WO2022035172A1 - 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지 Download PDF

Info

Publication number
WO2022035172A1
WO2022035172A1 PCT/KR2021/010541 KR2021010541W WO2022035172A1 WO 2022035172 A1 WO2022035172 A1 WO 2022035172A1 KR 2021010541 W KR2021010541 W KR 2021010541W WO 2022035172 A1 WO2022035172 A1 WO 2022035172A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lithium secondary
secondary battery
coating material
positive electrode
Prior art date
Application number
PCT/KR2021/010541
Other languages
English (en)
French (fr)
Inventor
김수현
이종찬
김기현
손권남
정다운
Original Assignee
주식회사 엘지에너지솔루션
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션, 서울대학교산학협력단 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022526464A priority Critical patent/JP7410291B2/ja
Priority to US17/781,301 priority patent/US20220411269A1/en
Priority to CN202180005894.1A priority patent/CN114556631A/zh
Priority to EP21856178.5A priority patent/EP4027412A4/en
Publication of WO2022035172A1 publication Critical patent/WO2022035172A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode coating material for a lithium secondary battery, a manufacturing method thereof, a cathode and a lithium secondary battery comprising the coating material, and more specifically, a polymer having a cationic functional group on the surface of graphene oxide is grafted, It is applied as a cathode coating material of a lithium secondary battery to prevent the elution of lithium polysulfide, thereby improving the battery performance, a cathode coating material for a lithium secondary battery, a manufacturing method thereof, and a cathode and a lithium secondary battery comprising the coating material.
  • Electrochemical devices are the field receiving the most attention in this aspect, and among them, the development of secondary batteries such as lithium-sulfur batteries that can be charged and discharged has become the focus of interest, and recently, energy density has been increased in developing such batteries. In order to improve it, it is leading to R&D on the design of new electrodes and batteries.
  • Such an electrochemical device among them, a lithium-sulfur battery (Li-S battery) using lithium metal as a negative electrode and sulfur as a positive electrode has higher theoretical capacity and higher energy density (usually about approx. 2,500 Wh/kg), and because sulfur, which can be easily obtained from nature, is used as a positive electrode, it has economic feasibility, and it is in the spotlight as a next-generation secondary battery that can replace lithium ion batteries.
  • a reduction reaction of sulfur and an oxidation reaction of lithium metal occur during discharge.
  • sulfur forms lithium polysulfide (LiPS) having a linear structure from S 8 having a ring structure.
  • the lithium-sulfur battery is characterized by exhibiting a step-wise discharge voltage until the polysulfide is completely reduced to Li 2 S.
  • lithium polysulfide LiPS, Li 2 S x
  • the biggest problem of the lithium-sulfur battery is a rapid capacity decrease due to the elution of lithium polysulfide generated from the positive electrode during charging and discharging.
  • lithium polysulfide which is generated while sulfur used as a positive electrode is reduced during discharge, has high solubility, particularly in an ether-based liquid electrolyte, can pass through a separator due to its small size, and meets lithium metal used as a negative electrode.
  • a side reaction causes problems such as destabilizing the interface, and as a result, a decrease in capacity due to irreversible loss of the positive electrode active material and a decrease in battery life due to deposition of sulfur particles on the lithium metal surface due to side reactions occur.
  • an object of the present invention is to prevent dissolution of lithium polysulfide by applying a coating material in which a polymer having a cationic functional group is grafted onto the surface of graphene oxide as a cathode coating material of a lithium secondary battery to improve battery performance. It is to provide a positive electrode coating material for a lithium secondary battery, a method for manufacturing the same, and a positive electrode and a lithium secondary battery including the coating material, which can be improved.
  • the present invention provides a cathode coating material for a lithium secondary battery comprising a graphene oxide surface-modified with a cationic functional group.
  • the present invention (a) graphene oxide containing at least one selected from -COOH group and -OH group on the surface, a functional group forming a bond with the -COOH group or -OH group and (meth)acrylate Preparing a surface-modified graphene oxide by reacting with a hydrocarbon structural unit having 1 to 10 carbon atoms containing 0 to 2 oxygen containing a functional group forming a bond with a vinyl group included in the compound; and (b) reacting the surface-modified graphene oxide with a (meth)acrylate structural unit grafted with a hydrocarbon group having 2 to 10 carbon atoms including a cationic group; provides
  • the present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode coating material coated on the surface of the positive electrode active material.
  • the positive electrode for a lithium secondary battery lithium metal negative electrode; an electrolyte interposed between the positive electrode and the negative electrode; and a separator; provides a lithium secondary battery comprising.
  • the cathode coating material for a lithium secondary battery according to the present invention, a method for manufacturing the same, and a cathode and a lithium secondary battery comprising the coating material, the coating material obtained by grafting a polymer having a cationic functional group on the surface of graphene oxide is used as a lithium secondary battery.
  • the coating material obtained by grafting a polymer having a cationic functional group on the surface of graphene oxide is used as a lithium secondary battery.
  • FIG. 1 is a chemical structural formula of a cathode coating material for a lithium secondary battery according to an embodiment of the present invention.
  • Figure 2 is a reaction scheme showing the process of synthesizing a cationic monomer grafted on the surface of graphene oxide according to an embodiment of the present invention.
  • FIG 3 is a reaction scheme showing a process in which a subsequent reaction initiation site is formed on the surface of graphene oxide according to an embodiment of the present invention.
  • FIG. 4 is a reaction scheme showing a process of grafting a cationic polymer to a subsequent reaction initiation site formed on the surface of graphene oxide according to an embodiment of the present invention.
  • QDMAEMA cationic monomer
  • FIG. 6 is a graph showing the results of TGA analysis of the positive electrode coating material prepared according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the FT-IR analysis results of the positive electrode coating material prepared according to an embodiment of the present invention.
  • FIG. 8 is a graph showing the results of XRD analysis of the positive electrode coating material prepared according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the results of UV-Vis analysis of the positive electrode coating material prepared according to an embodiment of the present invention.
  • 10 is an SEM image and EDS image of the 'anode coating-coated sulfur-carbon composite' manufactured according to an embodiment of the present invention.
  • FIG. 11 is a TGA analysis graph (left) and TEM analysis image (right) of a sulfur-carbon composite coated with a cathode coating material (FGO(OH)-TFSI) prepared according to an embodiment of the present invention.
  • 12 to 14 are graphs comparing and contrasting discharge capacity and lifespan characteristics of lithium-sulfur batteries according to an embodiment and a comparative example of the present invention.
  • cathode coating material for a lithium secondary battery according to the present invention, a method for manufacturing the same, a cathode and a lithium secondary battery including the coating material will be described in detail.
  • the cathode coating material for a lithium secondary battery according to the present invention includes graphene oxide surface-modified with a cationic functional group.
  • the positive electrode coating material for a lithium secondary battery according to the present invention is obtained by grafting a polymer having a cationic functional group to the surface of graphene oxide (GO), and modifying the surface of the graphene oxide with a cation-containing functional group.
  • a polymer having a cationic functional group to the surface of graphene oxide (GO)
  • modifying the surface of the graphene oxide with a cation-containing functional group As such, when the coating material is coated on the positive electrode active material, the cationic functional group formed on the surface of the coating material suppresses the elution of lithium polysulfide, and accordingly, the performance of the lithium secondary battery is improved.
  • the cationic functional group of the cathode coating material for a lithium secondary battery is introduced into a hydroxyl group present in a large amount on the surface of graphene oxide through atom transfer radical polymerization (ATRP),
  • ATRP atom transfer radical polymerization
  • the cationic functional group is introduced to the surface of graphene oxide, when it is applied to the positive electrode of a lithium-sulfur battery, the elution of lithium polysulfide is suppressed, so that the The amount of reduction in the discharge capacity is reduced, and in particular, the performance improvement at a high current density is remarkable.
  • Such a cationic functional group is bonded to graphene oxide in a state of being included in a hydrocarbon group having 4 to 70 carbon atoms including 0 to 4 oxygen atoms, and the bonding to the graphene oxide is made by carbon atoms, characterized in that do.
  • the hydrocarbon group having 4 to 70 (preferably, 40 to 50) carbon atoms including the cationic functional group is a (meth)acrylate structure in which the hydrocarbon group having 2 to 10 carbon atoms including the cationic group is grafted. including a unit, wherein the (meth)acrylate structural unit is bonded to a hydrocarbon structural unit having 1 to 10 carbon atoms to form a bond with the surface of graphene oxide, and the hydrocarbon having 1 to 10 carbon atoms is 0 to 2 It is characterized in that it contains an oxygen atom.
  • the (meth) acrylate structural unit may have a form in which 2 to 5 are polymerized, and the hydrocarbon structural unit having 1 to 10 carbon atoms forming a bond with the surface of the graphene oxide is a carbonyl group bonded to the graphene oxide.
  • the cationic functional group may include one or more cations selected from nitrogen cations, oxygen cations and sulfur cations, and it may be preferable to include at least nitrogen cations among them.
  • the cationic functional group may be one represented by the following Chemical Formula 1 (that is, when the cationic functional group is a nitrogen cation), and the cationic functional group is included in the cationic functional group as shown in the following Chemical Formula 1
  • a halogen anion may be further included as a counter ion to the cation.
  • R 1 , R 2 , R 3 , R 4 and R 5 are hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is a halogen group
  • o, p, and q are each independently an integer from 0 to 4,
  • n is a natural number from 1 to 5;
  • the graphene oxide also serves as an initiator so that a large amount of cationic polymer is grafted on the surface of the graphene oxide, and when coated on a positive electrode active material such as a sulfur-carbon composite, it also serves to enhance compatibility with the positive electrode active material. do.
  • the positive electrode coating material for a lithium secondary battery of the present invention is coated on the surface of the positive electrode active material to serve as a physical shielding film, and in particular, it serves to suppress the volume change of sulfur during charging and discharging of the lithium-sulfur battery.
  • a graphene oxide containing at least one selected from a -COOH group and a -OH group on the surface is bonded to the -COOH group or the -OH group
  • a surface-modified graphene oxide by reacting with a hydrocarbon structural unit having 1 to 10 carbon atoms containing 0 to 2 oxygen including a functional group and a functional group that forms a bond with a vinyl group included in the (meth)acrylate compound and (b) reacting the surface-modified graphene oxide with a (meth)acrylate structural unit grafted with a hydrocarbon group having 2 to 10 carbon atoms including a cationic group.
  • FIG. 2 is a reaction scheme showing a process in which a cationic monomer grafted onto the surface of graphene oxide is synthesized according to an embodiment of the present invention
  • FIG. 3 is a surface of graphene oxide according to an embodiment of the present invention. is a reaction scheme showing the process of forming a subsequent reaction initiation site in .
  • a method of manufacturing a cathode coating material for a lithium secondary battery will be described in more detail with reference to FIGS. 2 to 4 .
  • 1 to 10 carbon atoms containing 0 to 2 oxygen including a functional group forming a bond with the -COOH group or -OH group of the step (a) and a functional group forming a bond with a vinyl group included in the (meth)acrylate compound
  • the hydrocarbon structural units of the -COOH group or the functional group forming a bond with the -OH group may be selected from a carbonyl group substituted with a halogen group, an ether group, an ester group, and a carbonate group
  • the functional group that forms a bond with the included vinyl group may be selected from a halogen group, an ether group, an ester group, and a carbonate group.
  • the hydrocarbon structural unit may have a carbonyl group substituted with a halogen group and a carbon atom substituted with a halogen group, and more specifically, a functional group forming a bond with the -COOH group or the -OH group and (meth) acrylate compound.
  • a hydrocarbon structural unit having 1 to 10 carbon atoms including 0 to 2 oxygens including a functional group forming a bond with a vinyl group may be 2-bromoisobutyryl bromide.
  • the cationic group is one or more cations selected from nitrogen cations, oxygen cations and sulfur cations. It may include, and it may be preferable to include at least nitrogen cations among them.
  • the hydrocarbon group having 2 to 10 carbon atoms including the cationic group may be a compound represented by the following formula (2).
  • R 4 and R 5 are hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is a halogen group
  • p and q are each independently an integer from 0 to 4.
  • the reaction of step (b) may include a polymerization reaction, and the polymerization reaction may specifically be an atom transfer radical polymerization (ATRP) reaction.
  • the reaction of step (b) may be to react for 24 to 72 hours, preferably 36 to 60 hours under a temperature of 50 to 90 °C, preferably 60 to 80 °C, but is not limited now.
  • a catalyst such as CuBr/PMDETA ligand commonly used in the atom transfer radical polymerization reaction may be used.
  • a cationic functional group is introduced to the surface of the graphene oxide, and the dispersibility of the positive electrode coating material is increased by introducing a cationic functional group to the surface of the graphene oxide, and ultimately For example, it can be applied to the positive electrode of a lithium-sulfur battery to suppress the elution of lithium polysulfide.
  • step (b) the step of reacting the reaction product finally prepared in step (b) with a lithium salt may be additionally performed, for example, the cathode coating material and LiTFSI By reacting in an aqueous phase, the halogen anion can be substituted (or exchanged ) with TFSI-.
  • the carbon number containing 0 to 2 oxygen containing the functional group forming a bond with the -COOH group or -OH group of the step (a) and the functional group forming a bond with the vinyl group included in the (meth)acrylate compound 1 The mass ratio of the hydrocarbon structural unit of 10 to 10 and the graphene oxide including at least one selected from -COOH group and -OH group on the surface may be 0.7 to 1.3: 1, preferably about 1:1.
  • the mass ratio of the (meth)acrylate structural unit grafted with a hydrocarbon group having 2 to 10 carbon atoms including the cationic group of step (b) and the surface-modified graphene oxide is 1 to 10: 1, preferably may be 5 to 10: 1, more preferably 6 to 8: 1.
  • the positive electrode for a lithium secondary battery according to the present invention includes a positive electrode active material and the positive electrode coating material coated on the surface of the positive electrode active material.
  • the positive electrode coating material is a positive electrode coating material for a lithium secondary battery described above, in an amount of 0.2 to 2 parts by weight, preferably 0.75 to 1.5 parts by weight, more preferably 0.9 to 1.1 parts by weight based on 100 parts by weight of the positive electrode active material. can be coated. If the content of the positive electrode coating material coated on the surface of the positive electrode active material is out of the above range, there may be little or no advantage obtained by using the positive electrode coating material.
  • the positive electrode coating material containing graphene oxide surface-modified with a functional group containing a cation is coated on the positive electrode active material, compatibility between the coating layer and the positive electrode active material (particularly, sulfur-carbon composite) is increased, and lithium-sulfur battery It is possible to suppress the volume change of sulfur during charging and discharging of It is possible to improve the performance of the battery.
  • the positive active material may preferably include a sulfur (S) atom, and more preferably be a sulfur-carbon composite.
  • S sulfur
  • the electrical conductivity of sulfur is 5.0 ⁇ 10 -14 S/cm, close to an insulator, so the electrochemical reaction is not easy at the electrode, and the actual discharge capacity and voltage are far below the theory due to a very large overvoltage.
  • a carbon material having electrical conductivity is grafted (ie, a structure in which sulfur is supported in the pores of the carbon material).
  • the carbon material constituting the sulfur-carbon composite has a porous structure or a high specific surface area, and as long as it is commonly used in the art, it can be applied without particular limitation, for example, as a carbon material having the porous structure, graphite (graphite) ); graphene; carbon black such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; carbon nanotubes (CNTs) such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs); carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); And it may be one or more selected from the group consisting of activated carbon, but is not limited thereto, and the shape is spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped or bulk-shaped, etc., and may be applied without limitation as long as it is commonly used in lithium
  • the sulfur-carbon composite may have a particle size of 10 to 50 ⁇ m.
  • the particle size of the sulfur-carbon composite is less than 10 ⁇ m, interparticle resistance increases and an overvoltage may occur in the electrode of the lithium-sulfur battery.
  • the wetting area and the site of reaction with lithium ions are reduced, and the amount of electrons transferred relative to the size of the complex decreases, so that the reaction is delayed, and thus the discharge capacity of the battery may be reduced.
  • the positive electrode coating material is preferably coated on the entire surface of the positive electrode active material, and a cationic functional group is formed in each graphene oxide of the positive electrode coating material. Therefore, it can be said that the ability to suppress the elution of lithium polysulfide is maximized as many cationic functional groups are densely located on the entire surface of the positive electrode active material.
  • the positive electrode manufactured through the method of manufacturing the positive electrode may further include a binder and a conductive material.
  • the binder is a component that assists in bonding the positive active material and the conductive material and bonding to the current collector, for example, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVdF / HFP), polyvinyl acetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polytetrafluoroethylene (PTFE) ), polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polyvinylpyrrolidone, styrene-butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene monomer
  • the binder is typically added in an amount of 1 to 50 parts by weight, preferably 3 to 15 parts by weight, based on 100 parts by weight of the total weight of the positive electrode material including the positive electrode active material. If the content of the binder is less than 1 part by weight, the adhesive force between the positive electrode active material and the current collector may be insufficient, and if it exceeds 50 parts by weight, the adhesive strength may be improved, but the content of the positive electrode active material may decrease by that much, thereby lowering the battery capacity.
  • the conductive material is not particularly limited as long as it does not cause side reactions in the internal environment of the lithium secondary battery and has excellent electrical conductivity without causing chemical changes in the battery, and typically graphite or conductive carbon may be used,
  • graphite such as natural graphite and artificial graphite
  • carbon black such as carbon black, acetylene black, ketjen black, denka black, thermal black, channel black, furnace black, lamp black, and summer black
  • a carbon-based material having a crystal structure of graphene or graphite conductive fibers such as carbon fibers and metal fibers; carbon fluoride; metal powders such as aluminum and nickel powder;
  • Conductive whiskey such as zinc oxide and potassium titanate
  • conductive oxides such as titanium oxide
  • conductive polymers such as polyphenylene derivatives
  • the conductive material is typically added in an amount of 0.5 to 50 parts by weight, preferably 1 to 30 parts by weight, based on 100 parts by weight of the total weight of the positive electrode material including the positive electrode active material. If the content of the conductive material is too small, less than 0.5 parts by weight, it is difficult to expect an effect of improving the electrical conductivity or the electrochemical properties of the battery may be deteriorated. This may reduce capacity and energy density.
  • the method for including the conductive material in the positive electrode material is not particularly limited, and a conventional method known in the art, such as coating on the positive electrode active material, may be used. In addition, if necessary, since the second conductive coating layer is added to the positive electrode active material, the addition of the conductive material as described above may be substituted.
  • a filler may be selectively added to the positive electrode of the present invention as a component for suppressing expansion of the positive electrode.
  • a filler is not particularly limited as long as it can suppress the expansion of the electrode without causing a chemical change in the battery, and for example, an olipine-based polymer such as polyethylene or polypropylene; fibrous materials such as glass fiber and carbon fiber; etc. can be used.
  • the positive electrode current collector platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), aluminum (Al) ), molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof , aluminum (Al) or stainless steel surface treated with carbon (C), nickel (Ni), titanium (Ti) or silver (Ag) may be used, but the present invention is not limited thereto.
  • the shape of the positive electrode current collector may be in the form of a foil, a film, a sheet, a punched one, a porous body, a foam, and the like.
  • the present invention provides a lithium secondary battery comprising a positive electrode for a lithium secondary battery, a lithium metal negative electrode, an electrolyte interposed between the positive electrode and the negative electrode, and a separator, wherein the lithium secondary battery is preferably a lithium-sulfur battery Do.
  • a lithium secondary battery is composed of a positive electrode composed of a positive electrode material and a current collector, a negative electrode composed of a negative electrode material and a current collector, and a separator that blocks electrical contact between the positive electrode and the negative electrode and allows lithium ions to move, and is impregnated therein to It contains an electrolyte for conduction of lithium ions.
  • the negative electrode may be manufactured according to a conventional method known in the art. For example, a negative electrode active material, a conductive material, a binder, and optionally a filler, etc. are dispersed and mixed in a dispersion medium (solvent) to make a slurry, coated on the negative electrode current collector, and dried and rolled to manufacture a negative electrode. .
  • lithium metal or a lithium alloy eg, an alloy of lithium and a metal such as aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, or indium
  • the anode current collector include platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), and copper (Cu).
  • the shape of the negative electrode current collector may be in the form of a foil, a film, a sheet, a punched one, a porous body, a foam, and the like.
  • the separator is interposed between the positive electrode and the negative electrode to prevent a short circuit therebetween and serves to provide a passage for lithium ions to move.
  • an olefin-based polymer such as polyethylene or polypropylene, glass fiber, or the like may be used in the form of a sheet, a multi-membrane, a microporous film, a woven fabric or a non-woven fabric, but is not necessarily limited thereto.
  • a solid electrolyte such as a polymer (eg, an organic solid electrolyte, an inorganic solid electrolyte, etc.) is used as the electrolyte
  • the solid electrolyte may also serve as a separator.
  • an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally in the range of 0.01 to 10 ⁇ m, and the thickness is generally in the range of 5 to 300 ⁇ m.
  • non-aqueous electrolyte carbonate, ester, ether, or ketone as a non-aqueous electrolyte (non-aqueous organic solvent) may be used alone or in mixture of two or more, but is not necessarily limited thereto.
  • a lithium salt may be further added to the electrolyte solution (so-called lithium salt-containing non-aqueous electrolyte solution), and as the lithium salt, a well-known thing soluble in a non-aqueous electrolyte solution, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiPF 3 (CF 2 CF 3 ) 3 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate, imide, and the like, but is not necessarily limited thereto.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 LiPF 6 , LiCF 3 SO
  • non-aqueous electrolyte for the purpose of improving charge/discharge characteristics and flame retardancy, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide , nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, etc. may be added.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included to impart incombustibility, and carbon dioxide gas may be further included to improve high-temperature storage characteristics.
  • the lithium secondary battery of the present invention may be manufactured according to a conventional method in the art. For example, it can be prepared by putting a porous separator between the positive electrode and the negative electrode and introducing a non-aqueous electrolyte.
  • the lithium secondary battery according to the present invention is applied to a battery cell used as a power source for a small device, and can be particularly suitably used as a unit cell for a battery module, which is a power source for a medium or large device.
  • the present invention also provides a battery module including two or more of the lithium secondary batteries are electrically connected (series or parallel).
  • the quantity of the lithium secondary battery included in the battery module may be variously adjusted in consideration of the use and capacity of the battery module.
  • the present invention provides a battery pack electrically connected to the battery module according to a conventional technique in the art.
  • the battery module and the battery pack is a power tool (Power Tool); electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); electric truck; electric commercial vehicle;
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs)
  • PHEVs plug-in hybrid electric vehicles
  • electric truck electric commercial vehicle
  • any one or more of the power storage systems may be used as a power source for a medium or large device, but the present invention is not limited thereto.
  • graphene oxide (Sigma-aldrich) was reacted with 2-bromoisobutyryl bromide (Sigma-aldrich) and triethylamine (Sigma-aldrich) to form a bromo initiation site on the surface of the graphene oxide.
  • Example 1 1 H NMR analysis was performed to confirm whether the cationic monomer prepared in Example 1 was normally synthesized.
  • 5 is a graph showing the results of 1 H NMR analysis of the cationic monomer (QDMAEMA) prepared according to an embodiment of the present invention.
  • Example 1 As described above, as a result of 1 H NMR analysis to confirm whether the cationic monomer prepared in Example 1 was normally synthesized, as shown in FIG. 5 , the chemical structure of the target cationic monomer was All appeared, and through this, it was confirmed that the cationic monomer was synthesized without abnormality.
  • TGA analysis, FT-IR analysis, XRD analysis and UV-Vis analysis to confirm whether the cationic polymer (PQDMAEMA) was normally grafted on the surface of graphene oxide proceeded.
  • 6 is a graph showing the TGA analysis results of the positive electrode coating material prepared according to an embodiment of the present invention
  • Figure 7 is a graph showing the FT-IR analysis results of the positive electrode coating material prepared according to an embodiment of the present invention
  • 8 is a graph showing the XRD analysis result of the positive electrode coating material prepared according to an embodiment of the present invention
  • FIG. 9 is a graph showing the UV-Vis analysis result of the positive electrode coating material prepared according to an embodiment of the present invention.
  • the cationic polymer (PQDMAEMA) of the positive electrode coating material was a linear polymer polymerized using only the cationic monomer (QDMAEMA) as an AIBN initiator (initiator used for radical initiation reaction).
  • Example 1 0.5 mg of the positive electrode coating material (FGO(OH)-TFSI) prepared in Example 1 (that is, set so that the content of the coating material in the total weight of the positive electrode is 0.25% by weight (FGO 0.25)) was tip-sonized for 30 minutes and dissolved in acetone After dispersing, the sulfur-carbon complex (prepared by mixing elemental sulfur and super P (carbon) in a weight ratio of 7: 3, grinding into a mortar, and heat-treating at 155 ° C. for 30 minutes) was mixed and stirred for 15 hours Then, the stirred solution was dried at 50 °C to remove acetone.
  • FGO(OH)-TFSI positive electrode coating material prepared in Example 1
  • the cathode coating material FGO(OH)-TFSI
  • binder polyacrylic acid
  • conductive material carbon black
  • a positive electrode slurry was prepared by adding 0.5 wt% of a PVA dispersant with a furnace, adjusting the concentration so that the solid content in the aqueous phase was 18 wt%, and mixing with a thinky mixer.
  • the prepared cathode slurry was coated on aluminum foil with a 400 ⁇ m doctor blade and dried at 50° C. for about 14 hours to prepare a cathode for a lithium secondary battery.
  • Example 1 Except that the amount of the positive electrode coating material (FGO(OH)-TFSI) prepared in Example 1 was changed from 0.5 mg to 1 mg (that is, the content of the coating material in the total weight of the positive electrode was set to 0.5% by weight (FGO) 0.5)), a positive electrode for a lithium secondary battery was prepared in the same manner as in Example 1.
  • Example 1 Except for changing the amount of the positive electrode coating material (FGO(OH)-TFSI) prepared in Example 1 from 0.5 mg to 1.5 mg (that is, setting the content of the coating material in the total weight of the positive electrode to 0.75% by weight (FGO) 0.75)), a positive electrode for a lithium secondary battery was prepared in the same manner as in Example 1.
  • FGO(OH)-TFSI positive electrode coating material
  • Example 1 Except that the amount of the positive electrode coating material (FGO(OH)-TFSI) prepared in Example 1 was changed from 0.5 mg to 2 mg (that is, the content of the coating material in the total weight of the positive electrode was set to 1% by weight (FGO) 1)), a positive electrode for a lithium secondary battery was prepared in the same manner as in Example 1.
  • Example 1 Except that the amount of the positive electrode coating material (FGO(OH)-TFSI) prepared in Example 1 was changed from 0.5 mg to 3 mg (that is, the content of the coating material in the total weight of the positive electrode was set to 1.5% by weight (FGO) 1.5)), a positive electrode for a lithium secondary battery was prepared in the same manner as in Example 1.
  • Sulfur-carbon composite, binder (polyacrylic acid) and conductive material (carbon) prepared by mixing elemental sulfur (sulfur) and super P (carbon) in a weight ratio of 7: 3, grinding into mortar, and heat-treating at 155 ° C for 30 minutes black) was mixed in a weight ratio of 85:10:5, then 0.5% by weight of a PVA dispersant was added thereto, the concentration was adjusted so that the solid content in the aqueous phase was 18% by weight, and mixed with a thinky mixer to prepare a positive electrode slurry did Then, the prepared cathode slurry was coated on aluminum foil with a 400 ⁇ m doctor blade and dried at 50° C. for about 14 hours to prepare a cathode for a lithium secondary battery.
  • Example 3 TEM analysis and EDS analysis were performed to confirm whether the positive electrode coating material (FGO(OH)-TFSI) was normally coated on the surface of the sulfur-carbon composite.
  • 10 is an SEM image (corresponding to the upper left image) and EDS image of the 'anode coating-coated sulfur-carbon composite' manufactured according to an embodiment of the present invention.
  • Figure 11 is a TGA analysis graph (left) and TEM analysis image (right) of a sulfur-carbon composite coated with a cathode coating material (FGO(OH)-TFSI) prepared according to an embodiment of the present invention (right), in particular ,
  • FGO(OH)-TFSI cathode coating material
  • Examples 7 to 11 and Comparative Example 2 the discharge capacity and lifespan characteristics were evaluated by setting the current density to 0.2 to 2 C-rate.
  • 12 to 14 are graphs comparing and contrasting discharge capacity and lifespan characteristics of lithium-sulfur batteries according to an embodiment and a comparative example of the present invention.
  • the positive electrode coating material FGO(OH)-TFSI
  • the lithium-sulfur batteries of Examples 7 to 11 coated on the active material were compared to the lithium-sulfur batteries of Comparative Example 2 (corresponding to 'Bare' in FIG. 12) without using a positive electrode coating material (FGO(OH)-TFSI). It was confirmed that the cell performance was improved. 13 and 14, it can be seen that the lithium-sulfur battery of the present invention exhibits significantly improved cell performance, particularly at high current density.

Abstract

그래핀 옥사이드의 표면에 양이온성 작용기를 가지는 고분자를 그래프팅시킨 것으로, 리튬 이차전지의 양극 코팅 물질로 적용되어 리튬 폴리설파이드의 용출을 방지함으로써 전지의 성능을 향상시킬 수 있는 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지가 개시된다. 상기 리튬 이차전지용 양극 코팅재는, 양이온성 작용기로 표면 개질된 그래핀 옥사이드를 포함한다.

Description

리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지
본 출원은 2020년 08월 10일자 한국 특허 출원 제10-2020-0099787호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지에 관한 것으로서, 더욱 상세하게는, 그래핀 옥사이드의 표면에 양이온성 작용기를 가지는 고분자를 그래프팅시킨 것으로, 리튬 이차전지의 양극 코팅 물질로 적용되어 리튬 폴리설파이드의 용출을 방지함으로써 전지의 성능을 향상시킬 수 있는 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지에 관한 것이다.
에너지 저장 기술에 대한 관심이 갈수록 높아짐에 따라, 휴대폰, 태블릿(tablet), 랩탑(laptop) 및 캠코더, 나아가서는 전기 자동차(EV) 및 하이브리드 전기 자동차(HEV)의 에너지까지 적용분야가 확대되면서, 전기화학소자에 대한 연구 및 개발이 점차 증대되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충방전이 가능한 리튬-황 전지와 같은 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 에너지 밀도를 높이기 위하여, 새로운 전극과 전지의 설계에 대한 연구개발로 이어지고 있다.
이와 같은 전기화학소자, 그 중, 리튬 메탈을 음극으로 사용하고 황을 양극으로 사용하는 리튬-황 전지(Li-S battery)는, 기존의 리튬 이온전지 대비 높은 이론 용량과 에너지 밀도(통상적으로 약 2,500 Wh/kg)를 가지고 있고, 또한, 자연에서 쉽게 얻을 수 있는 황을 양극으로 사용하기 때문에 경제성까지 있어, 리튬 이온전지를 대체할 수 있는 차세대 이차전지로 각광 받고 있다. 이와 같은 리튬-황 전지 내에서는, 방전 시 황의 환원 반응과 리튬 메탈의 산화반응이 일어나며, 이 때 황은 고리 구조의 S8로부터 선형 구조의 리튬 폴리설파이드(Lithium Polysulfide, LiPS)를 형성하게 되는데, 이러한 리튬-황 전지는 폴리설파이드가 완전히 Li2S로 환원되기까지 단계적 방전 전압을 나타내는 것이 특징이다.
하지만, 리튬-황 전지의 상업화에 있어서 가장 큰 걸림돌은, 황 계열의 화합물을 양극 활물질로 사용하고 리튬과 같은 알칼리 금속을 음극 활물질로 사용하는 전지에서 충방전 시 발생하는 리튬 폴리설파이드(LiPS, Li2Sx)의 용출 및 셔틀 현상이다. 즉, 다시 말해, 리튬-황 전지의 가장 큰 문제점은, 충방전 시 양극에서 생성되는 리튬 폴리설파이드의 용출에 따른 급격한 용량 감소이다.
보다 구체적으로, 양극으로 사용되는 황이 방전 시 환원되면서 생성되는 리튬 폴리설파이드는, 특히 에테르계 액체 전해질에 대해 높은 용해도를 가지며, 크기가 작아 분리막을 통과할 수 있고, 음극으로 사용되는 리튬 메탈과 만날 경우 부반응을 일으켜 계면을 불안정하게 하는 등의 문제를 발생시키며, 그 결과, 양극 활물질의 비가역적 손실로 인한 용량의 감소 및 부반응에 의한 리튬 메탈 표면에의 황 입자 증착으로 인한 전지 수명의 감소가 발생하게 되는 것이다. 따라서, 전지 구동 시 양극에서 생성되는 리튬 폴리설파이드가 액체 전해질에 용출되지 않도록 잡아줄 수 있는 기술이 필요하다.
따라서, 본 발명의 목적은, 그래핀 옥사이드의 표면에 양이온성 작용기를 가지는 고분자를 그래프팅시킨 코팅 소재를 리튬 이차전지의 양극 코팅 물질로 적용함으로써, 리튬 폴리설파이드의 용출이 방지되어 전지의 성능을 향상시킬 수 있는, 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 양이온성 작용기로 표면 개질된 그래핀 옥사이드를 포함하는 리튬 이차전지용 양극 코팅재를 제공한다.
또한, 본 발명은, (a) 표면에 -COOH기 및 -OH기 중에서 선택되는 하나 이상을 포함하는 그래핀 옥사이드를, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위와 반응시켜 표면 개질된 그래핀 옥사이드를 제조하는 단계; 및 (b) 상기 표면 개질된 그래핀 옥사이드와 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위를 반응시키는 단계;를 포함하는 리튬 이차전지용 양극 코팅재의 제조 방법을 제공한다.
또한, 본 발명은, 양극 활물질; 및 상기 양극 활물질의 표면에 코팅된 상기 양극 코팅재를 포함하는 리튬 이차전지용 양극을 제공한다.
또한, 본 발명은, 상기 리튬 이차전지용 양극; 리튬 메탈 음극; 상기 양극과 음극의 사이에 개재되는 전해질; 및 분리막;을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지에 의하면, 그래핀 옥사이드의 표면에 양이온성 작용기를 가지는 고분자를 그래프팅시킨 코팅 소재를 리튬 이차전지의 양극 코팅 물질로 적용함으로써, 리튬 폴리설파이드의 용출이 방지되어 전지의 성능을 향상시킬 수 있는 장점을 가진다.
도 1은 본 발명의 일 실시예 따른 리튬 이차전지용 양극 코팅재의 화학 구조식이다.
도 2는 본 발명의 일 실시예에 따라, 그래핀 옥사이드의 표면에 그래프팅 되는 양이온성 단량체가 합성되는 과정을 보여주는 반응식이다.
도 3은 본 발명의 일 실시예에 따라, 그래핀 옥사이드의 표면에 후속 반응 개시 사이트가 형성되는 과정을 보여주는 반응식이다.
도 4는 본 발명의 일 실시예에 따라, 그래핀 옥사이드의 표면에 형성된 후속 반응 개시 사이트에 양이온성 고분자를 그래프팅시키는 과정을 보여주는 반응식이다.
도 5는 본 발명의 일 실시예에 따라 제조된 양이온성 단량체(QDMAEMA)의 1H NMR 분석 결과를 보여주는 그래프이다.
도 6은 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 TGA 분석 결과를 보여주는 그래프이다.
도 7은 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 FT-IR 분석 결과를 보여주는 그래프이다.
도 8은 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 XRD 분석 결과를 보여주는 그래프이다.
도 9는 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 UV-Vis 분석 결과를 보여주는 그래프이다.
도 10은 본 발명의 일 실시예에 따라 제조된 '양극 코팅재가 코팅된 황-탄소 복합체'의 SEM 이미지 및 EDS 이미지이다.
도 11은 본 발명의 일 실시예에 따라 제조된 양극 코팅재(FGO(OH)-TFSI)가 코팅된 황-탄소 복합체의 TGA 분석 그래프(좌도) 및 TEM 분석 이미지(우도)이다.
도 12 내지 14는 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 방전용량 및 수명특성을 비교 대조한 그래프이다.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지에 대해 상세히 설명한다.
양극 코팅재
도 1은 본 발명의 일 실시예 따른 리튬 이차전지용 양극 코팅재의 화학 구조식이다. 본 발명에 따른 리튬 이차전지용 양극 코팅재는, 도 1에 도시된 바와 같이, 양이온성 작용기로 표면 개질된 그래핀 옥사이드를 포함한다.
본 발명에 따른 리튬 이차전지용 양극 코팅재는, 양이온성 작용기를 가지는 고분자를 그래핀 옥사이드(Graphene Oxide; GO)의 표면에 그래프팅(Grafting)시켜, 상기 그래핀 옥사이드의 표면을 양이온 포함 작용기로 개질시킨 것으로서, 이와 같은 코팅재가 양극 활물질에 코팅될 경우, 코팅재의 표면에 형성된 양이온성 작용기가 리튬 폴리설파이드의 용출을 억제하게 되고, 이에 따라, 리튬 이차전지의 성능이 향상된다.
보다 구체적으로, 상기 리튬 이차전지용 양극 코팅재의 양이온성 작용기는, 원자 이동 라디칼 중합(atom transfer radical polymerization; ATRP)을 통해, 그래핀 옥사이드의 표면에 다량 존재하는 히드록시기(hydroxyl group)에 도입된 것으로서, 상기 그래핀 옥사이드의 표면에 상기 양이온성 작용기를 도입함으로써, 양극 코팅재의 분산성을 높일 수 있다.
또한, 상기 양이온성 작용기를 그래핀 옥사이드의 표면에 도입함에 따라, 이를 리튬-황 전지의 양극에 적용하는 경우에는 리튬 폴리설파이드의 용출을 억제하기 때문에, 그렇지 않은 경우에 비해 사이클(cycle)에 따른 방전용량의 감소량이 줄어들고, 특히, 높은 전류밀도에서의 성능 향상이 두드러진다.
이와 같은 양이온성 작용기는, 0 내지 4개의 산소원자를 포함하는 탄소수 4 내지 70의 탄화수소기에 포함된 상태로 그래핀 옥사이드에 결합되며, 상기 그래핀 옥사이드에 대한 결합은 탄소원자에 의해 이루어지는 것을 특징으로 한다.
보다 구체적으로, 상기 양이온성 작용기가 포함된 탄소수 4 내지 70(바람직하게는, 탄소수 40 내지 50)의 탄화수소기는, 양이온성기를 포함하는 탄소수 2 내지 10의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위를 포함하며, 상기 (메타)아크릴레이트 구조단위는 그래핀 옥사이드의 표면과 결합을 형성하는 탄소수 1 내지 10의 탄화수소 구조단위에 결합된 형태이며, 상기 탄소수 1 내지 10의 탄화수소는 0 내지 2개의 산소원자를 포함하는 것을 특징으로 한다.
여기서, 상기 (메타)아크릴레이트 구조단위는 2 내지 5개가 중합된 형태를 가질 수 있고, 상기 그래핀 옥사이드의 표면과 결합을 형성하는 탄소수 1 내지 10의 탄화수소 구조단위는 그래핀 옥사이드에 결합된 카르보닐기를 포함하는 것일 수 있다. 또한, 상기 양이온성 작용기는 질소 양이온, 산소 양이온 및 황 양이온 중에서 선택되는 1종 이상의 양이온을 포함하는 것일 수 있고, 이 중 최소한 질소 양이온을 포함하는 것이 바람직할 수 있다.
더욱 구체적으로, 상기 양이온성 작용기는 하기 화학식 1로 표시되는 것일 수 있고(즉, 양이온성 작용기가 질소 양이온인 경우에 해당), 상기 양이온성 작용기는 하기 화학식 1과 같이, 양이온성 작용기에 포함된 양이온에 대한 짝이온으로서 할로젠 음이온이 더 포함된 것일 수 있다.
[화학식 1]
Figure PCTKR2021010541-appb-I000001
상기 화학식 1에서,
R1, R2, R3, R4 및 R5는 수소 또는 탄소수 1 내지 4의 알킬기이며,
X는 할로젠기이며,
o, p, 및 q는 각각 독립적으로 0 내지 4의 정수이며,
n은 1 내지 5의 자연수이다.
(굴곡선(
Figure PCTKR2021010541-appb-I000002
)은 그래핀 옥사이드와의 연결부(connecting bond)를 나타낸다)
한편, 상기 화학식 1로 표시되는 양이온성 작용기의 일 예로서
Figure PCTKR2021010541-appb-I000003
를 예시할 수 있다.
상기 그래핀 옥사이드는, 다량의 양이온성 고분자가 그래핀 옥사이드의 표면에 그래프팅 되도록 개시제로써의 역할도 하며, 황-탄소 복합체 등과 같은 양극 활물질에 코팅될 시 양극 활물질과의 상용성도 높여주는 역할을 한다.
이와 같은 본 발명의 리튬 이차전지용 양극 코팅재는, 양극 활물질의 표면에 코팅되어 물리적 가림막 역할을 하게 되며, 특히, 리튬-황 전지의 충방전 시 황의 부피 변화를 억제하는 역할을 수행하게 된다.
양극 코팅재의 제조방법
본 발명에 따른 리튬 이차전지용 양극 코팅재의 제조 방법은, (a) 표면에 -COOH기 및 -OH기 중에서 선택되는 하나 이상을 포함하는 그래핀 옥사이드를, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위와 반응시켜 표면 개질된 그래핀 옥사이드를 제조하는 단계 및 (b) 상기 표면 개질된 그래핀 옥사이드와 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위를 반응시키는 단계를 포함한다.
도 2는 본 발명의 일 실시예에 따라, 그래핀 옥사이드의 표면에 그래프팅 되는 양이온성 단량체가 합성되는 과정을 보여주는 반응식이고, 도 3은 본 발명의 일 실시예에 따라, 그래핀 옥사이드의 표면에 후속 반응 개시 사이트가 형성되는 과정을 보여주는 반응식이며, 도 4는 본 발명의 일 실시예에 따라, 그래핀 옥사이드의 표면에 형성된 후속 반응 개시 사이트에 양이온성 고분자를 그래프팅시키는 과정을 보여주는 반응식이다. 이하, 도 2 내지 4를 참조하여, 리튬 이차전지용 양극 코팅재의 제조 방법에 대해 보다 구체적으로 설명한다.
상기 (a) 단계의 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위 중, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기는 할로젠기로 치환된 카르보닐기, 에테르기, 에스테르기 및 카보네이트기 중에서 선택되는 것일 수 있고, 상기 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기는 할로젠기, 에테르기, 에스테르기 및 카보네이트기 중에서 선택되는 것일 수 있다.
보다 구체적으로, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위가, 할로젠기로 치환된 카르보닐기 및 할로젠기로 치환된 탄소원자를 갖는 것일 수 있고, 더욱 구체적으로, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위가, 2-브로모이소부티릴브로마이드(2-bromoisobutyryl bromide)일 수 있다.
또한, 상기 (b) 단계의 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위 중, 양이온성기는 질소 양이온, 산소 양이온 및 황 양이온 중에서 선택되는 1종 이상의 양이온을 포함하는 것일 수 있고, 이 중 최소한 질소 양이온을 포함하는 것이 바람직할 수 있다.
또한, 상기 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위 중, 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 2]
Figure PCTKR2021010541-appb-I000004
상기 화학식 2에서,
R4 및 R5는 수소 또는 탄소수 1 내지 4의 알킬기이며,
X는 할로젠기이며,
p 및 q는 각각 독립적으로 0 내지 4의 정수이다.
또한, 상기 (b) 단계의 반응은 중합반응을 포함하는 것일 수 있고, 상기 중합반응은 구체적으로 원자 이동 라디칼 중합(atom transfer radical polymerization; ATRP) 반응일 수 있다. 또한, 상기 (b)단계의 반응은 50 내지 90 ℃, 바람직하게는 60 내지 80 ℃의 온도 하에서 24 내지 72 시간, 바람직하게는 36 내지 60 시간 동안 반응시키는 것일 수 있으나, 이제 제한되지는 않는다. 그밖에, 상기 (b) 단계의 원자 이동 라디칼 중합 반응에는, 원자 이동 라디칼 중합 반응 시 통상적으로 사용되는 CuBr/PMDETA ligand와 같은 촉매가 사용될 수 있다.
상기 (b) 단계의 원자 이동 라디칼 중합 반응을 통해, 양이온성 작용기가 그래핀 옥사이드의 표면에 도입되게 되며, 상기 그래핀 옥사이드의 표면에 양이온성 작용기를 도입함으로써 양극 코팅재의 분산성을 높이고, 궁극적으로는 리튬-황 전지의 양극에 적용되어 리튬 폴리설파이드의 용출을 억제할 수 있는 것이다.
한편, 상기 (b) 단계 이후에는, 필요에 따라, 상기 (b) 단계에서 최종 제조된 반응 생성물과 리튬염을 반응시키는 단계가 추가로 수행될 수 있으며, 예를 들어, 상기 양극 코팅재와 LiTFSI를 수상에서 반응시켜, 할로젠 음이온을 TFSI-로 치환(또는, 교환)시킬 수 있다.
또한, 상기 (a) 단계의 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위와, 상기 표면에 -COOH기 및 -OH기 중에서 선택되는 하나 이상을 포함하는 그래핀 옥사이드의 질량비는 0.7~1.3 : 1, 바람직하게는 약 1 : 1일 수 있다. 또한, 상기 (b) 단계의 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위와, 상기 표면 개질된 그래핀 옥사이드의 질량비는 1~10 : 1, 바람직하게는 5~10 : 1, 더욱 바람직하게는 6~8 : 1일 수 있다.
리튬 이차전지용 양극
본 발명에 따른 리튬 이차전지용 양극은, 양극 활물질 및 상기 양극 활물질의 표면에 코팅된 상기 양극 코팅재를 포함한다.
즉, 상기 양극 코팅재는 이상에서 설명한 리튬 이차전지용 양극 코팅재로서, 상기 양극 활물질 100 중량부에 대하여 0.2 내지 2 중량부, 바람직하게는 0.75 내지 1.5 중량부, 더욱 바람직하게는 0.9 내지 1.1 중량부의 함량으로 코팅될 수 있다. 만일, 상기 양극 활물질의 표면에 코팅된 양극 코팅재의 함량이 상기 범위를 벗어나는 경우에는, 상기 양극 코팅재를 사용함으로써 얻을 수 있는 이점이 없거나 미미할 수 있다.
이와 같이, 양이온을 포함하는 작용기로 표면 개질된 그래핀 옥사이드를 포함하는 양극 코팅재를 양극 활물질에 코팅시키게 되면, 코팅층과 양극 활물질(특히, 황-탄소 복합체) 간의 상용성이 높아지고, 리튬-황 전지의 충방전 시 황의 부피 변화를 억제할 수 있으며, 무엇보다 본 발명의 코팅재가, 전지 구동 시 양극에서 생성되는 리튬 폴리설파이드가 액체 전해질에 용출되지 않도록, 리튬 폴리설파이드를 포획 및 흡착하는 역할을 하여 전지의 성능을 향상시킬 수 있다.
상기 양극 활물질은 황(S) 원자를 포함하는 것이 바람직하고, 황-탄소 복합체인 것이 더욱 바람직할 수 있다. 상기 황-탄소 복합체는, 황의 전기 전도도가 5.0 × 10-14 S/cm 정도로 부도체에 가까워 전극에서 전기화학 반응이 용이하지 않고, 매우 큰 과전압으로 인해 실제 방전용량 및 전압이 이론에 훨씬 미치지 못한다는 점을 고려하여, 전기 전도성을 가지는 탄소재를 접목시킨 것이다(즉, 탄소재의 기공에 황이 담지된 구조체).
이와 같은 황-탄소 복합체에 포함되는 황은, 무기 황(S8), Li2Sn(n≥1), 유기 황 화합물 및 탄소-황 폴리머[(C2Sx)n, x=2.5~50, n≥2]로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 중 무기 황(S8)을 적용하는 것이 바람직할 수 있다. 또한, 상기 황-탄소 복합체를 구성하는 탄소재는 다공성 구조이거나 비표면적이 높은 것으로서, 당업계에서 통용되는 것이라면 특별한 제한 없이 적용될 수 있고, 예를 들어, 상기 다공성 구조를 가지는 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소나노튜브(SWCNT), 다중벽 탄소나노튜브(MWCNT) 등의 탄소나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나 이에 제한되지 않으며, 그 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형 등으로서, 리튬 이차전지에 통상적으로 사용되는 것이라면 제한 없이 적용될 수 있다.
상기 황-탄소 복합체는 그 입자의 크기가 10 내지 50 ㎛일 수 있다. 상기 황-탄소 복합체의 입자 크기가 10 ㎛ 미만인 경우, 입자간 저항이 늘어나 리튬-황 전지의 전극에 과전압이 발생할 수 있고, 50 ㎛을 초과하는 경우에는 단위 중량당 표면적이 작아져 전극 내 전해액과의 웨팅(wetting) 면적 및 리튬 이온과의 반응 사이트(site)가 감소하게 되고, 복합체 크기 대비 전자의 전달 양이 적어져서 반응이 늦어지게 되어 전지의 방전 용량이 감소될 수 있다.
상기 양극에 있어, 양극 코팅재는 양극 활물질의 표면 전체에 코팅되는 것이 바람직하고, 상기 양극 코팅재의 각 그래핀 옥사이드에는 양이온성 작용기가 형성되어 있다. 따라서, 양극 활물질의 표면 전체에는 다수의 양이온성 작용기가 밀도 높게 위치하는 만큼, 리튬 폴리설파이드의 용출을 억제할 수 있는 능력을 극대화시켰다 할 수 있다.
한편, 상기 양극의 제조방법을 통해 제조되는 양극에는, 바인더 및 도전재가 더 포함될 수 있다. 상기 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로서, 예컨대, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐리덴플루오라이드-폴리헥사플루오로프로필렌 공중합체(PVdF/HFP), 폴리비닐아세테이트, 폴리비닐알코올, 폴리비닐에테르, 폴리에틸렌, 폴리에틸렌옥사이드, 알킬화 폴리에틸렌옥사이드, 폴리프로필렌, 폴리메틸(메트)아크릴레이트, 폴리에틸(메트)아크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리비닐피롤리돈, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 술폰화 EPDM 고무, 스틸렌-부틸렌 고무, 불소 고무, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 바인더는 통상적으로 양극 활물질을 포함한 양극재 총 중량 100 중량부를 기준으로 1 내지 50 중량부, 바람직하게는 3 내지 15 중량부 첨가된다. 바인더의 함량이 1 중량부 미만이면 양극 활물질과 집전체와의 접착력이 불충분해질 수 있고, 50 중량부를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
또한, 상기 도전재는 리튬 이차전지의 내부 환경에서 부반응을 유발하지 않고 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기전도성을 갖는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 뎅카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 결정구조가 그라펜이나 그라파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 양극재 전체 중량 100 중량부를 기준으로 0.5 내지 50 중량부, 바람직하게는 1 내지 30 중량부로 첨가된다. 도전재의 함량이 0.5 중량부 미만으로 너무 적으면 전기전도성 향상 효과를 기대하기 어렵거나 전지의 전기화학적 특성이 저하될 수 있으며, 도전재의 함량이 50 중량부를 초과하여 너무 많으면 상대적으로 양극 활물질의 양이 적어져 용량 및 에너지 밀도가 저하될 수 있다. 양극재에 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극 활물질에의 코팅 등 당분야에 공지된 통상적인 방법을 사용할 수 있다. 또한, 필요에 따라, 양극 활물질에 도전성의 제2 피복층이 부가됨으로 인해 상기와 같은 도전재의 첨가를 대신할 수도 있다.
본 발명의 양극에는 양극의 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 전극의 팽창을 억제할 수 있는 것이라면 특별히 제한되는 것은 아니며, 예컨대, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등의 섬유상 물질; 등을 사용할 수 있다.
상기 양극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 알루미늄(Al), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 알루미늄(Al) 또는 스테인리스스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 양극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.
리튬 이차전지
또한, 본 발명은, 상기 리튬 이차전지용 양극, 리튬 메탈 음극, 상기 양극과 음극의 사이에 개재되는 전해질 및 분리막을 포함하는 리튬 이차전지를 제공하며, 상기 리튬 이차전지는 리튬-황 전지인 것이 바람직하다.
일반적으로 리튬 이차전지는 양극재와 집전체로 구성된 양극, 음극재와 집전체로 구성된 음극, 및 상기 양극과 음극 간의 전기적 접촉을 차단하고 리튬이온을 이동하게 하는 분리막으로 구성되며, 이들에 함침되어 리튬이온의 전도를 위한 전해액을 포함한다. 상기 음극은 해당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들어, 음극 활물질, 도전재, 바인더, 필요에 따라 충진제 등을 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 음극 집전체 상에 도포한 후 건조 및 압연하여 음극을 제조할 수 있다.
상기 음극 활물질로는 리튬 금속이나 리튬 합금(예컨대, 리튬과 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐 등과 같은 금속과의 합금)를 사용할 수 있다. 상기 음극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 구리(Cu), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 구리(Cu) 또는 스테인리스 스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 음극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.
상기 분리막은 양극과 음극 사이에 개재되어 이들 사이의 단락을 방지하고 리튬이온의 이동 통로를 제공하는 역할을 한다. 분리막으로는 폴리에틸렌, 폴리프로필렌과 같은 올레핀계 폴리머, 유리섬유 등을 시트, 다중막, 미세다공성 필름, 직포 및 부직포 등의 형태로 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 한편 전해질로서 폴리머 등의 고체 전해질(예컨대, 유기 고체 전해질, 무기 고체 전해질 등)이 사용되는 경우에는 상기 고체 전해질이 분리막을 겸할 수도 있다. 구체적으로는, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막을 사용한다. 분리막의 기공 직경은 일반적으로 0.01 내지 10㎛, 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.
상기 전해액으로는 비수계 전해액(비수계 유기 용매)으로서 카보네이트, 에스테르, 에테르 또는 케톤을 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 예를 들어, 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, γ-부틸로락톤, n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트, 인산 트리에스테르, 디부틸 에테르, N-메틸-2-피롤리디논, 1,2-디메톡시 에탄, 테트라히드록시 프랑(Franc), 2-메틸 테트라하이드로푸란과 같은 테트라하이드로푸란 유도체, 디메틸설폭시드, 포름아미드, 디메틸포름아미드, 디옥소런 및 그 유도체, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산 메틸, 트리메톡시 메탄, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기 용매가 사용될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 전해액에는 리튬염을 더 첨가하여 사용할 수 있으며(이른바, 리튬염 함유 비수계 전해액), 상기 리튬염으로는 비수계 전해액에 용해되기 좋은 공지의 것, 예를 들어 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF3(CF2CF3)3, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등을 들 수 있으나, 반드시 이에 한정되는 것은 아니다. 상기 (비수계) 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 필요에 따라서는, 불연성을 부여하기 위해 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온보존 특성을 향상시키기 위해 이산화탄산 가스를 더 포함시킬 수도 있다.
본 발명의 리튬 이차전지는 당 분야의 통상적인 방법에 따라 제조할 수 있다. 예를 들어, 양극과 음극 사이에 다공성의 분리막을 넣고, 비수 전해액을 투입함으로써 제조할 수 있다. 본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지 셀에 적용됨은 물론, 중대형 디바이스의 전원인 전지모듈의 단위전지로 특히 적합하게 사용될 수 있다. 이러한 측면에서, 본 발명은 또한 상기 리튬 이차전지 2개 이상이 전기적으로 연결(직렬 또는 병렬)되어 포함된 전지모듈을 제공한다. 상기 전지모듈에 포함되는 리튬 이차전지의 수량은, 전지모듈의 용도 및 용량 등을 고려하여 다양하게 조절될 수 있음은 물론이다.
나아가, 본 발명은 당 분야의 통상적인 기술에 따라 상기 전지모듈을 전기적으로 연결한 전지팩을 제공한다. 상기 전지모듈 및 전지팩은 파워 툴(Power Tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 전기 트럭; 전기 상용차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용가능하나, 반드시 이에 한정되는 것은 아니다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예 1] 리튬 이차전지용 양극 코팅재의 제조
먼저, 2-(디메틸아미노)에틸 메타크릴레이트(Sigma-aldrich사)와 1-브로모뷰테인(Sigma-aldrich사)을 45 ℃에서 18 시간 동안 반응시켜, 4차화된 2-(디메틸아미노)에틸 메타크릴레이트(즉, 양이온성 단량체)를 얻었다.
이어서, 그래핀 옥사이드(Sigma-aldrich사)를 2-브로모이소부티릴브로마이드(Sigma-aldrich사) 및 트리에틸아민(Sigma-aldrich사)과 반응시켜 상기 그래핀 옥사이드의 표면에 bromo initiation site를 형성한 후, 이를 앞서 제조된 양이온성 단량체와 1 : 7의 질량비로 원자 이동 라디칼 중합 반응(반응온도: 70 ℃, 반응시간: 48 시간, 촉매: CuBr/PMDETA ligand)시켜, 표면에 양이온성 고분자가 그래프팅 된 그래핀 옥사이드(즉, 양극 코팅재)를 제조하였다(추가적으로, 상기 제조된 양극 코팅재와 LiTFSI를 수상에서 반응시켜, 브롬 음이온(Br-)을 TFSI-로 교환하였다).
[실험예 1] 양이온성 단량체(QDMAEMA)의 화학 구조 분석
상기 실시예 1에서 제조된 양이온성 단량체가 정상적으로 합성되었는지의 여부를 확인하기 위해 1H NMR 분석을 진행하였다. 도 5는 본 발명의 일 실시예에 따라 제조된 양이온성 단량체(QDMAEMA)의 1H NMR 분석 결과를 보여주는 그래프이다.
상기와 같이, 실시예 1에서 제조된 양이온성 단량체가 정상적으로 합성되었는 지의 여부를 확인하기 위해 1H NMR 분석을 진행한 결과, 도 5에 도시된 바와 같이, 목적으로 하는 양이온성 단량체의 화학 구조가 모두 나타났으며, 이를 통해, 양이온성 단량체가 이상 없이 합성되었음을 확인할 수 있었다.
[실험예 2] 양극 코팅재(개질 그래핀 옥사이드)의 화학 구조 분석
상기 실시예 1에서 제조된 양극 코팅재에 있어서, 그래핀 옥사이드의 표면에 양이온성 고분자(PQDMAEMA)가 정상적으로 그래프팅 되었는지의 여부를 확인하기 위해 TGA 분석, FT-IR 분석, XRD 분석 및 UV-Vis 분석을 진행하였다. 도 6은 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 TGA 분석 결과를 보여주는 그래프이고, 도 7은 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 FT-IR 분석 결과를 보여주는 그래프이고, 도 8은 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 XRD 분석 결과를 보여주는 그래프이며, 도 9는 본 발명의 일 실시예에 따라 제조된 양극 코팅재의 UV-Vis 분석 결과를 보여주는 그래프이다.
상기와 같이 실시예 1에서 제조된 양극 코팅재에 있어서, 그래핀 옥사이드의 표면에 양이온성 고분자가 정상적으로 그래프팅 되었는지의 여부를 확인하기 위해 TGA 분석, FT-IR 분석, XRD 분석 및 UV-Vis 분석을 진행한 결과, TGA 분석에 대한 도 6을 통해서는, 양극 코팅재의 양이온성 고분자(PQDMAEMA)가 양이온성 단량체(QDMAEMA)만을 AIBN 개시제(라디칼 개시 반응에 사용되는 개시제)로 사용하여 중합된 선형 고분자임을 확인할 수 있었다.
또한, FT-IR 분석에 대한 도 7을 통해서는, 양극 코팅재에 포함된 양이온성 고분자(PQDMAEMA)의 특성 피크들이 나타나는 것을 확인할 수 있었고, XRD 분석에 대한 도 8을 통해서는, 개질 후에 그래핀 옥사이드(GO)의 결정 피크가 사라짐을 확인할 수 있었으며, UV-Vis 분석에 대한 도 9를 통해서는, 그래핀 옥사이드의 특성 피크들(234 nm, 300 nm)의 위치가 바뀜을 확인할 수 있었다. 이상을 종합하여 볼 때, 상기 실시예 1에서 제조된 양극 코팅재에 있어서, 그래핀 옥사이드의 표면에 양이온성 고분자(PQDMAEMA)가 정상적으로 그래프팅 되었음을 알 수 있다.
[실시예 2] 리튬 이차전지용 양극의 제조
상기 실시예 1에서 제조된 양극 코팅재(FGO(OH)-TFSI) 0.5 mg(즉, 양극 전체 중량 중 코팅재의 함량이 0.25 중량% 되도록 설정(FGO 0.25))을 30분간 tip-sonication 처리하고 아세톤에 분산시킨 후 황-탄소 복합체(Elemental sulfur(황)과 super P(탄소)를 7 : 3의 중량비로 혼합하여 모르타르(mortar)로 갈고 155 ℃에서 30 분간 열처리하여 제조)를 혼합하여 15 시간 동안 교반시켰으며, 이어서, 교반이 완결된 용액을 50 ℃에서 건조시켜 아세톤을 제거하였다.
계속해서, 상기 양극 코팅재(FGO(OH)-TFSI)가 코팅된 황-탄소 복합체, 바인더(폴리아크릴산) 및 도전재(carbon black)를 85 : 10 : 5의 중량비로 혼합한 후, 여기에 추가로 0.5 중량%의 PVA 분산제를 첨가하고 수상에서 고형분이 18 wt%가 되도록 농도를 맞추고, thinky mixer로 혼합하여 양극 슬러리를 제조하였다. 마지막으로, 상기 제조된 양극 슬러리를 알루미늄 호일에 400 ㎛ doctor blade로 코팅한 후 50 ℃에서 약 14 시간 동안 건조시켜 리튬 이차전지용 양극을 제조하였다.
[실시예 3] 리튬 이차전지용 양극의 제조
상기 실시예 1에서 제조된 양극 코팅재(FGO(OH)-TFSI)의 사용량을 0.5 mg에서 1 mg으로 변경한 것을 제외하고는(즉, 양극 전체 중량 중 코팅재의 함량이 0.5 중량% 되도록 설정(FGO 0.5)), 상기 실시예 1과 동일하게 수행하여 리튬 이차전지용 양극을 제조하였다.
[실시예 4] 리튬 이차전지용 양극의 제조
상기 실시예 1에서 제조된 양극 코팅재(FGO(OH)-TFSI)의 사용량을 0.5 mg에서 1.5 mg으로 변경한 것을 제외하고는(즉, 양극 전체 중량 중 코팅재의 함량이 0.75 중량% 되도록 설정(FGO 0.75)), 상기 실시예 1과 동일하게 수행하여 리튬 이차전지용 양극을 제조하였다.
[실시예 5] 리튬 이차전지용 양극의 제조
상기 실시예 1에서 제조된 양극 코팅재(FGO(OH)-TFSI)의 사용량을 0.5 mg에서 2 mg으로 변경한 것을 제외하고는(즉, 양극 전체 중량 중 코팅재의 함량이 1 중량% 되도록 설정(FGO 1)), 상기 실시예 1과 동일하게 수행하여 리튬 이차전지용 양극을 제조하였다.
[실시예 6] 리튬 이차전지용 양극의 제조
상기 실시예 1에서 제조된 양극 코팅재(FGO(OH)-TFSI)의 사용량을 0.5 mg에서 3 mg으로 변경한 것을 제외하고는(즉, 양극 전체 중량 중 코팅재의 함량이 1.5 중량% 되도록 설정(FGO 1.5)), 상기 실시예 1과 동일하게 수행하여 리튬 이차전지용 양극을 제조하였다.
[비교예 1] 리튬 이차전지용 양극의 제조
Elemental sulfur(황)과 super P(탄소)를 7 : 3의 중량비로 혼합하여 모르타르(mortar)로 갈고 155 ℃에서 30 분간 열처리하여 제조한 황-탄소 복합체, 바인더(폴리아크릴산) 및 도전재(carbon black)를 85 : 10 : 5의 중량비로 혼합한 후, 여기에 추가로 0.5 중량%의 PVA 분산제를 첨가하고 수상에서 고형분이 18 wt%가 되도록 농도를 맞추고, thinky mixer로 혼합하여 양극 슬러리를 제조하였다. 이어서, 상기 제조된 양극 슬러리를 알루미늄 호일에 400 ㎛ doctor blade로 코팅한 후 50 ℃에서 약 14 시간 동안 건조시켜 리튬 이차전지용 양극을 제조하였다.
[실험예 3] 양극 코팅재가 코팅된 황-탄소 복합체의 성분 분석
상기 실시예 3에서 제조된 리튬 이차전지용 양극 중, 양극 코팅재(FGO(OH)-TFSI)가 황-탄소 복합체의 표면에 정상적으로 코팅되었는지의 여부를 확인하기 위해 TEM 분석과 EDS 분석을 진행하였다. 도 10은 본 발명의 일 실시예에 따라 제조된 '양극 코팅재가 코팅된 황-탄소 복합체'의 SEM 이미지(좌측 상단 이미지에 해당) 및 EDS 이미지이다.
상기와 같이 실시예 3에서 제조된 리튬 이차전지용 양극 중, 양극 코팅재(FGO(OH)-TFSI)가 황-탄소 복합체의 표면에 정상적으로 코팅되었는지의 여부를 확인하기 위해 TEM 분석과 EDS 분석을 진행한 결과, 도 10에 도시된 바와 같이 원소 F 및 N이 검출되었으며, 이를 통해, 양극 코팅재(FGO(OH)-TFSI)가 황-탄소 복합체의 표면에 정상적으로 코팅되었음을 확인할 수 있었다.
한편, 도 11은 본 발명의 일 실시예에 따라 제조된 양극 코팅재(FGO(OH)-TFSI)가 코팅된 황-탄소 복합체의 TGA 분석 그래프(좌도) 및 TEM 분석 이미지(우도)로서, 특히, 도 11의 좌측 도면을 통해 확인할 수 있듯, 황-탄소 복합체 중 황 함량이 70 중량%임을 확인할 수 있으며, 이를 통해, 본 발명과 같이 제조하더라도 황 함량이 잘 유지되는 것을 확인할 수 있었다.
[실시예 7-11, 비교예 2] 리튬-황 전지의 제조
상기 실시예 2 내지 6, 비교예 1에서 제조된 양극을 리튬 메탈 음극과 대면하도록 위치시킨 후, 양극과 음극의 사이에 Celgard 분리막을 개재하였다. 이어서, DOL/DME 용매에 각각 1M과 0.2M 농도로 LiTFSI와 LiNO3가 용해된 전해액을 케이스 내부로 주입하여 코인 셀 형태의 리튬-황 전지를 제조하였다.
[실험예 4] 리튬 이차전지의 방전용량 및 수명특성 평가
상기 실시예 7 내지 11, 비교예 2에서 제조된 리튬-황 전지에 대하여, 전류밀도를 0.2 ~ 2 C-rate로 설정하여 방전용량 및 수명특성을 평가하였다. 도 12 내지 14는 본 발명의 일 실시예 및 비교예에 따른 리튬-황 전지의 방전용량 및 수명특성을 비교 대조한 그래프이다.
상기와 같이 실시예 7 내지 11, 비교예 2에서 제조된 리튬-황 전지의 방전용량 및 수명특성을 평가한 결과, 도 12에 도시된 바와 같이, 양극 코팅재(FGO(OH)-TFSI)가 양극 활물질에 코팅된 실시예 7 내지 11의 리튬-황 전지는, 양극 코팅재(FGO(OH)-TFSI)를 사용하지 않은 비교예 2의 리튬-황 전지(도 12의 'Bare'에 해당)에 비해 셀 성능이 향상된 것을 확인할 수 있었다. 또한, 도 13 및 14를 통해서는, 본 발명의 리튬-황 전지가 높은 전류 밀도에서 특히 크게 향상된 셀 성능을 나타내는 것을 알 수 있다.

Claims (22)

  1. 양이온성 작용기로 표면 개질된 그래핀 옥사이드를 포함하는 리튬 이차전지용 양극 코팅재.
  2. 청구항 1에 있어서, 상기 양이온성 작용기는 0 내지 4개의 산소원자를 포함하는 탄소수 4 내지 70의 탄화수소기에 포함된 상태로 그래핀 옥사이드에 결합되며, 상기 그래핀 옥사이드에 대한 결합은 탄소원자에 의해 이루어지는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재.
  3. 청구항 2에 있어서, 상기 양이온성 작용기가 포함된 탄소수 4 내지 70의 탄화수소기는 양이온성기를 포함하는 탄소수 2 내지 10의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위를 포함하며, 상기 (메타)아크릴레이트 구조단위는 그래핀 옥사이드의 표면과 결합을 형성하는 탄소수 1 내지 10의 탄화수소 구조단위에 결합된 형태이며, 상기 탄소수 1 내지 10의 탄화수소는 0 내지 2개의 산소원자를 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재.
  4. 청구항 3에 있어서, 상기 (메타)아크릴레이트 구조단위는 2 내지 5개가 중합된 형태인 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재.
  5. 청구항 4에 있어서, 상기 그래핀 옥사이드의 표면과 결합을 형성하는 탄소수 1 내지 10의 탄화수소 구조단위는 그래핀 옥사이드에 결합된 카르보닐기를 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재.
  6. 청구항 1에 있어서, 상기 양이온성 작용기는 질소 양이온, 산소 양이온 및 황 양이온 중에서 선택되는 1종 이상의 양이온을 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재.
  7. 청구항 1에 있어서, 상기 양이온성 작용기는 하기 화학식 1로 표시되는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재:
    [화학식 1]
    Figure PCTKR2021010541-appb-I000005
    상기 화학식 1에서,
    R1, R2, R3, R4 및 R5는 수소 또는 탄소수 1 내지 4의 알킬기이며,
    X는 할로젠기이며,
    o, p, 및 q는 각각 독립적으로 0 내지 4의 정수이며,
    n은 1 내지 5의 자연수이다.
  8. 청구항 1에 있어서, 상기 양이온성 작용기는 양이온성 작용기에 포함된 양이온에 대한 짝이온으로서 할로젠 음이온이 더 포함되는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재.
  9. (a) 표면에 -COOH기 및 -OH기 중에서 선택되는 하나 이상을 포함하는 그래핀 옥사이드를, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위와 반응시켜 표면 개질된 그래핀 옥사이드를 제조하는 단계; 및
    (b) 상기 표면 개질된 그래핀 옥사이드와 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위를 반응시키는 단계;를 포함하는 리튬 이차전지용 양극 코팅재의 제조 방법.
  10. 청구항 9에 있어서, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위 중,
    상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기는 할로젠기로 치환된 카르보닐기, 에테르기, 에스테르기 및 카보네이트기 중에서 선택되며,
    상기 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기는 할로젠기, 에테르기, 에스테르기 및 카보네이트기 중에서 선택되는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재의 제조 방법.
  11. 청구항 9에 있어서, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위가, 할로젠기로 치환된 카르보닐기 및 할로젠기로 치환된 탄소원자를 갖는 것을 특징으로 하는 리튬 이차전지용 양극 코팅재의 제조 방법.
  12. 청구항 9에 있어서, 상기 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위가, 2-브로모이소부티릴브로마이드인 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재의 제조 방법.
  13. 청구항 9에 있어서, 상기 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위 중, 양이온성기는 질소 양이온, 산소 양이온 및 황 양이온 중에서 선택되는 1종 이상의 양이온을 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재의 제조 방법.
  14. 청구항 13에 있어서, 상기 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위 중, 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재의 제조 방법:
    [화학식 2]
    Figure PCTKR2021010541-appb-I000006
    상기 화학식 2에서,
    R4 및 R5는 수소 또는 탄소수 1 내지 4의 알킬기이며,
    X는 할로젠기이며,
    p 및 q는 각각 독립적으로 0 내지 4의 정수이다.
  15. 청구항 9에 있어서, 상기 (b)단계의 반응은 중합반응을 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재의 제조 방법.
  16. 청구항 9에 있어서, 상기 (a) 단계의 -COOH기 또는 -OH기와 결합을 형성하는 관능기 및 (메타)아크릴레이트 화합물에 포함된 비닐기와 결합을 형성하는 관능기를 포함하는 0 내지 2개의 산소를 포함하는 탄소수 1 내지 10의 탄화수소 구조단위와, 상기 표면에 -COOH기 및 -OH기 중에서 선택되는 하나 이상을 포함하는 그래핀 옥사이드의 질량비는 0.7~1.3 : 1이고, 상기 (b) 단계의 양이온성기를 포함하는 탄소수 2 내지 10개의 탄화수소기가 그라프트된 (메타)아크릴레이트 구조단위와, 상기 표면 개질된 그래핀 옥사이드의 질량비는 1~10 : 1인 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재의 제조 방법.
  17. 청구항 9에 있어서, 상기 (b) 단계 이후에는, 상기 (b) 단계에서 최종 제조된 반응 생성물과 리튬염을 반응시키는 단계가 추가로 수행되는 것을 특징으로 하는, 리튬 이차전지용 양극 코팅재의 제조 방법.
  18. 양극 활물질; 및 상기 양극 활물질의 표면에 코팅된 청구항 1의 양극 코팅재를 포함하는 리튬 이차전지용 양극.
  19. 청구항 18에 있어서, 상기 양극 활물질은 황-탄소 복합체인 것을 특징으로 하는, 리튬 이차전지용 양극.
  20. 청구항 18에 있어서, 상기 양극 코팅재는 상기 양극 활물질 100 중량부에 대하여 0.2 내지 2 중량부의 함량으로 코팅되는 것을 특징으로 하는, 리튬 이차전지용 양극.
  21. 청구항 18의 리튬 이차전지용 양극; 리튬 메탈 음극; 상기 양극과 음극의 사이에 개재되는 전해질; 및 분리막;을 포함하는 리튬 이차전지.
  22. 청구항 21에 있어서, 상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는, 리튬 이차전지.
PCT/KR2021/010541 2020-08-10 2021-08-10 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지 WO2022035172A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022526464A JP7410291B2 (ja) 2020-08-10 2021-08-10 リチウム二次電池用正極コーティング材、この製造方法、前記コーティング材を含む正極及びリチウム二次電池
US17/781,301 US20220411269A1 (en) 2020-08-10 2021-08-10 Positive electrode coating material for lithium secondary battery, preparation method thereof, and positive electrode and lithium secondary battery comprising the coating material
CN202180005894.1A CN114556631A (zh) 2020-08-10 2021-08-10 锂二次电池用正极涂布材料、其制备方法以及包含所述涂布材料的正极和锂二次电池
EP21856178.5A EP4027412A4 (en) 2020-08-10 2021-08-10 CATHODE COATING FOR LITHIUM SECONDARY BATTERY, METHOD FOR MANUFACTURING SAME, AND ANODE AND LITHIUM SECONDARY BATTERY EACH COMPRISING THE SAME COATING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200099787A KR20220019408A (ko) 2020-08-10 2020-08-10 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지
KR10-2020-0099787 2020-08-10

Publications (1)

Publication Number Publication Date
WO2022035172A1 true WO2022035172A1 (ko) 2022-02-17

Family

ID=80247996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010541 WO2022035172A1 (ko) 2020-08-10 2021-08-10 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지

Country Status (6)

Country Link
US (1) US20220411269A1 (ko)
EP (1) EP4027412A4 (ko)
JP (1) JP7410291B2 (ko)
KR (1) KR20220019408A (ko)
CN (1) CN114556631A (ko)
WO (1) WO2022035172A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140082994A (ko) * 2011-09-30 2014-07-03 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 고성능 리튬/황 전지들에서 황 고정제로서의 그래핀 옥시드
CN105047982A (zh) * 2015-06-01 2015-11-11 常州大学 一种基于氧化石墨烯薄膜修饰的锂硫电池
CN106684389A (zh) * 2016-12-30 2017-05-17 温州大学 硫氮双掺杂石墨烯纳米材料及其制备方法与应用
KR20200099787A (ko) 2019-02-15 2020-08-25 남병학 애완견용 미끄럼방지 패치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962158B2 (ja) * 2012-03-09 2016-08-03 東レ株式会社 リチウムイオン電池用正極材料およびその製造方法、ならびにリチウムイオン電池
KR102040075B1 (ko) * 2012-09-19 2019-11-27 에스케이이노베이션 주식회사 그래핀 산화물 복합체, 그래핀 복합체 및 이의 제조방법.
US20160141620A1 (en) * 2013-06-21 2016-05-19 The Regents Of The University Of California A long-life, high-rate lithium/sulfur cell utilizing a holistic approach to enhancing cell performance
DE102014221046A1 (de) * 2014-10-16 2016-05-19 Bayerische Motoren Werke Aktiengesellschaft Lithium-Schwefel-Akkumulator
US9735445B2 (en) * 2015-09-14 2017-08-15 Nanotek Instruments, Inc. Alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities
US10026995B2 (en) * 2016-01-15 2018-07-17 Nanotek Instruments, Inc. Method of producing alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities
JP7043077B2 (ja) * 2016-01-20 2022-03-29 コーネル ユニバーシティ マルチドメイン硫黄電極及びその製造方法
CN107158405B (zh) * 2017-05-24 2020-06-16 电子科技大学 一种线粒体靶向的纳米光敏免疫复合药物及其制备方法和应用
WO2019004220A1 (ja) * 2017-06-30 2019-01-03 株式会社村田製作所 マグネシウム二次電池及びマグネシウム二次電池用の正極材料
KR102229452B1 (ko) * 2017-11-08 2021-03-17 주식회사 엘지화학 분리막 및 이를 포함하는 리튬-황 전지
CN111370628A (zh) * 2020-04-09 2020-07-03 金华速览技术开发有限公司 一种用于锂硫电池的隔膜材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140082994A (ko) * 2011-09-30 2014-07-03 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 고성능 리튬/황 전지들에서 황 고정제로서의 그래핀 옥시드
CN105047982A (zh) * 2015-06-01 2015-11-11 常州大学 一种基于氧化石墨烯薄膜修饰的锂硫电池
CN106684389A (zh) * 2016-12-30 2017-05-17 温州大学 硫氮双掺杂石墨烯纳米材料及其制备方法与应用
KR20200099787A (ko) 2019-02-15 2020-08-25 남병학 애완견용 미끄럼방지 패치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUMAR ARVIND, BEHERA BABITA, THAKRE GANANATH D., RAY SIDDHARTH S.: "Covalently Grafted Graphene Oxide/Poly(C n -acrylate) Nanocomposites by Surface-Initiated ATRP: An Efficient Antifriction, Antiwear, and Pour-Point-Depressant Lubricating Additive in Oil Media", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 55, no. 31, 10 August 2016 (2016-08-10), pages 8491 - 8500, XP055901474, ISSN: 0888-5885, DOI: 10.1021/acs.iecr.6b00848 *
RODIER BRADLEY J: "Modification of graphene oxide for tailored functionality", THESIS, 1 May 2018 (2018-05-01), pages 1 - 355, XP055901466 *
See also references of EP4027412A4

Also Published As

Publication number Publication date
JP7410291B2 (ja) 2024-01-09
KR20220019408A (ko) 2022-02-17
JP2023500942A (ja) 2023-01-11
EP4027412A1 (en) 2022-07-13
CN114556631A (zh) 2022-05-27
EP4027412A4 (en) 2023-11-15
US20220411269A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2010079962A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2020091345A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2017052246A1 (ko) 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지
KR102448075B1 (ko) 리튬-황 전지용 양극 활물질의 제조방법, 이에 의해 제조되는 리튬-황 전지용 양극 활물질 및 이를 포함하는 리튬-황 전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2018097695A1 (ko) 금속 황화물 나노입자를 포함하는 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2020166871A1 (ko) 리튬 이차전지용 양극 활물질
WO2019212161A1 (ko) 리튬-황 전지용 양극 활물질 및 그 제조방법
WO2022139563A1 (ko) 이차전지용 음극, 음극용 슬러리 및 음극의 제조 방법
WO2022035172A1 (ko) 리튬 이차전지용 양극 코팅재, 이의 제조방법, 상기 코팅재를 포함하는 양극 및 리튬 이차전지
KR20220040013A (ko) 리튬 이차전지용 양극, 이의 제조방법 및 상기 양극을 포함하는 리튬 이차전지
WO2022035173A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 상기 양극을 포함하는 리튬 이차전지
WO2020013482A1 (ko) 옥시수산화질산철의 제조방법, 이로부터 제조된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2019198949A1 (ko) 인화철의 제조방법, 인화철을 포함하는 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2022035174A1 (ko) 리튬 이차전지용 양극 바인더, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200053403A (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20210015048A (ko) 양극 접착력 개선용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 상기 양극을 포함하는 리튬 이차전지
KR20210015499A (ko) 양극 접착력 개선용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 상기 양극을 포함하는 리튬 이차전지
KR20200089474A (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022114650A1 (ko) 리튬-황 전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬-황 전지의 양극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021856178

Country of ref document: EP

Effective date: 20220408

ENP Entry into the national phase

Ref document number: 2022526464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE