기 배럴 온도 190 ℃ 및 다이 온도 200 ℃ 조건은 구체적인 예로 배럴부 온도 50, 190, 190, 190 ℃ 및 다이부 온도 200, 200, 200 ℃ 조건일 수 있다.
상기 열가소성 수지 조성물의 제조방법은 전술한 열가소성 수지 조성물의 모든 기술적인 특징을 공유한다. 따라서 중첩되는 부분에 대한 설명은 생략한다.
상기 압출 혼련기를 사용하여 펠렛을 제조하는 단계는 바람직하게는 220 내지 290 ℃ 하에서, 보다 바람직하게는 250 내지 290 ℃ 하에서, 더욱 바람직하게는 270 내지 290 ℃ 하에서 실시하는 것일 수 있고, 이때 온도는 실리더에 설정된 온도를 의미한다.
상기 압출 혼련기는 본 발명이 속한 기술분야에서 통상적으로 사용되는 압출 혼련기인 경우 특별히 제한되지 않으며, 바람직하게는 2축 압출 혼련기일 수 있다.
<성형품>
본 기재의 성형품은 본 기재의 열가소성 수지 조성물을 포함하는 것을 특징으로 하고, 이 경우 종래의 ASA 수지 대비 200 ℃ 미만의 저온에서 가공성이 뛰어나, PVC 수지와의 공압출 시에도 플로우 마크나 필링 등의 표면 불량이 발생하지 않고 에너지 소비량이 적으며, ASA 수지의 적은 투입량으로도 PVC 수지를 효과적으로 덮을 수 있어 경제성이 뛰어나고, 또한 내열도까지 우수한 이점이 있다.
상기 성형품은 바람직하게는 외장재일 수 있고, 보다 바람직하게는 공압출 압출성형품 또는 사출성형품일 수 있으며, 더욱 바람직하게는 PVC 수지와의 공압출 성형품이고, 구체적인 예로는 사이딩(siding) 재료, 데킹(decking) 재료, 지붕(roofing) 재료, 슬라이딩 도어 재료 또는 창호 재료가 있고, 가장 바람직한 예로는 데킹 재료가 있다.
상기 성형품은 일례로 본 기재의 열가소성 수지 조성물을 성형온도 200 ℃ 미만 하, 바람직하게는 180 ℃ 이상 내지 200 ℃ 미만 하, 보다 바람직하게는 190 내지 199 ℃ 하에 공압출하는 단계를 포함하여 제조될 수 있고, 이 범위 내에서 표면 불량이 발생하지 않고 에너지 소비량이 적어 경제적인 이점이 있다.
상기 성형품은 또 다른 예로 본 기재의 열가소성 수지 조성물을 성형온도 190 내지 250 ℃ 하, 바람직하게는 190 내지 230 ℃ 하, 보다 바람직하게는 190 내지 220 ℃ 하에 압출 또는 사출하는 단계를 포함하여 제조될 수 있다.
본 기재의 열가소성 수지 조성물, 이의 제조방법 및 성형품을 설명함에 있어서, 명시적으로 기재하지 않은 다른 조건이나 장비 등은 당업계에서 통상적으로 실시되는 범위 내에서 적절히 선택할 수 있고, 특별히 제한되지 않음을 명시한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
하기 실시예 1 내지 6 및 비교예 1 내지 5에서 사용된 물질은 다음과 같다.
A-1) 그라프트 공중합체: 아크릴레이트 고무의 평균입경이 130nm인 부틸아크릴레이트-스티렌-아크릴로니트릴 공중합체(부틸아크릴레이트 50 중량%, 스티렌 35 중량% 및 아크릴로니트릴 15 중량%)
A-2) 그라프트 공중합체: 아크릴레이트 고무의 평균입경이 500nm인 부틸아크릴레이트-스티렌-아크릴로니트릴 공중합체(부틸아크릴레이트 50 중량%, 스티렌 35 중량% 및 아크릴로니트릴 15 중량%)
B-1) 벌크중합 방식 SAN 수지(95HCP, LG Chem 제조, 중량 평균 분자량 91,000 g/mol)
B-2) 벌크중합 방식 SAN 수지(92HR, LG Chem 제조, 중량 평균 분자량 130,000 g/mol)
B-3) 벌크중합 방식 SAN 수지(90HR, LG Chem 제조, 중량 평균 분자량 150,000 g/mol)
B-4) 벌크중합 방식 SAN 수지(97HC, LG Chem 제조, 중량 평균 분자량 170,000 g/mol)
B-5) 벌크 중합 방식 내열 SAN 수지(200UH, LG Chem 제조, 중량 평균 분자량 90,000 g/mol)
D) 나일론66
실시예 1 내지 6 및 비교예 1 내지 5
각각 하기 표 1에 기재된 성분 및 함량에 활제로 EBS(선구 제조) 0.5 중량부, 산화방지제로 옥타데실 3-(3,5- 디-t-부틸-4-하이드록시페닐)프로피오네이트(octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate) 0.4 중량부 및 트리스(2,4-디-터셔리-부틸페닐)포스파이트(Tris(2,4-di-tert.-butylphenyl)phosphite)) 0.4 중량부, 자외선 안정제로 벤조트리아졸계 자외선 안정제인 Tinuvin 329(BASF 제조) 0.6 중량부 및 HALS계 자외선 안정제인 Tinuvin770(BASF 제조) 0.6 중량부를 균일하게 혼합한 후, 이를 이축 압출기에서 280 ℃ 하에 혼련 및 압출하여 펠렛을 제조하였다. 또한 제조된 펠렛으로 배럴부 온도 50, 190, 190, 190 ℃ 및 다이부 온도 200, 200, 200 ℃에서 싱글 스크류 T-die 압출기를 이용해 0.15T의 시트를 제조해 광택(gloss) 및 표면 거칠기 값을 측정하였다. 나아가, 상기 제조된 펠렛을 성형온도 220 ℃에서 사출하여 물성 측정용 시편을 제작하였고, 이를 이용하여 인장강도와 충격강도를 측정하였다.
[시험예]
상기 실시예 1 내지 6 및 비교예 1 내지 5에서 제조된 펠렛, 시트 및 시편의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기의 표 1에 나타내었다.
* 내열도(℃): ASTM D648에 의거하여 18.6kgf 하중 하에서 측정하였다.
* 광택(gloss): 글로스 미터(gloss meter) VG7000으로 60°에서 측정하였다.
* 압력 기울기: 배럴부 온도 50, 190, 190, 190 ℃ 및 다이부 온도 200, 200, 200 ℃ 조건 하에 압출 RPM을 20에서 60까지 변화시킬 때 시트성형용 싱글 스크류 압출기(Collin사 제조, E20T 제품)에 걸리는 열가소성 수지 조성물의 압력으로 측정하였다. 압력 기울기는 먼저 RPM을 60까지 올린 후, 압출기의 내부 어댑터(Adaptor) 온도가 안정화될 때까지 수지를 흘려주면서 대기한 후, 온도가 안정화되면 압출기에 표시되는 압력을 기록한다. 온도는 수지의 점도에 영향을 주므로, 반드시 온도가 일정해지는 것을 확인한 후 데이터를 취하여야 한다. 동일한 방식으로 RPM을 20까지 순차적으로 줄여가며 압력을 기록하였다. 얻어진 RPM에 대한 압력변화를 그래프에 로그 추세선을 그어 얻어지는 기울기를 압력 기울기 값으로 활용하였다.
* 토출속도: 배럴부 온도 50, 190, 190, 190 ℃, 다이부 온도 200, 200, 200 ℃ 및 압출 RPM 50 조건 하에 1분 30초간 T-다이를 통해 토출되는 열가소성 수지 조성물의 토출량으로 계산하였다.
* 모세관 점도(Pa·s): Capillary Rheometer(GOETTFERT사, RG-75)가 사용되었으며, 분석은 190 ℃ 조건에서 Shear range 10/s 내지 2000/s 범위에서 Flow viscosity를 측정하였다. 이때 분석결과는 Shear range 100/s에서의 데이터를 사용하였고, 시료는 분석 전 80 ℃ 오븐에서 3시간 이상 건조하여 수분에 의한 점도 영향을 제거하였다.
* 저장 탄성률(MPa): Strain Controlled Type Rheometer(TA Instrument사, ARES-G2)가 사용되었으며, 측정온도 190 ℃ 조건에서 측정을 위해 사용된 Geometry는 25mm Parallel Plate이었다. 여기에서 Strain 조건은 0.1%이며, Frequency 0.1 내지 500 rad/s의 범위에서 측정을 진행하였다. 이때 분석결과는 10 rad/s의 저장 탄성률 데이터를 사용하였다.
* 비대칭도 Rsk: 하기 도 1을 참조하면, 사용 장비로는 Optical profiler system(Nano View NV-2700, 제조사: ㈜나노 시스템)가 사용되었으며, 분석 조건은 WSI Envelope 모드에서 Objective 렌즈 20배×접안렌즈 1배의 렌즈를 사용하여, ±40 ㎛ 범위에 대한 스캐닝을 진행하였다. 측정은 시료를 평평하게 Stage에 고정한 후 5포인트에 대한 측정을 진행하였다. 측정된 수치에 대하여 상측 그림에 표시된 평균 제곱근 편차(Rq)를 구하는 식과 하측 그림에 표시된 비대칭도 Rsk를 구하는 식을 이용하여 5point에 대한 평균치를 계산하였다.
여기에서 비대칭도(Rsk, 200℃)은 제조된 펠렛을 배럴부 온도 50, 190, 190, 190 ℃ 및 다이부 온도 200, 200, 200 ℃에서 15 파이 필름 압출기를 통해 두께 0.15T로 균일하게 압출한 후 상기 제시된 방법으로 Rsk를 측정한 값이고, 비대칭도(Rsk, 220℃)은 제조된 펠렛을 배럴부 온도 50, 200, 210, 210 ℃ 및 다이부 온도 220, 220, 230 ℃에서 15 파이 필름 압출기를 통해 두께 0.15T로 균일하게 압출한 후 상기 제시된 방법으로 Rsk를 측정한 값이다.
(중량부) 실시예 비교예
1 2 3 4 5 6 1 2 3 4 5
A-1 13 13 13 13 15 17 25 13 13 13 13
A-2 23 23 23 23 19 17 15 25 23 23 23
B-1 15 25 58
B-2 20 58
B-3 20 30 20 41 58
B-4 38 43 33 28 40 40
B-5 54 15
D 6 6 6 6 6 6 6 6 6 6 6
TiO2 안료 0.6 0.6 0.6 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6
RPM 60 326 288 295 292 291 281 370 311 275 282 296
50 310 271 277 273 275 264 346 290 255 266 276
40 289 249 252 248 252 242 310 259 228 242 252
30 248 213 217 209 218 210 264 215 202 210 220
20 189 157 166 157 163 160 193 154 171 167 170
기울기 126.16 119.76 118.2 124.13 117.09 110.33 162.07 144.55 94.92 105.95 114.27
토출속도(g/min) 18.1 18.5 18.3 18.4 18.7 18.9 15.9 17.4 19.3 18.7 18.3
모세관점도(Pa·s) 2837 2766 2799 2778 2613 2793 3338 2988 2587 2714 2799
저장탄성률(MPa) 125070 107017 113842 116711 107503 94342 131601 111484 74351 89648 100207
HDT(℃) 84.2 84.6 82.3 82.7 84.9 84.2 89.7 92.9 72.2 75.4 77.3
비대칭도(Rsk, 200℃) 0.12 0.11 0.08 0.14 0.15 0.12 0.34 0.28 0.14 0.13 0.09
비대칭도(Rsk, 220℃) 0.79 0.9 0.88 0.84 0.74 0.78 0.91 0.95 0.81 0.88 0.85
광택(60°) 8.2 7.8 8 8.2 9.3 8.7 6.5 6.8 7.9 8.1 8.3
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 열가소성 수지 조성물(실시예 1 내지 6 참조)은 일부 구성을 달리하는 비교예 1 내지 5 대비 배럴 온도 200 ℃ 미만의 저온에서도 가공성이 뛰어나 플로우 마크나 필링 등의 표면 불량이 발생하지 않고, 에너지 소비량이 적고, 압출 RPM 변화에도 점도 변화가 적어 가공 안정성이 우수하며 나아가 내열도까지도 우수함을 확인할 수 있었다.보다 상세히 살펴보면, 본 발명에 따른 SAN 수지 대신 내열 SAN 수지를 사용한 비교예 1 내지 2는 토출속도 등이 열악하여 가공성 및 경제성 등이 떨어지며, 저 분자량 SAN 수지만 종류를 달리하여 사용한 비교예 3 내지 5는 내열도(HDT) 등이 열악함을 확인할 수 있었다.

Claims (17)

  1. (A) 평균입경이 50 내지 150 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-1) 및 평균입경이 300 내지 600 nm인 아크릴레이트 고무를 포함하는 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체(A-2)를 포함하는 그라프트 공중합체 10 내지 70 중량%; 및
    (B) 중량 평균 분자량이 160,000 내지 200,000 g/mol인 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-1) 및 중량 평균 분자량이 80,000 g/mol 이상 내지 160,000 g/mol 미만의 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)를 포함하는 비그라프트 공중합체 30 내지 90 중량%를 포함하고,
    배럴 온도 190 ℃ 및 다이 온도 200 ℃ 조건 하에 압출 RPM을 20에서 60까지 변화시킬 때 시트성형용 싱글 스크류 압출기에 걸리는 열가소성 수지 조성물의 압력 기울기가 130 이하인 것을 특징으로 하는
    열가소성 수지 조성물.
  2. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 배럴 온도 190 ℃, 다이 온도 200 ℃ 및 압출 RPM 50 조건 하에 1분 30초간 T-다이를 통해 토출되는 열가소성 수지 조성물의 토출량으로 계산되는 토출속도가 18 g/min 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  3. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 폴리아마이드 수지 0.1 내지 10 중량부를 포함하는 것을 특징으로 하는
    열가소성 수지 조성물.
  4. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 (A) 아크릴레이트-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (B) 비그라프트 공중합체를 합한 총 100 중량부를 기준으로 무기 안료 0.1 내지 5 중량부를 포함하는 것을 특징으로 하는
    열가소성 수지 조성물.
  5. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 유리전이온도 125 ℃ 이상의 열가소성 수지를 포함하지 않는 것을 특징으로 하는
    열가소성 수지 조성물.
  6. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 데킹(decking) 재료인 것을 특징으로 하는
    열가소성 수지 조성물.
  7. 제 1항에 있어서,
    상기 (A-1) 그라프트 공중합체 및 상기 (A-2) 그라프트 공중합체의 중량비는 1:1.2 내지 1:2.5인 것을 특징으로 하는
    열가소성 수지 조성물.
  8. 제 1항에 있어서,
    상기 (A-1) 그라프트 공중합체는 아크릴레이트계 고무 40 내지 60 중량%, 방향족 비닐 화합물 20 내지 40 중량% 및 비닐시안 화합물 10 내지 20 중량%를 포함하여 이루어지는 것을 특징으로 하는
    열가소성 수지 조성물.
  9. 제 1항에 있어서,
    상기 (A-2) 그라프트 공중합체는 아크릴레이트계 고무 40 내지 60 중량%, 방향족 비닐 화합물 25 내지 45 중량% 및 비닐시안 화합물 10 내지 20 중량%를 포함하여 이루어지는 것을 특징으로 하는
    열가소성 수지 조성물.
  10. 제 1항에 있어서,
    상기 (B-1) 고 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체 및 상기 (B-2) 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체는 각각 방향족 비닐 화합물 65 내지 80 중량% 및 비닐시안 화합물 20 내지 35 중량%를 포함하여 이루어지는 것을 특징으로 하는
    열가소성 수지 조성물.
  11. 제 1항에 있어서,
    상기 저 분자량 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2)는 중량 평균 분자량이 80,000 내지 110,000 g/mol인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2a), 중량 평균 분자량이 110,000 g/mol 초과 내지 110,000 g/mol 이하인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2b), 및 중량 평균 분자량이 110,000 g/mol 초과 내지 160,000 g/mol 미만인 방향족 비닐 화합물-비닐시안 화합물 공중합체(B-2c)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  12. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 ASTM D648에 의거하여 18.6kgf 하중 하에서 측정한 내열도가 80 ℃ 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  13. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 190 ℃ 조건 및 Shear range 100/s에서의 모세관 점도가 2,500 내지 3,200 Pa·s인 것을 특징으로 하는
    열가소성 수지 조성물.
  14. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 온도 조건 190 ℃, Strain 조건 0.1% 및 Frequency 조건 10 rad/s에서의 저장 탄성률(Geometry는 25mm Parallel Plate)이 70,000 내지 150,000 MPa인 것을 특징으로 하는
    열가소성 수지 조성물.
  15. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 비대칭도 Rsk(200℃)가 0 내지 0.5이고, 비대칭도 Rsk(220℃)가 0.65 내지 1.35인 것을 특징으로 하는
    열가소성 수지 조성물.
  16. 제 1항에 있어서,
    상기 열가소성 수지 조성물은 필름 글로스(film gloss)가 60 °에서 측정한 값이 15 이하인 무광 열가소성 수지 조성물인 것을 특징으로 하는
    열가소성 수지 조성물.
  17. 제1항 내지 제16항 중 어느 한 항의 열가소성 수지 조성물을 포함하는 것을 특징으로 하는
    성형품.
PCT/KR2021/006523 2020-09-22 2021-05-26 열가소성 수지 조성물 및 이의 성형품 WO2022065625A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/760,994 US20220363888A1 (en) 2020-09-22 2021-05-26 Thermoplastic resin composition and molded article including the same
CN202180005522.9A CN114555695B (zh) 2020-09-22 2021-05-26 热塑性树脂组合物及包含其的成型品
JP2022518306A JP7391197B2 (ja) 2020-09-22 2021-05-26 熱可塑性樹脂組成物及びその成形品
EP21863089.5A EP4011966A4 (en) 2020-09-22 2021-05-26 THERMOPLASTIC RESIN COMPOSITION AND MOLDED ARTICLES THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0122542 2020-09-22
KR20200122542 2020-09-22
KR1020210064033A KR20220039543A (ko) 2020-09-22 2021-05-18 열가소성 수지 조성물 및 이의 성형품
KR10-2021-0064033 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022065625A1 true WO2022065625A1 (ko) 2022-03-31

Family

ID=80844623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006523 WO2022065625A1 (ko) 2020-09-22 2021-05-26 열가소성 수지 조성물 및 이의 성형품

Country Status (6)

Country Link
US (1) US20220363888A1 (ko)
EP (1) EP4011966A4 (ko)
JP (1) JP7391197B2 (ko)
CN (1) CN114555695B (ko)
TW (1) TW202225314A (ko)
WO (1) WO2022065625A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123782A (ko) * 2021-03-02 2022-09-13 주식회사 엘지화학 열가소성 수지 조성물 및 이의 외장재

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130075812A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 고온 내열변색 특성이 우수한 asa 수지 조성물
KR20150047991A (ko) * 2013-10-25 2015-05-06 제일모직주식회사 착색성 및 기계적 물성이 우수한 열가소성 수지 조성물
KR20150050372A (ko) * 2013-10-30 2015-05-08 제일모직주식회사 내후성이 향상된 열가소성 수지 조성물
KR101534962B1 (ko) * 2013-12-16 2015-07-07 금호석유화학 주식회사 내후성이 우수한 저광택 열가소성 수지 조성물, 이를 이용한 저광택 시트 및 복합물
KR20160057601A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 열가소성 수지 조성물
KR20200122542A (ko) 2019-04-18 2020-10-28 현대모비스 주식회사 라이다 센서 스캔 정밀화 장치 및 방법
KR20210064033A (ko) 2019-11-25 2021-06-02 경희대학교 산학협력단 공존 에지 컴퓨팅에서 분산 게임 이론을 기반으로 무선 및 컴퓨팅 리소스를 관리하는 장치 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732211B2 (en) * 2013-10-30 2017-08-15 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having improved weather resistance
KR102080102B1 (ko) * 2016-11-04 2020-04-24 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020091370A1 (ko) * 2018-10-31 2020-05-07 주식회사 엘지화학 열가소성 수지 조성물
KR102298295B1 (ko) * 2018-10-31 2021-09-07 주식회사 엘지화학 열가소성 수지 조성물
KR102489251B1 (ko) * 2019-01-16 2023-01-17 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20220012638A (ko) * 2020-07-23 2022-02-04 주식회사 엘지화학 열가소성 수지 조성물 및 이의 성형품

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130075812A (ko) * 2011-12-28 2013-07-08 제일모직주식회사 고온 내열변색 특성이 우수한 asa 수지 조성물
KR20150047991A (ko) * 2013-10-25 2015-05-06 제일모직주식회사 착색성 및 기계적 물성이 우수한 열가소성 수지 조성물
KR20150050372A (ko) * 2013-10-30 2015-05-08 제일모직주식회사 내후성이 향상된 열가소성 수지 조성물
KR101534962B1 (ko) * 2013-12-16 2015-07-07 금호석유화학 주식회사 내후성이 우수한 저광택 열가소성 수지 조성물, 이를 이용한 저광택 시트 및 복합물
KR20160057601A (ko) * 2014-11-14 2016-05-24 주식회사 엘지화학 열가소성 수지 조성물
KR20200122542A (ko) 2019-04-18 2020-10-28 현대모비스 주식회사 라이다 센서 스캔 정밀화 장치 및 방법
KR20210064033A (ko) 2019-11-25 2021-06-02 경희대학교 산학협력단 공존 에지 컴퓨팅에서 분산 게임 이론을 기반으로 무선 및 컴퓨팅 리소스를 관리하는 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4011966A4

Also Published As

Publication number Publication date
CN114555695B (zh) 2024-04-19
TW202225314A (zh) 2022-07-01
EP4011966A1 (en) 2022-06-15
CN114555695A (zh) 2022-05-27
JP7391197B2 (ja) 2023-12-04
EP4011966A4 (en) 2022-11-09
JP2022554059A (ja) 2022-12-28
US20220363888A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2015064928A1 (ko) 고경도 다층시트
WO2022065625A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2022186484A1 (ko) 열가소성 수지 조성물 및 이의 외장재
WO2013077612A1 (ko) 투명성 및 내충격성이 우수한 아크릴 수지 필름 및 그 제조 방법
WO2022019411A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2019117587A1 (ko) 내열 수지 조성물 및 이를 이용한 자동차용 스포일러
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022158709A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022019410A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2021080215A1 (ko) 열가소성 수지 조성물
WO2017111337A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2022019407A1 (ko) 열가소성 수지 조성물 및 이의 외장재
WO2022019431A1 (ko) 열가소성 수지 조성물 및 이의 외장재
WO2024085360A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2022158719A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022080631A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20220039543A (ko) 열가소성 수지 조성물 및 이의 성형품
WO2022019408A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022158708A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022059896A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021863089

Country of ref document: EP

Effective date: 20220311

ENP Entry into the national phase

Ref document number: 2022518306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE