WO2019117587A1 - 내열 수지 조성물 및 이를 이용한 자동차용 스포일러 - Google Patents

내열 수지 조성물 및 이를 이용한 자동차용 스포일러 Download PDF

Info

Publication number
WO2019117587A1
WO2019117587A1 PCT/KR2018/015678 KR2018015678W WO2019117587A1 WO 2019117587 A1 WO2019117587 A1 WO 2019117587A1 KR 2018015678 W KR2018015678 W KR 2018015678W WO 2019117587 A1 WO2019117587 A1 WO 2019117587A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
weight
derived unit
heat
monomer
Prior art date
Application number
PCT/KR2018/015678
Other languages
English (en)
French (fr)
Inventor
류승철
정대산
김성룡
남진오
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020526597A priority Critical patent/JP7460153B2/ja
Priority to EP18887783.1A priority patent/EP3696230B1/en
Priority to US16/764,310 priority patent/US11214673B2/en
Priority to CN201880073624.2A priority patent/CN111356741B/zh
Publication of WO2019117587A1 publication Critical patent/WO2019117587A1/ko
Priority to JP2022070866A priority patent/JP7463010B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/043Superstructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/02Stabilising vehicle bodies without controlling suspension arrangements by aerodynamic means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/16Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components the sub-units or components being exterior fittings, e.g. bumpers, lights, wipers, exhausts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/24Polymer with special particle form or size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a heat-resistant resin composition and an automobile spoiler using the same, and more particularly, to a heat-resistant resin composition including a branched copolymer and an automobile spoiler using the same.
  • the spoiler Since the spoiler is very large and used for automobiles, it is generally produced by a blow molding process using a heat-resistant resin composition containing an ABS copolymer.
  • a method of manufacturing an automobile spoiler includes melting a pellet-shaped heat-resistant resin composition produced by an extrusion process; Applying a hydraulic pressure to the molten heat-resistant resin composition to produce a parison; Blow molding a parison in a mold to produce a molded article; Trimming the molded article; Sanding the trimmed article; And painting the polished molded article to produce a spoiler.
  • the car spoiler is so heavy that the weight of the parison hand is very heavy, from 3 to 8 kg, when manufacturing the parison for blow molding. Therefore, when the weight average molecular weight of the constituent elements of the heat-resistant resin composition is low, the melt strength is low, so that the parison hits the parison due to its own weight during parison production. If a copolymer having a large weight average molecular weight is included in the heat resistant resin composition in order to improve this, the sagging phenomenon of the parison is reduced, but excessive pressure is required to produce the parison because the melt viscosity is high. However, due to excessive pressure, melt fracture phenomenon occurs, resulting in a defect in which the surface of the product is crushed. The defective surface of the parison is caused to the surface of the blow molded spoiler.
  • the molten heat-resistant resin composition has high fluidity when passing through a die located at the lower end of the accumulator, that is, It is advantageous to have a melt index and it is advantageous to have a low fluidity, that is to say a flow index for the elongation mode at low shear rates, in order to prevent deflection by the parison's own weight after passing through the die.
  • melt fracture and melt tension have a trade-off relationship
  • the process window is very narrow and it is very difficult to manufacture a spoiler of good quality.
  • An object of the present invention is to provide a heat-resistant resin composition which does not cause surface defects and flip-flop defects during blow molding.
  • the present invention relates to a first copolymer comprising a conjugated diene polymer, an aromatic vinyl monomer-derived unit and a vinyl cyan monomer-derived unit; A second copolymer containing an aromatic vinyl monomer-derived unit and a vinylcyanide monomer-derived unit and having a glass transition temperature of 115 ° C or higher; And a third copolymer comprising an aromatic vinyl-based monomer-derived unit and a vinylcyanide monomer-derived unit, wherein the second copolymer is linear, the third copolymer is branched, and the branching is 2 to 8 A heat-resistant resin composition is provided.
  • the heat-resistant resin composition of the present invention can be more suitable as a material for an automobile spoiler since it does not cause surface defects and fly-hand sagging due to melt fracture during blow molding.
  • Fig. 1 is a graph showing the measurement of flue gas viscosity according to the angular frequency.
  • FIG. 2 is a graph showing the elongation viscosities of parisons according to time.
  • fractionation absolute molecular weight and polydispersity index were measured and calculated using a Malvern Viscotek TDA 305 instrument.
  • the Malvern Viscotek Triple / trtra detector array is a device that simultaneously has a Refractive Index detector, a Light scattering detector and an Intrinsic viscosity dectector. It has a column: PL olexis x2 + C (THF: tetrahydrofuran), a flow rate of 1.0 mL / min, a temperature of 40 DEG C, and an injection amount of 100 mu g.
  • TDA Malvern Viscotek Triple / trtra detector array
  • the weight average molecular weight can be measured relative to a standard polystyrene (PS) sample through gel permeation chromatography (waters breeze) using THF (tetrahydrofuran) as an eluent.
  • PS polystyrene
  • THF tetrahydrofuran
  • the graft ratio is determined by adding a predetermined amount of the graft copolymer as the first copolymer to a solvent, dissolving the mixture using a vibrator, centrifuging the mixture by a centrifuge, and drying to obtain insoluble matter, .
  • a predetermined amount of the graft copolymer as the first copolymer was charged into acetone, and the resulting graft copolymer was dissolved by a vibrator (trade name: SI-600R, manufactured by Lab. Companion) for 24 hours to dissolve the copolymer. Centrifuged at 14,000 rpm for 1 hour, and dried in a vacuum drier (trade name: DRV320DB, manufacturer: ADVANTEC) at 140 DEG C for 2 hours to obtain an insoluble matter, which can be calculated using the following equation.
  • Weight of the conjugated diene polymer (rubber) added weight of the graft copolymer in which the latex was dried x fraction of conjugated diene polymer (rubber)
  • the weight average molecular weight of the cell of the first copolymer may mean the weight average molecular weight of a copolymer comprising an aromatic vinyl monomer-derived unit grafted to the conjugated diene polymer and a vinyl cyan monomer-derived unit.
  • the weight average molecular weight of the shell of the first copolymer is determined by dissolving the insoluble matter obtained in the grafting rate measurement method in a tetrahydrofuran (THF) solution at a concentration of 1% by weight, filtering through a 1 ⁇ filter, And can be measured relative to standard PS (standard polystyrene) samples through transmission chromatography.
  • THF tetrahydrofuran
  • the average particle size of the conjugated diene polymer is measured by Dynamic Light Scattering (DLS) using a Nicomp 380 particle size analyzer in the particle size distribution curve of the particles, and the particle diameter corresponding to 50% .
  • DLS Dynamic Light Scattering
  • a heat-resistant resin composition comprises: 1) a first copolymer comprising a conjugated diene polymer, an aromatic vinyl monomer-derived unit, and a vinyl cyan monomer-derived unit; 2) a second copolymer comprising an aromatic vinyl-based monomer-derived unit and a vinylcyanide monomer-derived unit and having a glass transition temperature of 115 ° C or higher; And 3) a third copolymer comprising an aromatic vinyl-based monomer-derived unit and a vinylcyanide monomer-derived unit, wherein the second copolymer is linear, the third copolymer is branched, 8.
  • the heat-resistant resin composition according to another embodiment of the present invention further comprises 4) a fourth copolymer comprising an aromatic vinyl-based monomer-derived unit and a vinylcyanide-based monomer-derived unit and having a glass transition temperature of 106 ° C or less .
  • the first copolymer is a graft copolymer, and includes a conjugated diene-based polymer, an aromatic vinyl-based monomer-derived unit, and a vinylcyanide monomer-derived unit.
  • the first copolymer can impart an excellent impact strength to the heat-resistant resin composition.
  • the conjugated diene polymer may include a conjugated diene polymer modified by graft polymerizing an aromatic vinyl monomer and a vinyl cyan monomer to a conjugated diene polymer produced by polymerization of a conjugated diene monomer.
  • the conjugated diene-based monomer may be at least one member selected from the group consisting of 1,3-butadiene, isoprene, chloroprene and piperylene, and 1,3-butadiene may be preferred.
  • the average particle diameter of the conjugated diene-based polymer may be 0.1 to 0.5 mu m, 0.2 to 0.4 mu m, or 0.25 to 0.35 mu m, and preferably 0.25 to 0.35 mu m.
  • the impact strength of the first copolymer can be further improved.
  • the conjugated diene polymer may be contained in an amount of 40 to 75% by weight, 45 to 70% by weight, or 50 to 65% by weight based on the total weight of the first copolymer, and 50 to 65% .
  • the chemical resistance, stiffness, impact resistance, workability and surface gloss of the first copolymer can be further improved.
  • the aromatic vinyl-based monomer-derived unit may be at least one derived unit selected from the group consisting of styrene,? -Methylstyrene,? -Ethylstyrene and p-methylstyrene, and styrene-derived units are preferred.
  • the aromatic vinyl monomer-derived unit may be contained in an amount of 18 to 43% by weight, 22 to 40% by weight or 25 to 36% by weight based on the total weight of the first copolymer, and 25 to 36% .
  • the chemical resistance, stiffness, impact resistance, workability and surface gloss of the heat-resistant resin composition can be further improved.
  • the unit derived from the vinyl cyan monomer may be at least one derived unit selected from the group consisting of acrylonitrile, methacrylonitrile, phenyl acrylonitrile and? -Chloroacrylonitrile, and the unit derived from acrylonitrile .
  • the unit derived from the vinyl cyan monomer may be contained in an amount of 7 to 17 wt%, 8 to 15 wt%, or 10 to 14 wt% based on the total weight of the first copolymer, and 10 to 14 wt% .
  • the chemical resistance, stiffness, impact resistance, workability and surface gloss of the heat-resistant resin composition can be further improved.
  • the first copolymer may have a graft rate of 30 to 60%, 35 to 55%, or 40 to 50%, preferably 40 to 50%. When the above-mentioned range is satisfied, the thermal stability and the impact strength of the third copolymer can be balanced.
  • the first copolymer may have a weight average molecular weight of 50,000 to 200,000 g / mol, 70,000 to 150,000 g / mol, 80,000 to 120,000 g / mol or 90,000 to 110,000 g / mol, mol.
  • the first copolymer may be prepared by one or more methods selected from the group consisting of suspension polymerization, emulsion polymerization and bulk polymerization, and it is preferable that the first copolymer is produced by emulsion polymerization.
  • the impact strength of the heat-resistant resin composition can be further improved.
  • the second copolymer is a linear copolymer containing an aromatic vinyl monomer-derived unit and a vinylcyanide monomer-derived unit and having a glass transition temperature of 115 ° C or higher.
  • the second copolymer can impart heat resistance to the heat resistant resin composition and can minimize the phenomenon of sagging of the parison and the melting and breaking phenomenon of the parison during blow molding for manufacturing an automobile spoiler.
  • the second copolymer may have a glass transition temperature of 115 ⁇ to 150 ⁇ , or 120 ⁇ to 130 ⁇ .
  • the heat resistance of the heat-resistant resin composition can be further improved, and the composition can be melt-mixed and extruded easily during extrusion. If the glass transition temperature of the second copolymer is less than 115 ⁇ , the heat resistance of the heat-resistant resin composition deteriorates.
  • the aromatic vinyl-based monomer-derived unit may be an alkylstyrene-based monomer-derived unit, and the alkylstyrene-based monomer-derived unit may be at least one selected from the group consisting of? -Methylstyrene,? -Ethylstyrene, Unit, and the unit derived from? -Methylstyrene is preferable.
  • the unit derived from the vinyl cyan monomer may be one or more derived units selected from the group consisting of acrylonitrile, methacrylonitrile, phenyl acrylonitrile and? -Chloroacrylonitrile, and the acrylonitrile-derived unit .
  • the second copolymer may contain the aromatic vinyl-based monomer unit and the vinylcyanide monomer-derived unit in a weight ratio of 60:40 to 90:10, 65:35 to 85:15, or 70:30 to 80:20 Among them, it is preferable to include them in a weight ratio of 70:30 to 80:20.
  • the heat resistance can be further improved, and melt breakage of the parison can be prevented during blow molding.
  • the second copolymer may have a weight average molecular weight of 80,000 to 150,000 g / mol, 85,000 to 130,000 g / mol, or 90,000 to 110,000 g / mol, 90,000 to 110,000 g / mol being preferred.
  • the heat resistance can be further improved, and melt breakage of the parison can be prevented during blow molding.
  • the second copolymer may be a linear? -Methylstyrene / acrylonitrile copolymer.
  • the second copolymer may be prepared by at least one method selected from the group consisting of suspension polymerization, emulsion polymerization and bulk polymerization, and it is preferable that the second copolymer is produced by bulk polymerization or emulsion polymerization.
  • the second copolymer may be contained in an amount of 30 to 75 parts by weight, 35 to 70% by weight or 40 to 65% by weight based on the total weight of the heat-resistant resin composition, and preferably 40 to 65% by weight thereof .
  • the heat resistance can be further improved, and melt breakage of the parison can be prevented during blow molding.
  • the third copolymer is a branched copolymer including an aromatic vinyl-based monomer-derived unit and a vinylcyanide monomer-derived unit, and has a branching number of 2 to 8.
  • the third copolymer may have a high thinning property having a high viscosity at a low shear rate and a low viscosity at a high shear rate. Due to such high sounding characteristics, it is possible to minimize the surface defect rate of the parison due to the melt breakage phenomenon of the parison during blow molding, and to prevent the parison of the parison due to the lowering of the melt tension of the parison.
  • the parison when the automobile spoiler is manufactured by using the heat-resistant resin composition including the third copolymer, when the parison is released from the die at the lower end of the accumulator by pressing it in the accumulator of the blow molding machine, .
  • the parison passing through the die may continue the strain hardening for a relatively long time, the deterioration of the melt tension may be minimized. As a result, the parison passing through the die is supplied to the mold, and the parison of the parison may not occur until the mold is closed.
  • the third copolymer has a branching number of 2 to 8 and a branch number of 5 to 7.
  • the high discoloration characteristic having a high viscosity at a low shear rate and a low viscosity at a high shear rate is further strengthened, thereby minimizing the melt breaking phenomenon of the parison at the time of manufacturing an automobile spoiler, It is possible to minimize the surface defect rate of the hand and to prevent the parison hand sagging phenomenon due to the lowering of the melt tension of the paris hand.
  • the viscosity is low at a low shear rate and high at a high shear rate, so that it is not suitable for blow molding for manufacturing an automobile spoiler. If it is less than the above-mentioned range, a sagging phenomenon of the parison occurs.
  • the aromatic vinyl-based monomer-derived unit may be at least one derived unit selected from the group consisting of styrene,? -Methylstyrene,? -Ethylstyrene and p-methylstyrene, and styrene-derived units are preferred.
  • the unit derived from the vinyl cyan monomer may be one or more derived units selected from the group consisting of acrylonitrile, methacrylonitrile, phenyl acrylonitrile and? -Chloroacrylonitrile, and the acrylonitrile-derived unit .
  • the third copolymer may contain the aromatic vinyl-based monomer unit and the vinylcyanide monomer-derived unit in a weight ratio of 60:40 to 90:10, 65:35 to 85:15, or 72:28 to 77:20 And it is preferably contained in a weight ratio of 72:28 to 77:20.
  • the third copolymer may have an absolute molecular weight of 500,000 to 700,000 g / mol, 550,000 to 650,000 g / mol or 600,000 to 650,000 g / mol, and preferably 600,000 to 650,000 g / mol.
  • the third copolymer may have a polydispersity index of 3.0 to 5.0 or 3.5 to 4.5, and preferably 3.5 to 4.5. When the above range is satisfied, the third copolymer can realize more uniform physical properties, so that the heat-resistant resin composition containing the third copolymer can realize more uniform physical properties.
  • the third copolymer may be prepared by one or more methods selected from the group consisting of suspension polymerization, emulsion polymerization and bulk polymerization, and it is preferable that the third copolymer is produced by suspension polymerization.
  • the third copolymer is preferably contained in an amount of 2 to 20% by weight or 3 to 18% by weight based on the total weight of the heat-resistant resin composition, and 3 to 18% by weight thereof.
  • the melt tension can be increased during blow molding, thereby preventing flapping of the parison.
  • the fourth copolymer contains an aromatic vinyl-based monomer-derived unit and a vinylcyanide monomer-derived unit, and has a glass transition temperature of 106 ° C or less and is linear.
  • the glass transition temperature of the fourth copolymer may vary depending on the content of the vinyl cyan monomer-derived units or the weight average molecular weight.
  • the fourth copolymer may be included to balance the physical properties of the heat-resistant resin composition, that is, to balance the mechanical properties, fluidity and heat resistance.
  • the fourth copolymer may have a glass transition temperature of 102 to 106 ° C or 103 to 106 ° C, and preferably 103 to 106 ° C.
  • the physical properties of the heat-resistant resin composition can be balanced rather than imparting heat resistance to the heat-resistant resin composition.
  • the fourth copolymer may contain the aromatic vinyl-based monomer unit and the vinylcyanide monomer-derived unit in a weight ratio of 50:50 to 90:10, 60:40 to 85:15, or 66:34 to 80:20 , And it is preferable that the ratio is 66:34 to 80:20. When the above-mentioned range is satisfied, the fourth copolymer can better balance the physical properties of the heat-resistant resin composition.
  • the fourth copolymer preferably has a weight average molecular weight of 80,000 to 250,000 g / mol, 110,000 to 210,000 g / mol or 140,000 to 170,000 g / mol, and preferably 140,000 to 170,000 g / mol. When the above-mentioned range is satisfied, the fourth copolymer can better balance the physical properties of the heat-resistant resin composition.
  • the fourth copolymer may be produced by one or more methods selected from the group consisting of suspension polymerization, emulsion polymerization and bulk polymerization, and it is preferable that the fourth copolymer is produced by bulk polymerization.
  • the fourth copolymer may be contained in an amount of 30% by weight or less, preferably 2 to 27% by weight based on the total weight of the heat-resistant resin composition. When the above-mentioned range is satisfied, the balance of the physical properties of the heat-resistant resin composition can be better achieved.
  • the heat-resistant resin composition according to an embodiment of the present invention may further include additives such as a lubricant and an antioxidant.
  • An automobile spoiler according to an embodiment of the present invention can be manufactured using the heat-resistant resin composition of the present invention.
  • the automobile spoiler may include a step of melting a pellet-shaped heat-resistant resin composition produced by an extrusion process; Applying a hydraulic pressure to the molten heat-resistant resin composition to produce a parison; Blow molding a parison in a mold to produce a molded article; Trimming the molded article; Sanding the trimmed article; And painting the polished molded article to produce a spoiler.
  • melt tension may be lowered, and the resulting flap phenomenon may not occur.
  • Acrylonitrile-derived unit 30% by weight, alpha -methylstyrene-derived unit: 70% by weight, glass transition temperature: 123 DEG C, trade name: 99 UH manufactured by LG Chemical, weight average molecular weight: 100,000 g /
  • Polydispersity Index 4.2, absolute molecular weight: 630,000 g / mol, acrylonitrile-derived unit: 25% by weight, styrene-derived unit: 75% by weight, trade name: Fine-Blend,
  • Acrylonitrile-derived unit 25% by weight, styrene-derived unit: 75% by weight, glass transition temperature: 105 ⁇ ⁇ , weight average molecular weight: 153,000 g / mol, polydispersity index:
  • Weight-average molecular weight 630,000 g / mol, acrylonitrile-derived unit: 28% by weight, styrene-derived unit: 72% by weight %
  • Heat-resistant resin compositions of Examples 1 to 4 and Comparative Examples 1 to 4 were injected to prepare specimens. Properties were evaluated by the following methods, and the results are shown in Table 2.
  • Izod impact strength (kg ⁇ cm / cm): A notch was measured on a 3.2 mm thick specimen according to ASTM D 256.
  • Example 1 Comparing the specimens of Example 1 and Comparative Example 3, it was confirmed that when the branched SAN copolymer is included, the impact strength is somewhat lowered, but the melt index is lowered.
  • Example 1 Comparing the specimens of Example 1 and Example 3, it was confirmed that when the content of the branched SAN copolymer was lowered, the melt index was increased. From the results of the physical properties of the specimens of Examples 1 and 3 and Comparative Example 3, it was confirmed that the branched SAN copolymer affects the melt index of the heat-resistant resin composition.
  • Example 2 Comparing the specimens of Example 2 and Example 4, it was confirmed that as the content of the heat resistant SAN copolymer decreases, not only the heat distortion temperature is lowered but also the melt index is increased and the impact strength is lowered.
  • the extruder cylinder temperature of the blow molding machine (YELBT, manufactured by Youngil Ind. Co., Ltd.) was set at 195 DEG C, the internal temperature of the accumulator was set at 200 DEG C, the die temperature at the accumulator end was set at 225 DEG C, The oil pressure of the accumulator for making was set at 185 kg / cm < 2 >.
  • the heat-resistant resin composition of the pellet type described in Table 3 below was melted.
  • the molten heat-resistant resin composition was placed in an accumulator of a blow molding machine, and hydraulic pressure was applied to the heat-resistant resin composition melted in the accumulator to produce a parison.
  • the surface temperature of the parison hand from the accumulator die was 215 DEG C and the weight was about 5,400 g.
  • the parison was blow-molded in a mold, and a molded article was produced. The molded article was processed to produce a spoiler and its weight was measured to be 2,370 g on average.
  • Flap hand deflection phenomenon During the manufacturing process of the spoiler, the hand of the flies almost came out from the accumulator, and the hand of the flies struck down before the mold for the blow molding was closed.
  • Comparative Example 8 including the high-molecular-weight SAN copolymer, the surface defects were weak, but the hand-shake phenomenon occurred.
  • Example 5 in the case of Example 5 and Example 8, it can be predicted that the strain hardening phenomenon occurs because the tensile strength continuously increases until 10 seconds, there was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

본 발명은 공액 디엔계 중합체, 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제1 공중합체; 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 115 ℃ 이상인 제2 공중합체; 및 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제3 공중합체를 포함하고, 상기 제2 공중합체는 선형이고, 상기 제3 공중합체는 분지형이고 분지도가 2 내지 8인 내열 수지 조성물에 관한 것이다.

Description

내열 수지 조성물 및 이를 이용한 자동차용 스포일러
[관련출원과의 상호인용]
본 발명은 2017.12.11에 출원된 한국 특허 출원 제10-2017-0169106호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 내열 수지 조성물 및 이를 이용한 자동차용 스포일러에 관한 것으로서, 보다 상세하게는 분지형 공중합체를 포함하는 내열 수지 조성물 및 이를 이용한 자동차용 스포일러에 관한 것이다.
스포일러는 제품이 매우 크고 자동차용으로 사용하기 때문에, 일반적으로 ABS 공중합체를 포함하는 내열 수지 조성물을 이용하여 블로우 몰딩 공정으로 생산된다.
한편, 자동차 스포일러의 제조방법은 압출 공정으로 제조된 펠렛 형태의 내열 수지 조성물을 용융하는 단계; 용융된 내열 수지 조성물을 유압을 가해 파리손(parison)을 제조하는 단계; 파리손을 금형 내에서 블로우 몰딩하여 성형품을 제조하는 단계; 성형품을 손질(trimming)하는 단계; 손질된 성형품을 연마(sanding)하는 단계; 및 연마된 성형품을 도색하여 스포일러를 제조하는 단계를 포함한다.
자동차용 스포일러는 제품이 매우 크기 때문에 블로우 몰딩을 위한 파리손 제조 시, 파리손의 무게가 3 내지 8 kg으로 매우 무겁다. 따라서, 내열 수지 조성물의 구성요소의 중량평균분자량이 낮으면 용융 장력(melt strength)이 약하여 파리손 제조 시 자체 중량에 의해 파리손이 처지는 문제가 발생한다. 이를 개선하고자 중량평균분자량이 큰 공중합체를 내열 수지 조성물에 포함시키면, 파리손의 처짐 현상은 줄어드나, 용융 점도가 높아 파리손을 제조하기 위하여 과도한 압력이 가해져야 한다. 하지만, 과도한 압력으로 인해 용융 파괴(melt fracture) 현상이 발생하고, 결과적으로 제품 표면에 꺽쇠 모양이 발생하는 불량이 나타나게 된다. 이러한 파리손의 표면 불량은 블로우 몰딩을 수행한 성형품에도 그대로 나타내 최종 생산품인 스포일러의 표면 불량을 야기한다.
따라서, 스포일러 제작을 위한 파리손의 제조시 용융 파괴를 방지하기 위하여, 어큐뮬레이터(accumulator)의 하단에 위치한 다이를 통과할 때는 용융된 내열 수지 조성물의 유동성이 높은 것, 즉 비교적 높은 전단 속도에서는 압축용 용융지수를 갖는 것이 유리하고, 다이 통과 후 파리손 자체 중량에 의한 처짐을 방지하기 위해서는 유동성이 낮은 것, 즉 낮은 전단 속도에서는 신장모드용 유동지수를 갖는 것이 유리하다.
하지만, 용융 파괴와 용융 장력은 트레이드 오프(trade-off) 관계를 가지므로, 공정 범위(process window)가 매우 좁아, 품질이 우수한 스포일러를 제조하기가 매우 어렵다.
본 발명의 목적은 블로우 몰딩 시, 표면 불량과 파리손 처짐 현상이 발생하지 않는 내열 수지 조성물을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 공액 디엔계 중합체, 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제1 공중합체; 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 115 ℃ 이상인 제2 공중합체; 및 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제3 공중합체를 포함하고, 상기 제2 공중합체는 선형이고, 상기 제3 공중합체는 분지형이고 분지도가 2 내지 8인 내열 수지 조성물을 제공한다.
본 발명의 내열 수지 조성물은 블로우 몰딩 시, 용융 파괴로 인한 표면 불량과 파리손 처짐 현상이 발생하지 않으므로, 자동차 스포일러용 소재로 보다 적합할 수 있다.
도 1은 각진동수에 따른 파리손 점도를 측정한 것이다.
도 2는 시간에 따른 파리손의 신장점도를 측정한 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 분지도, 절대 분자량 및 다분산 지수는 Malvern사 Viscotek TDA 305 기기를 이용하여 측정하고 계산하였다.
Malvern사 Viscotek TDA(Triple/trtra detector array)는 굴절율 검출기(Refractive Index detector), 광산란 검출기(Light scattering detector), 고유점도 검출기(Intrinsic viscosity dectector)를 동시에 가지고 있는 기기로 column: PL olexis x2 +C을 사용하여 용출액(THF: 테트라하이드로퓨란), 유량(flow rate): 1.0mL/min, 온도: 40 ℃, 주입량(injection): 100㎍의 측정조건으로 측정하였으며, 먼저 굴절율 데이터와 광산란 데이터를 이용하여 절대 분자량을 구한 후, 굴절율 데이터와 고유점도 데이터를 이용하여 삼관능성 분지 모델(trifunctional branch model)을 적용하여 분지도를 계산하였다.
본 발명에서 중량평균분자량은 용출액으로 THF(테트라하이드로퓨란)을 이용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 그라프트율은 제1 공중합체인 그라프트 공중합체 일정양을 용매에 투입하고 진동기를 이용하여 용해시키고, 원심 분리기로 원심 분리하고, 건조하여 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다.
상세하게는 제1 공중합체인 그라프트 공중합체 일정량을 아세톤에 투입하고 진동기(상품명: SI-600R, 제조사: Lab. companion)로 24 시간 동안 진동시켜 유리된 그라프트 공중합체를 용해시키고, 원심 분리기로 14,000 rpm으로 1 시간 동안 원심 분리하고, 진공 건조기(상품명: DRV320DB, 제조사: ADVANTEC)로 140 ℃, 2시간 동안 건조시켜 불용분을 수득한 후, 하기 식을 이용하여 산출할 수 있다.
그라프트율(%)
=[(그라프트된 쉘의 중량) /투입된 공액 디엔계 중합체(고무)의 중량] × 100
=[{(그라프트된 공중합체의 원심 분리후의 불용분 중량)-(투입된 공액 디엔계 중합체(고무)의 중량)} / 투입된 공액 디엔계 중합체(고무)의 중량] × 100
투입된 공액 디엔계 중합체(고무)의 중량= 라텍스를 건조한 그라프트 공중합체의 중량 × 공액 디엔계 중합체(고무)의 분률
본 발명에서 제1 공중합체의 셀의 중량평균분자량은 공액 디엔계 중합체에 그라프트된 방향족 비닐계 단량체 유래 단위와 비닐 시안계 단량체 유래 단위를 포함하는 공중합체의 중량평균분자량을 의미할 수 있다.
본 발명에서 제1 공중합체의 쉘의 중량평균분자량은 그라프트율 측정방법에서 수득된 불용분을 1 중량%의 농도로 테트라하이드로퓨란(THF) 용액에 녹인 후, 1 ㎛ 필터를 통해 걸러낸 뒤, 겔 투과 크로마토그래피를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다.
본 발명에서 공액 디엔계 중합체의 평균 입경은 입자의 입경 분포 곡선에 있어서, Nicomp 380 입도분석기를 사용하여 동적 광 산란법(Dynamic Light Scattering: DLS)으로 측정하며 산란강도 입자경의 50 %에 해당하는 입경으로 정의할 수 있다.
1. 내열 수지 조성물
본 발명의 일 실시예에 따른 내열 수지 조성물은 1) 공액 디엔계 중합체, 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제1 공중합체; 2) 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 115 ℃ 이상인 제2 공중합체; 및 3) 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제3 공중합체를 포함하고, 상기 제2 공중합체는 선형이고, 상기 제3 공중합체는 분지형이고 분지도가 2 내지 8이다.
본 발명의 다른 실시예에 따른 내열 수지 조성물은 4) 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 106 ℃ 이하이고, 선형인 제4 공중합체를 더 포함할 수 있다.
이하, 본 발명의 일실시예에 따른 내열 수지 조성물의 각 구성요소에 대하여 상세하게 설명한다.
1) 제1 공중합체
제1 공중합체는 그라프트 공중합체로서, 공액 디엔계 중합체, 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함한다.
상기 제1 공중합체는 내열 수지 조성물에 우수한 충격강도를 부여해줄 수 있다.
상기 공액 디엔계 중합체는 공액 디엔계 단량체가 중합되어 제조된 공액 디엔계 중합체에 방향족 비닐계 단량체와 비닐 시안계 단량체가 그라프트 중합됨으로써 변성된 공액 디엔계 중합체를 포함할 수 있다.
상기 공액 디엔계 단량체는 1,3-부타디엔, 이소프렌, 클로로프렌 및 피퍼릴렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 중 1,3-부타디엔이 바람직할 수 있다.
상기 공액 디엔계 중합체의 평균 입경은 0.1 내지 0.5 ㎛, 0.2 내지 0.4 ㎛ 또는 0.25 내지 0.35 ㎛일 수 있고, 이 중 0.25 내지 0.35 ㎛인 것이 바람직하다. 상술한 범위를 만족하면, 제1 공중합체의 충격강도가 보다 개선될 수 있다.
상기 공액 디엔계 중합체는 상기 제1 공중합체 총 중량에 대하여, 40 내지 75 중량%, 45 내지 70 중량% 또는 50 내지 65 중량%로 포함될 수 있고, 이 중 50 내지 65 중량%로 포함되는 것이 경제적인 면에서 바람직하다. 상술한 범위를 만족하면, 제1 공중합체의 내화학성, 강성, 내충격성, 가공성 및 표면 광택이 보다 개선될 수 있다.
상기 방향족 비닐계 단량체 유래 단위는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군으로부터 선택되는 1종 이상의 유래 단위일 수 있고, 이 중 스티렌 유래 단위가 바람직하다.
상기 방향족 비닐계 단량체 유래 단위는 상기 제1 공중합체 총 중량에 대하여, 18 내지 43 중량%, 22 내지 40 중량% 또는 25 내지 36 중량%로 포함될 수 있고, 이 중 25 내지 36 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면 내열 수지 조성물의 내화학성, 강성, 내충격성, 가공성 및 표면 광택이 보다 개선될 수 있다.
상기 비닐 시안계 단량체 유래 단위는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상의 유래 단위일 수 있고, 이중 아크릴로니트릴의 유래 단위가 바람직하다.
상기 비닐 시안계 단량체 유래 단위는 상기 제1 공중합체 총 중량에 대하여, 7 내지 17 중량%, 8 내지 15 중량% 또는 10 내지 14 중량%로 포함될 수 있고, 이 중 10 내지 14 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면 내열 수지 조성물의 내화학성, 강성, 내충격성, 가공성 및 표면 광택이 보다 개선될 수 있다.
상기 제1 공중합체는 그라프트율이 30 내지 60%, 35 내지 55%, 또는 40 내지 50%일 수 있고, 이 중 40 내지 50%인 것이 바람직하다. 상술한 범위를 만족하면, 제3 공중합체의 열안정성과 충격강도가 균형을 이룰 수 있다.
상기 제1 공중합체는 쉘의 중량평균분자량이 50,000 내지 200,000 g/mol, 70,000 내지 150,000 g/mol, 80,000 내지 120,000 g/mol 또는 90,000 내지 110,000 g/mol일 수 있고, 이 중 90,000 내지 110,000 g/mol인 것이 바람직하다. 상술한 범위를 만족하면 트레이드 오프 관계인 파리손의 처짐(sagging) 현상과 파리손의 용융 파괴 현상을 적절히 조절하여, 파리손의 처짐 현상 및 용융 파괴에 의한 표면 불량을 최소화할 수 있다.
상기 제1 공중합체는 현탁중합, 유화중합 및 괴상중합으로 이루어진 군에서 선택되는 1종 이상의 방법으로 제조될 수 있으며, 이 중 유화중합으로 제조된 것이 바람직하다.
상기 제1 공중합체 내열 수지 조성물의 총 중량에 대하여, 20 내지 55 중량%, 25 내지 50 중량% 또는 30 내지 45 중량%로 포함될 수 있고, 이 중 30 내지 40 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 내열 수지 조성물의 충격강도를 보다 개선시킬 수 있다.
2) 제2 공중합체
제2 공중합체는 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 115 ℃ 이상인 선형 공중합체이다.
상기 제2 공중합체는 내열 수지 조성물에 내열성을 부여해 줄 수 있고, 자동차 스포일러 제조를 위하여 블로우 몰딩 시, 파리손의 처짐현상과 파리손의 용융 파괴 현상을 최소화할 수 있다.
상기 제2 공중합체는 유리전이온도가 115 ℃ 내지 150 ℃, 또는 120 ℃ 내지 130 ℃일 수 있다. 상술한 범위를 만족하면, 내열 수지 조성물의 내열성을 보다 향상시킬 수 있으며, 압출시 용이하게 용융 혼합 및 압출될 수 있다. 제2 공중합체의 유리전이온도가 115 ℃ 미만이면, 내열 수지 조성물의 내열성이 저하된다.
상기 방향족 비닐계 단량체 유래 단위는 알킬 스티렌계 단량체 유래 단위일 수 있고, 상기 알킬 스티렌계 단량체 유래 단위는 α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군으로부터 선택되는 1종 이상의 유래 단위일 수 있고, 이 중 α-메틸 스티렌 유래 단위가 바람직하다.
상기 비닐 시안계 단량체 유래 단위는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상의 유래 단위일 수 있고, 이 중 아크릴로니트릴 유래 단위가 바람직하다.
상기 제2 공중합체는 상기 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 60:40 내지 90:10, 65:35 내지 85:15 또는 70:30 내지 80:20의 중량비로 포함할 수 있으며, 이 중, 70:30 내지 80:20의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 내열도를 보다 개선시킬 수 있으며, 블로우 몰딩 시 파리손의 용융 파괴 현상을 방지할 수 있다.
상기 제2 공중합체는 중량평균분자량이 80,000 내지 150,000 g/mol, 85,000 내지 130,000 g/mol 또는 90,000 내지 110,000 g/mol일 수 있으며, 이 중 90,000 내지 110,000 g/mol이 바람직하다. 상술한 범위를 만족하면, 내열도를 보다 개선시킬 수 있으며, 블로우 몰딩 시 파리손의 용융 파괴 현상을 방지할 수 있다.
상기 제2 공중합체는 선형의 α-메틸스티렌/아크릴로니트릴 공중합체일 수 있다.
상기 제2 공중합체는 현탁중합, 유화중합 및 괴상중합으로 이루어진 군에서 선택되는 1종 이상의 방법으로 제조될 수 있으며, 이 중 괴상중합 또는 유화중합으로 제조된 것이 바람직하다.
상기 제2 공중합체는 내열 수지 조성물의 총 중량에 대하여, 30 내지 75 중량부, 35 내지 70 중량% 또는 40 내지 65 중량%로 포함될 수 있고, 이 중 40 내지 65 중량%로 포함되는 것이 바람직하다. 상술한 범위를 만족하면, 내열도를 보다 개선시킬 수 있으며, 블로우 몰딩 시 파리손의 용융 파괴 현상을 방지할 수 있다.
3) 제3 공중합체
제3 공중합체는 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 분지형 공중합체이고, 분지도가 2 내지 8이다.
상기 제3 공중합체는 낮은 전단 속도에서는 점도가 높고, 높은 전단속도에서는 점도가 낮은 특성을 가지는 고담화(高淡化, high thinning) 특성을 가질 수 있다. 이러한 고담화 특성으로 인해, 블로우 몰딩 시, 파리손의 용융 파괴 현상으로 인한 파리손의 표면 불량률을 최소화할 수 있고, 파리손의 용융 장력 저하로 인한 파리손 처짐 현상을 방지할 수 있다.
보다 상세하게 설명하면, 제3 공중합체를 포함하는 내열 수지 조성물을 이용하여 자동차용 스포일러 제조 시, 블로우 몰딩기의 어큐뮬레이터에서 가압하여 파리손이 어큐뮬레이터의 하단의 다이에서 빠져나올 때, 파리손은 점도가 낮아지게 된다. 점도가 낮을수록, 파리손의 흐름방향과 중력방향의 힘이 약하게 작용하게 되므로, 제조된 파리손에 용융 파괴 현상이 최소화될 수 있다. 그리고, 다이를 통과한 파리손은 비교적 장시간 동안 변형 경화(strain hardening) 현상이 지속될 수 있으므로 용융 장력 저하가 최소화될 수 있다. 이에 따라, 다이를 통과한 파리손이 금형에 공급되고 금형이 닫힐 때까지 파리손의 처짐 현상이 발생하지 않을 수 있다.
상기 제3 공중합체는 분지도가 2 내지 8이고, 5 내지 7인 것이 바람직하다.
상술한 범위를 만족하면, 낮은 전단 속도에서는 점도가 높고, 높은 전단속도에서는 점도가 낮은 특성을 가지는 고담화 특성이 보다 강화되어, 자동차용 스포일러를 제조 시, 파리손의 용융 파괴 현상을 최소화하여 파리손의 표면 불량률을 최소화할 수 있고, 파리손의 용융 장력 저하로 인한 파리손 처짐 현상을 방지할 수 있다. 상술한 범위를 초과하면, 낮은 전단 속도에서는 점도가 낮고 높은 전단 속도에서는 점도가 높아 자동차 스포일러를 제조하기 위한 블로우 몰딩에 적합하지 않다. 상술한 범위 미만이면, 파리손의 처짐 현상이 발생한다.
상기 방향족 비닐계 단량체 유래 단위는 스티렌, α-메틸 스티렌, α-에틸 스티렌 및 p-메틸 스티렌으로 이루어진 군으로부터 선택되는 1종 이상의 유래 단위일 수 있고, 이 중 스티렌 유래 단위가 바람직하다.
상기 비닐 시안계 단량체 유래 단위는 아크릴로니트릴, 메타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군에서 선택되는 1종 이상의 유래 단위일 수 있고, 이 중 아크릴로니트릴 유래 단위가 바람직하다.
상기 제3 공중합체는 상기 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 60:40 내지 90:10, 65:35 내지 85:15 또는 72:28 내지 77:20의 중량비로 포함할 수 있고, 이 중 72:28 내지 77:20의 중량비로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 제1 공중합체와 물성 밸런스가 우수하고 가공성이 용이한 이점이 있다.
상기 제3 공중합체는 절대 분자량이 500,000 내지 700,000 g/mol, 550,000 내지 650,000 g/mol 또는 600,000 내지 650,000 g/mol일 수 있고, 이 중 600,000 내지 650,000 g/mol인 것이 바람직하다. 상술한 범위를 만족하면, 파리손 제조시 용융 파괴를 방지하면서 파리손의 처짐 현상을 방지하는 이점이 있다.
상기 제3 공중합체는 다분산 지수가 3.0 내지 5.0 또는 3.5 내지 4.5일 수 있고, 이 중 3.5 내지 4.5 가 바람직하다. 상술한 범위를 만족하면, 제3 공중합체가 보다 균일한 물성을 구현할 수 있으므로, 이를 포함하는 내열 수지 조성물도 보다 균일한 물성을 구현할 수 있다.
상기 제3 공중합체는 현탁중합, 유화중합 및 괴상중합으로 이루어진 군에서 선택되는 1종 이상의 방법으로 제조될 수 있으며, 이 중 현탁중합으로 제조된 것이 바람직하다.
상기 제3 공중합체는 내열 수지 조성물의 총 중량에 대하여, 2 내지 20 중량% 또는 3 내지 18 중량%, 이 중 3 내지 18 중량%로 포함되는 것이 바람직하다.
상술한 범위를 만족하면, 블로우 몰딩 시 용융 장력을 높일 수 있고, 이로 인해 파리손의 쳐짐 현상을 방지할 수 있다. 또한, 제조원가의 과도한 상승을 방지할 수 있다.
4) 제4 공중합체
제4 공중합체는 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 106 ℃ 이하이고, 선형이다.
상기 제4 공중합체의 유리전이온도는 비닐 시안계 단량체 유래 단위의 함량 또는 중량평균분자량에 따라 변동될 수 있다.
상기 제4 공중합체는 내열 수지 조성물의 물성의 균형, 즉 기계적 특성, 유동성 및 내열성의 균형을 이루기 위하여 포함될 수 있다.
상기 제4 공중합체는 유리전이온도가 102 내지 106 ℃ 또는 103 내지 106 ℃일 수 있고, 이 중 103 내지 106 ℃가 바람직하다. 상술한 범위를 만족하면, 내열 수지 조성물에 내열성을 부여하기 보다는, 내열 수지 조성물의 물성의 균형을 이룰 수 있다.
상기 제4 공중합체는 상기 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 50:50 내지 90:10, 60:40 내지 85:15 또는 66:34 내지 80:20의 중량비로 포함할 수 있고, 이 중 66:34 내지 80:20로 포함하는 것이 바람직하다. 상술한 범위를 만족하면, 상기 제4 공중합체가 내열 수지 조성물의 물성의 균형을 보다 잘 이룰 수 있다.
상기 제4 공중합체는 중량평균분자량이 80,000 내지 250,000 g/mol, 110,000 내지 210,000 g/mol 또는 140,000 내지 170,000 g/mol이고, 이 중 140,000 내지 170,000 g/mol이 바람직하다. 상술한 범위를 만족하면, 제4 공중합체가 내열 수지 조성물의 물성의 균형을 보다 잘 이룰 수 있다.
상기 제4 공중합체는 현탁중합, 유화중합 및 괴상중합으로 이루어진 군에서 선택되는 1종 이상의 방법으로 제조될 수 있으며, 이 중 괴상중합으로 제조된 것이 바람직하다.
상기 제4 공중합체는 내열 수지 조성물의 총 중량에 대하여, 30 중량% 이하, 바람직하게는 2 내지 27 중량%로 포함될 수 있다. 상술한 범위를 만족하면, 내열 수지 조성물의 물성의 균형을 보다 잘 이룰 수 있다.
본 발명의 일실시예에 따른 내열 수지 조성물은 활제, 산화방지제 등의 첨가제가 더 포함될 수 있다.
2. 자동차용 스포일러
본 발명의 일 실시예에 따른 자동차용 스포일러는 본 발명의 내열 수지 조성물을 이용하여 제조될 수 있다.
구체적으로는, 상기 자동차 스포일러는, 압출 공정으로 제조된 펠렛 형태의 내열 수지 조성물을 용융하는 단계; 용융된 내열 수지 조성물을 유압을 가해 파리손(parison)을 제조하는 단계; 파리손을 금형 내에서 블로우 몰딩하여 성형품을 제조하는 단계; 성형품을 손질(trimming)하는 단계; 손질된 성형품을 연마(sanding)하는 단계; 및 연마된 성형품을 도색하여 스포일러를 제조하는 단계를 포함하는 제조방법에 의하여 제조될 수 있다.
본 발명의 일실시예에 따른 내열 수지 조성물을 이용함으로써, 파리손을 제조하는 단계에서 용융 파괴로 인한 표면 불량이 최소화되거나, 발생하지 않을 수 있다. 또한, 성형품을 제조하는 단계에서 용융 장력이 저하되어 발생하는 파리손 처짐 현상이 발생하지 않을 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<내열 수지 조성물의 제조>
실시예 1 내지 실시예 4, 비교예 1 내지 비교예 4
하기 표 1에 기재된 구성요소와 활제로 N’N-에틸렌 비스-스테아르아미드(상품명: EBA, 제조사: 송원산업) 0.5 중량부와 폴리에틸렌 왁스(상품명: LC102N, 제조사: Lion Chemicals) 0.2 중량부, 산화방지제로 옥타데실-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트(상품명: Songnox 1076, 제조사: 송원산업) 0.2 중량부와 2,4-디-t-부틸페놀 디하이드로겐 포스파이트 사이클릭 네오펜탄테트라일 에스터(상품명: PEP-24, 제조사: ADEKA) 0.2 중량부를 혼합하여 내열 수지 조성물을 제조하였다. 내열 수지 조성물을 이축 압출기에서 260 ℃로 혼련하여 펠렛 형태의 내열 수지 조성물을 제조하였다.
구분 제1 공중합체(중량부) 제2 공중합체(중량부) 제3 공중합체(중량부) 제4 공중합체(중량부) 고분지형 SAN 공중합체
ABS 그라프트 공중합체 고분자 내열 SAN 공중합체 저분자 내열 SAN 공중합체 저분지형 SAN 공중합체 선형 일반 SAN 공중합체
실시예 1 36 - 50 14 - -
실시예 2 33 - 35 5 27 -
실시예 3 33 - 50 8 6 -
실시예 4 33 - 62 5 - -
비교예 1 33 31 30 - 6 -
비교예 2 36 40 - - 24 -
비교예 3 36 - 50 - 14 -
비교예 4 36 - 50 - - 14
(1) 제1 공중합체
상품명: DP280, 제조사: 엘지화학, 부타디엔 공중합체: 60중량%, 부타디엔 공중합체의 평균 입경: 0.3㎛)
(2) 제2 공중합체
① 고분자 내열 SAN 공중합체
상품명: PW635, 제조사: 엘지화학, 중량평균분자량: 175,000 g/mol, 아크릴로니트릴 유래 단위: 26 중량%, α-메틸스티렌 유래 단위: 74 중량%, 유리전이온도: 127 ℃
② 저분자 내열 SAN 공중합체
상품명: 99UH, 제조사: 엘지화학, 중량평균분자량: 100,000 g/mol, 아크릴로니트릴 유래 단위: 30 중량%, α-메틸스티렌 유래 단위: 70 중량%, 유리전이온도: 123 ℃
(3) 제3 공중합체
상품명: EMI-230B, 제조사: Fine-Blend, 분지도: 5 내지 7, 다분산 지수: 4.2, 절대 분자량: 630,000 g/mol, 아크릴로니트릴 유래 단위: 25 중량%, 스티렌 유래 단위: 75 중량%
(4) 선형 일반 SAN 공중합체
상품명: 97HC, 제조사: 엘지화학, 중량평균분자량: 153,000 g/mol, 다분산 지수: 1.9, 아크릴로니트릴 유래 단위: 25 중량%, 스티렌 유래 단위: 75 중량%, 유리전이온도: 105 ℃
(5) 고분지형 SAN 공중합체
상품명: EMI-330B, 제조사: Fine-Blend, 분지도: 9 내지 10, 다분산 지수: 4.1, 중량평균분자량: 630,000 g/mol, 아크릴로니트릴 유래 단위: 28 중량%, 스티렌 유래 단위: 72 중량%
실험예 1
실시예 1 내지 실시예 4, 비교예 1 내지 비교예 4의 펠렛 형태의 내열 수지 조성물을 사출하여 시편을 제조하였고, 하기와 같은 방법으로 물성을 평가하고, 그 결과를 표 2에 기재하였다.
(6) Izod 충격강도(㎏·㎝/㎝): ASTM D 256에 의거하여 두께 3.2mm 시편에 노치(notch)를 내어 측정하였다.
(7) 용융지수(melt index, g/10min): ASTM D 1238에 의거하여 220 ℃, 10 kg 조건으로 측정하였다.
(8) 열변형 온도(℃): ASTM D 648에 의거하여 두께 6.4 ㎜ 시편을 이용하여 측정하였다.
구분 Izod 충격강도(㎏·㎝/㎝) 용융지수(g/10min) 열변형 온도(℃)
실시예 1 25 2.0 100
실시예 2 20 4.0 94
실시예 3 28 4.5 100
실시예 4 26 1.6 104
비교예 1 20 1.8 104
비교예 2 25 2.2 96
비교예 3 28 4.5 100
비교예 4 26 3.8 100
표 2를 참조하면, 실시예 1 내지 실시예 4, 비교예 1 내지 비교예 4의 시편의 경우, 내열 SAN 공중합체의 함량이 증가하면, 열변형 온도가 높아지는 것을 확인할 수 있었다.
실시예 1과 비교예 3의 시편을 비교하면, 분지형 SAN 공중합체가 포함할 경우, 충격강도는 다소 저하되나, 용융지수가 낮아지는 것을 확인할 수 있었다.
실시예 1과 실시예 3의 시편을 비교하면, 분지형 SAN 공중합체의 함량이 낮아질 경우, 용융지수가 높아지는 것을 확인할 수 있었다. 실시예 1, 실시예 3 및 비교예 3의 시편의 물성평가 결과로부터, 분지형 SAN 공중합체가 내열 수지 조성물의 용융지수에 영향을 미치는 것을 확인할 수 있었다.
실시예 1과 비교예 4의 시편을 비교하면, 분지도가 높아지면, 용융지수가 높아지는 것을 확인할 수 있었다.
실시예 2와 실시예 4의 시편을 비교하면, 내열 SAN 공중합체의 함량이 감소하면, 열변형 온도가 낮아지는 것뿐만 아니라, 용융지수가 높아지고 충격강도가 저하되는 것을 확인할 수 있었다.
<스포일러의 제조>
실시예 5 내지 실시예 8, 비교예 5 내지 비교예 8
블로우 몰딩기(상품명: YELBT, 제조사: 영일공업)의 압출기 실린더 온도를 195 ℃로 설정하였고, 어큐뮬레이터의 내부 온도를 200 ℃로 설정하였고, 어큐뮬레이터 말단의 다이 온도를 225 ℃로 설정하였고, 파리손을 만들기 위한 어큐뮬레이터의 유압은 185 kg/㎠으로 설정하였다.
먼저, 하기 표 3에 기재된 펠렛 형태의 내열 수지 조성물을 용융하였다. 용융된 내열 수지 조성물을 블로우 몰딩기의 어큐뮬레이터에 투입하고 어큐뮬레이터 내에서 용융된 내열 수지 조성물에 유압을 가하여 파리손을 제조하였다. 이때, 어큐뮬레이터의 다이에서 나오는 파리손의 표면온도는 215 ℃이고, 무게는 약 5,400 g이었다. 상기 파리손을 금형 내에서 블루우 몰딩한 후, 성형품을 제조하였다. 성형품을 가공하여 스포일러를 제조하고, 그 무게를 측정하니, 평균 2,370 g이었다.
구분 내열 수지 조성물
실시예 5 실시예 1
실시예 6 실시예 2
실시예 7 실시예 3
실시예 8 실시예 4
비교예 5 비교예 1
비교예 6 비교예 2
비교예 7 비교예 3
비교예 8 비교예 4
실험예 2
실시예, 비교예의 자동차 스포일러의 블로우 몰딩 시 성형성을 평가하고, 그 결과를 하기 표 4에 기재하였다.
(9) 용융 파괴 현상에 의한 표면 불량: 스포일러의 제조 과정 중 파리손의 일부를 잘라서 표면을 육안으로 관찰하였다.
◎: 없음, △: 약하게 나타남, ×: 심하게 나타남
(10) 파리손 처짐 현상: 스포일러의 제조 과정 중 파리손이 어큐뮬레이터에서 거의 다 나오고, 블로우 몰딩을 위한 금형이 닫히기 전에 파리손이 밑으로 쳐지는 현상을 육안으로 관찰하였다.
◎: 없음, △: 약하게 나타남, ×: 심하게 나타남
구분 용융 파괴 현상에 의한표면 불량 파리손 처짐 현상
실시예 5
실시예 6
실시예 7
실시예 8
비교예 5
비교예 6 × ×
비교예 7 ×
비교예 8 ×
표 4를 참조하면, 실시예 5 내지 실시예 8의 자동차 스포일러의 경우, 용융 파괴 현상에 의한 표면 불량이 전혀 발생하지 않았고, 파리손 처짐 현상도 나타나지 않았다.
하지만, 분지형 SAN 공중합체를 포함하지 않은 내열 수지 조성물을 이용한 비교예 5 내지 비교예 7의 자동차 스포일러의 경우, 표면 불량이 나타나거나, 파리손 처짐 현상이 발생하였다.
하지만, 고분지형 SAN 공중합체를 포함하는 비교예 8의 경우, 표면 불량은 약하게 나타났으나, 파리손 처짐현상이 발생하였다.
실험예 3
어큐뮬레이터의 다이에서 나올 때의 파리손을 일정량 채취하여 각진동수(Angular frequency)에 대한 점도를 측정하였고, 이를 도 1에 나타내었다. 각진동수가 0 rad/s 일 때, 점도가 높으면 파리손 처짐 현상이 방지되고, 각진동수(Angular frequency)가 102 내지 103 rad/s 일 때 점도가 낮으면 용융 파괴 현상이 방지되는 것을 나타낸다.
(11) 각진동수에 따른 점도 변화 측정방법: TA instruments사의 ARES-G2 Rheometer를 이용하여 측정하였다
도 1을 참조하면, 실시예 5 및 실시예 8은 각진동수가 0 rad/s에 접근할 때, 점도는 높아지고, 각진동수(Angular frequency)가 102 내지 103 rad/s 일 때, 점도가 낮아지는 특성을 갖는다. 이러한 결과로부터 블로우 몰딩시 파리손의 용융 파괴 현상 및 처짐 현상이 방지되는 것을 예측할 수 있었다.
비교예 5의 경우 각진동수가 0 rad/s에 접근할 때 실시예 8 대비 점도가 낮고, 102 내지 10 3 rad/s 일 때, 점도가 높았다. 이로 인해 블로우 몰딩 시 용융 파괴(melt fracture) 현상 및 파리손 처짐 현상이 발생한다는 것을 예측할 수 있었다. 한편, 도 1에서는 실시예 8 대비 점도가 현저하게 높거나 낮아 보이지 않지만, y축의 단위의 간격이 너무 좁아서일 뿐 실제로는 현저한 차이를 보인다.
비교예 6의 경우 각진동수가 0 rad/s에 접근할 때 점도가 낮고, 102 내지 103 rad/s 일 때, 점도가 높았다. 이로 인해 블로우 몰딩시 용융 파괴 현상 및 파리손 처짐 현상이 발생한다는 것을 예측할 수 있었다.
비교예 8의 경우 각진동수가 0 rad/s에 접근할 때에 점도가 낮고, 102 내지 103 rad/s 일 때, 점도가 높았다. 이로 인해 블로우 몰딩시 용융 파괴 현상 및 파리손 처짐 현상이 발생한다는 것을 예측할 수 있었다. 한편, 도 1에서는 각진동수가 102 내지 103 rad/s 일 때, 실시예 8 대비 점도가 현저하게 높아 보이진 않지만, y축의 단위의 간격이 너무 좁아서일 뿐 실제로는 현저한 차이를 보인다.
실험예 4
어큐뮬레이터의 다이에서 나올 때의 실시예 및 비교예의 파리손을 일정량 채취하여 시간에 따른 신장점도를 측정하였고, 이를 도 2에 나타내었다. 시간이 경과함에 따라 신장점도의 기울기가 낮아지거나 신장점도 자체가 낮아진다는 것은 파리손이 처지면서 고분자의 사슬이 서로 빠진다는 것을 의미한다.
(12) 시간에 따른 신장점도 변화 측정방법: TA instruments사의 ARES-G2 Rheometer를 이용하여 측정하였다
도 2를 참조하면, 실시예 5 및 실시예 8의 경우, 신장강도가 10초까지는 계속 높아지므로, 변형 경화(strain hardening) 현상이 발생하였고, 이로 인해 파리손 처짐 현상이 발생하지 않는다는 것을 예측할 수 있었다.
비교예 5의 경우, 실시예 5 및 실시예 8 보다는 점도 상승 곡선의 기울기가 낮아, 10초에서 신장점도가 떨어져, 파리손 처짐 현상이 약하게 발생한다는 것을 예측할 수 있었다.
비교예 6의 경우, 점도 상승 곡선의 기울기가 현저하게 낮아, 파리손 처짐 현상이 심하게 발생한다는 것을 예측할 수 있었다.
비교예 8의 경우, 실시예 5 및 실시예 8 보다는 점도 상승 곡선의 기울기가 낮아, 10초에서 신장점도가 떨어져 파리손 처짐 현상이 발생한다는 것을 예측할 수 있었다.

Claims (19)

  1. 공액 디엔계 중합체, 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제1 공중합체;
    방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 115 ℃ 이상인 제2 공중합체; 및
    방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하는 제3 공중합체를 포함하고,
    상기 제2 공중합체는 선형이고, 상기 제3 공중합체는 분지형이고 분지도가 2 내지 8인 내열 수지 조성물.
  2. 청구항 1에 있어서,
    상기 제3 공중합체는 분지도가 5 내지 7인 것인 내열 수지 조성물.
  3. 청구항 1에 있어서,
    상기 제3 공중합체는 상기 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 60:40 내지 90:10의 중량비로 포함하는 것인 내열 수지 조성물.
  4. 청구항 1에 있어서,
    상기 제3 공중합체는 절대 분자량이 500,000 내지 700,000 g/mol인 것인 내열 수지 조성물.
  5. 청구항 1에 있어서,
    상기 제3 공중합체는 다분산 지수가 3.0 내지 5.0인 것인 내열 수지 조성물.
  6. 청구항 1에 있어서,
    상기 제1 공중합체는
    총 중량에 대하여,
    상기 공액 디엔계 중합체 40 내지 75 중량%;
    상기 방향족 비닐계 단량체 유래 단위 18 내지 43 중량%; 및
    상기 비닐 시안계 단량체 유래 단위 7 내지 17 중량%로 포함하는 것인 내열 수지 조성물.
  7. 청구항 1에 있어서,
    상기 공액 디엔계 중합체의 평균 입경이 0.1 내지 0.5㎛인 것인 내열 수지 조성물.
  8. 청구항 1에 있어서,
    상기 제1 공중합체는 그라프트율이 30 내지 60%인 것인 내열 수지 조성물.
  9. 청구항 1에 있어서,
    상기 제1 공중합체는 쉘의 중량평균분자량이 50,000 내지 200,000 g/mol인 것인 내열 수지 조성물.
  10. 청구항 1에 있어서,
    상기 제2 공중합체는 유리전이온도가 115 ℃ 내지 150 ℃인 것인 내열 수지 조성물.
  11. 청구항 1에 있어서,
    상기 제2 공중합체는 상기 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 60:40 내지 90:10의 중량비로 포함하는 것인 내열 수지 조성물.
  12. 청구항 1에 있어서,
    상기 제2 공중합체는 중량평균분자량이 80,000 내지 150,000 g/mol인 것인 내열 수지 조성물.
  13. 청구항 1에 있어서,
    상기 내열 수지 조성물은
    총 중량에 대하여,
    상기 제1 공중합체 20 내지 55 중량%;
    상기 제2 공중합체 30 내지 75 중량%; 및
    상기 제3 공중합체 2 내지 20 중량%로 포함하는 내열 수지 조성물.
  14. 청구항 1에 있어서,
    상기 내열 수지 조성물은 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 포함하고, 유리전이온도가 106 ℃ 이하이고, 선형인 제4 공중합체를 더 포함하는 내열 수지 조성물.
  15. 청구항 14에 있어서,
    상기 제4 공중합체는 유리전이온도가 102 내지 106 ℃인 것인 내열 수지 조성물.
  16. 청구항 14에 있어서,
    상기 제4 공중합체는 상기 방향족 비닐계 단량체 유래 단위 및 비닐 시안계 단량체 유래 단위를 50:50 내지 90:10의 중량비로 포함하는 것인 내열 수지 조성물.
  17. 청구항 14에 있어서,
    상기 제4 공중합체는 중량평균분자량이 80,000 내지 250,000 g/mol인 것인 내열 수지 조성물.
  18. 청구항 14에 있어서,
    상기 제4 공중합체는 내열 수지 조성물의 총 중량에 대하여 30 중량% 이하로 포함하는 것인 내열 수지 조성물.
  19. 청구항 1 내지 청구항 18 중 어느 한 항에 따른 내열 수지 조성물을 이용한 자동차용 스포일러.
PCT/KR2018/015678 2017-12-11 2018-12-11 내열 수지 조성물 및 이를 이용한 자동차용 스포일러 WO2019117587A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020526597A JP7460153B2 (ja) 2017-12-11 2018-12-11 耐熱樹脂組成物およびこれを用いた自動車用のスポイラー
EP18887783.1A EP3696230B1 (en) 2017-12-11 2018-12-11 Heat-resistant resin composition and automobile spoiler manufactured using same
US16/764,310 US11214673B2 (en) 2017-12-11 2018-12-11 Heat-resistant resin composition and automobile spoiler manufactured using the same
CN201880073624.2A CN111356741B (zh) 2017-12-11 2018-12-11 耐热性树脂组合物和使用该耐热性树脂组合物制造的汽车扰流板
JP2022070866A JP7463010B2 (ja) 2017-12-11 2022-04-22 耐熱樹脂組成物およびこれを用いた自動車用のスポイラー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0169106 2017-12-11
KR1020170169106A KR102257967B1 (ko) 2017-12-11 2017-12-11 내열 수지 조성물 및 이를 이용한 자동차용 스포일러

Publications (1)

Publication Number Publication Date
WO2019117587A1 true WO2019117587A1 (ko) 2019-06-20

Family

ID=66820737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015678 WO2019117587A1 (ko) 2017-12-11 2018-12-11 내열 수지 조성물 및 이를 이용한 자동차용 스포일러

Country Status (6)

Country Link
US (1) US11214673B2 (ko)
EP (1) EP3696230B1 (ko)
JP (2) JP7460153B2 (ko)
KR (1) KR102257967B1 (ko)
CN (1) CN111356741B (ko)
WO (1) WO2019117587A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479300B (zh) * 2020-11-12 2024-03-26 中国石油天然气股份有限公司 电镀级abs树脂组合物、电镀级abs树脂及其制备方法
CN112831173B (zh) * 2021-01-29 2021-10-15 无锡井上华光汽车部件有限公司 用于汽车扰流板的复合材料及其制备方法
KR102382945B1 (ko) 2021-09-03 2022-04-08 주식회사 한나노텍 내후성 및 내충격성이 우수한 소광성 고분자 조성물 및 이를 포함하는 무광택 시트

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567834B1 (ko) * 1999-02-05 2006-04-05 제일모직주식회사 성형성이 우수한 폴리카보네이트/스티렌계 열가소성 수지조성물
KR100717548B1 (ko) * 2005-12-30 2007-05-11 제일모직주식회사 열가소성 수지 조성물
KR20150102446A (ko) * 2014-02-28 2015-09-07 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20160127262A (ko) * 2015-04-24 2016-11-03 롯데첨단소재(주) 폴리카보네이트 수지 조성물 및 이로부터 제조된 성형품
KR20160129746A (ko) * 2015-04-30 2016-11-09 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100162A (ja) * 1994-09-29 1996-04-16 Nippon Zeon Co Ltd エポキシ樹脂系接着性組成物を用いる接着方法
KR100574452B1 (ko) 2003-12-22 2006-04-26 제일모직주식회사 드로다운성이 개선된 열가소성 abs 수지 조성물
KR100591041B1 (ko) 2004-12-01 2006-06-22 제일모직주식회사 중공성형성과 내충격성 및 치수안정성이 우수한 열가소성abs 수지 조성물
KR101092052B1 (ko) 2007-08-24 2011-12-12 주식회사 엘지화학 블로우 성형성 및 도장성이 우수한 열가소성 수지 조성물
JP5881164B2 (ja) * 2012-04-23 2016-03-09 株式会社ジェイエスピー 表皮被覆発泡成形体の製造方法
KR101576726B1 (ko) 2013-07-02 2015-12-10 주식회사 엘지화학 내열 san 수지, 이의 제조방법 및 이를 포함하는 내열 abs 수지 조성물
DE102013217785A1 (de) * 2013-09-05 2015-03-05 Tesa Se Verwendung von Haftklebebändern für optische Anwendungen
KR101689064B1 (ko) 2013-12-10 2016-12-22 주식회사 엘지화학 스티렌계 수지 조성물
KR101811485B1 (ko) * 2014-11-28 2017-12-21 주식회사 엘지화학 열가소성 수지 조성물 및 이를 적용한 성형품
JP7301492B2 (ja) * 2016-02-18 2023-07-03 富士電機株式会社 樹脂組成物の製造方法
KR101857342B1 (ko) * 2016-03-22 2018-05-11 주식회사 엘지화학 방향족 비닐-불포화 니트릴계 공중합체의 제조방법 및 이로부터 제조된 방향족 비닐-불포화 니트릴계 공중합체
JP6799935B2 (ja) * 2016-03-31 2020-12-16 日本エイアンドエル株式会社 ブロー成形用熱可塑性組成物およびブロー成形品
KR20190020668A (ko) * 2016-05-16 2019-03-04 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Co2-플라즈마-활성화된 표면 상에 수성 생분자 커플링
CN107446301B (zh) * 2017-06-29 2019-11-05 上海锦湖日丽塑料有限公司 适于超声焊接的耐热abs树脂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567834B1 (ko) * 1999-02-05 2006-04-05 제일모직주식회사 성형성이 우수한 폴리카보네이트/스티렌계 열가소성 수지조성물
KR100717548B1 (ko) * 2005-12-30 2007-05-11 제일모직주식회사 열가소성 수지 조성물
KR20150102446A (ko) * 2014-02-28 2015-09-07 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20160127262A (ko) * 2015-04-24 2016-11-03 롯데첨단소재(주) 폴리카보네이트 수지 조성물 및 이로부터 제조된 성형품
KR20160129746A (ko) * 2015-04-30 2016-11-09 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Also Published As

Publication number Publication date
KR20190068884A (ko) 2019-06-19
JP2021503032A (ja) 2021-02-04
EP3696230A1 (en) 2020-08-19
EP3696230A4 (en) 2020-12-23
KR102257967B1 (ko) 2021-05-28
CN111356741A (zh) 2020-06-30
JP2022103197A (ja) 2022-07-07
US11214673B2 (en) 2022-01-04
JP7463010B2 (ja) 2024-04-08
EP3696230B1 (en) 2024-06-26
JP7460153B2 (ja) 2024-04-02
CN111356741B (zh) 2023-03-17
US20200369864A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019117587A1 (ko) 내열 수지 조성물 및 이를 이용한 자동차용 스포일러
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018084557A1 (ko) 내후성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016204566A1 (ko) 변성 아크릴로니트릴-부타디엔-스티렌계 수지의 제조방법 및 이로부터 제조된 변성 아크릴로니트릴-부타디엔-스티렌계 수지
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2013022205A2 (ko) 알킬 (메트)아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
WO2024071585A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 자동차 내장부품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022158709A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022085998A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2022075579A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022075577A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2019112239A1 (ko) 열가소성 수지 조성물
WO2022065630A1 (ko) Abs계 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022065640A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023043181A1 (ko) 열가소성 수지 조성물
WO2023033431A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023153641A1 (ko) 열가소성 수지 조성물 및 성형품
WO2022085899A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022019431A1 (ko) 열가소성 수지 조성물 및 이의 외장재
WO2019112294A1 (ko) 내열 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526597

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018887783

Country of ref document: EP

Effective date: 20200515

NENP Non-entry into the national phase

Ref country code: DE