WO2020048123A1 - 光源***、提高其光效的方法及显示设备 - Google Patents

光源***、提高其光效的方法及显示设备 Download PDF

Info

Publication number
WO2020048123A1
WO2020048123A1 PCT/CN2019/081647 CN2019081647W WO2020048123A1 WO 2020048123 A1 WO2020048123 A1 WO 2020048123A1 CN 2019081647 W CN2019081647 W CN 2019081647W WO 2020048123 A1 WO2020048123 A1 WO 2020048123A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
combining element
source system
wavelength conversion
Prior art date
Application number
PCT/CN2019/081647
Other languages
English (en)
French (fr)
Inventor
杜鹏
鲁宁
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/272,902 priority Critical patent/US11223806B2/en
Publication of WO2020048123A1 publication Critical patent/WO2020048123A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time

Definitions

  • the present invention relates to the field of light source technology, and in particular, to a light source system, a method for improving its light efficiency, and a display device.
  • the red primary color and green primary color of common laser fluorescence projection systems are broad-spectrum red fluorescence and green fluorescence, respectively. While expanding the color gamut, it is inevitable to cut off a part of the spectral colors that do not meet the requirements, resulting in lower brightness of the projection screen. .
  • yellow phosphor is usually used to generate red fluorescence.
  • a large part of the short-wavelength spectral components in the process of intercepting red fluorescence from yellow fluorescence cannot be used, resulting in a decrease in light efficiency; at the same time, in order to achieve white balance and ensure the proportion of red light, green fluorescence cannot be fully turned on, and the light-machine efficiency is low.
  • a method of adding a red laser and a green laser to the light source of the projection device is currently adopted.
  • the fluorescence filtered by the green fluorescent filter in the process of combining the green laser and the green fluorescent light is reduced, and the light efficiency is increased.
  • red and green lasers used in projection equipment there are many problems with red and green lasers used in projection equipment. Among them, the most important is that the red laser and the green laser are relatively expensive, and the excitation efficiency of the red laser is easily affected by temperature, and the photoelectric conversion efficiency of the green laser is low.
  • the structure of the supplementary light source 120 in the projection device 100 is shown in FIG. 1.
  • the excitation light and the supplementary light emitted by the excitation light source 110 and the supplementary light source 120 are combined by the dichroic sheet 130, and the supplementary light shares the excitation light path.
  • the light-splitting and combining element 152, the reflecting element 154, the collecting lenses 151, 155, and the wavelength conversion device 170 enter the light uniformizing device 190.
  • both the excitation light and the supplementary light include laser light.
  • the reflection efficiency of the laser light incident on the surface of the wavelength conversion device 170 is about 95%. After being scattered by the wavelength conversion device 170, the efficiency collected by the collection lenses 151 and 155 is about 93%.
  • the transmittances of the collecting lenses 151 and 155 are about 94%, and the scattered laser light after the collection is lost by 8% to 10% in the light splitting and combining elements 152 and 154, and the coupling efficiency is 90% when it enters the uniform light device 190.
  • the utilization rate is only about 68%.
  • the cost increase and low laser utilization rate caused by the addition of the supplementary light source 120 make the improvement of the projection effect of the projection device not very cost-effective, and the practicability is low.
  • the present invention provides a light source system that supplements the light source with a high utilization rate of outgoing light.
  • the present invention also provides a method and a display for improving the light efficiency of the light source system. device.
  • a light source system includes:
  • Excitation light source for emitting excitation light
  • Supplementary light source for emitting supplementary light
  • a wavelength conversion device for performing wavelength conversion on part of the excitation light and emitting the first light
  • the guiding device includes a condensing lens and a light splitting and light combining element, wherein the condensing lens is used to adjust a divergence angle of the first light, the light splitting and light combining element includes a first region, and the supplementary light is focused on the first light Near a region, the supplementary light and the first light emitted from the condensing lens are combined with the optical expansion amount at the light splitting and light combining element;
  • a spot of the first light on the surface of the wavelength conversion device forms an enlarged image at the light splitting and light combining element through the condensing lens.
  • a display device includes the light source system as described above.
  • a method for improving the light efficiency of a light source system includes the following steps:
  • a spot of the first light on the surface of the wavelength conversion device forms an enlarged image at the light combining element.
  • a spot of the first light on the surface of the wavelength conversion device forms an enlarged image at the spectroscopic light combining element through the condensing lens, Therefore, it is beneficial to improve the light efficiency of the light source system.
  • FIG. 1 is a schematic structural diagram of a light source system in the prior art.
  • FIG. 2 is a schematic structural diagram of a light source system according to a first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a light splitting and light combining element shown in FIG. 2.
  • FIG. 4 is a schematic structural diagram of a light source system according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a comparison between the intermediate image and the first light spot on the light splitting and combining element and the surface size of the light splitting and combining element.
  • Guidance device 250 Collection lens 151, 155, 251 Guide element 252 Converging lens 253, 353 Light splitting and combining element 152 Reflective element 154 Light combining element 254, 354 First area 254a Second zone 254b Middle image A Relay lens 255, 355 Wavelength conversion device 170, 270, 370 Transition area 271 Light spot s, t Filter area 275 Uniform light device 190, 290, 390
  • FIG. 2 is a schematic structural diagram of a light source system 200 according to a first embodiment of the present invention.
  • the light source system 200 provided by the present invention can be applied to a display device such as a laser fluorescent projection device.
  • the light source system 200 includes an excitation light source (not shown), a supplementary light source 220, a guide device 250, and a wavelength conversion device 270.
  • the excitation light emitted by the excitation light source is used to irradiate the wavelength conversion device 270 under the guidance of the guide device 250.
  • the wavelength conversion device 270 performs wavelength conversion on the excitation light, thereby obtaining the first light emitted from the wavelength conversion device 270, and A spot of the first light is formed on the surface of the conversion device 270.
  • the supplementary light source 220 is configured to emit supplementary light including laser light, and the supplementary light and the first light are combined with the optical expansion amount under the guidance of the guide device 250 and emitted. Since the light source light emitted by the light source system 200 includes the first light and the supplementary light, The first light includes fluorescence, and the fluorescence is used to modulate the image in the first color gamut. The supplementary light includes laser light, and the laser is used to modulate the image in the second color gamut. The second color gamut range covers the first color gamut.
  • the second color gamut range has a portion beyond the first color gamut range, so the light source system 200 using the supplemental light source 220 effectively extends the color gamut coverage of the light source light modulation image, which is beneficial to improving the display using the light source system 200 The display image quality of the device.
  • the excitation light source is omitted in FIG. 2.
  • the wavelength conversion device 270 is a reflective color wheel, and the excitation light source is located on a side of the guiding device 250 away from the wavelength conversion device 270. It can be understood that the wavelength conversion device 270 is also It may be a transmissive color wheel, and accordingly, the excitation light source may be disposed on a side of the wavelength conversion device 270 away from the guide device 250.
  • the excitation light source is a blue light source for emitting blue excitation light. It can be understood that the excitation light source may also be a purple light source or an ultraviolet light source, and is configured to emit purple light or ultraviolet light as the excitation light to excite the wavelength conversion device 270 to emit the first light having a longer wavelength and including three primary colors of light.
  • the luminous body in the excitation light source may be a laser or a light emitting diode, and the number of the luminous body may be flexibly selected according to requirements.
  • the supplemental light source 220 is configured to emit supplemental light including a laser.
  • the supplemental light source 220 may emit red and / or green laser light as supplemental light.
  • the supplementary light source 220 includes a red laser and / or a green laser.
  • the supplementary light source 220 using a plurality of lasers is further provided with a reflective element such as a reflection bar or a mirror for compressing the light spot.
  • a light homogenizing device such as an optical integrator rod or a fly-eye lens, can be provided to uniformly emit the excitation light and the supplementary light.
  • the light homogenizing device in the excitation light source and the supplementary light source 220 can be omitted, especially in a miniaturized light source system.
  • the wavelength conversion device 270 includes a circular substrate, and a conversion region 271 and a filter region 275 disposed on a surface of the substrate. Among them, the conversion region 271 and the filter region 275 are in a circular shape with different inner diameters. The filter region 275 is disposed on the edge of the substrate. The conversion region 271 is disposed along the inner circle of the filter region 275 or the conversion region 271 and the filter region 275's position interchange is possible. The conversion region 271 and the filter region 275 may be disposed at intervals or adjacently.
  • the conversion region 271 includes a plurality of color segments, for example, including a blue segment, a red segment, and a green segment.
  • the circular wavelength conversion device 270 is periodically rotated by the driving device, and the blue segment, the red segment, and the green segment are periodically located on the optical path of the excitation light.
  • the blue segment corresponding to the blue excitation light is provided with a scattering layer formed by a scattering powder for scattering the excitation light to change the angular distribution of the excitation light, and phosphors of corresponding colors are provided in the remaining color segments, For example, a red phosphor is provided in the red segment, and a green phosphor is provided in the green segment, to perform wavelength conversion on the blue excitation light and generate red fluorescence and green fluorescence, respectively.
  • the excitation light is periodically irradiated to each section of the conversion area 271.
  • the first light generated by the excitation light forms a light spot s that periodically moves in each color section on the surface of the wavelength conversion device 270.
  • the first light emitted from the conversion area 271 Including red fluorescence, green fluorescence, and scattered blue excitation light, the three primary colors of the first light are sequentially combined to obtain white light.
  • the conversion region 271 includes a yellow segment and a blue segment, wherein the yellow segment is provided with a yellow phosphor, the blue segment is provided with a scattering layer for scattering excitation light, and the yellow emitted from the yellow segment is yellow. Fluorescence and the scattered excitation light emitted from the blue segment are combined to obtain white light.
  • the conversion region 271 includes a red segment, a green segment, a yellow segment, and a blue segment, or the orange segment is used to replace the red segment in the conversion region 271.
  • the conversion region 271 may have other implementations, and is not limited to the foregoing Several.
  • the filter region 275 includes color segments corresponding to the conversion region 271.
  • the filter region 275 includes a blue segment, a red segment, and a green segment. Each color segment is provided with a filter of a corresponding color.
  • Light film. Driven by the driving device, the filter area 275 rotates in synchronization with the conversion area 271.
  • the first light emitted by the conversion area 271 in time sequence is guided by the guide device 250 and passes through the corresponding color section in the filter light area 275 after passing from the wavelength conversion device 270. The light is emitted, thereby intercepting a part of the first light to improve the purity of the emitted first light.
  • the light homogenizing device 290 and the guiding device 250 are respectively disposed on opposite sides of the wavelength conversion device 270.
  • the first light emitted from the filter region 275 in the wavelength conversion device 270 and the supplementary light guided by the guiding device 250 are uniformized by the light homogenizing device 290 to emit light source light with uniform color and brightness.
  • the light homogenizing device 290 may be an optical integrator rod or a fly-eye lens.
  • the guiding device 250 includes a collecting lens 251, a guiding element 252, a condensing lens 253, a light combining element 254, and a relay lens 255.
  • the first light emitted from the conversion region 271 passes through the collection lens 251, the guide element 252, the condensing lens 253, the light combining element 254, and the relay lens 255 in order and enters the filter region 275.
  • the supplementary light emitted by the supplemental light source 220 passes through the light combining element 254 and the relay lens 255 in order and enters the filter area 275.
  • the first light and the supplementary light are combined at the light combining element 254 by an optical expansion amount.
  • the collecting lens 251 is composed of a plurality of lenses with overlapping optical axes.
  • the focal lengths of the lenses are different. The closer the lens is to the wavelength conversion device 270, the smaller the focal length is.
  • the collecting lens is used to collect and collimate the first light of the Lambertian distribution emitted from the conversion region 271 and emit the first light of substantially parallel.
  • the type of the guide element 252 varies according to the position of the excitation light source.
  • the guide element 252 is an area-coated spectroscopic combining element.
  • the guide element 252 is a mirror for reflecting the first light.
  • the condensing lens 253 is used for condensing the first light emitted from the guide element 252 to the light combining element 254.
  • An image of the spot s of the first light on the wavelength conversion device 270 can be formed on any of the receiving surfaces on the optical path of the first lens of the condensing lens 253.
  • the remaining images are less clear than the intermediate image A, and the imaging position of the intermediate image A corresponds to the smallest beam diameter of the first light emitted by the condenser lens 253.
  • an intermediate image A is formed at a position where the diameter of the first light beam emitted by the condensing lens 253 is the smallest, and the definition of the intermediate image is higher than that of other images.
  • the efficiency of the first light is related to the combining process of the first light and the supplementary light.
  • the first light and the supplementary light combine light using the principle of optical expansion.
  • the supplementary light emitted by the supplementary light source 220 is a laser, and its optical expansion is very small.
  • the reflection elements and lenses on the optical path inside the supplementary light source 220 have a small effect on the optical expansion;
  • a scattering element (not shown) is provided on the light and optical path to reduce the phenomenon of supplementary light speckle and eliminate the unevenness caused by the discontinuity of its angular distribution.
  • the speckle phenomenon has been greatly reduced due to the process of supplementary light and the first photosynthesis.
  • the scattering angle of the scattering element is small, which can ensure that the optical expansion amount of the supplementary light entering the light combining element 254 is kept in a relatively small state.
  • the first light is generated by exciting the phosphor with the excitation light, and the light emission process of the phosphor is Lambertian scattering, so the first light has a large optical expansion amount.
  • FIG. 3 is a schematic structural diagram of the light combining element 254 shown in FIG. 2.
  • the light combining element 254 is configured to guide the first light emitted by the condensing lens 253 and the supplementary light emitted by the supplemental light source 220 to combine the optical expansion amounts.
  • the surface of the light combining element 254 includes a first region 254a and a second region 254b.
  • the second region 254b is disposed around the first region 254a.
  • the specific position of the first region 254a on the surface of the light combining element 254 is not limited.
  • the first region 254a may be located on the surface of the light combining element 254.
  • the center may be provided at an eccentric position on the surface of the light combining element 254.
  • the supplementary light is used to converge near the first region 254a, and the first light irradiates the first region 254a and the second region 254b.
  • the first region 254a is plated with an antireflection coating to transmit supplementary light
  • the second region 254b is plated with a reflective film to reflect the first light.
  • the light that is irradiated by the first light to the first region 254a is transmitted out and cannot be received by the relay lens 255, causing a part of the light energy to be lost.
  • the supplementary light and the first light have a large difference in optical expansion, and the spot area difference between the supplementary light and the first light is substantially the same, even though there is a spectral overlap between the supplementary light and the first light, It can be ensured that the first light loses less during the light combining process.
  • the supplementary light utilization rate is high.
  • the reflectance and transmittance of the supplementary light passing through the reflective elements and lenses on the internal optical path of the supplementary light source 220 is about 99%
  • the coupling efficiency at the light combining element 254 position is about 97%
  • the coupling efficiency at the entrance of the uniform light device 290 is about 90%
  • the total utilization rate of supplementary light is about 80%, which is about 18% higher than the method of adding supplementary light source 120 in the existing light source system 100.
  • a polarizing beam splitting film or a polarizing beam splitter is provided for transmitting the light of the first polarization state and reflecting the light of the second polarization state, wherein the supplementary light is light of the first polarization state.
  • the supplementary light is p-polarized light, and the proportion of p-light in the supplementary light after passing through the scattering element still exceeds 95%, while the first light is unpolarized light, and the first region 254a transmits the p-light reflections.
  • the first light lost is halved on the original basis, that is, the first light loss in the first region 254a becomes 4% to 5%, and the supplemental light loss is about 5%, compared to the previous Increased by 2%, but because the first light accounted for more than the supplemental light, the overall light efficiency would increase.
  • the first light loss ratio can be approximately determined by the relative size of the first light spot at the position of the light combining element 254 and the first region 254a.
  • the parameters of the condensing lens 253 are adjusted so that the intermediate image A in the laser spot on the surface of the wavelength conversion device 270 becomes an enlarged image, which is beneficial to increasing the light combining element. Spot area of the first light on 254.
  • the enlarged image means that the area of the image is increased relative to the original image. It can also be understood that the position of the enlarged image is a defocused position of the light beam. Therefore, the first light loss ratio P (%) is approximately calculated by the following formula:
  • S1 is the area of the first region 254a on the light combining element 254, and S2 is the area of the first light spot t at the position of the light combining element 254. Therefore, the larger the light spot formed by the first light on the surface of the light combining element 254, or the larger the image obtained on the surface of the light combining element 254, the smaller the first light loss ratio, and the supplementary light utilization rate is not reduced.
  • the first light has improved light efficiency.
  • the intermediate image A of the light spot s is located at the light combining element 254, so that the first light forms the intermediate image A on the surface of the light combining element 254 and the light spot t having the smallest area; in other implementations, In the method, the intermediate image A is located outside the light combining element 254, and the diameter of the first light beam irradiated to the surface of the light combining element 254 is large, and the spot t formed is also larger than the spot t in this embodiment.
  • the intermediate image A of the excitation light spot on the surface of the wavelength conversion device 270 is formed at the light combining element 254, and the parameters of the condensing lens 253 are adjustable, such as the radius of curvature and its setting position relative to other devices.
  • the parameters of the condensing lens 253 are adjustable, such as the radius of curvature and its setting position relative to other devices.
  • the first light and the complementary light emitted by the light combining element 254 are incident on the relay lens 255 at the same divergence angle.
  • the relay lens 255 includes a plurality of lenses with adjustable curvature radii and positions. The relay lens 255 enables the intermediate image A to be imaged at the entrance of the light homogenizing device 290, and the first light and the supplementary light are incident on the light homogenizing device 290 at the same divergence angle, thereby facilitating the first light and the supplementary light at the light homogenizing device 290. After repeated reflections, the uniformity of the outgoing light is improved.
  • a method for improving the light efficiency of the light source system 200 including the following steps:
  • excitation light Provide excitation light.
  • an excitation light source is used to provide excitation light for exciting the wavelength conversion device.
  • the excitation light may be blue, purple, or ultraviolet light to excite red, green, and green fluorescence with longer wavelengths. Yellow, orange, or other colors.
  • the supplemental light source 220 may be used to emit supplemental light including a laser.
  • the supplementary light may be at least one of a red laser, a blue laser, a green laser, or another color laser.
  • the wavelength conversion device 270 is used to perform wavelength conversion on part of the incident excitation light and emit the first light.
  • the surface of the wavelength conversion device 270 is provided with a wavelength conversion material to convert at least part of the excitation light into fluorescence.
  • the surface of the wavelength conversion device 270 is further provided with a scattering layer for scattering the excitation light.
  • Light includes fluorescence and scattered excitation light.
  • S4 Focus the supplementary light near the first region 254a of the light combining element 254.
  • the convergence of supplementary light can be achieved through a lens or other such as a reflective element.
  • the light combining element 254 uses the light combining element 254 to combine the supplementary light and the first light with an optical expansion amount.
  • the supplementary light is concentrated near the first region 254a.
  • the first light includes fluorescence.
  • the optical expansion of the fluorescence is larger than the supplemental light.
  • the first light irradiates the first region 254a and the second region 254b on the surface of the light combining element 254.
  • the first region 254a is used to transmit light
  • the second region 254b is used to reflect light.
  • the first region 254a is provided with an antireflection coating, or the first region 254a is a hollowed-out region, and the second region 254b is used to reflect light.
  • the curvature radius of the condensing lens 253 and / or the position of the condensing lens 256 in the light source system 200 can be adjusted, and then at least one set of parameters of the converging lens 253 can be found, and an enlarged image can be formed on the light combining element 254.
  • the light spot s forms an enlarged image at the light combining element 254.
  • the light spot s forms an enlarged intermediate image at the light combining element.
  • the intermediate image is an image corresponding to the smallest diameter of the light emitted by the condensing lens 253. If the intermediate image is an enlarged image, that is, the area of the intermediate image relative to the spot s is larger, it is beneficial to improve the system light efficiency of the light source system 200.
  • step S7 may be further included to adjust the uniformity of the light emitted from the light source.
  • the relay lens 255 is used to relay the light emitted from the light combining element 254 to the entrance of the light homogenizing device 290, which is beneficial to reducing the color unevenness of the display screen of the display device.
  • FIG. 4 is a schematic structural diagram of a light source system 300 according to a second embodiment of the present invention.
  • FIG. 5 is an intermediate image A and a light spot t of the first light on the light combining element 354 and a surface of the light combining element 354. Size comparison diagram.
  • the intermediate image A of the excitation light spot on the wavelength conversion device 370 is located between the light combining element 354 and the relay lens 355, so as to form an enlarged image on the surface of the light combining element 354.
  • the area of the first light spot t at the light combining element 354 is enlarged, and the intermediate image A can be imaged at the entrance of the light uniformizing device 390.
  • the first optical optical expansion amount is not 0, that is, the first light beam has a certain divergence angle
  • the first light spot s on the wavelength conversion device 370 passes through the condensing lens 353 to form a light-condensing element 354 on the side far from the condensing lens 353.
  • the diameter of the first light beam corresponding to the spot t of the first light on the light combining element 354 is larger than that of the first image corresponding to the intermediate image A.
  • a light beam diameter so that the area of the first light spot t on the surface of the light combining element 354 is larger than the intermediate image A, and the area of the light spot of the first light on the light combining element 354 is enlarged, which is beneficial to improving the utilization rate of the first light and the light source Light effect of system 300.
  • the relay lens 355 images the intermediate image A of the excitation light spot to the entrance of the optical integrator 390, and the supplementary light is focused on the position of the first region of the light combining element 354.
  • Image A and the supplementary light focus position are slightly out of focus, so the optical expansion of the supplementary light at the entrance position of the uniformity device 390 becomes larger, and the uniformity effect of the uniformity device 390 is enhanced.
  • the first light and the supplementary light are incident at the same divergence angle.
  • the light uniform device further reduces the color unevenness of the display screen of the display device.
  • step S6 is specifically: using the condensing lens 354, the light spot s in the light combining element An intermediate image is formed between 354 and the relay lens 355.
  • the preset imaging position of the intermediate image A between the light combining element 354 and the relay lens 355 is determined according to the preset light loss ratio of the first light; the convergence lens 353 is adjusted so that the light spot s is imaged at the preset imaging position .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源***(200)、提高其光效的方法及显示设备,其中光源***(200)包括:激发光源,用于发出激发光;补充光源(220),用于发出补充光;波长转换装置(270),用于对部分激发光进行波长转换并出射第一光;及引导装置(250),包括会聚透镜(253)及分光合光元件,会聚透镜(253)用于调整第一光的发散角,分光合光元件包括第一区域(254a),补充光聚焦于第一区域(254a)附近,补充光与会聚透镜(253)出射的第一光在分光合光元件处进行光学扩展量合光;波长转换装置(270)表面上第一光的光斑通过会聚透镜(253)在分光合光元件处形成一放大的像,从而有利于提高光源***(200)的光效。

Description

光源***、提高其光效的方法及显示设备 技术领域
本发明涉及光源技术领域,尤其涉及一种光源***、提高其光效的方法及显示设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
投影显示行业发展过程中,显示画面的亮度和颜色一直是备受关注的两个方面。然而,常见的激光荧光投影***的红原色和绿原色分别是宽光谱的红色荧光和绿色荧光,扩展色域范围的同时不可避免的需要砍掉一部分不符合要求的光谱色,导致投影画面亮度降低。
激光荧光投影***中,考虑到红色荧光粉的光饱和与热饱和问题,通常使用黄色荧光粉产生红色荧光。从黄色荧光截取红色荧光过程中很大一部分短波段的光谱成分无法利用导致光效降低;同时为达到白平衡,保证红光占比,绿色荧光也不能全开,光机效率低。
为了保证投影画面亮度的同时扩展投影设备的色域,目前采取在投影设备光源中增加红激光和绿激光的方法。增加激光模块后,红激光与荧光合光过程中达到同样色坐标的条件下,红激光越多,红色荧光滤光片的截止波长就越往短波方向移动,也就是说红光亮度越高。因此,在白平衡的条件下,绿色荧光的利用率就越高,整个投影***的亮度就提升越多。使用红激光器的前提下,增加绿激光后,绿激光与绿色荧光合光过程绿色荧光滤光片滤除的荧光变少,光效升高。然而,红激光器和绿激光器用于投影设备上存在很多问题。其中,最为重要的是红激光器和绿激光器成本较高,且红激光器激发效率易受温度影响,绿激光器的光电转换效率较低。同时,为保证红激光的效率,需为红激光光源配置更好的散热结构,这进一步增加了红激光光源的成本。目前,投影设备100中增加补充光源120的结构如图1所示, 激发光源110与补充光源120分别发出的激发光和补充光通过二向色片130合光,补充光共用激发光光路分别经过分光合光元件152、反射元件154收集透镜151、155和波长转换装置170进入匀光器件190。其中,激发光与补充光均包括激光,激光入射到波长转换装置170表面反射效率为95%左右,经过波长转换装置170散射后被收集透镜151、155收集的效率为93%左右,激光往返经过收集透镜151、155透过率为94%左右,收集后的被散射的激光在分光合光元件152、154损失8%~10%,在进入匀光器件190时耦合效率为90%,因此激光的利用率只有68%左右。
增加补充光源120导致的成本提升和激光利用率低使得投影设备投影效果的提升并不具备很高的性价比,实用性较低。
发明内容
为解决现有技术显示设备中补充激光利用率不高的技术问题,本发明提供一种补充光源出射光利用率较高的光源***,本发明还提供一种提高光源***光效的方法及显示设备。
一种光源***,包括:
激发光源,用于发出激发光;
补充光源,用于发出补充光;
波长转换装置,用于对部分激发光进行波长转换并出射第一光;及
引导装置,包括会聚透镜及分光合光元件,其中,所述会聚透镜用于调整所述第一光的发散角,所述分光合光元件包括第一区域,所述补充光聚焦于所述第一区域附近,所述补充光与所述会聚透镜出射的第一光在所述分光合光元件处进行光学扩展量合光;
所述波长转换装置表面上第一光的光斑通过所述会聚透镜在所述分光合光元件处形成一放大的像。
一种显示设备,包括如上所述的光源***。
一种提高光源***光效的方法,包括以下步骤:
提供激发光;
提供补充光;
利用波长转换装置对入射的部分激发光进行波长转换并出射第一光;
将所述补充光聚焦于合光元件的第一区域附近;
利用合光元件对所述补充光与所述第一光进行光学扩展量合光;
利用会聚透镜,波长转换装置表面上第一光的光斑在合光元件处形成一放大的像。
本发明提供的光源***、显示设备及提高光源***光效的方法中,所述波长转换装置表面上第一光的光斑通过所述会聚透镜在所述分光合光元件处形成一放大的像,从而有利于提高所述光源***的光效。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中光源***的结构示意图。
图2为本发明第一实施方式提供的光源***的结构示意图。
图3为图2所示的分光合光元件的结构示意图。
图4为本发明第二实施方式提供的光源***的结构示意图。
图5为中间像与分光合光元件上第一光光斑及分光合光元件表面大小比较示意图。
主要元件符号说明
光源*** 100、200、300
激发光源 110
补充光源 120、220、320
二向色片 130
引导装置 250
收集透镜 151、155、251
引导元件 252
会聚透镜 253、353
分光合光元件 152
反射元件 154
合光元件 254、354
第一区域 254a
第二区域 254b
中间像 A
中继透镜 255、355
波长转换装置 170、270、370
转换区 271
光斑 s、t
滤光区 275
匀光器件 190、290、390
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于 限制本发明。
请参阅图2,为本发明第一实施方式提供的光源***200的结构示意图。本发明提供的光源***200可以应用于激光荧光投影设备等显示设备中。光源***200包括:激发光源(图未示)、补充光源220、引导装置250及波长转换装置270。其中,激发光源发出的激发光用于在引导装置250的引导下照射至波长转换装置270,波长转换装置270对激发光进行波长转换,从而得到从波长转换装置270出射的第一光并在波长转换装置270表面形成一第一光的光斑。补充光源220用于出射包括激光的补充光,补充光与第一光在引导装置250的引导下进行光学扩展量合光后出射,由于光源***200出射的光源光包括第一光与补充光,其中第一光包括荧光,荧光用于调制第一色域范围内的图像,补充光包括激光,激光用于调制第二色域范围内的图像,其中,第二色域范围覆盖第一色域范围,并且第二色域范围具有超出第一色域范围的部分,从而采用补充光源220的光源***200有效扩展了光源光调制图像的色域覆盖的范围,有利于提高采用光源***200的显示设备的显示图像画面质量。
图2中省略了激发光源,在一种实施方式中,波长转换装置270为反射式色轮,激发光源位于引导装置250远离波长转换装置270的一侧,可以理解的是,波长转换装置270还可以是透射式色轮,相应地,激发光源可以设置于波长转换装置270远离引导装置250的一侧。
本实施方式中,激发光源为蓝色光源,用于发出蓝色激发光。可以理解的是,激发光源还可以是紫色光源或紫外光源,用于发出紫色光或紫外光作为激发光以激发波长转换装置270出射波长较长的包括三基色光的第一光。激发光源中的发光体可以是激光,也可以是发光二极管,具体其发光体的数量可以根据需要灵活选择。
补充光源220用于发出包括激光的补充光,补充光源220可以发出红色激光及/或绿色激光作为补充光,相应地,补充光源220中包括红色激光器及/或绿色激光器。在采用多个激光器的补充光源220中,还设置有用于压缩光斑的反射条、反射镜等反射元件。
在激发光源与补充光源220中,可以设置用于对出射的激发光与 补充光进行匀光的匀光器件,比如光学积分棒或复眼透镜。不过激发光源与补充光源220中的匀光器件是可以省略的,特别是在小型化的光源***中。
波长转换装置270包括圆形的基板,及设置于基板表面的转换区271与滤光区275。其中,转换区271与滤光区275呈内径不等的圆环状,滤光区275设置于基板的边缘,转换区271沿滤光区275的内圈设置,或转换区271与滤光区275的位置互换都是可行的。转换区271与滤光区275可以间隔设置也可以相邻设置。
进一步地,转换区271包括多种颜色区段,比如包括蓝色段、红色段与绿色段。本实施方式中,呈圆形的波长转换装置270在驱动装置的驱动下周期性旋转,蓝色段、红色段及绿色段周期性位于激发光的光路上。进一步地,对应蓝色激发光的蓝色段设置有用于对激发光进行散射的由散射粉形成的散射层,以改变激发光的角度分布,其余颜色区段中设置有对应颜色的荧光粉,比如红色段中设置有红色荧光粉,绿色段设置有绿色荧光粉,以分别对蓝色激发光进行波长转换并产生红色荧光与绿色荧光。激发光周期性照射至转换区271的各个区段,由激发光产生的第一光在波长转换装置270表面形成一在各个颜色区段周期性运动的光斑s,转换区271出射的第一光包括红色荧光、绿色荧光及散射后的蓝色激发光,第一光中的三基色光时序合光后得到白光。
在一种实施方式中,转换区271包括黄色段与蓝色段,其中,黄色段中设置有黄色荧光粉,蓝色段中设置有用于对激发光进行散射的散射层,黄色段出射的黄色荧光与蓝色段出射的散射后的激发光合光后得到白光。在变更实施方式中,转换区271包括红色段、绿色段、黄色段、蓝色段,或者转换区271中以橙色段替换红色段,转换区271还可以有其他的实现方式,不限于上述列举的几种。
滤光区275包括与转换区271一一对应的颜色区段,在本实施方式中,滤光区275包括蓝色段、红色段及绿色段,每个颜色区段中设置有对应颜色的滤光片。在驱动装置的带动下,滤光区275与转换区271同步转动,转换区271时序出射的第一光经过引导装置250的引 导后穿过滤光区275中对应颜色区段后自波长转换装置270出射,从而截留第一光中部分光线以提高出射第一光的纯度。
如图2所示,匀光器件290与引导装置250分别设置于波长转换装置270的相对两侧。波长转换装置270中滤光区275出射的第一光及引导装置250引导出射的补充光经过匀光器件290的均匀化后出射颜色及亮度均匀的光源光。匀光器件290可以是光学积分棒或复眼透镜。
进一步地,引导装置250包括收集透镜251、引导元件252、会聚透镜253、合光元件254及中继透镜255。转换区271出射的第一光依次经过收集透镜251、引导元件252、会聚透镜253、合光元件254及中继透镜255后入射至滤光区275。补充光源220出射的补充光依次经过合光元件254及中继透镜255后入射至滤光区275。第一光与补充光在合光元件254处光学扩展量合光。
收集透镜251由多个光轴重叠的透镜组成,其中的多个透镜的焦距不同,与波长转换装置270之间距离越近的透镜,其焦距越小。收集透镜用于收集转换区271出射的朗伯分布的第一光并将其准直,出射大致平行的第一光。
引导元件252的类型根据激发光源的位置变化。在激发光源位于引导装置250远离波长转换装置270一侧的实施方式中,引导元件252为区域镀膜的分光合光元件,在激发光源位于波长转换装置270背离引导装置250的实施方式中,引导元件252为用于反射第一光的反射镜。
会聚透镜253用于将引导元件252出射的第一光会聚至合光元件254。会聚透镜253出射第一光的光路上的任意一承接面上均能形成一个波长转换装置270上第一光的光斑s的像,在光斑s的多个像中,包括一成像清晰度最高的中间像A,其余的像相较于中间像A,清晰度较差,并且,中间像A的成像位置对应会聚透镜253出射第一光中光束直径最小处。换句话说,会聚透镜253出射的第一光光束直径最小的位置形成一中间像A,中间像的清晰度高于其他像。
第一光的效率与第一光及补充光的合光过程相关,第一光及补充 光利用光学扩展量原理合光。其中补充光源220发出的补充光为激光,其光学扩展量非常小,补充光源220内部光路上的反射元件和透镜对光学扩展量影响较小;同时,补充光源220与引导装置250之间的补充光光路上设置有散射元件(图未示),以减弱补充光散斑现象并消除其角分布不连续引起的不均匀现象,由于补充光与第一光合光过程已经很大程度减弱了散斑现象所以散射元件的散射角较小,能够保证进入合光元件254的补充光光学扩展量保持在比较小的状态。而第一光是由激发光激发荧光粉产生,荧光粉发光过程为朗伯散射,因此第一光光学扩展量很大。
请参阅图3,图3为图2所示的合光元件254的结构示意图。合光元件254用于引导会聚透镜253出射的第一光及补充光源220出射的补充光进行光学扩展量合光。具体地,合光元件254表面包括第一区域254a及第二区域254b。其中,第二区域254b设置于第一区域254a的周边,本发明实施方式中,不限定第一区域254a在合光元件254表面的具***置,第一区域254a可以位于合光元件254表面的几何中心,也可以设置于合光元件254表面的偏心位置。
补充光用于会聚在第一区域254a附近,第一光照射至第一区域254a及第二区域254b。其中第一区域254a镀设有增透膜以透射补充光,第二区域254b镀设有反射膜以反射第一光。第一光照射至第一区域254a的光线透射出去,不能被中继透镜255接收到,造成一部分光能损失。由于补充光与第一光光学扩展量相差很大,补充光和第一光光束角度基本相同的情况下二者光斑面积差也很大,因此虽然补充光与第一光有光谱重叠部分,仍然可以保证第一光在合光过程损失较少。
由于补充光光路未经过波长转换装置270的转换区271,因此补充光利用率较高。其中,补充光经过补充光源220内部光路上的反射元件和透镜的反射率和透射率约为99%,合光元件254位置的耦合效率约为97%,匀光器件290入口的耦合效率约为90%,那么补充光总的利用率为80%左右,相比现有光源***100中增加补充光源120的方法提升约18%。
补充光与第一光在合光元件254位置合光过程中,由于第一区域 254a的存在荧光会损失8%~10%,整体光效存在一定损失,为提升光效可在第一区域254a设置用于透射第一偏振态光线并反射第二偏振态光线的偏振分光膜或偏振分光片,其中,补充光为第一偏振态的光。在一种实施方式中,补充光为p偏振光,经过散射元件后的补充光中p光占比仍达95%以上,而第一光为非偏振光,第一区域254a透射p光反射s光,在这种实施方式中,损失的第一光在原来的基础上减半,即第一区域254a第一光损失变为4%~5%,而补充光损失约5%,相比之前增加2%,但是由于第一光占比比补充光多,整体光效会增加。
光学扩展量实际上是光束所通过截面积与光束所占据的空间立体角的积分。由于光学扩展量合光过程中第一光与补充光光束角度基本相同,第一光损失比例可近似由合光元件254位置第一光光斑和第一区域254a的相对大小决定。为进一步提升光源***200中第一光光效,本实施方式中调整会聚透镜253参数,使得波长转换装置270表面上激光光斑在的中间像A成放大的像,从而有利于增大合光元件254上第一光的光斑面积。放大的像即相对于原像来说像的面积增大了。也可以理解为放大的像所处的位置为光束的一个离焦位置。因此第一光损失比率P(%)近似由下式计算:
P(%)=S1/S2。
其中,S1是合光元件254上第一区域254a的面积,S2是合光元件254位置处第一光光斑t的面积。从而第一光在合光元件254表面形成的光斑越大,或者说在合光元件254表面的得到的像越大,第一光损失比例就越小,而补充光利用率未见减少,实现了第一光光效提升。
请再次参阅图2,在本实施方式中,光斑s的中间像A位于合光元件254处,从而得到第一光在合光元件254表面形成中间像A及面积最小的光斑t;在其他实施方式中,中间像A位于合光元件254之外,照射至合光元件254表面的第一光光束直径较大,形成的光斑t也相对本实施方式中的光斑t较大。
波长转换装置270表面激发光光斑的中间像A形成于合光元件254处,会聚透镜253的参数是可调的,比如曲率半径及其相对其他 器件的设置位置,通过调整会聚透镜253的参数,使得中间像A为放大的像,即中间像A的面积比光斑s大,从而有利于光斑s在合光元件254处得到一放大的像并形成一放大的光斑t,有利于进一步降低第一光在合光元件254的损失,而补充光利用率未见减少,从而有利于提高光源***200的光效。
另外,如图2所示,合光元件254出射的第一光与补充光以相同的发散角入射至中继透镜255,中继透镜255包括多个曲率半径及位置可调的透镜,通过调整中继透镜255,使得中间像A成像于匀光器件290入口,并且第一光与补充光以相同的发散角入射至匀光器件290,从而有利于第一光与补充光在匀光器件290中经过多次反射进而提高出射光线的均匀性。
本实施方式中,还提供一种提高光源***200光效的方法,包括以下步骤:
S1:提供激发光。具体地,应用于光源***200中,通过激发光源提供用于激发波长转换装置的激发光,激发光可以为蓝色、紫色或紫外光,以激发处波长较长的红色荧光、绿色荧光、是黄色荧光、橙色荧光或其他颜色荧光。
S2:提供补充光。在一种实施方式中,可以利用补充光源220发出包括激光的补充光。补充光可以为红色激光、蓝色激光、绿色激光或其他颜色激光中的至少一种。
S3:利用波长转换装置270对入射的部分激发光进行波长转换并出射第一光。波长转换装置270表面设置有波长转换材料,以将至少部分激发光转换为荧光,在本发明中,波长转换装置270表面还设置有用于散射激发光的散射层,波长转换装置270出射的第一光包括荧光与散射后的激发光。
S4:将所述补充光聚焦于合光元件254的第一区域254a附近。一般地,可以通过透镜或其他比如反射元件实现补充光的会聚。
S5:利用合光元件254对所述补充光与所述第一光进行光学扩展量合光。补充光会聚于第一区域254a附近,第一光包括荧光,荧光的光学扩展量大于补充光,第一光照射至合光元件254表面的第一区域 254a与第二区域254b。具体地,第一区域254a用于透射光线,第二区域254b用于反射光线。在一种实施方式中,第一区域254a设置有增透膜,或第一区域254a为镂空区域,第二区域254b用于反射光线。
S6:利用会聚透镜253,波长转换装置270表面上第一光的光斑s在合光元件处形成一放大的像。
具体地,调节会聚透镜253的曲率半径,及/或会聚透镜256在光源***200中的位置,进而能够找到至少一组会聚透镜253的参数,能够实现合光元件254上形成一放大的像,使得光斑s在合光元件254处形成一放大的像。
本实施方式中,利用会聚透镜253,光斑s在所述合光元件处形成一放大的中间像。中间像为会聚透镜253出射光线直径最小处对应的像,若中间像为放大的像,即中间像相对于光斑s面积更大,则有利于提高光源***200的***光效。
可以理解的是,在步骤S6之后还可以包括步骤S7以调节出射光源光的均匀性。
S7:利用匀光器件290对合光元件出射的光线进行均匀化处理。
S8:利用中继透镜255将合光元件254出射的光线中继至匀光器件290入口,从而有利于减弱显示设备的显示画面颜色不均匀现象。
可以理解的是,根据不同的需求,上述步骤中可以增加或移除相应的步骤,或者改变步骤之间顺序都是可行的。
请参阅图4-图5,图4为本发明第二实施方式提供的光源***300的结构示意图,图5为中间像A与合光元件354上第一光的光斑t及合光元件354表面大小比较示意图。
本实施方式中提供的光源***300中,波长转换装置370上激发光光斑的中间像A位于合光元件354与中继透镜355之间,以在合光元件354表面形成放大的像,实现了合光元件354处第一光光斑t面积的放大,并能够实现中间像A成像于匀光器件390的入口处。
由于第一光光学扩展量不为0,也就是说第一光光束存在一定发散角,波长转换装置370上第一光光斑s经过会聚透镜353形成位于合光元件354远离会聚透镜353一侧的中间像A,由于中间像A的位 置对应会聚透镜353出射第一光光束直径最小的位置,从而合光元件354上第一光的光斑t对应的第一光光束直径大于中间像A对应的第一光光束直径,从而合光元件354表面的第一光光斑t面积大于中间像A,合光元件354上第一光的光斑面积得到了放大,进而有利于提高第一光的利用率及光源***300的光效。
中继透镜355将激发光光斑中间像A成像到光学积分棒390入口,而补充光聚焦于合光元件354的第一区域位置,由于中间像A不处于合光元件354上,也就是说中间像A与补充光聚焦位置轻微离焦,因此匀光器件390入口位置的补充光光学扩展量变大,匀光器件390匀光效果增强,另外,第一光与补充光以相同的发散角入射至匀光器件,进一步减弱了显示设备显示画面的颜色不均匀现象。
在本实施方式中,关于提高光源***300光效的方法所包括的步骤中,与提高光源***200光效的方法不同的是:步骤S6具体为:利用会聚透镜354,光斑s在合光元件354与中继透镜355之间形成一中间像。
具体地,根据第一光的预设光线损失比例,确定中间像A在合光元件354与中继透镜355之间的预设成像位置;调节会聚透镜353,使得光斑s成像于预设成像位置。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式及第二实施方式中的各具体方案也可以相互适用,为节省篇幅及避免重复起见,在此就不再赘述。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或***通过软件或者硬件来实现。第一,第二等词语用 来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (13)

  1. 一种光源***,其特征在于,包括:
    激发光源,用于发出激发光;
    补充光源,用于发出补充光;
    波长转换装置,用于对部分所述激发光进行波长转换并出射第一光;及
    引导装置,包括会聚透镜及合光元件,其中,所述会聚透镜用于调整所述第一光的发散角,所述合光元件包括第一区域,所述补充光聚焦于所述第一区域附近,所述补充光与所述会聚透镜出射的第一光在所述合光元件处进行光学扩展量合光;
    所述波长转换装置表面上第一光的光斑通过所述会聚透镜在所述合光元件处形成一放大的像。
  2. 如权利要求1所述的光源***,其特征在于,所述光斑经过所述会聚透镜形成一中间像,所述中间像位于所述合光元件处,所述合光元件出射的光线经过中继透镜后出射。
  3. 如权利要求2所述的光源***,其特征在于,所述中间像位于所述第一区域。
  4. 如权利要求1所述的光源***,其特征在于,所述光源***包括用于接收所述合光元件出射光线的中继透镜,所述光斑经过所述会聚透镜形成中间像,所述中间像位于所述合光元件与所述中继透镜之间。
  5. 如权利要求2-4任意一项所述的光源***,其特征在于,所述光源***还包括用于对所述引导装置的出射光线进行匀光的匀光器件,所述中继透镜将所述中间像成像于所述匀光器件入口。
  6. 如权利要求5所述的光源***,其特征在于,所述第一光及所述补充光以相同的发散角进入所述匀光器件。
  7. 如权利要求1所述的光源***,其特征在于,所述第一区域中设置有偏振分光膜或偏振分光片。
  8. 如权利要求1所述的光源***,其特征在于,所述引导装置还 包括邻近所述波长转换装置设置的收集透镜,所述收集透镜用于对所述波长转换装置出射的第一光进行准直,准直后的第一光入射至所述会聚透镜。
  9. 如权利要求1所述的光源***,其特征在于,所述会聚透镜的曲率半径及其在所述光源***中的位置是可调节的,通过调节所述会聚透镜的曲率半径和/或其在所述光源***中的位置,使得所述波长转换装置表面上第一光的光斑通过所述会聚透镜在所述合光元件处形成一放大的像。
  10. 一种显示设备,其特征在于,包括如权利要求1-9任意一项所述的光源***。
  11. 一种提高光源***光效的方法,其特征在于,包括以下步骤:
    提供激发光;
    提供补充光;
    利用波长转换装置对入射的部分激发光进行波长转换并出射第一光;
    将所述补充光聚焦于合光元件的第一区域附近;
    利用合光元件对所述补充光与所述第一光进行光学扩展量合光;
    利用会聚透镜,波长转换装置表面上第一光的光斑在合光元件处形成一放大的像。
  12. 如权利要求11所述的提高光源***光效的方法,其特征在于,所述利用会聚透镜,波长转换装置表面上第一光的光斑在合光元件处形成一放大的像,包括:
    调节所述会聚透镜的曲率半径,及/或所述会聚透镜在光源***中的位置,使得所述光斑在所述合光元件处形成一放大的像。
  13. 如权利要求11-12任意一项所述的提高光源***光效的方法,其特征在于,还包括:
    利用中继透镜接收所述合光元件出射的光线;
    所述利用会聚透镜,将波长转换装置表面上第一光的光斑在合光元件处形成一放大的像,包括:
    利用所述会聚透镜,所述光斑在所述合光元件与所述中继透镜之 间形成一放大的中间像。
PCT/CN2019/081647 2018-09-03 2019-04-08 光源***、提高其光效的方法及显示设备 WO2020048123A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/272,902 US11223806B2 (en) 2018-09-03 2019-04-08 Light source system, method for improving light efficiency thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811020709.2A CN110874005B (zh) 2018-09-03 2018-09-03 光源***、提高其光效的方法及显示设备
CN201811020709.2 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020048123A1 true WO2020048123A1 (zh) 2020-03-12

Family

ID=69716712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081647 WO2020048123A1 (zh) 2018-09-03 2019-04-08 光源***、提高其光效的方法及显示设备

Country Status (3)

Country Link
US (1) US11223806B2 (zh)
CN (1) CN110874005B (zh)
WO (1) WO2020048123A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源***及投影设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397793A (zh) * 2021-12-30 2022-04-26 无锡羿飞教育科技有限公司 一种混合光源装置及投影***
CN116430600B (zh) * 2023-06-13 2023-09-01 极米科技股份有限公司 一种合光***及投影设备
CN116794919B (zh) * 2023-08-28 2023-12-12 宜宾市极米光电有限公司 一种光源***及投影设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050981A1 (en) * 2011-08-25 2013-02-28 Appotronics Corporation Limited Method and Apparatus for Solid State Illumination
CN105204278A (zh) * 2014-05-26 2015-12-30 台达电子工业股份有限公司 光源***及其适用的投影设备
CN106385739A (zh) * 2016-10-09 2017-02-08 超视界激光科技(苏州)有限公司 激光光源模组和光源***
CN107797372A (zh) * 2017-11-17 2018-03-13 四川长虹电器股份有限公司 一种双色激光光源光学引擎***
CN207457687U (zh) * 2017-09-26 2018-06-05 深圳市光峰光电技术有限公司 光源***及投影设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107632487B (zh) * 2013-04-20 2020-03-24 深圳光峰科技股份有限公司 发光装置及相关光源***
CN107479311B (zh) * 2014-06-23 2020-10-20 深圳光峰科技股份有限公司 光源***及投影设备
CN105739226B (zh) * 2014-12-08 2019-06-21 深圳光峰科技股份有限公司 投影***
CN205982969U (zh) * 2016-08-12 2017-02-22 深圳市绎立锐光科技开发有限公司 光源装置及投影***
CN109491187B (zh) * 2017-09-13 2021-05-04 深圳光峰科技股份有限公司 波长转换装置、光源***及投影设备
CN109557752B (zh) * 2017-09-26 2021-03-02 深圳光峰科技股份有限公司 光源***及投影装置
CN109557751B (zh) * 2017-09-26 2021-07-23 深圳光峰科技股份有限公司 光源***及应用所述光源***的投影***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050981A1 (en) * 2011-08-25 2013-02-28 Appotronics Corporation Limited Method and Apparatus for Solid State Illumination
CN105204278A (zh) * 2014-05-26 2015-12-30 台达电子工业股份有限公司 光源***及其适用的投影设备
CN106385739A (zh) * 2016-10-09 2017-02-08 超视界激光科技(苏州)有限公司 激光光源模组和光源***
CN207457687U (zh) * 2017-09-26 2018-06-05 深圳市光峰光电技术有限公司 光源***及投影设备
CN107797372A (zh) * 2017-11-17 2018-03-13 四川长虹电器股份有限公司 一种双色激光光源光学引擎***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源***及投影设备
CN116430662B (zh) * 2023-06-13 2023-08-15 宜宾市极米光电有限公司 一种光源***及投影设备

Also Published As

Publication number Publication date
CN110874005A (zh) 2020-03-10
US20210218937A1 (en) 2021-07-15
CN110874005B (zh) 2021-10-26
US11223806B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
US20210286246A1 (en) Light-source system and projection device
EP3598229B1 (en) Light source apparatus and projection system
WO2020048123A1 (zh) 光源***、提高其光效的方法及显示设备
JP6283932B2 (ja) 照明装置および映像表示装置
EP3598230B1 (en) Light source device and projection system
JP6525856B2 (ja) 光源光学系およびこれを用いた投射型表示装置
US9740088B2 (en) Light source apparatus and projection display apparatus provided with same including waveplate and dichroic prism
TWI591418B (zh) 光源系統
US9470963B2 (en) Lighting device and projection type video display apparatus
US11067881B2 (en) Light source system and projection system using same
JP2020024429A (ja) 発光装置及び投影表示デバイス
CN111077720B (zh) 光源***及显示设备
CN110888290B (zh) 光源***及投影***
US10509303B2 (en) Laser projection device with reflective component and 1/4 wave plate
WO2020057299A1 (zh) 光源***及投影设备
WO2020216263A1 (zh) 光源***和显示设备
WO2019214273A1 (zh) 光源***、投影设备及照明设备
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
JP6790170B2 (ja) 光源光学系およびこれを用いた投射型表示装置
WO2020057106A1 (zh) 光源***及显示设备
JP6711705B2 (ja) 照明装置およびこれを用いた投射型表示装置
CN112213909B (zh) 光源***与显示设备
CN114397793A (zh) 一种混合光源装置及投影***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857796

Country of ref document: EP

Kind code of ref document: A1