WO2022014150A1 - 燃料ポンプ - Google Patents

燃料ポンプ Download PDF

Info

Publication number
WO2022014150A1
WO2022014150A1 PCT/JP2021/019018 JP2021019018W WO2022014150A1 WO 2022014150 A1 WO2022014150 A1 WO 2022014150A1 JP 2021019018 W JP2021019018 W JP 2021019018W WO 2022014150 A1 WO2022014150 A1 WO 2022014150A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
press
fuel
fuel pump
plunger
Prior art date
Application number
PCT/JP2021/019018
Other languages
English (en)
French (fr)
Inventor
真悟 田村
悟史 臼井
千彰 徳丸
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to US17/927,179 priority Critical patent/US12006901B2/en
Priority to JP2022536153A priority patent/JP7421646B2/ja
Priority to EP21841506.5A priority patent/EP4184001A4/en
Priority to CN202180041483.8A priority patent/CN115803515A/zh
Publication of WO2022014150A1 publication Critical patent/WO2022014150A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/04Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/442Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston means preventing fuel leakage around pump plunger, e.g. fluid barriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • F02M59/485Means for fixing delivery valve casing and barrel to each other or to pump casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0421Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • F04B53/166Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8053Fuel injection apparatus manufacture, repair or assembly involving mechanical deformation of the apparatus or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8061Fuel injection apparatus manufacture, repair or assembly involving press-fit, i.e. interference or friction fit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/85Mounting of fuel injection apparatus
    • F02M2200/852Mounting of fuel injection apparatus provisions for mounting the fuel injection apparatus in a certain orientation, e.g. markings or notches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/042Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being cams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a fuel pump for an internal combustion engine of an automobile.
  • the high-pressure fuel pump described in Patent Document 1 includes a pump body in which a pressurizing chamber is formed and a cylinder inserted into a hole formed in the pump body.
  • a pressurizing chamber On the opposite side of the pressurizing chamber, the convex portion on the outer side in the radial direction is press-fitted into the hole portion of the cylinder, and the cylinder is screwed to the hole portion by a thread.
  • the cylinder is caulked to the hole by caulking on the side opposite to the pressurizing chamber.
  • a radial clearance is formed between the cylinder and the hole of the pump body in the entire region from the joint to the upper end.
  • An object of the present invention is to provide a fuel pump capable of suppressing sticking of a plunger in consideration of the above problems.
  • the fuel pump of the present invention includes a reciprocating plunger, a cylinder having a guide hole for guiding the reciprocating motion of the plunger extending in the axial direction, and a pump for holding the cylinder. Equipped with a body.
  • the pump body has a cylinder insertion hole into which a cylinder is inserted, and a pressurizing chamber that communicates with the cylinder insertion hole and whose volume increases or decreases due to the reciprocating motion of the plunger.
  • the cylinder has a press-fitting portion to be press-fitted into the inner peripheral surface of the cylinder insertion hole, and a groove formed at a position corresponding to the press-fitting portion on the inner peripheral surface of the guide hole.
  • FIG. 1 is an overall configuration diagram of a fuel supply system using a high-pressure fuel pump according to the present embodiment.
  • the fuel supply system 200 includes a high-pressure fuel pump 100, an ECU (Engine Control Unit) 101, a fuel tank 103, a common rail 106, and a plurality of injectors 107.
  • the parts of the high-pressure fuel pump 100 are integrally incorporated in the pump body 1.
  • the fuel in the fuel tank 103 is pumped up by the feed pump 102 that is driven based on the signal from the ECU 101.
  • the pumped fuel is pressurized to an appropriate pressure by a pressure regulator (not shown) and sent to the low pressure fuel suction port 51 of the high pressure fuel pump 100 through the low pressure pipe 104.
  • the high-pressure fuel pump 100 pressurizes the fuel supplied from the fuel tank 103 and pumps it to the common rail 106.
  • a plurality of injectors 107 and a fuel pressure sensor 105 are mounted on the common rail 106.
  • the plurality of injectors 107 are mounted according to the number of cylinders (combustion chambers), and inject fuel according to the drive current output from the ECU 101.
  • the fuel supply system 200 of the present embodiment is a so-called direct injection engine system in which the injector 107 injects fuel directly into the cylinder cylinder of the engine.
  • the fuel pressure sensor 105 outputs the detected pressure data to the ECU 101.
  • the ECU 101 has an appropriate injection fuel amount (target injection fuel length) and an appropriate fuel pressure (target) based on the engine state amount (for example, crank rotation angle, throttle opening, engine rotation speed, fuel pressure, etc.) obtained from various sensors. Fuel pressure) etc. are calculated.
  • the ECU 101 controls the drive of the high-pressure fuel pump 100 and the plurality of injectors 107 based on the calculation results such as the fuel pressure (target fuel pressure). That is, the ECU 101 has a pump control unit that controls the high-pressure fuel pump 100 and an injector control unit that controls the injector 107.
  • the high-pressure fuel pump 100 has a metal damper 9 which is a pressure pulsation reduction mechanism, an electromagnetic suction valve mechanism 3 which is a capacity variable mechanism, a relief valve mechanism 4, and a discharge valve mechanism 8.
  • the fuel flowing in from the low-pressure fuel suction port 51 reaches the suction port 31b of the electromagnetic suction valve mechanism 3 via the metal damper 9 and the suction passage 10b.
  • the fuel that has flowed into the electromagnetic suction valve mechanism 3 passes through the suction valve 32, flows through the suction passage 1a formed in the pump body 1, and then flows into the pressurizing chamber 11.
  • the pump body 1 holds the plunger 2 slidably.
  • the plunger 2 reciprocates by transmitting power by the cam 91 of the engine (see FIG. 2).
  • One end of the plunger 2 is inserted into the pressurizing chamber 11 to increase or decrease the volume of the pressurizing chamber 11.
  • the pressurizing chamber 11 fuel is sucked from the electromagnetic suction valve mechanism 3 in the descending stroke of the plunger 2, and the fuel is pressurized in the ascending stroke of the plunger 2.
  • the discharge valve mechanism 8 opens, and high-pressure fuel is pressure-fed to the common rail 106 via the discharge passage 1f.
  • the fuel discharge by the high-pressure fuel pump 100 is operated by opening and closing the electromagnetic suction valve mechanism 3.
  • the opening and closing of the electromagnetic suction valve mechanism 3 is controlled by the ECU 101.
  • the differential pressure between the fuel discharge port 12a (see FIG. 2) communicating with the common rail 106 and the pressurizing chamber 11 is the valve opening pressure of the relief valve mechanism 4.
  • the relief valve mechanism 4 opens.
  • the fuel having an abnormally high pressure is returned to the pressurizing chamber 11 through the relief valve mechanism 4.
  • piping such as the common rail 106 is protected.
  • FIG. 2 is a vertical cross-sectional view (No. 1) of the high-pressure fuel pump 100 as viewed in a cross section orthogonal to the horizontal direction.
  • FIG. 3 is a horizontal cross-sectional view of the high-pressure fuel pump 100 as viewed in a cross section orthogonal to the vertical direction.
  • FIG. 4 is a vertical cross-sectional view (No. 2) of the high-pressure fuel pump 100 as viewed in a cross section orthogonal to the horizontal direction.
  • the pump body 1 of the high-pressure fuel pump 100 is provided with the above-mentioned suction passage 1a and a mounting flange 1b (see FIG. 3).
  • the mounting flange 1b is in close contact with the fuel pump mounting portion 90 of the engine (internal combustion engine) and is fixed by a plurality of bolts (screws) (not shown). That is, the high-pressure fuel pump 100 is fixed to the fuel pump mounting portion 90 by the mounting flange 1b.
  • an O-ring 93 showing a specific example of a seat member is interposed between the fuel pump mounting portion 90 and the pump body 1.
  • the O-ring 93 prevents engine oil from leaking to the outside of the engine (internal combustion engine) through between the fuel pump mounting portion 90 and the pump body 1.
  • a cylinder 6 for guiding the reciprocating motion of the plunger 2 is attached to the pump body 1 of the high-pressure fuel pump 100.
  • the cylinder 6 is formed in a cylindrical shape, and is press-fitted into the pump body 1 on the outer peripheral side thereof.
  • the pump body 1 and the cylinder 6 form a pressurizing chamber 11 together with an electromagnetic suction valve mechanism 3, a plunger 2, and a discharge valve mechanism 8 (see FIG. 4).
  • the pump body 1 is provided with a fixing portion 1c that engages with the axially central portion of the cylinder 6.
  • the fixed portion 1c is formed so as to be plastically deformable. Then, the fixing portion 1c pushes the cylinder 6 upward (upward in FIG. 2). The upper end surface (one end surface) of the cylinder 6 comes into contact with the pump body 1. As a result, the fuel pressurized in the pressurizing chamber 11 does not leak from between the upper end surface of the cylinder 6 and the pump body 1.
  • a tappet 92 is provided at the lower end of the plunger 2.
  • the tappet 92 converts the rotational motion of the cam 91 attached to the camshaft of the engine into a vertical motion and transmits it to the plunger 2.
  • the plunger 2 is urged toward the cam 91 by a spring 16 via a retainer 15 and is crimped to the tappet 92.
  • the plunger 2 reciprocates together with the tappet 92 to change the volume of the pressurizing chamber 11.
  • a seal holder 17 is arranged between the cylinder 6 and the retainer 15.
  • the seal holder 17 is formed in a cylindrical shape into which the plunger 2 is inserted.
  • An auxiliary chamber 17a is formed at the upper end of the seal holder 17 on the cylinder 6 side.
  • the lower end portion of the seal holder 17 on the retainer 15 side holds the plunger seal 18.
  • the plunger seal 18 is slidably in contact with the outer periphery of the plunger 2.
  • the plunger seal 18 seals the fuel in the sub chamber 17a when the plunger 2 reciprocates, so that the fuel in the sub chamber 17a does not flow into the engine. Further, the plunger seal 18 prevents the lubricating oil (including the engine oil) that lubricates the sliding portion in the engine from flowing into the inside of the pump body 1.
  • the plunger 2 reciprocates in the vertical direction.
  • the volume of the pressurizing chamber 11 is expanded, and when the plunger 2 is raised, the volume of the pressurizing chamber 11 is decreased. That is, the plunger 2 is arranged so as to reciprocate in the direction of expanding and contracting the volume of the pressurizing chamber 11.
  • the plunger 2 has a large diameter portion 2a and a small diameter portion 2b.
  • the large diameter portion 2a and the small diameter portion 2b are located in the sub chamber 17a. Therefore, the volume of the sub chamber 17a increases or decreases due to the reciprocating motion of the plunger 2.
  • the sub chamber 17a communicates with the low pressure fuel chamber 10 by the fuel passage 10c (see FIG. 3).
  • a fuel flow is generated from the sub chamber 17a to the low pressure fuel chamber 10
  • a fuel flow is generated from the low pressure fuel chamber 10 to the sub chamber 17a.
  • the pump body 1 is provided with a relief valve mechanism 4 communicating with the pressurizing chamber 11.
  • the relief valve mechanism 4 has a relief spring 41, a relief valve holder 42, a relief valve 43, a seat member 44, and a spring support member 45.
  • the seat member 44 includes a relief spring 41 to form a relief valve chamber.
  • One end of the relief spring 41 is in contact with the spring support member 45, and the other end is in contact with the relief valve holder 42.
  • the relief valve holder 42 is engaged with the relief valve 43.
  • the urging force of the relief spring 41 acts on the relief valve 43 via the relief valve holder 42.
  • the relief valve 43 is pressed by the urging force of the relief spring 41 and blocks the fuel passage of the seat member 44.
  • the fuel passage of the seat member 44 communicates with the discharge passage 1f (see FIG. 3). The movement of fuel between the pressurizing chamber 11 (upstream side) and the seat member 44 (downstream side) is blocked by the relief valve 43 coming into contact with (adhering to) the seat member 44.
  • the relief valve mechanism 4 of the present embodiment communicates with the pressurizing chamber 11, but is not limited to this, and communicates with, for example, a low pressure passage (low pressure fuel suction port 51, suction passage 10b, etc.). You may try to do so.
  • a low pressure passage low pressure fuel suction port 51, suction passage 10b, etc.
  • a suction joint 5 is attached to the side surface portion of the pump body 1.
  • the suction joint 5 is connected to a low pressure pipe 104 (see FIG. 1) through which fuel supplied from the fuel tank 103 is passed.
  • the fuel in the fuel tank 103 is supplied to the inside of the high-pressure fuel pump 100 from the suction joint 5.
  • the suction joint 5 has a low pressure fuel suction port 51 connected to the low pressure pipe 104 and a suction flow path 52 communicating with the low pressure fuel suction port 51.
  • the fuel that has passed through the suction flow path 52 reaches the suction port 31b (see FIG. 2) of the electromagnetic suction valve mechanism 3 via the metal damper 9 and the suction passage 10b (see FIG. 2) provided in the low pressure fuel chamber 10.
  • the suction filter 53 is arranged in the fuel passage communicating with the suction flow path 52. The suction filter 53 removes foreign matter present in the fuel and prevents the foreign matter from entering the high-pressure fuel pump 100.
  • the pump body 1 of the high-pressure fuel pump 100 is provided with a low-pressure fuel chamber (damper chamber) 10.
  • the low pressure fuel chamber 10 is covered with a damper cover 14.
  • the damper cover 14 is formed, for example, in a cylindrical shape (cup shape) with one side closed.
  • the low pressure fuel chamber 10 has a low pressure fuel flow path 10a and a suction passage 10b.
  • the suction passage 10b communicates with the suction port 31b of the electromagnetic suction valve mechanism 3.
  • the fuel that has passed through the low-pressure fuel flow path 10a reaches the suction port 31b of the electromagnetic suction valve mechanism 3 via the suction passage 10b.
  • the low-pressure fuel flow path 10a is provided with a metal damper 9, a first holding member 19 for holding the metal damper 9, and a second holding member 20.
  • a metal damper 9 reduces the pressure pulsation generated in the high-pressure fuel pump 100 from spreading to the low-pressure pipe 104.
  • the electromagnetic suction valve mechanism 3 is inserted into a lateral hole formed in the pump body 1.
  • the electromagnetic suction valve mechanism 3 includes a suction valve seat 31 press-fitted into a lateral hole formed in the pump body 1, a suction valve 32, a rod 33, a rod urging spring 34, an electromagnetic coil (solenoid) 35, and an anchor. It has 36 and.
  • the suction valve seat 31 is formed in a cylindrical shape, and a seating portion 31a is provided on the inner peripheral portion. Further, the suction valve seat 31 is formed with a suction port 31b (see FIG. 2) that reaches the inner peripheral portion from the outer peripheral portion. The suction port 31b communicates with the suction passage 10b in the low pressure fuel chamber 10 described above.
  • a stopper 37 facing the seating portion 31a of the suction valve seat 31 is arranged in the lateral hole formed in the pump body 1.
  • the suction valve 32 is arranged between the stopper 37 and the seating portion 31a. Further, a valve urging spring 38 is interposed between the stopper 37 and the suction valve 32. The valve urging spring 38 urges the suction valve 32 toward the seating portion 31a.
  • the suction valve 32 abuts on the seating portion 31a to close the communication portion between the suction port 31b and the pressurizing chamber 11. As a result, the electromagnetic suction valve mechanism 3 is closed. On the other hand, the suction valve 32 abuts on the stopper 37 to open the communication portion between the suction port 31b and the pressurizing chamber 11. As a result, the electromagnetic suction valve mechanism 3 is opened.
  • the rod 33 penetrates the suction valve seat 31. One end of the rod 33 is in contact with the suction valve 32.
  • the rod urging spring 34 urges the suction valve 32 via the rod 33 in the valve opening direction on the stopper 37 side.
  • One end of the rod urging spring 34 is engaged with the other end of the rod 33.
  • the other end of the rod urging spring 34 is engaged with a magnetic core 39 arranged so as to surround the rod urging spring 34.
  • the anchor 36 faces the end face of the magnetic core 39.
  • the anchor 36 is engaged with a flange provided on the outer peripheral portion of the rod 33.
  • one end of the anchor urging spring 40 is in contact with the opposite side of the anchor 36 from the magnetic core 39.
  • the other end of the anchor urging spring 40 is in contact with the suction valve seat 31.
  • the anchor urging spring 40 urges the anchor 36 to the flange side of the rod 33.
  • the amount of movement of the anchor 36 is set to be larger than the amount of movement of the suction valve 32. As a result, the suction valve 32 can be reliably brought into contact (seat) with the seating portion 31a, and the electromagnetic suction valve mechanism 3 can be reliably closed.
  • the electromagnetic coil 35 is arranged so as to go around the magnetic core 39.
  • a terminal member 30 (see FIG. 2) is electrically connected to the electromagnetic coil 35, and a current flows through the terminal member 30.
  • the rod 33 In a non-energized state in which no current is flowing through the electromagnetic coil 35, the rod 33 is urged in the valve opening direction by the urging force of the rod urging spring 34, and the suction valve 32 is pressed in the valve opening direction.
  • the suction valve 32 separates from the seating portion 31a and comes into contact with the stopper 37, and the electromagnetic suction valve mechanism 3 is in the valve open state. That is, the electromagnetic suction valve mechanism 3 is a normally open type that opens in a non-energized state.
  • the fuel of the suction port 31b passes between the suction valve 32 and the seating portion 31a, and passes through a plurality of fuel passage holes (not shown) of the stopper 37 and a suction passage 1a. It flows into the pressurizing chamber 11.
  • the suction valve 32 comes into contact with the stopper 37, so that the position of the suction valve 32 in the valve opening direction is restricted.
  • the gap existing between the suction valve 32 and the seating portion 31a is the movable range of the suction valve 32, and this is the valve opening stroke.
  • the discharge valve mechanism 8 is connected to the outlet side of the pressurizing chamber 11.
  • the discharge valve mechanism 8 includes a discharge valve seat member 81 and a discharge valve 82 that is in contact with and separated from the discharge valve seat member 81. Further, the discharge valve mechanism 8 includes a discharge valve spring 83 that urges the discharge valve 82 toward the discharge valve seat member 81, a discharge valve stopper 84 that determines the stroke (moving distance) of the discharge valve 82, and a discharge valve stopper 84.
  • a plug 85 for locking the movement is provided.
  • the discharge valve seat member 81, the discharge valve 82, the discharge valve spring 83, and the discharge valve stopper 84 are housed in the discharge valve chamber 1d formed in the pump body 1.
  • the discharge valve chamber 1d is a substantially columnar space extending in the horizontal direction.
  • One end of the discharge valve chamber 1d communicates with the pressurizing chamber 11 via the fuel passage 1e.
  • the other end of the discharge valve chamber 1d is open to the side surface of the pump body 1.
  • the opening at the other end of the discharge valve chamber 1d is sealed by the plug 85.
  • the discharge joint 12 is joined to the pump body 1 by the welded portion 12b.
  • the discharge joint 12 has a fuel discharge port 12a.
  • the fuel discharge port 12a communicates with the discharge valve chamber 1d via a discharge passage 1f extending in the horizontal direction inside the pump body 1. Further, the fuel discharge port 12a of the discharge joint 12 is connected to the common rail 106.
  • the discharge valve 82 When the fuel pressure in the pressurizing chamber 11 is lower than the fuel pressure in the discharge valve chamber 1d, the discharge valve 82 is crimped to the discharge valve seat member 81 by the differential pressure acting on the discharge valve 82 and the urging force of the discharge valve spring 83. ing. As a result, the discharge valve mechanism 8 is closed. On the other hand, when the fuel pressure in the pressurizing chamber 11 becomes larger than the fuel pressure in the discharge valve chamber 1d and the differential pressure acting on the discharge valve 82 becomes larger than the urging force of the discharge valve spring 83, the discharge valve 82 becomes fuel. It is pushed away from the discharge valve seat member 81. As a result, the discharge valve mechanism 8 is opened.
  • the discharge valve mechanism 8 When the discharge valve mechanism 8 operates the on-off valve, fuel is taken in and out of the discharge valve chamber 1d. Then, the fuel discharged from the discharge valve chamber 1d is discharged from the discharge valve mechanism 8 to the discharge passage 1f. As a result, the high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 106 (see FIG. 1) through the discharge valve chamber 1d, the discharge passage 1f, and the fuel discharge port 12a of the discharge joint 12. With the above configuration, the discharge valve mechanism 8 functions as a check valve that limits the flow direction of fuel.
  • the electromagnetic suction valve mechanism 3 As described above, if the electromagnetic suction valve mechanism 3 is closed during the compression stroke, the fuel sucked into the pressurizing chamber 11 during the suction stroke is pressurized and discharged to the common rail 106 side. On the other hand, if the electromagnetic suction valve mechanism 3 is opened during the compression stroke, the fuel in the pressurizing chamber 11 is pushed back to the suction passage 1a side and is not discharged to the common rail 106 side. In this way, the fuel discharge by the high-pressure fuel pump 100 is operated by opening and closing the electromagnetic suction valve mechanism 3. The opening and closing of the electromagnetic suction valve mechanism 3 is controlled by the ECU 101.
  • the suction stroke In the suction stroke, the volume of the pressurizing chamber 11 increases, and the fuel pressure in the pressurizing chamber 11 decreases.
  • the suction stroke when the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the suction port 31b (see FIG. 2) and the urging force due to the differential pressure between the two exceeds the urging force by the valve urging spring 38, the suction valve is used. 32 is separated from the seating portion 31a, and the electromagnetic suction valve mechanism 3 is opened. As a result, the fuel passes between the suction valve 32 and the seating portion 31a, and flows into the pressurizing chamber 11 through the plurality of holes provided in the stopper 37.
  • the high-pressure fuel pump 100 shifts to the compression stroke after completing the suction stroke.
  • the electromagnetic coil 35 remains in a non-energized state, and no magnetic attraction force acts between the anchor 36 and the magnetic core 39.
  • the rod urging spring 34 is set to have a necessary and sufficient urging force to maintain the suction valve 32 at a valve opening position away from the seating portion 31a in a non-energized state.
  • the fuel in the pressurizing chamber 11 is boosted as the plunger 2 rises, and when the pressure exceeds the pressure of the fuel discharge port 12a, the fuel passes through the discharge valve mechanism 8 and the common rail 106. It is discharged to (see FIG. 1).
  • This process is called a discharge process. That is, the compression stroke from the bottom dead center to the top dead center of the plunger 2 consists of a return stroke and a discharge stroke. Then, by controlling the energization timing of the electromagnetic suction valve mechanism 3 to the electromagnetic coil 35, the amount of high-pressure fuel discharged can be controlled.
  • the timing of energizing the electromagnetic coil 35 If the timing of energizing the electromagnetic coil 35 is advanced, the ratio of the return stroke in the compression stroke becomes small and the ratio of the discharge stroke becomes large. As a result, less fuel is returned to the suction passage 10b, and more fuel is discharged at high pressure. On the other hand, if the timing of energizing the electromagnetic coil 35 is delayed, the ratio of the return stroke in the compression stroke becomes large and the ratio of the discharge stroke becomes small. As a result, more fuel is returned to the suction passage 10b, and less fuel is discharged at high pressure. By controlling the energization timing of the electromagnetic coil 35 in this way, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine (internal combustion engine).
  • FIG. 5 is an exploded perspective view of the high pressure fuel pump 100.
  • FIG. 6 is a vertical cross-sectional view of the vicinity of the cylinder of the high-pressure fuel pump 100.
  • FIG. 7 is an enlarged vertical sectional view of the cylinder of the high-pressure fuel pump 100.
  • FIG. 8 is a cross-sectional view of the cylinder of the high-pressure fuel pump 100 as viewed from diagonally above.
  • the cylinder 6 is formed in a cylindrical shape having a guide hole 6a extending in the axial direction.
  • the cylinder 6 has a large diameter portion 61, a first small diameter portion 62, and a second small diameter portion 63.
  • the large diameter portion 61 forms an intermediate portion of the cylinder 6.
  • the first small diameter portion 62 forms the upper end portion of the cylinder 6, and the second small diameter portion 63 forms the lower end portion of the cylinder 6.
  • the large diameter portion 61 has an end surface 61a which is one end (upper end) in the axial direction and an end surface 61b which is the other end (lower end) in the axial direction.
  • the first small diameter portion 62 is continuous with the end surface 61a of the large diameter portion 61.
  • the first small diameter portion 62 has an end surface 62a at one end opposite to the large diameter portion 61.
  • the first small diameter portion 62 is inserted into the pump body 1 together with the large diameter portion 61.
  • the second small diameter portion 63 is continuous with the end surface 61b of the large diameter portion 61.
  • the second small diameter portion 63 is arranged on the outside of the pump body 1.
  • the pump body 1 is formed with a cylinder insertion hole 1g into which the cylinder 6 is inserted.
  • the cylinder insertion hole 1g is formed in a substantially columnar shape.
  • the end of the cylinder insertion hole 1g on the pressurizing chamber 11 side is formed in a stepped shape.
  • the bottom surface portion 1h of the cylinder insertion hole 1g and the contact portion 1i are provided inside the pump body 1.
  • a pressure chamber forming hole 1j for forming the pressurizing chamber 11 is provided in the central portion of the bottom surface portion 1h.
  • the pressure chamber forming hole 1j is formed in a circular shape.
  • the center of the pressurizing chamber forming hole 1j coincides with the axis of the cylinder insertion hole 1g.
  • the outer diameter of the bottom surface portion 1h is smaller than the outer diameter of the contact portion 1i.
  • the end surface 62a of the first small diameter portion 62 in the cylinder 6 faces the bottom surface portion 1h of the cylinder insertion hole 1g with a predetermined gap. In the state where the plunger 2 is at the bottom dead center, the tip end portion (end surface of the large diameter portion 2a) of the plunger 2 protrudes toward the pressurizing chamber 11 from the end surface 62a of the cylinder 6.
  • the end surface 61a of the large diameter portion 61 is in contact with the contact portion 1i. Further, the end surface 61b of the large diameter portion 61 is in contact with the above-mentioned fixing portion 1c of the pump body 1.
  • the end face 61b corresponds to the engaging portion according to the present invention.
  • the fixed portion 1c is plastically deformed by being caulked. The fixing portion 1c presses the end surface 61b of the large diameter portion 61.
  • the large diameter portion 61 of the cylinder 6 has a press-fitting portion 6b.
  • the press-fitting portion 6b is provided on the outer peripheral portion of the large-diameter portion 61 on the second small-diameter portion 63 side. That is, the press-fitting portion 6b is located on the opposite side (lower side) of the pressurizing chamber 11 than the intermediate portion in the axial direction of the cylinder 6.
  • the press-fitting portion 6b is formed in an annular shape continuous in the circumferential direction on the outer peripheral surface of the large diameter portion 61 (cylinder 6).
  • the press-fitting portion 6b of the large-diameter portion 61 is in contact with the inner wall surface of the cylinder insertion hole 1g. That is, the press-fitting portion 6b of the large-diameter portion 61 is press-fitted into the cylinder insertion hole 1g.
  • the cylinder 6 can be easily fixed to the pump body 1. Further, the axis of the cylinder 6 and the axis of the cylinder insertion hole 1g can be easily aligned with each other.
  • the plunger 2 is movably held by the pump body 1. Therefore, by aligning the axis of the cylinder 6 with the axis of the cylinder insertion hole 1g, the axis of the cylinder 6 and the axis of the plunger 2 can be easily aligned.
  • the cylinder 6 may be fixed to the pump body 1 by screw joining without providing the press-fitting portion 6b.
  • a clearance portion 6c that creates a gap between the cylinder 6 and the pump body 1 is provided on the pressurizing chamber 11 side of the press-fitting portion 6b.
  • the clearance portion 6c is provided on the outer peripheral surface on the pressurizing chamber 11 side of the press-fitting portion 6b of the large diameter portion 61 and on the outer peripheral surface of the first small diameter portion 62.
  • the clearance portion 6c is formed in an annular shape continuous in the circumferential direction on the outer peripheral surfaces of the large diameter portion 61 and the first small diameter portion 62.
  • a groove 6d is provided on the inner peripheral surface of the cylinder 6 to create a gap between the cylinder 6 and the plunger 2. As shown in FIG. 7, the groove 6d is arranged at a position corresponding to the press-fitting portion 6b. That is, the groove 6d is arranged at a position overlapping the press-fitting portion 6b when viewed from the radial direction of the cylinder 6.
  • the groove 6d is formed in an annular shape continuous in the circumferential direction on the inner peripheral surface of the cylinder 6.
  • the length of the groove 6d in the axial direction of the cylinder 6 is longer than the length of the press-fitting portion 6b in the axial direction of the cylinder 6.
  • the length of the groove 6d in the axial direction of the cylinder 6 is about three times the length of the press-fitting portion 6b in the axial direction of the cylinder 6.
  • the central portion of the groove 6d coincides with the central portion of the press-fitting portion 6b. Further, the groove 6d is located at an intermediate portion in the axial direction of the cylinder 6. Then, in the state where the plunger 2 is at the bottom dead center, the tip end portion (end surface of the large diameter portion 2a) of the plunger 2 protrudes toward the pressurizing chamber 11 from the end surface 62a of the cylinder 6.
  • the fuel is increased to a high pressure in the pressurizing chamber 11, and the temperature of the fuel rises accordingly. Then, when the temperature of the fuel rises, the cylinder 6 thermally expands. In particular, in recent years, since it has been required to discharge high-pressure fuel, the amount of increase in fuel temperature has increased. At this time, if the upper portion of the outer peripheral surface of the cylinder 6 (hereinafter referred to as the upper outer peripheral surface) is in contact with the inner peripheral surface of the cylinder insertion hole 1g, the upper portion of the cylinder 6 is deformed due to thermal expansion. The outer peripheral surface is pressed against the pump body 1. Further, the upper portion of the inner peripheral surface of the cylinder 6 (hereinafter referred to as "upper inner peripheral surface”) is pressed against the plunger 2. As a result, a so-called sticking phenomenon occurs in which the plunger 2 does not slide.
  • the clearance portion 6c is provided in the cylinder 6, even if the upper part of the cylinder 6 is deformed due to thermal expansion, the deformation can be absorbed by the clearance portion 6c. As a result, it is possible to prevent the upper outer peripheral surface of the cylinder 6 from being pressed against the inner peripheral surface of the cylinder insertion hole 1g.
  • the length (distance) of the gap between the cylinder 6 and the pump body 1 generated by the clearance portion 6c is determined according to the coefficient of thermal expansion of the cylinder 6 and the temperature of the fuel in the pressurizing chamber 11.
  • the upper portion of the cylinder 6 is deformed outward in the radial direction with a gap (space), it is possible to suppress the deformation of the upper inner peripheral surface of the cylinder 6 inward in the radial direction. As a result, the upper inner peripheral surface of the cylinder 6 can be prevented from being pressed against the outer peripheral surface of the plunger 2. As a result, the sticking phenomenon of the plunger 2 can be avoided.
  • the gap between the cylinder 6 and the plunger 2 is increased in consideration of the deformation of the upper part of the cylinder 6 due to thermal expansion, the amount of fuel that enters between the cylinder 6 and the plunger 2 increases. As a result, the discharge flow rate of the fuel pump is reduced.
  • the gap between the cylinder 6 and the plunger 2 can be reduced. As a result, the flow rate of the high-pressure fuel pump 100 can be increased.
  • the press-fitting portion 6b of the cylinder 6 is in contact with the pump body 1. Therefore, when the cylinder 6 is thermally expanded, the press-fitting portion 6b of the cylinder 6 is pressed against the pump body 1. Therefore, when the cylinder 6 is thermally expanded, the deformation in the press-fitting portion 6b cannot be absorbed outside the cylinder in the radial direction. Therefore, it is not possible to prevent the portion of the inner peripheral surface of the cylinder 6 corresponding to the press-fitting portion 6b (hereinafter referred to as “the inner peripheral surface of the press-fitting portion”) from being deformed inward in the radial direction.
  • the inner peripheral surface of the press-fitting portion includes at least a region overlapping the press-fitting portion 6b in the radial direction of the cylinder 6.
  • the groove 6d is provided in the cylinder 6, even if the inner peripheral surface of the press-fitted portion of the cylinder 6 is deformed inward in the radial direction, the deformation can be absorbed by the groove 6d. As a result, the inner peripheral surface of the press-fitted portion of the cylinder 6 can be prevented from being pressed against the outer peripheral surface of the plunger 2. As a result, the sticking phenomenon of the plunger 2 can be avoided.
  • the region of thermal expansion on the inner peripheral surface of the cylinder 6 differs depending on the length of the press-fitting portion 6b in the axial direction of the cylinder 6, the plate thickness of the cylinder 6 at the portion where the press-fitting portion 6b is provided, the material of the cylinder 6, and the like. .. Therefore, the length of the groove 6d in the axial direction of the cylinder 6 depends on the length of the press-fitting portion 6b in the axial direction of the cylinder 6, the plate thickness of the cylinder 6 at the portion where the press-fitting portion 6b is provided, the material of the cylinder 6, and the like. It is preferable to set it appropriately.
  • the press-fitting portion 6b is located on the opposite side of the pressurizing chamber 11 from the intermediate portion in the axial direction of the cylinder 6.
  • the press-fitting portion 6b is located on the opening side of the cylinder insertion hole 1g into which the cylinder 6 is inserted.
  • the press-fitting portion 6b can be kept away from the pressurizing chamber 11, and the temperature of the fuel in the pressurizing chamber 11 can be made difficult to be transmitted to the press-fitting portion 6b.
  • the amount of deformation due to thermal expansion of the inner peripheral surface of the press-fitted portion of the cylinder 6 can be suppressed.
  • the first small diameter portion 62 is provided on the pressurizing chamber 11 side of the large diameter portion 61 of the cylinder 6. As a result, the sliding distance of the plunger 2 can be secured, and the fuel in the pressurizing chamber 11 can be suppressed from flowing to the lower side of the plunger 2. Further, since the first small diameter portion 62 is smaller than the large diameter portion 61, the space for arranging the cylinder 6 can be reduced. As a result, it is possible to prevent the cylinder 6 from interfering with other members (for example, the electromagnetic suction valve mechanism 3 and the discharge valve mechanism 8), and to secure the strength of the pump body 1.
  • other members for example, the electromagnetic suction valve mechanism 3 and the discharge valve mechanism 8
  • the high-pressure fuel pump 100 (fuel pump) according to the above-described embodiment has a reciprocating plunger 2 (plunger) and a guide hole 6a (guide hole) for guiding the reciprocating motion of the plunger 2.
  • a cylinder 6 (cylinder) extending in the axial direction and a pump body 1 (pump body) for holding the cylinder 6 are provided.
  • the pump body 1 has a cylinder insertion hole 1g (cylinder insertion hole) into which the cylinder 6 is inserted, and a pressurizing chamber 11 that communicates with the cylinder insertion hole 1g and whose volume increases or decreases due to the reciprocating motion of the plunger 2.
  • the cylinder 6 has a press-fitting portion 6b (press-fitting portion) that is press-fitted into the inner peripheral surface of the cylinder insertion hole 1g, and a groove 6d (groove) formed at a position corresponding to the press-fitting portion 6b on the inner peripheral surface of the guide hole 6a.
  • a press-fitting portion 6b press-fitting portion
  • a groove 6d groove formed at a position corresponding to the press-fitting portion 6b on the inner peripheral surface of the guide hole 6a.
  • the length of the groove 6d (groove) in the axial direction of the cylinder 6 (cylinder) is the press-fitting portion 6b (press-fitting portion) in the axial direction of the cylinder 6. Longer than the length of. As a result, even if the region where the inner peripheral surface of the press-fitted portion of the cylinder 6 is deformed inward in the radial direction is longer than the length of the press-fitted portion 6b in the axial direction of the cylinder 6, the deformation can be absorbed by the groove 6d. ..
  • the central portion of the groove 6d (groove) is aligned with the central portion of the press-fitting portion 6b (press-fitting portion) in the axial direction of the cylinder 6 (cylinder). I am doing it.
  • the groove 6d can be provided in the portion that expands due to the heat transferred from the press-fitting portion 6b of the cylinder 6.
  • the deformation can be absorbed by the groove 6d.
  • the press-fitting portion 6b (press-fitting portion) in the high-pressure fuel pump 100 (fuel pump) according to the above-described embodiment is below the axially intermediate portion of the cylinder 6 (cylinder) (opposite to the pressurizing chamber 11). It is provided in.
  • the press-fitting portion 6b can be kept away from the pressurizing chamber 11, and the temperature of the fuel in the pressurizing chamber 11 can be made difficult to be transmitted to the press-fitting portion 6b.
  • the press-fitting portion 6b (press-fitting portion) in the high-pressure fuel pump 100 (fuel pump) is the inner circumference of the opening side (opposite side of the pressurizing chamber 11) of the cylinder insertion hole 1g (cylinder insertion hole). It is press-fitted into the surface.
  • the press-fitting portion 6b can be kept away from the pressurizing chamber 11, and the temperature of the fuel in the pressurizing chamber 11 can be made difficult to be transmitted to the press-fitting portion 6b.
  • the amount of deformation due to thermal expansion of the inner peripheral surface of the press-fitting portion in the cylinder 6 can be suppressed.
  • the cylinder 6 (cylinder) in the high-pressure fuel pump 100 (fuel pump) has an end face that abuts on the contact portion 1i (contact portion) provided inside the pump body 1 (pump body).
  • the sliding distance of the plunger 2 (plunger) can be secured, and the fuel in the pressurizing chamber 11 can be suppressed from flowing to the lower side of the plunger 2. Further, it is possible to prevent the cylinder 6 from interfering with other members and to secure the strength of the pump body 1.
  • the press-fitting portion 6b (press-fitting portion) in the high-pressure fuel pump 100 (fuel pump) according to the above-described embodiment is formed on the outer peripheral surface of the large-diameter portion 61 (large-diameter portion).
  • the press-fitting portion 6b can be provided at a position away from the pressurizing chamber 11 (pressurizing chamber).
  • the temperature of the fuel in the pressurizing chamber 11 is less likely to be transmitted to the press-fitting portion 6b, and the amount of deformation due to thermal expansion of the inner peripheral surface of the press-fitting portion in the cylinder 6 can be suppressed.
  • the cylinder 6 (cylinder) in the high-pressure fuel pump 100 (fuel pump) is provided on the side opposite to the pressurizing chamber 11 (pressurizing chamber) with respect to the press-fitting portion 6b (press-fitting portion). It has 61b (engagement part).
  • the pump body 1 (pump body) has a fixing portion 1c (fixing portion) protruding from the inner peripheral surface of the cylinder insertion hole 1g (cylinder insertion hole). The fixing portion 1c presses the end surface 61b of the cylinder 6 toward the pressurizing chamber side. As a result, the cylinder 6 can be securely fixed to the pump body 1.
  • the fixed portion 1c (fixed portion) in the high-pressure fuel pump 100 (fuel pump) presses the end face 61b (engaging portion) of the cylinder 6 (cylinder) by plastic deformation.
  • the cylinder 6 can be firmly fixed to the pump body 1.
  • the pressure of the fuel in the pressurizing chamber 11 can be increased.
  • the length of the groove 6d in the axial direction of the cylinder 6 is longer than the length of the press-fitting portion 6b in the axial direction of the cylinder 6.
  • the fuel pump according to the present invention may be provided with a groove in a portion of the inner peripheral surface of the cylinder that deforms inward in the radial direction. Therefore, if the portion of the inner peripheral surface of the cylinder that deforms inward in the radial direction is equal to or less than the length of the press-fitting portion in the axial direction of the cylinder 6, the groove length may be set to be equal to or less than the length of the press-fitting portion. good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

本発明は、プランジャの固着を抑制することができる燃料ポンプを提供する。本発明の燃料ポンプは、往復運動するプランジャ2と、プランジャ2の往復運動をガイドするガイド孔6aが軸方向に延びるシリンダ6と、シリンダ6を保持するポンプボディ1を備える。ポンプボディ1は、シリンダ6が挿入されるシリンダ挿入孔1gと、シリンダ挿入孔1gに連通し、プランジャ2の往復運動により容積が増減する加圧室11とを有する。シリンダ6は、シリンダ挿入孔1gの内周面に圧入される圧入部6bと、ガイド孔6aの内周面において圧入部6bに対応する位置に形成された溝6dとを有する。

Description

燃料ポンプ
 本発明は、自動車の内燃機関用の燃料ポンプに関する。
 自動車等のエンジン(内燃機関)の燃焼室へ燃料を直接噴射する直接噴射型エンジンにおいては、燃料を高圧にするための高圧燃料ポンプが広く用いられている。この高圧燃料ポンプの従来技術としては、例えば、特許文献1に記載されている。
 特許文献1に記載された高圧燃料ポンプは、加圧室が形成されるポンプボディと、ポンプボディに形成された穴部に挿入されるシリンダとを備えている。シリンダは、加圧室と反対側で径方向外側の凸部が穴部に圧入され、ねじ山により穴部とねじ接合される。または、シリンダは、加圧室と反対側がかしめられることで穴部に対してかしめ接合される。そして、シリンダは、接合部から上端部に至る領域の全てにおいてポンプボディの穴部との間に径方向におけるクリアランスが形成されている。
国際公開第2018/186219号
 しかし、特許文献1に記載された高圧燃料ポンプでは、燃料を加圧することにより加圧室内の燃料の温度が上昇し、その熱がポンプボディにおけるシリンダの圧入部近傍まで伝わる。そして、ポンプボディにおけるシリンダの圧入部近傍が熱により変形することにより、シリンダが内側に変形する。その結果、プランジャが圧迫され、固着してしまう。
 本発明の目的は、上記の問題点を考慮し、プランジャの固着を抑制することができる燃料ポンプを提供することにある。
 上記課題を解決し、本発明の目的を達成するため、本発明の燃料ポンプは、往復運動するプランジャと、プランジャの往復運動をガイドするガイド孔が軸方向に延びるシリンダと、シリンダを保持するポンプボディとを備える。ポンプボディは、シリンダが挿入されるシリンダ挿入孔と、シリンダ挿入孔に連通し、プランジャの往復運動により容積が増減する加圧室とを有する。シリンダは、シリンダ挿入孔の内周面に圧入される圧入部と、ガイド孔の内周面における圧入部に対応する位置に形成された溝とを有する。
 上記構成の燃料ポンプによれば、プランジャの固着を抑制することができる。
 なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る高圧燃料ポンプを用いた燃料供給システムの全体構成図である。 本発明の一実施形態に係る高圧燃料ポンプの縦断面図(その1)である。 本発明の一実施形態に係る高圧燃料ポンプの上方から見た水平方向断面図である。 本発明の一実施形態に係る高圧燃料ポンプの縦断面図(その2)である。 本発明の一実施形態に係る高圧燃料ポンプの分解斜視図である。 本発明の一実施形態に係る高圧燃料ポンプのシリンダ近傍の縦断面図である。 本発明の一実施形態に係る高圧燃料ポンプのシリンダを拡大した縦断面図である。 本発明の一実施形態に係る高圧燃料ポンプのシリンダを斜め上から見た断面図である。
1.高圧燃料ポンプの一実施形態
 以下、本発明の一実施形態に係る高圧燃料ポンプについて説明する。なお、各図において共通の部材には、同一の符号を付している。
[燃料供給システム]
 まず、本実施形態に係る高圧燃料ポンプを用いた燃料供給システムについて、図1を用いて説明する。
 図1は、本実施形態に係る高圧燃料ポンプを用いた燃料供給システムの全体構成図である。
 図1に示すように、燃料供給システム200は、高圧燃料ポンプ100と、ECU(Engine Control Unit)101と、燃料タンク103と、コモンレール106と、複数のインジェクタ107とを備えている。高圧燃料ポンプ100の部品は、ポンプボディ1に一体に組み込まれている。
 燃料タンク103の燃料は、ECU101からの信号に基づいて駆動するフィードポンプ102によって汲み上げられる。汲み上げられた燃料は、不図示のプレッシャレギュレータにより適切な圧力に加圧され、低圧配管104を通して高圧燃料ポンプ100の低圧燃料吸入口51に送られる。
 高圧燃料ポンプ100は、燃料タンク103から供給された燃料を加圧して、コモンレール106に圧送する。コモンレール106には、複数のインジェクタ107と、燃料圧力センサ105が装着されている。複数のインジェクタ107は、気筒(燃焼室)数にあわせて装着されており、ECU101から出力される駆動電流に従って燃料を噴射する。本実施形態の燃料供給システム200は、インジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムである。
 燃料圧力センサ105は、検出した圧力データをECU101に出力する。ECU101は、各種センサから得られるエンジン状態量(例えばクランク回転角、スロットル開度、エンジン回転数、燃料圧力等)に基づいて適切な噴射燃料量(目標噴射燃料長)や適切な燃料圧力(目標燃料圧力)等を演算する。
 また、ECU101は、燃料圧力(目標燃料圧力)等の演算結果に基づいて、高圧燃料ポンプ100や複数のインジェクタ107の駆動を制御する。すなわち、ECU101は、高圧燃料ポンプ100を制御するポンプ制御部と、インジェクタ107を制御するインジェクタ制御部を有する。
 高圧燃料ポンプ100は、圧力脈動低減機構である金属ダンパ9と、容量可変機構である電磁吸入弁機構3と、リリーフ弁機構4と、吐出弁機構8とを有している。低圧燃料吸入口51から流入した燃料は、金属ダンパ9、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。
 電磁吸入弁機構3に流入した燃料は、吸入弁32を通過し、ポンプボディ1に形成された吸入通路1aを流れた後に加圧室11に流入する。ポンプボディ1は、プランジャ2を摺動可能に保持する。プランジャ2は、エンジンのカム91(図2参照)により動力が伝えられて往復運動する。プランジャ2の一端部は、加圧室11に挿入されており、加圧室11の容積を増減させる。
 加圧室11では、プランジャ2の下降行程において電磁吸入弁機構3から燃料が吸入され、プランジャ2の上昇行程において燃料が加圧される。加圧室11の燃料圧力が設定値を超えると、吐出弁機構8が開弁し、吐出通路1fを経てコモンレール106へ高圧燃料が圧送される。高圧燃料ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。
 インジェクタ107の故障等によりコモンレール106等に異常高圧が発生した場合に、コモンレール106に連通する燃料吐出口12a(図2参照)と加圧室11との差圧がリリーフ弁機構4の開弁圧力(所定値)以上になると、リリーフ弁機構4が開弁する。これにより、異常高圧となった燃料は、リリーフ弁機構4内を通って加圧室11へと戻される。その結果、コモンレール106等の配管が保護される。
[高圧燃料ポンプ]
 次に、高圧燃料ポンプ100の構成について、図2~図4を用いて説明する。
 図2は、高圧燃料ポンプ100の水平方向に直交する断面で見た縦断面図(その1)である。図3は、高圧燃料ポンプ100の垂直方向に直交する断面で見た水平方向断面図である。図4は、高圧燃料ポンプ100の水平方向に直交する断面で見た縦断面図(その2)である。
 図2及び図3に示すように、高圧燃料ポンプ100のポンプボディ1には、上述した吸入通路1aと、取付けフランジ1b(図3参照)が設けられている。この取付けフランジ1bは、エンジン(内燃機関)の燃料ポンプ取付け部90に密着し、図示しない複数のボルト(ねじ)で固定されている。すなわち、高圧燃料ポンプ100は、取付けフランジ1bによって燃料ポンプ取付け部90に固定されている。
 図2に示すように、燃料ポンプ取付け部90とポンプボディ1との間には、シート部材の一具体例を示すOリング93が介在されている。このOリング93は、エンジンオイルが燃料ポンプ取付け部90とポンプボディ1との間を通ってエンジン(内燃機関)の外部に漏れることを防止している。
 また、高圧燃料ポンプ100のポンプボディ1には、プランジャ2の往復運動をガイドするシリンダ6が取り付けられている。シリンダ6は、筒状に形成されており、その外周側においてポンプボディ1に圧入されている。ポンプボディ1及びシリンダ6は、電磁吸入弁機構3、プランジャ2、吐出弁機構8(図4参照)と共に加圧室11を形成している。
 ポンプボディ1には、シリンダ6の軸方向の中央部に係合する固定部1cが設けられている。固定部1cは、塑性変形可能に形成されている。そして、固定部1cは、シリンダ6を上方(図2中の上方)へ押圧している。シリンダ6の上端面(一端面)は、ポンプボディ1に当接する。その結果、加圧室11にて加圧された燃料は、シリンダ6の上端面とポンプボディ1との間から漏れない。
 プランジャ2の下端には、タペット92が設けられている。タペット92は、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達する。プランジャ2は、リテーナ15を介してばね16によりカム91側に付勢されており、タペット92に圧着されている。プランジャ2は、タペット92と一緒に往復動し、加圧室11の容積を変化させる。
 また、シリンダ6とリテーナ15との間には、シールホルダ17が配置されている。シールホルダ17は、プランジャ2が挿入される筒状に形成されている。シールホルダ17のシリンダ6側である上端部には、副室17aが形成されている。一方、シールホルダ17のリテーナ15側である下端部は、プランジャシール18を保持している。
 プランジャシール18は、プランジャ2の外周に摺動可能に接触している。プランジャシール18は、プランジャ2が往復動したとき、副室17aの燃料をシールし、副室17aの燃料がエンジン内部へ流入しないようにしている。また、プランジャシール18は、エンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプボディ1の内部に流入することを防止している。
 図2において、プランジャ2は、上下方向に往復動する。プランジャ2が下降すると、加圧室11の容積が拡大し、プランジャ2が上昇すると、加圧室11の容積が減少する。すなわち、プランジャ2は、加圧室11の容積を拡大及び縮小させる方向に往復動するように配置されている。
 プランジャ2は、大径部2aと小径部2bを有している。プランジャ2が往復動すると、大径部2a及び小径部2bは、副室17aに位置する。したがって、副室17aの体積は、プランジャ2の往復動によって増減する。
 副室17aは、燃料通路10c(図3参照)により低圧燃料室10と連通している。プランジャ2の下降時は、副室17aから低圧燃料室10へ燃料の流れが発生し、プランジャ2の上昇時は、低圧燃料室10から副室17aへ燃料の流れが発生する。これにより、高圧燃料ポンプ100の吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料ポンプ100内部で発生する圧力脈動を低減することができる。
 また、ポンプボディ1には、加圧室11に連通するリリーフ弁機構4が設けられている。リリーフ弁機構4は、リリーフばね41と、リリーフ弁ホルダ42と、リリーフ弁43と、シート部材44及びばね支持部材45を有している。
 シート部材44は、リリーフばね41を内包しリリーフ弁室を形成する。リリーフばね41は、一端部がばね支持部材45に当接し、他端部がリリーフ弁ホルダ42に当接している。リリーフ弁ホルダ42は、リリーフ弁43に係合している。リリーフ弁43には、リリーフばね41の付勢力がリリーフ弁ホルダ42を介して作用する。
 リリーフ弁43は、リリーフばね41の付勢力により押圧され、シート部材44の燃料通路を塞いでいる。シート部材44の燃料通路は、吐出通路1f(図3参照)に連通している。加圧室11(上流側)とシート部材44(下流側)との間における燃料の移動は、リリーフ弁43がシート部材44に接触(密着)することにより遮断されている。
 コモンレール106やその先の部材内の圧力が高くなると、シート部材44側の燃料がリリーフ弁43を押圧して、リリーフばね41の付勢力に抗してリリーフ弁43を移動させる。その結果、リリーフ弁43が開弁し、吐出通路1f内の燃料が、シート部材44の燃料通路を通って加圧室11に戻る。したがって、リリーフ弁43を開弁させる圧力は、リリーフばね41の付勢力によって決定される。
 なお、本実施形態のリリーフ弁機構4は、加圧室11に連通しているが、これに限定されるものではなく、例えば、低圧通路(低圧燃料吸入口51や吸入通路10b等)に連通するようにしてもよい。
 図3及び図4に示すように、ポンプボディ1の側面部には、吸入ジョイント5が取り付けられている。吸入ジョイント5は、燃料タンク103から供給された燃料を通す低圧配管104(図1参照)に接続されている。燃料タンク103の燃料は、吸入ジョイント5から高圧燃料ポンプ100の内部に供給される。
 吸入ジョイント5は、低圧配管104に接続された低圧燃料吸入口51と、低圧燃料吸入口51に連通する吸入流路52とを有している。吸入流路52を通過した燃料は、低圧燃料室10に設けた金属ダンパ9及び吸入通路10b(図2参照)を介して電磁吸入弁機構3の吸入ポート31b(図2参照)に到達する。図4に示すように、吸入流路52に連通する燃料通路内には、吸入フィルタ53が配置されている。吸入フィルタ53は、燃料に存在する異物を除去し、高圧燃料ポンプ100内に異物が進入することを防ぐ。
 図2及び図4に示すように、高圧燃料ポンプ100のポンプボディ1には、低圧燃料室(ダンパ室)10が設けられている。この低圧燃料室10は、ダンパーカバー14によって覆われている。ダンパーカバー14は、例えば、一方側が閉塞された筒状(カップ状)に形成されている。
 図2に示すように、低圧燃料室10は、低圧燃料流路10aと、吸入通路10bを有している。吸入通路10bは、電磁吸入弁機構3の吸入ポート31bに連通している。低圧燃料流路10aを通った燃料は、吸入通路10bを介して電磁吸入弁機構3の吸入ポート31bに到達する。
 低圧燃料流路10aには、金属ダンパ9と、金属ダンパ9を保持する第1保持部材19及び第2保持部材20が設けられている。加圧室11に流入した燃料が再び開弁状態の電磁吸入弁機構3を通って吸入通路10b(図2参照)へと戻されると、低圧燃料室10に圧力脈動が発生する。金属ダンパ9は、高圧燃料ポンプ100内で発生した圧力脈動が低圧配管104へ波及することを低減する。
 図3に示すように、電磁吸入弁機構3は、ポンプボディ1に形成された横穴に挿入されている。電磁吸入弁機構3は、ポンプボディ1に形成された横穴に圧入された吸入弁シート31と、吸入弁32と、ロッド33と、ロッド付勢ばね34と、電磁コイル(ソレノイド)35と、アンカー36とを有している。
 吸入弁シート31は、筒状に形成されており、内周部に着座部31aが設けられている。また、吸入弁シート31には、外周部から内周部に到達する吸入ポート31b(図2参照)が形成されている。この吸入ポート31bは、上述した低圧燃料室10における吸入通路10bに連通している。
 ポンプボディ1に形成された横穴には、吸入弁シート31の着座部31aに対向するストッパ37が配置されている。そして、吸入弁32は、ストッパ37と着座部31aとの間に配置されている。また、ストッパ37と吸入弁32との間には、弁付勢ばね38が介在されている。弁付勢ばね38は、吸入弁32を着座部31a側に付勢する。
 吸入弁32は、着座部31aに当接することにより、吸入ポート31bと加圧室11との連通部を閉鎖する。これにより、電磁吸入弁機構3は、閉弁状態になる。一方、吸入弁32は、ストッパ37に当接することにより、吸入ポート31bと加圧室11との連通部を開放する。これにより、電磁吸入弁機構3は、開弁状態になる。
 ロッド33は、吸入弁シート31を貫通している。ロッド33の一端は、吸入弁32に当接している。ロッド付勢ばね34は、ロッド33を介して吸入弁32をストッパ37側である開弁方向に付勢する。ロッド付勢ばね34の一端は、ロッド33の他端に係合している。ロッド付勢ばね34の他端は、ロッド付勢ばね34を囲うように配置された磁性コア39に係合している。
 アンカー36は、磁性コア39の端面に対向している。このアンカー36は、ロッド33の外周部に設けられたフランジに係合している。また、アンカー36の磁性コア39と反対側には、アンカー付勢ばね40の一端が当接している。アンカー付勢ばね40の他端は、吸入弁シート31に当接している。アンカー付勢ばね40は、アンカー36をロッド33のフランジ側に付勢している。アンカー36の移動量は、吸入弁32の移動量よりも大きく設定される。これにより、吸入弁32を着座部31aに確実に当接(着座)させることができ、電磁吸入弁機構3を確実に閉弁状態にすることができる。
 電磁コイル35は、磁性コア39の周りを一周するように配置されている。この電磁コイル35には、端子部材30(図2参照)が電気的に接続されており、端子部材30を介して電流が流れる。電磁コイル35に電流が流れていない無通電状態において、ロッド33がロッド付勢ばね34による付勢力によって開弁方向に付勢され、吸入弁32を開弁方向に押圧している。その結果、吸入弁32が着座部31aから離れてストッパ37に当接し、電磁吸入弁機構3が開弁状態になっている。すなわち、電磁吸入弁機構3は、無通電状態において開弁するノーマルオープン式となっている。
 電磁吸入弁機構3の開弁状態において、吸入ポート31bの燃料は、吸入弁32と着座部31aとの間を通り、ストッパ37の複数の燃料通過孔(不図示)及び吸入通路1aを通って加圧室11に流入する。電磁吸入弁機構3の開弁状態では、吸入弁32は、ストッパ37と接触するため、吸入弁32の開弁方向の位置が規制される。そして、電磁吸入弁機構3の開弁状態において、吸入弁32と着座部31aの間に存在する隙間は、吸入弁32の可動範囲であり、これが開弁ストロークとなる。
 電磁コイル35に電流が流れると、アンカー36と磁性コア39のそれぞれの磁気吸引面において磁気吸引力が作用する。つまり、アンカー36は、磁性コア39に吸引される。その結果、アンカー36は、ロッド付勢ばね34の付勢力に抗して移動し、磁性コア39に接触する。アンカー36が磁性コア39側である閉弁方向へ移動すると、アンカー36が係合するロッド33がアンカー36と共に移動する。その結果、吸入弁32は、開弁方向への付勢力から解放され、弁付勢ばね38による付勢力により閉弁方向に移動する。そして、吸入弁32が、吸入弁シート31の着座部31aに接触すると、電磁吸入弁機構3が閉弁状態になる。
 図3に示すように、吐出弁機構8は、加圧室11の出口側に接続されている。この吐出弁機構8は、吐出弁シート部材81と、吐出弁シート部材81と接離する吐出弁82を備える。また、吐出弁機構8は、吐出弁82を吐出弁シート部材81側へ付勢する吐出弁ばね83と、吐出弁82のストローク(移動距離)を決める吐出弁ストッパ84と、吐出弁ストッパ84の移動を係止するプラグ85を備える。
 吐出弁シート部材81、吐出弁82、吐出弁ばね83、及び吐出弁ストッパ84は、ポンプボディ1に形成された吐出弁室1dに収納されている。吐出弁室1dは、水平方向に延びる略円柱状の空間である。吐出弁室1dの一端は、燃料通路1eを介して加圧室11に連通している。吐出弁室1dの他端は、ポンプボディ1の側面に開口している。吐出弁室1dの他端の開口は、プラグ85によって封止されている。
 また、ポンプボディ1には、吐出ジョイント12が溶接部12bにより接合されている。吐出ジョイント12は、燃料吐出口12aを有している。燃料吐出口12aは、ポンプボディ1の内部において水平方向に延びる吐出通路1fを介して吐出弁室1dに連通している。また、吐出ジョイント12の燃料吐出口12aは、コモンレール106に接続されている。
 加圧室11の燃料圧力が吐出弁室1dの燃料圧力より低い状態では、吐出弁82に作用する差圧力及び吐出弁ばね83による付勢力により、吐出弁82が吐出弁シート部材81に圧着されている。その結果、吐出弁機構8は閉弁状態となる。一方、加圧室11の燃料圧力が、吐出弁室1dの燃料圧力よりも大きくなり、吐出弁82に作用する差圧力が吐出弁ばね83の付勢力よりも大きくなると、吐出弁82が燃料に押されて吐出弁シート部材81から離れる。その結果、吐出弁機構8は開弁状態となる。
 吐出弁機構8が開閉弁動作をすると、吐出弁室1dに燃料が出し入れされる。そして、吐出弁室1dから出た燃料は、吐出弁機構8から吐出通路1fへ吐出される。その結果、加圧室11内の高圧の燃料は、吐出弁室1d、吐出通路1f、吐出ジョイント12の燃料吐出口12aを経てコモンレール106(図1参照)へと吐出される。以上のような構成により、吐出弁機構8は、燃料の流通方向を制限する逆止弁として機能する。
[燃料ポンプの動作]
 次に、本実施形態に係る高圧燃料ポンプ100の動作について説明する。
 図1に示すプランジャ2が下降した場合に、電磁吸入弁機構3が開弁していると、吸入通路1aから加圧室11に燃料が流入する。以下、プランジャ2が下降する行程を吸入行程と称する。一方、プランジャ2が上昇した場合に、電磁吸入弁機構3が閉弁していると、加圧室11内の燃料は昇圧され、吐出弁機構8を通過してコモンレール106(図1参照)へ圧送される。以下、プランジャ2が上昇する工程を圧縮行程と称する。
 上述したように、圧縮行程中に電磁吸入弁機構3が閉弁していれば、吸入行程中に加圧室11に吸入された燃料が加圧され、コモンレール106側へ吐出される。一方、圧縮行程中に電磁吸入弁機構3が開弁していれば、加圧室11内の燃料は吸入通路1a側へ押し戻され、コモンレール106側へ吐出されない。このように、高圧燃料ポンプ100による燃料の吐出は、電磁吸入弁機構3の開閉によって操作される。そして、電磁吸入弁機構3の開閉は、ECU101によって制御される。
 吸入行程では、加圧室11の容積が増加し、加圧室11内の燃料圧力が低下する。この吸入行程において、加圧室11の燃料圧力が吸入ポート31b(図2参照)の圧力よりも低くなり、両者の差圧による付勢力が弁付勢ばね38による付勢力を超えると、吸入弁32は着座部31aから離れ、電磁吸入弁機構3が開弁状態になる。その結果、燃料は、吸入弁32と着座部31aとの間を通り、ストッパ37に設けられた複数の孔を通って加圧室11に流入する。
 高圧燃料ポンプ100は、吸入行程を終了した後に、圧縮行程に移る。このとき、電磁コイル35は、無通電状態を維持したままであり、アンカー36と磁性コア39との間に磁気吸引力は作用していない。ロッド付勢ばね34は、無通電状態において吸入弁32を着座部31aから離れた開弁位置で維持するのに必要十分な付勢力を有するよう設定されている。
 この状態において、プランジャ2が上昇運動をしても、ロッド33が開弁位置に留まるため、ロッド33により付勢された吸入弁32も同様に開弁位置に留まる。したがって、加圧室11の容積は、プランジャ2の上昇運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の電磁吸入弁機構3を通して吸入通路10bへ戻されることになり、加圧室11内部の圧力が上昇することは無い。この行程を戻し行程と称する。
 戻し工程において、ECU101(図1参照)からの制御信号が電磁吸入弁機構3に印加されると、電磁コイル35には、端子部材30を介して電流が流れる。電磁コイル35に電流が流れると、磁性コア39とアンカー36の磁気吸引面において磁気吸引力が作用し、アンカー36が磁性コア39に引き寄せられる。そして、磁気吸引力がロッド付勢ばね34の付勢力よりも大きくなると、アンカー36は、ロッド付勢ばね34の付勢力に抗して磁性コア39側へ移動し、アンカー36と係合するロッド33が吸入弁32から離れる方向に移動する。その結果、弁付勢ばね38による付勢力と燃料が吸入通路10bに流れ込むことによる流体力により吸入弁32が着座部31aに着座し、電磁吸入弁機構3が閉弁状態になる。
 電磁吸入弁機構3が閉弁状態になった後、加圧室11の燃料は、プランジャ2の上昇と共に昇圧され、燃料吐出口12aの圧力以上になると、吐出弁機構8を通過してコモンレール106(図1参照)へ吐出される。この行程を吐出行程と称する。すなわち、プランジャ2の下死点から上死点までの間の圧縮行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁機構3の電磁コイル35への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。
 電磁コイル35へ通電するタイミングを早くすれば、圧縮行程中における戻し行程の割合が小さくなり、吐出行程の割合が大きくなる。その結果、吸入通路10bに戻される燃料が少なくなり、高圧吐出される燃料は多くなる。一方、電磁コイル35へ通電するタイミングを遅くすれば、圧縮行程中における戻し行程の割合が大きくなり、吐出行程の割合が小さくなる。その結果、吸入通路10bに戻される燃料が多くなり、高圧吐出される燃料は少なくなる。このように、電磁コイル35への通電タイミングを制御することで、高圧吐出される燃料の量をエンジン(内燃機関)が必要とする量に制御することができる。
[シリンダ]
 次に、シリンダ6について、図5~図8を参照して説明する。
 図5は、高圧燃料ポンプ100の分解斜視図である。図6は、高圧燃料ポンプ100のシリンダ近傍の縦断面図である。図7は、高圧燃料ポンプ100のシリンダを拡大した縦断面図である。図8は、高圧燃料ポンプ100のシリンダを斜め上から見た断面図である。
 図5に示すように、シリンダ6は、軸方向に延びるガイド孔6aを有する円筒状に形成されている。シリンダ6は、大径部61と、第1小径部62と、第2小径部63とを有している。大径部61は、シリンダ6の中間部を形成する。第1小径部62は、シリンダ6の上端部を形成し、第2小径部63は、シリンダ6の下端部を形成する。
 大径部61は、軸方向の一端(上端)である端面61aと、軸方向の他端(下端)である端面61bを有する。第1小径部62は、大径部61の端面61aに連続している。第1小径部62は、大径部61と反対側の一端に端面62aを有している。第1小径部62は、大径部61と共にポンプボディ1の内部に挿入される。第2小径部63は、大径部61の端面61bに連続している。第2小径部63は、ポンプボディ1の外側に配置される。
 図6に示すように、ポンプボディ1には、シリンダ6が挿入されるシリンダ挿入孔1gが形成されている。シリンダ挿入孔1gは、略円柱状に形成されている。シリンダ挿入孔1gの加圧室11側の端部は、段状に形成されている。これにより、ポンプボディ1の内側には、シリンダ挿入孔1gの底面部1hと、当接部1iが設けられている。
 底面部1hの中央部には、加圧室11を形成する加圧室形成孔1jが設けられている。加圧室形成孔1jは、円形に形成されている。加圧室形成孔1jの中心は、シリンダ挿入孔1gの軸心と一致している。底面部1hの外径は、当接部1iの外径よりも小さい。
 シリンダ6における第1小径部62の端面62aは、シリンダ挿入孔1gの底面部1hに所定の間隙をあけて対向している。なお、プランジャ2が下死点にいる状態において、プランジャ2の先端部(大径部2aの端面)は、シリンダ6の端面62aよりも加圧室11の側に突出する。
 大径部61の端面61aは、当接部1iに当接している。また、大径部61の端面61bは、ポンプボディ1の前述した固定部1cに当接している。端面61bは、本発明に係る係合部に対応する。固定部1cは、カシメ加工されることにより塑性変形している。固定部1cは、大径部61の端面61bを押圧する。
 次に、シリンダ6とポンプボディ1との圧入部と、シリンダ6とポンプボディ1とのクリアランスについて説明する。図7に示すように、シリンダ6における大径部61は、圧入部6bを有している。圧入部6bは、大径部61における第2小径部63側の外周部に設けられている。すなわち、圧入部6bは、シリンダ6の軸方向における中間部よりも加圧室11と反対側(下側)に位置している。
 圧入部6bは、大径部61(シリンダ6)の外周面において、周方向に連続する環状に形成されている。大径部61の圧入部6bは、シリンダ挿入孔1gの内壁面に当接している。すなわち、大径部61の圧入部6bは、シリンダ挿入孔1gに圧入されている。これにより、ポンプボディ1に対するシリンダ6の固定を容易に行うことができる。また、シリンダ6の軸心とシリンダ挿入孔1gの軸心とを容易に一致させることができる。
 プランジャ2は、ポンプボディ1に移動可能に保持されている。そのため、シリンダ6の軸心とシリンダ挿入孔1gの軸心とを一致させることにより、シリンダ6の軸心とプランジャ2の軸心とを容易に一致させることができる。なお、圧入部6bを設けずに、シリンダ6をねじ接合によりポンプボディ1に固定してもよい。
 また、シリンダ6において、圧入部6bよりも加圧室11側には、ポンプボディ1との間に間隙を生じさせるクリアランス部6cが設けられている。クリアランス部6cは、大径部61の圧入部6bよりも加圧室11側の外周面と、第1小径部62の外周面に設けられている。クリアランス部6cは、大径部61及び第1小径部62の外周面において、周方向に連続する環状に形成されている。
 さらに、シリンダ6の内周面には、プランジャ2との間に間隙を生じさせる溝6dが設けられている。図7に示すように、溝6dは、圧入部6bに対応する位置に配置されている。すなわち、溝6dは、シリンダ6の径方向から見て、圧入部6bと重なる位置に配置されている。
 図7及び図8に示すように、溝6dは、シリンダ6の内周面において周方向に連続する環状に形成されている。シリンダ6の軸方向における溝6dの長さは、シリンダ6の軸方向における圧入部6bの長さよりも長い。本実施形態おいて、シリンダ6の軸方向における溝6dの長さは、シリンダ6の軸方向における圧入部6bの長さの約3倍にしている。
 また、シリンダ6の軸方向において、溝6dの中央部は、圧入部6bの中央部と一致している。また、溝6dは、シリンダ6の軸方向の中間部に位置している。そして、プランジャ2が下死点にいる状態において、プランジャ2の先端部(大径部2aの端面)は、シリンダ6の端面62aよりも加圧室11の側に突出する。
 燃料は、加圧室11において高圧に高められ、これに伴い燃料の温度が上昇する。そして、燃料の温度が上昇すると、シリンダ6が熱膨張する。特に、近年は、高圧燃料を吐出することが求められているため、燃料の温度の上昇分が大きくなっている。このとき、シリンダ6の外周面における上部(以下、上部外周面)がシリンダ挿入孔1gの内周面と接触していると、熱膨張によりシリンダ6の上部が変形した際に、シリンダ6の上部外周面がポンプボディ1に押し付けられる。また、シリンダ6の内周面において上部(以下、「上部内周面」とする。)は、プランジャ2に押し付けられる。その結果、プランジャ2が摺動しなくなってしまう、いわゆる固着現象が生じる。
 本実施形態では、シリンダ6にクリアランス部6cを設けたため、熱膨張によりシリンダ6の上部が変形しても、その変形をクリアランス部6cによって吸収することができる。その結果、シリンダ6の上部外周面がシリンダ挿入孔1gの内周面に押し付けられることを抑制することができる。なお、クリアランス部6cによって生じるシリンダ6とポンプボディ1との間隙の長さ(距離)は、シリンダ6の熱膨張率、及び、加圧室11の燃料の温度等に応じて決定する。
 また、シリンダ6の上部は、間隙(スペース)がある径方向の外側へ変形するため、シリンダ6の上部内周面が、径方向の内側へ変形することを抑制できる。これにより、シリンダ6の上部内周面が、プランジャ2の外周面に押し付けられないようにすることができる。その結果、プランジャ2の固着現象を回避することができる。
 熱膨張によるシリンダ6の上部の変形を考慮して、シリンダ6とプランジャ2のギャップを大きくすると、シリンダ6とプランジャ2の間に浸入する燃料の量が増える。その結果、燃料ポンプの吐出流量が低減してしまう。しかし、本実施形態では、シリンダ6の上部が径方向の外側へ変形するため、シリンダ6とプランジャ2のギャップを小さくすることができる。その結果、高圧燃料ポンプ100の高流量化を図ることができる。
 一方、シリンダ6の圧入部6bは、ポンプボディ1に接触している。そのため、シリンダ6が熱膨張した場合に、シリンダ6の圧入部6bは、ポンプボディ1に押し付けられる。そのため、シリンダ6が熱膨張した場合は、圧入部6bにおける変形を、シリンダの径方向の外側で吸収することができない。したがって、シリンダ6の内周面において圧入部6bに対応する部分(以下、「圧入部内周面」とする。)が、径方向の内側へ変形することを抑制できない。なお、圧入部内周面は、シリンダ6の径方向において、少なくとも圧入部6bと重なる領域を含む。
 本実施形態では、シリンダ6に溝6dを設けたため、シリンダ6の圧入部内周面が径方向の内側へ変形しても、その変形を溝6dによって吸収することができる。これにより、シリンダ6の圧入部内周面が、プランジャ2の外周面に押し付けられないようにすることができる。その結果、プランジャ2の固着現象を回避することができる。
 なお、シリンダ6の内周面における熱膨張する領域は、シリンダ6の軸方向における圧入部6bの長さ、圧入部6bを設ける部分のシリンダ6の板厚、シリンダ6の材質等に応じて異なる。そのため、シリンダ6の軸方向における溝6dの長さは、シリンダ6の軸方向における圧入部6bの長さ、圧入部6bを設ける部分のシリンダ6の板厚、シリンダ6の材質等に応じて、適宜設定することが好ましい。
 また、圧入部6bは、シリンダ6の軸方向における中間部よりも加圧室11と反対側に位置している。言い換えれば、圧入部6bは、シリンダ6が挿入されるシリンダ挿入孔1gの開口部側に位置している。これにより、圧入部6bを加圧室11から遠ざけることができ、加圧室11内の燃料の温度が圧入部6bに伝達され難くすることができる。その結果、シリンダ6の圧入部内周面の熱膨張による変形量を抑制することができる。
 また、本実施形態では、シリンダ6における大径部61よりも加圧室11側に第1小径部62を設けた。これにより、プランジャ2の摺動距離を確保することができ、加圧室11の燃料がプランジャ2の下部側へ流れることを抑制できる。また、第1小径部62が大径部61よりも小さいため、シリンダ6を配置するためのスペースを小さくすることができる。その結果、シリンダ6が他の部材(例えば、電磁吸入弁機構3や吐出弁機構8)と干渉することを回避し、且つ、ポンプボディ1の強度を確保することができる。
2.まとめ
 以上説明したように、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)は、往復運動するプランジャ2(プランジャ)と、プランジャ2の往復運動をガイドするガイド孔6a(ガイド孔)が軸方向に延びるシリンダ6(シリンダ)と、シリンダ6を保持するポンプボディ1(ポンプボディ)を備える。ポンプボディ1は、シリンダ6が挿入されるシリンダ挿入孔1g(シリンダ挿入孔)と、シリンダ挿入孔1gに連通し、プランジャ2の往復運動により容積が増減する加圧室11とを有する。シリンダ6は、シリンダ挿入孔1gの内周面に圧入される圧入部6b(圧入部)と、ガイド孔6aの内周面において圧入部6bに対応する位置に形成された溝6d(溝)とを有する。
 これにより、シリンダ6の圧入部内周面が径方向の内側へ変形しても、その変形を溝6dによって吸収することができる。そして、シリンダ6の圧入部内周面が、プランジャ2の外周面に押し付けられないようにすることができる。その結果、プランジャ2の固着現象を回避することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)は、シリンダ6(シリンダ)の軸方向における溝6d(溝)の長さが、シリンダ6の軸方向における圧入部6b(圧入部)の長さよりも長い。これにより、シリンダ6の圧入部内周面が径方向の内側へ変形する領域が、シリンダ6の軸方向における圧入部6bの長さよりも長くなっても、その変形を溝6dによって吸収することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)は、シリンダ6(シリンダ)の軸方向において、溝6d(溝)の中央部が、圧入部6b(圧入部)の中央部と一致している。これにより、シリンダ6の圧入部6bから伝わる熱により膨張する部分に溝6dを設けることができる。その結果、シリンダ6の圧入部内周面が径方向の内側へ変形しても、その変形を溝6dによって吸収することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)における圧入部6b(圧入部)は、シリンダ6(シリンダ)の軸方向の中間部よりも下側(加圧室11と反対側)に設けられている。これにより、圧入部6bを加圧室11から遠ざけることができ、加圧室11内の燃料の温度が圧入部6bに伝達され難くすることができる。その結果、シリンダ6における圧入部内周面の熱膨張による変形量を抑制することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)における圧入部6b(圧入部)は、シリンダ挿入孔1g(シリンダ挿入孔)の開口側(加圧室11と反対側)の内周面に圧入される。これにより、圧入部6bを加圧室11から遠ざけることができ、加圧室11内の燃料の温度が圧入部6bに伝達され難くすることができる。その結果、シリンダ6における圧入部内周面の熱膨張による変形量を抑制することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)におけるシリンダ6(シリンダ)は、ポンプボディ1(ポンプボディ)の内側に設けられた当接部1i(当接部)に当接する端面61a(端面)を有する大径部61(大径部)と、大径部61の端面に連続して加圧室11(加圧室)側に延びる第1小径部62(小径部)とを有する。これにより、プランジャ2(プランジャ)の摺動距離を確保することができ、加圧室11の燃料がプランジャ2の下部側へ流れることを抑制できる。また、シリンダ6が他の部材と干渉することを回避し、且つ、ポンプボディ1の強度を確保することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)における圧入部6b(圧入部)は、大径部61(大径部)の外周面に形成されている。これにより、加圧室11(加圧室)から離れた位置に圧入部6bを設けることができる。その結果、加圧室11内の燃料の温度が圧入部6bに伝達され難くして、シリンダ6における圧入部内周面の熱膨張による変形量を抑制することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)におけるシリンダ6(シリンダ)は、圧入部6b(圧入部)よりも加圧室11(加圧室)と反対側に設けられた端面61b(係合部)を有する。ポンプボディ1(ポンプボディ)は、シリンダ挿入孔1g(シリンダ挿入孔)の内周面から突出する固定部1c(固定部)を有する。固定部1cは、シリンダ6の端面61bを加圧室側へ押圧する。これにより、シリンダ6をポンプボディ1に確実に固定することができる。
 また、上述した実施形態に係る高圧燃料ポンプ100(燃料ポンプ)における固定部1c(固定部)は、可塑変形することでシリンダ6(シリンダ)の端面61b(係合部)を押圧する。これにより、シリンダ6をポンプボディ1に強固に固定することができる。その結果、加圧室11内の燃料の高圧化を図ることができる。
 以上、本発明の燃料ポンプの実施形態について、その作用効果も含めて説明した。しかしながら、本発明の燃料ポンプは、上述の実施形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 例えば、上述した実施形態に係る高圧燃料ポンプ100は、シリンダ6の軸方向における溝6dの長さが、シリンダ6の軸方向における圧入部6bの長さよりも長い。しかし、本発明に係る燃料ポンプとしては、シリンダの内周面において径方向の内側へ変形する部分に溝が設けられていればよい。したがって、シリンダの内周面において径方向の内側へ変形する部分が、シリンダ6の軸方向における圧入部の長さ以下であれば、溝の長さを圧入部の長さ以下に設定してもよい。
 1…ポンプボディ、 1a…吸入通路、 1b…フランジ、 1c…固定部、 1d…吐出弁室、 1e…燃料通路、 1f…吐出通路、 1g…シリンダ挿入孔、 1h…底面部、 1i…当接部、 1j…加圧室形成孔、 2…プランジャ、 3…電磁吸入弁機構、 4…リリーフ弁機構、 5…吸入ジョイント、 6…シリンダ、 6a…ガイド孔、 6b…圧入部、 6c…クリアランス部、 6d…溝、 8…吐出弁機構、 9…金属ダンパ、 10…低圧燃料室、 11…加圧室、 12…吐出ジョイント、 51…低圧燃料吸入口、 61…大径部、 61a,61b…端面、 62…第1小径部、 62a…端面、 63…第2小径部、 100…高圧燃料ポンプ、 101…ECU、 102…フィードポンプ、 103…燃料タンク、 104…低圧配管、 105…燃料圧力センサ、 106…コモンレール、 107…インジェクタ、 200…燃料供給システム

Claims (9)

  1.  往復運動するプランジャと、
     前記プランジャの往復運動をガイドするガイド孔が軸方向に延びるシリンダと、
     前記シリンダが挿入されるシリンダ挿入孔と、前記シリンダ挿入孔に連通し、前記プランジャの往復運動により容積が増減する加圧室とを有し、前記シリンダを保持するポンプボディと、を備え、
     前記シリンダは、前記シリンダ挿入孔の内周面に接触する圧入部と、前記ガイド孔の内周面において前記圧入部に対応する位置に形成された溝とを有する
     燃料ポンプ。
  2.  前記シリンダの軸方向における前記溝の長さは、前記シリンダの軸方向における前記圧入部の長さよりも長い
     請求項1に記載の燃料ポンプ。
  3.  前記シリンダの軸方向において、前記溝の中央部は、前記圧入部の中央部と一致している
     請求項1に記載の燃料ポンプ。
  4.  前記圧入部は、前記シリンダの軸方向の中間部よりも下側に設けられている
     請求項1に記載の燃料ポンプ。
  5.  前記圧入部は、前記シリンダ挿入孔の開口側の内周面に圧入される
     請求項1に記載の燃料ポンプ。
  6.  前記シリンダは、前記ポンプボディの内側に設けられた当接部に当接する端面を有する大径部と、前記大径部の端面に連続して前記加圧室側に延びる小径部とを有する
     請求項1に記載の燃料ポンプ。
  7.  前記圧入部は、前記大径部の外周面に形成されている
     請求項6に記載の燃料ポンプ。
  8.  前記シリンダは、前記圧入部よりも前記加圧室と反対側に設けられた係合部を有し、
     前記ポンプボディは、前記シリンダ挿入孔の内周面から突出する固定部を有し、
     前記固定部は、前記シリンダの前記係合部を前記加圧室側へ押圧する
     請求項1に記載の燃料ポンプ。
  9.  前記固定部は、可塑変形することで前記シリンダの前記係合部を押圧する
     請求項8に記載の燃料ポンプ。
PCT/JP2021/019018 2020-07-17 2021-05-19 燃料ポンプ WO2022014150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/927,179 US12006901B2 (en) 2020-07-17 2021-05-19 Fuel pump
JP2022536153A JP7421646B2 (ja) 2020-07-17 2021-05-19 燃料ポンプ
EP21841506.5A EP4184001A4 (en) 2020-07-17 2021-05-19 FUEL PUMP
CN202180041483.8A CN115803515A (zh) 2020-07-17 2021-05-19 燃料泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-122681 2020-07-17
JP2020122681 2020-07-17

Publications (1)

Publication Number Publication Date
WO2022014150A1 true WO2022014150A1 (ja) 2022-01-20

Family

ID=79554723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019018 WO2022014150A1 (ja) 2020-07-17 2021-05-19 燃料ポンプ

Country Status (5)

Country Link
US (1) US12006901B2 (ja)
EP (1) EP4184001A4 (ja)
JP (1) JP7421646B2 (ja)
CN (1) CN115803515A (ja)
WO (1) WO2022014150A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114994A1 (de) * 2022-12-02 2024-06-06 Robert Bosch Gmbh Brennstoffverteileinrichtung für ein brennstoffversorgungssystem zur versorgung einer brennkraftmaschine mit gasförmigem brennstoff, sowie brennstoffversorgungssystem

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318091A (ja) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp 高圧燃料供給ポンプ
DE102004063074A1 (de) * 2004-12-28 2006-07-06 Robert Bosch Gmbh Kolbenpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
JP2007231959A (ja) * 2007-06-15 2007-09-13 Hitachi Ltd 高圧燃料供給ポンプ
JP2009185613A (ja) * 2008-02-04 2009-08-20 Hitachi Ltd 高圧燃料ポンプ
DE102014010718A1 (de) * 2014-07-19 2016-01-21 L'orange Gmbh Kolbenpumpe für ein Kraftstoffeinspritzsystem
JP2016070087A (ja) * 2014-09-26 2016-05-09 株式会社小金井精機製作所 ディーゼルポンプ
JP2018105274A (ja) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
WO2018186219A1 (ja) * 2017-04-07 2018-10-11 日立オートモティブシステムズ株式会社 高圧燃料ポンプ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430977A (en) * 1980-02-28 1984-02-14 Yanmar Diesel Engine Co., Ltd. Fuel injection pump for internal combustion engines
US4447194A (en) * 1981-07-21 1984-05-08 Lucas Industries Plc Method of manufacturing a fuel pump
GB2123492A (en) * 1982-07-08 1984-02-01 Lucas Ind Plc Fuel injection pump
US4480623A (en) * 1982-11-05 1984-11-06 Lucas Industries Public Limited Company Liquid fuel injection pump
DE3307826A1 (de) * 1983-03-05 1984-09-06 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen
JPS635158A (ja) * 1986-06-24 1988-01-11 Diesel Kiki Co Ltd ユニツトインジエクタ−
JPH03168355A (ja) * 1989-11-29 1991-07-22 Zexel Corp 燃料噴射ポンプ
JP3077738B2 (ja) * 1994-04-28 2000-08-14 株式会社デンソー 高圧サプライポンプ
DE19522306B4 (de) * 1994-06-24 2004-08-26 Denso Corp., Kariya Hochdruck-Kraftstoffzuführungspumpe
US5899136A (en) * 1996-12-18 1999-05-04 Cummins Engine Company, Inc. Low leakage plunger and barrel assembly for high pressure fluid system
JPWO2002055870A1 (ja) * 2001-01-05 2004-05-20 株式会社日立製作所 高圧燃料供給ポンプ
DE60128000T2 (de) * 2001-01-05 2008-01-17 Hitachi, Ltd. Fluidpumpe und hochdruckkraftstoffförderpumpe
JP3787508B2 (ja) * 2001-07-19 2006-06-21 株式会社日立製作所 高圧燃料供給ポンプ
JP4453028B2 (ja) * 2005-03-30 2010-04-21 株式会社デンソー 高圧燃料ポンプ
JP4625789B2 (ja) * 2006-07-20 2011-02-02 日立オートモティブシステムズ株式会社 高圧燃料ポンプ
JP5039507B2 (ja) * 2007-10-31 2012-10-03 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプおよびその製造方法
JP5002523B2 (ja) * 2008-04-25 2012-08-15 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
JP5478051B2 (ja) * 2008-10-30 2014-04-23 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP5136919B2 (ja) * 2010-04-08 2013-02-06 株式会社デンソー 高圧ポンプ
CN102619660B (zh) * 2011-01-28 2015-06-24 株式会社电装 高压泵
JP5382548B2 (ja) * 2011-03-31 2014-01-08 株式会社デンソー 高圧ポンプ
CN102777300B (zh) * 2011-05-12 2015-04-01 株式会社电装 阀装置及使用其的高压泵
DE102014220878A1 (de) * 2014-10-15 2016-04-21 Continental Automotive Gmbh Kraftstoffhochdruckpumpe
JP6695768B2 (ja) * 2016-09-29 2020-05-20 株式会社ケーヒン 燃料ポンプ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318091A (ja) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp 高圧燃料供給ポンプ
DE102004063074A1 (de) * 2004-12-28 2006-07-06 Robert Bosch Gmbh Kolbenpumpe, insbesondere Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
JP2007231959A (ja) * 2007-06-15 2007-09-13 Hitachi Ltd 高圧燃料供給ポンプ
JP2009185613A (ja) * 2008-02-04 2009-08-20 Hitachi Ltd 高圧燃料ポンプ
DE102014010718A1 (de) * 2014-07-19 2016-01-21 L'orange Gmbh Kolbenpumpe für ein Kraftstoffeinspritzsystem
JP2016070087A (ja) * 2014-09-26 2016-05-09 株式会社小金井精機製作所 ディーゼルポンプ
JP2018105274A (ja) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
WO2018186219A1 (ja) * 2017-04-07 2018-10-11 日立オートモティブシステムズ株式会社 高圧燃料ポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114994A1 (de) * 2022-12-02 2024-06-06 Robert Bosch Gmbh Brennstoffverteileinrichtung für ein brennstoffversorgungssystem zur versorgung einer brennkraftmaschine mit gasförmigem brennstoff, sowie brennstoffversorgungssystem

Also Published As

Publication number Publication date
JP7421646B2 (ja) 2024-01-24
US20230193865A1 (en) 2023-06-22
US12006901B2 (en) 2024-06-11
EP4184001A4 (en) 2024-07-17
EP4184001A1 (en) 2023-05-24
JPWO2022014150A1 (ja) 2022-01-20
CN115803515A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
JP6934519B2 (ja) 高圧燃料ポンプ
JP4585977B2 (ja) 高圧燃料供給ポンプ及びその組立方法
WO2018092538A1 (ja) 高圧燃料供給ポンプ
WO2021054006A1 (ja) 電磁吸入弁及び高圧燃料供給ポンプ
WO2022014150A1 (ja) 燃料ポンプ
WO2022091554A1 (ja) 燃料ポンプ
JP2021188544A (ja) 燃料ポンプ
WO2021095556A1 (ja) 燃料供給ポンプ
US20220316470A1 (en) Fuel Pump
JP6681487B2 (ja) 高圧燃料供給ポンプ
WO2016103945A1 (ja) バルブ機構、及びこれを備えた高圧燃料供給ポンプ
JP7482313B2 (ja) 燃料ポンプ
JP4241611B2 (ja) 燃料噴射ポンプ用弁装置
JP7518980B2 (ja) 燃料ポンプ
WO2024089843A1 (ja) 燃料ポンプ
WO2022269977A1 (ja) 電磁吸入弁機構及び燃料ポンプ
WO2023032253A1 (ja) 燃料ポンプ
WO2022130698A1 (ja) 燃料ポンプ
WO2023058287A1 (ja) 電磁吸入弁機構及び燃料ポンプ
WO2023209949A1 (ja) 燃料ポンプ
WO2023203761A1 (ja) 電磁弁機構及び燃料供給ポンプ
WO2024084567A1 (ja) 燃料ポンプ
JP2018119479A (ja) 高圧燃料ポンプ
WO2021235019A1 (ja) 燃料ポンプ
JP2023071061A (ja) 燃料ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021841506

Country of ref document: EP

Effective date: 20230217