WO2019214273A1 - 光源***、投影设备及照明设备 - Google Patents

光源***、投影设备及照明设备 Download PDF

Info

Publication number
WO2019214273A1
WO2019214273A1 PCT/CN2019/070523 CN2019070523W WO2019214273A1 WO 2019214273 A1 WO2019214273 A1 WO 2019214273A1 CN 2019070523 W CN2019070523 W CN 2019070523W WO 2019214273 A1 WO2019214273 A1 WO 2019214273A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
optical path
color
source system
Prior art date
Application number
PCT/CN2019/070523
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
鲁宁
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to EP19800781.7A priority Critical patent/EP3792690A4/en
Publication of WO2019214273A1 publication Critical patent/WO2019214273A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present invention relates to the field of projection technologies, and in particular, to a light source system, a projection device, and a lighting device.
  • the laser fluorescent light source technology is a technique for generating a laser by using a first color laser to excite a phosphor, and generally uses a blue laser as the first color laser, and the phosphor may be a yellow phosphor, a green phosphor or a red phosphor, and the like.
  • the cost of the blue laser is relatively low, the electro-optic conversion efficiency is high, and the excitation efficiency of the phosphor is high.
  • the fluorescence spectrum is wide and the color purity is low, so it cannot directly satisfy the requirements of the wide color gamut.
  • the filter is usually used. The film filters it, but this way causes a large loss of light.
  • the use of a hybrid light source of fluorescence and laser can achieve better color purity, and can use the two mixed light to eliminate coherence to maintain an acceptable cost. At the same time, it brings some difficulties to the optical design. Because of the overlapping bands between the fluorescence spectrum and the laser spectrum, the combination of the two will result in a large loss of light efficiency.
  • the present invention provides a laser fluorescent light source system which can effectively reduce the loss of light efficiency, and the light emitting device also provides a projection device and a lighting device.
  • a light source system comprising:
  • a supplemental light source for emitting complementary light different from the color of the first color laser, the supplementary light being a laser;
  • Optical path selection components including:
  • An optical path selecting unit configured to reflect the first color laser to the first optical path or the second optical path with time series
  • a driving unit configured to drive the transmissive portion and the optical path selecting portion to be alternately located on an optical path of the first color laser
  • a first wavelength conversion device for generating a second color of fluorescence under excitation of a first color laser light transmitted along the first optical path
  • a second wavelength conversion device for generating a third color fluorescence under excitation of the first color laser light transmitted along the second optical path
  • the second color fluorescence, the third color fluorescence, the complementary light, and the first color laser light transmitted by the optical path selecting element are combined and emitted.
  • the light source system further includes a control device
  • the control device controls the supplemental light source not to emit light
  • the control device controls the supplemental light source to emit light when the optical path selection portion is located on the optical path of the first color laser.
  • the optical path selecting portion includes an undulating surface composed of a surface of the first reflecting portion and the second reflecting portion, the first reflecting portion for guiding the first color laser to the first optical path,
  • the second reflecting portion is for guiding the first color laser to the second optical path.
  • the undulating surface is provided with a first section and a second section, the first section is provided with the first reflecting portion, and the second section is provided with the second reflecting part .
  • first reflecting portion and the second reflecting portion are disposed alternately or adjacently.
  • first reflecting portion and the second reflecting portion are planes or curved surfaces different from each other.
  • the light source system is respectively provided with corresponding collecting lens groups at positions adjacent to the first wavelength converting device and the second wavelength converting device, and each collecting lens group is respectively used for collecting light to corresponding wavelength conversion
  • the device, and the fluorescence for emitting the corresponding wavelength conversion device are collimated and then emitted.
  • the light source system further includes a light homogenizing device, and the second color fluorescent light, the third color fluorescent light, the complementary light, and the first color laser light transmitted by the optical path selecting element are combined and incident on the light source The homogenizing device.
  • the light source system further includes a first spectroscopic filter for guiding the second color fluorescence emitted by the first wavelength conversion device and the third color fluorescence emitted by the second wavelength conversion device to exit along the same optical path ;
  • the first spectral filter is provided with a first region and a second region, wherein the first region is configured to guide a first color laser light transmitted along the first optical path to the first wavelength conversion device, The second region is for directing a first color laser light transmitted along the second optical path to the second wavelength conversion device.
  • the light source system further includes a second spectral filter for guiding the supplemental light, the second color fluorescent light and the third color emitted by the first spectral filtering filter Fluorescence, and the first color laser light transmitted by the optical path selecting element are emitted along the same optical path.
  • the collimated second color fluorescence and the third color fluorescence are irradiated onto the surface of the second spectral filter
  • the second spectral filter includes a coating area and an edge area
  • the supplementary light and the a first color laser emitted from the optical path selecting element is concentrated near the coating area
  • the coating area is for reflecting the complementary light and a first color laser transmitted by the optical path selecting element
  • the edge area is for transmitting the
  • the second color of fluorescence is fluorescent with the third color.
  • the coating area is for reflecting light of a preset wavelength range, and the wavelength range of the first color laser and the supplementary light is within the preset wavelength range.
  • the first color laser and the supplemental light are light of a first polarization state
  • the coating region is for reflecting light of the first polarization state and transmitting light of other polarization states.
  • the light source system further includes a third spectral filter, the complementary light emitted by the complementary light source and the first color laser emitted by the excitation light source are combined by the third spectral filter and then incident
  • the optical path selecting component wherein the optical path selecting section of the optical path selecting component is further configured to transmit the supplemental light.
  • the transmitting portion is a diffusion sheet.
  • optical path selecting portion is a dichroic color patch having a curved surface.
  • the light source system further includes a third spectral filter, and the first color laser light transmitted by the optical path selecting element and the complementary light emitted by the supplementary light source are combined by the third spectral filter and then incident on The second spectral filter.
  • a scattering element is further disposed between the second spectral filter and the third spectral filter.
  • a projection apparatus comprising the light source system of any of the above.
  • a lighting device comprising the light source system of any of the above.
  • the first color laser and the supplemental light emitted by the light source system provided by the invention are not reflected and transmitted by the wavelength conversion device, and the laser utilization rate is high, which is beneficial to reducing the light effect loss of the light source system and improving the luminous intensity, thereby ensuring the said
  • the light output quality of the projection device and the lighting device has very important practical value.
  • FIG. 1 is a schematic structural diagram of a light source system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic top plan view of the optical path selecting element shown in FIG. 1.
  • FIG. 2 is a schematic top plan view of the optical path selecting element shown in FIG. 1.
  • FIG. 3 is a schematic top plan view of the first spectral filter shown in FIG. 1.
  • FIG. 3 is a schematic top plan view of the first spectral filter shown in FIG. 1.
  • FIG. 4 is a schematic top plan view of the second spectral filter shown in FIG. 1.
  • FIG. 5 is a schematic structural diagram of a light source system according to a second embodiment of the present invention.
  • Fig. 6 is a top plan view showing the optical path selecting element shown in Fig. 5.
  • Light source system 100 200 Excitation source 110 Supplementary light source 120, 220 Third spectroscopic filter 125,225 Optical path selection component 130, 230 Transmissive part 132,232 Optical path selection department 134,234 First section 135a Second section 135b Drive department 136 First spectroscopic filter 140 First area 142 Second area 144 First wavelength conversion device 150a Second wavelength conversion device 150b Scattering element 260 Second spectroscopic filter 170,270 Coating area 172 Edge area 174 Homogenizer 180
  • FIG. 1 is a schematic structural view of a light source system 100 according to a first embodiment of the present invention
  • FIG. 2 is a schematic top plan view of the optical path selecting component 130 shown in FIG.
  • the high utilization rate of the laser light of the light source system 100 is beneficial to reducing the light loss of the light source system 100 and improving the luminous intensity, and can be applied to a projection device and a lighting device to ensure the light output quality of the projection device and the illumination device. Very important practical value.
  • the light source system 100 includes an excitation light source 110, a supplemental light source 120, an optical path selection element 130, a first wavelength conversion device 150a, and a second wavelength conversion device 150b.
  • the excitation light source 110 is configured to emit a first color laser light
  • the supplementary light source 120 is configured to emit complementary light different from the first color laser light color, the supplementary light is a laser light
  • the optical path selecting component 130 includes: a transmissive portion 132 and an optical path The selection unit 134 and the drive unit 136.
  • the transmissive portion 132 is configured to transmit the first color laser light; the optical path selecting portion 134 is configured to reflect the first color laser light to the first optical path or the second optical path with time series; and the driving portion 136 is configured to drive the transmissive portion 132 and The optical path selecting portion 134 is alternately located on the optical path of the first color laser.
  • the first wavelength conversion device 150a is configured to generate a second color fluorescence under excitation of the first color laser light transmitted along the first optical path.
  • the second wavelength conversion device 150b is configured to generate a third color fluorescence under excitation of the first color laser light transmitted along the second optical path.
  • the second color fluorescence, the third color fluorescence, the complementary light, and the first color laser light transmitted by the optical path selecting element are combined and emitted.
  • the first color laser and the supplemental light emitted by the light source system 100 are not reflected and transmitted by the wavelength conversion device, and the laser utilization rate is high, which is beneficial to reducing the light efficiency loss of the light source system 100 and improving the luminous intensity, thereby ensuring the projection device and the device.
  • the light quality of the lighting equipment has very important practical value.
  • the light source system 100 further includes a light homogenizing device 180, and the second color fluorescent light, the third color fluorescent light, the complementary light, and the first color laser light transmitted by the optical path selecting element 130 are combined and then incident on The light homogenizing device 180 passes through the homogenizing device 180 and emits light.
  • the homogenizing device 180 can be a homogenizing rod or a fly-eye lens.
  • the light homogenizing device 180 includes a diffusing film for scattering light to de-cohere the outgoing light to attenuate the coherent speckle.
  • the excitation light source 110 and the supplemental light source 120 emit laser light of a different color.
  • the excitation light source 110 includes an illuminant for generating a first color laser.
  • the excitation source 110 further includes a light homogenizing device for homogenizing the first color laser.
  • the excitation light source 110 may be a blue light source that emits a blue laser light. It can be understood that the excitation light source 110 is not limited to the blue light source, and the excitation light source 110 may also be a purple light source, a red light source or a green light source.
  • the illuminant in the excitation light source 110 is a blue laser for emitting a blue laser light as the first color laser. It can be understood that the illuminant in the excitation light source 110 can include one or two lasers or an array of lasers, and the number of lasers can be selected according to actual needs.
  • the light homogenizing device is configured to emit light after the first color laser is homogenized.
  • the light homogenizing device may be a homogenizing rod or a fly-eye lens.
  • the light homogenizing device in the excitation light source 110 includes a diffusing film for scattering the first color laser light, thereby performing decoherent processing on the first color laser light.
  • the supplemental light source 120 includes an illuminant for generating a red laser.
  • the illuminant in the supplemental light source 120 includes a red laser, and the supplemental light source 120 is used to emit a red laser as supplemental light.
  • the illuminant in the supplemental light source 120 can include one or two lasers or a laser array, and the number of lasers can be selected according to actual needs. It can be understood that, in one embodiment, the supplemental light source 120 is used to emit a green laser as supplemental light, and accordingly, the illuminant in the supplemental light source 120 includes a green laser.
  • the supplemental light source 120 can also include an illuminant for emitting two colors of laser light.
  • the illuminant in the supplemental light source 120 includes a red laser and a green laser, and a red laser and a green laser are used as supplemental light.
  • the first wavelength conversion device 150a and the second wavelength conversion device 150b are fixed wavelength conversion devices, preferably fixed fluorescent plates, which are advantageous for reducing the occupation of the wavelength conversion device in the light source system 100.
  • the space facilitates the compact design of the light source system 100.
  • the first wavelength conversion device 150a and the second wavelength conversion device 150b are configured to generate fluorescence of a corresponding color under excitation of the first color laser.
  • the first wavelength conversion device 150a is provided with a red phosphor on the surface to generate red fluorescence
  • the second wavelength conversion device 150b is provided with a green phosphor on the surface to generate green fluorescence. It can be understood that the first wavelength conversion device 150a and the second wavelength conversion device 150b can also be provided with wavelength conversion materials of other colors.
  • the light source system 100 is respectively provided with corresponding collecting lens groups at positions adjacent to the first wavelength converting device 150a and the second wavelength converting device 150b, each collecting lens group for respectively condensing light to a corresponding wavelength converting device, and for The fluorescence emitted by the corresponding wavelength conversion device is collimated and then emitted.
  • the light source system 100 further includes a control device (not shown) that controls the supplemental light source 120 not to emit light when the transmissive portion 132 is on the optical path of the first color laser; when the optical path selection portion 134 is located at the first When the color laser is on the optical path, the control device controls the supplemental light source 120 to emit complementary light of a corresponding color according to the color of the fluorescent light.
  • the control device controls the supplemental light source 120 to generate red supplemental light.
  • the control device controls the supplemental light source 120 to generate green supplemental light.
  • the control device controls the supplemental light source 120 to emit supplemental light corresponding to the current fluorescent color, that is, the control device controls when red fluorescence is generated.
  • the supplemental light source 120 produces red supplemental light that controls the supplemental light source 120 to produce green supplemental light when green fluorescence is produced.
  • the light source system 100 further includes a third spectral filter 125 that supplements the complementary light emitted by the light source 120 and the first color laser emitted by the excitation light source 110, merges with the third spectral filter 125, and is incident on the optical path selecting element 130.
  • the third spectral filter 125 is a dichroic color patch for translucent blue.
  • the transmissive portion 132 is a diffusion sheet to attenuate the speckle phenomenon of the first color laser light and expand its optical expansion amount. It can be understood that, in one embodiment, the transmissive portion 132 is provided with an anti-reflection film, and a scattering element is further disposed between the optical path selecting element 130 and the light homogenizing device 180.
  • the optical path selecting portion 134 in the optical path selecting element 130 includes an undulating surface composed of a surface of the first reflecting portion and the second reflecting portion, the first reflecting portion for guiding the first color laser to The first light path, the second reflection portion is configured to guide the first color laser to the second light path.
  • the first reflective portion and the second reflective portion have different surface curvatures.
  • the first reflective portion and the second reflective portion are a combination of a concave portion and a convex portion, such as the first reflection.
  • the portion is a concave portion that extends concavely toward the driving portion 136 with respect to the surface of the transmitting portion 132.
  • the second reflecting portion is a convex portion that protrudes away from the driving portion 136 with respect to the surface of the transmitting portion 132.
  • the first reflecting portion may also be a combination of a concave portion and a plane, a combination of a convex portion and a plane, or a concave portion and a concave portion with different curvatures, and a convex portion and a convex portion with different curvatures combined with different reflection directions.
  • the second reflecting portion is for guiding the first color laser to the first optical path
  • the first reflecting portion is for guiding the first color laser to the second optical path.
  • the undulating surface is provided with a first segment 135a and a second segment 135b, the first segment 135a is provided with the first reflecting portion, and the second segment 135b is provided with the first portion Two reflecting parts.
  • the adjacent first reflective portion and the first reflective portion, and/or the adjacent first reflective portion and second reflective portion, and/or adjacent second reflective portion and second reflective portion The parts are connected.
  • the adjacent first reflecting portion and the first reflecting portion, and/or the first reflecting portion and the second reflecting portion, and/or the second reflecting portion and the second reflecting portion are spaced apart from each other.
  • the first reflecting portion corresponding to the undulating surface is alternately disposed with the second reflecting portion.
  • the undulating surface is wavy. Further, the first reflecting portion and the second reflecting portion are disposed adjacent to each other at a predetermined interval.
  • the optical path selecting unit 134 is further configured to transmit the supplemental light.
  • the optical path selecting unit 134 is a curved dichroic color patch for anti-blue reddish or anti-blue yellow.
  • FIG. 3 is a schematic top view of the first spectral filter 140 shown in FIG. 1 .
  • the light source system 100 further includes a first spectral filter 140 disposed between the optical path selecting component 130, the first wavelength converting device 150a, and the second wavelength converting device 150b.
  • the first spectral filter 140 is configured to guide the second color fluorescence emitted by the first wavelength conversion device 150a and the third color fluorescence emitted from the second wavelength conversion device 150b to exit along the same optical path.
  • the first spectroscopic filter 140 is provided with a dichroic film on one side of the second wavelength conversion device 150b. In the embodiment, the dichroic film is used for anti-green translucent.
  • the first spectral filter 140 is provided with a first region 142 and a second region 144, wherein the first region 142 is configured to guide the first color laser light transmitted along the first optical path to the first wavelength conversion device 150a, The two regions 144 are for directing the first color laser light transmitted along the second optical path to the second wavelength conversion device 150b.
  • the first area 142 corresponds to the first reflection part, and is configured to receive the light emitted by the first reflection part;
  • the second area 144 corresponds to the second reflection part, and is configured to receive the second reflection The light emitted by the Ministry.
  • first area 142 and the second area 144 may be disposed adjacent to each other, or may be spaced apart, and the separation distance between the first area 142 and the second area 144 may be according to the first optical path and the second optical path.
  • the first color laser light transmitted by the second optical path is guided to the second wavelength conversion device 150b via the second region 144.
  • the optical path selecting component 130 alternately emits the first color laser light transmitted along the first optical path and the second optical path with the timing, so that the first spectral filter 140 alternately emits the first color laser to the first wavelength conversion according to the timing.
  • the first region 142 is for reflecting the first color laser
  • the second region 144 is for transmitting the first color laser
  • the first color laser is for blue laser.
  • the first spectral filter 140 faces one side of the first wavelength conversion device 150a
  • the first region 142 may be provided with a dichroic film or a reflective film for reflecting blue light
  • the second region 144 may be provided with an antireflection film.
  • FIG. 4 is a schematic top view of the second spectral filter 170 shown in FIG. 1 .
  • the light source system 100 further includes a second beam splitting filter 170 disposed between the first beam splitting filter 140 and the light homogenizing device 180, and the second beam splitting filter 170 is configured to guide the supplemental light and the first beam splitting filter.
  • the second color fluorescence emitted from the sheet 140 and the third color fluorescence and the first color laser light transmitted by the optical path selecting element 130 are emitted to the light homogenizing device 180 along the same optical path.
  • the collimated second color fluorescence and the third color fluorescence are irradiated onto the surface of the second spectral filter 170, and the second spectral filter 170 includes a coating region 172 and an edge region 174, and the complementary light and the optical path selecting element 130 are emitted.
  • the first color laser is concentrated by the converging lens 160 near the coating area 172, the coating area 172 is for reflecting the complementary color and the first color laser light transmitted by the optical path selecting element 130, and the edge area 174 is for transmitting the second color fluorescent light. Fluorescence with the third color.
  • the coating region 172 is plated with a reflective film or a filter film, or the coated region 172 is provided with a reflective sheet or a filter, and the edge region 174 is plated with an anti-reflection film.
  • the coating region 172 is plated with a band pass filter for reflecting light of a predetermined wavelength range, and the wavelength range of the first color laser and the supplementary light is within the preset wavelength range. .
  • the band pass filter reflects light in a predetermined wavelength range and reflects light outside the predetermined wavelength range.
  • the predetermined wavelength range is: 445 nm-455 nm, 515 nm-525 nm, and 633 nm-643 nm, and the three bands are the wavelength bands of the first color laser and the supplemental light to reduce fluorescence.
  • the loss in the coating area 172 increases the rate of fluorescence.
  • the first color laser and the supplemental light are light of a first polarization state
  • the coating region 172 is for reflecting light of the first polarization state and transmitting light of other polarization states. Since the fluorescence is unpolarized light, the fluorescence loses 1/2 of the light effect in the coating region 172, which is advantageous for improving the utilization of fluorescence.
  • the first color laser light emitted by the supplemental light and the optical path selecting element 130 is a laser having a Gaussian distribution, and the optical expansion amount is small, and after convergence, a very small spot is formed on the plating region 172, and the coating region 172 is formed.
  • the size matches the spot size formed by the laser.
  • the fluorescence optical spread of the Lambertian distribution is large, and the spot area irradiated to the surface of the second spectral filter 170 is much larger than the spot formed by the laser, and most of the fluorescence is irradiated into the edge region 174.
  • the light source system 100 can accomplish fluorescence and laser merging with a small amount of the fluorescence lost by the principle of optically expanding the combined light.
  • the laser angle can be matched with the fluorescence angle so that the fluorescence and the laser are continuous after the angle distribution.
  • the angle uniformity of the light after the combination of light is ensured, and the quality of the projected picture or the quality of the illumination light is reduced.
  • the light source system 100 in the embodiment of the present invention further includes guiding elements well known in the art, such as relay lenses, mirrors, and the like, which are not mentioned here.
  • FIG. 6 is a schematic top plan view of the optical path selection component 230 shown in FIG.
  • the main difference between the light source system 200 and the light source system 100 is that the supplemental light does not pass through the optical path selecting element 230, which is advantageous for improving the utilization of the laser.
  • the first color laser light transmitted by the optical path selecting element 230 and the complementary light emitted by the complementary light source 220 are combined by the third spectral filter 225 and then incident on the second spectral filter 270.
  • the transmissive area 232 of the optical path selecting element 230 is for transmitting the first color laser light
  • the optical path selecting portion 234 is for reflecting the first color laser light.
  • a scattering element 260 is further disposed between the second spectral filter 270 and the third spectral filter 225 to attenuate the speckle phenomenon of the laser and expand the amount of optical expansion thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源***(100),包括激发光源(110)、补充光源(120)、光路选择元件(130)、第一波长转换装置(150a)和第二波长转换装置(150b)。激发光源(110)用于发出第一色激光。补充光源(120)用于发出激光作为补充光。光路选择元件(130)包括透射部(132)、光路选择部(134)以及驱动部(136),透射部(132)用于透射第一色激光,光路选择部(134)用于将第一色激光随时序反射至第一光路或第二光路,驱动部(136)用于带动透射部(132)与光路选择部(134)交替位于第一色激光的光路上。第一波长转换装置(150a)用于在沿第一光路传输的第一色激光的激发下产生第二色荧光。第二波长转换装置(150b)用于在沿第二光路传输的第一色激光的激发下产生第三色荧光。第二色荧光、第三色荧光、补充光、与光路选择元件(130)透射的第一色激光合光后出射。还提供了包括这种光源***的投影设备和照明设备。

Description

光源***、投影设备及照明设备 技术领域
本发明涉及投影技术领域,尤其涉及一种光源***、投影设备及照明设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
激光荧光光源技术是利用第一色激光激发荧光粉产生受激光的技术,通常使用蓝激光作为第一色激光,荧光粉可以是黄光荧光粉、绿光荧光粉或红光荧光粉等,而蓝激光的成本相对较低,电光转化效率高,荧光粉的激发效率高;但荧光光谱较宽,色纯度低,因此不能直接满足于广色域的要求,为了提高颜色纯度,通常使用滤光片对其进行滤光,但这种方式会造成较大的光损失。
在此基础上,利用荧光和激光的混合光源既能获得较好的色纯度,又能利用两者混光消相干,维持一个可接受的成本。与此同时给光学设计带来一些难题,由于荧光光谱与激光光谱存在重叠的波段,将两者合光将造成光效损失较大。
发明内容
为解决现有技术中激光荧光光源光效损失较大的技术问题,本发明提供一种可以有效降低光效损失的激光荧光光源***,本发光还提供一种投影设备及照明设备。
一种光源***,包括:
激发光源,用于发出第一色激光;
补充光源,用于发出与所述第一色激光颜色不同的补充光,所述 补充光为激光;
光路选择元件,包括:
透射部,用于透射所述第一色激光;
光路选择部,用于将所述第一色激光随时序反射至第一光路或第二光路;及
驱动部,用于带动所述透射部与所述光路选择部交替位于所述第一色激光的光路上;
第一波长转换装置,用于在沿所述第一光路传输的第一色激光的激发下产生第二色荧光;及
第二波长转换装置,用于在沿所述第二光路传输的第一色激光的激发下产生第三色荧光;
所述第二色荧光、所述第三色荧光、所述补充光、与所述光路选择元件透射的第一色激光合光后出射。
进一步地,所述光源***还包括控制装置,
当所述透射部位于所述第一色激光的光路上时,所述控制装置控制所述补充光源不发光;
当所述光路选择部位于所述第一色激光的光路上时,所述控制装置控制所述补充光源发光。
进一步地,所述光路选择部包括由第一反射部与第二反射部表面组成的起伏表面,所述第一反射部用于将所述第一色激光引导至所述第一光路,所述第二反射部用于将所述第一色激光引导至所述第二光路。
进一步地,所述起伏表面设置有第一区段与第二区段,所述第一区段中设置有所述第一反射部,所述第二区段中设置有所述第二反射部。
进一步地,所述第一反射部与所述第二反射部交错设置或相邻设置。
进一步地,所述第一反射部与所述第二反射部为反射路径不同的平面或曲面。
进一步地,所述光源***在邻近所述第一波长转换装置及所述第二波长转换装置的位置分别设置有对应的收集透镜组,每个收集透镜组分别用于会聚光线至对应的波长转换装置,以及用于将对应波长转换装置出射的荧光进行准直后出射。
进一步地,所述光源***还包括匀光装置,所述第二色荧光、所述第三色荧光、所述补充光、与所述光路选择元件透射的第一色激光合光后入射至所述匀光装置。
进一步地,所述光源***还包括第一分光滤光片,用于引导所述第一波长转换装置出射的第二色荧光与所述第二波长转换装置出射的第三色荧光沿同一光路出射;
所述第一分光滤光片设置有第一区域与第二区域,其中,所述第一区域用于将沿所述第一光路传输的第一色激光引导至所述第一波长转换装置,所述第二区域用于将沿所述第二光路传输的第一色激光引导至所述第二波长转换装置。
进一步地,所述光源***还包括第二分光滤光片,所述第二分光滤光片用于引导所述补充光、所述第一分光滤光片出射的第二色荧光与第三色荧光、以及所述光路选择元件透射的第一色激光沿同一光路出射。
进一步地,准直后的第二色荧光与第三色荧光照射至所述第二分光滤光片表面,所述第二分光滤光片包括镀膜区域与边缘区域,所述补充光与所述光路选择元件出射的第一色激光会聚于所述镀膜区域附近,所述镀膜区域用于反射所述补充光与所述光路选择元件透射的第一色激光,所述边缘区域用于透射所述第二色荧光与所述第三色荧光。
进一步地,所述镀膜区域用于反射预设波长范围的光线,所述第一色激光与所述补充光的波长范围位于所述预设波长范围内。
进一步地,所述第一色激光与所述补充光为第一偏振态的光,所述镀膜区域用于反射所述第一偏振态的光线,透射其他偏振态的光线。
进一步地,所述光源***还包括第三分光滤光片,所述补充光源发出的补充光与所述激发光源发出的第一色激光,经过所述第三分光 滤光片合光后入射至所述光路选择元件,所述光路选择元件中的光路选择部还用于透射所述补充光。
进一步地,所述透射部为散射片。
进一步地,所述光路选择部为呈曲面的二向色片。
进一步地,所述光源***还包括第三分光滤光片,所述光路选择元件透射的第一色激光与所述补充光源发出的补充光经过所述第三分光滤光片合光后入射至所述第二分光滤光片。
进一步地,所述第二分光滤光片与所述第三分光滤光片之间还设置有散射元件。
一种投影设备,包括如上任意一项所述的光源***。
一种照明设备,包括如上任意一项所述的光源***。
本发明提供的光源***出射的第一色激光与补充光未经过波长转换装置的反射与透射,激光利用率高,有利于降低所述光源***的光效损失并提高发光强度,保证了所述投影设备及所述照明设备的出光质量,具有非常重要的实用价值。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施方式提供的光源***的结构示意图。
图2为图1所示的光路选择元件的俯视结构示意图。
图3为图1所示的第一分光滤光片的俯视结构示意图。
图4为图1所示的第二分光滤光片的俯视结构示意图。
图5为本发明第二实施方式提供的光源***的结构示意图。
图6为图5所示的光路选择元件的俯视结构示意图。
主要元件符号说明
光源*** 100、200
激发光源 110
补充光源 120、220
第三分光滤光片 125、225
光路选择元件 130、230
透射部 132、232
光路选择部 134、234
第一区段 135a
第二区段 135b
驱动部 136
第一分光滤光片 140
第一区域 142
第二区域 144
第一波长转换装置 150a
第二波长转换装置 150b
散射元件 260
第二分光滤光片 170、270
镀膜区域 172
边缘区域 174
匀光装置 180
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所 描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图1-图2,图1为本发明第一实施方式提供的光源***100的结构示意图,图2为图1所示的光路选择元件130的俯视结构示意图。光源***100的激光利用率高,有利于降低光源***100的光效损失并提高发光强度,可以应用于投影设备及照明设备中,保证了所述投影设备及所述照明设备的出光质量,具有非常重要的实用价值。
光源***100包括:激发光源110、补充光源120、光路选择元件130、第一波长转换装置150a、第二波长转换装置150b。其中,激发光源110用于发出第一色激光;补充光源120用于发出与所述第一色激光颜色不同的补充光,所述补充光为激光;光路选择元件130包括:透射部132、光路选择部134及驱动部136。其中,透射部132用于透射所述第一色激光;光路选择部134用于将所述第一色激光随时序反射至第一光路或第二光路;驱动部136用于带动透射部132与光路选择部134交替位于所述第一色激光的光路上。第一波长转换装置150a,用于在沿所述第一光路传输的第一色激光的激发下产生第二色荧光。第二波长转换装置150b,用于在沿所述第二光路传输的第一色激光的激发下产生第三色荧光。所述第二色荧光、所述第三色荧光、所述补充光、与光路选择元件透射的第一色激光合光后出射。
光源***100出射的第一色激光与补充光未经过波长转换装置的反射与透射,激光利用率高,有利于降低光源***100的光效损失并提高发光强度,保证了所述投影设备及所述照明设备的出光质量,具有非常重要的实用价值。
可以理解的是,光源***100还包括匀光装置180,所述第二色 荧光、所述第三色荧光、所述补充光、与光路选择元件130透射的第一色激光合光后入射至匀光装置180,经过匀光装置180的匀光后出射。可以理解的是,匀光装置180可为匀光棒或复眼透镜。在一种实施方式中,匀光装置180中包括用于对光线进行散射的散射膜片,从而对出射光进行消相干处理,以减弱相干散斑。
如图1所示,激发光源110与补充光源120发出颜色不同的激光。激发光源110包括用于产生第一色激光的发光体。在一种实施方式中,激发光源110还包括用于对所述第一色激光进行匀光的匀光器件。
进一步地,激发光源110可以为蓝色光源,发出蓝色激光。可以理解的是,激发光源110不限于蓝色光源,激发光源110也可以是紫色光源、红色光源或绿色光源等。本实施方式中,激发光源110中的发光体为蓝色激光器,用于发出蓝色激光作为第一色激光。可以理解,激发光源110中的发光体可以包括一个、两个激光器或激光器阵列,具体其激光器的数量可以依据实际需要选择。
所述匀光器件用于将第一色激光进行匀光后出射。本实施例中,所述匀光器件可为匀光棒或复眼透镜。在一种实施方式中,激发光源110中的匀光器件中包括用于对第一色激光进行散射的散射膜片,从而对所述第一色激光进行消相干处理。
本实施方式中,补充光源120包括用于产生红色激光的发光体。补充光源120中的发光体包括红色激光器,补充光源120用于发出红色激光作为补充光。在本实施方式中,可以理解,补充光源120中的发光体可以包括一个、两个激光器或激光器阵列,具体其激光器的数量可以依据实际需要选择。可以理解的是,在一种实施方式中,补充光源120用于发出绿色激光作为补充光,相应地,补充光源120中的发光体包括绿色激光器。可以理解的是,补充光源120还可以包括用于发出两种颜色激光的发光体,比如补充光源120中的发光体中包括红色激光器与绿色激光器,发出红色激光与绿色激光作为补充光。
如图1所示,第一波长转换装置150a与第二波长转换装置150b为固定式的波长转换装置,优选地为固定式的荧光板,有利于减小波 长转换装置在光源***100中的占用空间,有利于光源***100的体积小型化设计。第一波长转换装置150a与第二波长转换装置150b用于在所述第一色激光的激发下产生对应颜色的荧光。在本实施方式中,第一波长转换装置150a表面设置有红色荧光粉,以产生红色荧光,第二波长转换装置150b表面设置有绿色荧光粉,以产生绿色荧光。可以理解的是,第一波长转换装置150a与第二波长转换装置150b还可以设置其他颜色的波长转换材料。
光源***100在邻近第一波长转换装置150a及第二波长转换装置150b的位置分别设置有对应的收集透镜组,每个收集透镜组分别用于会聚光线至对应的波长转换装置,以及用于将对应波长转换装置出射的荧光进行准直后出射。
光源***100还包括控制装置(图未示),当透射部132位于所述第一色激光的光路上时,所述控制装置控制补充光源120不发光;当光路选择部134位于所述第一色激光的光路上时,所述控制装置根据产生荧光颜色,控制补充光源120发出对应颜色的补充光。本实施方式中,当第一波长转换装置150a产生红色荧光时,所述控制装置控制补充光源120产生红色补充光。当第二波长转换装置150b产生绿色荧光时,所述控制装置控制补充光源120产生绿色补充光。可以理解的是,在补充光源120能够发出红色补充光与绿色补充光的实施方式中,控制装置控制补充光源120发出与当下荧光颜色对应的补充光,即在产生红色荧光时所述控制装置控制补充光源120产生红色补充光,在产生绿色荧光时所述控制装置控制补充光源120产生绿色补充光。
光源***100还包括第三分光滤光片125,补充光源120发出的补充光与激发光源110发出的第一色激光,经过第三分光滤光片125合光后入射至光路选择元件130。本实施方式中,第三分光滤光片125为用于透蓝反红的二向色片。相应地,透射部132为散射片,以减弱所述第一色激光的散斑现象,并扩展其光学扩展量。可以理解的是,在一种实施方式中,透射部132设置有增透膜,光路选择元件130与匀光装置180之间还设置有散射元件。
如图2所示,光路选择元件130中的光路选择部134包括由第一反射部与第二反射部表面组成的起伏表面,所述第一反射部用于将所述第一色激光引导至所述第一光路,所述第二反射部用于将所述第一色激光引导至所述第二光路。其中,所述第一反射部与所述第二反射部表面曲率不同,在一种实施方式中,第一反射部与第二反射部为凹部与凸部的组合,比如,所述第一反射部为凹部,其相对于透射部132表面,向邻近驱动部136方向凹陷延伸;第二反射部为凸部,其相对于透射部132表面,向远离驱动部136方向凸出延伸。可以理解的是,所述第一反射部还可以是凹部与平面的组合,凸部与平面的组合,或者是不同曲率的凹部与凹部组合,不同曲率的凸部与凸部组合,不同反射方向的平面与平面的组合。在一种实施方式中,第二反射部用于将第一色激光引导至第一光路,第一反射部用于将所述第一色激光引导至第二光路。
在本实施方式中,所述起伏表面设置有第一区段135a与第二区段135b,第一区段135a中设置有所述第一反射部,第二区段135b中设置有所述第二反射部。在一种实施方式中,相邻的第一反射部与第一反射部、及/或相邻的第一反射部与第二反射部、及/或相邻的第二反射部与第二反射部相连接。在一种实施方式中,相邻的第一反射部与第一反射部、及/或第一反射部与第二反射部、及/或第二反射部与第二反射部之间间隔设置。
在一种实施方式中,起伏表面对应的第一反射部与第二反射部交错设置,在第一反射部与第二反射部为凹部与凸部组合的实施方式中,起伏表面呈波浪状,进一步地,所述第一反射部与所述第二反射部以预定间隔相邻设置。
光路选择部134还用于透射所述补充光,本实施方式中,光路选择部134为呈曲面的二向色片,所述二向色片用于反蓝透红的或反蓝透黄。
请参阅图3,为图1所示的第一分光滤光片140的俯视结构示意图。光源***100还包括第一分光滤光片140,设置于光路选择元件 130、第一波长转换装置150a与第二波长转换装置150b之间。第一分光滤光片140用于引导第一波长转换装置150a出射的第二色荧光与第二波长转换装置150b出射的第三色荧光沿同一光路出射。第一分光滤光片140面向第二波长转换装置150b的一侧设置有二向色膜,本实施方式中,所述二向色膜用于反绿透红。
第一分光滤光片140设置有第一区域142与第二区域144,其中,第一区域142用于将沿所述第一光路传输的第一色激光引导至第一波长转换装置150a,第二区域144用于将沿所述第二光路传输的第一色激光引导至第二波长转换装置150b。进一步地,第一区域142与所述第一反射部对应,并用于接收所述第一反射部发出的光线;第二区域144与所述第二反射部对应,并用于接收所述第二反射部发出的光线。可以理解的是,第一区域142与第二区域144可以相邻设置,或间隔设置,第一区域142与第二区域144之间的间隔距离可以根据所述第一光路与所述第二光路参数确定,进而保证所述第一反射部出射的沿所述第一光路传输的第一色激光经第一区域142引导至第一波长转换装置150a,以及保证所述第二反射部出射的沿所述第二光路传输的第一色激光经第二区域144引导至第二波长转换装置150b。
光路选择元件130随时序交替出射沿所述第一光路及所述第二光路传输的第一色激光,使得第一分光滤光片140随时序交替出射所述第一色激光至第一波长转换装置150a及第二波长转换装置150b。本实施方式中,第一区域142用于反射所述第一色激光,第二区域144用于透射所述第一色激光,第一色激光为蓝色激光。第一分光滤光片140面向第一波长转换装置150a的一侧,第一区域142可以设置有用于反射蓝光的二向色膜或反射膜,第二区域144可以设置有增透膜。
请结合图1进一步参阅图4,为图1所示的第二分光滤光片170的俯视结构示意图。光源***100还包括设置于第一分光滤光片140与匀光装置180之间的第二分光滤光片170,第二分光滤光片170用于引导所述补充光、第一分光滤光片140出射的第二色荧光与第三色荧光、以及光路选择元件130透射的第一色激光沿同一光路出射至匀 光装置180。
准直后的第二色荧光与第三色荧光照射至第二分光滤光片170表面,第二分光滤光片170包括镀膜区域172与边缘区域174,所述补充光与光路选择元件130出射的第一色激光经会聚透镜160会聚于镀膜区域172附近,镀膜区域172用于反射所述补充光与光路选择元件130透射的第一色激光,边缘区域174用于透射所述第二色荧光与所述第三色荧光。
具体地,镀膜区域172镀设有反射膜或滤光膜,或镀膜区域172设置有反射片或滤光片,边缘区域174镀设有增透膜。在一种实施方式中,镀膜区域172镀设有用于反射预设波长范围的光线的带通滤光膜,所述第一色激光与所述补充光的波长范围位于所述预设波长范围内。所述带通滤光膜反射预设波长范围内的光,并反射所述预设波长范围外的光。在一种实施方式中,所述预设波长范围为:445nm-455nm,515nm-525nm及633nm-643nm,上述三个波段为所述第一色激光与所述补充光所在的波段,以降低荧光在镀膜区域172的损耗,提高荧光的率用率。
在一种实施方式中,第一色激光与补充光为第一偏振态的光,镀膜区域172用于反射所述第一偏振态的光线,透射其他偏振态的光线。由于荧光为非偏振光,从而荧光在镀膜区域172损失1/2的光效,有利于提高荧光的利用率。
进一步地,所述补充光与光路选择元件130出射的第一色激光均为呈高斯分布的激光,光学扩展量小,并且经过会聚后,在镀膜区域172上形成极小的光斑,镀膜区域172尺寸与激光形成的光斑大小匹配。呈朗伯分布的荧光光学扩展量大,照射至第二分光滤光片170表面的光斑面积远大于激光形成的光斑,大部分荧光照射至边缘区域174中。光源***100通过光学扩展量合光的原理可以在损失少量所述荧光的情况下完成荧光与激光合光。
激光荧光合光过程中通过优化会聚透镜160的焦距及光路选择元件130中透射部132的散射程度可以使得激光角度与荧光角度相匹配, 使得所述荧光与激光合光后在角度分布上是连续的,保证了合光后光线的角度均匀性,避免投影画面画质或照明光线质量的降低。
另外,本发明实施方式中的光源***100中还包括本领域公知的引导元件,如中继透镜、反射镜等等,在此不一一例举。
请参阅图5-图6,为本发明第二实施方式提供的光源***200的结构示意图,图6为图5所示的光路选择元件230的俯视结构示意图。光源***200与光源***100的主要区别在于:补充光不经过光路选择元件230,有利于提高激光的利用率。具体地,光路选择元件230透射的第一色激光与补充光源220发出的补充光经过第三分光滤光片225合光后入射至第二分光滤光片270。相应地,光路选择元件230的透射区232用于透射第一色激光,光路选择部234用于反射所述第一色激光。第二分光滤光片270与第三分光滤光片225之间还设置有散射元件260,以减弱激光的散斑现象,并扩展其光学扩展量。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于第二实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或***通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换, 而不脱离本发明技术方案的精神和范围。

Claims (20)

  1. 一种光源***,其特征在于,包括:
    激发光源,用于发出第一色激光;
    补充光源,用于发出与所述第一色激光颜色不同的补充光,所述补充光为激光;
    光路选择元件,包括:
    透射部,用于透射所述第一色激光;
    光路选择部,用于将所述第一色激光随时序反射至第一光路或第二光路;及
    驱动部,用于带动所述透射部与所述光路选择部交替位于所述第一色激光的光路上;
    第一波长转换装置,用于在沿所述第一光路传输的第一色激光的激发下产生第二色荧光;及
    第二波长转换装置,用于在沿所述第二光路传输的第一色激光的激发下产生第三色荧光;
    所述第二色荧光、所述第三色荧光、所述补充光、与所述光路选择元件透射的第一色激光合光后出射。
  2. 如权利要求1所述的光源***,其特征在于,所述光源***还包括控制装置,
    当所述透射部位于所述第一色激光的光路上时,所述控制装置控制所述补充光源不发光;
    当所述光路选择部位于所述第一色激光的光路上时,所述控制装置控制所述补充光源发光。
  3. 如权利要求1所述的光源***,其特征在于,所述光路选择部包括由第一反射部与第二反射部表面组成的起伏表面,所述第一反射部用于将所述第一色激光引导至所述第一光路,所述第二反射部用于将所述第一色激光引导至所述第二光路。
  4. 如权利要求3所述的光源***,其特征在于,所述起伏表面设 置有第一区段与第二区段,所述第一区段中设置有所述第一反射部,所述第二区段中设置有所述第二反射部。
  5. 如权利要求3所述的光源***,其特征在于,所述第一反射部与所述第二反射部交错设置或相邻设置。
  6. 如权利要求3所述的光源***,其特征在于,所述第一反射部与所述第二反射部为反射路径不同的平面或曲面。
  7. 如权利要求1所述的光源***,其特征在于,所述光源***在邻近所述第一波长转换装置及所述第二波长转换装置的位置分别设置有对应的收集透镜组,每个收集透镜组分别用于会聚光线至对应的波长转换装置,以及用于将对应波长转换装置出射的荧光进行准直后出射。
  8. 如权利要求1所述的光源***,其特征在于,所述光源***还包括匀光装置,所述第二色荧光、所述第三色荧光、所述补充光、与所述光路选择元件透射的第一色激光合光后入射至所述匀光装置。
  9. 如权利要求1-8任意一项所述的光源***,其特征在于,所述光源***还包括第一分光滤光片,用于引导所述第一波长转换装置出射的第二色荧光与所述第二波长转换装置出射的第三色荧光沿同一光路出射;
    所述第一分光滤光片设置有第一区域与第二区域,其中,所述第一区域用于将沿所述第一光路传输的第一色激光引导至所述第一波长转换装置,所述第二区域用于将沿所述第二光路传输的第一色激光引导至所述第二波长转换装置。
  10. 如权利要求9所述的光源***,其特征在于,所述光源***还包括第二分光滤光片,所述第二分光滤光片用于引导所述补充光、所述第一分光滤光片出射的第二色荧光与第三色荧光、以及所述光路选择元件透射的第一色激光沿同一光路出射。
  11. 如权利要求10所述的光源***,其特征在于,准直后的第二色荧光与第三色荧光照射至所述第二分光滤光片表面,所述第二分光滤光片包括镀膜区域与边缘区域,所述补充光与所述光路选择元件出 射的第一色激光会聚于所述镀膜区域附近,所述镀膜区域用于反射所述补充光与所述光路选择元件透射的第一色激光,所述边缘区域用于透射所述第二色荧光与所述第三色荧光。
  12. 如权利要求11所述的光源***,其特征在于,所述镀膜区域用于反射预设波长范围的光线,所述第一色激光与所述补充光的波长范围位于所述预设波长范围内。
  13. 如权利要求11所述的光源***,其特征在于,所述第一色激光与所述补充光为第一偏振态的光,所述镀膜区域用于反射所述第一偏振态的光线,透射其他偏振态的光线。
  14. 如权利要求10所述的光源***,其特征在于,所述光源***还包括第三分光滤光片,所述补充光源发出的补充光与所述激发光源发出的第一色激光,经过所述第三分光滤光片合光后入射至所述光路选择元件,所述光路选择元件中的光路选择部还用于透射所述补充光。
  15. 如权利要求14所述的光源***,其特征在于,所述透射部为散射片。
  16. 如权利要求14所述的光源***,其特征在于,所述光路选择部为呈曲面的二向色片。
  17. 如权利要求10所述的光源***,其特征在于,所述光源***还包括第三分光滤光片,所述光路选择元件透射的第一色激光与所述补充光源发出的补充光经过所述第三分光滤光片合光后入射至所述第二分光滤光片。
  18. 如权利要求17所述的光源***,其特征在于,所述第二分光滤光片与所述第三分光滤光片之间还设置有散射元件。
  19. 一种投影设备,其特征在于,包括如权利要求1-18任意一项所述的光源***。
  20. 一种照明设备,其特征在于,包括如权利要求1-18任意一项所述的光源***。
PCT/CN2019/070523 2018-05-10 2019-01-05 光源***、投影设备及照明设备 WO2019214273A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19800781.7A EP3792690A4 (en) 2018-05-10 2019-01-05 LIGHT SOURCE SYSTEM, PROJECTION DEVICE AND LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810444994.4 2018-05-10
CN201810444994.4A CN110471245B (zh) 2018-05-10 2018-05-10 光源***、投影设备及照明设备

Publications (1)

Publication Number Publication Date
WO2019214273A1 true WO2019214273A1 (zh) 2019-11-14

Family

ID=68466884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070523 WO2019214273A1 (zh) 2018-05-10 2019-01-05 光源***、投影设备及照明设备

Country Status (3)

Country Link
EP (1) EP3792690A4 (zh)
CN (1) CN110471245B (zh)
WO (1) WO2019214273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117850147A (zh) * 2024-03-06 2024-04-09 深圳市橙子数字科技有限公司 一种激光光源***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716380B (zh) * 2019-11-25 2021-05-18 成都极米科技股份有限公司 一种光源***及投影机
CN111176065A (zh) * 2020-03-19 2020-05-19 青岛海信激光显示股份有限公司 光源装置和激光投影设备
CN111221211A (zh) * 2020-03-19 2020-06-02 青岛海信激光显示股份有限公司 光源装置和激光投影设备
CN114200754A (zh) * 2020-09-17 2022-03-18 深圳光峰科技股份有限公司 光源装置及激光投影***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749867A (zh) * 2013-03-19 2015-07-01 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
JP2015161801A (ja) * 2014-02-27 2015-09-07 株式会社リコー 光源装置、および、投射装置
CN205982969U (zh) * 2016-08-12 2017-02-22 深圳市绎立锐光科技开发有限公司 光源装置及投影***
CN107621744A (zh) * 2016-07-13 2018-01-23 深圳市光峰光电技术有限公司 光源及投影仪

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004126518A (ja) * 2002-08-06 2004-04-22 Canon Inc 投射型表示装置
JP4159428B2 (ja) * 2003-08-25 2008-10-01 Necディスプレイソリューションズ株式会社 カラー投写型表示装置
JP2006023436A (ja) * 2004-07-07 2006-01-26 Olympus Corp 照明装置及びプロジェクタ
US7891816B2 (en) * 2008-02-25 2011-02-22 Eastman Kodak Company Stereo projection using polarized solid state light sources
US20130088689A1 (en) * 2011-10-07 2013-04-11 Young Optics Inc. Light source module and projection apparatus
CN102722073B (zh) * 2011-12-18 2014-12-31 深圳市光峰光电技术有限公司 光源***及投影装置
CN103424971B (zh) * 2012-05-16 2015-09-09 深圳市绎立锐光科技开发有限公司 光源***及相关投影***
US9599316B2 (en) * 2012-09-10 2017-03-21 Mitsubishi Electric Corporation Light source device using monochromatic light to excite stationary phosphor layers
JP6056293B2 (ja) * 2012-09-12 2017-01-11 株式会社リコー 照明光源装置及びこの照明光源装置を備えた投射装置及び投射装置の制御方法
JP6268745B2 (ja) * 2012-09-18 2018-01-31 株式会社リコー 照明装置、投射装置および照明方法
JP5637274B2 (ja) * 2012-12-26 2014-12-10 株式会社リコー 光源装置及びこれを用いたプロジェクタ
JP5985415B2 (ja) * 2013-02-26 2016-09-06 太平洋セメント株式会社 両性イオン交換樹脂の再生方法
CN104345530B (zh) * 2013-07-30 2016-02-10 台达电子工业股份有限公司 显示光源模块
DE102013222431A1 (de) * 2013-11-05 2015-05-07 Osram Gmbh Lichtmodul zur Erzeugung von wellenlängenkonvertiertem Licht
JP2015138082A (ja) * 2014-01-21 2015-07-30 株式会社リコー 光源装置および画像表示装置
CA2939461A1 (en) * 2014-02-17 2015-08-20 Ricoh Company, Ltd. Light irradiation device and image display apparatus equipped with the same
JP6364916B2 (ja) * 2014-04-21 2018-08-01 株式会社リコー 光源装置、および画像表示装置
JP6476602B2 (ja) * 2014-06-13 2019-03-06 株式会社リコー 光源装置及び投影表示装置
JP6350013B2 (ja) * 2014-06-23 2018-07-04 株式会社リコー 照明光源装置及び画像投影装置
JP6439391B2 (ja) * 2014-11-06 2018-12-19 株式会社リコー 光源装置及び投射表示装置
CN106444249B (zh) * 2016-10-13 2018-09-28 广景视睿科技(深圳)有限公司 一种激光光源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749867A (zh) * 2013-03-19 2015-07-01 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
JP2015161801A (ja) * 2014-02-27 2015-09-07 株式会社リコー 光源装置、および、投射装置
CN107621744A (zh) * 2016-07-13 2018-01-23 深圳市光峰光电技术有限公司 光源及投影仪
CN205982969U (zh) * 2016-08-12 2017-02-22 深圳市绎立锐光科技开发有限公司 光源装置及投影***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3792690A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117850147A (zh) * 2024-03-06 2024-04-09 深圳市橙子数字科技有限公司 一种激光光源***
CN117850147B (zh) * 2024-03-06 2024-05-17 深圳市橙子数字科技有限公司 一种激光光源***

Also Published As

Publication number Publication date
EP3792690A4 (en) 2022-03-09
CN110471245B (zh) 2021-10-22
CN110471245A (zh) 2019-11-19
EP3792690A1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2019214273A1 (zh) 光源***、投影设备及照明设备
CN109557752B (zh) 光源***及投影装置
JP2019532320A (ja) 光源システム及び投影機器
US10372028B2 (en) Light source device and projection type display apparatus
WO2019052026A1 (zh) 波长转换装置、光源***及投影设备
CN110389488B (zh) 光源***及投影设备
CN110874005B (zh) 光源***、提高其光效的方法及显示设备
WO2020216263A1 (zh) 光源***和显示设备
WO2020248558A1 (zh) 一种激光光源的光学***
WO2020057299A1 (zh) 光源***及投影设备
CN111077720A (zh) 光源***及显示设备
CN219533606U (zh) 光源模组和投影设备
CN110389486B (zh) 光源装置及显示设备
CN107300825B (zh) 激光投影机
TWI720144B (zh) 光源裝置
US20190212640A1 (en) Light source device and projection type display apparatus
CN116880119A (zh) 光源装置和投影设备
TWI730146B (zh) 光學系統
EP3647868A1 (en) Light source device and projection system
WO2021259268A1 (zh) 光源组件和投影设备
WO2021143438A1 (zh) 波长转换装置、光源装置及投影***
US20220303511A1 (en) Light source system and display apparatus
WO2020135302A1 (zh) 光源***及投影设备
CN210072301U (zh) 一种激光光源的光学***
CN110879503B (zh) 固态光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019800781

Country of ref document: EP

Effective date: 20201210