WO2022032748A1 - 一种硼掺杂MXene材料及其制备方法 - Google Patents

一种硼掺杂MXene材料及其制备方法 Download PDF

Info

Publication number
WO2022032748A1
WO2022032748A1 PCT/CN2020/112569 CN2020112569W WO2022032748A1 WO 2022032748 A1 WO2022032748 A1 WO 2022032748A1 CN 2020112569 W CN2020112569 W CN 2020112569W WO 2022032748 A1 WO2022032748 A1 WO 2022032748A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
doped
mxene material
mxene
doped mxene
Prior art date
Application number
PCT/CN2020/112569
Other languages
English (en)
French (fr)
Inventor
张业龙
孙宏阳
周健文
徐晓丹
陈浩
曾庆光
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2022032748A1 publication Critical patent/WO2022032748A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of new energy materials, in particular to a boron-doped MXene material and a preparation method thereof.
  • lithium-ion batteries have been widely used in energy storage modules for electric vehicles and handheld electronic devices.
  • the application of lithium-ion batteries in the field of renewable energy power generation and energy storage is limited due to limited lithium resources and high energy storage costs.
  • Na-ion batteries have a working mechanism similar to lithium-ion batteries, and sodium has a higher abundance in the earth's crust.
  • the standard potential of sodium (-2.71V) is close to that of lithium (-3.04V), which is beneficial to obtain high power density Battery. Therefore, sodium-ion batteries are considered as an alternative to lithium-ion batteries in renewable energy power generation and energy storage applications.
  • sodium-ion batteries have been widely studied by researchers.
  • Radius than Li-ion The radius is large, and Fouletier et al. confirmed that when graphite is used as a negative electrode for sodium-ion batteries, in carbonate electrolytes, sodium ions can only be inserted into graphite to generate 8th-order NaC 64 compounds, which makes it widely used in lithium-ion batteries.
  • Graphite is difficult to be used in the anode of sodium-ion batteries, so finding suitable anode materials for sodium-ion batteries has become an important research direction.
  • MXene is a new type of two-dimensional layered material obtained by etching away the Al layer in the MAX ceramic phase by hydrofluoric acid. In order to maintain the charge balance, functional groups containing hydroxyl, oxygen and fluorine are formed on the surface of MXene, which makes it combine metalloid conductivity and excellent hydrophilicity. In addition, MXenes have the advantages of intrinsic nanoscale layered structure, highly tunable metal composition, and huge specific surface area, thus showing great potential in energy storage and catalysis. Shenoy et al. calculated that the capacity of Na on MXene (Ti 3 C 2 ) was 351.8 mAh/g.
  • MXene Ti 3 C 2
  • the capacity was still low.
  • modification strategies for MXene including: chemical doping, multiphase composite, coating strategy, etc.
  • chemical doping is a strategy to increase the defect concentration and electron concentration by introducing new chemical elements, and it is also the most simple and effective method.
  • the commonly used doping method is mainly heat treatment. Although it is simple and convenient, the uniformity of doping is poor, and the capacity and stability of Na-ion batteries cannot be effectively improved.
  • one of the objectives of the present invention is to provide a boron-doped MXene material.
  • Another object of the present invention is to provide a method for preparing the above boron-doped MXene material.
  • the present invention provides an application of a boron-doped MXene material, and the boron-doped MXene material is used as a negative electrode of a sodium ion battery.
  • the present invention adopts following technical scheme:
  • a preparation method of a boron-doped MXene material belongs to an ionic liquid method, and comprises the following steps:
  • step (2) adding MXene to the solution obtained in step (1), and stirring for 3-12 hours to obtain a dispersion;
  • the dispersion liquid is transferred into the reactor and heated to 150-220°C, preferably 170-200°C, such as 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C ; Reaction for 10-15 hours, preferably 12-14 hours, such as 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, and then cooled to room temperature;
  • the boron source is one or more of sodium borohydride, boric acid and B 2 H 6 .
  • the MXene is one or more of V 3 C 2 T x , Ti 3 C 2 T x , Ti 2 CT x , and Mo 3 N 2 T x .
  • Ti 3 C 2 T x eg Ti 2 CT x , Mo 3 N 2 T x , optionally a mixture of Ti 3 C 2 T x and Ti 2 CT x .
  • the dispersant is at least one of water, N,N-dimethylformamide and ethanol.
  • the volume ratio of the dispersion liquid to the reactor is 0.5-0.8, preferably 0.6, such as 0.7, 0.8.
  • the cleaning agent is at least one of water and ethanol; preferably ultrapure water and absolute ethanol are used to thoroughly clean the centrifugal product, and ultrapure water and absolute ethanol can be used for alternate cleaning 2-6 times, preferably 5 times .
  • the doping amount of boron in the boron-doped MXene material is 1-30wt%, for example, 0.5-15wt%, 5-20wt%, 10-30wt%.
  • the dispersion liquid is heated to 150-220° C., preferably 180° C. in the reaction kettle, and the reaction is carried out for 10-15 hours, preferably 8 hours.
  • the centrifugal rotation speed is 3000-9000r/min, preferably 4500r/min
  • the centrifugation time is 3-8min, preferably 3min.
  • the temperature of vacuum drying in step (3) is 60-80°C, preferably 65°C, and the drying time is 8-12 hours, preferably 10 hours, such as 8 hours, 9 hours, 11 hours, 12 hours; the degree of vacuum does not exceed 200Pa.
  • a boron-doped MXene material is prepared by a method for preparing a boron-doped MXene material.
  • a negative electrode for a sodium ion battery comprising the above boron-doped MXene material.
  • a sodium-ion battery comprising the above-mentioned battery negative electrode.
  • the boron-doped MXene materials prepared by the present invention combine with ⁇ electrons through boron atoms, thereby generating more reaction sites, improving the electrical conductivity of MXene, and enhancing the pseudocapacitance effect, thereby improving the rapidity Sodium storage performance, improve specific capacity, and maintain cycle stability, fully meet the needs of practical applications;
  • the boron-doped MXene material of the present invention has a simple preparation method, does not change the morphology of the raw material, does not require complicated processing procedures, has a uniform doping effect, and is suitable for large-scale applications.
  • Fig. 1 is the scanning electron microscope image of undoped MXene material in Comparative Example 1;
  • Fig. 2 is the scanning electron microscope image of boron-doped MXene material in embodiment 1;
  • Figure 3 is a graph of the cycle performance measured by the undoped MXene material in Comparative Example 1;
  • FIG. 4 is a graph of the cycle performance measured by the boron-doped MXene material in Example 1.
  • the Ti 3 C 2 T x particles were purchased from Beijing Beike New Material Technology Co., Ltd., number BK2020011814, lamellar stacking thickness: 1-5 ⁇ m, purity: 99%, product application fields: energy storage, catalysis, analytical chemistry, etc.
  • Doping amount of boron atoms X-ray photoelectron spectroscopy (XPS).
  • the active material (MXene, MXene with different B doping amounts) was mixed with conductive carbon black and polyvinylidene fluoride binder in a mass ratio of 8:1:1, and an appropriate amount of N was added.
  • -Methylpyrrolidone stir evenly and coat on copper foil, vacuum dry at 80°C and slice to obtain a sodium ion battery negative electrode sheet with a diameter of 18mm.
  • the negative pole piece, metal sodium foil, and separator (Whatman, GF/F) were assembled into a 2032 button battery in a glove box, and the battery performance was tested by using the Wuhan Blue Electric Battery Test System.
  • a preparation method of boron-doped MXene material comprising the following steps:
  • step (2) adding 500mg Ti 3 C 2 T x to the solution obtained in step (1), and stirring for 8 hours to obtain a dispersion;
  • step (3) moving the dispersion liquid obtained in step (1) into a 100ml reaction kettle and sealing it, placing it in an oven, keeping the temperature at 180°C for 10 hours, and cooling to room temperature;
  • step (3) the product obtained in step (3) is centrifuged for 3 minutes under the condition of 4500r/min, and washed 3 times with ultrapure water and absolute ethanol respectively;
  • step (4) drying the product obtained in step (4) in a vacuum drying oven at a drying temperature of 65°C and a drying time of 8 hours;
  • step (6) Collecting the dried product in step (5) to obtain a boron-doped MXene material.
  • the button battery composed of boron-doped MXene and sodium foil has a reversible capacity of 342mAh/g after 100 cycles at a current density of 100mA/g, which is an undoped MXene negative electrode (112.2mAh/g). 2.4 times.
  • a preparation method of boron-doped MXene material comprising the following steps:
  • step (2) adding 1000mg Ti 3 C 2 T x to the solution obtained in step (1), and stirring for 8 hours to obtain a dispersion;
  • step (3) The dispersion liquid obtained in step (1) is moved to a 100ml reaction kettle and sealed, and placed in an oven, kept at 160° C. for 12 hours, and cooled to room temperature;
  • step (3) the product obtained in step (3) was centrifuged for 5 minutes under the condition of 5500 r/min, and washed 3 times with ultrapure water and absolute ethanol respectively;
  • step (4) drying the product obtained in step (4) in a vacuum drying oven at a drying temperature of 70°C and a drying time of 8 hours;
  • step (6) Collecting the dried product in step (5) to obtain a boron-doped MXene material.
  • the button battery composed of boron-doped MXene and sodium foil has a reversible capacity of 278.7mAh/g after 100 cycles at a current density of 100mA/g, which is the negative electrode of undoped MXene (112.2mAh/g). ) three times.
  • a preparation method of boron-doped MXene material comprising the following steps:
  • step (2) adding 1500mg Ti 3 C 2 T x to the solution obtained in step (1), and stirring for 8 hours to obtain a dispersion;
  • step (3) moving the dispersion liquid obtained in step (1) into a 100ml reaction kettle and sealing it, placing it in an oven, keeping the temperature at 200°C for 14 hours, and cooling to room temperature;
  • step (3) the product obtained in step (3) was centrifuged for 3 minutes under the condition of 6000 r/min, and washed 3 times with ultrapure water and absolute ethanol respectively;
  • step (4) drying the product obtained in step (4) in a vacuum drying oven at a drying temperature of 75°C and a drying time of 8 hours;
  • step (6) Collecting the dried product in step (5) to obtain a boron-doped MXene material.
  • the button battery composed of boron-doped MXene and sodium foil in this example has a reversible capacity of 238.7mAh/g after 100 cycles at a current density of 100mA/g, which is an undoped MXene negative electrode (112.2mAh/g). 2.1 times.
  • the button battery composed of MXene and sodium foil in this example has a reversible capacity of 112.2 mAh/g after 100 cycles at a current density of 100 mA/g.
  • the boron-doped MXene materials prepared by the present invention are combined with ⁇ electrons through boron atoms, thereby generating more reaction sites, improving the conductivity of MXene, and enhancing the pseudocapacitance effect, thereby enhancing the pseudocapacitive effect.
  • the rapid sodium storage performance is improved and the specific capacity is improved; it can be seen from Figure 4 that the boron-doped MXene material prepared by the present invention maintains the cycle stability while ensuring high specific capacity, and fully meets the needs of practical applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种硼掺杂MXene材料及其制备方法,包括以下步骤:(1)将含硼材料加入分散剂中,配制成浓度为1-10mol/L的溶液;(2)将MXene加入步骤(1)所得溶液中,得到分散液;(3)将所述分散液加热至150-220℃,反应10-15小时,然后冷却至室温;(4)将步骤(3)所得的产物离心,洗涤,干燥,得到硼掺杂MXene材料。与纯MXene材料相比,制备的硼掺杂MXene材料通过硼原子与π电子结合,从而产生更多的反应位点,提升MXene电导率、并增强赝电容效应,从而提高快速储钠性能,提升比容量;制备的硼掺杂MXene材料在保证高比容量的同时保持了循环稳定性,完全满足实际应用的需求;制备的硼掺杂MXene制备方法简单,掺杂效果均匀,比容量高。

Description

一种硼掺杂MXene材料及其制备方法 技术领域
本发明属于新能源材料领域,具体涉及一种硼掺杂MXene材料及其制备方法。
背景技术
随着电气化社会的快速发展,锂离子电池在电动汽车和手持电子设备的储能模块中得到了广泛应用。然而,在可再生能源发电储能领域中的应用,锂离子电池却因为有限的锂资源和较高的储能成本而受到限制。钠离子电池有着类似锂离子电池的工作机制,并且钠在地壳中有更高的丰度,此外,钠的标准电位(-2.71V)接近锂(-3.04V),这有利于得到高功率密度电池。因此,钠离子电池被认为是锂离子电池在可再生能源发电储能应用中的替代者。
钠离子电池作为富有前景的金属二次电池受到研究人员的广泛研究,在长期的研究过程中,人们发现钠离子
Figure PCTCN2020112569-appb-000001
的半径比锂离子
Figure PCTCN2020112569-appb-000002
的半径大,Fouletier等人证实石墨用作钠离子电池负极时,在碳酸酯类电解液中,钠离子只能嵌入石墨生成8阶的NaC 64化合物,这使得在锂离子电池中得到广泛应用的石墨难以用于钠离子电池负极,故寻找合适的钠离子电池负极材料已成为重要的研究方向。
MXene是通过氢氟酸刻蚀掉MAX陶瓷相中的Al层,从而得到的一种新型二维层状材料。为了保持电荷平衡,MXene表面会形成含有羟基,氧和氟的官能团,这使得其兼具类金属的导电性和优异的亲水性。此外,MXene具有本征纳米级层状结构、高度可调节的金属成分、巨大的比表面积等优点,因而在能源存储及催化方面表现出巨大的潜力。Shenoy等通过计算得到Na在MXene(Ti 3C 2)上的容量为351.8mAh/g,然而,MXene(Ti 3C 2)实际用于钠离子电池时,所表现出的容量仍然较低,为了改善MXene的储钠性能,研究人员对MXene进行了多种改性策略,包括:化学掺杂,多相复合,包覆策略等。其中化学掺杂是通过引入新的化学元素以提高缺陷浓度和电子浓度的策略,也是最为简单有效的手段。常用的掺杂手段以热处理为主,虽然简单方便,但是掺杂的均匀性较差,仍然无法有效的提高钠离子电池的容量和稳定性。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种硼掺杂MXene材料。本发明 的另一目的在于提供上述硼掺杂MXene材料的制备方法。进一步的,本发明提供一种硼掺杂MXene材料的应用,将所述硼掺杂MXene材料用作钠离子电池负极。
本发明采用以下技术方案:
一种硼掺杂MXene材料的制备方法,所述制备方法属于离子液体法,包括以下步骤:
(1)将硼源材料加入分散剂中,配制成浓度为1-10mol/L的溶液;
(2)将MXene加入步骤(1)所得溶液中,并搅拌3-12小时,得到分散液;
(3)将所述分散液移入反应釜加热至150-220℃,优选的为170-200℃,例如150℃,160℃,170℃,180℃,190℃,200℃,210℃,220℃;反应10-15小时,优选的为12-14小时,例如10小时,11小时,12小时,13小时,14小时,15小时,然后冷却至室温;
(4)然后离心,用清洗剂进行清洗,真空干燥,得到硼掺杂MXene材料。
进一步地,所述硼源为硼氢化钠、硼酸、B 2H 6中的一种或多种。
进一步地,所述MXene为V 3C 2T x、Ti 3C 2T x、Ti 2CT x、Mo 3N 2T x中的一种或多种。优选Ti 3C 2T x,例如Ti 2CT x,Mo 3N 2T x,可选Ti 3C 2T x与Ti 2CT x混合物。
进一步地,所述分散剂为水、N,N-二甲基甲酰胺、乙醇中的至少一种。
进一步地,所述分散液与反应釜的体积比为0.5-0.8,优选0.6,例如0.7,0.8。
进一步地,所述清洗剂为水、乙醇中的至少一种;优选用超纯水和无水乙醇彻底清洗离心产物,可以用超纯水和无水乙醇交替清洗2-6次,优选5次。
进一步地,所述硼掺杂MXene材料中硼掺杂量为1-30wt%,例如0.5-15wt%,5-20wt%,10-30wt%。
进一步地,步骤(3)中所述分散液在反应釜中升温至150-220℃,优选180℃,反应10-15小时,优选8小时。
进一步地,步骤(3)中所述离心转速为3000-9000r/min,优选4500r/min,离心时间为3-8min,优选3min。
进一步地,步骤(3)中真空干燥的温度为60-80℃,优选65℃,干燥时间8-12小时,优选10小时,例如8小时、9小时、11小时、12小时;真空度不超过200Pa。
一种硼掺杂MXene材料的制备方法制备得到的硼掺杂MXene材料。
一种钠离子电池负极,其包括上述硼掺杂MXene材料。
一种钠离子电池,其包括上述电池负极。
本发明的有益效果:
(1)与纯MXene材料相比,本发明制备的硼掺杂MXene材料通过硼原子与π电子结合,从而产生更多的反应位点,提升MXene电导率、并增强赝电容效应,从而提高快速储钠性能,提升比容量,并且保持了循环稳定性,完全满足实际应用的需求;
(2)本发明的硼掺杂MXene材料所用制备方法简单,不改变原材料的形貌,无须复杂处理流程,掺杂效果均匀,适合大规模应用。
附图说明
图1是对比例1中未掺杂MXene材料的扫描电镜图;
图2是实施例1中硼掺杂MXene材料的扫描电镜图;
图3是对比例1中未掺杂MXene材料所测的循环性能图;
图4是实施例1中硼掺杂MXene材料所测的循环性能图。
具体实施方式
为了更好的解释本发明,现结合以下具体实施例做进一步说明,但是本发明不限于具体实施例。
其中,所述材料如无特别说明均可以在商业途径可得;
所述Ti 3C 2T x颗粒购自北京北科新材科技有限公司,编号BK2020011814,片层堆积厚度:1-5μm,纯度:99%,产品应用领域:储能,催化,分析化学等。
所述方法如无特别说明均为常规方法。
比表面积测试:通过ASAP2460比表面积分析仪对所获样品进行N2吸附脱附测试,并基于BET理论计算出比表面积。
硼原子掺杂量:X射线光电子能谱(XPS)。
电池性能测试:将活性物质(MXene,不同B掺杂量的MXene)分别与导电碳黑、聚偏氟乙烯粘结剂,按质量比为8:1:1的比例进行混合,并加入适量N-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上,经80℃真空干燥后切片,得到直径为18mm的钠离子电池负极片。将该负极极片,金属钠箔,隔膜(Whatman,GF/F)在手套箱中组装成2032型纽扣电池,并利用武汉蓝电电池测试***进行电池性能测试。
实施例1
一种硼掺杂MXene材料的制备方法,包括以下步骤:
(1)取0.3mol的硼酸加入到60ml去离子水中,磁力搅拌8小时,配置成5mol/L的溶液;
(2)将500mg Ti 3C 2T x加入步骤(1)所得溶液中,并搅拌8小时,得到分散液;
(3)将步骤(1)得到的分散液移至容量为100ml反应釜中密封后放置在烘箱中,于180℃下保温10小时,冷却至室温;
(4)将步骤(3)得到的产物,在4500r/min条件下离心3分钟,用超纯水和无水乙醇分别洗涤3次;
(5)将步骤(4)得到的产物在真空干燥箱中进行干燥,干燥温度65℃,干燥时间8小时;
(6)收集步骤(5)中的干燥产物,即得硼掺杂MXene材料。
本实施例中硼掺杂的MXene与钠箔组成的纽扣电池,在100mA/g的电流密度下,循环100圈后的可逆容量为342mAh/g,是未掺杂MXene负极(112.2mAh/g)的2.4倍。
实施例2
一种硼掺杂MXene材料的制备方法,包括以下步骤:
(1)取0.15mol的硼酸加入到60ml去离子水中,磁力搅拌8小时,配置成5mol/L的溶液;
(2)将1000mg Ti 3C 2T x加入步骤(1)所得溶液中,并搅拌8小时,得到分散液;
(3)将步骤(1)得到的分散液移至容量为100ml反应釜中密封后放置在烘箱中,于160℃下保温12小时,冷却至室温;
(4)将步骤(3)得到的产物,在5500r/min条件下离心5分钟,用超纯水和无水乙醇分别洗涤3次;
(5)将步骤(4)得到的产物在真空干燥箱中进行干燥,干燥温度70℃,干燥时间8小时;
(6)收集步骤(5)中的干燥产物,即得硼掺杂MXene材料。
本实施例中硼掺杂的MXene与钠箔组成的纽扣电池,在100mA/g的电流密度下,循环100圈后的可逆容量为278.7mAh/g,是未掺杂MXene负极(112.2mAh/g)的3倍。
实施例3
一种硼掺杂MXene材料的制备方法,包括以下步骤:
(1)取0.5mol的硼酸加入到80ml去离子水中,磁力搅拌8小时,配置成6.25mol/L的溶液;
(2)将1500mg Ti 3C 2T x加入步骤(1)所得溶液中,并搅拌8小时,得到分散液;
(3)将步骤(1)得到的分散液移至容量为100ml反应釜中密封后放置在烘箱中,于200℃下保温14小时,冷却至室温;
(4)将步骤(3)得到的产物,在6000r/min条件下离心3分钟,用超纯水和无水乙醇分别洗涤3次;
(5)将步骤(4)得到的产物在真空干燥箱中进行干燥,干燥温度75℃,干燥时间8小时;
(6)收集步骤(5)中的干燥产物,即得硼掺杂MXene材料。
本实施例硼掺杂的MXene与钠箔组成的纽扣电池,在100mA/g的电流密度下,循环100圈后的可逆容量为238.7mAh/g,是未掺杂MXene负极(112.2mAh/g)的2.1倍。
本实施例的MXene与钠箔组成的纽扣电池,在100mA/g的电流密度下,循环100圈后的可逆容量为112.2mAh/g。
对比例1
采用单纯的Ti 3C 2T x材料进行各性能测试。
各组的性能测试结果请参见表1。
表1:性能测试
Figure PCTCN2020112569-appb-000003
由表1可知,与纯MXene材料相比,本发明制备的硼掺杂MXene材料通过硼原子与π电子结合,从而产生更多的反应位点,提升MXene电导率、并增强赝电容效应,从而提高快速储钠性能,提升比容量;由图4可知,本发明制备的硼掺杂MXene材料在保证高比容量的 同时保持了循环稳定性,完全满足实际应用的需求。
以上所述仅为本发明的具体实施例,并非因此限制本发明的专利范围,凡是利用本发明作的等效变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围之中。

Claims (10)

  1. 一种硼掺杂MXene材料的制备方法,其特征在于,包括以下步骤:
    (1)将硼源材料加入分散剂中,配制成浓度为1-10mol/L的溶液;
    (2)将MXene加入步骤(1)所得溶液中,充分搅拌,得到分散液;
    (3)将所述分散液加热至150-220℃,反应10-15小时,冷却,离心,洗涤,干燥,得到硼掺杂MXene材料。
  2. 根据权利要求1所述的硼掺杂MXene材料的制备方法,其特征在于,所述含硼源材料选自硼氢化钠、硼酸、B 2H 6中的一种或多种。
  3. 根据权利要求1所述的硼掺杂MXene材料的制备方法,其特征在于,所述MXene为V 3C 2T x、Ti 3C 2T x、Ti 2CT x、Mo 3N 2T x中的一种或多种。
  4. 根据权利要求1所述的硼掺杂MXene材料的制备方法,其特征在于,所述分散剂为去离子水、乙醇中的至少一种。
  5. 根据权利要求1所述的硼掺杂MXene材料的制备方法,其特征在于,所述硼掺杂MXene材料中硼掺杂量为0.5-25wt%。
  6. 根据权利要求1所述的硼掺杂MXene材料的制备方法,其特征在于,步骤(3)中所述离心转速为2500-7000r/min,离心时间为2-7min。
  7. 根据权利要求1所述的硼掺杂MXene材料的制备方法,其特征在于,步骤(3)中采用真空干燥,真空干燥的温度为60-85℃,干燥时间8-12小时。
  8. 根据权利要求1所述的硼掺杂MXene材料的制备方法,其特征在于,步骤(3)中真空干燥的真空度不超过200Pa。
  9. 一种钠离子电池负极,其特征在于,其包括权利要求1-8中任一项所述的制备方法制备得到的硼掺杂MXene材料。
  10. 一种钠离子电池,其特征在于,其包括权利要求9所述的电池负极。
PCT/CN2020/112569 2020-08-14 2020-08-31 一种硼掺杂MXene材料及其制备方法 WO2022032748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010818081.1A CN112072101A (zh) 2020-08-14 2020-08-14 一种硼掺杂MXene材料及其制备方法
CN202010818081.1 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022032748A1 true WO2022032748A1 (zh) 2022-02-17

Family

ID=73661215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112569 WO2022032748A1 (zh) 2020-08-14 2020-08-31 一种硼掺杂MXene材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112072101A (zh)
WO (1) WO2022032748A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789048A (zh) * 2022-04-28 2022-07-26 安徽工程大学 一种二维碳/硼-二氧化钛复合氧化物及其制备方法和在光催化产氢的应用
CN114956086A (zh) * 2022-05-26 2022-08-30 无锡迈新纳米科技有限公司 一种硼掺杂二维过渡金属碳化物材料
CN116161644A (zh) * 2023-03-09 2023-05-26 四川兴储能源科技有限公司 一种碘掺杂钠离子硬碳的制备方法及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113697811A (zh) * 2021-08-26 2021-11-26 河北师范大学 一种三维层状硼掺杂碳化钛及其制备方法和应用
CN114149024B (zh) * 2021-11-30 2023-07-28 陕西科技大学 一种硼掺杂多孔二氧化钛/碳纤维负极材料及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025200A (zh) * 2016-05-24 2016-10-12 浙江大学 一种氮掺杂MXene电池负极材料的制备方法及其应用
JP2018525795A (ja) * 2015-08-24 2018-09-06 ナノテク インスツルメンツ インク 超高体積エネルギー密度を有する充電式リチウム電池および所要の製造方法
WO2018217274A1 (en) * 2017-05-24 2018-11-29 Nanotek Instruments, Inc. Alkali metal battery having a deformable quasi-solid electrode material
CN109830661A (zh) * 2019-01-16 2019-05-31 五邑大学 硒掺杂MXene复合纳米材料及其制备方法和应用
CN109830659A (zh) * 2019-01-15 2019-05-31 五邑大学 一种Te掺杂MXene材料及其制备方法
CN109888279A (zh) * 2019-01-15 2019-06-14 五邑大学 一种硒掺杂MXene材料及其制备方法和应用
CN109888203A (zh) * 2019-01-16 2019-06-14 五邑大学 碲掺杂MXene复合材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817918B (zh) * 2019-01-22 2022-04-08 五邑大学 硫掺杂MXene复合材料及其制备方法和应用
CN109994719B (zh) * 2019-02-27 2020-11-10 北京化工大学 一种磷掺杂MXene材料及其制备方法
CN110148733B (zh) * 2019-05-30 2022-06-07 中南大学 一种异原子掺杂多孔碳材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525795A (ja) * 2015-08-24 2018-09-06 ナノテク インスツルメンツ インク 超高体積エネルギー密度を有する充電式リチウム電池および所要の製造方法
CN106025200A (zh) * 2016-05-24 2016-10-12 浙江大学 一种氮掺杂MXene电池负极材料的制备方法及其应用
WO2018217274A1 (en) * 2017-05-24 2018-11-29 Nanotek Instruments, Inc. Alkali metal battery having a deformable quasi-solid electrode material
CN109830659A (zh) * 2019-01-15 2019-05-31 五邑大学 一种Te掺杂MXene材料及其制备方法
CN109888279A (zh) * 2019-01-15 2019-06-14 五邑大学 一种硒掺杂MXene材料及其制备方法和应用
CN109830661A (zh) * 2019-01-16 2019-05-31 五邑大学 硒掺杂MXene复合纳米材料及其制备方法和应用
CN109888203A (zh) * 2019-01-16 2019-06-14 五邑大学 碲掺杂MXene复合材料及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789048A (zh) * 2022-04-28 2022-07-26 安徽工程大学 一种二维碳/硼-二氧化钛复合氧化物及其制备方法和在光催化产氢的应用
CN114789048B (zh) * 2022-04-28 2023-08-15 安徽工程大学 一种二维碳/硼-二氧化钛复合氧化物及其制备方法和在光催化产氢的应用
CN114956086A (zh) * 2022-05-26 2022-08-30 无锡迈新纳米科技有限公司 一种硼掺杂二维过渡金属碳化物材料
CN114956086B (zh) * 2022-05-26 2023-09-19 无锡迈新纳米科技有限公司 一种硼掺杂二维过渡金属碳化物材料
CN116161644A (zh) * 2023-03-09 2023-05-26 四川兴储能源科技有限公司 一种碘掺杂钠离子硬碳的制备方法及应用

Also Published As

Publication number Publication date
CN112072101A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2022032748A1 (zh) 一种硼掺杂MXene材料及其制备方法
CN108269982B (zh) 一种复合材料、其制备方法及在锂离子电池中的应用
WO2020147299A1 (zh) 一种Te掺杂MXene材料及其制备方法
CN108666543B (zh) 一种海海绵状C-SiC复合材料及其制备方法
CN109888247B (zh) 一种锂离子电池用钛酸锌锂/碳纳米复合负极材料的制备方法
CN112038614B (zh) 一种钠离子电池用负极材料及其制备方法
WO2022032750A1 (zh) 一种阵列状SnS2/MXene复合材料的制备方法
CN105118966A (zh) 一种用于锂电池负极的高氮含量锡碳复合材料及制备方法
Zhang et al. Synthesis of spherical Al-doping LiMn 2 O 4 via a high-pressure spray-drying method as cathode materials for lithium-ion batteries
WO2022032749A1 (zh) 一种三维棒状钛酸钾材料的制备方法
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
CN109346682B (zh) 一种锂离子电池负极复合材料的制备方法
CN115050944B (zh) 一种三维纳米花结构的复合材料及其制备方法和应用
Sun et al. Effects of Li 3 PO 4 additive on the electrochemical properties of Li 2 FeSiO 4 as cathode material for lithium-ion batteries
CN113023778B (zh) 二硫化钼纳米片包覆钛基mof衍生二氧化钛复合材料、制备方法及应用
CN113224291B (zh) 一种氮硫掺杂碳负载Fe7S8电池负极材料的制备方法及其应用
CN114188521A (zh) 一种双离子电池石墨正极材料表面的轻质包覆层及制备方法
CN107331840A (zh) 一种碳包覆的中空二硫化钼多面体材料的制备方法
CN109921001B (zh) 一种磷酸钒钠/碳复合正极材料及其微波辅助合成与应用
CN109004207B (zh) 一种复合磷酸铁锂正极材料及其制备方法
Hou et al. Preparation of LiFePO4/H2Ti3O7 and LiFePO4/TiO2 nanocomposite by sol-gel method as cathode material for lithium-ion battery
CN111293297A (zh) 一种碳包覆MoSe2/黑磷复合材料及其制备方法
CN110931789A (zh) 碳纳米片的制备方法和正极材料及其制备方法
Lin et al. Investigations on Li 4 Ti 5 O 12/Ti 3 O 5 Composite as an Anode Material for Lithium–Ion Batteries
CN113725434B (zh) 一种镍基金属有机框架衍生的复合电极及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949245

Country of ref document: EP

Kind code of ref document: A1