WO2022041518A1 - 柔性压力传感器用导电碳浆及其制备方法和压力传感器 - Google Patents

柔性压力传感器用导电碳浆及其制备方法和压力传感器 Download PDF

Info

Publication number
WO2022041518A1
WO2022041518A1 PCT/CN2020/131016 CN2020131016W WO2022041518A1 WO 2022041518 A1 WO2022041518 A1 WO 2022041518A1 CN 2020131016 W CN2020131016 W CN 2020131016W WO 2022041518 A1 WO2022041518 A1 WO 2022041518A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive carbon
carbon paste
pressure sensor
resin
flexible
Prior art date
Application number
PCT/CN2020/131016
Other languages
English (en)
French (fr)
Inventor
蔺洪振
李付锦
李麟阁
程双
王健
Original Assignee
苏州烯时代材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州烯时代材料科技有限公司 filed Critical 苏州烯时代材料科技有限公司
Publication of WO2022041518A1 publication Critical patent/WO2022041518A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending

Definitions

  • the invention belongs to the technical field of conductive carbon paste for flexible pressure sensors, in particular to a conductive carbon paste for flexible pressure sensors, a preparation method and a pressure sensor.
  • the flexible pressure sensor has good flexibility, ductility, and can even be bent or even folded freely, and the structure is flexible and diverse.
  • Flexible pressure-sensitive materials are a key factor in the development of flexible pressure sensor technology. At present, the sensitive materials in flexible pressure sensors have problems such as poor stability, low sensitivity, high minimum detection limit, poor bending resistance, and insufficient adhesion to flexible substrates.
  • Chinese patent CN109785995A provides a porous conductive paste for the preparation of flexible piezoresistive sensors, using a sacrificial template with adjustable particle size to prepare the porous conductive paste, which increases the nanopores or microns after the conductive paste is formed into a film.
  • the number of holes, under the action of stress, the conductive particles around the holes are in contact with each other, which effectively reduces the conductivity of the material, thereby improving the sensitivity of the flexible piezoresistive sensor in synergy with the conductive particles.
  • its stability and bending resistance are unknown and need to be investigated .
  • Chinese patent CN104262967A discloses a sensitive material used in a pressure sensor.
  • the sensitive material has good stability and sensitivity, but its bending resistance is not involved and needs to be investigated.
  • Chinese patent CN104558701A utilizes a novel assembly method to prepare a graphene superelastic macromaterial with a specific layered microstructure.
  • the material has good mechanical resilience and pressure sensitivity.
  • the stability of the material and the adhesion to flexible substrates Adhesion is unknown, to be tested and wiped.
  • Chinese patent CN109637697A discloses a graphene conductive paste and a preparation method thereof.
  • the method includes mixing a dispersant and a solvent to obtain a mixed solution, so that the dispersant and the solvent are mixed evenly; adding graphene, carbon nanotubes and a binder to obtain a first premix; stirring and ultrasonically dispersing the first premix to obtain a second premix; grinding the second premix , obtaining conductive paste; ultrasonically dispersing the conductive paste to obtain the graphene conductive paste.
  • the method is simple and feasible, does not destroy the structures of graphene and carbon nanotubes, and the prepared graphene slurry has less agglomeration, excellent electrical conductivity, stable and uniform properties, and is suitable for large-scale industrial production.
  • the conductive paste is developed for electrode materials and does not involve pressure sensitivity and bending properties at all, and from the formulation of the conductive paste, the conductive paste is not suitable for preparing flexible pressure sensors.
  • the sensitive materials in current flexible pressure sensors have problems such as poor stability, low sensitivity, high minimum detection limit, poor bending resistance, or insufficient adhesion to flexible substrates.
  • Some materials have high sensitivity but poor bending resistance; some materials have good bending resistance but low sensitivity or stability.
  • the purpose of the present invention is to provide a new conductive carbon paste for flexible pressure sensors and a preparation method thereof in order to overcome the deficiencies of the prior art.
  • the conductive carbon paste has high sensitivity, bending resistance, high stability, and a flexible substrate. Excellent comprehensive properties such as strong inter-adhesion.
  • the present invention also provides a flexible pressure sensor.
  • the technical scheme adopted in the present invention is:
  • a conductive carbon paste for a flexible pressure sensor in terms of mass percentage, the raw material formula of the conductive carbon paste includes the following components:
  • the raw material formulation of the conductive carbon paste includes the following components:
  • the mass ratio of the graphene to carbon nanotubes is 20:1.
  • the graphene is a thin graphene sheet with 1 to 5 layers.
  • the carbon nanotubes are one or a combination of single-walled carbon nanotubes and multi-walled carbon nanotubes.
  • the dispersant is a combination of one or more of polyvinyl alcohol, polyacrylamide, lysine, and polyvinylpyrrolidone.
  • the oil-based resin is a blend resin of polyurethane resin, polysiloxane resin, and acrylic resin, wherein the mass ratio of the polyurethane resin to the polysiloxane resin is 2:5 ⁇ 2:3, the mass of the polysiloxane resin and the acrylic resin is 1:8 ⁇ 4:9.
  • the selection of the three resin blends as the resin system helps to improve the electrical stability and pressure sensitivity.
  • the polyurethane resin is an oily polyurethane resin with a solid content of 30-45%;
  • the polysiloxane resin is a solvent-free liquid polysiloxane resin
  • the acrylic resin is an oily acrylic resin with a solid content of 45-75%.
  • the combination of polyurethane resin, acrylic resin and polysiloxane resin is selected, and by adjusting the ratio of resin to graphene and carbon nanotubes, and the use of thickeners and coupling agents, it is helpful to improve the conductivity of conductive carbon paste. Stability, pressure sensitivity and bending resistance.
  • the thickening agent is locust bean gum.
  • the addition of the thickener can not only help to improve the printing performance of the conductive carbon paste, but also prevent the conductive carbon paste from settling after being placed for a period of time, thereby improving the stability of the conductive carbon paste.
  • the coupling agent is a silane coupling agent.
  • a certain amount of coupling agent is added in the formula to cooperate with the oil-based resin to further improve the adhesion between the conductive carbon paddle and the flexible substrate.
  • the first solvent is ethylene glycol.
  • the second solvent is a combination of one or more of N-methylpyrrolidone, diethylene glycol ethyl ether acetate, and ethylene glycol butyl ether.
  • the present invention adopts another technical scheme: a preparation method of the above-mentioned conductive carbon paste for a flexible pressure sensor, comprising the following steps:
  • the graphene, carbon nanotubes, dispersant and the first solvent are mixed and ground until the particle size of the slurry is 0.01-5 ⁇ m;
  • step (1) (2) adding oleoresin, coupling agent and second solvent to the slurry obtained in step (1), and grinding at 40-70°C;
  • step (3) adding the thickener to the slurry obtained in step (2), stirring, and grinding to a particle size of less than 6 ⁇ m;
  • step (3) defoaming the slurry prepared in step (3) to prepare conductive carbon slurry.
  • step (1) the grinding is performed at 50-80°C. Grinding graphene, carbon nanotubes, dispersant and the first solvent at 50-80 °C helps to increase the contact between graphene and carbon nanotubes and the orderly distribution of carbon nanotubes between graphene sheets, which is beneficial to The formation of the conductive network in the later stage improves the pressure sensitivity of the conductive carbon paste.
  • step (2) the grinding is performed at 40-70° C. for 20-40 min.
  • step (3) the stirring is performed until the slurry has no stratification.
  • step (4) the defoaming is carried out until the residual bubbles do not exceed 0.5%.
  • a flexible pressure sensor comprising a flexible substrate and a pressure sensing layer formed on the flexible substrate, wherein the pressure sensing layer is coated with the above-mentioned conductive carbon paste The coating is formed by curing on the flexible substrate.
  • the thickness of the pressure sensing layer is greater than 10 ⁇ m and less than 1000 ⁇ m.
  • the flexible substrate is a polydimethylsiloxane (PDMS) flexible substrate.
  • PDMS polydimethylsiloxane
  • the curing is baked at 100-150°C.
  • the coating is carried out by printing.
  • the present invention has the following advantages compared with the prior art:
  • the conductive carbon paste of the present invention has high sensitivity and high stability by adding graphene sheets and a small amount of carbon nanotubes in the resin system, and cooperating with the use of a dispersant, a coupling agent and a plasticizer. , Low minimum detection limit, bending resistance, strong adhesion with flexible substrates, etc.
  • a certain pressure is applied to the cured conductive carbon paste, the conductive network composed of graphene and carbon nanotubes filled in the resin system changes, the resistance of the cured conductive carbon paste increases, the pressure sensitivity is high, and tiny pressure can be sensed Variety.
  • the preparation method of the conductive carbon paste of the present invention has low requirements on equipment, simple process and easy operation.
  • the conductive carbon paste of the present invention is used to prepare a flexible pressure sensor.
  • the flexible pressure sensor has high sensitivity, the resistance can be increased under a tiny pressure of 0.5Pa, and it also has the advantages of high electrical performance stability, bending resistance and the like. .
  • Fig. 1 is the scanning electron microscope image of the sensing pattern section prepared by the conductive carbon paste of Example 1;
  • FIG. 2 is a graph showing the relationship between the resistance change rate and the pressure of the sensing pattern prepared by using the conductive carbon paste of Example 1.
  • FIG. 2 is a graph showing the relationship between the resistance change rate and the pressure of the sensing pattern prepared by using the conductive carbon paste of Example 1.
  • the conductive carbon paste for the flexible pressure sensor provided in this embodiment, in terms of mass percentage, the raw material formula includes: graphene 8%, carbon nanotubes 0.4%, ethylene glycol 50%, polyvinyl alcohol 0.05%, polyethylene Pyrrolidone 0.2%, oleoresin 12%, silane coupling agent 0.05%, locust bean gum 2%, ethylene glycol butyl ether 10% and N-methylpyrrolidone 17.3%.
  • the oily resin is polyurethane resin
  • the mass ratio of polysiloxane resin and acrylic resin is 1:2:7
  • the polyurethane resin is purchased from Dongguan Baojing Chemical Co., Ltd.
  • the model is MR-917
  • the polysiloxane resin is purchased from Wacker Chemical (China) Co., Ltd., model MSE100
  • acrylic resin purchased from Weifang Fuller New Materials Co., Ltd., model CFT8260.
  • the model of the silane coupling agent is Momentive A187.
  • Graphene is thin-layer graphene with 1-5 layers, the source is self-made, and the multi-layer graphene is obtained by mechanical/chemical exfoliation of graphite.
  • the carbon nanotubes are single-walled carbon nanotubes, purchased from Jiangsu Xianfeng Nanomaterials Technology Co., Ltd., model number XFS28.
  • the conductive carbon paste is prepared by the following method:
  • step (1) (2) mixing polyurethane resin, polysiloxane resin and acrylic resin to obtain oily resin, and then mixing oily resin, silane coupling agent, butyl glycol ether, N-methylpyrrolidone and the slurry obtained in step (1)
  • the material was added to a sand mill for grinding, the rotational speed was controlled at 1000 rpm, the grinding was performed for 30 minutes, and the grinding temperature was controlled at 50°C.
  • step (3) adding locust bean gum to the slurry obtained in step (2), adding while stirring, and stirring until uniform, and controlling the stirring speed to be 500 rpm.
  • step (3) (4) adding the slurry obtained in step (3) to a three-roll mill for grinding, grinding 3-5 times, and controlling the roll gap to be 6 ⁇ m, so that the particle size of the slurry is below 6 ⁇ m.
  • step (4) adding the slurry obtained in step (4) to a defoaming mixer for defoaming and stirring treatment, the time is controlled to 90 seconds, the vacuum degree is controlled to 0.1 MPa, the rotational speed is controlled to 2500 rpm, the residual bubbles are less than 0.5%, and the system is prepared.
  • the raw material formula of the conductive carbon paste for the flexible pressure sensor provided in this embodiment is shown in Table 1, wherein the oily resin is polyurethane resin, polysiloxane resin and acrylic resin in a mass ratio of 2:3:7.
  • the dispersant is lysine.
  • the second solvent is butyl glycol ether and N-methylpyrrolidone.
  • the resins are polyurethane resin, polysiloxane resin and acrylic resin in a mass ratio of 1:2:7.
  • the dispersant is polyvinylpyrrolidone.
  • the second solvent was N-methylpyrrolidone and diethylene glycol ether acetate.
  • the raw material formula of the conductive carbon paste for the flexible pressure sensor provided in this embodiment is shown in Table 1, and the others are the same as in Embodiment 1, wherein the resins are polyurethane resin, polysiloxane resin and acrylic resin according to the mass ratio of 1 :2:7.
  • the dispersant is polyacrylamide.
  • the second solvent was N-methylpyrrolidone and diethylene glycol ether acetate.
  • the raw material formulation of the conductive carbon paste is shown in Table 1, and the others are the same as those in Example 1.
  • the raw material formulation of the conductive carbon paste is shown in Table 1, and the others are the same as those in Example 1.
  • the raw material formulation of the conductive carbon paste is shown in Table 1, and the others are the same as those in Example 1.
  • Table 1 is the raw material formulations of the conductive carbon pastes of Examples 1 to 4 and Comparative Examples 1 to 4 (in terms of mass percentage)
  • test samples The conductive carbon paste of Example 1 was printed on a PDMS flexible substrate by screen printing, and baked at 100-150 °C for 3 minutes to form a conductive carbon paste with a thickness of 20 ⁇ m and an area of 1 cm ⁇ 1 cm on the flexible substrate. sense pattern.
  • the electrical properties of the test samples were tested before and after bending. Before bending, the resistance was 45.6 ⁇ ; after 10,000 times of bending, the resistance was 45.75 ⁇ . It can be seen that after 10,000 times of bending, the resistance change is small, indicating that the electrical properties of the sample are stable.
  • test samples The conductive pastes of Examples 2-4 and Comparative Examples 1-4 were respectively printed on the PDMS flexible substrate by screen printing, baked at 100-150°C for 3 minutes, and formed on the flexible substrate. A sensing pattern with a thickness of 20 ⁇ m and an area of 1 cm ⁇ 1 cm.
  • the samples prepared by using the conductive carbon pastes of Examples 2 to 4 are respectively subjected to the bending resistance test of bending 90 degrees, and the electrical properties of the samples before and after bending are respectively carried out.
  • the results are as follows: after the samples prepared by using the conductive carbon pastes of Examples 2 to 4 are bent 10,000 times, the sensing pattern is not damaged and does not fall off. And the difference between the resistance before bending and the resistance change after 10,000 times of bending is in the range of 0-0.15 ⁇ , the resistance change is small, and the electrical properties of the sample are stable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种柔性压力传感器用导电碳浆及其制备方法和压力传感器,以质量百分含量计,该导电碳浆的原料配方包括以下组分:石墨烯1~25%、碳纳米管0.04~1.5%、分散剂0.001~1%、油性树脂5~45%、增稠剂1~10%、偶联剂0.01~5%、第一溶剂25~70%和第二溶剂20~40%。本发明的导电碳浆通过在树脂体系中添加石墨烯片和少量的碳纳米管,配合分散剂、偶联剂和增塑剂的使用,使得制备的导电碳浆具有高灵敏性、高稳定性、最低检测极限低、耐弯折、与柔性基底间粘附力强等优点。在压力作用下,固化后的导电碳浆树脂体系中的石墨烯与碳纳米管所构成的导电网络发生变化,已固化的导电碳浆电阻增大,压力敏感性高,可感知微小压力变化。

Description

柔性压力传感器用导电碳浆及其制备方法和压力传感器
优先权声明
本申请要求于2020年8月28日提交中国专利局、申请号为202010883716.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于柔性压力传感器用导电碳浆技术领域,具体涉及一种柔性压力传感器用导电碳浆及制备方法和压力传感器。
背景技术
柔性压力传感器具有良好的柔韧性、延展性、甚至可自由弯曲甚至折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂被测量对象进行检测。柔性压力敏感材料则是柔性压力传感器技术开发的关键因素。目前,柔性压力传感器中敏感材料存在稳定性不好、灵敏度不高、最低检测极限高、耐弯折性不佳、与柔性基底粘附力不足等问题。
如中国专利CN109785995A提供了一种用于制备柔性压阻式传感器的多孔导电浆料,利用粒径可调的牺牲性模板制备多孔导电浆料,增加了导电浆料成膜后的纳米孔或微米孔数量,在应力作用下,孔周围的导电颗粒相互接触,有效降低材料的电导率,从而与导电颗粒协同提升柔性压阻式传感器的灵敏度,然而其稳定性和耐折弯性未知,有待考察。
中国专利CN104262967A公开了一种用于压力传感器中的敏感材料,该敏感材料具有较好的稳定性和灵敏性,然而其耐折弯性未涉及,有待考察。
中国专利CN104558701A利用新型组装方法制备了一种具体层状微观结构的石墨烯超弹性宏观材料,该材料具有较好的力学回弹特性和压力敏感性,然而该材料的稳定性和与柔性基底粘附力未知,有待考擦。
中国专利CN109637697A公开了一种石墨烯导电浆料及其制备方法,该方法包括将分散剂和溶剂进行混合处理得到混合液,以使所述分散剂和所述溶剂混合均匀;向所述混合液中加入石墨烯、碳纳米管以及粘结剂得到第一预混料;将所述第一预混料 进行搅拌和超声分散得到第二预混料;将所述第二预混料进行研磨处理,得到导电浆料;将所述导电浆料进行超声分散得到所述石墨烯导电浆料。该方法简单可行,不会破坏石墨烯和碳纳米管的结构,制得的石墨烯浆料具有较少的团聚现象和优良的导电性能,性质稳定均一,适合大规模工业化生产。然而该导电浆料是针对电极材料进行开发的,完全不涉及压力敏感性和折弯性能,且从导电浆料的配方来看,该导电浆料也不适用于制备柔性压力传感器上。
总之,目前的柔性压力传感器中的敏感材料存在稳定性不好、灵敏度不高、最低检测极限高、耐折弯性不佳或与柔性基底间粘附力不足等问题。如有的材料灵敏度高,但耐折弯性不佳;有的材料耐折弯性好,但灵敏度或稳定性不高。目前还没有一种材料能够很好的满足稳定性、灵敏度、耐折弯性、最低检测极限低及与柔性基底间粘附力好等综合性能要求。
发明内容
本发明的目的是为了克服现有技术的不足而提供一种新的柔性压力传感器用导电碳浆及其制备方法,该导电碳浆具有高灵敏性、耐折弯、高稳定性、与柔性基底间粘附力强等优异的综合性能。
本发明还提供一种柔性压力传感器。
为达到上述目的,本发明采用的技术方案是:
一种柔性压力传感器用导电碳浆,以质量百分含量计,所述导电碳浆的原料配方包括以下组分:
Figure PCTCN2020131016-appb-000001
根据本发明的一些优选实施方式,以质量百分含量计,所述导电碳浆的原料配方包括以下组分:
Figure PCTCN2020131016-appb-000002
优选地,所述石墨烯与碳纳米管的质量比为20:1。
根据本发明的一些实施方面,所述石墨烯为1~5层的薄层石墨烯片。
根据本发明的一些实施方面,所述碳纳米管为单壁碳纳米管、多壁碳纳米管中的一种或几种的组合。
根据本发明的一些实施方面,所述分散剂为聚乙烯醇、聚丙烯酰胺、赖氨酸、聚乙烯吡咯烷酮中的一种或多种的组合。
根据本发明的一些实施方面,所述油性树脂为聚氨酯树脂、聚硅氧烷树脂、丙烯酸树脂三者的共混树脂,其中,所述聚氨酯树脂与聚硅氧烷树脂的质量比为2:5~2:3,所述聚硅氧烷树脂与丙烯酸树脂的质量为1:8~4:9。选用该三种树脂共混作为树脂体系,有助于提高电性能稳定性和压力敏感性能。
进一步地,所述聚氨酯树脂为固含量30-45%油性聚氨酯树脂;
所述聚硅氧烷树脂为无溶剂的液体聚硅氧烷树脂;
所述丙烯酸树脂为固含量45-75%的油性丙烯酸树脂。
选用聚氨酯树脂、丙烯酸树脂及聚硅氧烷树脂三者复配,并通过调整树脂与石墨烯、碳纳米管的比例,配合增稠剂、偶联剂的使用,有助于提高导电碳浆的稳定性、压力敏感性及耐折弯性。
根据本发明的一些实施方面,所述增稠剂为槐豆胶。所述增稠剂的添加不仅能够有助于提高导电碳浆的印刷性能,且还能避免导电碳浆放置一段时间后沉降,提高导电碳浆的稳定性。
根据本发明的一些实施方面,所述偶联剂为硅烷偶联剂。配方中添加一定量的偶联剂,与所述油性树脂配合,进一步提高电导碳桨与柔性衬底的粘附力。
根据本发明的一些实施方面,所述第一溶剂为乙二醇。
根据本发明的一些实施方面,所述第二溶剂为N-甲基吡咯烷酮、二乙二醇***醋酸酯、乙二醇丁醚中的一种或多种的组合。
本发明采取另一技术方案:一种上述柔性压力传感器用导电碳浆的制备方法,包括以下步骤:
(1)按配方,将石墨烯、碳纳米管、分散剂和第一溶剂混合,研磨,直至浆料粒度在0.01~5μm;
(2)将油性树脂、偶联剂和第二溶剂加入经步骤(1)制得的浆料中,在40~70℃下研磨;
(3)将增稠剂加入经步骤(2)制得的浆料中,搅拌,研磨至粒度6μm以下;
(4)将经步骤(3)制得的浆料进行脱泡,制得导电碳浆。
进一步地,步骤(1)中,所述研磨在50~80℃下进行。将石墨烯、碳纳米管、分散剂和第一溶剂在50~80℃下研磨有助于增加石墨烯和碳纳米管的接触以及碳纳米管在石墨烯片层之间的有序分布,利于后期导电网络的形成,进而提高导电碳浆的压力敏感性。
进一步地,步骤(2)中,所述研磨在40~70℃下进行,时间为20~40min。
进一步地,步骤(3)中,所述搅拌至浆料无分层。
进一步地,步骤(4)中,所述脱泡至气泡残留不超过0.5%。
本发明采取的又另一技术方案,一种柔性压力传感器,包括柔性衬底及形成在所述柔性衬底上的压力传感层,所述压力传感层采用上述所述的导电碳浆涂覆在所述柔性衬底上固化形成。
压力传感层的厚度大于10μm小于1000μm。
进一步地,所述柔性衬底为聚二甲基硅氧烷(PDMS)柔性衬底。
进一步地,所述固化在100~150℃下烘烤。
进一步地,所述涂覆采用印刷的方式进行涂覆。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明的导电碳浆通过在树脂体系中添加石墨烯片和少量的碳纳米管,配合分散剂、偶联剂和增塑剂的使用,使得制备的导电碳浆具有高灵敏性、高稳定性、最低检测极限低、耐弯折、与柔性基底间粘附力强等优点。对固化后的导电碳浆施加一定压 力,填充在树脂体系中的石墨烯与碳纳米管所构成的导电网络发生变化,固化后的导电碳浆电阻增大,压力敏感性高,可感知微小压力变化。
本发明导电碳浆的制备方法对设备要求低,工艺简单,易操作。
将本发明的导电碳浆用于制备柔性压力传感器,柔性压力传感器具有高灵敏性,在0.5Pa的微小压力下即可使电阻增大,还具有高电性能稳定性,耐折弯性等优点。
附图说明
图1为采用实施例1的导电碳浆所制备的传感图案截面的扫描电镜图;
图2为采用实施例1的导电碳浆所制备的传感图案的电阻变化率随压力变化关系图。
具体实施方式
下面结合具体实施例详细说明本发明的技术方案,以便本领域技术人员更好理解和实施本发明的技术方案,但并不因此将本发明限制在所述的实例范围之中。
实施例1
本实施例提供的用于柔性压力传感器的导电碳浆,以质量百分数计,其原料配方包括:石墨烯8%、碳纳米管0.4%、乙二醇50%、聚乙烯醇0.05%、聚乙烯吡咯烷酮0.2%、油性树脂12%、硅烷偶联剂0.05%、槐豆胶2%、乙二醇丁醚10%和N-甲基吡咯烷酮17.3%。
其中,油性树脂为聚氨酯树脂、聚硅氧烷树脂和丙烯酸树脂的质量比为1:2:7,聚氨酯树脂购自东莞宝景化工有限公司,型号为MR-917;聚硅氧烷树脂购自瓦克化学(中国)有限公司,型号为MSE100;丙烯酸树脂购自潍坊富乐新材料有限公司,型号为CFT8260。
硅烷偶联剂的型号为迈图A187。
石墨烯为1~5层的薄层石墨烯,来源为自制,由石墨经机械/化学剥离得到此多层石墨烯。
碳纳米管为单壁碳纳米管,购自江苏先丰纳米材料科技有限公司,型号为XFS28。
该导电碳浆通过以下方法制备得到:
(1)将石墨烯、碳纳米管、聚乙烯醇、聚乙烯吡咯烷酮和乙二醇混合,加入砂磨机研磨,转速控制2500转/分钟,研磨120分钟直至浆料粒度在0.01~5μm,研磨温度控制在60℃。
(2)将聚氨酯树脂、聚硅氧烷树脂和丙烯酸树脂混合,得到油性树脂,然后将油性树脂、硅烷偶联剂、乙二醇丁醚、N-甲基吡咯烷酮和步骤(1)得到的浆料加入砂磨机进行研磨,转速控制为1000转/分钟,研磨30分钟,研磨温度控制在50℃。
(3)在步骤(2)得到的浆料中加入槐豆胶,边搅拌边加入,并搅拌至均匀,搅拌速度控制为500转/分钟。
(4)将步骤(3)得到的浆料加入三辊研磨机研磨,研磨3~5遍,辊间隙控制为6μm,使得浆料粒度在6μm以下。
(5)将步骤(4)得到的浆料加入脱泡搅拌机进行脱泡搅拌处理,时间控制为90秒,真空度控制为0.1MPa,转速控制为2500转/分钟,气泡残留0.5%以下,制得用于柔性压力传感器的导电碳浆。
实施例2
本实施例提供的用于柔性压力传感器的导电碳浆,其原料配方参见表1所示,其中,油性树脂为聚氨酯树脂、聚硅氧烷树脂和丙烯酸树脂的质量比为2:3:7。
分散剂为赖氨酸。
第二溶剂为乙二醇丁醚和N-甲基吡咯烷酮。
实施例3
本实施例提供的用于柔性压力传感器的导电碳浆,其原料配方参见表1所示,其他同实施例1,其中,
树脂为聚氨酯树脂、聚硅氧烷树脂和丙烯酸树脂按质量比为1:2:7。
分散剂为聚乙烯吡咯烷酮。
第二溶剂为N-甲基吡咯烷酮和二乙二醇***醋酸酯。
实施例4
本实施例提供的用于柔性压力传感器的导电碳浆,其原料配方参见表1所示,其他同实施例1,其中,树脂为聚氨酯树脂、聚硅氧烷树脂和丙烯酸树脂按质量比为1:2:7。分散剂为聚丙烯酰胺。第二溶剂为N-甲基吡咯烷酮和二乙二醇***醋酸酯。
对比例1
本对比例提供的导电碳浆,其原料配方参见表1所示,其中石墨烯与碳纳米管的质量比为4:1,其他同实施例1。
对比例2
本对比例提供的导电碳浆,其原料配方参见表1所示,其他同实施例1。
本对比例中,油性树脂中不加聚氨酯树脂,采用聚硅氧烷与丙烯酸树脂的质量比为2:7。
对比例3
本对比例提供的导电碳浆,其原料配方参见表1所示,其他同实施例1。
本对比例中,油性树脂中不加聚硅氧烷树脂,采用聚氨酯树脂与丙烯酸树脂的质量比为1:7。
对比例4
本对比例提供的导电碳浆,其原料配方参见表1所示,其他同实施例1。
本对比例中,油性树脂仅使用丙烯酸树脂。
表1为实施例1~4和对比例1~4的导电碳浆的原料配方(以质量百分含量计)
Figure PCTCN2020131016-appb-000003
性能测试
1、实施例1的导电碳浆的性能测试
检测样品的制备:将实施例1的导电碳浆通过丝网印刷印刷在PDMS柔性基底上, 经100~150℃烘烤3分钟,在柔性基底上形成厚度为20μm,面积为1cm×1cm的传感图案。
A、对使用实施例1的导电碳浆所制备的传感图案截面进行扫描电镜分析,如图1所示。
B、对检测样品进行弯折90度测试耐弯折性能,弯折1万次后,传感图案无损坏,不脱落。
对检测样品在弯折前后分别进行电性能检测,弯折前,电阻为45.6Ω;弯折1万次后,电阻为45.75Ω。可见,弯折1万次后,电阻变化小,表明样品的电性能稳定。
C、对样品的传感图案施加压力,传感图案的电阻变化率(△R/R 0,其中△R=R RT-R 0,R 0为初始电阻,R RT为实时电阻)随压力的变化,如图2所示。从图2可见,传感图案层的电阻随压力增加而增大,当对传感图案施加0.5Pa的压力时,其电阻变化率为0.00525,根据灵敏度公式S=△R/R 0/P(P为对样品施加的压力),其对应灵敏度为10.5kPa -1
2、对实施例2~4和对比例1~4的导电浆料进行性能检测
1、检测样品的制备:分别将实施例2-4和对比例1~4的导电浆料通过丝网印刷印刷在PDMS柔性基底上,经100~150℃烘烤3分钟,在柔性基底上形成厚度20μm,面积为1cm×1cm的传感图案。
2、分别对采用实施例2~4的导电碳浆的制得的样品进行弯折90度的耐弯折性测试,并对弯折前后的样品分别进行电性能检测。
结果为:采用实施例2~4的导电碳浆制得的样品在弯折1万次后,传感图案无损坏,不脱落。且弯折前的电阻和弯折1万次后的电阻变化差值在0~0.15Ω范围内,电阻变化小,样品的电性能稳定。
3、分别对采用实施例2~4的导电碳浆制得的样品施加压力,传感图案的电阻变化率随压力的变化的曲线图与实施例1的样品的曲线图基本一致,表明具有较好的压力敏感性。
分别对采用对比例1-4的导电碳浆制得的样品施加压力,结果当施加的压力从0.5Pa一直到25kPa,样品的电阻基本没有变化,无压力敏感性,故不对采用对比例1~4的导电碳浆制得的样品进行其他性能的测试。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人 士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (16)

  1. 一种柔性压力传感器,包括柔性衬底及形成在所述柔性衬底上的压力传感层,所述压力传感层采用导电碳浆涂覆在所述柔性衬底上固化形成,其特征在于,以质量百分含量计,所述导电碳浆的原料配方包括以下组分:
    Figure PCTCN2020131016-appb-100001
    其中,所述油性树脂为聚氨酯树脂、聚硅氧烷树脂、丙烯酸树脂三者的共混树脂,其中,所述聚氨酯树脂与聚硅氧烷树脂的质量比为2:5~2:3,所述聚硅氧烷树脂与丙烯酸树脂的质量为1:8~4:9;
    所述增稠剂为槐豆胶;
    所述偶联剂为硅烷偶联剂;
    所述第一溶剂为乙二醇;
    所述第二溶剂为N-甲基吡咯烷酮、二乙二醇***醋酸酯、乙二醇丁醚中的一种或多种的组合;
    所述柔性衬底为聚二甲基硅氧烷柔性衬底;
    所述压力传感层的厚度大于10μm小于1000μm;
    所述导电碳浆的制备方法包括以下步骤:
    (1)按配方,将石墨烯、碳纳米管、分散剂和第一溶剂混合,研磨,直至浆料粒度在0.01~5μm;
    (2)将油性树脂、偶联剂和第二溶剂加入经步骤(1)制得的浆料中,研磨;
    (3)将增稠剂加入经步骤(2)制得的浆料中,搅拌,研磨至粒度6μm以下;
    (4)将经步骤(3)制得的浆料进行脱泡,制得所述导电碳浆。
  2. 一种柔性压力传感器用导电碳浆,其特征在于,以质量百分含量计,所述导电 碳浆的原料配方包括以下组分:
    Figure PCTCN2020131016-appb-100002
  3. 根据权利要求2所述的柔性压力传感器用导电碳浆,其特征在于,以质量百分含量计,所述导电碳浆的原料配方包括以下组分:
    Figure PCTCN2020131016-appb-100003
  4. 根据权利要求3所述的柔性压力传感器用导电碳浆,其特征在于:所述碳纳米管为单壁碳纳米管、多壁碳纳米管中的一种或几种。
  5. 根据权利要求3所述的柔性压力传感器用导电碳浆,其特征在于:所述石墨烯为1~5层的石墨烯片。
  6. 根据权利要求3所述的柔性压力传感器用导电碳浆,其特征在于:所述油性树脂为聚氨酯树脂、聚硅氧烷树脂、丙烯酸树脂三者的共混树脂,其中,所述聚氨酯树脂与聚硅氧烷树脂的质量比为2:5~2:3,所述聚硅氧烷树脂与丙烯酸树脂的质量为1:8~4:9。
  7. 根据权利要求6所述的柔性压力传感器用导电碳浆,其特征在于:所述聚氨酯树脂为固含量30-45%油性聚氨酯树脂,所述聚硅氧烷树脂为无溶剂的液体聚硅氧 烷树脂,所述丙烯酸树脂为固含量45-75%的油性丙烯酸树脂。
  8. 根据权利要求3所述的柔性压力传感器用导电碳浆,其特征在于:所述增稠剂为槐豆胶;所述偶联剂为硅烷偶联剂。
  9. 根据权利要求3所述的柔性压力传感器用导电碳浆,其特征在于:所述第一溶剂为乙二醇;所述第二溶剂为N-甲基吡咯烷酮、二乙二醇***醋酸酯、乙二醇丁醚中的一种或多种的组合。
  10. 根据权利要求3所述的柔性压力传感器用导电碳浆,其特征在于:所述分散剂为聚乙烯醇、聚丙烯酰胺、赖氨酸、聚乙烯吡咯烷酮中的一种或多种的组合。
  11. 一种权利要求2~10中任一项权利要求所述的柔性压力传感器用导电碳浆的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)按配方,将石墨烯、碳纳米管、分散剂和第一溶剂混合,研磨,直至浆料粒度在0.01~5μm;
    (2)将油性树脂、偶联剂和第二溶剂加入经步骤(1)制得的浆料中,研磨;
    (3)将增稠剂加入经步骤(2)制得的浆料中,搅拌,研磨至粒度6μm以下;
    (4)将经步骤(3)制得的浆料进行脱泡,制得导电碳浆。
  12. 根据权利要求11所述的制备方法,其特征在于:步骤(1)中,所述研磨在50~80℃下进行;步骤(2)中,所述研磨在40~70℃下进行,时间为20~40min;步骤(3)中,所述搅拌至浆料无分层。
  13. 一种柔性压力传感器,包括柔性衬底及形成在所述柔性衬底上的压力传感层,其特征在于:所述压力传感层采用权利要求2~10中任一项权利要求所述的导电碳浆涂覆在所述柔性衬底上固化形成。
  14. 根据权利要求13所述的柔性压力传感器,其特征在于:所述压力传感层的厚度大于10μm小于1000μm。
  15. 根据权利要求13所述的柔性压力传感器,其特征在于:所述柔性衬底为聚二甲基硅氧烷柔性衬底。
  16. 根据权利要求13所述的柔性压力传感器,其特征在于:所述固化为在100~150℃下烘烤。
PCT/CN2020/131016 2020-08-28 2020-11-24 柔性压力传感器用导电碳浆及其制备方法和压力传感器 WO2022041518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010883716.6A CN112254850B (zh) 2020-08-28 2020-08-28 柔性压力传感器用导电碳浆及其制备方法和压力传感器
CN202010883716.6 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022041518A1 true WO2022041518A1 (zh) 2022-03-03

Family

ID=74224570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131016 WO2022041518A1 (zh) 2020-08-28 2020-11-24 柔性压力传感器用导电碳浆及其制备方法和压力传感器

Country Status (2)

Country Link
CN (1) CN112254850B (zh)
WO (1) WO2022041518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923606A (zh) * 2022-05-10 2022-08-19 郑州大学 一种蜘蛛网状柔性压力传感材料及其制备方法、压力传感器、可穿戴设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093588B (zh) * 2021-03-09 2022-06-24 青岛大学 一种基于面料的柔性控制***及方法
CN113461997A (zh) * 2021-04-22 2021-10-01 四川大学 一种应变传感材料、尺寸测量手套及其制备方法和应用
CN114262467A (zh) * 2021-12-22 2022-04-01 广东南海启明光大科技有限公司 一种导电海绵及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009029A (zh) * 2016-05-25 2016-10-12 郑州大学 具有压敏特性的多孔导电高分子材料的制备方法及其应用
CN107540869A (zh) * 2017-09-15 2018-01-05 陕西科技大学 一种聚合物泡沫基多级碳纳米复合压敏材料的制备方法
WO2019060870A1 (en) * 2017-09-25 2019-03-28 Kent State University APPARATUS FOR MEASURING THE PROFILE OF A NORMAL STRESS AND SHEARING OF A SURFACE
CN109844447A (zh) * 2016-07-12 2019-06-04 新度技术有限公司 一种纳米复合力传感材料
CN109945999A (zh) * 2019-03-15 2019-06-28 电子科技大学 一种柔性薄膜压力传感器的制备方法
CN111238695A (zh) * 2020-01-17 2020-06-05 清华大学 压阻材料层、压力传感器及制备方法
CN111505065A (zh) * 2020-04-20 2020-08-07 河北工业大学 一种基于超级电容传感原理的叉指型对电极式柔性触觉传感器及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232599C (zh) * 2004-04-16 2005-12-21 南京工业大学 纳米透明隔热复合涂料
CN102732039A (zh) * 2012-07-13 2012-10-17 合肥工业大学 基于石墨烯的柔性触觉传感器压力敏感材料及制备方法
CN103834235A (zh) * 2014-02-20 2014-06-04 江苏格美高科技发展有限公司 一种导电石墨烯碳浆油墨及其制备方法
CN104212242B (zh) * 2014-09-02 2016-08-24 江苏格美高科技发展有限公司 一种喷墨用石墨烯与碳纳米管导电油墨的制备方法
CN107163686B (zh) * 2017-05-08 2021-01-26 华侨大学 一种石墨烯复合导电油墨的制备方法及其应用
CN106928773B (zh) * 2017-05-08 2020-09-25 华侨大学 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
CN107674505A (zh) * 2017-11-23 2018-02-09 深圳市国创珈伟石墨烯科技有限公司 一种石墨烯导电油墨及其制备方法
CN108395822A (zh) * 2018-05-31 2018-08-14 哈尔滨金纳科技有限公司 一种螺旋碳纳米管-石墨烯杂化物防腐涂料的制备方法
KR102033714B1 (ko) * 2019-01-21 2019-10-18 리그마글라스주식회사 사물인터넷 기반의 투명한 발열 유리 및 이의 제조 방법
KR102115267B1 (ko) * 2019-03-29 2020-05-26 울산과학기술원 자기 치유되는 구조 건전성 감시장치 및 이를 이용한 감시방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009029A (zh) * 2016-05-25 2016-10-12 郑州大学 具有压敏特性的多孔导电高分子材料的制备方法及其应用
CN109844447A (zh) * 2016-07-12 2019-06-04 新度技术有限公司 一种纳米复合力传感材料
CN107540869A (zh) * 2017-09-15 2018-01-05 陕西科技大学 一种聚合物泡沫基多级碳纳米复合压敏材料的制备方法
WO2019060870A1 (en) * 2017-09-25 2019-03-28 Kent State University APPARATUS FOR MEASURING THE PROFILE OF A NORMAL STRESS AND SHEARING OF A SURFACE
CN109945999A (zh) * 2019-03-15 2019-06-28 电子科技大学 一种柔性薄膜压力传感器的制备方法
CN111238695A (zh) * 2020-01-17 2020-06-05 清华大学 压阻材料层、压力传感器及制备方法
CN111505065A (zh) * 2020-04-20 2020-08-07 河北工业大学 一种基于超级电容传感原理的叉指型对电极式柔性触觉传感器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114923606A (zh) * 2022-05-10 2022-08-19 郑州大学 一种蜘蛛网状柔性压力传感材料及其制备方法、压力传感器、可穿戴设备
CN114923606B (zh) * 2022-05-10 2023-10-31 郑州大学 一种蜘蛛网状柔性压力传感材料及其制备方法、压力传感器、可穿戴设备

Also Published As

Publication number Publication date
CN112254850B (zh) 2022-01-11
CN112254850A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022041518A1 (zh) 柔性压力传感器用导电碳浆及其制备方法和压力传感器
WO2020113807A1 (zh) 一种用于制备柔性压阻式传感器的多孔导电浆料及其制备方法和应用
TWI449664B (zh) 用於奈米碳管電子發射陰極之固化黏合劑材料
CN107674505A (zh) 一种石墨烯导电油墨及其制备方法
CN106928773B (zh) 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
CN109467931B (zh) 一种基于纳米液态金属的柔性介电弹性体复合材料及其制备方法
WO2016008187A1 (zh) 导电胶的制备方法及导电胶
TWI437052B (zh) 導電金屬墨水組成物及導電圖案之製備方法
TW201134895A (en) Conductive metal ink composition and preparation method for conductive pattern
CN106752878A (zh) 一种石墨烯低压发热涂料及其制备方法
CN102093774A (zh) 导电墨水及其制备方法
WO2020151346A1 (zh) 一种复合导电银浆及其制备方法
WO2020239143A1 (zh) 一种石墨烯导电油墨及其制备方法
CN115101237A (zh) 一种银电极导电浆料及由其制备的银电极、电热膜
CN109727706A (zh) 一种柔性透明导电薄膜及其制备方法
CN105788702A (zh) 一种电容式触摸屏精细线路丝网印刷用导电银浆
CN110993149A (zh) 一种金属网格电容式柔性触摸屏用银浆及其制备方法与应用
KR101152358B1 (ko) 인쇄 페이스트 조성물 및 이로 형성된 전극
CN116254017B (zh) 一种可拉伸复合导电油墨及其制备方法
JP2010165594A (ja) 導電性ペースト、その製造方法、これを用いた回路配線、及びその製造方法
WO2020111805A1 (ko) 신축성 페이스트 조성물
CN114736631A (zh) 一种导电胶粘剂的制备方法
CN115274213A (zh) 一种耐弯折的电阻碳浆的制备方法
WO2022048040A1 (zh) 血糖试纸用导电碳浆及其制备方法和血糖试纸
JP2008280442A (ja) Ptcインク組成物の製造方法及びptcインク組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951186

Country of ref document: EP

Kind code of ref document: A1