WO2022018841A1 - 電力変換装置および電動パワーステアリング装置 - Google Patents

電力変換装置および電動パワーステアリング装置 Download PDF

Info

Publication number
WO2022018841A1
WO2022018841A1 PCT/JP2020/028370 JP2020028370W WO2022018841A1 WO 2022018841 A1 WO2022018841 A1 WO 2022018841A1 JP 2020028370 W JP2020028370 W JP 2020028370W WO 2022018841 A1 WO2022018841 A1 WO 2022018841A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
inverter
arm switching
input terminal
current detection
Prior art date
Application number
PCT/JP2020/028370
Other languages
English (en)
French (fr)
Inventor
辰也 森
紘子 池田
建太 久保
迪 廣谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/011,739 priority Critical patent/US20230318488A1/en
Priority to PCT/JP2020/028370 priority patent/WO2022018841A1/ja
Priority to JP2022538540A priority patent/JP7351013B2/ja
Priority to CN202080104846.3A priority patent/CN116114165A/zh
Priority to EP20946158.1A priority patent/EP4187774A4/en
Publication of WO2022018841A1 publication Critical patent/WO2022018841A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output

Definitions

  • This application relates to a power conversion device and an electric power steering device.
  • Patent Document 1 The technique of Patent Document 1 is known as a conventional power conversion device and an electric power steering device.
  • the current is detected based on the output signal of the current detection resistance element connected in series to the switching element on the negative electrode side of the inverter.
  • This inverter is called a "lower arm 3 shunt current detection type inverter”.
  • bus 1 shunt current detection method inverter an inverter adopting a current detection method called "bus 1 shunt current detection method inverter” is also widespread.
  • DC-CT direct current sensor
  • the third-order harmonic component when the third-order harmonic component is superimposed on the voltage command value related to the voltage of the inverter, the third-order harmonic component (third-order voltage error) is added to the interphase voltage output from the inverter.
  • the current applied to the inductive load connected to the output terminal of the inverter contains a third-order harmonic component with respect to the fundamental wave.
  • the present application has been made to solve the above-mentioned problems, and an object of the present application is to provide a power conversion device capable of reducing the influence of the third harmonic caused by the superposition of the third harmonic component. ..
  • the power converter disclosed in the present application is An inverter that has an upper arm switching element and a lower arm switching element, converts a DC voltage into an AC voltage, and outputs it to a load.
  • Voltage command value calculation unit that calculates the voltage command value to control the load to the commanded state
  • Corrected voltage command value calculation unit that calculates the corrected voltage command value by adding the third harmonic component, which is a frequency component that is three times the fundamental wave component of the voltage command value.
  • the inverter converts to AC voltage based on the corrected voltage command value
  • the conduction resistance between the output terminal of the inverter and the positive electrode side input terminal is the output terminal of the inverter and the negative electrode side input. It is set to be larger than the value obtained by subtracting the current detection resistance from the conduction resistance between the terminals.
  • the conduction resistance between the inverter output terminal and the negative electrode side input terminal is between the inverter output terminal and the positive electrode side input terminal. It is characterized in that it is set to be larger than the value obtained by subtracting the current detection resistance from the conduction resistance between them.
  • the influence of the third harmonic of the inverter output due to the superimposition of the third harmonic component can be reduced.
  • FIG. It is an overall block diagram of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a figure explaining the hardware configuration of the controller which concerns on Embodiment 1.
  • FIG. It is a figure explaining the behavior of the amplitude reduction modulation calculated by the correction voltage command value calculation unit which concerns on Embodiment 1.
  • FIG. It is a figure explaining the operation of the PWM control unit which concerns on Embodiment 1.
  • FIG. It is a figure which shows the equivalent circuit for one phase of a three-phase inverter.
  • FIG. It is a figure explaining the relationship between the on-potential of the switching signal of the upper arm switching element and the on-potential of the switching signal of the lower arm switching element which concerns on Embodiment 1.
  • FIG. It is a figure which shows the other circuit which added the current detection circuit which concerns on Embodiment 1 to the equivalent circuit for one phase of a three-phase inverter.
  • FIG. It is an overall block diagram of the power conversion apparatus which concerns on Embodiment 2.
  • FIG. It is a figure explaining the behavior of the amplitude reduction modulation calculated by the correction voltage command value calculation unit which concerns on Embodiment 2.
  • FIG. It is a figure explaining the relationship between the conduction resistance between an output terminal and an input terminal of an inverter, and the torque of an AC rotary electric machine connected to an inverter. It is another figure explaining the behavior of the amplitude reduction modulation calculated by the correction voltage command value calculation unit which concerns on Embodiment 2.
  • FIG. It is a schematic block diagram which applied the power conversion apparatus to the
  • FIG. 1 is an overall configuration diagram of the power conversion device 100 of the present application that supplies electric power to the AC rotary machine 1.
  • the AC rotary machine 1 includes a stator and a rotor arranged radially inside the stator.
  • a U-phase, V-phase, and W-phase three-phase winding Cu, Cv, and Cw are wound around the stator.
  • the rotor is provided with a permanent magnet, which is considered to be a permanent magnet type synchronous rotating machine.
  • the AC rotating machine 1 may be a field winding type synchronous rotating machine in which an electromagnet is provided in the rotor, or an induction machine in which the rotor is not provided with a permanent magnet.
  • the three-phase windings Cu, Cv, and Cw may be star-connected or delta-connected.
  • the rotor is provided with a rotation detection circuit 2 for detecting the rotation angle of the rotor.
  • a resolver, an encoder, an MR (Magneto Resistive) sensor, or the like is used for the rotation detection circuit 2.
  • the output signal of the rotation detection circuit 2 is input to the controller 7.
  • the DC power supply 3 outputs the power supply voltage Vdc to the inverter 6.
  • the DC power supply 3 may be any device as long as it is a device that outputs a power supply voltage Vdc, such as a battery, a DC-DC converter, a diode rectifier, or a PWM rectifier.
  • the DC power supply 3 may be provided with a voltage sensor for detecting the power supply voltage Vdc, and the output signal of the voltage sensor may be input to the controller 7.
  • the controller 7 may perform control using the detected power supply voltage Vdc.
  • the circuit breaker 4 has a function of cutting off the DC power supply 3 and the inverter 6, and when an abnormality occurs in any part of the power conversion device 100 composed of the inverter 6 and the controller 7, the circuit breaker 4 cuts off the DC power supply and direct current. It has a function of protecting the power supply 3.
  • an electromagnetic contactor or a semiconductor switching element MOSFET (Metal Oxide Semiconductor Field Effect Transistor), IGBT (Insulated Gate Bipolar Transistor), bipolar transistor, thyristor) may be used.
  • the circuit breaker 4 has an electrical resistance Rdc.
  • the capacitor 5 is connected in parallel to the inverter 6 for the purpose of stabilizing the DC voltage Vdc input to the inverter 6. Therefore, it is connected in parallel with the DC power supply 3 via the circuit breaker 4.
  • the reason for connecting the capacitor 5 to the side close to the inverter 6 with respect to the breaker 4 is that the purpose of inserting the capacitor 5 is to stabilize the voltage input to the inverter 6, and the electric resistance Rdc and the DC power supply 3 are used. This is to absorb the fluctuation of the voltage drop represented by the product of the output current Idc.
  • the capacitor 5 has a positive electrode side terminal Cp and a negative electrode side terminal Cn.
  • the inverter 6 includes a switching element SP on the positive electrode side (hereinafter referred to as an upper arm) connected to the positive electrode side terminal Cp of the capacitor 5 (which is substantially equal to the positive electrode side input terminal of the inverter 6) and the negative electrode side terminal Cn of the capacitor 5.
  • a series circuit (leg) in which a switching element SN on the negative electrode side (hereinafter referred to as a lower arm) connected to the negative electrode side input terminal of the inverter 6 is connected in series corresponds to each of the three phases. Three sets are provided. Then, the connection point of the two switching elements in the series circuit of each phase is connected to the winding of the corresponding phase.
  • the U-phase upper arm switching element SPu and the U-phase lower arm switching element SNu are connected in series, and the connection points of the two switching elements are connected to the U-phase winding Cu. It is connected.
  • the V-phase upper arm switching element SPv and the V-phase lower arm switching element SNv are connected in series, and the connection points of the two switching elements are connected to the V-phase winding Cv.
  • the W-phase upper arm switching element SPw and the W-phase lower arm switching element SNw are connected in series, and the connection points of the two switching elements are connected to the W-phase winding Cw.
  • an IGBT in which diodes are connected in antiparallel, a MOSFET, a bipolar transistor in which diodes are connected in antiparallel, etc. are used.
  • the gate terminals of the switching elements SPu to SNw are connected to the controller 7 via a gate drive circuit or the like.
  • Each switching element SPu to SNw is turned on or off by the switching signals GPU to GNw output from the controller 7.
  • the current detection circuit 8 is configured to detect the current flowing through the three-phase lower arm switching elements SNu, SNv, and SNw.
  • the current detection circuit 8 has shunt resistors 8u, 8v, 8w connected in series to the lower arm switching elements SNu, SNv, SNw of each phase. That is, the U-phase shunt resistor 8u is connected in series to the negative side of the U-phase lower arm switching element SNu, and the V-phase shunt resistor 8v is connected in series to the negative side of the V-phase lower arm switching element SNv.
  • the W-phase shunt resistor 8w is connected in series to the negative electrode side of the W-phase lower arm switching element SNw.
  • the potential differences between both ends VRu, VRv, VRw of the shunt resistors 8u, 8v, 8w of each phase are input to the controller 7.
  • the controller 7 controls the AC rotary machine 1 via the inverter 6.
  • the controller 7 includes a rotation detection unit 31, a current detection unit 32, a current coordinate conversion unit 33, a current command value calculation unit 35, a dq-axis voltage command value calculation unit 361, and a voltage coordinate conversion unit 362. It includes a correction voltage command value calculation unit 363, a PWM control unit 37, and the like.
  • Each function of the controller 7 is realized by the processing circuit provided in the controller 7.
  • the controller 7 includes an arithmetic processing unit 90 (computer) such as a CPU (Central Processing Unit), a storage device 91 for exchanging data with the arithmetic processing unit 90, and the like.
  • the arithmetic processing unit 90 includes an input circuit 92 for inputting an external signal, an output circuit 93 for outputting a signal from the arithmetic processing unit 90 to the outside, and the like.
  • the arithmetic processing device 90 is provided with an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, and various signal processing circuits. You may. Further, as the arithmetic processing unit 90, a plurality of the same type or different types may be provided, and each processing may be shared and executed.
  • the storage device 91 includes a RAM (RandomAccessMemory) configured to be able to read and write data from the arithmetic processing unit 90, a ROM (ReadOnlyMemory) configured to be able to read data from the arithmetic processing unit 90, and the like. Has been done.
  • the input circuit 92 includes various sensors and switches such as the rotation detection circuit 2 and the current detection circuit 8 connected to the input circuit 92, and includes an A / D converter and the like for inputting the output signals of these sensors and switches to the arithmetic processing device 90. ..
  • the output circuit 93 is provided with a drive circuit or the like to which an electric load such as a gate drive circuit for driving the switching element on and off is connected and a control signal is output from the arithmetic processing device 90 to these electric loads.
  • the arithmetic processing unit 90 executes software (program) stored in the storage device 91 such as a ROM, and the storage device 91, the input circuit 92, and the output circuit 93. It is realized by cooperating with other hardware of the controller 7 such as.
  • the setting data such as the gain and the threshold used by the unit 37 and the like are stored in the storage device 91 such as the ROM as a part of the software (program).
  • each function of the controller 7 will be described in detail.
  • the rotation detection unit 31 detects the magnetic pole position (rotation angle of the rotor) ⁇ of the rotor based on the output signal of the rotation detection circuit 2.
  • the magnetic pole position of the rotor is set in the direction of the north pole of the permanent magnet provided in the rotor.
  • the rotation detection unit 31 is configured to estimate the rotation angle (pole position) based on the current information obtained by superimposing the harmonic component on the current command value without using the rotation sensor. It is also good (so-called sensorless method).
  • the current detection unit 32 detects the currents Iur, Ivr, and Iwr flowing in the three-phase windings based on the output signal of the current detection circuit 8. That is, the potential differences VRu, VRv, VRw across the shunt resistances 8u, 8v, 8w of each phase are divided by the resistance values of the shunt resistances 8u, 8v, 8w to obtain the winding currents Iur, Ivr, Iwr of each phase. To detect.
  • the current coordinate conversion unit 33 sets the current detection values Iur, Ivr, and Iwr of the three-phase windings to the current detection values Idr and q-axis on the d-axis and q-axis coordinate systems for each current detection. Convert to the detected value Iqr.
  • the d-axis and q-axis coordinate systems are two-axis rotating coordinate systems that rotate in synchronization with the rotor magnetic pole positions.
  • the d-axis is defined in the direction of the magnetic pole position ⁇ (N pole), and the q-axis is defined in the direction advanced by 90 ° in electrical angle from the d-axis.
  • the current coordinate conversion unit 33 performs three-phase two-phase conversion and rotational coordinate conversion on the three-phase current detection values Iur, Ivr, and Iwr based on the magnetic pole position ⁇ , and the current detection value on the d-axis. It is converted into the current detection value Iqr of Idr and the q-axis.
  • the current command value calculation unit 35 calculates the current command values Ido and Iqo of the d-axis and the q-axis based on the torque command value T_ref, the power supply voltage Vdc, the rotation angular velocity ⁇ , and the like.
  • the torque command value T_ref may be calculated in the controller 7 or may be transmitted from an external control device.
  • the d-axis current detection value Idr approaches the d-axis current command value Ido
  • the q-axis current detection value Iqr approaches the q-axis current command value Iqo.
  • Current feedback control is performed to change the voltage command value Vdo and the voltage command value Vqo of the q-axis by PI (Proportional-Integral) control or the like.
  • feedforward control for non-interference between the d-axis current and the q-axis current may be performed.
  • the voltage coordinate conversion unit 362 performs fixed coordinate conversion and two-phase three-phase conversion on the d-axis and q-axis voltage command values Vdo and Vqo based on the magnetic pole position ⁇ , and performs three-phase voltage command after coordinate conversion. Convert to values Voc, Vvoca, Vwoc. The voltage command values Voc, Vvoca, and Vwoc of the three phases after this coordinate conversion become a sine wave.
  • the modified voltage command value calculation unit 363 reduces the amplitude of the three-phase voltage command value with respect to the three-phase voltage command values Vuoc, Vvoca, and Vwoc after the coordinate conversion of the sine wave while maintaining the line voltage. Add amplitude reduction modulation. Then, the corrected voltage command values Vuo, Vvo, and Vwo, which are the final three-phase voltage command values, are calculated.
  • the modified voltage command value calculation unit 363 determines the minimum value Vmin and the maximum value Vmax of the three-phase voltage command values Vuoc, Vvoca, and Vwoc after the coordinate conversion. Then, multiply the sum of the minimum value Vmin and the maximum value Vmax by 0.5 to calculate the offset voltage Voff, and subtract the offset voltage Voff from the three-phase voltage command values Vuoc, Vvoca, and Vwoc after coordinate conversion. Then, the three-phase voltage command values Vuo, Vvo, and Vwo may be calculated.
  • Vmin MIN (Vuoc, Vvoc, Vwoc)
  • Vmax MAX (Vuoc, Vvoc, Vwoc)
  • Voff 0.5 ⁇ (Vmin + Vmax) Equation (1-1)
  • Vuo Vuoc-Voff
  • Vvo Vvoc-Voff
  • Vwo Vwoc-Voff
  • FIG. 3 shows the behavior of the amplitude reduction modulation of the equation (1-1).
  • the upper graph shows the voltage command values Voc, Vvoca, and Vwoc of the three phases after coordinate conversion.
  • the three-phase voltage command values Vuoc, Vvoca, and Vwoc after the coordinate conversion exceed the range of ⁇ Vdc / 2 to + Vdc / 2, and voltage saturation occurs.
  • the three-phase voltage command values Vuo, Vvo, and Vwo after the amplitude reduction modulation in the lower graph are within the range of ⁇ Vdc / 2 to + Vdc / 2, and the occurrence of voltage saturation can be prevented.
  • the offset voltage Voff Focusing on the waveform of the offset voltage Voff in the middle graph in FIG. 3, it is a third harmonic component that fluctuates at a frequency three times that of the fundamental wave of the voltage command values Vuoc to Vwoc.
  • the offset voltage Voff targets the third harmonic component that fluctuates at a frequency three times the frequency of the voltage command values Voc, Vvoca, and Vwoc in this way.
  • the PWM control unit 37 controls the switching element on and off by comparing each of the three-phase voltage command values Vuo, Vvo, and Vwo with the carrier wave CA vibrating in the carrier period Tc.
  • the carrier wave CA is a triangular wave that oscillates with a carrier period Tc, a half value of the power supply voltage around 0, and an amplitude of Vdc / 2.
  • the switching signals GPu, GPv of the upper arm switching elements SPu, SPv, SPw , GPw is turned on (voltage VGp in FIG. 4), and when the carrier wave CA exceeds the voltage command values Vuo, Vvo, Vwo, the switching signals GPu, GPv, GPw of the upper arm switching elements SPu, SPv, SPw are set. Turn off (voltage 0 in FIG. 4).
  • the switching signals GNu, GNv, GNw of the lower arm switching elements SNu, SNv, SNw are turned off (voltage 0 in FIG. 4, voltage 0), and the carrier is used.
  • the switching signals GNu, GNv, and GNw of the lower arm switching element are turned on (voltage VGn in FIG. 4).
  • both the upper arm and the lower arm switching element are turned off between the on period of the upper arm switching elements SPu, SPv, SPw and the on period of the lower arm switching elements SNu, SNv, SNw.
  • a short circuit prevention period may be provided.
  • the switching signal described here is a signal for controlling the switching element.
  • the potential signal of the gate G with the emitter E as the reference potential and in the case of the MOSFET, the gate with the source S as the reference potential. It is a potential signal of G.
  • the on-potential VGp of the switching signals GPu, GPv, GPw of the upper arm switching elements SPu, SPv, SPw and the on-potential VGn of the switching signals GNu, GNv, GNw of the lower arm switching elements SNu, SNv, SNw are all switched. It is set to a value required to turn on the element, but the relationship between the two is "VGn> VGp", and the reason for this will be described later.
  • the current detection unit 32 is configured to detect the current at the timing of the peak of the carrier wave CA peak.
  • FIG. 5 is an equivalent circuit for one phase of the inverter 6.
  • the potential of the positive electrode side input terminal is Vp
  • the potential of the negative electrode side input terminal is Vn.
  • Vp-Vn Vdc.
  • the conduction resistance of the lower arm switching element SN is Rn
  • the conduction resistance of the upper arm switching element SP is Rp.
  • An output terminal is connected between the upper arm switching element SP and the lower arm switching element SN, and the potential thereof is defined as the output terminal potential Vout.
  • the output terminal potential Vout is as follows.
  • Vout D ⁇ (Vp-Rp ⁇ i) + (1-D) ⁇ (Vn-Rn ⁇ i) Formula (1-2)
  • Vout D x Vdc + D x (Rn-Rp) x i-Rn x i Formula (1-3)
  • the U-phase terminal voltage Vout_u and the V-phase terminal voltage Vout_v are given by the following equations, where the ratio of the ON of the upper arm switching elements SPu and SPv to the period Tc of the PWM carrier wave is Du and Dv.
  • Vout_u Du ⁇ Vdc + (1-Du) ⁇ (Rn-Rp) ⁇ iu-Rn ⁇ iu Equation (1-4)
  • Vout_v Dv ⁇ Vdc + (1-Dv) ⁇ (Rn-Rp) ⁇ iv-Rn ⁇ iv Equation (1-5)
  • Vout_u (Du + ⁇ D) ⁇ Vdc + (1- (Du + ⁇ D)) ⁇ (Rn-Rp) ⁇ iu-Rn ⁇ iu equation (1-6)
  • Vout_v (Dv + ⁇ D) ⁇ Vdc + (1- (Dv + ⁇ D)) ⁇ (Rn-Rp) ⁇ iv-Rn ⁇ iv Equation (1-7)
  • the conduction resistance Rn between the output terminal of the inverter and the input terminal on the negative electrode side and the conduction resistance Rp between the output terminal of the inverter and the input terminal on the positive electrode side can be made equal. good.
  • the conduction resistance depends on the on-potential of the switching signal input to the switching element, and the higher the on-potential, the lower the conduction resistance tends to be. Therefore, when it is desired to increase the inverter efficiency, the on-potential is increased and the conduction resistance is decreased.
  • the switching signal input to the upper arm switching element SP and the lower arm switching element SN By setting the on-potentials VGp and VGn equally, the conduction resistance Rp and Rn become equal as a result.
  • the U-phase terminal voltage Vout_u and the V-phase terminal voltage Vout_v after the offset voltage Voff is superimposed can be changed by replacing the conduction resistance Rn with Rn + R in the equations (1-6) and (1-7). Since it is sufficient, the following equation is obtained.
  • Vout_u (Du + ⁇ D) ⁇ Vdc + (1- (Du + ⁇ D)) ⁇ (Rn + R-Rp) ⁇ iu- (Rn + R) ⁇ iu Equation (1-9)
  • Vout_v (Dv + ⁇ D) ⁇ Vdc + (1- (Dv + ⁇ D)) ⁇ (Rn + R-Rp) ⁇ iv- (Rn + R) ⁇ iv Equation (1-10)
  • the phase voltage Vout_uv between the U phase and the V phase is as follows.
  • the interphase voltage Vout_uv includes the fluctuation amount ⁇ D. Therefore, the effect of offset voltage Voff superimposition appears on the phase-to-phase voltage Vout_uv. As shown in FIG. 3, since the third harmonic is superimposed as the offset voltage Voff, the third harmonic is superimposed on the interphase voltage, and as a result, the torque of the AC rotating machine 1 is superimposed on the third harmonic. This is because ripple occurs.
  • VGn> VGp in the relationship between the on-potential VGp of the switching signal GP of the upper arm switching element and the on-potential VGn of the switching signal GN of the lower arm switching element.
  • the horizontal axis represents the drain-source voltage Vds
  • the vertical axis represents the drain current Id.
  • the conduction resistance Rp between the output terminal of the inverter and the input terminal on the positive electrode side becomes larger than the conduction resistance Rn between the output terminal of the inverter and the input terminal on the negative electrode side.
  • Vout_u (Du + ⁇ D) ⁇ Vdc- (Rn + R) ⁇ iu equation (1-14)
  • Vout_v (Dv + ⁇ D) ⁇ Vdc- (Rn + R) ⁇ iv Equation (1-15)
  • the conduction resistance Rp between the output terminal of the inverter and the input terminal on the positive side is the conduction resistance between the output terminal of the inverter and the input terminal on the negative side, excluding the current detection resistance R.
  • the difference between the conduction resistance Rn between the output terminal of the inverter and the input terminal on the negative electrode side and the conduction resistance Rp between the output terminal of the inverter and the input terminal on the positive electrode side is corrected, which is caused by the superposition of the third harmonic component. It is possible to reduce the influence of the third harmonic.
  • the above-mentioned on-potential may be set by an on-command signal to the switching element (gate voltage in the case of MOSFET or IGBT, base current in the case of a bipolar transistor). If the value of the on-command signal is reduced, the conduction resistance increases.
  • the performance of a switching element is determined by its conduction resistance. It is said that the lower the conduction resistance is, the higher the efficiency of the inverter is. However, here, we want the conduction resistance of the upper arm switching element to be larger than the conduction resistance of the lower arm switching element. A low-grade product (having a large conduction resistance) may be applied to the upper arm switching element to satisfy "Rp> Rn". As a result, even if the third harmonic voltage is superimposed as the offset voltage Voff, the influence of the third order of the interphase voltage can be reduced, and as a result, the effect of suppressing the third order torque ripple of the AC rotating machine 1 is achieved. ..
  • the performance of power switching elements such as MOSFETs depends on the conduction resistance, and the higher the conduction resistance, the lower the performance (cheap). Therefore, by using an upper arm switching element having a high conduction resistance, the price of the power switching element can be reduced and the influence of the third harmonic can be reduced.
  • the switching element may be selected so that the conduction resistance Rn of the lower arm switching element is larger than the conduction resistance Rp of the upper arm switching element in the same on-potential state. That is, the conduction resistance between the output terminal of the inverter and the input terminal on the negative side is set to be larger than the conduction resistance between the output terminal of the inverter and the input terminal on the positive side, excluding the resistance for current detection. Therefore, even if the third harmonic voltage is superimposed as the offset voltage Voff, the influence of the third order of the interphase voltage can be reduced, and as a result, the effect of suppressing the third order torque ripple of the AC rotary machine 1 is achieved. ..
  • the conduction resistance Rp described in the present specification may include the wiring resistance from the positive input terminal of the upper arm switching element to the positive terminal Cp of the capacitor 5 in addition to the conduction resistance of the upper arm switching element. Good, but the resistance Rdc of the circuit breaker 4 is not included.
  • the conduction resistance Rn described in the present specification may include the wiring resistance from the positive electrode side input terminal of the lower arm switching element to the negative electrode side terminal Cn of the capacitor 5 in addition to the conduction resistance of the lower arm switching element. good. Therefore, the "conduction resistance between the output terminal of the inverter and the input terminal on the positive electrode side” can be considered as the conduction resistance from the positive electrode side terminal Cp of the capacitor 5 to the output terminals (Out_u, Out_v, Out_w).
  • the "conduction resistance between the output terminal and the negative electrode side input terminal” can be considered as the conduction resistance from the negative electrode side terminal Cn of the capacitor 5 to the output terminal (Out_u, Out_v, Out_w).
  • the wiring resistance from the terminal of the capacitor to the switching element is sufficiently smaller than the conduction resistance of the switching element, it may be ignored and considered as the conduction resistance of the switching element of the upper and lower arms.
  • the AC rotary machine 1 is described as the load connected to the inverter 6, but any load that can be regarded as a current source from the viewpoint of the inverter 6 may be used. Therefore, a three-phase inductive load such as an AC rotating machine may be used.
  • Embodiment 2 The power conversion device according to the second embodiment will be described with reference to FIG.
  • the difference between the second embodiment and the first embodiment is the corrected voltage command value calculation unit 363a.
  • the modified voltage command value calculation unit 363a determines the maximum value Vmax of the three-phase voltage command values Vuoc, Vvoca, and Vwoc after the coordinate conversion, and is the maximum from Vdc / 2.
  • the value Vmax is subtracted to calculate the offset voltage Voff, and the offset voltage Voff is subtracted from the three-phase voltage command values Vuoc, Vvoca, and Vwoc after coordinate conversion, and the three-phase modified voltage command values Vuo, Vvo, and Vwo. Is calculated.
  • Vmax MAX (Vuoc, Vvoc, Vwoc)
  • Voff 0.5 ⁇ Vdc-Vmax
  • Vuo Vuoc-Voff
  • Vvo Vvoc-Voff equation (2-1)
  • Vwo Vwoc-Voff
  • each part in this case shows the voltage command values Voc, Vvoca, and Vwoc of the three phases after the coordinate conversion.
  • the second stage from the top is the offset voltage Voff, and it can be seen that it is a third harmonic component that fluctuates at a frequency three times that of the voltage command value.
  • the third stage from the top is the three-phase modified voltage command values Vuo, Vvo, and Vwo.
  • the lowermost stage is the voltage command values Vuo-Vvo, Vvo-Vwo, and Vwo-Vuo between the phases. It can be seen that the maximum instantaneous value of the three-phase modified voltage command values Vuo, Vvo, and Vwo corresponds to the upper limit value Vdc / 2 that can be output from the inverter.
  • the corrected voltage command value is obtained by the calculation as shown in equation (2-1). That is, the third harmonic component (Voff) is calculated so that the maximum of the corrected voltage command values matches the upper limit value (Vdc / 2) that can be output by the inverter, and the third harmonic component is added. Modulates to calculate the corrected voltage command value (hereinafter referred to as upper solid two-phase modulation).
  • Vmax in Eq. (2-1) always matches Vdc / 2 (the largest instantaneous value of the three-phase modified voltage command values Vuo, Vvo, and Vwo in FIG. 10 is the upper limit value Vdc that can be output by the inverter.
  • the phase corresponding to Vmax (equivalent to matching / 2) does not switch during the period Tc of the carrier wave CA (GP is always on and GN is off). Therefore, as seen in other modulations, there is an advantage that Vmax phase switching does not occur in the section B. This can be seen from the fact that among the corrected voltage command values Vuo, Vvo, and Vwo in the upper row in FIG.
  • the phase having the largest instantaneous value is always Vdc / 2.
  • the fact that switching does not occur in the section B also means that switching does not occur near the current detection timing, and it can be said that the upper solid two-phase modulation is an excellent modulation method in terms of current detection accuracy.
  • the conduction resistance between the output terminal of the inverter and the negative electrode side input terminal is "Rn + R", and the output terminal of the inverter and the positive electrode side input terminal are used. Since the conduction resistance between them is Rp, due to the imbalance of the conduction resistance, as can be seen from the waveform of the torque T at the bottom of FIG. 11A, the fundamental wave components (or or) of the corrected voltage command values Vuo, Vvo, and Vwo. It can be confirmed that the pulsation of the frequency component three times as high as that of the currents Iu, Iv, and Iw fundamental wave components flowing through the second-stage AC rotary machine 1) is superimposed.
  • the conduction resistance Rp between the output terminal of the inverter and the input terminal on the positive electrode side is the conduction resistance Rn between the output terminal of the inverter and the input terminal on the negative electrode side (excluding the resistance element for current detection).
  • Rp> Rn the conduction resistance between the output terminal of the inverter and the input terminal on the negative electrode side (excluding the resistance element for current detection).
  • the upper solid two-phase modulation is combined with the lower arm 3 shunt current detection method, and the conduction resistance Rp between the output terminal of the inverter and the input terminal on the positive side is set between the output terminal of the inverter and the input terminal on the negative side.
  • the conduction resistance Rn excluding the current detection resistor element
  • the switching noise jolly jolly sound, switching time and current A / D time approach each other
  • It has a remarkable effect of suppressing the third harmonic component of the current generated by the AC rotary machine 1 while preventing the mixing of noise) mixed in the A / D value.
  • the current detection circuit 8 is configured to connect SPu, SPv, and SPw in series so as to detect the current flowing through the three-phase upper arm switching elements SPu, SPv, and SPw.
  • the correction voltage command value calculation unit 363a calculates as follows.
  • Vmin MIN (Vuoc, Vvoc, Vwoc)
  • Voff 0.5 ⁇ Vdc + Vmin
  • Vuo Vuoc-Voff
  • Vvo Vvoc-Voff equation (2-2)
  • Vwo Vwoc-Voff
  • FIG. 12 shows the waveforms of each part in this case.
  • the upper row is the three-phase voltage command values Vuoc, Vvoca, and Vwoc after coordinate conversion
  • the second row from the top is the offset voltage Voff, which is the third harmonic that fluctuates at a frequency three times higher than the voltage command value. It can be seen that it is an ingredient.
  • the third stage from the top is the three-phase modified voltage command values Vuo, Vvo, and Vwo.
  • the lowermost stage is the voltage command values Vuo-Vvo, Vvo-Vwo, and Vwo-Vuo between the phases.
  • the conduction resistance between the output terminal of the inverter and the input terminal on the negative electrode side is Rn
  • the conduction resistance between the output terminal of the inverter and the input terminal on the positive electrode side is "Rp + R"
  • Rp the conduction resistance between the output terminal of the inverter and the input terminal on the positive electrode side
  • Embodiment 3 Next, the electric power steering device 200 according to the third embodiment will be described.
  • the power conversion device 100 has been described, but the power conversion device 100 may generate a torque to assist the steering torque to form an electric power steering device.
  • the handle 901, the front wheel 902, the gear 903, the torque detector 904, and the motor torque target value calculation unit 905 are different from the first and second embodiments. In the following description, the differences from the first and second embodiments will be described.
  • FIG. 13 is a diagram showing the configuration of the electric power steering according to the third embodiment.
  • the driver rotates the steering wheel 901 left and right to steer the front wheels 902.
  • the torque detector 904 detects the steering torque of the steering system and outputs the detected torque to the motor torque target value calculation unit 905.
  • the motor torque target value calculation unit 905 controls to output the torque T that assists the steering torque of the steering system to the AC rotary machine 1 based on the detection torque of the torque detector 904 so that the AC rotary machine 1 generates the torque T.
  • the target value T_ref of the motor torque is calculated as a command.
  • the target value T_ref is input to the current command value calculation unit 35 of the controller 7 constituting the power conversion device 100, and controls the AC rotating machine 1 according to the target value T_ref via the inverter 6.
  • the AC rotary machine 1 generates a torque that assists the steering torque via the gear 903.
  • the conduction resistance Rp between the output terminal of the inverter and the input terminal on the positive electrode side is set between the output terminal of the inverter and the input terminal on the negative electrode side (
  • the conduction resistance Rn between the output terminal of the inverter and the input terminal on the negative electrode side is set between the output terminal of the inverter and the input terminal on the positive electrode side (excluding the resistance element for current detection).
  • the electric power steering device is required to be quiet, and since it has a low voltage (12V) and a high current (for example, 100A), it is caused by the difference in conduction resistance between the upper and lower sides of the three-phase inverter.
  • the voltage pulsation becomes the current pulsation, which causes the torque pulsation and tends to cause noise.
  • the power conversion device described in the first and second embodiments is applied to the electric power steering device, it is possible to improve the voltage utilization rate and quietness by superimposing the third harmonic component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

インバータ(6)の下アームスイッチング素子(SN)と負極側入力端子との間に電流検出用抵抗(8)を接続する場合は、インバータ(6)の出力端子と正極側入力端子との間の導通抵抗(Rp)が、インバータ(6)の出力端子と負極側入力端子との間における導通抵抗のうち、電流検出用抵抗を除いた導通抵抗(Rn)よりも大きくなるように設定され、上アームスイッチング素子(SP)と正極側入力端子との間に電流検出用抵抗(8)を接続する場合は、インバータ(6)の出力端子と負極側入力端子との間の導通抵抗(Rn)がインバータ(6)の出力端子と正極側入力端子との間における導通抵抗のうち、電流検出用抵抗を除いた導通抵抗(Rp)より大きくなるように設定されていることを特徴とする。

Description

電力変換装置および電動パワーステアリング装置
 本願は、電力変換装置および電動パワーステアリング装置に関するものである。
 従来の電力変換装置及び電動パワーステアリング装置として、特許文献1の技術が知られている。同文献では、インバータの負極側のスイッチング素子に直列接続された電流検出用抵抗素子の出力信号に基づいて電流を検出するように構成されている。このインバータは、「下アーム3シャント電流検出方式インバータ」と呼ばれている。そして、さらなる装置の低コスト化を目的として、「母線1シャント電流検出方式インバータ」と呼ばれる電流検出方式を採用したインバータも普及している。
 これらの電流検出方式は、直流電流センサ(DC-CT)を用いる電流検出方式を採用したインバータに比べ、電流検出のためのコストにおいて安価であるため、産業界に幅広く普及している。
特許第6266161号
 下アーム3シャント電流検出方式インバータ、および母線1シャント電流検出方式インバータにおいては、その多くが、インバータの負極側入力端子と下アームスイッチング素子との間に電流検出用抵抗が挿入される。その結果、インバータの出力端子と負極側入力端子との間の導通抵抗がインバータの出力端子と正極側入力端子との間の導通抵抗よりも、電流検出用抵抗が挿入された分大きくなる。
 この電流検出用抵抗により、インバータの電圧に係る電圧指令値に、3次の高調波成分を重畳した際に、インバータから出力する相間電圧に3次の高調波成分(3次の電圧誤差)が含まれ、インバータの出力端子に接続される誘導性負荷に通電される電流にその基本波に対し3次の高調波成分が含まれる恐れがある。
 これにより、例えば、誘導性負荷として交流回転機を用いる場合、その基本波に対し3次のトルクリップルを生じさせてしまい、結果として、交流回転機の回転ムラ、あるいは交流回転機の振動または騒音といった課題が生じる。
 本願は、上述のような問題を解決するためになされたもので、3次高調波成分重畳に起因する3次高調波の影響を低減することができる電力変換装置を提供することを目的とする。
 本願に開示される電力変換装置は、
 上アームスイッチング素子および下アームスイッチング素子を有し、直流電圧を交流電圧に変換し、負荷に出力するインバータ、
 負荷を、指令された状態に制御するための電圧指令値を演算する電圧指令値算出部、
 電圧指令値の基本波成分に対し3倍の周波数成分である3次高調波成分を加算して修正電圧指令値を演算する修正電圧指令値演算部、
を備え、
 インバータは、修正電圧指令値に基づいて交流電圧に変換し、
 下アームスイッチング素子とインバータの負極側入力端子との間に電流検出用抵抗を接続する場合は、インバータの出力端子と正極側入力端子との間の導通抵抗が、インバータの出力端子と負極側入力端子との間における導通抵抗から電流検出用抵抗を除いた値より大きくなるように設定され、
 上アームスイッチング素子と正極側入力端子との間に電流検出用抵抗を接続する場合は、インバータの出力端子と負極側入力端子との間の導通抵抗がインバータの出力端子と正極側入力端子との間における導通抵抗から電流検出用抵抗を除いた値より大きくなるように設定されていることを特徴とする。
 本願に開示される電力変換装置によれば、3次高調波成分重畳に起因するインバータ出力の3次高調波の影響を低減することができる
実施の形態1に係る電力変換装置の全体構成図である。 実施の形態1に係る制御器のハードウエア構成を説明する図である。 実施の形態1に係る修正電圧指令値算出部で算出された振幅低減変調の挙動を説明する図である。 実施の形態1に係るPWM制御部の動作を説明する図である。 3相インバータの1相分の等価回路を示す図である。 3相インバータの1相分の等価回路に実施の形態1に係る電流検出回路を追加した回路を示す図である。 実施の形態1に係る上アームスイッチング素子のスイッチング信号のオン電位と下アームスイッチング素子のスイッチング信号のオン電位の関係を説明する図である。 3相インバータの1相分の等価回路に実施の形態1に係る電流検出回路を追加した別の回路を示す図である。 実施の形態2に係る電力変換装置の全体構成図である。 実施の形態2に係る修正電圧指令値算出部で算出された振幅低減変調の挙動を説明する図である。 インバータの出力端子と入力端子との間の導通抵抗とインバータに接続された交流回転電機のトルクとの関係を説明する図である。 実施の形態2に係る修正電圧指令値算出部で算出された振幅低減変調の挙動を説明する別の図である。 実施の形態3に係る電動パワーステアリング装置に電力変換装置を適用した概略構成図である。
 以下、本願に係る電力変換装置の好適な実施の形態について、図面を参照して説明する。なお、同一内容および相当部については同一符号を配し、その詳しい説明は省略する。以降の実施形態も同様に、同一符号を付した構成について重複した説明は省略する。
 実施の形態1.
 図1は、交流回転機1に電力を供給する本願の電力変換装置100に係る全体構成図である。
 交流回転機1は、ステータと、ステータの径方向内側に配置されたロータと、を備えている。ステータには、U相、V相、W相の3相の巻線Cu、Cv、Cwが巻装されている。ロータには、永久磁石が設けられており、永久磁石式の同期回転機とされている。なお、交流回転機1は、ロータに電磁石が設けられている界磁巻線型の同期回転機、又はロータに永久磁石が設けられていない誘導機であってもよい。3相の巻線Cu、Cv、Cwは、スター結線されてもよいし、デルタ結線されてもよい。
 ロータには、ロータの回転角度を検出するための回転検出回路2が備えられている。回転検出回路2には、レゾルバ、エンコーダ、またはMR(Magneto Resistive)センサ等が用いられる。回転検出回路2の出力信号は、制御器7に入力される。
 直流電源3は、インバータ6に電源電圧Vdcを出力する。直流電源3として、バッテリー、DC-DCコンバータ、ダイオード整流器、またはPWM整流器等、電源電圧Vdcを出力する機器であれば、どのような機器であってもよい。直流電源3には、電源電圧Vdcを検出する電圧センサが設けられ、電圧センサの出力信号が制御器7に入力されてもよい。制御器7は、検出した電源電圧Vdcを用いて、制御を行ってもよい。
 遮断器4は、直流電源3とインバータ6とを遮断する機能を有し、インバータ6および制御器7により構成される電力変換装置100のどこかに異常が生じた場合に、遮断を行い、直流電源3を保護する機能を有する。遮断器4としては、電磁接触器、または半導体スイッチング素子(MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタ、サイリスタ)を用いてもよい。遮断器4は、電気抵抗Rdcを有する。
 コンデンサ5は、インバータ6に入力される直流電圧Vdcを安定化させることを目的としてインバータ6に並列に接続される。よって、遮断器4を介して直流電源3と並列に接続されることになる。コンデンサ5を遮断器4に対し、インバータ6に近い側に接続する理由として、コンデンサ5を挿入する目的がインバータ6に入力される電圧を安定化させるためであり、電気抵抗Rdcと直流電源3の出力電流Idcとの積であらわされる電圧降下の変動分を吸収させるためである。コンデンサ5は、正極側端子Cp、負極側端子Cnを有する。
 インバータ6は、コンデンサ5の正極側端子Cp(インバータ6の正極側入力端子に略等しい)に接続される正極側(以下、上アームと称す)のスイッチング素子SPとコンデンサ5の負極側端子Cn (インバータ6の負極側入力端子に略等しい)に接続される負極側(以下、下アームと称す)のスイッチング素子SNとが直列接続された直列回路(レッグ)を、3相各相に対応して3セット設けている。そして、各相の直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続されている。
 具体的には、U相の直列回路では、U相の上アームスイッチング素子SPuとU相の下アームスイッチング素子SNuとが直列接続され、2つのスイッチング素子の接続点がU相の巻線Cuに接続されている。V相の直列回路では、V相の上アームスイッチング素子SPvとV相の下アームスイッチング素子SNvとが直列接続され、2つのスイッチング素子の接続点がV相の巻線Cvに接続されている。W相の直列回路では、W相の上アームスイッチング素子SPwとW相の下アームスイッチング素子SNwとが直列接続され、2つのスイッチング素子の接続点がW相の巻線Cwに接続されている。
 スイッチング素子には、ダイオードが逆並列接続されたIGBT、MOSFET、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子SPu~SNwのゲート端子は、ゲート駆動回路等を介して、制御器7に接続されている。各スイッチング素子SPu~SNwは、制御器7から出力されたスイッチング信号GPu~GNwによりオン又はオフされる。
 電流検出回路8は、3相の下アームスイッチング素子SNu、SNv、SNwを流れる電流を検出するように構成されている。電流検出回路8は、各相の下アームスイッチング素子SNu、SNv、SNwに直列接続されたシャント抵抗8u、8v、8wを有している。すなわち、U相のシャント抵抗8uは、U相の下アームスイッチング素子SNuの負極側に直列接続されており、V相のシャント抵抗8vは、V相の下アームスイッチング素子SNvの負極側に直列接続されており、W相のシャント抵抗8wは、W相の下アームスイッチング素子SNwの負極側に直列接続されている。各相のシャント抵抗8u、8v、8wの両端電位差VRu、VRv、VRwが、制御器7に入力される。
 なお、本実施の形態では、電流検出回路8は、3相の下アームスイッチング素子SNu、SNv、SNwを流れる電流を検出するように構成されているが、いずれか2相の下アームスイッチング素子を流れる電流を検出するように構成されてもよい。この場合は、3相の巻線電流の合計値がゼロになることを利用し、制御器7は、2相の電流検出値に基づいて、残りの1相の電流を算出してもよい。例えば、電流検出回路8が、U相及びV相の電流Iur、Ivrを検出し、制御器7は、W相の電流Iwrを、Iwr=-Iur-Ivrにより算出してもよい。
 制御器7は、インバータ6を介して交流回転機1を制御する。図1に示すように、制御器7は、回転検出部31、電流検出部32、電流座標変換部33、電流指令値算出部35、dq軸電圧指令値算出部361、電圧座標変換部362、修正電圧指令値算出部363、及びPWM制御部37等を備えている。制御器7の各機能は、制御器7が備えた処理回路により実現される。具体的には、制御器7は、図2に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
 演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、回転検出回路2、電流検出回路8等の各種のセンサ、スイッチが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオン、オフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
 そして、制御器7が備える図1の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御器7の他のハードウェアと協働することにより実現される。なお、回転検出部31、電流検出部32、電流座標変換部33、電流指令値算出部35、dq軸電圧指令値算出部361、電圧座標変換部362、修正電圧指令値算出部363、PWM制御部37等が用いるゲイン、閾値等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御器7の各機能について詳細に説明する。
 回転検出部31は、回転検出回路2の出力信号に基づいて、ロータの磁極位置(ロータの回転角度)θを検出する。ロータの磁極位置は、ロータに設けられた永久磁石のN極の向きに設定される。なお、回転検出部31は、電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転センサを用いずに、回転角度(磁極位置)を推定するように構成されてもよい(いわゆる、センサレス方式)。
 電流検出部32は、電流検出回路8の出力信号に基づいて、3相の巻線に流れる電流Iur、Ivr、Iwrを検出する。すなわち、各相のシャント抵抗8u、8v、8wの両端電位差VRu、VRv、VRwを、シャント抵抗8u、8v、8wの抵抗値で除算して、各相の巻線の電流Iur、Ivr、Iwrを検出する。
 電流検出回路8は、下アームスイッチング素子SNu、SNv、SNwを流れる電流を検出するので、電流検出部32は、下アームスイッチング素子がオンになるタイミングで、電流を検出する。また、後述するPWM制御部37において、キャリア周期Tc毎に下アームスイッチング素子SNu、SNv、SNwがオンにされる。よって、電流検出部32は、下アームスイッチング素子SNu、SNv、SNwがオンになる、キャリア波周期Tcの第1の自然数A倍の周期である電流検出周期TIdt(=A×Tc)で、電流検出回路8の出力信号に基づいて、3相の巻線の電流Iur、Ivr、Iwrを検出する。本実施の形態では、電流検出回路8は、キャリア波CAが山の頂点になる電流検出周期TIdt毎のタイミングで、電流を検出する。
 電流座標変換部33は、電流検出毎に、3相の巻線の電流検出値Iur、Ivr、Iwrを、d軸及びq軸の座標系上のd軸の電流検出値Idr及びq軸の電流検出値Iqrに変換する。d軸及びq軸の座標系は、ロータの磁極位置に同期して回転する2軸の回転座標系である。d軸は、磁極位置θ(N極)の方向に定められ、q軸は、d軸より電気角で90°進んだ方向に定められる。具体的には、電流座標変換部33は、3相の電流検出値Iur、Ivr、Iwrを、磁極位置θに基づいて3相2相変換及び回転座標変換を行って、d軸の電流検出値Idr及びq軸の電流検出値Iqrに変換する。
 電流指令値算出部35は、トルク指令値T_ref、電源電圧Vdc、及び回転角速度ω等に基づいて、d軸及びq軸の電流指令値Ido、Iqoを算出する。最大トルク電流制御、最大トルク電圧制御、弱め磁束制御、及びId=0制御などの公知の電流ベクトル制御方法に従って、d軸及びq軸の電流指令値Ido、Iqoが算出される。例えば、Id=0制御が行われる場合は、d軸の電流指令値Idoがゼロに設定され(Ido=0)、q軸の電流指令値Iqoが、トルク指令値T_refに変換係数を乗算した値にされる。トルク指令値T_refは、制御器7内で演算されてもよいし、外部の制御装置から伝達されてもよい。
 dq軸電圧指令値算出部361は、d軸の電流検出値Idrがd軸の電流指令値Idoに近づき、q軸の電流検出値Iqrがq軸の電流指令値Iqoに近づくように、d軸の電圧指令値Vdo及びq軸の電圧指令値Vqoを、PI(Proportional-Integral)制御等により変化させる電流フィードバック制御を行う。なお、d軸電流とq軸電流の非干渉化のためのフィードフォワード制御が行われてもよい。
 電圧座標変換部362は、d軸及びq軸の電圧指令値Vdo、Vqoを、磁極位置θに基づいて、固定座標変換及び2相3相変換を行って、座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocに変換する。この座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocは、正弦波になる。
 修正電圧指令値算出部363は、正弦波の座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocに対して、線間電圧を維持しつつ、3相の電圧指令値の振幅を低減する振幅低減変調を加える。そして、最終的な3相の電圧指令値である修正電圧指令値Vuo、Vvo、Vwoを算出する。
 具体的には、修正電圧指令値算出部363は、式(1-1)に示すように、座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocの最小値Vmin及び最大値Vmaxを判定し、最小値Vminと最大値Vmaxとの加算値に0.5を乗算して、オフセット電圧Voffを算出し、座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocからオフセット電圧Voffを減算して、3相の電圧指令値Vuo、Vvo、Vwoを算出してもよい。
Vmin=MIN(Vuoc,Vvoc,Vwoc)
Vmax=MAX(Vuoc,Vvoc,Vwoc)
Voff=0.5×(Vmin+Vmax)         式(1-1)
Vuo=Vuoc-Voff
Vvo=Vvoc-Voff
Vwo=Vwoc-Voff
 式(1―1)の振幅低減変調の挙動を図3に示す。上段のグラフに座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocを示す。座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocは、-Vdc/2から+Vdc/2の範囲を超過しており、電圧飽和が生じている。一方、下段のグラフの振幅低減変調後の3相の電圧指令値Vuo、Vvo、Vwoでは、-Vdc/2から+Vdc/2の範囲内に収まっており、電圧飽和の発生が防止できている。
 図3において、中段のグラフのオフセット電圧Voffの波形に着目すると、電圧指令値Vuoc~Vwocの基本波に対して3倍の周波数で変動する3次高調波成分となっている。オフセット電圧Voffは、このように電圧指令値Vuoc、Vvoc、Vwocの周波数の3倍の周波数で変動する3次高調波成分を対象とする。
 PWM制御部37は、3相の電圧指令値Vuo、Vvo、Vwoのそれぞれと、キャリア周期Tcで振動するキャリア波CAとを比較することにより、スイッチング素子をオンオフ制御する。キャリア波CAは、キャリア周期Tcで、0を中心に電源電圧の半分値、Vdc/2の振幅で振動する三角波とされている。
 図4に示すように、PWM制御部37は、各相について、キャリア波CAが電圧指令値Vuo、Vvo、Vwoを下回った場合は、上アームスイッチング素子SPu、SPv、SPwのスイッチング信号GPu、GPv、GPwをオン(図4中、電圧VGp)し、キャリア波CAが電圧指令値Vuo、Vvo、Vwoを上回った場合は、上アームスイッチング素子SPu、SPv、SPwのスイッチング信号GPu、GPv、GPwをオフ(図4中、電圧0)する。
 一方、キャリア波CAが電圧指令値Vuo、Vvo、Vwoを下回った場合は、下アームスイッチング素子SNu、SNv、SNwのスイッチング信号GNu、GNv、GNwをオフ(図4中、電圧0)し、キャリア波CAが電圧指令値Vuo、Vvo、Vwoを上回った場合は、下アームスイッチング素子のスイッチング信号GNu、GNv、GNwをオン(図4中、電圧VGn)する。なお、各相について、上アームスイッチング素子SPu、SPv、SPwのオン期間と下アームスイッチング素子SNu、SNv、SNwのオン期間との間には、上アーム及び下アームスイッチング素子の双方をオフにする短絡防止期間(デッドタイム)が設けられてもよい。
 ここで述べているスイッチング信号とは、スイッチング素子を制御するための信号であり、IGBTであればエミッタEを基準電位としたゲートGの電位信号、MOSFETであればソースSを基準電位としたゲートGの電位信号である。ここで、上アームスイッチング素子SPu、SPv、SPwのスイッチング信号GPu、GPv、GPwのオン電位VGpと下アームスイッチング素子SNu、SNv、SNwのスイッチング信号GNu、GNv、GNwのオン電位VGnはともに、スイッチング素子をオンさせるのに必要な値に設定されるが、両者の関係は、「VGn>VGp」とし、この理由は後述する。
 図4に示すように、キャリア波CAの山の頂点を中心にした区間Bにおいて、3相全ての下アームスイッチング信号GNu、GNv、GNwがオンになっており、この区間Bにおいて、電流検出回路8により3相の巻線に流れる電流を検出できる。本実施の形態では、上述したように、電流検出部32は、キャリア波CAの山の頂点のタイミングで、電流を検出するように構成されている。
 次に、下アームスイッチング素子SNu、SNv、SNwとインバータ6の負極側入力端子との間にシャント抵抗8u、8v、8wを接続する場合において、先に述べた「VGn>VGp」とすることの利点について詳細に説明する。
 図5は、インバータ6の1相分の等価回路である。正極側入力端子の電位をVp、負極側入力端子の電位をVnとする。ただし、直流電圧Vdcより、Vp-Vn=Vdcとなる。下アームスイッチング素子SNの導通抵抗をRn、上アームスイッチング素子SPの導通抵抗をRpとする。
 上アームスイッチング素子SP、下アームスイッチング素子SNの中間に出力端子が接続され、その電位を、出力端子電位Voutとする。
 ここで、上アームスイッチング素子SPのPWM搬送波の周期Tcに対するオンの割合(デューティ)をDとすると、出力端子電位Voutは以下の式となる。
Vout=D×(Vp-Rp×i)+(1-D)×(Vn-Rn×i)   式(1-2)
 ここで、Vn=0、Vp=Vdcとすると、式(1-2)は以下となる。
Vout=D×Vdc+D×(Rn-Rp)×i-Rn×i       式(1-3)
 同様に考えると、U相端子電圧Vout_u、V相端子電圧Vout_vは、上アームスイッチング素子SPu、SPvのPWM搬送波の周期Tcに対するオンの割合を、Du、Dvとすると、次式となる。
Vout_u=Du×Vdc+(1-Du)×(Rn-Rp)×iu-Rn×iu   式(1-4)
Vout_v=Dv×Vdc+(1-Dv)×(Rn-Rp)×iv-Rn×iv   式(1-5)
 ここで、オフセット電圧Voffを重畳した場合、オフセット電圧Voffの重畳に起因する上アームスイッチング素子SPu、SPvのPWM搬送波の周期Tcに対するオンの割合の変動分をΔDとすると、次式となる。
Vout_u=(Du+ΔD)×Vdc+(1-(Du+ΔD))×(Rn-Rp)×iu-Rn×iu 式(1-6)
Vout_v=(Dv+ΔD)×Vdc+(1-(Dv+ΔD))×(Rn-Rp)×iv-Rn×iv 式(1-7)
 ここで、導通抵抗Rnと導通抵抗Rpとを等しくする(Rn=Rp)と、U相とV相間の相間電圧Vout_uvは以下となる。
Vout_uv=Vout_u-Vout_v=(Du-Dv)×Vdc-Rn×(iu-iv)   式(1-8)
 相間電圧Vout_uvに変動分ΔDが含まれないので、オフセット電圧Voffの重畳の影響は相間電圧には出ない。従って、交流回転機1の電流は相間電圧に基づいて流れるので、オフセット電圧Voff重畳の影響は交流回転機1を流れる電流には表れない。
 以上より、図5に示すように、インバータの出力端子と負極側入力端子との間の導通抵抗Rnと、インバータの出力端子と正極側入力端子との間の導通抵抗Rpとを等しくすることがよい。
 一般に導通抵抗は、スイッチング素子に入力されるスイッチング信号のオン電位に依存し、オン電位が高いほど導通抵抗が下がる傾向にある。よって、インバータ効率を上げたい場合、オン電位を高くし、導通抵抗を下げることが行われる。
 本実施の形態では、導通抵抗RpとRnを揃えることが相間電圧にオフセット電圧Voff重畳の影響を低減する上で良いので、上アームスイッチング素子SP、下アームスイッチング素子SNに入力されるスイッチング信号のオン電位VGp、VGnを等しく設定することで、結果的に導通抵抗RpとRnとが等しくなる。
 次に、図6に、図5に対し、下アームスイッチング素子SNに直列接続された抵抗Rを有する電流検出回路8を追加した場合を考える。(図1のインバータ6の1相分の等価回路と考えてよい)。この場合、図5におけるインバータの出力端子と負極側入力端子との間の導通抵抗Rnを、図6においては、Rn+Rとすることで同様の議論ができる。
 図6に対しては、オフセット電圧Voff重畳後の、U相端子電圧Vout_u、V相端子電圧Vout_vは、式(1―6)、式(1―7)において、導通抵抗RnをRn+Rに置きなおせばよいから、次式のようになる。
Vout_u=(Du+ΔD)×Vdc+(1-(Du+ΔD))×(Rn+R-Rp)×iu-(Rn+R)×iu 式(1-9)
Vout_v=(Dv+ΔD)×Vdc+(1-(Dv+ΔD))×(Rn+R-Rp)×iv-(Rn+R)×iv 式(1-10)
 ここで、先と同じように、導通抵抗Rn=Rpとおくと、U相、V相間の相間電圧Vout_uvは以下となる
Vout_uv=Vout_u-Vout_v=(Du-Dv)×Vdc-ΔD×R×(iu-iv)-(Rn+R)×(iu-iv)
                             式(1-11)
 式(1-11)から明らかなように、相間電圧Vout_uvに変動分ΔDが含まれる。従って、オフセット電圧Voff重畳の影響は相間電圧Vout_uvに現れる。これは、図3に示したように、オフセット電圧Voffとして、3次高調波を重畳するので、相間電圧に3次高調波が重畳し、結果として、交流回転機1のトルクに3次のトルクリップルが生じるためである。
 そこで、先に述べたように、本実施の形態では、上アームスイッチング素子のスイッチング信号GPのオン電位VGpと、下アームスイッチング素子のスイッチング信号GNのオン電位VGnの関係において、「VGn>VGp」を満たすようにする。すなわち、図7のグラフに示すような関係とする。図7には、オン電位VGが、VG=VGn、VG=VGp、およびVG=0の場合の特性を示しており、VGn>VGp>0である。図7中、横軸は、ドレイン-ソース電圧Vds、縦軸はドレイン電流Idを示している。
 図7中、飽和領域において、グラフの傾きが緩やかであるほど、導通抵抗が増大することを意味する。すなわち、図7で示されているように、導通抵抗Rn、Rpはそれぞれ、
Rn=ΔVds_n/ΔId_n   式(1-12)
Rp=ΔVds_p/ΔId_p   式(1-13)
で示される。
 その結果、インバータの出力端子と正極側入力端子との間の導通抵抗Rpが、インバータの出力端子と負極側入力端子との間の導通抵抗Rnより大きくなる。より理想的には、Rp=Rn+Rを満たすように、上アームスイッチング素子のスイッチング信号GPのオン電位VGpと下アームスイッチング素子のスイッチング信号GNのオン電位VGnを設定する。これにより、式(1―9)、(1―10)はそれぞれ次式のようになる。
 Vout_u=(Du+ΔD)×Vdc-(Rn+R)×iu   式(1-14)
 Vout_v=(Dv+ΔD)×Vdc-(Rn+R)×iv   式(1-15)
 式(1―9)、式(1―10)に比べ、右辺第2項が消去できる。その結果、相間電圧Vout_uvは以下のようになる。
Vout_uv=Vout_u-Vout_v=(Du-Dv)×Vdc-(Rn+R)×(iu-iv) 式(1-16)
 これにより、相間電圧に変動分ΔDが含まれないので、オフセット電圧Voff重畳の影響は相間電圧にでない。交流回転機1の電流は相間電圧に基づいて流れるので、オフセット電圧Voff重畳の影響は交流回転機1を流れる電流には表れない。
  以上より、図6に示すようなインバータにおいては、インバータの出力端子と負極側入力端子との間の導通抵抗Rnとインバータの出力端子と正極側入力端子との間の導通抵抗Rpとにおいて、理想的には「Rp=Rn+R」を満たすようにすることが好ましい。しかしながら、スイッチング信号のオン電位VGは、多少変動すること、およびスイッチング素子の熱特性でRp、Rnが変動することを考慮すると、一致させられない場合も実用上は起こる。そのような場合、「Rp>Rn」を満たすように設定する。具体的には、インバータの出力端子と正極側入力端子との間の導通抵抗Rpが、インバータの出力端子と負極側入力端子との間における導通抵抗のうち、電流検出用抵抗Rを除いた導通抵抗Rnより大きくなるように設定することで、オフセット電圧Voffとして、3次高調波電圧を重畳しても、相間電圧の3次にでる影響を低減でき、結果的に交流回転機1の3次のトルクリップルを抑制する効果を奏する。
 従って、インバータの出力端子と負極側入力端子との間の導通抵抗Rnとインバータの出力端子と正極側入力端子との間の導通抵抗Rpとの差異が修正され、3次高調波成分重畳に起因する3次高調波の影響を低減することが可能となる。
 なお、上述したオン電位の設定は、スイッチング素子へのオン指令信号(MOSFET、IGBTならばゲート電圧、バイポーラトランジスタならばベース電流)で行ってもよい。オン指令信号の値を小さくすれば、導通抵抗が増大する。
 以上は、下アーム3シャント電流検出方式インバータについて述べたが、本実施の形態は母線1シャント電流検出方式インバータにも適用できる。なぜならば、母線1シャント電流検出方式インバータにおいても、インバータの出力端子と負極側入力端子との間の導通抵抗は「Rn+R」であり、インバータの出力端子と正極側入力端子との間の導通抵抗はRpであるため、インバータの出力端子と負極側入力端子との間の導通抵抗が大きい。よって、本実施例と同様に、「Rp>Rn」を満たすように設定することで、オフセット電圧Voffとして、3次高調波電圧を重畳しても、相間電圧の3次にでる影響を低減でき、結果的に交流回転機1の3次のトルクリップルを抑制する効果を奏する。
 以上の説明においては、「Rp>Rn」を満たすように、上アームスイッチング信号GPのオン電位VGpと下アームスイッチング信号GNのオン電位VGnの関係において、「VGn>VGp」を満たすように説明したが、下アームスイッチング素子と前記負極側入力端子との間に電流検出用抵抗Rを接続する場合においては、「Rp>Rn」を満たすことで、オフセット電圧Voffとして、3次高調波電圧を重畳しても、相間電圧の3次にでる影響を低減するので、例えば、「VGn=VGp」とした状態においても、「Rp>Rn」を満たすように、同一スイッチング信号のオン電位で、上アームスイッチング素子の導通抵抗が下アームスイッチング素子の導通抵抗より大きくなるように、上アームスイッチング素子および下アームスイッチング素子を選択してもよい。
 一般に、スイッチング素子の性能はその導通抵抗で決まる。導通抵抗が低いほど、インバータの効率が上がるので良いとされるが、ここでは、上アームスイッチング素子の導通抵抗が下アームスイッチング素子の導通抵抗より大きくなるようにしたいので、あえて、下アームスイッチング素子に比べて上アームスイッチング素子に低級な(導通抵抗の大きい)製品を適用して、「Rp>Rn」を満たしてもよい。これにより、オフセット電圧Voffとして、3次高調波電圧を重畳しても、相間電圧の3次にでる影響を低減でき、結果的に交流回転機1の3次のトルクリップルを抑制する効果を奏する。
 すなわち、MOSFETをはじめとして、パワースイッチング素子の性能は導通抵抗に依存し、導通抵抗が高いほど性能が低い(安い)。よって上アームスイッチング素子に導通抵抗の高いものを使用することで、パワースイッチング素子の値段を下げたうえで、3次高調波の影響を低減できる。
 また、図1に対し、図8に一相分等価回路を示すように、3相の上アームスイッチング素子SPu、SPv、SPwを流れる電流を検出するように、スイッチング素子SPu、SPv、SPwに電流検出回路8が直列に接続されるように構成されている場合も同様に考えればよい。この場合、理想的には「Rn=Rp+R」、現実的には「Rp<Rn」を満たすように、上アームスイッチング信号GPのオン電位VGpと下アームスイッチング信号GNのオン電位VGnの関係において、「VGn<VGp」に設定する。または、同一オン電位の状態で、下アームスイッチング素子の導通抵抗Rnが上アームスイッチング素子の導通抵抗Rpより大きくなるように、スイッチング素子を選択してもよい。すなわち、インバータの出力端子と負極側入力端子との間の導通抵抗が、インバータの出力端子と正極側入力端子との間における導通抵抗のうち、電流検出用抵抗を除いた導通抵抗より大きく設定することで、オフセット電圧Voffとして、3次高調波電圧を重畳しても、相間電圧の3次にでる影響を低減でき、結果的に交流回転機1の3次のトルクリップルを抑制する効果を奏する。
 また、下アームスイッチング素子と負極側入力端子との間に電流検出用抵抗Rを備える構成において、上アームスイッチング素子とコンデンサ5の正極側端子Cpとの間に少なくとも1つの抵抗R1を挿入することで、インバータの出力端子と負極側入力端子との間の導通抵抗とインバータの出力端子と正極側入力端子との間の導通抵抗とのアンバランスを低減してもよい。これにより、オフセット電圧Voffとして、3次高調波電圧を重畳しても、相間電圧の3次にでる影響を低減でき、結果的に交流回転機1の3次のトルクリップルを抑制する効果を奏する。
 また、上アームスイッチング素子と正極側入力端子との間に電流検出用抵抗Rを備える構成において、下アームスイッチング素子とコンデンサ5の負極側端子Cnとの間に少なくとも1つの抵抗R2を挿入することで、インバータの出力端子と正極側入力端子との間の導通抵抗とインバータの出力端子と負極側入力端子との間の導通抵抗とのアンバランスを低減してもよい。これにより、オフセット電圧Voffとして、3次高調波電圧を重畳しても、相間電圧の3次にでる影響を低減でき、結果的に交流回転機1の3次のトルクリップルを抑制する効果を出す構成としてもよい。
 なお、本明細書で述べている導通抵抗Rpは、上アームスイッチング素子の導通抵抗に加え上アームスイッチング素子の正極側入力端子からコンデンサ5の正極側端子Cpまでの配線抵抗を含めて考えてもよいが、遮断器4の抵抗Rdcは含めない。また、本明細書で述べている導通抵抗Rnは、下アームスイッチング素子の導通抵抗に加え下アームスイッチング素子の正極側入力端子からコンデンサ5の負極側端子Cnまでの配線抵抗を含めて考えてもよい。よって、「インバータの出力端子と正極側入力端子との間における導通抵抗」は、コンデンサ5の正極側端子Cpから出力端子(Out_u、Out_v、Out_w)までの導通抵抗と考えてよく、「インバータの出力端子と負極側入力端子との間における導通抵抗」は、コンデンサ5の負極側端子Cnから出力端子(Out_u、Out_v、Out_w)までの導通抵抗と考えてよい。このとき、コンデンサの端子からスイッチング素子までの配線抵抗がスイッチング素子の導通抵抗より十分に小さければ無視し、上下アームのスイッチング素子の導通抵抗で考えてもよい。
 本実施の形態では、インバータ6に接続される負荷として交流回転機1について述べたが、インバータ6から見て電流源とみなせる負荷であればよい。よって、交流回転機をはじめとして、3相の誘導性負荷であればよい。
 実施の形態2.
 実施の形態2に係る電力変換装置について、図9により説明を行う。実施の形態2が実施の形態1と異なる点は、修正電圧指令値算出部363aである。
 修正電圧指令値算出部363aは、以下の式(2―1)に示すように、座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocの最大値Vmaxを判定し、Vdc/2から最大値Vmaxを減算して、オフセット電圧Voffを算出し、座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocからオフセット電圧Voffを減算して、3相の修正電圧指令値Vuo、Vvo、Vwoを算出する。
Vmax=MAX(Vuoc,Vvoc,Vwoc)
Voff=0.5×Vdc-Vmax
Vuo=Vuoc-Voff
Vvo=Vvoc-Voff         式(2-1)
Vwo=Vwoc-Voff
 この場合における各部波形を図10に示す。図10中、上段は、座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwocを示す。上から2段目は、オフセット電圧Voffであり、電圧指令値に対し、3倍の周波数で変動する、3次高調波成分となっていることがわかる。上から3段目は、3相の修正電圧指令値Vuo、Vvo、Vwoである。そして、最下段は、相間の電圧指令値Vuo―Vvo、Vvo―Vwo、Vwo―Vuoである。3相の修正電圧指令値Vuo、Vvo、Vwoの瞬時値で最大のものはインバータの出力可能な上限値Vdc/2に一致していることがわかる。
 下アーム3シャント電流検出方式を採用したインバータにおいて、修正電圧指令値を式(2―1)のような演算で得る。すなわち、修正電圧指令値のうち最大のものがインバータの出力可能な上限値(Vdc/2)に一致するように3次高調波成分(Voff)を演算し、3次高調波成分を加算することにより、修正電圧指令値を演算する変調する(以下、上ベタ2相変調と称す)。
 上ベタ2相変調を適用する利点について図4を参照して説明する。式(2―1)におけるVmaxが常にVdc/2と一致しており(図10の3相の修正電圧指令値Vuo、Vvo、Vwoの瞬時値で最大のものはインバータの出力可能な上限値Vdc/2に一致していることと等価)、Vmaxに一致する相は、キャリア波CAの周期Tc中においてスイッチングをしない(常にGPがオンかつGNがオフ)。よって、他の変調で見られるように、区間BでのVmaxの相のスイッチングが生じない利点がある。このことについては、図10における、上段の修正電圧指令値Vuo、Vvo、Vwoのうち、瞬時値で最大の相が、常にVdc/2となっていることからもわかる。区間Bにてスイッチングが生じないことは、電流検出タイミング近傍でスイッチングが生じないことでもあり、上ベタ2相変調は、電流検出精度において優れる変調法と言える。
 しかし、図9に示す下アーム3シャント電流検出方式インバータにおいては、インバータの出力端子と負極側入力端子との間の導通抵抗は「Rn+R」であり、インバータの出力端子と正極側入力端子との間の導通抵抗はRpであるため、導通抵抗のアンバランスにより、図11Aの最下段のトルクTの波形を見てわかるように、修正電圧指令値Vuo、Vvo、Vwoの基本波成分(あるいは、2段目の交流回転機1を流れる電流Iu、Iv、Iwの基本波成分)に対して、3倍の周波数成分の脈動が重畳されていることが確認できる。
 そこで、本実施の形態では、上ベタ2相変調の利点である電流検出精度を維持した上で、導通抵抗のアンバランス起因による3次高調波成分を低減するために、実施の形態1で詳細を述べたように、インバータの出力端子と正極側入力端子との間の導通抵抗Rpを、インバータの出力端子と負極側入力端子との間(電流検出用抵抗素子を除いた)の導通抵抗Rnよりも大きく設定する(Rp>Rn)。図11Bは、Rp>Rnとなるように導通抵抗を設定した場合の各部波形であり、3段目のトルクTに着目すると、図11Aに比べ、3次高調波成分が低減できていることがわかる。
  以上により、上ベタ2相変調に、下アーム3シャント電流検出方式を組み合わせ、インバータの出力端子と正極側入力端子との間の導通抵抗Rpを、インバータの出力端子と負極側入力端子との間(電流検出用抵抗素子を除いた)の導通抵抗Rnを大きく設定する(Rp>Rn)ことで、電流検出値にスイッチングノイズ(ジョリジョリ音、スイッチング時刻と電流A/D時刻が接近することにより、A/D値に混入するノイズ)の混入を防ぎつつ、交流回転機1より生じるトルクの3次高調波成分を抑制できるといった顕著な効果を奏する。
 以上は、下アーム3シャント電流検出方式インバータについて述べたが、本実施の形態は母線1シャント電流検出方式インバータにも適用できる。なぜならば、母線1シャント電流検出方式インバータにおいても、インバータの出力端子と負極側入力端子との間の導通抵抗は「Rn+R」であり、インバータの出力端子と正極側入力端子との間の導通抵抗はRpであるため、インバータの出力端子と負極側入力端子との間の導通抵抗が大きい。よって、母線1シャント電流検出方式インバータに本実施の形態を適用しても同様の効果が得られるのは言うまでもない。
 また、図8のような、電流検出回路8が、3相の上アームスイッチング素子SPu、SPv、SPwを流れる電流を検出するように、SPu、SPv、SPwを直列に接続されるように構成されている場合(上アーム3シャント電流検出方式)、電流検出タイミングとスイッチング時刻が近接するのを避けるには、修正電圧指令値算出部363aは以下のように計算する。
Vmin=MIN(Vuoc,Vvoc,Vwoc)
Voff=0.5×Vdc+Vmin
Vuo=Vuoc-Voff
Vvo=Vvoc-Voff        式(2-2)
Vwo=Vwoc-Voff
 この場合における各部波形を図12に示す。上段は、座標変換後の3相の電圧指令値Vuoc、Vvoc、Vwoc、上から2段目は、オフセット電圧Voffであり、電圧指令値に対し、3倍の周波数で変動する、3次高調波成分となっていることがわかる。上から3段目は、3相の修正電圧指令値Vuo、Vvo、Vwoである。そして、最下段は、相間の電圧指令値Vuo―Vvo、Vvo―Vwo、Vwo―Vuoである。同図の3相の修正電圧指令値Vuo、Vvo、Vwoの瞬時値で最小のものはインバータの出力可能な下限値「-Vdc/2」に一致していることがわかる(下ベタ2相変調)。
 この場合、インバータの出力端子と負極側入力端子との間の導通抵抗はRnであり、インバータの出力端子と正極側入力端子との間の導通抵抗は「Rp+R」であるため、「Rp=Rn」ならば、導通抵抗のアンバランスにより、交流回転機1のトルクに3次高調波が生じる。そこで、Rp<Rnを満たすように導通抵抗を与えることで、3次高調波成分を低減できる。
 このように、上アーム3シャント電流検出方式と下ベタ2相変調を組み合わせ、上下アームの導通抵抗を揃えるようにすることで、下ベタ2相変調時の3次高調波のトルクリップル悪化を抑制することができる。
実施の形態3
 次に、実施の形態3による電動パワーステアリング装置200について説明する。実施の形態1および2においては、電力変換装置100について説明したが、電力変換装置100によって操舵トルクを補助するトルクを発生させ、電動パワーステアリング装置を構成するようにしても良い。実施の形態3においては、実施の形態1および2に対し、ハンドル901、前輪902、ギア903、トルク検出器904、モータトルク目標値演算部905が異なる。以下の説明では実施の形態1および2と異なる点について説明する。
 図13は、実施の形態3に係る電動パワーステアリングの構成を示す図である。図13において、運転手は、ハンドル901を左右に回転させて前輪902の操舵を行う。トルク検出器904は、ステアリング系の操舵トルクを検出し、検出トルクをモータトルク目標値演算部905に出力する。モータトルク目標値演算部905は、ステアリング系の操舵トルクを補助するトルクTを交流回転機1が発生するように、トルク検出器904の検出トルクに基づいて、交流回転機1に出力すべき制御指令としてモータトルクの目標値T_refを演算する。目標値T_refは、電力変換装置100を構成する制御器7の電流指令値算出部35に入力されることにより、インバータ6を介して、目標値T_refに応じて交流回転機1を制御する。交流回転機1は、ギア903を介して操舵トルクを補助するトルクを発生する。
 このような電動パワーステアリング装置で重視されるのは、静粛性、装置コスト、装置サイズである。まず、装置コスト、装置サイズの観点では、「下アーム3シャント電流検出方式インバータ」、および「母線1シャント電流検出方式インバータ」による電流検出器を採用するのが有利である。しかしながら、これらの方式は、インバータの導通ラインに抵抗を挿入するものであるため、挿入することで、上アームスイッチング素子と下アームスイッチング素子とで導通抵抗にアンバランスを生じる。この影響が、電圧指令値にオフセット電圧(3次高調波成分)を加えると現れ、交流回転機1から3次高調波トルクリップルが生じる。そこで、本実施の形態においては、実施の形態1で説明したように、インバータの出力端子と正極側入力端子との間の導通抵抗Rpを、インバータの出力端子と負極側入力端子との間(電流検出用抵抗素子を除いた)の導通抵抗Rnよりも大きくする(Rp>Rn)ことによりこの問題の影響の低減を実現している。
 なお、「上アーム3シャント電流検出方式」においても同様の効果が得られる。すなわち、実施の形態1で説明したように、インバータの出力端子と負極側入力端子との間の導通抵抗Rnを、インバータの出力端子と正極側入力端子との間(電流検出用抵抗素子を除いた)の導通抵抗Rpよりも大きくする(Rn>Rp)ことにより問題の影響の低減を実現できる。
 以上のように、電動パワーステアリング装置では、静粛性が求められ、さらに、低電圧(12V)、かつ高電流(例えば100A)なため、3相インバータの上下の導通抵抗の差に起因して、電圧脈動が電流脈動となり、トルク脈動を引き起こしノイズとなりやすい。実施の形態1および2において説明した電力変換装置を電動パワーステアリング装置に適用すると、3次高調波成分重畳による電圧利用率向上と静粛性の両立が可能となる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1:交流回転機、2:回転検出回路、6:インバータ、7:制御器、8:電流検出回路、31:回転検出部、32:電流検出部、33:電流座標変換部、35:電流指令値算出部、37:PWM制御部、100:電力変換装置、200:電動パワーステアリング装置、361:dq軸電圧指令値算出部、362:電圧座標変換部、363、363a:修正電圧指令値算出部、901:ハンドル、902:前輪、903:ギア、904:トルク検出器、905:モータトルク目標値演算部

Claims (10)

  1.  上アームスイッチング素子および下アームスイッチング素子を有し、直流電圧を交流電圧に変換し、負荷に出力するインバータ、
     前記負荷を、指令された状態に制御するための電圧指令値を演算する電圧指令値算出部、
     前記電圧指令値の基本波成分に対し3倍の周波数成分である3次高調波成分を加算して、修正電圧指令値を演算する修正電圧指令値算出部、を備え、
     前記インバータは、前記修正電圧指令値に基づいて前記交流電圧に変換し、
     前記下アームスイッチング素子と前記インバータの負極側入力端子との間に電流検出用抵抗を接続する場合は、前記インバータの出力端子と正極側入力端子との間の導通抵抗が、前記インバータの出力端子と前記負極側入力端子との間における導通抵抗のうち、前記電流検出用抵抗を除いた導通抵抗よりも大きくなるように設定され、
     前記上アームスイッチング素子と前記正極側入力端子との間に電流検出用抵抗を接続する場合は、前記インバータの出力端子と前記負極側入力端子との間の導通抵抗が前記インバータの出力端子と前記正極側入力端子との間における導通抵抗のうち、前記電流検出用抵抗を除いた導通抵抗よりも大きくなるように設定されていることを特徴とする電力変換装置。
  2.  前記下アームスイッチング素子と前記負極側入力端子との間に前記電流検出用抵抗を接続する場合は、前記上アームスイッチング素子の導通抵抗を前記下アームスイッチング素子の導通抵抗に比べて大きくすることを特徴とする請求項1に記載の電力変換装置。
  3.  前記下アームスイッチング素子と前記負極側入力端子との間に前記電流検出用抵抗を接続する場合は、前記上アームスイッチング素子へのオン指令信号を、前記下アームスイッチング素子のオン指令信号に比べて小さくすることを特徴とする請求項1または2に記載の電力変換装置。
  4.  前記修正電圧指令値算出部は、前記修正電圧指令値のうち最大のものが前記インバータの出力可能な上限値に一致するように前記3次高調波成分を演算することを特徴とする請求項2または3に記載の電力変換装置。
  5.  前記インバータは、3相インバータであり、各相の前記下アームスイッチング素子と前記負極側入力端子との間に前記電流検出用抵抗が挿入されていることを特徴とする請求項4に記載の電力変換装置。
  6.  前記上アームスイッチング素子と前記正極側入力端子との間に前記電流検出用抵抗を接続する場合においては、前記下アームスイッチング素子の導通抵抗を前記上アームスイッチング素子の導通抵抗に比べて小さくすることを特徴とする請求項1に記載の電力変換装置。
  7.  前記上アームスイッチング素子と前記正極側入力端子との間に前記電流検出用抵抗を接続する場合においては、前記下アームスイッチング素子へのオン指令信号を前記上アームスイッチング素子のオン指令信号に比べて小さくすることを特徴とする請求項1または2に記載の電力変換装置。
  8.  前記修正電圧指令値算出部は前記修正電圧指令値のうち最小のものが前記インバータの出力可能な下限値に一致するように前記3次高調波成分を演算することを特徴とする請求項6または7に記載の電力変換装置。
  9.  前記インバータは、3相インバータであり、各相の前記上アームスイッチング素子と前記正極側入力端子との間に前記電流検出用抵抗が挿入されていることを特徴とする請求項8に記載の電力変換装置。
  10.  請求項1から9のいずれか一項に記載の電力変換装置と、前記負荷は交流回転機であって前記交流回転機の駆動力を車両の操舵装置に伝達する駆動力伝達機構と、を備えることを特徴とする電動パワーステアリング装置。
PCT/JP2020/028370 2020-07-22 2020-07-22 電力変換装置および電動パワーステアリング装置 WO2022018841A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/011,739 US20230318488A1 (en) 2020-07-22 2020-07-22 Power conversion device and electric power steering device
PCT/JP2020/028370 WO2022018841A1 (ja) 2020-07-22 2020-07-22 電力変換装置および電動パワーステアリング装置
JP2022538540A JP7351013B2 (ja) 2020-07-22 2020-07-22 電力変換装置および電動パワーステアリング装置
CN202080104846.3A CN116114165A (zh) 2020-07-22 2020-07-22 功率转换装置及电动助力转向装置
EP20946158.1A EP4187774A4 (en) 2020-07-22 2020-07-22 POWER CONVERSION DEVICE AND ELECTRIC POWER STEERING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028370 WO2022018841A1 (ja) 2020-07-22 2020-07-22 電力変換装置および電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2022018841A1 true WO2022018841A1 (ja) 2022-01-27

Family

ID=79729103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028370 WO2022018841A1 (ja) 2020-07-22 2020-07-22 電力変換装置および電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20230318488A1 (ja)
EP (1) EP4187774A4 (ja)
JP (1) JP7351013B2 (ja)
CN (1) CN116114165A (ja)
WO (1) WO2022018841A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214040B2 (ja) * 2020-03-27 2023-01-27 三菱電機株式会社 3レベル電力変換装置及び直流電源部の中間電位の制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825641A (en) * 1997-01-27 1998-10-20 International Rectifier Corporation Circuit for sensing individual leg current in a motor controller using resistive shunts
US20030048086A1 (en) * 2001-08-20 2003-03-13 Toshio Takahashi Combined motor drive and current sensing circuit
US6998800B2 (en) * 2003-09-05 2006-02-14 Kollmorgen Corporation Current sensor for DC powered three phase motor control system
JP2011019378A (ja) * 2009-07-10 2011-01-27 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2013059233A (ja) * 2011-09-09 2013-03-28 Mitsubishi Heavy Ind Ltd インバータ制御装置、インバータ装置、及び空気調和機
JP6266161B2 (ja) 2015-03-12 2018-01-24 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
JP2020089203A (ja) * 2018-11-30 2020-06-04 Ntn株式会社 モータ駆動装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006182254A (ja) * 2004-12-28 2006-07-13 Nsk Ltd 電動パワーステアリング装置
WO2006057317A1 (ja) * 2004-11-24 2006-06-01 Nsk Ltd. 無結線式モータ、その駆動制御装置及び無結線式モータの駆動制御装置を使用した電動パワーステアリング装置
JP5505449B2 (ja) * 2012-04-06 2014-05-28 株式会社デンソー 多相回転機の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825641A (en) * 1997-01-27 1998-10-20 International Rectifier Corporation Circuit for sensing individual leg current in a motor controller using resistive shunts
US20030048086A1 (en) * 2001-08-20 2003-03-13 Toshio Takahashi Combined motor drive and current sensing circuit
US6998800B2 (en) * 2003-09-05 2006-02-14 Kollmorgen Corporation Current sensor for DC powered three phase motor control system
JP2011019378A (ja) * 2009-07-10 2011-01-27 Jtekt Corp モータ制御装置及び電動パワーステアリング装置
JP2013059233A (ja) * 2011-09-09 2013-03-28 Mitsubishi Heavy Ind Ltd インバータ制御装置、インバータ装置、及び空気調和機
JP6266161B2 (ja) 2015-03-12 2018-01-24 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
JP2020089203A (ja) * 2018-11-30 2020-06-04 Ntn株式会社 モータ駆動装置

Also Published As

Publication number Publication date
CN116114165A (zh) 2023-05-12
US20230318488A1 (en) 2023-10-05
JPWO2022018841A1 (ja) 2022-01-27
EP4187774A4 (en) 2023-08-16
EP4187774A1 (en) 2023-05-31
JP7351013B2 (ja) 2023-09-26

Similar Documents

Publication Publication Date Title
WO2019008676A1 (ja) インバータ装置、及び、電動パワーステアリング装置
US9935568B2 (en) Control apparatus of rotary electric machine
JP6390489B2 (ja) インバータの制御装置
US20110241585A1 (en) Direct-current to three-phase alternating-current inverter system
WO2017098555A1 (ja) 交流回転機の制御装置
US20230001979A1 (en) Control apparatus for ac rotary machine and electric power steering apparatus
WO2022018841A1 (ja) 電力変換装置および電動パワーステアリング装置
JP7092257B2 (ja) 回転電機制御システム
CN114208020B (zh) 交流旋转电机的控制装置及电动助力转向装置
WO2021229703A1 (ja) 交流回転機の制御装置
JP6203318B1 (ja) 電動機制御装置および電動機制御方法
JP7211242B2 (ja) 変調方式切替装置
US9935575B2 (en) Power conversion device and control method for same, and electric power steering control device
CN111034001B (zh) 功率转换装置及电动助力转向装置
JP7317249B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
WO2017199641A1 (ja) 電動機の制御装置及びそれを備えた電動車両
WO2023073823A1 (ja) 回転機の制御装置及び電動パワーステアリング装置
JP6818929B1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
US20240097595A1 (en) Power conversion device and power conversion method
JP7317250B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
WO2023228404A1 (ja) 回転電機制御装置
WO2021112108A1 (ja) Pwmインバータ制御装置および制御方法
JP6305603B1 (ja) 回転電機の制御装置
JP2023127886A (ja) モータ駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020946158

Country of ref document: EP

Effective date: 20230222