WO2022041644A1 - 一种用于富集循环肿瘤细胞的红细胞仿生涂层 - Google Patents

一种用于富集循环肿瘤细胞的红细胞仿生涂层 Download PDF

Info

Publication number
WO2022041644A1
WO2022041644A1 PCT/CN2021/073204 CN2021073204W WO2022041644A1 WO 2022041644 A1 WO2022041644 A1 WO 2022041644A1 CN 2021073204 W CN2021073204 W CN 2021073204W WO 2022041644 A1 WO2022041644 A1 WO 2022041644A1
Authority
WO
WIPO (PCT)
Prior art keywords
erythrocyte
red blood
ctcs
antibody
cells
Prior art date
Application number
PCT/CN2021/073204
Other languages
English (en)
French (fr)
Inventor
刘威
张陶冶
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学 filed Critical 武汉大学
Publication of WO2022041644A1 publication Critical patent/WO2022041644A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0694Cells of blood, e.g. leukemia cells, myeloma cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Definitions

  • the invention belongs to the technical field of biomedicine, in particular to a erythrocyte bionic coating for enriching circulating tumor cells.
  • Circulating tumor cells are cancer cells that circulate in the bloodstream after shedding from the original or metastatic tumor. It can travel through the bloodstream to distant organs, triggering cancer metastasis and causing 90% of cancer-related deaths.
  • the isolation and analysis (liquid biopsy) of these CTCs in peripheral blood has attracted attention because of its importance for early cancer diagnosis, treatment monitoring, prognostic assessment and metastasis diagnosis.
  • the number of CTCs in peripheral blood is extremely small, usually only single-digit CTCs in one milliliter of blood, which brings great challenges to the separation and enrichment of CTCs.
  • An excellent method for separation and enrichment of CTCs should have extremely high sensitivity and selectivity, but also need to maintain the activity of CTCs.
  • many methods for separation and enrichment of CTCs have been developed, and one of the important separation methods is based on the different sorting methods of CTCs and blood cell surface markers.
  • the main challenge encountered by such methods is the low purity of CTCs isolated due to nonspecific adsorption of leukocytes.
  • the current solution is to modify a biologically inert coating on the capture substrate, such as polyethylene glycol, poly(carboxybetaine acrylamide) and other polymer coatings, or biomimetic coatings of cell membranes and cell-like membranes, for as much as possible Reduces non-specific adsorption of leukocytes. But its effect is not ideal.
  • the purpose of the present invention is to provide a biomimetic coating for erythrocytes for enriching circulating tumor cells.
  • a biomimetic coating for erythrocytes for enriching circulating tumor cells.
  • FFA folic acid
  • the red blood cells are derived from the same donor, avoiding the introduction of foreign matter, and high-purity CTCs can be isolated by using the red blood cell lysate.
  • a biomimetic coating for erythrocytes for enriching circulating tumor cells is provided, obtained by the following preparation method:
  • the first type folic acid modification, mix 10 ⁇ L ⁇ 50 ⁇ L of healthy human fresh red blood cells with 100 ⁇ L ⁇ 1000 ⁇ L DSPE-PEG-FA PBS solution with a concentration of 1mg/mL, and incubate at 4°C ⁇ 25°C for 30min ⁇ 2h, Folic acid-surface-modified erythrocytes can be obtained after three times of centrifugation in PBS; or,
  • the second type antibody modification that can specifically recognize CTCs surface biomarkers, mix 10 ⁇ L ⁇ 50 ⁇ L of healthy human fresh red blood cells with 100 ⁇ L ⁇ 1000 ⁇ L DSPE-PEG-Biotin PBS solution with a concentration of 1mg/mL, 4 °C ⁇ 25 Incubate at °C for 30min ⁇ 2h, and centrifuge and wash with PBS for three times to obtain erythrocytes modified with Biotin; mix the Biotin-modified erythrocytes with 100 ⁇ L ⁇ 1000 ⁇ L SA solution with a concentration of 100 ⁇ g/mL evenly, and stand at 4°C ⁇ 25°C.
  • step (1) Mix the erythrocytes with FA or CTC-targeted antibody surface-modified in step (1) with 1-10 mg/mL polybrene PBS solution, incubate at 4°C to 25°C for 30min-2h, and wash with PBS three times by centrifugation That is, red blood cells with surface-modified polybrene and FA or CTCs targeting antibodies are obtained, and they are dispersed in PBS solution for use;
  • the modification reaction temperature in steps (1)-(3) of the above-mentioned preparation method of the biomimetic coating for red blood cells is 4°C.
  • the adhesive glass slide described in step (3) of the above-mentioned preparation method for the biomimetic coating of red blood cells is an amino glass slide.
  • an application of the above-mentioned biomimetic coating of red blood cells in preparing a kit for identifying, capturing or enriching circulating tumor cells is provided.
  • the method for enriching circulating tumor cells by red blood cell bionic coating in the above application mainly includes the following steps: 1) obtaining blood samples of tumor patients after surgery or chemotherapy, and obtaining lymphocyte layers through percoll cell separation solution; 2) ) drop the lymphocyte layer on the functionalized erythrocyte bionic coating of the present invention and start to capture, and the incubation temperature is 37°C; 3) wash the erythrocyte bionic coating by PBS to remove other cells that cannot adhere, that is, to achieve High-purity enrichment of circulating tumor cells; 4) The erythrocyte biomimetic coating obtained in step 3) that captures circulating tumor cells is immersed in a 4% sodium citrate solution prepared by erythrocyte lysate, on the surface of the substrate.
  • the release process of circulating tumor cells is realized on the basis of the shedding of most of the red blood cells; 5) After three fluorescent staining of the cells captured from the biomimetic coating in step 4), the number of captured CTCs was quantitatively analyzed by flow cytometry and confocal laser analysis. its capture.
  • red blood cells In order for the dense red blood cell biomimetic coating to capture CTCs, red blood cells also need to be modified with capture molecules.
  • the modification methods are divided into modified small molecules (folate molecules) and modified proteins (antibodies) according to the different capture molecules:
  • the first type is the folate molecule (FA) that can specifically recognize and bind to the surface folate receptor (FA acceptor) of CTCs on the surface of red blood cells.
  • the modification of folic acid is to embed distearoyl phosphatidylethanolamine-polyethylene glycol-folate (DSPE-PEG-FA) into the red blood cell membrane by using hydrophilic and hydrophobic forces.
  • DSPE-PEG-FA is an amphiphilic block copolymer.
  • the DSPE end is embedded in the hydrophobic erythrocyte membrane through hydrophilic-hydrophobic interaction. The successful embedding of the DSPE end marks the successful modification of folic acid on the erythrocyte surface.
  • the second type is the antibody protein that can specifically recognize and bind the surface biomarkers of CTCs on the surface of red blood cells.
  • the specific method is as follows: first, the functional molecule distearoylphosphatidylethanolamine- Polyethylene glycol-biotin (DSPE-PEG-Biotin), the DSPE end is embedded in the hydrophobic erythrocyte membrane through hydrophilic-hydrophobic interaction, and the successful embedding of the DSPE end marks the successful modification of Biotin on the surface of the erythrocyte.
  • sialylated Lewis oligosaccharide-X antibody sialylated Lewis oligosaccharide-X antibody, aldehyde dehydrogenase 1 antibody, vimentin antibody, urokinase receptor antibody, heparanase antibody, prostate specific membrane antibody, anti-CD44, anti-CK18, anti - CD133, anti-CD90, anti-CD45 or anti-CD146.
  • Red blood cells and amino slides can adhere to the glass slide through hydrogen bonding between membrane proteins and amino groups on the surface of the glass slide.
  • Due to the electrostatic repulsion between red blood cells it is difficult to form a dense layered state on the surface of the glass slide.
  • This electrostatic repulsion can be greatly reduced by soaking red blood cells in polybrene solution. This is because the red blood cells are all negatively charged. After soaking in the polybrene solution, a layer of polycationic polymer polybrene can be adsorbed on the surface to achieve electrical neutrality and make the electrostatic repulsion between red blood cells disappear.
  • Polybrene-treated erythrocytes can form dense single-cell layered structures on amino glass slides.
  • the modification of polybrene can make red blood cells densely arranged on the amino glass slide, then adding the decoagulant sodium citrate can neutralize the charge of polybrene, so that polybrene is detached from the surface of red blood cells, and the surface charge of red blood cells is restored. to the pre-modification state, resulting in the shedding of large numbers of red blood cells from the slide.
  • the addition of erythrocyte lysate can further shed erythrocytes from the basal surface by disrupting the erythrocyte structure. Therefore, the shedding of most of the red blood cells on the substrate surface can be achieved by immersing the dense red blood cell biomimetic coating into the sodium citrate solution prepared in the red blood cell lysate.
  • erythrocytes Since the surface of erythrocytes is modified with antibodies targeting CTCs, it can specifically bind to CTCs in blood samples containing CTCs. At the same time, due to the role of erythrocytes themselves, non-specific adsorption of leukocytes is prevented, so that only the specifically captured biomimetic coating is on the coating. CTCs. (The schematic diagram is shown in Figure 1)
  • the adhesive glass slide in the present invention refers to a type of glass slide that has strong adhesion to biological samples after surface treatment. Because it can prevent the adhered sample from falling off, it is also called anti-detachment slide.
  • Adhesive slides are not only used to prevent detachment of various tissue sections, but also to adhere human exfoliated cells, cultured animal cells and microbial cells. Hydrophobic Adhesion Slides, Hydrophilic Adhesion Slides, Poly-Lysine Adhesion Slides, and Liquid-Based Cytology Adhesion Slides.
  • the beneficial effects of the present invention are as follows: (1) The present invention provides a functionalized red blood cell biomimetic coating that recognizes and captures circulating tumor cells with high efficiency and high specificity, which can be used in vitro for the specificity of trace CTCs in simulated blood samples and clinical patient blood samples. It is expected to play an important role in the field of early warning and prevention of cancer metastasis; (2) the present invention provides a functionalized erythrocyte biomimetic coating that recognizes and captures circulating tumor cells with high efficiency and high specificity, the functionalized erythrocyte biomimetic coating Due to its fluid cell membrane surface, the coating can capture circulating tumor cells more firmly and efficiently, with a capture efficiency of over 90%. With specific adsorption, a simple washing and washing can achieve more than 80% of the CTCs capture purity in simulated blood samples containing a large number of leukocytes or in clinical patient blood samples.
  • Figure 1 is a schematic diagram of the specific capture of CTCs by the biomimetic coating of erythrocytes
  • Figure 2 is a photo of the red blood cell bionic coating under a brightfield microscope
  • a) is the fluorescence microscope photo before washing the erythrocyte biomimetic coating with PBS;
  • b) is a fluorescence microscope photo of the biomimetic coating of red blood cells after washing with PBS;
  • Figure 6 shows the imperfect biomimetic coating structure formed by functionalized red blood cells without polybrene modification on the adhesive glass slide
  • a) is a fluorescence microscope photo before washing the biomimetic coating of Comparative Example 1 with PBS;
  • a) is a photo of the biomimetic coating of Comparative Example 1 under a brightfield microscope
  • Modification process of red blood cells Mix 30 ⁇ L of healthy human fresh red blood cells with 100 ⁇ L of DSPE-PEG-FA (1 mg/mL) in PBS, incubate at 4°C for 30 min, and wash with PBS three times to obtain folic acid-modified erythrocytes. red blood cells.
  • the surface-modified folic acid erythrocytes were then mixed with 10 mg/mL polybrene PBS solution, incubated at 4°C for 30 min, and centrifuged and washed three times with PBS to obtain surface-modified polybrene and folic acid erythrocytes, which were dispersed in PBS. ready in solution.
  • erythrocyte biomimetic coating drop the modified erythrocytes on the adhesive glass slide and incubate at 4°C for 30min. Finally, wash the unadsorbed erythrocytes with PBS. Field photos are shown in Figure 2.
  • Red blood cell biomimetic coating captures MCF-7 cells in PBS

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开了一种富集循环肿瘤细胞的红细胞仿生涂层。通过红细胞在基底上的致密排布,避免白细胞在基底表面非特异性吸附,同时红细胞表面修饰有叶酸(FA)或抗体可直接靶向CTCs,所述功能化红细胞仿生涂层凭借其具有流动性的细胞膜表面,可以实现更牢固更高效地捕获循环肿瘤细胞,捕获效率最高达到了90%以上,CTCs俘获纯度实现80%以上。红细胞源自同一供体,避免了异物引入,利用红细胞裂解液即可分离得到高纯度的CTCs。

Description

一种用于富集循环肿瘤细胞的红细胞仿生涂层 技术领域
本发明属于生物医药技术领域,具体涉及一种用于富集循环肿瘤细胞的红细胞仿生涂层。
背景技术
循环肿瘤细胞(CTCs)是从原始或转移性肿瘤中脱落后在血流中循环的癌细胞。它可以通过血液到达远处器官,引发癌症转移导致90%的癌症相关死亡。对外周血中这些CTC的分离和分析(液体活检)已经引起了人们的注意,因为它对早期癌症诊断,治疗监测,预后评估和转移诊断具有重要意义。但是,外周血中CTCs的数量极少,通常一毫升血液中只有个位数的CTCs,这对CTCs分离富集检测带来了极大的挑战。
一种出色的分离富集CTCs方法要具有极高的灵敏度以及高选择性,而且还需保持CTCs的活性。目前已经开发了众多CTCs分离富集方法,其中一类重要的分离方法是基于CTCs与血细胞的表面标志物不同的分选方法。这类方法遇到的主要挑战是由白细胞的非特异吸附导致的CTCs分离纯度低。目前解决的思路在捕获基底上修饰一层生物惰性涂层,例如聚乙二醇,聚(羧基甜菜碱丙烯酰胺)等聚合物涂层,或细胞膜与类细胞膜的仿生涂层,用于尽可能降低白细胞的非特异性吸附。但其效果并不理想。
发明内容
为了解决现有技术中存在的问题,本发明的目的是提供一种用于富集循环肿瘤细胞的红细胞仿生涂层。通过红细胞在基底上的致密排布,避免白细胞在基底表面非特异性吸附,同时红细胞表面修饰有叶酸(FA)可直接靶向CTCs,实现对CTCs的高效高纯度捕获。红细胞源自同一供体,避免了异物引入,利用红细胞裂解液即可分离得到高纯度的CTCs。
为了实现上述目的,本发明采用如下技术方案:
第一方面,提供一种用于富集循环肿瘤细胞的红细胞仿生涂层,由以下制备方法获得:
(1)、红细胞表面修饰上CTC靶向的叶酸或抗体
第一类:叶酸修饰,将10μL~50μL健康人新鲜红细胞与100μL~1000μL浓度 为1mg/mL的DSPE-PEG-FA的PBS溶液混合均匀,在4℃~25℃下静置孵育30min~2h,PBS离心洗涤三次后即可获得表面修饰叶酸的红细胞;或者,
第二类:可特异性识别CTCs表面生物标记物的抗体修饰,将10μL~50μL健康人新鲜红细胞与100μL~1000μL浓度为1mg/mL的DSPE-PEG-Biotin的PBS溶液混合均匀,4℃~25℃下静置孵育30min~2h,PBS离心洗涤三次后即可获得表面修饰Biotin的红细胞;将Biotin修饰的红细胞与100μL~1000μL浓度为100μg/mL的SA溶液混合均匀,4℃~25℃下静置孵育30min~2h,用PBS离心洗涤三次即获得表面修饰SA的红细胞;最后将SA修饰的红细胞与100μL~1000μL浓度为5μg/mL生物素化的CTCs靶向抗体溶液混合均匀,4℃~25℃下静置孵育30min~2h,用PBS离心洗涤三次即获得表面修饰CTCs靶向抗体的红细胞;
(2)红细胞表面聚凝胺的修饰
将步骤(1)表面修饰上FA或CTC靶向的抗体的红细胞与1~10mg/mL的聚凝胺PBS溶液混合,在4℃~25℃下静置孵育30min~2h,用PBS离心洗涤三次即获得表面修饰聚凝胺与FA或CTCs靶向抗体的红细胞,将其分散至PBS溶液中备用;
(3)红细胞仿生涂层的制备
将过量的步骤(2)的红细胞滴加在黏附载玻片上,4℃~25℃下静置孵育30min~1h,最后用PBS冲洗掉表面未能吸附的红细胞,即可得到可用于特异性捕获CTCs的红细胞仿生涂层。
优选地,上述红细胞仿生涂层的制备方法的步骤(1)所述的CTCs表面生物标记物为CTCs的表面生物标记物为上皮标记物细胞角蛋白、上皮细胞粘附分子、肿瘤胚胎抗原、人类表皮生长因子受体2、静脉内皮细胞分子、附膜蛋白、唾液酸化的路易斯寡糖-X、乙醛脱氢酶1、波形蛋白、尿激酶受体、乙酰肝素酶、***特异性膜抗原、CD44、CK18、CD133、CD90、CD45或CD146。
优选地,上述红细胞仿生涂层的制备方法的步骤(1)所述的CTCs靶向的抗体选自上皮标记物细胞角蛋白抗体、上皮细胞粘附分子抗体、肿瘤胚胎抗体、人类表皮生长因子受体2抗体、静脉内皮细胞分子抗体、附膜蛋白抗体、唾液酸化的路易斯寡糖-X抗体、乙醛脱氢酶1抗体、波形蛋白抗体、尿激酶受体抗体、乙酰肝素酶抗体、***特异性膜抗体、anti-CD44、anti-CK18、anti-CD133、 anti-CD90、anti-CD45或anti-CD146中的任意一种。
上述红细胞仿生涂层的制备方法的步骤(1)-(3)所述修饰反应温度为4℃。
优选地,上述红细胞仿生涂层的制备方法的步骤(3)所述的黏附载玻片为氨基载玻片。
第二方面,提供上述红细胞仿生涂层在制备识别、捕获或富集循环肿瘤细胞的试剂盒中的应用。
优选地,上述应用中红细胞仿生涂层用于富集循环肿瘤细胞的方法,主要包括以下步骤:1)用红细胞裂解液处理血液样本,以去除血液样本中的红细胞,避免样本中的红细胞对功能化红细胞仿生涂层对捕获CTCs的干扰;2)将不含红细胞的血液样本滴加在本发明的功能化红细胞仿生涂层上,将其置于37℃下,通过1-2小时的孵育使CTCs与红细胞仿生涂层发生特异性结合;3)通过PBS荡洗红细胞仿生涂层,可去除不能黏附的其他细胞,即实现了对循环肿瘤细胞的高纯度富集;4)常温下将步骤3)得到的捕获了循环肿瘤细胞的红细胞仿生涂层浸入至红细胞裂解液配置的浓度为4%的枸橼酸钠溶液中,在基底表面大部分红细胞脱落的基础上实现循环肿瘤细胞的释放过程;荡洗几次,确保红细胞破碎并脱离载玻片,收集所有清洗液,在1000rpm/min的水平离心机中离心去除上清后,再在同样转速下离心清洗三次即可得到释放的循环肿瘤细胞。
优选地,上述应用中红细胞仿生涂层用于富集循环肿瘤细胞的方法,主要包括以下步骤:1)获取术后或化疗后肿瘤病人的血液样本,经percoll细胞分离液获取淋巴细胞层;2)将淋巴细胞层滴加在本发明功能化红细胞仿生涂层上共孵育开始捕获,孵育温度为37℃;3)通过PBS荡洗红细胞仿生涂层,可去除不能黏附的其他细胞,即实现了对循环肿瘤细胞的高纯度富集;4)将步骤3)得到的捕获了循环肿瘤细胞的红细胞仿生涂层浸入至红细胞裂解液配置的浓度为4%的枸橼酸钠溶液中,在基底表面大部分红细胞脱落的基础上实现循环肿瘤细胞的释放过程;5)对从步骤4)仿生涂层上捕获到的细胞进行三荧光染色之后,通过流式定量分析其捕获CTCs数目,激光共聚焦分析其捕获情况。
本发明上述用于富集循环肿瘤细胞的红细胞仿生涂层的技术方案的原理如下(见图1):
1、红细胞修饰原理:
为了使致密红细胞仿生涂层能够捕获CTCs,红细胞还需要修饰捕获分子。修饰方法按捕获分子的不同分为修饰小分子(叶酸分子)以及修饰蛋白(抗体):
第一类是在红细胞表面修饰上可特异性识别和结合CTCs表面叶酸受体(FA acceptor)的叶酸分子(FA)。叶酸的修饰是利用亲疏水作用力将二硬脂酰基磷脂酰乙醇胺-聚乙二醇-叶酸(DSPE-PEG-FA)嵌入红细胞膜内。DSPE-PEG-FA是一种两亲嵌段共聚物,DSPE端通过亲疏水相互作用嵌入疏水性的红细胞膜内部,DSPE端的成功嵌入标志着红细胞表面叶酸的修饰成功。
第二类是在红细胞表面修饰上可特异性识别和结合CTCs表面生物标记物的抗体蛋白,具体方法为:首先,在红细胞膜表面通过亲疏水作用力嵌入功能分子二硬脂酰基磷脂酰乙醇胺-聚乙二醇-生物素(DSPE-PEG-Biotin),DSPE端通过亲疏水相互作用嵌入疏水性的红细胞膜内部,DSPE端的成功嵌入标志着红细胞表面Biotin的修饰成功。Biotin端为可特异性结合链酶亲和素(streptavidin,简称SA),SA可以作为修饰CTCs靶向的抗体的桥联分子;最后,在SA的基础上修饰生物素化的CTCs靶向的抗体,该抗体可特异性识别和结合CTCs表面的生物标记物。所描述的CTCs靶向的抗体包括但不限于上皮标记物细胞角蛋白抗体、上皮细胞粘附分子抗体、肿瘤胚胎抗体、人类表皮生长因子受体2抗体、静脉内皮细胞分子抗体、附膜蛋白抗体、唾液酸化的路易斯寡糖-X抗体、乙醛脱氢酶1抗体、波形蛋白抗体、尿激酶受体抗体、乙酰肝素酶抗体、***特异性膜抗体、anti-CD44、anti-CK18、anti-CD133、anti-CD90、anti-CD45或anti-CD146。以上抗体可特异性识别的CTCs表面生物标记物为CTCs的表面生物标记物为上皮标记物细胞角蛋白、上皮细胞粘附分子、肿瘤胚胎抗原、人类表皮生长因子受体2、静脉内皮细胞分子、附膜蛋白、唾液酸化的路易斯寡糖-X、乙醛脱氢酶1、波形蛋白、尿激酶受体、乙酰肝素酶、***特异性膜抗原、CD44、CK18、CD133、CD90、CD45或CD146。
2、平面致密红细胞仿生涂层设计原理:
红细胞与氨基载玻片可通过膜蛋白与载玻片表面氨基之间的氢键作用黏附在载玻片上,而由于红细胞之间存在静电斥力,因此难以在载玻片表面形成致密层状状态。对红细胞进行聚凝胺溶液浸泡处理后,可以大大减小这种静电斥力。这是由于红细胞均带有负电荷,在经过聚凝胺溶液浸泡后,表面可以吸附一层聚 阳离子聚合物聚凝胺,从而实现电中性,使得红细胞之间的静电斥力消失。经过聚凝胺处理后的红细胞可以在氨基载玻片上形成致密的单细胞层状结构。
通过聚凝胺的修饰可以让红细胞在氨基载玻片上致密排布,那么加入解凝剂枸橼酸钠则可以中和聚凝胺的电荷,使得聚凝胺从红细胞表面脱落,红细胞表面电荷恢复至修饰前的状态,导致大量红细胞从载玻片上脱落。不仅如此,加入红细胞裂解液可通过破坏红细胞结构进一步使红细胞从基底表面脱落。因此,通过将致密红细胞仿生涂层浸入至红细胞裂解液配置的枸橼酸钠溶液中可以实现基底表面大部分红细胞的脱落。
3、红细胞仿生涂层特异性捕获分离CTCs的原理:
由于红细胞表面修饰了靶向CTCs的抗体,因此可与含CTCs血液样本中的CTCs发生特异性结合,同时由于红细胞本身的作用,防止白细胞非特异性吸附,使得仿生涂层上只有被特异性捕获的CTCs。(原理图如图1所示)
本发明中的粘附载玻片,是指经过表面处理而对生物样本具有强烈粘附力的一类载玻片。因能防止已粘附样本脱落,故又称防脱载玻片。粘附载玻片不仅应用于各种组织切片的防脱,还能用于粘附人体脱落细胞、培养的动物细胞和微生物细胞等。疏水性粘附载玻片、亲水性粘附载玻片、多聚赖氨酸粘附载玻片和液基细胞学粘附载玻片。
本发明的有益效果在于:(1)本发明提供了一种高效高特异性识别捕获循环肿瘤细胞的功能化红细胞仿生涂层,可用体外对模拟血液样本和临床病人血液样本中微量CTCs进行特异性识别和捕获,从而有望在癌症转移的预警和预防领域发挥重要作用;(2)本发明提供了一种高效高特异性识别捕获循环肿瘤细胞的功能化红细胞仿生涂层,所述功能化红细胞仿生涂层凭借其具有流动性的细胞膜表面,可以实现更牢固更高效地捕获循环肿瘤细胞,捕获效率最高达到了90%以上,并且由于红细胞仿生涂层是由红细胞组成,因而其能避免白细胞的非特异吸附,只需简单的荡洗,就能在含有大量白细胞的模拟血液样本或者临床病人血液样本中,实现80%以上的CTCs俘获纯度。
附图说明
图1为红细胞仿生涂层特异性捕获CTCs示意图;
图2为红细胞仿生涂层在明场显微镜下的照片;
图3
a)为红细胞仿生涂层捕获MCF7在明场显微镜下的照片;
b)为图a)的局部放大图;
图4
a)为红细胞仿生涂层在PBS中捕获MCF-7的效率统计;
b)为红细胞仿生涂层在白膜层细胞中捕获MCF-7的纯度统计;
图5
a)为用PBS荡洗红细胞仿生涂层前的荧光显微镜照片;
b)为用PBS荡洗红细胞仿生涂层后的荧光显微镜照片;
图6为未经过聚凝胺修饰的功能化红细胞在黏附载玻片上形成的不完美仿生涂层结构;
图7
a)为用PBS荡洗对比例1的仿生涂层前的荧光显微镜照片;
b)为用PBS荡洗后的荧光显微镜照片;
图8
a)为明场显微镜下对比例1仿生涂层的照片;
b)为荧光显微镜下对比例1仿生涂层的照片。
具体实施方式
通过以下详细说明结合附图可以进一步理解本发明的特点和优点。所提供的实施例仅是对本发明方法的说明,而不以任何方式限制本发明揭示的其余内容。
【实施例1】使用多聚赖氨酸粘附载玻片制备的红细胞仿生涂层
红细胞的修饰过程:将30μL健康人新鲜红细胞与100μL的DSPE-PEG-FA(1mg/mL)的PBS溶液混合均匀,在4℃下静置孵育30min,用PBS离心洗涤三次即可获得叶酸修饰的红细胞。再将表面修饰叶酸的红细胞与10mg/mL的聚凝胺PBS溶液混合,在4℃下静置孵育30min,用PBS离心洗涤三次即获得表面修饰聚凝胺与叶酸的红细胞,将其分散至PBS溶液中备用。
红细胞仿生涂层的制备:将修饰好的红细胞滴加在黏附载玻片上置于4℃下静置孵育30min,最后将未能吸附上的红细胞用PBS荡洗干净,在光学显微镜下拍摄的明场照片如图2所示。
【实施例2】红细胞仿生涂层在PBS中捕获MCF-7细胞
将10μL的MCF-7细胞悬液(密度为5×10 5个/mL),滴加到制备好的红细胞仿生涂层上置于4℃下静置孵育120min,用PBS荡洗三次,洗去未能捕获的MCF-7细胞,在光学显微镜下拍摄的明场照片如图3所示。
红细胞仿生涂层在PBS中捕获MCF-7细胞的效率评估。总共进行三组实验,每组包含五个样品,准备五个制备好的功能化红细胞仿生涂层,每个红细胞仿生涂层上分别滴加10μL、20μL、30μL、40μL、50μL的预先用FDA染色的MCF-7细胞悬液(密度为5×10 5个/mL),即相当于加入了5000、10000、15000、20000、25000个MCF-7细胞,每组的样品混合均匀后将其置于37℃下静置孵育120min。孵育结束后,取1mL的PBS荡洗仿生涂层,取10μL的荡洗液在荧光显微镜下观察计数,直接数出游离的MCF-7细胞的数量,即可换算得到红细胞团簇在PBS中捕获MCF-7细胞的效率接近90%,结果如图4a)所示。
【实施例3】红细胞仿生涂层抗白细胞黏附能力评估
对提取得到的白膜层细胞进行FDA染色。滴加在制备好的功能化红细胞仿生涂层上,在37℃下孵育2h,取1mL的PBS荡洗仿生涂层,用荧光显微镜拍摄清洗前后仿生涂层的荧光照片,结果如图5所示。说明白细胞完全不能在红细胞仿生涂层上黏附,红细胞仿生涂层拥有较强的抗白细胞黏附能力。
【实施例4】红细胞仿生涂层在白膜层中捕获MCF-7细胞的纯度评估
总共进行三组实验,每组包含五个样品,每个样品均加入100μL的预先用FDA染色的白膜层细胞悬浮液(密度为2×10 6个/mL),每组五个样品分别加入400μL、80μL、40μL、20μL、10μL的预先用Hoechst染色的MCF-7细胞悬液(密度为5×10 5个/mL),即相当于加入了200000、40000、20000、10000、5000个MCF-7细胞,每组的样品混合均匀后白膜层细胞与肿瘤细胞的比值分别为1:1、5:1、10:1、20:1、40:1。将其分别滴加在制备好的五个仿生涂层上置于37℃下静置孵育120min。孵育结束后,荡洗仿生涂层,将未能吸附的细胞去除,将仿生涂层直接放在荧光显微镜下观察,直接数出滤膜表面Hoechst染色的MCF-7细胞数与FDA染色的白细胞数之间的比值,即可换算得到红细胞仿生涂层在白膜层细胞中捕获MCF-7细胞的纯度,整体结果在70%以上,如图4b)所示。
【对比例1】
此对比例为使用未修饰聚凝胺的红细胞制备红细胞仿生涂层。
制备过程除了所用的红细胞并未经过聚凝胺修饰以外,其他实验条件与实施例1完全相同,最终并未获得致密的红细胞仿生涂层,黏附载玻片上的红细胞之间空隙较大。如图6所示。
对比例1制备红细胞仿生涂层的抗白细胞黏附能力评估:对提取得到的白膜层细胞进行FDA染色。滴加在对比例1的红细胞仿生涂层上,在37℃下孵育2h,取1mL的PBS荡洗仿生涂层,用荧光显微镜拍摄清洗前后仿生涂层的荧光照片,结果如图7所示。清洗后的仿生涂层上依然有大量属于白细胞的绿色荧光,这说明对比例1的抗白细胞黏附能力较差。图8a)中红圈标记的为对比例1仿生涂层上非特异性吸附的白细胞。对比图8b)可以看出由于未经聚凝胺修饰的红细胞所形成的仿生涂层并不致密,导致大量白细胞在缝隙处非特异性黏附。

Claims (7)

  1. 一种用于富集循环肿瘤细胞的红细胞仿生涂层,其特征在于,由以下制备方法获得:
    (1)、红细胞表面修饰上CTC靶向的叶酸或抗体
    第一类:叶酸修饰,将10μL~50μL健康人新鲜红细胞与100μL~1000μL浓度为1mg/mL的DSPE-PEG-FA的PBS溶液混合均匀,在4℃~25℃下静置孵育30min~2h,PBS离心洗涤三次后即可获得表面修饰叶酸的红细胞;或者,
    第二类:可特异性识别CTCs表面生物标记物的抗体修饰,将10μL~50μL健康人新鲜红细胞与100μL~1000μL浓度为1mg/mL的DSPE-PEG-Biotin的PBS溶液混合均匀,4℃~25℃下静置孵育30min~2h,PBS离心洗涤三次后即可获得表面修饰Biotin的红细胞;将Biotin修饰的红细胞与100μL~1000μL浓度为100μg/mL的SA溶液混合均匀,4℃~25℃下静置孵育30min~2h,用PBS离心洗涤三次即获得表面修饰SA的红细胞;最后将SA修饰的红细胞与100μL~1000μL浓度为5μg/mL生物素化的CTCs靶向抗体溶液混合均匀,4℃~25℃下静置孵育30min~2h,用PBS离心洗涤三次即获得表面修饰CTCs靶向抗体的红细胞;
    (2)红细胞表面聚凝胺的修饰
    将步骤(1)获得的表面修饰上FA或CTC靶向的抗体的红细胞与1~10mg/mL的聚凝胺PBS溶液混合,在4℃~25℃下静置孵育30min~2h,用PBS离心洗涤三次即获得表面修饰聚凝胺与FA或CTCs靶向抗体的红细胞,将其分散至PBS溶液中备用;
    (3)红细胞仿生涂层的制备
    将过量的步骤(2)的红细胞滴加在黏附载玻片上,4℃~25℃下静置孵育30min~1h,最后用PBS冲洗掉表面未能吸附的红细胞,即可得到用于特异性捕获CTCs的红细胞仿生涂层。
  2. 根据权利要求1所述的用于富集循环肿瘤细胞的红细胞仿生涂层,其特征在于,所述红细胞仿生涂层的制备方法的步骤(1)所述的CTCs表面生物标记物为CTCs的表面生物标记物为上皮标记物细胞角蛋白、上皮细胞粘附分子、肿瘤胚胎抗原、人类表皮生长因子受体2、静脉内皮细胞分子、附膜蛋白、唾液酸化的路易斯寡糖-X、乙醛脱氢酶1、波形蛋白、尿激酶受体、乙酰肝素酶、***特异性膜抗原、CD44、CK18、CD133、CD90、CD45或CD146。
  3. 根据权利要求1所述的用于富集循环肿瘤细胞的红细胞仿生涂层,其特征在于,所述红细胞仿生涂层的制备方法的步骤(1)所述的CTCs靶向的抗体选自上皮标记物细胞角蛋白抗体、上皮细胞粘附分子抗体、肿瘤胚胎抗体、人类表皮生长因子受体2抗体、静脉内皮细胞分子抗体、附膜蛋白抗体、唾液酸化的路易斯寡糖-X抗体、乙醛脱氢酶1抗体、波形蛋白抗体、尿激酶受体抗体、乙酰肝素酶抗体、***特异性膜抗体、anti-CD44、anti-CK18、anti-CD133、anti-CD90、anti-CD45或anti-CD146中的任意一种。
  4. 根据权利要求1-3任一项所述的用于富集循环肿瘤细胞的红细胞仿生涂层,其特征在于,所述红细胞仿生涂层的制备方法的步骤(1)-(3)的修饰反应温度为4℃。
  5. 权利要求1-3任一项所述的红细胞仿生涂层在制备识别、捕获或富集循环肿瘤细胞的试剂盒中的应用。
  6. 根据权利要求5所述的应用,其特征在于,所述应用中红细胞仿生涂层用于富集循环肿瘤细胞的方法,包括以下步骤:1)用红细胞裂解液处理血液样本,以去除血液样本中的红细胞;2)将不含红细胞的血液样本滴加在权利要求1-3所述的红细胞仿生涂层上,将其置于37℃下,通过1-2小时的孵育使CTCs与红细胞仿生涂层发生特异性结合;3)通过PBS荡洗红细胞仿生涂层,去除不能黏附的其他细胞;4)常温下将步骤3)得到的捕获了循环肿瘤细胞的红细胞仿生涂层浸入至红细胞裂解液配置的浓度为4%的枸橼酸钠溶液中,在基底表面大部分红细胞脱落的基础上实现循环肿瘤细胞的释放过程;荡洗几次,确保红细胞破碎并脱离载玻片,收集所有清洗液,在1000rpm/min的水平离心机中离心去除上清后,再在同样转速下离心清洗三次即可得到释放的循环肿瘤细胞。
  7. 根据权利要求6所述的应用,其特征在于,所述应用中红细胞仿生涂层用于富集循环肿瘤细胞的方法,包括以下步骤:1)获取术后或化疗后肿瘤病人的血液样本,经percoll细胞分离液获取淋巴细胞层;2)将淋巴细胞层滴加在权利要求1-3所述的红细胞仿生涂层上共孵育开始捕获,孵育温度为37℃;3)通过PBS荡洗红细胞仿生涂层,去除不能黏附的其他细胞;4)将步骤3)得到的捕获了循环肿瘤细胞的红细胞仿生涂层浸入至红细胞裂解液配置的浓度为4%的枸橼酸钠溶液中,在基底表面大部分红细胞脱落的基础上实现循环肿瘤细胞的释放过 程;5)对从步骤4)仿生涂层上捕获到的细胞进行三荧光染色之后,通过流式定量分析其捕获CTCs数目,激光共聚焦分析其捕获情况。
PCT/CN2021/073204 2020-08-26 2021-01-22 一种用于富集循环肿瘤细胞的红细胞仿生涂层 WO2022041644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010867800.9 2020-08-26
CN202010867800.9A CN112011434B (zh) 2020-08-26 2020-08-26 一种用于富集循环肿瘤细胞的红细胞仿生涂层

Publications (1)

Publication Number Publication Date
WO2022041644A1 true WO2022041644A1 (zh) 2022-03-03

Family

ID=73504104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073204 WO2022041644A1 (zh) 2020-08-26 2021-01-22 一种用于富集循环肿瘤细胞的红细胞仿生涂层

Country Status (2)

Country Link
CN (1) CN112011434B (zh)
WO (1) WO2022041644A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606913A (zh) * 2023-06-29 2023-08-18 益善生物技术股份有限公司 亲水改性剂、人外周血稀有细胞egfr基因扩增检测试剂盒和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011434B (zh) * 2020-08-26 2022-01-04 武汉大学 一种用于富集循环肿瘤细胞的红细胞仿生涂层
CN113151176B (zh) * 2021-04-13 2022-07-05 武汉大学 一种基于二乙胺基乙基琼脂糖微球和球形红细胞的循环肿瘤细胞富集方法
CN113201493B (zh) * 2021-04-13 2022-07-05 武汉大学 一种具有理想形貌的红细胞团簇的制备方法
CN113713866A (zh) * 2021-08-05 2021-11-30 武汉大学 癌细胞膜内嵌的人骨微流控芯片及其制备方法与在分离循环肿瘤细胞中的应用
CN113667638B (zh) * 2021-08-17 2023-04-07 川北医学院附属医院 一种基于表面修饰的功能化红细胞及其制备方法和在分离外泌体中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235103A (zh) * 2020-02-10 2020-06-05 上海交通大学医学院附属仁济医院 一种用于细胞捕获的流动识别纳米囊泡及其制备方法与应用
CN111826349A (zh) * 2020-03-13 2020-10-27 武汉大学深圳研究院 一种基于尺寸过滤法富集循环肿瘤细胞的红细胞团簇
CN111826351A (zh) * 2020-03-13 2020-10-27 武汉大学深圳研究院 一种基于磁性分离法富集循环肿瘤细胞的磁性红细胞团簇
CN112011434A (zh) * 2020-08-26 2020-12-01 武汉大学 一种用于富集循环肿瘤细胞的红细胞仿生涂层

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1660443A (zh) * 2005-01-19 2005-08-31 中国人民解放军军事医学科学院野战输血研究所 甲氧基聚乙二醇衍生物的用途、经化学修饰的通用型红细胞及其制备方法
CN105063165B (zh) * 2015-07-31 2018-12-28 上海交通大学 循环肿瘤细胞代谢活动检测方法和装置
CN105950558A (zh) * 2016-05-27 2016-09-21 武汉大学 一种基于双抗及细胞密度的高特异性高纯度的肿瘤细胞分选方法
KR101994370B1 (ko) * 2016-08-24 2019-06-28 주식회사 제놉시 항체 및 자성 나노 입자가 결합된 전도성 고분자를 포함하는 혈중 암세포 검출 및 회수용 자성 나노 구조체
CN107449713B (zh) * 2017-07-19 2020-04-14 浙江大学 依赖于混合抗体的循环肿瘤细胞分选和富集的方法
CN108588018A (zh) * 2018-01-09 2018-09-28 段莉 一种靶向循环肿瘤细胞CTCs的功能红细胞
CN110514489B (zh) * 2019-06-05 2022-09-20 南开大学 一种用于癌症监测的特异性全血捕获循环肿瘤细胞的生物涂层及其制备方法
CN111454907A (zh) * 2020-04-14 2020-07-28 厦门大学 一种循环肿瘤细胞快速无损伤捕获、释放和检测试剂盒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235103A (zh) * 2020-02-10 2020-06-05 上海交通大学医学院附属仁济医院 一种用于细胞捕获的流动识别纳米囊泡及其制备方法与应用
CN111826349A (zh) * 2020-03-13 2020-10-27 武汉大学深圳研究院 一种基于尺寸过滤法富集循环肿瘤细胞的红细胞团簇
CN111826351A (zh) * 2020-03-13 2020-10-27 武汉大学深圳研究院 一种基于磁性分离法富集循环肿瘤细胞的磁性红细胞团簇
CN112011434A (zh) * 2020-08-26 2020-12-01 武汉大学 一种用于富集循环肿瘤细胞的红细胞仿生涂层

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606913A (zh) * 2023-06-29 2023-08-18 益善生物技术股份有限公司 亲水改性剂、人外周血稀有细胞egfr基因扩增检测试剂盒和方法
CN116606913B (zh) * 2023-06-29 2024-02-13 益善生物技术股份有限公司 亲水改性剂、人外周血稀有细胞egfr基因扩增检测试剂盒和方法

Also Published As

Publication number Publication date
CN112011434A (zh) 2020-12-01
CN112011434B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2022041644A1 (zh) 一种用于富集循环肿瘤细胞的红细胞仿生涂层
CN111826351B (zh) 一种基于磁性分离法富集循环肿瘤细胞的磁性红细胞团簇
US11098274B2 (en) Method and device for detecting circulating tumor cell
JP5343092B2 (ja) 細胞分離を行う精密濾過の方法及び装置
Franquesa et al. Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells
US20140315295A1 (en) Polymer microfilters, devices comprising the same, methods of manufacturing the same, and uses thereof
CN109507418B (zh) 具有仿细胞结构的磁性纳米粒子、免疫磁性纳米粒子及其制备方法与应用
US9927334B2 (en) Methods, compositions and devices employing alginic acid hydrogels for highly specific capture and release of biological materials
CN109153968A (zh) 从生物流体样品中分离细胞外囊泡(ev)
CN111826349B (zh) 一种基于尺寸过滤法富集循环肿瘤细胞的红细胞团簇
CN110389219B (zh) 一种上皮间质混合型及pd-l1阳性循环肿瘤细胞的富集检测方法
Cui et al. ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells
CN103630440A (zh) 一种循环肿瘤细胞的富集方法
KR101279918B1 (ko) 종양세포 검출장치 및 종양세포 검출방법
Lim et al. A novel multifunctional nanowire platform for highly efficient isolation and analysis of circulating tumor-specific markers
Chang et al. High-throughput immunomagnetic cell detection using a microaperture chip system
Jørgensen et al. A melt-electrowritten filter for capture and culture of circulating colon cancer cells
CN109100504B (zh) 一种血小板-白细胞混合膜包被免疫磁珠及其制备方法与应用
CN110907416A (zh) 一种基于空心纳米针管电穿孔***的循环肿瘤细胞检测装置及其检测方法
US11860157B2 (en) Polymer microfilters, devices comprising the same, methods of manufacturing the same, and uses thereof
CN111893023A (zh) 肿瘤细胞捕获装置及其制备、应用
WO2021010369A1 (ja) ウイルスを用いた循環腫瘍細胞の検出方法
Cheng et al. A combined negative and positive enrichment assay for cancer cells isolation and purification
CN110643482A (zh) 用于捕获与释放循环肿瘤细胞的纳米结构表面芯片的制备方法及应用
CN117448275A (zh) 一种CTCs释放制剂及CTCs的分离方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859496

Country of ref document: EP

Kind code of ref document: A1