WO2022001440A1 - 平板探测器及其制造方法 - Google Patents

平板探测器及其制造方法 Download PDF

Info

Publication number
WO2022001440A1
WO2022001440A1 PCT/CN2021/094474 CN2021094474W WO2022001440A1 WO 2022001440 A1 WO2022001440 A1 WO 2022001440A1 CN 2021094474 W CN2021094474 W CN 2021094474W WO 2022001440 A1 WO2022001440 A1 WO 2022001440A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
flat panel
panel detector
visible light
display area
Prior art date
Application number
PCT/CN2021/094474
Other languages
English (en)
French (fr)
Inventor
尚建兴
侯学成
张永胜
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP21834609.6A priority Critical patent/EP4071464A4/en
Priority to US17/789,826 priority patent/US20220390623A1/en
Publication of WO2022001440A1 publication Critical patent/WO2022001440A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20187Position of the scintillator with respect to the photodiode, e.g. photodiode surrounding the crystal, the crystal surrounding the photodiode, shape or size of the scintillator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20185Coupling means between the photodiode and the scintillator, e.g. optical couplings using adhesives with wavelength-shifting fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/03Investigating materials by wave or particle radiation by transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/42Imaging image digitised, -enhanced in an image processor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/421Imaging digitised image, analysed in real time (recognition algorithms)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/505Detectors scintillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present disclosure relate to a flat panel detector and a manufacturing method thereof.
  • X-ray inspection technology has broad application prospects and has been widely used in industrial non-destructive testing, container scanning, circuit board inspection, medical, security, industry and other fields.
  • X-ray digital imaging technology Digital Radio Graphy, DR
  • X-ray flat panel detectors are divided into direct conversion type (Direct DR) and indirect conversion type (Indirect DR).
  • a flat panel detector includes:
  • a first optical assembly having a first side in a thickness direction of the flat panel detector and a second side opposite the first side, and the first optical assembly includes: a first scintillation a bulk layer for converting at least part of the radiation into first visible light; and a first light conducting structure, stacked with the first scintillator layer, for conducting the first visible light;
  • first image sensor assembly stacked with the first optical assembly for receiving the first visible light
  • the first image sensor assembly comprising: a first image sensor located at the first part of the first optical assembly side; and a second image sensor on the second side of the first optical assembly.
  • the first light-conducting structure includes a first optical fiber, and the first optical fiber is located on at least one side of the first scintillator layer along the thickness direction of the flat-panel detector.
  • the first optical fiber is located between the first scintillator layer and the second image sensor, and the first optical fiber includes a first optical fiber close to the first scintillator layer.
  • a visible light incident end and a first visible light outgoing end away from the first scintillator layer the first visible light enters the first optical fiber from the first visible light incident end, and is directed toward the first visible light outgoing end from the first visible light outgoing end
  • the second image sensor emits.
  • the first light-conducting structure further includes a first adhesive layer, and the first optical fiber is connected to the first scintillator layer and the first optical fiber through the first adhesive layer, respectively.
  • the two image sensors are attached to each other.
  • the first image sensor includes: a first display area, the first display area includes a plurality of first wirings; a first non-display area surrounding the first display area, so The first non-display area includes a first connection part, and a first connection line corresponding to the first wiring is arranged in the first connection part, and the first connection line is electrically connected with the first wiring;
  • the The second image sensor includes: a second display area, the second display area includes a second wiring; a second non-display area surrounding the second display area, the second non-display area includes a second connection part , the second connecting part is provided with a second connecting line corresponding to the second wiring, and the second connecting line is electrically connected with the second wiring; wherein, along the thickness of the flat panel detector In the direction, the first display area and the second display area overlap each other, and the first connecting portion and the second connecting portion do not overlap each other.
  • the first wiring includes a first grid line and a first data line crossing each other, and the first connection portion includes a first grid line connection portion and a first data line connection portion, so the first gate line connection part and the first data line connection part are respectively located at the first edge and the second edge of the first display area, the first edge and the second edge are adjacent and connected to each other;
  • the second wiring includes a second gate line and a second data line crossing each other, the second connection part includes a second gate line connection part and a second data line connection part, the second gate line connection part and The second data line connection parts are respectively located at the third edge and the fourth edge of the second display area, and the third edge and the fourth edge are adjacent and connected to each other.
  • the above-mentioned flat panel detector further includes: a second optical component, located on a side of the first image sensor away from the first optical component, and stacked with the first optical component and the first image sensor component; the The second optical assembly includes: a second scintillator layer for converting at least another part of the rays into second visible light; the flat panel detector further includes: a second image sensor assembly, stacked with the second optical assembly, for Receiving the second visible light, the second image sensor assembly includes a third image sensor located on a side of the second optical assembly away from the first optical assembly.
  • the second image sensor assembly further includes a fourth image sensor;
  • the second optical assembly has a third side along the thickness direction of the flat panel detector and is opposite to the third side the fourth side, the fourth side is closer to the first image sensor than the third side, the third image sensor is located on the third side of the second optical assembly, the fourth image A sensor is located on the fourth side of the second optical assembly.
  • the second optical component further includes a second light conducting structure, wherein the second light conducting structure is stacked with the second scintillator layer and is used for conducting the second visible light to the the second image sensor assembly.
  • the second light guide structure includes a second optical fiber, and the second optical fiber is located on at least one side of the second scintillator layer along the thickness direction of the flat panel detector.
  • the second optical fiber is located between the second scintillator layer and the fourth image sensor, and the second optical fiber includes a second optical fiber close to the second scintillator layer.
  • the fourth image sensor emits.
  • the first light guide structure includes a plurality of the first optical fibers
  • the second light guide structure includes a plurality of the second optical fibers
  • a plurality of the first optical fibers Closely arranged, the included angle between the length direction of each of the first optical fibers and the plane where the first scintillator layer is located is greater than or equal to 45 degrees and less than or equal to 90 degrees.
  • the thickness ranges from 200 microns to 5 mm; a plurality of the second optical fibers are closely arranged, and the included angle between the length direction of each of the second optical fibers and the plane where the second scintillator layer is located is greater than or Equal to 45 degrees and less than or equal to 90 degrees, the thickness of the second optical fiber ranges from 200 micrometers to 5 millimeters.
  • the thickness of the first scintillator layer is greater than or equal to the thickness of the second scintillator layer.
  • the above-mentioned flat panel detector further includes a shielding component located between the first image sensor and the fourth image sensor for shielding ultraviolet rays and electromagnetic waves with longer wavelengths than ultraviolet rays.
  • the shielding component includes a shielding layer
  • the shielding layer has a single-layer structure or a multi-layer structure
  • the shielding layer includes a metal material
  • the thickness of the shielding layer ranges from 200 ⁇ m to 5 mm .
  • the shielding assembly further includes a third adhesive layer, and the shielding layer is respectively attached to the first image sensor and the fourth image sensor through the third adhesive layer. combine.
  • the third image sensor includes: a third display area, and the third display area includes a plurality of third wirings; a third non-display area surrounding the third display area, so The third non-display area includes a third connection portion, and a third connection line corresponding to the third wiring line is arranged in the third connection portion, and the third connection line is electrically connected to the third wiring line;
  • the fourth image sensor includes: a fourth display area, the fourth display area includes a fourth wiring; a fourth non-display area surrounding the fourth display area, the fourth non-display area The area includes a fourth connection part, the fourth connection part is provided with a fourth connection line corresponding to the fourth wiring, and the fourth connection line is electrically connected with the fourth wiring; wherein, along the flat plate In the thickness direction of the detector, the third display area and the fourth display area overlap each other, and the third connecting portion and the fourth connecting portion do not overlap each other.
  • the third wiring includes a third grid line and a third data line crossing each other, and the third connection portion includes a third data line connection portion and a third grid line connection portion, so The third gate line connection part and the third data line connection part are respectively located at the fifth edge and the sixth edge of the third display area, and the fifth edge and the sixth edge are adjacent and connected to each other;
  • the four traces include a fourth gate line and a fourth data line crossing each other, the fourth connection part includes a fourth gate line connection part and a fourth data line connection part, the fourth gate line connection part and the fourth gate line connection part.
  • the four data line connecting parts are respectively located at the seventh edge and the eighth edge of the fourth display area, and the seventh edge and the eighth edge are adjacent and connected to each other.
  • a method for manufacturing a flat panel detector comprising:
  • first optical assembly having a first side along the thickness direction of the flat panel detector and a second side opposite the first side, the first optical assembly comprising: a first scintillation a bulk layer for converting at least part of the rays into first visible light; and a first light conducting structure, stacked with the first scintillator layer, for conducting the first visible light;
  • first image sensor assembly stacked with the first optical assembly for receiving the first visible light
  • the first image sensor assembly including a first image sensor and a second image sensor
  • the first image sensor, the second image sensor and the first optical assembly are assembled, so that the first image sensor and the second image sensor are respectively located on the first optical assembly of the first optical assembly. one side and the second side of the first optical assembly to form a first detection unit.
  • the above-described manufacturing method includes: forming the first image sensor, and forming the first scintillator layer on a side of the first image sensor facing the second image sensor; forming the first light Conducting structure; forming the second image sensor, and flipping and rotating the second image sensor 90 degrees; and conducting the first image sensor, the first light guide on which the first scintillator layer is formed The structure and the rotated second image sensor are assembled.
  • the above-mentioned manufacturing method further includes: forming a second optical component, the second optical component is located on a side of the first image sensor away from the first optical component, and is connected with the first optical component and the first image A sensor assembly stack; wherein the second optical assembly has a third side in the thickness direction of the flat panel detector and a fourth side opposite the third side, the fourth side being larger than the third side Closer to the first image sensor, the second optical assembly includes: a second scintillator layer for converting at least another part of the ray into second visible light; forming a second image sensor assembly, and the second optical assembly stacking for receiving the second visible light, the second image sensor assembly includes a third image sensor and a fourth image sensor; connecting the third image sensor, the fourth image sensor and the second optical assembly assembling so that the third image sensor is located on the third side of the second optical assembly and the fourth image sensor is located on the fourth side of the second optical assembly to form a second detection unit ; Assembling the second detection unit and the first detection unit.
  • FIG. 1 is a schematic cross-sectional view of a flat panel detector according to an embodiment of the disclosure
  • FIG. 2A is an enlarged cross-sectional schematic diagram of a flat panel detector according to an embodiment of the disclosure
  • 2B is a schematic structural diagram of an encapsulation layer in a flat panel detector according to an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of an optical path of a flat panel detector according to an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of an optical fiber in a flat panel detector according to an embodiment of the disclosure.
  • FIG. 5 is a schematic three-dimensional structural diagram of a first image sensor and a first scintillator layer according to an embodiment of the disclosure
  • 6A is a schematic plan view of a first image sensor according to an embodiment of the disclosure.
  • 6B is a partial enlarged schematic diagram of a first binding area of the first image sensor according to an embodiment of the disclosure
  • FIG. 7 is a schematic three-dimensional structural diagram of a second image sensor according to an embodiment of the disclosure.
  • FIG. 8A is a schematic plan view of a second image sensor according to an embodiment of the disclosure.
  • FIG. 8B is a schematic plan view of the second image sensor of FIG. 8A after being turned over and rotated by 90 degrees;
  • FIG. 9 is a schematic plan view of an assembled flat panel detector according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic partial circuit diagram of a first image sensor according to an embodiment of the disclosure.
  • FIG. 11 is a schematic circuit diagram of a first photosensitive region of a first image sensor according to an embodiment of the disclosure.
  • FIG. 12 is an enlarged cross-sectional schematic diagram of a flat panel detector according to another embodiment of the disclosure.
  • FIG. 13 is a schematic cross-sectional view of a flat panel detector according to still another embodiment of the disclosure.
  • FIG. 14 is an enlarged cross-sectional schematic diagram of a flat panel detector according to yet another embodiment of the disclosure.
  • FIG. 15 is a schematic cross-sectional view of a shielding assembly in a flat panel detector according to an embodiment of the disclosure.
  • 16 is a flowchart of a method for manufacturing a flat panel detector according to an embodiment of the disclosure.
  • FIG. 17 is a flowchart of a manufacturing method of a flat panel detector according to another embodiment of the disclosure.
  • 18A to 18F are schematic diagrams of each step of a manufacturing method of a flat panel detector according to still another embodiment of the disclosure.
  • FIG. 19 is a flowchart of a manufacturing method of a flat panel detector according to another embodiment of the disclosure.
  • the surface layer of the scintillator close to the X-ray source absorbs the most X-rays and generates the strongest visible light. From the surface of the scintillator, the intensity of X-rays becomes weaker and less visible light is generated, and the scattering and absorption of the visible light by the scintillator further weakens the visible light moving toward the sensor. The visible light that finally successfully passes through the scintillator and emerges from the lower surface is absorbed by the sensor. Part of the visible light is emitted from the upper surface of the scintillator and cannot reach the sensor on the lower side of the scintillator layer, resulting in light loss.
  • Embodiments of the present disclosure provide a flat panel detector.
  • the flat panel detector includes a first optical assembly having a first side along a thickness direction of the flat panel detector and a second side opposite the first side.
  • the first optical assembly includes: a first scintillator layer for converting at least a portion of the radiation into first visible light; and a first light conducting structure configured to stack with the first scintillator layer for conducting the first visible light.
  • the flat panel detector also includes a first image sensor assembly configured to stack with the first optical assembly and for receiving the first visible light.
  • the first image sensor assembly includes: a first image sensor on the first side of the first optical assembly; and a second image sensor on the second side of the first optical assembly.
  • the second image sensor by arranging the second image sensor on the upper side of the first scintillator layer, part of the first visible light emitted from the upper surface of the first scintillator layer can reach the second image sensor for imaging, thereby avoiding the need for the first visible light. Losses due to propagation within the first scintillator layer.
  • the first light conduction structure by arranging the first light conduction structure stacked with the first scintillator layer in the flat panel detector, the first light conduction structure is used to increase the spatial distance between the first image sensor and the second image sensor. , which is beneficial to eliminate the electromagnetic interference between the two image sensors and improve the detection quantum efficiency (DQE) of the flat panel detector.
  • DQE detection quantum efficiency
  • the first light-conducting structure conducts the first visible light generated by the first scintillator layer to the first image sensor component. Since the first light-conducting structure has a binding effect on the transmitted first visible light, thus The modulation transfer function (MTF) decline of the flat panel detector can be avoided, and the DQE of the product can be effectively improved or the dose of radiation used can be reduced.
  • MTF modulation transfer function
  • the flat panel detector may include various types, for example, a photodiode (PIN) type flat panel detector or a metal-semiconductor-metal (MSM) type flat panel detector.
  • PIN photodiode
  • MSM metal-semiconductor-metal
  • the metal-semiconductor-metal (MSM) type flat panel detector uses light to reduce the resistance of the semiconductor layer to form a metal-insulator-semiconductor (MIS) structure, which undergoes electron tunneling under high voltage, A tunneling current is generated. A display image is obtained by collecting and detecting the tunneling current.
  • MSM-type flat panel detectors have larger dark current, lower quantum detection efficiency (DQE), and lower modulation transfer function (MTF).
  • the PIN type flat panel detector mainly includes a switching element and a photoelectric conversion unit, the switching element includes, for example, a thin film transistor (Thin Film Transistor, TFT), and the photoelectric conversion unit includes, for example, a photodiode (PIN).
  • TFT Thin Film Transistor
  • PIN photodiode
  • the scintillator layer or phosphor layer of the X-ray flat panel detector converts the X-ray photons into visible light, and then converts the visible light into electrical signals under the action of PIN, and finally reads the electrical signals through the TFT And output the electrical signal to get the display image.
  • the PIN type flat panel detector includes an amorphous silicon (a-Si) PIN type flat panel detector and an indium gallium zinc oxide (IGZO) PIN type flat panel detector.
  • an amorphous silicon (a-Si) PIN X-ray flat panel detector is an X-ray image detector with an amorphous silicon photodiode array as the core.
  • a-Si amorphous silicon
  • the distribution of X-rays is no longer uniform due to the different absorption degrees of X-rays by different tissue parts of the human body.
  • the X-rays passing through the human body are converted into visible light by the scintillator or phosphor layer of the detector, and then converted into image electrical signals by the amorphous silicon array with the function of photodiodes, which are transmitted through peripheral circuits and analog-to-digital conversion, so as to obtain Digitized image.
  • Amorphous silicon X-ray flat panel detectors have the advantages of fast imaging speed, good spatial and density resolution, high signal-to-noise ratio, and direct digital output, so they are widely used in various digital X-ray imaging devices.
  • the flat panel detector of the embodiment of the present disclosure will be further described in detail below by taking an example that the flat panel detector is an amorphous silicon (a-Si) PIN type X-ray flat panel detector.
  • a-Si amorphous silicon
  • the scintillator layer may be selected to be sensitive to X-rays, ⁇ -rays or other rays according to actual needs.
  • the flat panel detector of the embodiment of the present disclosure can function as an X-ray detector, a gamma ray detector, or a detector of other rays.
  • FIG. 1 is a schematic cross-sectional view of a flat panel detector according to an embodiment of the disclosure.
  • the flat panel detector according to the embodiment of the present disclosure includes: a first optical component OPA1, and the first optical component OPA1 has a thickness along the thickness direction of the flat panel detector (the A direction shown in the figure).
  • a first side 11 upper side shown in the figures
  • a second side 12 lower side shown in the figures opposite said first side.
  • the first optical assembly OPA1 includes: a first scintillator layer SCL1 for converting at least part of the X-rays into first visible light; and a first light conducting structure configured to be stacked with the first scintillator layer SCL1, with for conducting the first visible light.
  • the flat panel detector further includes a first image sensor assembly configured to be stacked with the first optical assembly OPA1 and configured to receive the first visible light.
  • the first image sensor assembly includes: a first image sensor M1, located on the first side 11 of the first optical assembly OPA1; and a second image sensor M2, located on the first side of the first optical assembly OPA1. 12 on both sides.
  • the second image sensor M2 by disposing the second image sensor M2 on the upper side of the first scintillator layer SCL1, part of the first visible light L2 emitted from the upper surface of the first scintillator layer SCL1 can reach the second image sensor M1 for imaging, The loss caused by SCL1 propagation in the first scintillator layer is mitigated. Further, by arranging the first light conducting structure OPS1 stacked with the first scintillator layer SCL1 in the flat panel detector, the first light conducting structure OPS1 is used to increase the spatial distance between the first image sensor M1 and the second image sensor M2 , which is beneficial to eliminate the electromagnetic interference between the two image sensors M1 and M2 and improve the detection quantum efficiency (DQE) of the flat panel detector.
  • DQE detection quantum efficiency
  • the first optical conduction structure OPS1 conducts the first visible light generated by the first scintillator layer SCL1 to the first image sensor components respectively, because the first optical conduction structure OPS1 has an effect on the transmitted first visible light. Therefore, the modulation transfer function (MTF) of the flat panel detector can be avoided from decreasing, and the DQE of the product can be effectively improved or the dose of X-rays used can be reduced.
  • MTF modulation transfer function
  • the term "stacking" refers to overlapping in the thickness direction of the flat panel detector.
  • the configuration of the first image sensor assembly to be stacked with the first optical assembly means that in the thickness direction of the flat panel detector, the first image sensor assembly and the first optical assembly overlap each other, and the overlapping may be a partial overlap, It can also be completely overlapping.
  • the first image sensor assembly and the first optical assembly completely overlap, the first image sensor assembly can receive more first visible light, thereby improving the DQE of the product, which is therefore preferred.
  • the first light conducting structure is configured to be stacked with the first scintillator layer, which means that in the thickness direction of the flat panel detector, the first light conducting structure and the first scintillator layer overlap each other, and the overlap may be Partial overlap, or complete overlap.
  • the first visible light generated by the first scintillator layer can be incident into the first light conducting structure as much as possible, thereby It is preferable to avoid the MTF drop of the flat panel detector.
  • a flat panel detector typically includes a front side facing the user and a back or rear side opposite the front side from which X-rays passing through the user's body enter the flat panel detector.
  • the side of the first optical component close to the light incident side of the flat panel detector is defined as the first side
  • the side of the first optical component away from the light incident side of the flat panel detector is defined as the first side.
  • the image sensor located on the first side of the first optical component is defined as the second image sensor
  • the image sensor located on the second side of the first optical component is defined as the first image sensor.
  • the first image sensor is far from the light incident side of the flat panel detector, and the second image sensor is close to the light incident side of the flat panel detector. It should be noted that the above definitions are for illustrative purposes only, and the embodiments of the present disclosure are not limited thereto.
  • the first image sensor M1 and the second image sensor M2 may be the same or different in structure.
  • the manufacturing process can be simplified and the complexity of circuit design can be reduced, which is therefore preferred.
  • the first image sensor M1 and the second image sensor M2 have the same structure as an example for description.
  • the first light conducting structure is located on at least one side of the first scintillator layer, that is, the first light conducting structure may be located on one side or both sides of the first scintillator layer. In at least one example, it is preferable when the first light conducting structure is located on the upper side of the first scintillator layer (ie, the side of the first scintillator layer close to the light incident side of the flat panel detector).
  • the first scintillator layer SCL1 is directly grown on the first image sensor M1, and the first light conducting structure is located on the upper side of the first scintillator layer, so that on the one hand, the lengthening of the optical path can be avoided, and the other
  • the first light conducting structure is located between the first scintillator layer and the second image sensor, electromagnetic interference between the first image sensor M1 and the second image sensor M2 can be avoided.
  • the flat panel detector includes a first light conducting structure OPS1.
  • the first light conducting structure OPS1 includes a first upper light conducting structure OPS1a and a first lower light conducting structure OPS1b.
  • the first upper light conducting structure OPS1a is disposed on the first side 21 (the upper side shown in the figure) of the first scintillator layer SCL1 and is configured to communicate with the first scintillator layer in the thickness direction A of the flat panel detector. SCL1 stack.
  • the first lower light conducting structure OPS1b is disposed on the second side 22 (the lower side shown in the figure) of the first scintillator layer SCL1 and is configured to be in contact with the first scintillator layer in the thickness direction A of the flat panel detector. SCL1 stack.
  • the emission direction of the visible light excited in the scintillator is random.
  • the first scintillator layer SCL1 converts X-rays into first downward visible light L1 and first upward visible light L2 in different directions.
  • the first downward visible light L1 is directed toward the first image sensor M1
  • the first upward visible light L2 is directed toward the second image sensor M2.
  • the first upper light conducting structure OPS1a Since the first upper light conducting structure OPS1a is located between the first scintillator layer SCL1 and the second image sensor M2, the first upper light conducting structure OPS1a increases the spatial distance between the first image sensor M1 and the second image sensor M2, Therefore, the detection quantum efficiency (DQE) of the flat panel detector is improved. Moreover, since the first upward visible light L2 passes through the first upper light conducting structure OPS1a to reach the second image sensor M2, the first upper light conducting structure OPS1a has a binding effect on the first upward visible light L2, which can avoid the decrease of the MTF of the flat panel detector. , effectively improve the DQE of the product.
  • DQE detection quantum efficiency
  • the first lower photoconductive structure OPS1b is located between the first scintillator layer SCL1 and the first image sensor M1, the first lower photoconductive structure OPS1b further increases the space between the first image sensor M1 and the second image sensor M2. Therefore, the detection quantum efficiency (DQE) of the flat panel detector is further improved. Moreover, since the first downward visible light L1 passes through the first lower light conducting structure OPS1b to reach the first image sensor M1, the first lower light conducting structure OPS1b has a binding effect on the first downward visible light L1, which can avoid the flat panel detector MTF The decline of the product further effectively improves the DQE of the product.
  • FIG. 2A is an enlarged schematic cross-sectional view of a flat panel detector according to an embodiment of the disclosure.
  • the flat panel detector of FIG. 2A includes a single first light conducting structure, and the first light conducting structure is located on one side of the first scintillator layer, such as the upper side as shown in the figure. That is, the first light conducting structure OPS1 is located between the first scintillator layer SCL1 and the second image sensor.
  • the first light-conducting structure includes a first optical fiber, and the first optical fiber is located on at least one side of the first scintillator layer along the thickness direction of the flat panel detector.
  • the optical fiber utilizes the effect of total reflection of light, and has a binding effect on the transmitted visible light, thereby avoiding the decrease of MTF during the transmission of visible light, and further improving the DQE of the flat panel detector.
  • the optical fibers (including the first optical fiber and the second optical fiber) in the embodiments of the present application perform total reflection for visible light, but do not perform total reflection for X-rays, gamma rays and other rays. Therefore, when the X-rays irradiate the first scintillator layer SCL1, the effect of the first optical fiber on the X-rays is negligible.
  • the first light guide structure OPS1 includes a first light guide fiber LGC1 , and the first light guide fiber LGC1 is located along the thickness direction A of the flat panel detector of the first scintillator layer SCL1 side (the upper side shown in the figure).
  • the first optical fiber LGC1 can conduct the first upward visible light L2 emitted from the upper surface of the first scintillator layer SCL1 to the second image sensor M2 in a total reflection manner. In this way, not only the loss in the transmission process of the first upward visible light L2 is reduced, but also the first upward visible light L2 is restrained, thereby avoiding the decrease of MTF.
  • the flat panel detector includes two first light-conducting structures, and each first light-conducting structure includes a first optical fiber (for example, the flat panel detector shown in FIG. 1 ), the first optical fiber is located at the first scintillation point.
  • the first downward visible light L1 and the first upward visible light L2 can be transmitted to the first image sensor M1 and the second image sensor M2 in a total reflection manner, respectively.
  • the loss during transmission of the first downward visible light L1 and the first upward visible light L2 can be reduced, and both the first downward visible light L1 and the first upward visible light L2 can be restrained, thereby avoiding the decrease of MTF.
  • the first scintillator layer SCL1 includes a scintillator material, such as cesium iodide (CsI), gadolinium oxysulfide (GOS), or other suitable materials and structures. Further, the first scintillator layer SCL1 includes a first columnar crystalline scintillator 104 and a first amorphous scintillator 105 located at the bottom of the first columnar crystalline scintillator 104 .
  • the light scattering of the upper crystalline CsI is smaller than that of the lower (crystalline+amorphous) light scattering. Therefore, the upper crystalline CsI can provide a higher MTF for the flat panel detector. Since the first image sensor M1 and the second image sensor M2 located on the upper and lower sides of the first scintillator layer SCL1 jointly receive visible light, the sensitivity (Sensitivity) of the flat panel detector is also improved.
  • FIG. 3 is a schematic diagram of an optical path of a flat panel detector according to an embodiment of the disclosure.
  • the first scintillator layer SCL1 converts the X-rays into first downward visible light L1 and first upward visible light L2 .
  • the first downward visible light L1 includes visible light L11 converted from the upper portion of the first scintillator layer SCL1 and visible light L12 converted from the lower portion of the first scintillator layer SCL1.
  • the first upward visible light L2 includes visible light L21 converted from the upper portion of the first scintillator layer SCL1 and visible light L22 converted from the lower portion of the first scintillator layer SCL1.
  • the visible light L21 and L22 are injected into the second image sensor M2 through the first optical fiber LGC1 in the first light conducting structure.
  • the visible light L21 and L22 are both transmitted to the second image sensor M2 by total reflection, so that the first optical fiber LGC1 has a binding effect on the visible light L21 and L22, thereby avoiding the decrease of MTF and improving the DQE of the flat panel detector.
  • FIG. 4 is a schematic structural diagram of an optical fiber in a flat panel detector according to an embodiment of the disclosure.
  • the first optical fiber LGC1 includes a first visible light incident end 31 close to the first scintillator layer SCL1 and a first visible light exit end 32 far away from the first scintillator layer SCL1, In this way, the first upward visible light L2 including the visible light L21 and L22 enters the first optical fiber LGC1 from the first visible light incident end 31 , and faces the second image sensor from the first visible light exit end 32 M2 shot.
  • the first light guide structure includes a plurality of first optical fibers LGC1 , and the plurality of first optical fibers LGC1 are closely arranged.
  • a plurality of the first optical fibers LGC1 are arranged in a matrix, and two adjacent first optical fibers LGC1 are in contact with each other. In this way, the gaps between the plurality of first optical fibers can be reduced, thereby further reducing the light loss of visible light during the transmission process.
  • the included angle between the length direction of each of the first optical fibers (and the second optical fibers in the following embodiments) and the plane where the first scintillator layer or the second scintillator layer is located is greater than or equal to 45 degrees and less than or equal to 90 degrees. In this way, the first upward visible light L2 is caused to propagate substantially in the same direction, that is, the second image sensor M2, thereby causing the second image sensor M2 to collect more first upward visible light L2.
  • the included angle ⁇ is 90 degrees.
  • the thickness of the first optical fiber LGC1 ranges from 200 micrometers to 5 millimeters.
  • the thickness of the first optical fiber can be regarded as the thickness of the optical fiber layer composed of the first optical fiber.
  • a plurality of first optical fibers LGC1 constitute a first optical fiber layer 101 , and the thickness of the first optical fiber layer 101 ranges from 200 ⁇ m to 5 mm.
  • the first light conducting structure further includes a first adhesive layer, and the first optical fiber is connected to the first scintillator layer and the second image through the first adhesive layer, respectively.
  • the sensors fit together.
  • the first light conducting structure OPS1 further includes a first upper adhesive layer 102 and a first lower adhesive layer 103 .
  • the first upper adhesive layer 102 is located on the upper side of the first optical fiber LGC1 , and the first optical fiber LGC1 is attached to the second image sensor M2 through the first upper adhesive layer 102 .
  • the first lower adhesive layer 103 is located on the lower side of the first optical fiber LGC1 , and the first optical fiber LGC1 is attached to the first scintillator layer SCL1 through the first lower adhesive layer 103 .
  • the first upper adhesive layer 102 and the first lower adhesive layer 103 include optically clear adhesive OCA.
  • the flat panel detector further includes a first encapsulation layer 106 , and the first encapsulation layer 106 seals at least the first image sensor M1 and the first scintillator layer SCL1 .
  • the first encapsulation layer 106 seals at least the first image sensor M1 and the first scintillator layer SCL1 .
  • encapsulating the first image sensor M1 with the first scintillator layer SCL1 together also facilitates the subsequent assembly of the flat panel detector.
  • FIG. 2B is a schematic structural diagram of an encapsulation layer in a flat panel detector according to an embodiment of the disclosure.
  • the first encapsulation layer 106 a is used to seal the first image sensor M1 , the first light conducting structure OPS1 , and the first scintillator layer SCL1 .
  • the encapsulation layer is made of light-transmitting material to avoid influence on light.
  • the encapsulation layer includes an organic light-transmitting material or an inorganic light-transmitting material.
  • the encapsulation layer may have a single-layer structure or a multi-layer structure.
  • FIG. 5 is a schematic three-dimensional structural diagram of a first image sensor and a first scintillator layer according to an embodiment of the disclosure.
  • FIG. 6A is a schematic plan view of a first image sensor according to an embodiment of the disclosure.
  • FIG. 7 is a schematic three-dimensional structural diagram of a second image sensor according to an embodiment of the present disclosure.
  • FIG. 8A is a schematic plan view of a second image sensor according to an embodiment of the present disclosure.
  • FIG. 8B is a schematic plan view of the second image sensor of FIG. 8A after being turned over and rotated by 90 degrees.
  • the first image sensor M1 includes a first display area AA1, and the first display area AA1 is used for displaying an image.
  • the first display area AA1 includes a plurality of first wirings W1.
  • the first image sensor M1 further includes a first non-display area NA1 surrounding the first display area AA1.
  • the first non-display area NA1 cannot be used for displaying images, and is usually provided with connecting lines, contact pads or integrated circuits, etc., for electrically connecting the first wiring W1 of the first display area AA1 to an external control circuit.
  • FIG. 1 As shown in FIG.
  • the first non-display area NA1 includes a first connection part BP1 , and a first connection line CW1 corresponding to the first wiring line W1 is set in the first connection part BP1 .
  • a connecting wire CW1 is electrically connected to the first wiring wire W1.
  • the second image sensor includes a second display area AA2, and the second display area AA2 includes a second wire W2.
  • the second image sensor M2 further includes a second non-display area NA2 surrounding the second display area AA2.
  • the second non-display area NA2 cannot be used for displaying images, and is usually provided with connecting lines, contact pads or integrated circuits, etc., for electrically connecting the second wiring W2 of the second display area AA2 to an external control circuit.
  • the second non-display area AA2 includes a second connection portion BP2 , and a second connection line CW2 corresponding to the second wiring line W2 is disposed in the second connection portion BP2 .
  • the two connecting wires CW2 are electrically connected to the second wiring wire W2.
  • the first scintillator layer SCL1 may be directly grown or attached to the first image sensor M1.
  • the first scintillator layer SCL1 is directly grown on the first image sensor M1, resulting in the structure shown in FIG. 5 .
  • the optical path will be lengthened, thereby possibly reducing MTF, DQE, and the like. Therefore, it is a preferred solution to directly grow the first scintillator layer SCL1 on the first image sensor M1.
  • the first light conducting structure may not be disposed between the first scintillator layer SCL1 and the first image sensor M1.
  • the first photoconductive structure OPS1, the first image sensor M1 with the first scintillator layer SCL1 in FIG. 5 and the second image sensor M2 in FIG. 8B are assembled together to form the final flat panel detector.
  • FIG. 9 is a schematic plan view of an assembled flat panel detector according to an embodiment of the disclosure.
  • the first display area AA1 and the second display area AA2 overlap each other, and the first connection portion BP1 and the The second connection parts BP2 do not overlap each other.
  • the signals on the respective external control circuits (including the driving circuit and the readout circuit) of the first image sensor M1 and the second image sensor M2 may not interfere with each other, thereby improving the sensitivity and integration of the flat panel detector.
  • first connecting portion BP1 and the second connecting portion BP2 do not overlap each other means that the orthographic projection of the first connecting portion BP1 on the plane where the base substrate is located is aligned with the second connecting portion BP2
  • the orthographic projections on the plane of the base substrate do not overlap. That is, the orthographic projection of the first connection portion BP1 on the plane of the base substrate is located outside the orthographic projection of the second connection portion BP2 on the plane of the base substrate, and vice versa.
  • first connection part BP1 and the second connection part BP2 are not overlapped with each other for illustration. It can be understood that in the embodiments of the present disclosure, any two layers, two circuits, and two regions are mentioned.
  • the base substrate may be the first base substrate SUB1 in the first image sensor M1, or the second base substrate SUB2 in the second image sensor M2.
  • the first image sensor M1 further includes a first driving circuit GIC1 and a first readout circuit ROIC1 disposed in the first non-display area NA1 .
  • the first connecting line CW1 includes a first gate line connecting line 41 that electrically connects the first gate line GL1 to the first driving circuit GIC1.
  • the first driving circuit GIC1 provides a driving signal to the first gate line GL1.
  • the first connection line CW1 further includes a first data line connection line 42, and the first data line connection line 42 electrically connects the first data line DL1 to the first readout circuit ROIC1.
  • the first readout circuit ROIC1 reads the electrical signals generated by each of the first sensing regions in the first image sensor M1.
  • FIG. 6B is a partial enlarged schematic diagram of the first binding area of the first image sensor according to the embodiment of the present disclosure.
  • FIG. 6B is an enlarged schematic diagram of the first data line binding portion within the dotted circle in FIG. 6A .
  • the first non-display area NA1 includes a fan-out area FOA close to the first display area AA1 and a binding area on the side of the fan-out area FOA away from the first display area AA1.
  • the fan-out area FOA aggregates the plurality of first data line connecting lines 42 .
  • the bonding area includes a plurality of contact pads (shown as circles in the figure) for electrically connecting the first data line connection line 42 to an external circuit.
  • each first data line binding part may include a plurality of first data line connecting lines 42 (three are shown in the figure), and each first data line connecting line 42 corresponds to the first data line DL1 one-to-one .
  • first data line connecting lines 42 three are shown in the figure
  • each first data line connecting line 42 corresponds to the first data line DL1 one-to-one .
  • the electrical signal obtained on each of the first data lines DL1 can be transmitted to the first readout circuit ROIC1.
  • the second image sensor M1 further includes a second driving circuit GIC2 and a second readout circuit ROIC2 disposed in the second non-display area NA1 .
  • the second connection line CW2 includes a second gate line connection line 51 that electrically connects the second gate line GL2 to the second driving circuit GIC2.
  • the second driving circuit GIC2 provides a driving signal to the second gate line GL2.
  • the second connection line CW2 further includes a second data line connection line 52, and the second data line connection line 52 electrically connects the second data line DL2 to the second readout circuit ROIC2.
  • the second readout circuit ROIC2 reads the electrical signals generated by each of the second sensing regions in the second image sensor M2.
  • the first driving circuit GIC1 and the second driving circuit GIC2 do not overlap each other. Further, the first driving circuit GIC1 and the second driving circuit GIC2 are located on opposite sides of the first display area AA1 (or the second display area AA2 ). In this way, signal interference between the first driving circuit GIC1 and the second driving circuit GIC2 can be avoided.
  • the first readout circuit ROIC1 and the second readout circuit ROIC2 do not overlap each other. Further, the first readout circuit ROIC1 and the second readout circuit ROIC2 are located on opposite sides of the first display area AA1 (or the second display area AA2 ). In this way, signal interference between the first readout circuit ROIC1 and the second readout circuit ROIC2 can be avoided.
  • the completely overlapped first display area AA1 and the second display area AA2 are collectively referred to as the detection display area DAA, and the detection display area DAA includes the first side S1 , the second display area DAA The two sides S2, the third side S3 and the fourth side S4, wherein the first side S1 is opposite to the third side S3, and the second side S2 is opposite to the fourth side S4.
  • the first driving circuit GIC1 and the second driving circuit GIC2 are respectively located on the first side S1 and the third side S3 of the detection display area DAA.
  • FIG. 9 the first driving circuit GIC1 and the second driving circuit GIC2 are respectively located on the first side S1 and the third side S3 of the detection display area DAA.
  • the first readout circuit ROIC1 and the second readout circuit ROIC2 are located on the second side S2 and the fourth side S4 of the detection display area DAA, respectively. In this way, signal interference between the first readout circuit ROIC1 (or the second readout circuit ROIC2 ) and the first drive circuit GIC1 (or the second drive circuit GIC2 ) in the flat panel detector can be prevented.
  • the first connection part BP1 includes a first gate line connection part BP1a and a first data line connection part BP1b, the first gate line connection part BP1a and the first data line connection part BP1b is located at the first edge 45 and the second edge 46 of the first display area AA1 respectively, and the first edge 45 and the second edge 46 are adjacent and connected to each other.
  • the first gate line connection part BP1a and the first data line connection part BP1b is located at the first edge 45 and the second edge 46 of the first display area AA1 respectively, and the first edge 45 and the second edge 46 are adjacent and connected to each other.
  • the second connection part BP2 includes a second gate line connection part BP2a and a second data line connection part BP2b, the second gate line connection part BP2a and the second data line connection part
  • the BP2b is located at the third edge 55 and the fourth edge 56 of the second display area AA2, respectively, and the third edge 55 and the fourth edge 56 are adjacent and connected to each other. In this way, as shown in FIG.
  • the first edge 45 and the third edge 55 are respectively located on the first side S1 of the detection display area DAA and the third side S3, the second edge 46 and the fourth edge 56 are located on the second side S2 and the fourth side S4 of the detection display area DAA, respectively.
  • the second connection line W2, the second connection part BP2, the second driving circuit GIC2 and the second readout circuit ROIC2 on the second image sensor M2 and the first connection line W1 on the first image sensor M1 can be avoided , the first connection part BP1 , the first driving circuit GIC1 and the first readout circuit ROIC1 overlap with each other, so as to avoid signal interference between the two image sensors.
  • the first wiring W1 includes a first gate line GL1 and a first data line DL1 crossing each other.
  • the second wiring W2 includes a second gate line GL2 and a second data line DL2 crossing each other.
  • a plurality of second gate lines GL2 and a plurality of second data lines DL2 intersect each other to form a plurality of second photosensitive regions.
  • FIG. 10 is a schematic partial circuit diagram of a first image sensor according to an embodiment of the disclosure.
  • 11 is a schematic circuit diagram of a first photosensitive region of a first image sensor according to an embodiment of the disclosure.
  • FIG. 12 is an enlarged schematic cross-sectional view of a flat panel detector according to another embodiment of the disclosure. For example, as shown in FIG.
  • the second image sensor M2 has the same structure as the first image sensor M1 , both of which are relative to the middle portion of the flat panel detector (including the first scintillator layer SCL1 and the first light conducting structure OPS1 ) is a symmetrical distribution.
  • the first image sensor M1 includes a first base substrate SUB1 and a plurality of first gate lines GL1 and a plurality of first data lines DL1 disposed on the first base substrate SUB1.
  • a plurality of first gate lines GL1 and a plurality of first data lines DL1 cross each other to form a plurality of first photosensitive regions, and the plurality of first photosensitive regions are arranged in an array form.
  • the array is arranged as a 3 ⁇ 3 array of first photosensitive regions.
  • each first photosensitive area is similar to the pixel area of the liquid crystal display area, including a first photodiode PIN1 and a first thin film transistor (Thin Film Transistor) TFT1, and the first thin film transistor TFT1 uses As a switching element, the first photodiode PIN1 functions as a photoelectric conversion element.
  • the first thin film transistor TFT1 includes a gate electrode 71 , a source electrode 72 , a drain electrode 73 , and an active layer 74 .
  • the gate electrode 71 of the first thin film transistor TFT1 is connected to the first gate line GL1 of the first image sensor M1
  • the drain electrode 72 of the first thin film transistor TFT1 is connected to the first data line DL1 of the first image sensor M1
  • the source electrode 73 of the TFT1 is connected to the photodiode PIN1.
  • the positions of the source electrode 72 and the drain electrode 73 may be replaced with each other.
  • the first image sensor M1 controls the switching state of the first thin film transistor TFT1 through the first driving circuit GIC1.
  • the photocurrent signal generated by the first photodiode PIN1 passes through the first thin film transistor TFT1 in turn.
  • the connected first data line DL1 and the first read circuit ROIC1 are read out.
  • the collection of the photoelectric signal is completed by controlling the signal timing on the first gate line GL1 and the first data line DL1, that is, the collection of the photocurrent signal generated by the first photodiode PIN1 is completed by controlling the switching state of the first thin film transistor TFT1 .
  • each first photosensitive region receives a light signal and converts it into an electrical signal, which is stored in the storage capacitor or the self-capacitance of the first photodiode PIN1.
  • the first photodiode PIN1 receives the visible light converted by the first scintillator layer SCL1, and generates photogenerated carriers, which are converted into electrical signals proportional to the irradiation intensity of the visible light.
  • the first driving circuit GIC1 is connected to the first photosensitive area array, controls the gate electrodes of the first thin film transistors TFT1 in each row, and controls the on and off between the source electrode and the drain electrode of the first thin film transistor TFT1 through voltage, so it can be Each first photosensitive area is turned on row by row.
  • the first reading circuit ROIC1 is connected to the first photosensitive area array, and when the first thin film transistor TFT1 in the same row is turned on, reads the charges in the first photosensitive area of the row, thereby realizing the reading of image information.
  • the size of the first photosensitive area determines the resolution of the image. Therefore, the smaller the area of the first photosensitive region, the higher the resolution of the image.
  • the first image sensor M1 further includes a signal line BL, which is disposed on the side of the first photodiode PIN1 away from the first base substrate SUB1 and connected to the first photodiode PIN1 .
  • the signal line BL is used to supply a voltage signal to the first photodiode PIN1.
  • the first image sensor M1 further includes a transmissive conductive layer 60 disposed on the side of the first photodiode PIN1 away from the first base substrate SUB1. A fixed voltage is input to the transmissive conductive layer 60, so that the transmissive conductive layer 60 can block external static electricity and prevent external static electricity from affecting the first photodiode PIN1.
  • the transmissive conductive layer 60 is formed of a light-transmitting conductive material, so that light can be transmitted to the first photodiode PIN1.
  • a conductive material with a transmittance of more than 50% can be selected, for example, a transparent conductive material can be selected, including but not limited to IZO (Indium Zinc Oxide, indium zinc oxide), ITO (Indium Tin Oxide, indium tin oxide), AZO (Al Zinc Oxide, aluminum zinc oxide), IFO (Indium FOxide, indium oxyfluoride), etc.
  • the transparent conductive layer 61 can be a conductive material with a transmittance of more than 50%, for example, a transparent conductive material can be selected, including but not limited to IZO (Indium Zinc Oxide, indium zinc oxide), ITO (Indium Tin Oxide, indium tin oxide) oxide), AZO (Al Zinc Oxide, aluminum zinc oxide), IFO (Indium FOxide, indium oxyfluoride), etc.
  • the materials of the transparent conductive layer 61 and the transparent conductive layer 60 may be the same or different, which are not limited in this embodiment of the present disclosure.
  • a structure including an image sensor assembly (having at least one image sensor) and a scintillator layer is referred to as a detection unit. Therefore, the flat panel detectors shown in FIG. 1 , FIG. 2A , FIG. 9 , and FIG. 12 all have a single detection unit.
  • the flat panel detector has dual detection units, which can further improve the MTF and sensitivity of the flat panel detector, thereby further improving the image quality.
  • the flat panel detector of the embodiment of the present disclosure includes a first detection unit 100 and a second detection unit 200 that are stacked along the thickness direction A of the flat panel detector.
  • the second detection unit 200 is located on the opposite side of the X-ray incident side of the first detection unit 100 .
  • FIG. 13 shows that the first detection unit 100 is located above the second detection unit 200. It can be understood that when the X-rays are incident from below the first detection unit 100, the second detection unit 200 If it is located above the first detection unit 100, the purpose of the present invention can also be achieved.
  • the first detection unit 100 includes: a first optical assembly OPA1 having a first side along the thickness direction of the flat panel detector (the A direction shown in the figure) 11 (upper side shown in the figure) and a second side 12 (lower side shown in the figure) opposite said first side.
  • the first optical assembly OPA1 includes: a first scintillator layer SCL1 for converting at least part of X-rays (X1 rays shown in the figure) into first visible light (including first downward visible light L1 and first upward visible light L2 ) ); and a first light conducting structure OPS1 configured to be stacked with the first scintillator layer SCL1 for conducting the first visible light.
  • the first detection unit 100 further includes a first image sensor assembly configured to be stacked with the first optical assembly OPA1 and configured to receive the first visible light.
  • the first image sensor assembly includes: a first image sensor M1, located on the first side 11 of the first optical assembly OPA1; and a second image sensor M2, located on the first side of the first optical assembly OPA1. 12 on both sides.
  • the second detection unit 200 includes: a second optical component OPA2, located on a side of the first image sensor M1 away from the first optical component OPA1, and configured to be connected with the first optical component OPA1 stacked with the first image sensor assembly.
  • the second optical assembly OPA2 includes: a second scintillator layer SCL2 for converting at least another part of X (X2 rays shown in the figure) rays into second visible light (including second downward visible light L3).
  • the second detection unit 200 further includes a second image sensor assembly configured to be stacked with the second optical assembly OPA2 for receiving the second visible light.
  • the second image sensor assembly includes a third image sensor M3 located on a side of the second optical assembly OPA2 away from the first optical assembly OPA1.
  • the first scintillator layer SCL1 converts most of the X-rays, such as X1 rays, into first visible light.
  • the absorption ratio of scintillators to X-rays varies from about 30% to 60%.
  • the flat panel detector has dual detection units, not only can the X1 rays irradiated thereon be converted into first visible light by the first scintillator layer SCL1, but also the X-rays can be converted by the second scintillator layer SCL2.
  • the X2 rays that are not converted by the first scintillator layer SCL1 are converted into second visible light, and are collected by the third image sensor M3.
  • the flat-panel detector of the above embodiment can collect more X-rays, obtain more complete image information, and further improve the MTF and sensitivity of the flat-panel detector, thereby obtaining better images. quality.
  • the side of the second optical component close to the light incident side of the flat panel detector is defined as the fourth side
  • the side of the second optical component away from the light incident side is defined as the third side. side
  • the image sensor located on the third side of the second optical assembly is defined as the third image sensor
  • the image sensor located on the fourth side of the second optical assembly is defined as the fourth image sensor. That is, the fourth image sensor is close to the light incident side of the flat panel detector, and the third image sensor is far from the light incident side of the flat panel detector.
  • the second image sensor assembly further includes a fourth image sensor M4.
  • the second optical assembly OPA2 has a third side 112 (the lower side shown in the figure) along the thickness direction of the flat panel detector (the A direction shown in the figure) and a fourth side opposite to the third side 112 .
  • side 111 (the upper side shown in the figure)
  • the fourth side 111 is closer to the first image sensor M1 than the third side 112 .
  • the third image sensor M3 is located on the third side 112 of the second optical assembly OPA2
  • the fourth image sensor M4 is located on the fourth side 111 of the second optical assembly OPA2.
  • the direction of the second visible light converted by the second scintillator layer SCL2 is random, for example, the second visible light includes the second downward visible light L3 and the second upward visible light L4 .
  • the fourth image sensor M4 on the upper side of the second scintillator layer SCL2
  • part of the second visible light L4 emitted from the upper surface of the second scintillator layer SCL2 can reach the fourth image sensor M4 for imaging,
  • the loss caused by the propagation of the second visible light within the scintillator layer is mitigated. Also, since more second visible light is obtained, more complete image information can be obtained.
  • the second optical component may include the second light conducting structure, or may not include the second light conducting structure.
  • the second optical component includes the second light-conducting structure
  • the second light-conducting structure can restrain the second visible light generated by the second scintillator layer, so as to avoid the decrease of the MTF of the flat panel detector, thereby further effectively improving the DQE of the product , so it is preferred.
  • the third image sensor M3 and the fourth image sensor M4 are the same or different in structure.
  • the manufacturing process can be simplified and the complexity of circuit design can be reduced, which is therefore preferred.
  • the third image sensor M3 and the fourth image sensor M4 have the same structure as an example for description.
  • the first detection unit 100 is composed of a first image sensor M1 , a first light conducting component OPA1 and a second image sensor M2 .
  • the first light conducting assembly OPA1 includes a first scintillator layer SCL1 and a first light conducting structure OPS1.
  • the first light conducting structure OPS1 includes a first optical fiber LCG1 , a first upper adhesive layer 102 and a first lower adhesive layer 103 .
  • the second detection unit 200 is composed of a third image sensor M3 , a second light conducting component OPA2 and a fourth image sensor M4 .
  • the third image sensor M3 and the fourth image sensor M4 reference may be made to the specific descriptions of the first image sensor and the second image sensor in the previous embodiment, which will not be repeated here.
  • the second optical assembly OPA2 includes a second scintillator layer SCL2, and a second light conducting structure OPS2, wherein the second light conducting structure is configured to communicate with the second scintillator layer SCL2 Stacked and used to conduct the second visible light (including the second downward visible light L3 and the second upward visible light L4).
  • the second scintillator layer SCL2 and the second light conducting structure OPS2 reference may be made to the specific description of the first scintillator layer and the first light conducting structure in the previous embodiment, which is not repeated here. Repeat.
  • FIG. 14 shows that the second light conducting structure is disposed on the upper side of the second scintillator layer SCL2.
  • the second light conducting structure may also be disposed on the second scintillator layer SCL2.
  • the lower side of the scintillator layer SCL2, or the second light conducting structure may also be disposed on the upper and lower sides of the second scintillator layer SCL2. That is, according to actual needs, the second light conducting structure may be disposed on one side or both sides of the second scintillator layer, which is not limited in this embodiment of the present disclosure.
  • the second light conducting structure OPS2 is used to increase the distance between the third image sensor M3 and the fourth image sensor M4.
  • the spatial distance is beneficial to eliminate the electromagnetic interference between the two image sensors and improve the detection quantum efficiency (DQE) of the flat panel detector.
  • the second light conducting structure OPS2 conducts the second visible light generated by the second scintillator layer SCL2 to the third image sensor M3 and the fourth image sensor M4 respectively.
  • the second visible light has a binding effect, thereby avoiding the decline of the modulation transfer function MTF of the flat panel detector, effectively improving the DQE of the product or reducing the dose of X-rays used.
  • the second light-conducting structure OPS2 includes a second optical fiber LCG2 , and the second optical fiber LCG2 is located in the thickness direction of the flat panel detector of the second scintillator layer SCL1 At least one side (the upper side shown in the picture).
  • the second optical fiber LCG2 for the specific structure and arrangement of the second optical fiber LCG2, reference may be made to the specific description of the first optical fiber in the previous embodiment, which will not be repeated here.
  • the second optical fiber LGC1 can conduct the second upward visible light L4 emitted from the upper surface of the second scintillator layer SCL2 to the fourth image sensor M4 in a total reflection manner. In this way, not only the loss during the transmission of the second upward visible light L4 is reduced, but also the second upward visible light L4 is restrained, thereby avoiding the decrease of MTF. It can be understood that when the flat panel detector includes two second light-conducting structures, and each second light-conducting structure includes a second optical fiber, the second optical fiber can be arranged on the upper and lower sides of the second scintillator layer.
  • the second downward visible light L3 and the second upward visible light L4 can be transmitted to the third image sensor M3 and the fourth image sensor M4 in a total reflection manner, respectively.
  • the loss during transmission of the second downward visible light L1 and the second upward visible light L2 can be reduced, and both the second downward visible light L1 and the second upward visible light L2 can be restrained, thereby avoiding the decrease of MTF.
  • the second optical fiber LCG2 is located between the second scintillator layer SCL2 and the fourth image sensor M4.
  • the second optical fiber LCG2 has the same structure as the first optical fiber LCG1 shown in FIG. 4 .
  • the second optical fiber LCG2 includes a second visible light incident end (not shown in the figure) close to the second scintillator layer SCL2 and a second visible light exit far away from the second scintillator layer SCL2 end (not shown in the figure), the second visible light enters the second optical fiber LCG2 from the second visible light incident end, and exits toward the fourth image sensor M4 from the second visible light exit end.
  • the second light guide structure includes a plurality of second light guide fibers LGC2 , and the plurality of second light guide fibers LGC2 are closely arranged.
  • a plurality of the second optical fibers LGC2 are arranged in a matrix, and two adjacent second optical fibers LGC2 are in contact with each other. In this way, the gaps between the plurality of second optical fibers can be reduced, thereby further reducing the light loss of visible light during the transmission process.
  • the thickness of the second optical fiber LGC2 ranges from 200 micrometers to 5 millimeters.
  • the thickness of the second optical fiber can be regarded as the thickness of the optical fiber layer composed of the second optical fiber.
  • a plurality of first optical fibers LGC2 constitute a second optical fiber layer 201
  • the thickness of the second optical fiber layer 201 ranges from 200 ⁇ m to 5 mm.
  • the second light conducting structure further includes a second adhesive layer, and the second optical fiber is connected to the second scintillator layer and the first scintillator layer through the second adhesive layer, respectively.
  • Quad image sensor fit As shown in FIG. 14 , the second light conducting structure OPS2 further includes a second upper adhesive layer 202 and a second lower adhesive layer 203 .
  • the second adhesive layer for the specific structure and arrangement of the second adhesive layer, reference may be made to the specific description of the first adhesive layer in the previous embodiment, which will not be repeated here.
  • the thickness of the first scintillator layer SCL1 is greater than or equal to the thickness of the second scintillator layer SCL2 .
  • the second scintillator layer SCL2 enables the flat panel detector to have higher MTF
  • the first scintillator layer SCL1 enables the flat panel detector to have higher sensitivity.
  • the thickness of the first scintillator layer SCL1 and the thickness of the second scintillator layer SCL2 are between 50 ⁇ m and 500 ⁇ m, for example, between 100 ⁇ m and 400 ⁇ m
  • the thickness of the first scintillator layer SCL1 is between 50 ⁇ m and 500 ⁇ m.
  • the thickness is preferably about 300 microns.
  • the thickness of the second scintillator layer SCL2 is preferably 200 ⁇ m.
  • the second scintillator layer SCL2 includes a second columnar crystalline scintillator 204 and a second amorphous scintillator 205 located at the bottom of the second columnar crystalline scintillator 204 .
  • the thickness of the second columnar crystalline scintillator 204 is greater than the thickness of the first columnar crystalline scintillator 104 .
  • the third image sensor includes a third display area, and the third display area includes a plurality of third wirings.
  • the third image sensor further includes a third non-display area surrounding the third display area, the third non-display area includes a third connection portion, and the third connection portion is provided with a line corresponding to the third line
  • the third connecting line is electrically connected to the third wiring.
  • the third wiring and the third connection part reference may be made to the description of the first display area, the first wiring and the first connection part in the previous embodiment. It is not repeated here.
  • the fourth image sensor includes a fourth display area, and the fourth display area includes a fourth trace.
  • the fourth image sensor further includes a fourth non-display area surrounding the fourth display area, the fourth non-display area includes a fourth connection portion, and the fourth connection portion is provided with a line corresponding to the fourth line
  • the fourth connecting line is electrically connected to the fourth wiring.
  • the fourth wiring and the fourth connection part reference may be made to the description of the second display area, the second wiring and the second connection part in the previous embodiment. It is not repeated here.
  • the third display area and the fourth display area overlap each other, and the third connection portion and the fourth connection portion are not mutually exclusive. overlapping. In this way, signals on the respective external control circuits (including the driving circuit and the readout circuit) of the third image sensor M3 and the fourth image sensor M4 can be prevented from not interfering with each other, thereby improving the sensitivity and integration of the flat panel detector.
  • the third trace includes a third gate line and a third data line crossing each other
  • the third connection part includes a third data line connection part and a third gate line connection part
  • the third The gate line connection part and the third data line connection part are respectively located at the fifth edge and the sixth edge of the third display area, and the fifth edge and the sixth edge are adjacent and connected to each other.
  • the third image sensor M3 further includes a third drive circuit and a third readout circuit.
  • the specific structure and arrangement of the third gate line, the third data line, the third data line connection part, the third gate line connection part, the third driving circuit, and the third readout circuit may refer to the previous embodiments
  • the first gate line, the first data line, the first data line connecting portion, the first gate line connecting portion, the first driving circuit, and the first readout circuit will not be repeated here.
  • the specific structures and arrangement of the fifth edge and the sixth edge of the third display area reference may be made to the description of the first edge and the second edge of the first display area above, which will not be repeated here.
  • the fourth trace includes a fourth gate line and a fourth data line crossing each other
  • the fourth connection part includes a fourth gate line connection part and a fourth data line connection part
  • the fourth The gate line connection part and the fourth data line connection part are respectively located at the seventh edge and the eighth edge of the fourth display area, and the seventh edge and the eighth edge are adjacent and connected to each other.
  • the fourth image sensor M4 also includes a fourth drive circuit and a fourth readout circuit.
  • the specific structure and arrangement of the fourth gate line, the fourth data line, the fourth data line connection part, the fourth gate line connection part, the fourth driving circuit, and the fourth readout circuit can refer to the previous embodiments.
  • the second gate line, the second data line, the second data line connecting portion, the second gate line connecting portion, the second driving circuit, and the second readout circuit will not be repeated here.
  • the seventh edge and the eighth edge of the fourth display area reference may be made to the description of the third edge and the fourth edge of the second display area above, which will not be repeated here.
  • connection part and the wiring in the above-mentioned embodiment the fourth connection line, the fourth connection part, the fourth drive circuit and the fourth readout circuit on the fourth image sensor M4 and the fourth connection line on the fourth image sensor M4 and the fourth connection part on the second image sensor M4 can be avoided.
  • the two connecting lines, the second connecting portion, the second driving circuit and the second readout circuit overlap each other, thereby avoiding signal interference between the two image sensors.
  • the flat panel detector further includes a first encapsulation layer 106 , and the first encapsulation layer 106 seals at least the first image sensor M1 and the first scintillator layer SCL1 .
  • the specific structure and setting manner of the first encapsulation layer 106 can be referred to the description of the previous embodiment, and details are not repeated here.
  • the flat panel detector further includes a second encapsulation layer 206 , and the second encapsulation layer 206 seals at least the third image sensor M3 and the second scintillator layer SCL2 .
  • the second encapsulation layer 206 seals at least the third image sensor M3 and the second scintillator layer SCL2 .
  • the entry of water vapor and impurities into the third image sensor M3 and the second scintillator layer SCL2 can be avoided.
  • the first encapsulation layer 106 encapsulates the first image sensor M1 and the first scintillator layer SCL1
  • the second encapsulation layer 206 encapsulates the third image sensor M3, the second light conducting structure OPS2, and the second scintillator layer SCL2.
  • the manufacturing process can be simplified, which is therefore preferred.
  • the flat panel detector further includes a shielding assembly 300 located between the first detection unit 100 and the second detection unit 200. Further, the shielding assembly 300 is located between the first image sensor M1 and the fourth image sensor M4, and is used for shielding ultraviolet rays and electromagnetic waves with longer wavelengths than ultraviolet rays. In this way, electromagnetic waves (eg, visible light) in the above-mentioned wavelength range can be prevented from entering the second detection unit 200 and interference with the second detection unit 200 can be avoided.
  • electromagnetic waves eg, visible light
  • the shielding assembly includes a shielding layer having a single-layer structure or a multi-layer structure.
  • a multilayer structure includes two or more layers.
  • 15 is a schematic cross-sectional view of a shielding component in a flat panel detector according to an embodiment of the disclosure.
  • the shielding assembly includes a first shielding layer 301 , a second shielding layer 302 and a third shielding layer 303 .
  • the first shielding layer 301 can shield electromagnetic waves in a first wavelength range
  • the second shielding layer 302 can shield electromagnetic waves in a second wavelength range
  • the third shielding layer 303 can shield electromagnetic waves in a third wavelength range.
  • the first wavelength range corresponds to the wavelength range of ultraviolet light, for example, 10 nm to 100 nm.
  • the second wavelength range corresponds to the visible light wavelength range, for example, 100 nm to 760 nm.
  • the third wavelength range corresponds to an infrared wavelength range, for example, greater than 760 nm.
  • the shielding layer has a single-layer structure, and the shielding layer of the single-layer structure is used to absorb X-rays with longer wavelengths (soft rays for short), so that X-rays with shorter wavelengths (hard rays for short) are absorbed. through.
  • the first detection unit is used to detect X-rays with a larger wavelength range (ie, soft rays and hard rays)
  • the second detection unit is used to detect X-rays with a smaller wavelength range (ie, only hard rays).
  • the shielding layer includes a metallic material, and the shielding layer has a thickness ranging from 200 microns to 5 millimeters. In at least one example, the thicknesses of the first shielding layer 301 , the second shielding layer 302 and the third shielding layer 303 may be the same or different.
  • the shielding assembly further includes a third adhesive layer, and the shielding layer is respectively adhered to the first image sensor and the fourth image sensor through the third adhesive layer.
  • the shielding assembly further includes a third adhesive layer for attaching the shielding layer to the two first image sensors M1 and the fourth image sensor M4 .
  • the adhesive layers include a first adhesive layer 306 and a second adhesive layer 304 .
  • the first adhesive layer 306 is located between the third shielding layer 303 and the first image sensor M1.
  • the second adhesive layer 304 is located between the first shielding layer 301 and the fourth image sensor M4.
  • both the first optical fiber and the second optical fiber include a core and an outer layer covering the core.
  • the core is made of transparent materials such as glass, quartz or plastic.
  • the outer layer includes a low refractive index light transmissive material.
  • the diameters of the first optical fiber and the second optical fiber are between a few micrometers and tens of micrometers.
  • the incident angle on the core-cladding interface of the optical fiber is greater than that of total reflection. The critical angle, so the light is continuously and totally reflected in the optical fiber, so that the light can be transmitted from one end of the optical fiber to the other end with the lowest loss.
  • the first substrate SUB1, the second substrate SUB2, the third substrate SUB3, and the fourth substrate SUB4 can be rigid or flexible substrates.
  • the rigid substrate is glass, for example
  • the flexible substrate is glass, for example.
  • Polyimide (PI) substrate The absorption of X-rays by flexible substrates is far less than the absorption of X-rays by glass substrates.
  • Using flexible substrates to manufacture related products can improve the signal-to-noise ratio of products.
  • the overall weight of the flat panel detector can be reduced, and the attenuation of X-rays can also be reduced, which is therefore preferred.
  • FIG. 16 is a flowchart of a method for manufacturing a flat panel detector according to an embodiment of the present disclosure. As shown in FIG. 16 , an embodiment of the present disclosure further provides a method for manufacturing a flat panel detector, including:
  • a first optical assembly is formed, wherein the first optical assembly has a first side along the thickness direction of the flat panel detector and a second side opposite the first side, the first optical assembly comprising: a first a scintillator layer for converting at least part of the X-rays into first visible light; and a first light conducting structure configured to be stacked with the first scintillator layer for conducting the first visible light;
  • first image sensor assembly configured to be stacked with the first optical assembly and for receiving the first visible light
  • the first image sensor assembly including a first image sensor and a second image sensor ;as well as
  • the first image sensor, the second image sensor and the first optical assembly are assembled, so that the first image sensor and the second image sensor are respectively located on the first optical assembly of the first optical assembly. one side and the second side of the first optical assembly to form a first detection unit.
  • the second image sensor on the upper side of the first scintillator layer, part of the first visible light emitted from the upper surface of the first scintillator layer can reach the second image sensor for imaging, which reduces the problem of image formation. Losses caused by the propagation of the first visible light within the first scintillator layer.
  • the first light conduction structure is used to increase the distance between the first image sensor and the second image sensor. The spatial spacing is favorable for eliminating the electromagnetic interference between the two image sensors and improving the DQE of the flat panel detector.
  • the first light-conducting structure conducts the first visible light generated by the first scintillator layer to the first image sensor component, because the first light-conducting structure is bound to the transmitted first visible light Therefore, the decline of the MTF of the flat panel detector can be avoided, and the DQE of the product can be effectively improved or the use dose of X-rays can be reduced.
  • the method for manufacturing the flat panel detector of FIG. 2A or FIG. 13 using the above-mentioned method for manufacturing a flat panel detector includes:
  • a first optical assembly OPA1 is formed, wherein the first optical assembly OPA1 has a first side 11 along the thickness direction A of the flat panel detector and a second side 12 opposite to the first side 11, the first The optical assembly OPA1 includes: a first scintillator layer SCL1 for converting at least part of the X-rays into first visible light (including the first downward visible light L1 and the first upward visible light L2 ); and a first light conducting structure configured with the first scintillator layer SCL1 is stacked for conducting the first visible light;
  • first image sensor assembly is configured to be stacked with the first optical assembly OPA1 and for receiving the first visible light
  • the first image sensor assembly includes a first image sensor M1 and a second image sensor M2;
  • FIG. 17 is a flowchart of a manufacturing method of a flat panel detector according to another embodiment of the present disclosure.
  • 18A to 18F are schematic diagrams of each step of a manufacturing method of a flat panel detector according to still another embodiment of the disclosure.
  • a method for manufacturing a flat panel detector according to still another embodiment of the present disclosure includes:
  • the first image sensor M1 on which the first scintillator layer SCL1 is formed, the first photoconductive structure OPS1 and the rotated second image sensor M2 are assembled.
  • forming the first scintillator layer SCL1 includes forming a film on the first image sensor M1 using a thermal evaporation method.
  • FIG. 19 is a flowchart of a method for manufacturing a flat panel detector according to still another embodiment of the present disclosure.
  • a method for manufacturing the flat panel detector of FIG. 2A according to still another embodiment of the present disclosure includes:
  • the second image sensor M2 is directly formed on the first photoconductive structure OPS1.
  • the above-mentioned manufacturing method further includes: encapsulating the first scintillator layer SCL1 , the first light conducting structure OPS1 and the first image sensor M1 .
  • the packages are all packaged with light-transmitting materials.
  • assembling the first image sensor M1 and the second image sensor M2 with the first optical assembly OPA1 includes: adhering to each other using an adhesive or assembling using a vacuum adsorption method. together.
  • the first image sensor M1 and the second image sensor M2 and the first optical assembly OPA1 are assembled together by a vacuum adsorption method, which saves the use of adhesives, thereby reducing light exposure. During transmission, the adhesive interferes with light.
  • a first alignment mark may be set in the first non-display area NA1 of the first image sensor M1.
  • a second alignment mark is set in the second non-display area NA2 of the second image sensor M2, so that the first alignment mark is aligned with the second alignment mark during assembly to achieve a better assembly effect.
  • a charge coupled device Charge Coupled Device, CCD for short
  • CCD Charge Coupled Device
  • the above-mentioned manufacturing method further includes:
  • a second optical assembly OPA2 is formed, the second optical assembly OPA2 is located on the side of the first image sensor M1 away from the first optical assembly OPA1, and is configured to be connected with the first optical assembly OPA1 and the first image sensor Component stack; wherein the second optical component OPA2 has a third side 112 along the thickness direction A of the flat panel detector and a fourth side 111 opposite to the third side 112, the fourth side 111 being larger than The third side 112 is closer to the first image sensor M1, and the second optical assembly OPA2 includes: a second scintillator layer SCL2 for converting at least another part of the X-rays into second visible light (including a second lower visible light L3 and second upward visible light L4);
  • the second image sensor assembly configured to be stacked with the second optical assembly OPA2 for receiving the second visible light, the second image sensor assembly including a third image sensor M3 and a fourth image sensor M4;
  • the second detection unit 200 is assembled with the first detection unit 100 .
  • the forming of the second optical assembly OPA2 further includes: forming a second light conducting structure OPS2 , wherein the second light conducting structure OPS2 is configured to be stacked with the second scintillator layer SCL2 and for conducting the second visible light.
  • the manufacturing method of the second detection unit 200 may refer to the manufacturing method of the first detection unit 100 in the previous embodiments.
  • the manufacturing method includes:
  • the third image sensor M3 on which the second scintillator layer SCL2 is formed, the second light conducting structure OPS2 and the rotated fourth image sensor M4 are assembled.
  • the manufacturing method includes:
  • the fourth image sensor M4 is directly formed on the second light conducting structure OPS2.
  • the above-mentioned manufacturing method further includes: encapsulating the second scintillator layer SCL2 , the second light conducting structure OPS2 and the third image sensor M3 .
  • the above-mentioned manufacturing method further includes: encapsulating the second scintillator layer SCL2 , the second light conducting structure OPS2 and the third image sensor M3 .
  • assembling the third image sensor M3 and the fourth image sensor M4 and the second optical assembly includes: adhering to each other by an adhesive or assembling on a vacuum adsorption method.
  • a third alignment mark may be provided in the third non-display area of the third image sensor M3, and a fourth alignment mark may be provided in the fourth non-display area of the fourth image sensor M4, In this way, a better assembly effect can be achieved by aligning the third alignment mark with the fourth alignment mark during assembly.
  • the above-mentioned alignment marks can also be used to improve the alignment accuracy of the two detection units.
  • the above-mentioned manufacturing method further includes: forming a shielding assembly 300 located between the first image sensor M1 and the fourth image sensor M4 for shielding ultraviolet rays and lowering ultraviolet rays electromagnetic waves with longer wavelengths.
  • the first light conduction structure is used to increase the spatial distance between the first image sensor and the second image sensor, which is conducive to eliminating the two Electromagnetic interference between the image sensors, improving the DQE of the flat panel detector.
  • the first light-conducting structure conducts the first visible light generated by the first scintillator layer to the first image sensor and the second image sensor, respectively, because the first light-conducting structure has a binding effect on the first visible light to be conducted, thereby It can avoid the decrease of the MTF of the modulation transfer function of the flat panel detector, effectively improve the DQE of the product or reduce the dose of X-rays used.
  • the flat-panel detector with dual detection units can collect more X-rays, obtain more complete image information, and further improve the MTF and sensitivity of the flat-panel detector, thereby obtaining better image quality.
  • the shielding assembly located between the two detection units can be used to shield ultraviolet rays and electromagnetic waves with longer wavelengths than ultraviolet rays. In this way, the interference of the electromagnetic waves in the above wavelength range to the second detection unit can be avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

公开了一种平板探测器及其制造方法。该平板探测器包括第一光学组件,所述第一光学组件具有沿所述平板探测器的厚度方向的第一侧和第二侧并且包括:第一闪烁体层,用于将至少部分射线转化为第一可见光和第一光传导结构,与所述第一闪烁体层堆叠,用于传导所述第一可见光。该平板探测器还包括第一图像传感器组件,与所述第一光学组件堆叠,用于接收所述第一可见光,所述第一图像传感器组件包括:分别位于所述第一光学组件的所述第一侧和所述第二侧的第一图像传感器和第二图像传感器。通过设置第二图像传感器,使从第一闪烁体层的上表面出射的部分第一可见光能够抵达第二图像传感器成像,避免了第一可见光在第一闪烁体层内传播导致的损失。

Description

平板探测器及其制造方法
相关申请的交叉引用
出于所有目的,本申请基于并且要求于2020年6月29日递交、名称为“平板探测器及其制造方法”的中国专利申请第202010607415.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种平板探测器及其制造方法。
背景技术
X射线检测技术具有广阔的应用前景,目前已广泛应用于工业无损检测、集装箱扫描、电路板检查、医疗、安防、工业等领域。X射线数字化成像技术(Digital Radio Graphy,DR)采用X射线平板探测器直接将X影像转换为数字图像。根据结构的不同,X射线平板探测器分为直接转换型(Direct DR)与间接转换型(Indirect DR)。
发明内容
根据本公开第一方面,提供了一种平板探测器。该平板探测器包括:
第一光学组件,所述第一光学组件具有沿所述平板探测器的厚度方向的第一侧和与所述第一侧相对的第二侧,并且所述第一光学组件包括:第一闪烁体层,用于将至少部分射线转化为第一可见光;和第一光传导结构,与所述第一闪烁体层堆叠,用于传导所述第一可见光;
第一图像传感器组件,与所述第一光学组件堆叠,用于接收所述第一可见光,所述第一图像传感器组件包括:第一图像传感器,位于所述第一光学组件的所述第一侧;和第二图像传感器,位于所述第一光学组件的所述第二侧。
例如,上述平板探测器中,所述第一光传导结构包括第一光导纤维,所述第一光导纤维位于所述第一闪烁体层的沿所述平板探测器的厚度方向的至少一侧。
例如,上述平板探测器中,所述第一光导纤维位于所述第一闪烁体层和所述第二图像传感器之间,所述第一光导纤维包括靠近所述第一闪烁体层的第一可见光入射端和远离所述第一闪烁体层的第一可见光出射端,所述第一可见光从所述第一可见光入射端进入所述第一光导纤维,并且从所述第一可见光出射端朝向所述第二图像传感器射出。
例如,上述平板探测器中,所述第一光传导结构还包括第一粘合剂层,第一光导纤维通过所述第一粘合剂层分别与所述第一闪烁体层和所述第二图像传感器相贴合。
例如,上述平板探测器中,所述第一图像传感器包括:第一显示区,所述第一显示区包括多条第一走线;围绕所述第一显示区的第一非显示区,所述第一非显示区包括第一连接部,所述第一连接部中设置有与第一走线对应的第一连接线,所述第一连接线与所述第一走线电连接;所述第二图像传感器包括:第二显示区,所述第二显示区包括第二走线;围绕所述第二显示区的第二非显示区,所述第二非显示区包括第二连接部,所述第二连接部中设置有与第二走线对应的第二连接线,所述第二连接线与所述第二走线电连接;其中,沿所述平板探测器的所述厚度方向上,所述第一显示区和所述第二显示区彼此重叠,所述第一连接部和所述第二连接部彼此不重叠。
例如,上述平板探测器中,所述第一走线包括彼此交叉的第一栅线和第一数据线,所述第一连接部包括第一栅线连接部和第一数据线连接部,所述第一栅线连接部和所述第一数据线连接部分别位于所述第一显示区的第一边缘和第二边缘,该第一边缘和第二边缘相邻且彼此连接;
所述第二走线包括彼此交叉的第二栅线和第二数据线,所述第二连接部包括第二栅线连接部和第二数据线连接部,所述第二栅线连接部和所述第二数据线连接部分别位于所述第二显示区的第三边缘和第四边缘,该第三边缘和第四边缘相邻且彼此连接。
例如,上述平板探测器还包括:第二光学组件,位于所述第一图像传感器的远离所述第一光学组件的一侧,并且与第一光学组件和所述第一图像传感器组件堆叠;所述第二光学组件包括:第二闪烁体层,用于将至少另一部分射线转化为第二可见光;上述平板探测器还包括:第二图像传感器组件,与所述第二光学组件堆叠,用于接收所述第二可见光,所述第二图像传感器组件包括位于所述第二光学组件的远离所述第一光学组件一侧的第三图像传感器。
例如,上述平板探测器中,所述第二图像传感器组件还包括第四图像传感器;所述第二光学组件具有沿所述平板探测器的厚度方向的第三侧和与所述第三侧相对的第四侧,所述第四侧比所述第三侧更靠近所述第一图像传感器,所述第三图像传感器位于所述第二光学组件的所述第三侧,所述第四图像传感器位于所述第二光学组件的所述第四侧。
例如,上述平板探测器中,所述第二光学组件还包括第二光传导结构,其中所述第二光传导结构与所述第二闪烁体层堆叠并且用于传导所述第二可见光到所述第二图像传感器组件。
例如,上述平板探测器中,所述第二光传导结构包括第二光导纤维,所述第二光导纤维位于所述第二闪烁体层的沿所述平板探测器的厚度方向的至少一侧。
例如,上述平板探测器中,所述第二光导纤维位于所述第二闪烁体层和所述第四图像传感器之间,所述第二光导纤维包括靠近所述第二闪烁体层的第二可见光入射端和远离所述第二闪烁体层的第二可见光出射端,所述第二可见光从所述第二可见光入射端进入所述第二光导纤维,并且从所述第二可见光出射端朝向所述第四图像传感器射出。
例如,上述平板探测器中,所述第一光传导结构包括多个所述第一光导纤维,所述第二光传导结构包括多个所述第二光导纤维,多个所述第一光导纤维紧密排布,每个所述第一光导纤维的长度方向与所述第一闪烁体层所在平面之间的夹角为大于或等于45度且小于或等于90度,所述第一光导纤维的厚度范围为200微米至5毫米;多个所述第二光导纤维紧密排布,每个所述第二光导纤维的长度方向与所述第二闪烁体层所在平面之间的夹角为大于或等于45度且小于或等于90度,所述第二光导纤维的厚度范围为200微米至5毫米。
例如,上述平板探测器中,所述第一闪烁体层的厚度大于或等于所述第二闪烁体层的厚度。
例如,上述平板探测器还包括屏蔽组件,所述屏蔽组件位于所述第一图像传感器和所述第四图像传感器之间,用于屏蔽紫外线以及比紫外线波长更长的电磁波。
例如,上述平板探测器中,所述屏蔽组件包括屏蔽层,所述屏蔽层具有单层结构或多层结构,所述屏蔽层包括金属材料,所述屏蔽层的厚度范围为200微米至5毫米。
例如,上述平板探测器中,所述屏蔽组件还包括第三粘合剂层,所述屏蔽层通过所述第三粘合剂层分别与所述第一图像传感器和所述第四图像传感器贴合。
例如,上述平板探测器中,所述第三图像传感器包括:第三显示区,所述第三显示区包括多条第三走线;围绕所述第三显示区的第三非显示区,所述第三非显示区包括第三连接部,所述第三连接部中设置有与第三走线对应的第三连接线,所述第三连接线与所述第三走线电连接;上述平板探测器中,所述第四图像传感器包括:第四显示区,所述第四显示区包括第四走线;围绕所述第四显示区的第四非显示区,所述第四非显示区包括第四连接部,所述第四连接部中设置有与第四走线对应的第四连接线,所述第四连接线与所述第四走线电连接;其中,沿所述平板探测器的所述厚度方向上,所述第三显示区和所述第四显示区彼此重叠,所述第三连接部和所述第四连接部彼此不重叠。
例如,上述平板探测器中,所述第三走线包括彼此交叉的第三栅线和第三数据线,所述第三连接部包括第三数据线连接部和第三栅线连接部,所述第三栅线连接部和所述第三数据线连接部分别位于所述第三显示区的第五边缘和第六边缘,该第五边缘和第六边缘相邻且彼此连接;所述第四走线包括彼此交叉的第四栅线和第四数据线,所述第四连接部包括第四栅线连接部和第四数据线连接部,所述第四栅线连接部和所述第四数据线连接部分别位于所述第四显示区的第七边缘和第八边缘,该第七边缘和第八边缘相邻且彼此连接。
根据本公开第二方面,提供了一种平板探测器的制造方法,包括:
形成第一光学组件,所述第一光学组件具有沿所述平板探测器的厚度方向的第一侧和与所述第一侧相对的第二侧,所述第一光学组件包括:第一闪烁体层,用于将至少部分射线转化为第一可见光;以及第一光传导结构,与所述第一闪烁体层堆叠,用于传导所述第一可见光;
形成第一图像传感器组件,与所述第一光学组件堆叠,用于接收所述第一可见光,所述第一图像传感器组件包括第一图像传感器和第二图像传感器;以及
将所述第一图像传感器、所述第二图像传感器与所述第一光学组件进行组装,使得所述第一图像传感器和所述第二图像传感器分别位于所述第一光学组件的所述第一侧和所述第一光学组件的所述第二侧,以形成第一探测单元。
例如,上述制造方法包括:形成所述第一图像传感器,并且在所述第一图像传感器的面向所述第二图像传感器的一侧上形成所述第一闪烁体层;形成所述第一光传导结构;形成所述第二图像传感器,并且将所述第二图像传感器翻转并且旋转90度;以及将其上形成有所述第一闪烁体层的所述第一图像传感器、第一光传导结构和旋转后的所述第二图像传感器进行组装。
例如,上述制造方法还包括:形成第二光学组件,所述第二光学组件位于所述第一图像传感器的远离所述第一光学组件的一侧,与所述第一光学组件和第一图像传感器组件堆叠;其中,所述第二光学组件具有沿所述平板探测器的厚度方向的第三侧和与所述第三侧相对的第四侧,所述第四侧比所述第三侧更靠近所述第一图像传感器,所述第二光学组件包括:第二闪烁体层,用于将至少另一部分射线转化为第二可见光;形成第二图像传感器组件,与所述第二光学组件堆叠,用于接收所述第二可见光,所述第二图像传感器组件包括第三图像传感器和第四图像传感器;将所述第三图像传感器、所述第四图像传感器与所述第二光学组件进行组装,使得所述第三图像传感器位于所述第二光学组件的所述第三侧,所述第四图像传感器位于所述第二光学组件的所述第四侧,以形成第二探测单元;将所述第二探测单元与所述第一探测单元进行组装。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例的平板探测器的截面示意图;
图2A为本公开实施例的平板探测器的放大截面示意图;
图2B为本公开实施例的平板探测器中封装层的结构示意图;
图3为本公开实施例的平板探测器的光路示意图;
图4为本公开实施例的平板探测器中光导纤维的结构示意图;
图5为本公开实施例的第一图像传感器和第一闪烁体层的立体结构示意图;
图6A为本公开实施例的第一图像传感器的平面示意图;
图6B为本公开实施例的第一图像传感器的第一绑定区的局部放大示意图;
图7为本公开实施例的第二图像传感器的立体结构示意图;
图8A为本公开实施例的第二图像传感器的平面示意图;
图8B为图8A的第二图像传感器经翻转且旋转90度后的平面示意图;
图9为本公开实施例的组装后的平板探测器的平面示意图;
图10为本公开实施例的第一图像传感器的局部电路示意图;
图11为本公开实施例的第一图像传感器的第一感光区的电路示意图;
图12为本公开另一实施例的平板探测器的放大截面示意图;
图13为本公开再一实施例的平板探测器的截面示意图;
图14为本公开又一实施例的平板探测器的放大截面示意图;
图15为本公开实施例的平板探测器中屏蔽组件的截面示意图;
图16为本公开实施例的平板探测器的制造方法的流程图;
图17为本公开另一实施例的平板探测器的制造方法的流程图;
图18A至图18F为本公开再一实施例的平板探测器的制造方法的各步骤的示意图;
图19为本公开又一实施例的平板探测器的制造方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
现有平板探测器中,在闪烁体靠近X射线源的表层,吸收的X光最多,产生的可见光最强。由闪烁体表面深入,X射线强度越来越弱,产生的可见光也越来越少,闪烁体对可见光的散射和吸收进一步减弱了向传感器方向前进的可见光。最终成功穿过闪烁体、从下表面出射的可见光才能被传感器吸收。部分可见光从闪烁体上表面出射而无法抵达位于闪烁体层下侧的传感器,造成光线损失。另外,在医学场景中,为降低射线对人体的伤害,要求所用X射线剂量越小越好。然而,X射线剂量越小,被检测到的X射线的剂量也越小。为此,需要进一步提高平板探测器的检出量子效率(Detective Quantum Efficiency,DQE),以提高平板探测器的精确度。
本公开实施例提供一种平板探测器。该平板探测器包括:第一光学组件,所述第一光学组件具有沿所述平板探测器的厚度方向的第一侧和与所述第一侧相对的第二侧。所述第一光学组件包括:第一闪烁体层,用于将至少部分射线转化为第一可见光;和第一光传导结构,配置为与所述第一闪烁体层堆叠,用于传导所述第一可见光。该平板探测器还包括第一图像传感器组件,配置为与所述第一光学组件堆叠,并且用于接收所述第一可见光。所述第一图像传感器组件包括:第一图像传感器,位于所述第一光学组件的所述第一侧;和第二图像传感器,位于所述第一光学组件的所述第二侧。
上述实施例中,通过在第一闪烁体层的上侧设置第二图像传感器,使从第一闪烁体层的上表面出射的部分第一可见光能够抵达第二图像传感器成像,避免了第一可见光在第一闪烁体层内传播导致的损失。进一步地,上述实施例中,通过在平板探测器中设置与第一 闪烁体层堆叠的第一光传导结构,利用第一光传导结构增加第一图像传感器和第二图像传感器之间的空间间距,这样有利于消除两个图像传感器之间的电磁干扰,提高平板探测器的检出量子效率(DQE)。而且,上述实施例中,第一光传导结构将第一闪烁体层产生的第一可见光传导至第一图像传感器组件,由于第一光传导结构对该被传导的第一可见光有束缚作用,从而可避免平板探测器的调制传递函数(Modulation Transfer Function,MTF)的下降,有效提高产品的DQE或降低射线的使用剂量。
本公开实施例中,平板探测器可包括多种类型,例如,光电二极管(PIN)型平板探测器或金属-半导体-金属(MSM)型平板探测器。
金属-半导体-金属(MSM)型平板探测器利用光照使半导体层的电阻下降,形成金属-绝缘体-半导体(metal-insulator-semiconductor,MIS)结构,该MIS结构在高电压下发生电子隧穿,产生隧穿电流。通过采集和检测该隧穿电流得到显示图像。然而,MSM型平板探测器的暗电流较大、量子探测效率较低(DQE)、调制传递函数(MTF)较低。
PIN型平板探测器主要包括开关元件和光电转换单元,开关元件例如包括薄膜晶体管(Thin Film Transistor,TFT),光电转换单元例如包括光电二极管(PIN)。在诸如X射线的光线照射下,X射线平板探测器的闪烁体层或荧光体层将X射线光子转换为可见光,然后在PIN的作用下将可见光转换为电信号,最终通过TFT读取电信号并将电信号输出得到显示图像。进一步地,PIN型平板探测器包括非晶硅(a-Si)PIN型平板探测器和铟镓锌氧化物(IGZO)PIN型平板探测器。
以X射线为例,非晶硅(a-Si)PIN型X射线平板探测器是一种以非晶硅光电二极管阵列为核心的X射线影像探测器。通常,X射线经过人体后,由于人体不同组织部位对X射线的吸收程度的不同,导致X射线的分布不再是均匀的。经过人体的X射线被探测器的闪烁体或荧光体层将X射线转换为可见光,而后由具有光电二极管作用的非晶硅阵列变为图像电信号,通过***电路传输及模拟数字转换,从而获得数字化图像。由于其经历了X射线-可见光-电荷图像-数字图像的成像过程,通常也被称作间接转换型平板探测器。非晶硅X射线平板探测器具有成像速度快、良好的空间及密度分辨率、高信噪比、直接数字输出等优点,从而被广泛的应用于各种数字化X射线成像装置。
下面以平板探测器为非晶硅(a-Si)PIN型X射线平板探测器为例对本公开实施例的平板探测器做进一步详细说明。需要说明的是,本公开实施例中,闪烁体层可以根据实际需要而被选择为对X射线、γ射线或其他射线敏感。这样,本公开实施例的平板探测器可以充当X射线探测器、γ射线探测器或其他射线的探测器。
图1为本公开实施例的平板探测器的截面示意图。例如,如图1所示,本公开实施例的平板探测器包括:第一光学组件OPA1,所述第一光学组件OPA1具有沿所述平板探测器的厚度方向(图中所示A方向)的第一侧11(图中所示上侧)和与所述第一侧相对的第二侧12(图中所示下侧)。所述第一光学组件OPA1包括:第一闪烁体层SCL1,用于将至少部分X射线转化为第一可见光;和第一光传导结构,配置为与所述第一闪烁体层SCL1堆叠,用于传导所述第一可见光。该平板探测器还包括第一图像传感器组件,配置为与所述第一光学组件OPA1堆叠,并且用于接收所述第一可见光。所述第一图像传感器组件包括:第一图像传感器M1,位于所述第一光学组件OPA1的所述第一侧11;和第二图像传感器M2,位于所述第一光学组件OPA1的所述第二侧12。
上述实施例中,通过在第一闪烁体层SCL1的上侧设置第二图像传感器M2,使从第一闪烁体层SCL1的上表面出射的部分第一可见光L2能够抵达第二图像传感器M1成像,减轻了可见光在第一闪烁体层内SCL1传播导致的损失。进一步地,通过在平板探测器中设置与第一闪烁体层SCL1堆叠的第一光传导结构OPS1,利用第一光传导结构OPS1增加第一图像传感器M1和第二图像传感器M2之间的空间间距,这样有利于消除两个图像传感器M1、M2之间的电磁干扰,提高平板探测器的检出量子效率(DQE)。而且,上述实施 例中,第一光传导结构OPS1将第一闪烁体层SCL1产生的第一可见光分别传导至第一图像传感器组件,由于第一光传导结构OPS1对该被传导的第一可见光有束缚作用,从而可避免平板探测器的调制传递函数(Modulation Transfer Function,MTF)的下降,有效提高产品的DQE或降低X射线的使用剂量。
本公开实施例中,术语“堆叠”指的是在平板探测器的厚度方向上的重叠。例如,第一图像传感器组件配置为与所述第一光学组件堆叠,指的是在平板探测器的厚度方向上,第一图像传感器组件与第一光学组件彼此重叠,该重叠可以是部分重叠,也可以是完全重叠。进一步地,至少一个示例中,当第一图像传感器组件与第一光学组件完全重叠时,第一图像传感器组件能够接收到更多的第一可见光,从而提高产品的DQE,因此为优选。
再例如,第一光传导结构配置为与所述第一闪烁体层堆叠,指的是在平板探测器的厚度方向上,第一光传导结构与第一闪烁体层彼此重叠,该重叠可以是部分重叠,也可以是完全重叠。进一步地,至少一个示例中,当第一光传导结构与第一闪烁体层完全重叠时,由第一闪烁体层产生的第一可见光可以尽可能多得入射到第一光传导结构中,从而避免平板探测器的MTF下降,因此为优选。
通常,平板探测器包括面向使用者的前侧和与前侧相反的背侧或后侧,穿过使用者身体的X射线会从该前侧(即入光侧)进入平板探测器中。为便于描述,本公开实施例中,将第一光学组件的靠***板探测器入光侧的一侧定义为第一侧,将第一光学组件的远离平板探测器入光侧的一侧定义为第二侧。进一步地,将位于第一光学组件的第一侧的图像传感器定义为第二图像传感器,将位于第一光学组件第二侧的图像传感器定义为第一图像传感器。也就是,第一图像传感器远离平板探测器的入光侧,而第二图像传感器靠***板探测器的入光侧。需要说明的是,以上定义仅出于示意性目的,本公开实施例不限于此。
本公开实施例中,第一图像传感器M1可以与第二图像传感器M2在结构上相同或不同。至少一个示例中,当第一图像传感器M1与第二图像传感器M2在结构上相同时,可以简化制造工艺,减少电路设计的复杂性,因此为优选。下面的实施例中,以第一图像传感器M1和第二图像传感器M2具有相同结构为例进行说明。
至少一些实施例中,第一光传导结构位于所述第一闪烁体层的至少一侧,也就是,第一光传导结构可以位于所述第一闪烁体层的单侧或双侧。至少一个示例中,当第一光传导结构位于所述第一闪烁体层的上侧(即第一闪烁体层靠***板探测器入光侧的一侧)时为优选。例如,第一闪烁体层SCL1直接生长在第一图像传感器M1上,且第一光传导结构位于所述第一闪烁体层的上侧,这样一来,一方面可以避免光路的加长,另一方面,由于第一光传导结构位于所述第一闪烁体层和第二图像传感器之间,能够避免第一图像传感器M1和第二图像传感器M2之间的电磁干扰。
例如,如图1所示,平板探测器包括第一光传导结构OPS1。例如,该第一光传导结构OPS1包括第一上光传导结构OPS1a和第一下光传导结构OPS1b。第一上光传导结构OPS1a设置在所述第一闪烁体层SCL1的第一侧21(图中所示上侧)且配置为在平板探测器的厚度方向A上与所述第一闪烁体层SCL1堆叠。第一下光传导结构OPS1b设置在所述第一闪烁体层SCL1的第二侧22(图中所示下侧)且配置为在平板探测器的厚度方向A上与所述第一闪烁体层SCL1堆叠。
本公开实施例中,X射线照射下,闪烁体内激发的可见光的出射方向是随机的。例如,如图1所示,第一闪烁体层SCL1将X射线转化成不同方向的第一向下可见光L1和第一向上可见光L2。例如,第一向下可见光L1朝向第一图像传感器M1,第一向上可见光L2朝向第二图像传感器M2。由于第一上光传导结构OPS1a位于第一闪烁体层SCL1和第二图像传感器M2之间,第一上光传导结构OPS1a增加了第一图像传感器M1和第二图像传感器M2之间的空间间距,因此提高了平板探测器的检出量子效率(DQE)。而且,由于第一向上可见光L2穿过第一上光传导结构OPS1a到达第二图像传感器M2,第一上光传 导结构OPS1a对该第一向上可见光L2有束缚作用,可避免平板探测器MTF的下降,有效提高产品的DQE。
同理,由于第一下光传导结构OPS1b位于第一闪烁体层SCL1和第一图像传感器M1之间,第一下光传导结构OPS1b进一步增加了第一图像传感器M1和第二图像传感器M2之间的空间间距,因此,进一步提高了平板探测器的检出量子效率(DQE)。而且,由于第一向下可见光L1穿过第一下光传导结构OPS1b到达第一图像传感器M1,第一下光传导结构OPS1b对该第一向下可见光L1有束缚作用,可避免平板探测器MTF的下降,进一步有效提高产品的DQE。
图2A为本公开实施例的平板探测器的放大截面示意图。与图1不同的是,图2A的平板探测器包括单个第一光传导结构,且该第一光传导结构位于所述第一闪烁体层的单侧,例如图中所示上侧。也就是,第一光传导结构OPS1位于第一闪烁体层SCL1和第二图像传感器之间。
至少一些实施例中,所述第一光传导结构包括第一光导纤维,所述第一光导纤维位于所述第一闪烁体层的沿所述平板探测器的厚度方向的至少一侧。这样,光导纤维利用了光的全反射作用,对其传导的可见光有束缚作用,由此可避免可见光在传导过程中的MTF的下降,进一步提高平板探测器的DQE。需要说明的是,本申请实施例中的光导纤维(包括第一光导纤维、第二光导纤维)是针对可见光起到全反射作用,对于X射线、γ射线等射线不起到全反射作用。因此,在X射线照射第一闪烁体层SCL1时,第一光导纤维对X射线的作用可忽略不计。
例如,如图2A所示,所述第一光传导结构OPS1包括第一光导纤维LGC1,所述第一光导纤维LGC1位于所述第一闪烁体层SCL1的沿所述平板探测器的厚度方向A的一侧(图中所示上侧)。本实施例中,第一光导纤维LGC1可将从第一闪烁体层SCL1上表面射出的第一向上可见光L2以全反射的方式传导至第二图像传感器M2。这样,不仅降低第一向上可见光L2传输过程中的损失,而且对第一向上可见光L2有束缚作用,由此可避免MTF的下降。可以理解的是,当平板探测器包括两个第一光传导结构,每个第一光传导结构包括第一光导纤维时(例如图1所示平板探测器),第一光导纤维位于第一闪烁体层的上、下两侧,这样,可以使第一向下可见光L1和第一向上可见光L2分别以全反射的方式传导至第一图像传感器M1和第二图像传感器M2。这样,可降低第一向下可见光L1和第一向上可见光L2传输过程中的损失,而且对第一向下可见光L1和第一向上可见光L2均有束缚作用,由此可避免MTF的下降。
例如,如图2A所示,第一闪烁体层SCL1包括闪烁体材料,例如碘化铯(CsI)、硫氧化钆(GOS),或其他适合的材料和结构。进一步地,第一闪烁体层SCL1包括第一柱状结晶态闪烁体104和位于第一柱状结晶态闪烁体104底部的第一非晶态闪烁体105。本公开实施例,上部的结晶态CsI光散射小于下部(晶态+非晶态)的光散射,因此,上部的结晶态CsI能给平板探测器提供较高的MTF。由于位于第一闪烁体层SCL1上、下两侧的第一图像传感器M1和第二图像传感器M2共同接收可见光,使得平板探测器的灵敏度(Sensitivity)也会提高。
图3为本公开实施例的平板探测器的光路示意图。如图3所示,当X射线入射到第一闪烁体层SCL1时,第一闪烁体层SCL1将X射线转化为第一向下可见光L1和第一向上可见光L2。例如,第一向下可见光L1包括由第一闪烁体层SCL1上部转化的可见光L11和由第一闪烁体层SCL1下部转化的可见光L12。例如,第一向上可见光L2包括由第一闪烁体层SCL1上部转化的可见光L21和由第一闪烁体层SCL1下部转化的可见光L22。可见光L21、L22经过第一光传导结构中的第一光导纤维LGC1射入第二图像传感器M2中。可见光L21、L22均以全反射的方式传导至第二图像传感器M2,从而第一光导纤维LGC1对可见光L21、L22均有束缚作用,由此避免MTF的下降,提高平板探测器的DQE。
例如,如图2A所示,所述第一光导纤维LGC1位于所述第一闪烁体层SCL和所述第二图像传感器M2之间。图4为本公开实施例的平板探测器中光导纤维的结构示意图。例如,如图4所示,所述第一光导纤维LGC1包括靠近所述第一闪烁体层SCL1的第一可见光入射端31和远离所述第一闪烁体层SCL1的第一可见光出射端32,这样,包括可见光L21和L22在内的第一向上可见光L2从所述第一可见光入射端31进入所述第一光导纤维LGC1,并且从所述第一可见光出射端32朝向所述第二图像传感器M2射出。这样,由于第一可见光入射端31紧邻第一闪烁体层SCL1,使第一闪烁体层SCL1产生的第一向上可见光L2直接通过第一可见光入射端31进入第一光导纤维LGC1,不仅可减少第一向上可见光L2的光损失,还可对第一向上可见光L2起到束缚作用,避免MTF的下降,提高平板探测器的DQE。例如,如图4所示,第一光传导结构包括多个第一光导纤维LGC1,多个所述第一光导纤维LGC1紧密排布。例如,在第一闪烁体层SCL1所在平面(图中所示xy平面)内,多个所述第一光导纤维LGC1呈矩阵式排布,并且相邻两个第一光导纤维LGC1彼此接触。这样,可减少多个第一光导纤维之间的间隙,进一步减少可见光在传导过程中的光损失。
至少一些实施例中,每个所述第一光导纤维(以及后面实施例中的第二光导纤维)的长度方向与所述第一闪烁体层或第二闪烁体层所在平面之间的夹角为大于或等于45度且小于或等于90度。这样,使第一向上可见光L2基本上朝向同一方向,即第二图像传感器M2传播,由此,使第二图像传感器M2收集更多的第一向上可见光L2。
例如,如图4所示,每个所述第一光导纤维LGC1的长度方向(图中所示z方向)与所述第一闪烁体层SCL1所在平面(图中所示xy平面)之间的夹角θ为90度。这样,可降低第一向上可见光L2的光路长度,减少光损失,因此为优选。至少一个示例中,所述第一光导纤维LGC1的厚度范围为200微米至5毫米。至少一个示例中,该第一光导纤维的厚度可以看作由第一光导纤维构成的光导纤维层的厚度。例如,如图2A所示,多个第一光导纤维LGC1构成第一光导纤维层101,该第一光导纤维层101的厚度范围为200微米至5毫米。
至少一些实施例中,所述第一光传导结构还包括第一粘合剂层,第一光导纤维通过所述第一粘合剂层分别与所述第一闪烁体层和所述第二图像传感器相贴合。
例如,如图2A所示,所述第一光传导结构OPS1还包括第一上粘合剂层102和第一下粘合剂层103。例如,第一上粘合剂层102位于第一光导纤维LGC1的上侧,第一光导纤维LGC1通过所述第一上粘合剂层102与所述第二图像传感器M2相贴合。例如,第一下粘合剂层103位于第一光导纤维LGC1的下侧,第一光导纤维LGC1通过所述第一下粘合剂层103与第一闪烁体层SCL1相贴合。至少一个示例中,为了降低对光路的影响,第一上粘合剂层102和第一下粘合剂层103包括光学透明胶OCA。
例如,如图2A所示,平板探测器还包括第一封装层106,第一封装层106至少密封第一图像传感器M1和第一闪烁体层SCL1。这样,可以避免水汽或杂质进入到第一图像传感器M1和第一闪烁体层SCL1中,影响图像质量。另外,将带有第一闪烁体层SCL1的第一图像传感器M1封装在一起,也便于后续平板探测器的组装。
图2B为本公开实施例的平板探测器中封装层的结构示意图。例如,如图2B所示,第一封装层106a用于密封第一图像传感器M1、第一光传导结构OPS1、第一闪烁体层SCL1。这样,可以避免水汽或杂质进入到第一图像传感器M1、第一光传导结构OPS1和第一闪烁体层SCL1中,影响图像质量。至少一些实施例中,该封装层采用透光材料以避免对光线的影响。例如,封装层包括有机透光材料或无机透光材料。例如,封装层可以具有单层结构或多层结构。
图5为本公开实施例的第一图像传感器和第一闪烁体层的立体结构示意图。图6A为本公开实施例的第一图像传感器的平面示意图。图7是本公开实施例的第二图像传感器的 立体结构示意图。图8A是本公开实施例的第二图像传感器的平面示意图。图8B为图8A的第二图像传感器经翻转且旋转90度后的平面示意图。
例如,如图5和图6A所示,第一图像传感器M1包括第一显示区AA1,第一显示区AA1用于显示图像。所述第一显示区AA1包括多条第一走线W1。第一图像传感器M1还包括围绕所述第一显示区AA1的第一非显示区NA1。第一非显示区NA1不能用于显示图像,其通常设置有连接线、接触垫或集成电路等,用于将第一显示区AA1的第一走线W1电连接于外部控制电路。例如,如图6A所示,所述第一非显示区NA1包括第一连接部BP1,所述第一连接部BP1中设置有与第一走线W1对应的第一连接线CW1,所述第一连接线CW1与所述第一走线W1电连接。
例如,如图7和图8A所示,所述第二图像传感器包括第二显示区AA2,所述第二显示区AA2包括第二走线W2。第二图像传感器M2还包括围绕所述第二显示区AA2的第二非显示区NA2。第二非显示区NA2不能用于显示图像,其通常设置有连接线、接触垫或集成电路等,用于将第二显示区AA2的第二走线W2电连接于外部控制电路。例如,如图8A所示,所述第二非显示区AA2包括第二连接部BP2,所述第二连接部BP2中设置有与第二走线W2对应的第二连接线CW2,所述第二连接线CW2与所述第二走线W2电连接。
至少一些实施例中,第一闪烁体层SCL1可直接生长或贴合到第一图像传感器M1上。至少一个示例中,第一闪烁体层SCL1在第一图像传感器M1上直接生长,得到图5所示的结构。当第一闪烁体层SCL1贴合到第一图像传感器M1时,会导致光路的加长,从而有可能降低MTF、DQE等。因此,第一闪烁体层SCL1直接生长到第一图像传感器M1上为优选方案。在此情况下,第一闪烁体层SCL1和第一图像传感器M1之间可以不设置第一光传导结构。接下来,将第一光传导结构OPS1、图5中带有第一闪烁体层SCL1的第一图像传感器M1以及图8B的第二图像传感器M2组装在一起,即可形成最终的平板探测器。
图9为本公开实施例的组装后平板探测器的平面示意图。例如,如图9所示,沿所述平板探测器的所述厚度方向A上,所述第一显示区AA1和所述第二显示区AA2彼此重叠,所述第一连接部BP1和所述第二连接部BP2彼此不重叠。这样,可以使第一图像传感器M1和第二图像传感器M2各自外部控制电路(包括驱动电路和读出电路)上的信号互不干扰,从而提高平板探测器的敏感度和集成度。
需要说明的是,所述第一连接部BP1和所述第二连接部BP2彼此不重叠指的是,第一连接部BP1在衬底基板所在平面上的正投影与第二连接部BP2在衬底基板所在平面上的正投影不重叠。也就是,第一连接部BP1在衬底基板所在平面上的正投影位于第二连接部BP2在衬底基板所在平面上的正投影之外,反之亦然。这里,仅以第一连接部BP1和所述第二连接部BP2彼此不重叠为例进行说明,可以理解的是,本公开实施例中,提到任意两层、两个电路、两个区域之间不重叠时,均可以参照以上方式来理解,本公开实施例对此不再逐一说明。例如,如图2A所示,衬底基板可以是第一图像传感器M1中的第一衬底基板SUB1,或第二图像传感器M2的第二衬底基板SUB2。
例如,如图6A所示,第一图像传感器M1还包括设置在第一非显示区NA1中的第一驱动电路GIC1和第一读出电路ROIC1。例如,第一连接线CW1包括第一栅线连接线41,第一栅线连接线41将第一栅线GL1电连接到第一驱动电路GIC1。第一驱动电路GIC1向第一栅线GL1提供驱动信号。例如,第一连接线CW1还包括第一数据线连接线42,第一数据线连接线42将第一数据线DL1电连接到第一读出电路ROIC1。第一读出电路ROIC1读取第一图像传感器M1中每个第一感应区产生的电信号。
图6B是本公开实施例的第一图像传感器的第一绑定区的局部放大示意图。例如,图6B为图6A的虚线圆圈内的第一数据线绑定部的放大示意图。如图6B所示,第一非显示 区NA1包括靠近第一显示区AA1的扇出区FOA以及位于扇出区FOA远离第一显示区AA1一侧的绑定区。扇出区FOA将多个第一数据线连接线42进行汇聚。绑定区包括多个接触垫(图中示出为圆圈),用于将第一数据线连接线42电连接到外部电路。例如,每个第一数据线绑定部可以包括多个第一数据线连接线42(图中示出为3条),每个第一数据线连接线42与第一数据线DL1一一对应。这样,可以将每个第一数据线DL1上得到电信号传输到第一读出电路ROIC1。
例如,如图8A和图8B所示,第二图像传感器M1还包括设置在第二非显示区NA1中的第二驱动电路GIC2和第二读出电路ROIC2。例如,第二连接线CW2包括第二栅线连接线51,第二栅线连接线51将第二栅线GL2电连接到第二驱动电路GIC2。第二驱动电路GIC2向第二栅线GL2提供驱动信号。例如,第二连接线CW2还包括第二数据线连接线52,第二数据线连接线52将第二数据线DL2电连接到第二读出电路ROIC2。第二读出电路ROIC2读取第二图像传感器M2中每个第二感应区产生的电信号。
例如,如图9所示,沿所述平板探测器的所述厚度方向A上,第一驱动电路GIC1和第二驱动电路GIC2之间彼此不重叠。进一步地,第一驱动电路GIC1和第二驱动电路GIC2位于第一显示区AA1(或第二显示区AA2)的相对两侧。这样,可以避免第一驱动电路GIC1和第二驱动电路GIC2之间的信号干扰。
例如,如图9所示,沿所述平板探测器的所述厚度方向A上,第一读出电路ROIC1和第二读出电路ROIC2之间彼此不重叠。进一步地,第一读出电路ROIC1和第二读出电路ROIC2位于第一显示区AA1(或第二显示区AA2)的相对两侧。这样,可以避免第一读出电路ROIC1和第二读出电路ROIC2之间的信号干扰。
进一步地,例如,图9所示的平板探测器中,将完全重合后的第一显示区AA1和第二显示区AA2统称为探测显示区DAA,该探测显示区DAA包括第一侧S1、第二侧S2、第三侧S3和第四侧S4,其中,第一侧S1与第三侧S3相对,第二侧S2与第四侧S4相对。例如,如图9所示,第一驱动电路GIC1和第二驱动电路GIC2分别位于探测显示区DAA的第一侧S1和第三侧S3。例如,如图9所示,第一读出电路ROIC1和第二读出电路ROIC2分别位于探测显示区DAA的第二侧S2和第四侧S4。这样,可以防止平板探测器中第一读出电路ROIC1(或第二读出电路ROIC2)与第一驱动电路GIC1(或第二驱动电路GIC2)之间的信号干扰。
例如,如图6A所示,所述第一连接部BP1包括第一栅线连接部BP1a和第一数据线连接部BP1b,所述第一栅线连接部BP1a和所述第一数据线连接部BP1b分别位于所述第一显示区AA1的第一边缘45和第二边缘46,该第一边缘45和第二边缘46相邻且彼此连接。例如,如图8A所示,所述第二连接部BP2包括第二栅线连接部BP2a和第二数据线连接部BP2b,所述第二栅线连接部BP2a和所述第二数据线连接部BP2b分别位于所述第二显示区AA2的第三边缘55和第四边缘56,该第三边缘55和第四边缘56相邻且彼此连接。这样,如图9所示,当经翻转并且旋转90度的第二图像传感器M2与第一图像传感器M1组合时,第一边缘45与第三边缘55分别位于探测显示区DAA的第一侧S1和第三侧S3,第二边缘46与第四边缘56分别位于探测显示区DAA的第二侧S2和第四侧S4。通过上述设置,可以避免第二图像传感器M2上的第二连接线W2、第二连接部BP2、第二驱动电路GIC2和第二读出电路ROIC2与第一图像传感器M1上的第一连接线W1、第一连接部BP1、第一驱动电路GIC1和第一读出电路ROIC1相互重叠,从而避免两个图像传感器之间信号的干扰。
例如,如图6A所示,所述第一走线W1包括彼此交叉第一栅线GL1和第一数据线DL1。至少一个示例中,第一栅线GL1为多条,第一数据线DL1为多条,二者相互交叉形成多个第一感光区。例如,如图8A所示,所述第二走线W2包括彼此交叉第二栅线GL2和第二数据线DL2。至少一个示例中,第二栅线GL2为多条,第二数据线DL2为多条, 二者相互交叉形成多个第二感光区。
如前面所说,本公开实施例中的第一图像传感器M1和第二图像传感器M2具有相同结构,因此,下面以第一图像传感器M1为例对图像传感器的具体结构做详细说明。图10为本公开实施例的第一图像传感器的局部电路示意图。图11为本公开实施例的第一图像传感器的第一感光区的电路示意图。图12为本公开另一实施例的平板探测器的放大截面示意图。例如,如图12所示,第二图像传感器M2具有与第一图像传感器M1相同的结构,二者相对于平板探测器的中间部分(包括第一闪烁体层SCL1和第一光传导结构OPS1)为对称分布。
例如,如图10和图11所示,第一图像传感器M1包括第一衬底基板SUB1和设置在第一衬底基板SUB1上的多条第一栅线GL1和多条第一数据线DL1。例如,多条第一栅线GL1和多条第一数据线DL1相互交叉形成多个第一感光区,多个第一感光区排列为阵列形式。例如,排列为3×3的第一感光区阵列。
例如,如图11和图12所示,每个第一感光区类似于液晶显示区的像素区,包括第一光电二极管PIN1和第一薄膜晶体管(Thin Film Transistor)TFT1,第一薄膜晶体管TFT1用作开关元件,第一光电二极管PIN1用作光电转换元件。例如,第一薄膜晶体管TFT1包括栅电极71、源电极72、漏电极73、有源层74。第一薄膜晶体管TFT1的栅电极71与第一图像传感器M1的第一栅线GL1连接,第一薄膜晶体管TFT1的漏电极72与第一图像传感器M1的第一数据线DL1连接,第一薄膜晶体管TFT1的源电极73与光电二极管PIN1连接。本公开实施例中,源电极72和漏电极73的位置可以相互替换。
第一图像传感器M1通过第一驱动电路GIC1来控制第一薄膜晶体管TFT1的开关状态,当第一薄膜晶体管TFT1被打开时,第一光电二极管PIN1产生的光电流信号依次通过与第一薄膜晶体管TFT1连接的第一数据线DL1、第一读取电路ROIC1而被读出。通过控制第一栅线GL1和第一数据线DL1上的信号时序来完成光电信号的采集,即通过控制第一薄膜晶体管TFT1的开关状态来完成对第一光电二极管PIN1产生的光电流信号的采集。
更具体地,在第一图像传感器M1工作时,每个第一感光区接收光信号并转化为电信号,储存在存储电容或第一光电二极管PIN1自身电容中。第一光电二极管PIN1接收第一闪烁体层SCL1转化后的可见光,并产生光生载流子,转化为正比于可见光照射强度的电信号。第一驱动电路GIC1连接第一感光区阵列,控制各行第一薄膜晶体管TFT1的栅电极,并通过电压控制第一薄膜晶体管TFT1的源电极和漏电极之间的导通和关断,因此,可逐行打开各第一感光区。第一读取电路ROIC1连接第一感光区阵列,在同一行第一薄膜晶体管TFT1导通的情况下,读取该行第一感光区中的电荷,进而实现图像信息的读取。通常,第一感光区的尺寸决定成像的分辨率。因此,第一感光区的面积越小,图像的分辨率越高。
例如,如图10至图12所示,第一图像传感器M1还包括信号线BL,设置在第一光电二极管PIN1远离第一衬底基板SUB1一侧且与第一光电二极管PIN1连接。信号线BL用于向第一光电二极管PIN1提供电压信号。例如,第一图像传感器M1还包括设置在第一光电二极管PIN1远离第一衬底基板SUB1一侧的透射导电层60。透射导电层60上输入固定电压,使透射导电层60可阻隔外部静电,防止外部静电对第一光电二极管PIN1产生影响。至少一个示例中,透射导电层60由透光的导电材料构成,这样光线能够透射到第一光电二极管PIN1。例如,可以选取透过率达到50%以上的导电材料,例如可以选取透明导电材料,包括但不限于IZO(Indium Zinc Oxide,铟锌氧化物)、ITO(Indium Tin Oxide,铟锡氧化物)、AZO(Al Zinc Oxide,铝锌氧化物)、IFO(Indium FOxide,铟氟氧化物)等。
例如,如图11和图12所示,为了提升光电二极管11的信号接收效果,如图3所示,在光电二极管11靠近信号线19一侧设置透明导电层61,以增大信号线19与光电二极管11的接触面积。例如,透明导电层61可以选取透过率达到50%以上的导电材料,例如可 以选取透明导电材料,包括但不限于IZO(Indium Zinc Oxide,铟锌氧化物)、ITO(Indium Tin Oxide,铟锡氧化物)、AZO(Al Zinc Oxide,铝锌氧化物)、IFO(Indium FOxide,铟氟氧化物)等。透明导电层61与透射导电层60的材料可以相同或不同,本公开实施例对此不做限定。
下面的实施例中,为了方便描述,将包括一个图像传感器组件(具有至少一个图像传感器)和一个闪烁体层的结构称为一个探测单元。因此,图1、图2A、图9、图12所示的平板探测器均具有单个探测单元。
至少一些实施例中,平板探测器具有双探测单元,这样可以进一步提高平板探测器的MTF和灵敏度,从而进一步提高图像的质量。
图13为本公开再一实施例的平板探测器的截面示意图。例如,如图13所示,本公开实施例的平板探测器包括第一探测单元100和第二探测单元200,第一探测单元100和第二探测单元200沿平板探测器的厚度方向A堆叠。至少一个示例中,第二探测单元200位于第一探测单元100的X射线入光侧的相反侧。出于示意性目的,图13示出的是第一探测单元100位于第二探测单元200之上,可以理解的是,当X射线从第一探测单元100的下方入射时,第二探测单元200位于第一探测单元100之上,同样能够实现本发明目的。
例如,如图13所示,第一探测单元100包括:第一光学组件OPA1,所述第一光学组件OPA1具有沿所述平板探测器的厚度方向(图中所示A方向)的第一侧11(图中所示上侧)和与所述第一侧相对的第二侧12(图中所示下侧)。所述第一光学组件OPA1包括:第一闪烁体层SCL1,用于将至少部分X射线(图中所示X1射线)转化为第一可见光(包括第一向下可见光L1和第一向上可见光L2);和第一光传导结构OPS1,配置为与所述第一闪烁体层SCL1堆叠,用于传导所述第一可见光。该第一探测单元100还包括第一图像传感器组件,配置为与所述第一光学组件OPA1堆叠,并且用于接收所述第一可见光。所述第一图像传感器组件包括:第一图像传感器M1,位于所述第一光学组件OPA1的所述第一侧11;和第二图像传感器M2,位于所述第一光学组件OPA1的所述第二侧12。
例如,如图13所示,第二探测单元200包括:第二光学组件OPA2,位于所述第一图像传感器M1的远离所述第一光学组件OPA1的一侧,配置为与第一光学组件OPA1和所述第一图像传感器组件堆叠。所述第二光学组件OPA2包括:第二闪烁体层SCL2,用于将至少另一部分X(图中所示X2射线)射线转化为第二可见光(包括第二向下可见光L3)。该第二探测单元200还包括第二图像传感器组件,配置为与所述第二光学组件OPA2堆叠,用于接收所述第二可见光。所述第二图像传感器组件包括位于所述第二光学组件OPA2的远离所述第一光学组件OPA1一侧的第三图像传感器M3。
通常,第一闪烁体层SCL1会将X射线中的大部分射线,例如X1射线,转化为第一可见光。然而,实际产品中,闪烁体对于X射线的吸收比例,大约在30%~60%之间不等,经过第一闪烁体层SCL1后,仍然有相当比例的X射线信息未被有效读取。上述实施例中,由于平板探测器具有双探测单元,这样不仅可以利用第一闪烁体层SCL1将照射到其上的X1射线转化为第一可见光,还可以利用第二闪烁体层SCL2将X射线中未被第一闪烁体层SCL1转化的X2射线转化为第二可见光,并且被第三图像传感器M3采集。相比于具有单探测单元的平板探测器,上述实施例的平板探测器能够采集更多X射线,获得更完整的图像信息,进一步提高了平板探测器的MTF和灵敏度,从而获得更好的图像质量。
为便于描述,本公开实施例中,将第二光学组件的靠***板探测器的入光侧的一侧定义为第四侧,将第二光学组件的远离入光侧的一侧定义为第三侧。进一步地,将位于第二光学组件第三侧的图像传感器定义为第三图像传感器,将位于第二光学组件第四侧的图像传感器定义为第四图像传感器。也就是,第四图像传感器靠***板探测器的入光侧,而第三图像传感器远离平板探测器的入光侧。需要说明的是,以上定义仅出于示意性目的,本公开实施例不限于此。
例如,如图13所示,所述第二图像传感器组件还包括第四图像传感器M4。所述第二 光学组件OPA2具有沿所述平板探测器的厚度方向(图中所示A方向)的第三侧112(图中所示下侧)和与所述第三侧112相对的第四侧111(图中所示上侧),所述第四侧111比所述第三侧112更靠近所述第一图像传感器M1。例如,第三图像传感器M3位于所述第二光学组件OPA2的所述第三侧112,第四图像传感器M4位于所述第二光学组件OPA2的所述第四侧111。
参考前面实施例中对第一闪烁体层SCL1的描述,经过第二闪烁体层SCL2转化的第二可见光的方向是随机的,例如第二可见光包括第二向下可见光L3和第二向上可见光L4。上述实施例中,通过在第二闪烁体层SCL2的上侧设置第四图像传感器M4,使从第二闪烁体层SCL2的上表面出射的部分第二可见光L4能够抵达第四图像传感器M4成像,减轻了第二可见光在闪烁体层内传播导致的损失。而且,由于获得更多的第二可见光,可得到更完整的图像信息。
本公开实施例中,第二光学组件可以包括第二光传导结构,也可以不包括第二光传导结构。当第二光学组件包括第二光传导结构时,第二光传导结构能够对第二闪烁体层产生的第二可见光起到束缚作用,避免平板探测器MTF的下降,从而进一步有效提高产品的DQE,因此为优选。
本公开实施例中,第三图像传感器M3和第四图像传感器M4在结构上相同或不同。至少一个示例中,当第三图像传感器M3和第四图像传感器M4在结构上相同时,可以简化制造工艺,减少电路设计的复杂性,因此为优选。下面的实施例中,以第三图像传感器M3和第四图像传感器M4具有相同结构为例进行说明。
图14为本公开又一实施例的平板探测器的截面示意图。例如,如图14所示,第一探测单元100由第一图像传感器M1、第一光传导组件OPA1和第二图像传感器M2构成。例如,第一光传导组件OPA1包括第一闪烁体层SCL1和第一光传导结构OPS1。例如,所述第一光传导结构OPS1包括第一光导纤维LCG1、第一上粘合剂层102和第一下粘合剂层103。本实施例中,第一探测单元100的以上各个部件的具体结构可参见前面实施例中的描述,此处不再赘述。
例如,如图14所示,第二探测单元200由第三图像传感器M3、第二光传导组件OPA2和第四图像传感器M4构成。本实施例中,第三图像传感器M3和第四图像传感器M4的具体结构和设置方式可参考前面实施例中对第一图像传感器和第二图像传感器的具体描述,此处不再赘述。
例如,如图14所示,所述第二光学组件OPA2包括第二闪烁体层SCL2,和第二光传导结构OPS2,其中所述第二光传导结构配置为与所述第二闪烁体层SCL2堆叠并且用于传导所述第二可见光(包括第二向下可见光L3和第二向上可见光L4)。本实施例中,第二闪烁体层SCL2和第二光传导结构OPS2的具体结构和设置方式可参考前面实施例中对第一闪烁体层和第一光传导结构的具体描述,此处不再赘述。图14中示出的是第二光传导结构设置在所述第二闪烁体层SCL2的上侧,可以理解的是,在其他实施例中,第二光传导结构还可以设置在所述第二闪烁体层SCL2的下侧,或者,第二光传导结构还可以设置在所述第二闪烁体层SCL2的上、下两侧。也就是,根据实际需要,第二光传导结构可以设置在所述第二闪烁体层的单侧或双侧,本公开实施例对此不做限定。
上述实施例中,通过在平板探测器中设置与第二闪烁体层SCL2堆叠的第二光传导结构OPS2,利用第二光传导结构OPS2增加第三图像传感器M3和第四图像传感器M4之间的空间间距,这样有利于消除两个图像传感器之间的电磁干扰,提高平板探测器的检出量子效率(DQE)。而且,上述实施例中,第二光传导结构OPS2将第二闪烁体层SCL2产生的第二可见光分别传导至第三图像传感器M3和第四图像传感器M4,由于第二光传导结构对该被传导的第二可见光有束缚作用,从而可避免平板探测器的调制传递函数MTF的下降,有效提高产品的DQE或降低X射线的使用剂量。
例如,如图14所示,所述第二光传导结构OPS2包括第二光导纤维LCG2,所述第二光导纤维LCG2位于所述第二闪烁体层SCL1的沿所述平板探测器的厚度方向的至少一侧(图中所示上侧)。本实施例中,第二光导纤维LCG2的具体结构和设置方式可参考前面实施例中对第一光导纤维的具体描述,此处不再赘述。
本实施例中,第二光导纤维LGC1可将从第二闪烁体层SCL2上表面射出的第二向上可见光L4以全反射的方式传导至第四图像传感器M4。这样,不仅减轻第二向上可见光L4传输过程中的损失,而且对第二向上可见光L4有束缚作用,由此可避免MTF的下降。可以理解的是,当平板探测器包括两个第二光传导结构,每个第二光传导结构包括第二光导纤维时,可在第二闪烁体层的上、下两侧设置第二光导纤维,这样,可以使第二向下可见光L3和第二向上可见光L4分别以全反射的方式传导至第三图像传感器M3和第四图像传感器M4。这样,可降低第二向下可见光L1和第二向上可见光L2传输过程中的损失,而且对第二向下可见光L1和第二向上可见光L2均有束缚作用,由此可避免MTF的下降。
例如,如图14所示,所述第二光导纤维LCG2位于所述第二闪烁体层SCL2和所述第四图像传感器M4之间。例如,所述第二光导纤维LCG2具有与图4所示的第一光导纤维LCG1相同的结构。至少一个示例中,所述第二光导纤维LCG2包括靠近所述第二闪烁体层SCL2的第二可见光入射端(图中未示出)和远离所述第二闪烁体层SCL2的第二可见光出射端(图中未示出),所述第二可见光从所述第二可见光入射端进入所述第二光导纤维LCG2,并且从所述第二可见光出射端朝向所述第四图像传感器M4射出。
例如,如图14所示,第二光传导结构包括多个第二光导纤维LGC2,多个所述第二光导纤维LGC2紧密排布。例如,在第二闪烁体层SCL2所在平面(图中所示xy平面)内,多个所述第二光导纤维LGC2呈矩阵式排布,并且相邻两个第二光导纤维LGC2彼此接触。这样,可减少多个第二光导纤维之间的间隙,进一步减少可见光在传导过程中的光损失。至少一个示例中,所述第二光导纤维LGC2的厚度范围为200微米至5毫米。至少一个示例中,第二光导纤维的厚度可以看作由第二光导纤维构成的光导纤维层的厚度。例如,如图14所示,多个第一光导纤维LGC2构成第二光导纤维层201,该第二光导纤维层201的厚度范围为200微米至5毫米。
至少一些实施例中,所述第二光传导结构还包括第二粘合剂层,所述第二光导纤维通过所述第二粘合剂层分别与所述第二闪烁体层和所述第四图像传感器贴合。例如,如图14所示,所述第二光传导结构OPS2还包括第二上粘合剂层202和第二下粘合剂层203。本实施例中,第二粘合剂层的具体结构和设置方式可以参考前面实施例中对第一粘合剂层的具体描述,此处不再赘述。
例如,如图14所示,所述第一闪烁体层SCL1的厚度大于或等于所述第二闪烁体层SCL2的厚度。这样,第二闪烁体层SCL2使平板探测器具有较高MTF,第一闪烁体层SCL1使平板探测器具有较高灵敏度。至少一个示例中,所述第一闪烁体层SCL1的厚度和第二闪烁体层SCL2的厚度在50微米至500微米之间,例如在100微米至400微米之间,第一闪烁体层SCL1的厚度优选为大约300微米。第二闪烁体层SCL2的厚度优选为200微米。例如,如图14所示,第二闪烁体层SCL2包括第二柱状结晶态闪烁体204和位于第二柱状结晶态闪烁体204底部的第二非晶态闪烁体205。例如,第二柱状结晶态闪烁体204的厚度大于第一柱状结晶态闪烁体104的厚度。
至少一些实施例中,所述第三图像传感器包括第三显示区,所述第三显示区包括多条第三走线。所述第三图像传感器还包括围绕所述第三显示区的第三非显示区,所述第三非显示区包括第三连接部,所述第三连接部中设置有与第三走线对应的第三连接线,所述第三连接线与所述第三走线电连接。本实施例中,第三显示区、第三走线和第三连接部的具体结构和设置方式可参考前面实施例中对第一显示区、第一走线和第一连接部的描述,此处不再赘述。
至少一些实施例中,所述第四图像传感器包括第四显示区,所述第四显示区包括第四走线。所述第四图像传感器还包括围绕所述第四显示区的第四非显示区,所述第四非显示区包括第四连接部,所述第四连接部中设置有与第四走线对应的第四连接线,所述第四连接线与所述第四走线电连接。本实施例中,第四显示区、第四走线和第四连接部的具体结构和设置方式可参考前面实施例中对第二显示区、第二走线和第二连接部的描述,此处不再赘述。
至少一些实施例中,沿所述平板探测器的所述厚度方向上,所述第三显示区和所述第四显示区彼此重叠,所述第三连接部和所述第四连接部彼此不重叠。这样,可以避免第三图像传感器M3和第四图像传感器M4各自外部控制电路(包括驱动电路和读出电路)上的信号互不干扰,从而提高平板探测器的敏感度和集成度。
至少一些实施例中,所述第三走线包括彼此交叉第三栅线和第三数据线,所述第三连接部包括第三数据线连接部和第三栅线连接部,所述第三栅线连接部和所述第三数据线连接部分别位于所述第三显示区的第五边缘和第六边缘,该第五边缘和第六边缘相邻且彼此连接。至少一些实施例中,第三图像传感器M3还包括第三驱动电路和第三读出电路。本实施例中,第三栅线、第三数据线、第三数据线连接部、第三栅线连接部、第三驱动电路、第三读出电路的具体结构和设置方式可参考前面实施例中对第一栅线、第一数据线、第一数据线连接部、第一栅线连接部、第一驱动电路、第一读出电路,此处不再赘述。第三显示区的第五边缘和第六边缘的具体结构和设置方式可参考前面第一显示区的第一边缘和第二边缘的描述,此处不再赘述。
至少一些实施例中,所述第四走线包括彼此交叉第四栅线和第四数据线,所述第四连接部包括第四栅线连接部和第四数据线连接部,所述第四栅线连接部和所述第四数据线连接部分别位于所述第四显示区的第七边缘和第八边缘,该第七边缘和第八边缘相邻且彼此连接。第四图像传感器M4还包括第四驱动电路和第四读出电路。本实施例中,第四栅线、第四数据线、第四数据线连接部、第四栅线连接部第四驱动电路、第四读出电路的具体结构和设置方式可参考前面实施例中对第二栅线、第二数据线、第二数据线连接部、第二栅线连接部、第二驱动电路、第二读出电路,此处不再赘述。第四显示区的第七边缘和第八边缘的具体结构和设置方式可参考前面第二显示区的第三边缘和第四边缘的描述,此处不再赘述。
通过上述实施例中连接部和走线的设置,可以避免第四图像传感器M4上的第四连接线、第四连接部、第四驱动电路和第四读出电路与第二图像传感器上的第二连接线、第二连接部、第二驱动电路和第二读出电路相互重叠,从而避免两个图像传感器之间信号的干扰。
例如,如图14所示,平板探测器还包括第一封装层106,第一封装层106至少密封第一图像传感器M1和第一闪烁体层SCL1。这样,可以避免水汽和杂质进入到第一图像传感器M1和第一闪烁体层SCL1中。本实施例中,第一封装层106的具体结构和设置方式可以参考前面实施例的描述,此处不再赘述。
例如,如图14所示,平板探测器还包括第二封装层206,第二封装层206至少密封第三图像传感器M3和第二闪烁体层SCL2。这样,可以避免水汽和杂质进入到第三图像传感器M3和第二闪烁体层SCL2中。本实施例中,第二封装层206的具体结构和设置方式可以参考第一封装层106的描述,此不再赘述。可以理解的是,第一封装层106和第二封装层206在结构上可以彼此不同。例如,第一封装层106密封第一图像传感器M1和第一闪烁体层SCL1,第二封装层206密封第三图像传感器M3、第二光传导结构OPS2、第二闪烁体层SCL2。至少一个示例中,当第一封装层106和第二封装层206具有相同结构时,可以简化制造工艺,因此为优选。
如图13和图14所示,平板探测器还包括屏蔽组件300,所述屏蔽组件300位于第一 探测单元100和第二探测单元200之间。进一步地,屏蔽组件300位于所述第一图像传感器M1和所述第四图像传感器M4之间,用于屏蔽紫外线以及比紫外线波长更长的电磁波。这样,可以避免上述波长范围内的电磁波(例如可见光)进入到第二探测单元200中,避免对第二探测单元200造成干扰。
至少一些实施例中,所述屏蔽组件包括屏蔽层,所述屏蔽层具有单层结构或多层结构。例如,多层结构包括两层或两层以上。图15为本公开实施例的平板探测器中屏蔽组件的截面示意图。例如,如图15所示,屏蔽组件包括第一屏蔽层301、第二屏蔽层302和第三屏蔽层303。例如,第一屏蔽层301可以屏蔽第一波长范围的电磁波,第二屏蔽层302可屏蔽第二波长范围的电磁波,第三屏蔽层303可以屏蔽第三波长范围的电磁波,第一波长范围、第二波长范围和第三波长范围彼此不同。至少一个示例中,第一波长范围对应紫外光波长范围,例如为10nm至100nm。至少一个示例中,第二波长范围对应可见光波长范围,例如为100nm至760nm。至少一个示例中,第三波长范围对应红外光波长范围,例如为大于760nm。
至少一些实施例中,所述屏蔽层具有单层结构,该单层结构的屏蔽层用于吸收波长较长的X射线(简称软射线),从而让波长较短的X射线(简称硬射线)透过。这样,第一探测单元用于探测波长范围较大的X射线(即软射线和硬射线),第二探测单元用于探测波长范围较小的X射线(即仅硬射线)。
至少一些实施例中,屏蔽层包括金属材料,所述屏蔽层的厚度范围为200微米至5毫米。至少一个示例中,第一屏蔽层301、第二屏蔽层302和第三屏蔽层303的厚度可以相同或者不同。
至少一些实施例中,所述屏蔽组件还包括第三粘合剂层,所述屏蔽层通过所述第三粘合剂层分别与所述第一图像传感器和所述第四图像传感器贴合。例如,如图14和图15所示,屏蔽组件还包括第三粘合剂层,用于将屏蔽层贴合于两个第一图像传感器M1和第四图像传感器M4。例如,粘性层包括第一粘性层306和第二粘性层304。第一粘性层306位于第三屏蔽层303和第一图像传感器M1之间。第二粘性层304位于第一屏蔽层301和第四图像传感器M4之间。
本公开实施例中,第一光导纤维和第二光导纤维均包括核芯和包覆核芯的外层。例如,核芯由玻璃、石英或塑料等透明材料制成。例如,外层包括低折射率的透光材料。至少一个实例中,第一光导纤维和第二光导纤维的直径在几微米到几十微米之间。本公开实施例中,光线(例如X射线)从光导纤维一端射入时,那些入射角较小的光线进入光导纤维后,在光导纤维的核芯-包层界面上的入射角大于全反射的临界角,因而光线在光导纤维内作连续的全反射,这样,光线能以最低的损耗从光导纤维的一端传输到另一端。
本公开实施例中,第一衬底基板SUB1、第二衬底基板SUB2、第三衬底基板SUB3、第四衬底基板SUB4可以采用刚性或柔性基板,刚性基板例如为玻璃,柔性基板例如为聚酰亚胺(PI)基板。柔性基板对于X射线的吸收远远小于玻璃基板对于X射线的吸收,使用柔性基底进行制作相关产品,可以提高产品的信噪比。至少一个示例中,当以上衬底基板中的至少一个为柔性基板时,能降低平板探测器的整体重量,还可以减少对X射线的衰减,因此为优选。
图16是本公开实施例的平板探测器的制造方法的流程图。如图16所示,本公开实施例还提供一种平板探测器的制造方法,包括:
形成第一光学组件,其中所述第一光学组件具有沿所述平板探测器的厚度方向的第一侧和与所述第一侧相对的第二侧,所述第一光学组件包括:第一闪烁体层,用于将至少部分X射线转化为第一可见光;以及第一光传导结构,配置为与所述第一闪烁体层堆叠,用于传导所述第一可见光;
形成第一图像传感器组件,其中第一图像传感器组件配置为与所述第一光学组件堆叠 且用于接收所述第一可见光,所述第一图像传感器组件包括第一图像传感器和第二图像传感器;以及
将所述第一图像传感器、所述第二图像传感器与所述第一光学组件进行组装,使得所述第一图像传感器和所述第二图像传感器分别位于所述第一光学组件的所述第一侧和所述第一光学组件的所述第二侧,以形成第一探测单元。
上述实施例的制造方法中,通过在第一闪烁体层的上侧形成第二图像传感器,使从第一闪烁体层的上表面出射的部分第一可见光能够抵达第二图像传感器成像,减轻了第一可见光在第一闪烁体层内传播导致的损失。进一步地,上述实施例的制造方法中,通过在平板探测器中形成与第一闪烁体层堆叠的第一光传导结构,利用第一光传导结构增加第一图像传感器和第二图像传感器之间的空间间距,这样有利于消除两个图像传感器之间的电磁干扰,提高平板探测器的DQE。而且,上述实施例的制造方法中,第一光传导结构将第一闪烁体层产生的第一可见光传导至第一图像传感器组件,由于第一光传导结构对该被传导的第一可见光有束缚作用,从而可避免平板探测器的MTF的下降,有效提高产品的DQE或降低X射线的使用剂量。
至少一些实施例中,利用上述平板探测器的制造方法制造图2A或图13的平板探测器的方法包括:
形成第一光学组件OPA1,其中所述第一光学组件OPA1具有沿所述平板探测器的厚度方向A的第一侧11和与所述第一侧11相对的第二侧12,所述第一光学组件OPA1包括:第一闪烁体层SCL1,用于将至少部分X射线转化为第一可见光(包括第一向下可见光L1和第一向上可见光L2);以及第一光传导结构,配置为与所述第一闪烁体层SCL1堆叠,用于传导所述第一可见光;
形成第一图像传感器组件,其中第一图像传感器组件配置为与所述第一光学组件OPA1堆叠且用于接收所述第一可见光,所述第一图像传感器组件包括第一图像传感器M1和第二图像传感器M2;以及
将所述第一图像传感器M1、所述第二图像传感器M1与所述第一光学组件OPA1进行组装,使得所述第一图像传感器M1和所述第二图像传感器M1分别位于所述第一光学组件OPA1的所述第一侧11和所述第一光学组件OPA1的所述第二侧12,以形成第一探测单元100。
图17是本公开另一实施例的平板探测器的制造方法的流程图。图18A至图18F为本公开再一实施例的平板探测器的制造方法的各步骤的示意图。例如,如图17所示,本公开再一实施例的平板探测器的制造方法包括:
形成所述第一图像传感器M1,并且在所述第一图像传感器M1的面向所述第二图像传感器M2的一侧上形成所述第一闪烁体层SCL1,如图18A和图18B所示;
形成所述第一光传导结构OPS1,如图18C所示;
形成所述第二图像传感器M2,并且将所述第二图像传感器M2翻转并且旋转90度,如图18D和图18E所示;以及
将其上形成有所述第一闪烁体层SCL1的所述第一图像传感器M1、第一光传导结构OPS1和旋转后的所述第二图像传感器M2进行组装。
例如,形成所述第一闪烁体层SCL1包括采用热蒸发的方法在所述第一图像传感器M1上成膜。
图19是本公开又一实施例的平板探测器的制造方法的流程图。例如,如图19所示,本公开又一实施例的制造图2A的平板探测器的方法包括:
形成所述第一图像传感器M1,并且在所述第一图像传感器M1的面向所述第二图像传感器M2的一侧上形成所述第一闪烁体层SCL1;
将所述第一光传导结构OPS1贴合至所述第一闪烁体层SCL1上;
在所述第一光传导结构OPS1上直接形成所述第二图像传感器M2。
至少一些实施例中,上述制造方法还包括:封装所述第一闪烁体层SCL1、第一光传导结构OPS1和所述第一图像传感器M1。至少一个示例中,所述封装均利用透光材料进行封装。
至少一些实施例的制造方法中,将所述第一图像传感器M1和所述第二图像传感器M2与所述第一光学组件OPA1进行组装包括:利用粘合剂相互贴合或利用真空吸附方法组装在一起。至少一个示例中,利用真空吸附方法将所述第一图像传感器M1和所述第二图像传感器M2与所述第一光学组件OPA1组装在一起,省去了粘合剂的使用,从而降低光在传输过程中,粘合剂对光的干扰。
至少一些实施例的制造方法中,为了提高第一图像传感器M1和所述第二图像传感器M2的对位精度,可在第一图像传感器M1的第一非显示区NA1中设置第一对位标记,在第二图像传感器M2的第二非显示区NA2中设置第二对位标记,这样,在组装时将第一对位标记对准第二对位标记,即可实现较佳的组装效果。再例如,可以采用电荷耦合器件(Charge Coupled Device,简称CCD)进行对位,精度可达到±50μm。
例如,如图13所示,上述制造方法还包括:
形成第二光学组件OPA2,所述第二光学组件OPA2位于所述第一图像传感器M1的远离所述第一光学组件OPA1的一侧,配置为与所述第一光学组件OPA1和第一图像传感器组件堆叠;其中,所述第二光学组件OPA2具有沿所述平板探测器的厚度方向A的第三侧112和与所述第三侧112相对的第四侧111,所述第四侧111比所述第三侧112更靠近所述第一图像传感器M1,所述第二光学组件OPA2包括:第二闪烁体层SCL2,用于将至少另一部分X射线转化为第二可见光(包括第二向下可见光L3和第二向上可见光L4);
形成第二图像传感器组件,配置为与所述第二光学组件OPA2堆叠,用于接收所述第二可见光,所述第二图像传感器组件包括第三图像传感器M3和第四图像传感器M4;
将所述第三图像传感器M3、所述第四图像传感器M4与所述第二光学组件OPA2进行组装,使得所述第三图像传感器M3位于所述第二光学组件OPA2的所述第三侧112,所述第四图像传感器M4位于所述第二光学组件OPA2的所述第四侧111,以形成第二探测单元200;
将所述第二探测单元200与所述第一探测单元100进行组装。
例如,如图13所示,所述形成所述第二光学组件OPA2还包括:形成第二光传导结构OPS2,其中所述第二光传导结构OPS2配置为与所述第二闪烁体层SCL2堆叠并且用于传导所述第二可见光。
至少一些实施例中,所述第二探测单元200的制造方法可参照前面实施例中第一探测单元100的制造方法。
例如,参照图17和图19,所述制造方法包括:
形成所述第三图像传感器M3,并且在所述第三图像传感器M3的面向所述第四图像传感器M4的一侧上形成所述第二闪烁体层SCL2;
形成所述第二光传导结构OPS2;
形成所述第四图像传感器M4,并且将所述第四图像传感器M4翻转并且旋转90度;以及
将其上形成有所述第二闪烁体层SCL2的所述第三图像传感器M3、第二光传导结构OPS2和旋转后的所述第四图像传感器M4进行组装。
例如,参照图14,所述制造方法包括:
形成所述第三图像传感器M3,并且在所述第三图像传感器M3的面向所述第四图像传感器M4的一侧上形成所述第二闪烁体层SCL2;
将所述第二光传导结构OPS2贴合至所述第二闪烁体层SCL2上;
在所述第二光传导结构OPS2上直接形成所述第四图像传感器M4。
至少一些实施例中,上述制造方法还包括:封装所述第二闪烁体层SCL2、第二光传导结构OPS2和所述第三图像传感器M3。具体封装方式可参见前面对封装所述第一闪烁体层SCL1、第一光传导结构OPS1和所述第一图像传感器M1的具体描述,此处不再赘述。
至少一些实施例的制造方法中,将所述第三图像传感器M3和所述第四图像传感器M4与所述第二光学组件进行组装包括:利用粘合剂相互贴合或利用真空吸附方法组装在一起。具体组装方式可参见前面实施例的具体描述,此处不再赘述。
至少一些实施例的制造方法中,可在第三图像传感器M3的第三非显示区中设置第三对位标记,在第四图像传感器M4的第四非显示区中设置第四对位标记,这样,在组装时将第三对位标记对准第四对位标记,即可实现较佳的组装效果。
至少一些实施例的制造方法中,在组装第一探测单元和第二探测单元时,也可以采用上述对位标记的方式,提高两个探测单元的对位精度。
例如,如图13所示,上述制造方法还包括:形成屏蔽组件300,所述屏蔽组件300位于所述第一图像传感器M1和所述第四图像传感器M4之间,用于屏蔽紫外线以及比紫外线波长更长的电磁波。
本公开实施例的平板探测器及其制造方法中,具有以下优点和技术效果:
1)通过在第一闪烁体层的上侧设置第二图像传感器,使从第一闪烁体层的上表面出射的部分第一可见光能够抵达第二图像传感器成像,降低了第一可见光在闪烁体层内传播导致的损失。
2)通过在平板探测器中设置与第一闪烁体层堆叠的第一光传导结构,利用第一光传导结构增加第一图像传感器和第二图像传感器之间的空间间距,这样有利于消除两个图像传感器之间的电磁干扰,提高平板探测器DQE。
3)第一光传导结构将第一闪烁体层产生的第一可见光分别传导至第一图像传感器和第二图像传感器,由于第一光传导结构对该被传导的第一可见光有束缚作用,从而可避免平板探测器的调制传递函数MTF的下降,有效提高产品的DQE或降低X射线的使用剂量。
4)通过采用双探测单元的平板探测器能够采集更多X射线,获得更完整的图像信息,进一步提高了平板探测器的MTF和灵敏度,从而获得更好的图像质量。
5)位于两个探测单元之间的屏蔽组件可以用于屏蔽紫外线以及比紫外线波长更长的电磁波。这样,可以避免上述波长范围内的电磁波对第二探测单元的干扰。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (21)

  1. 一种平板探测器,包括:
    第一光学组件,所述第一光学组件具有沿所述平板探测器的厚度方向的第一侧和与所述第一侧相对的第二侧并且包括:
    第一闪烁体层,用于将至少部分射线转化为第一可见光;和
    第一光传导结构,与所述第一闪烁体层堆叠,用于传导所述第一可见光;
    第一图像传感器组件,与所述第一光学组件堆叠,用于接收所述第一可见光,所述第一图像传感器组件包括:
    第一图像传感器,位于所述第一光学组件的所述第一侧;和
    第二图像传感器,位于所述第一光学组件的所述第二侧。
  2. 如权利要求1所述的平板探测器,其中所述第一光传导结构包括第一光导纤维,所述第一光导纤维位于所述第一闪烁体层的沿所述平板探测器的厚度方向的至少一侧。
  3. 如权利要求2所述的平板探测器,其中所述第一光导纤维位于所述第一闪烁体层和所述第二图像传感器之间,所述第一光导纤维包括靠近所述第一闪烁体层的第一可见光入射端和远离所述第一闪烁体层的第一可见光出射端,所述第一可见光从所述第一可见光入射端进入所述第一光导纤维,并且从所述第一可见光出射端朝向所述第二图像传感器射出。
  4. 如权利要求2所述的平板探测器,其中所述第一光传导结构还包括第一粘合剂层,第一光导纤维通过所述第一粘合剂层分别与所述第一闪烁体层和所述第二图像传感器相贴合。
  5. 如权利要求1所述的平板探测器,其中:
    所述第一图像传感器包括:
    第一显示区,所述第一显示区包括多条第一走线;
    围绕所述第一显示区的第一非显示区,所述第一非显示区包括第一连接部,所述第一连接部中设置有与第一走线对应的第一连接线,所述第一连接线与所述第一走线电连接;
    所述第二图像传感器包括:
    第二显示区,所述第二显示区包括第二走线;
    围绕所述第二显示区的第二非显示区,所述第二非显示区包括第二连接部,所述第二连接部中设置有与第二走线对应的第二连接线,所述第二连接线与所述第二走线电连接;
    其中,沿所述平板探测器的所述厚度方向上,所述第一显示区和所述第二显示区彼此重叠,所述第一连接部和所述第二连接部彼此不重叠。
  6. 如权利要求5所述的平板探测器,其中所述第一走线包括彼此交叉的第一栅线和第一数据线,所述第一连接部包括第一栅线连接部和第一数据线连接部,所述第一栅线连接部和所述第一数据线连接部分别位于所述第一显示区的第一边缘和第二边缘,该第一边缘和第二边缘相邻且彼此连接;
    所述第二走线包括彼此交叉的第二栅线和第二数据线,所述第二连接部包括第二栅线连接部和第二数据线连接部,所述第二栅线连接部和所述第二数据线连接部分别位于所述第二显示区的第三边缘和第四边缘,该第三边缘和第四边缘相邻且彼此连接。
  7. 如权利要求1至6任一项所述的平板探测器,还包括:
    第二光学组件,位于所述第一图像传感器的远离所述第一光学组件的一侧,并且与第一光学组件和所述第一图像传感器组件堆叠;所述第二光学组件包括:第二闪烁体层,用于将至少另一部分射线转化为第二可见光;
    第二图像传感器组件,与所述第二光学组件堆叠,用于接收所述第二可见光,所述第二图像传感器组件包括位于所述第二光学组件的远离所述第一光学组件一侧的第三图像传感器。
  8. 如权利要求7所述的平板探测器,其中所述第二图像传感器组件还包括第四图像传感器;所述第二光学组件具有沿所述平板探测器的厚度方向的第三侧和与所述第三侧相对的第四侧,所述第四侧比所述第三侧更靠近所述第一图像传感器,所述第三图像传感器位于所述第二光学组件的所述第三侧,所述第四图像传感器位于所述第二光学组件的所述第四侧。
  9. 如权利要求8所述的平板探测器,其中所述第二光学组件还包括第二光传导结构,其中所述第二光传导结构与所述第二闪烁体层堆叠并且用于传导所述第二可见光到所述第二图像传感器组件。
  10. 如权利要求9所述的平板探测器,其中所述第二光传导结构包括第二光导纤维,所述第二光导纤维位于所述第二闪烁体层的沿所述平板探测器的厚度方向的至少一侧。
  11. 如权利要求10所述的平板探测器,其中所述第二光导纤维位于所述第二闪烁体层和所述第四图像传感器之间,所述第二光导纤维包括靠近所述第二闪烁体层的第二可见光入射端和远离所述第二闪烁体层的第二可见光出射端,所述第二可见光从所述第二可见光入射端进入所述第二光导纤维,并且从所述第二可见光出射端朝向所述第四图像传感器射出。
  12. 如权利要求11所述的平板探测器,其中所述第一光传导结构包括多个所述第一光导纤维,所述第二光传导结构包括多个所述第二光导纤维,
    多个所述第一光导纤维紧密排布,每个所述第一光导纤维的长度方向与所述第一闪烁体层所在平面之间的夹角为大于或等于45度且小于或等于90度,所述第一光导纤维的厚度范围为200微米至5毫米;
    多个所述第二光导纤维紧密排布,每个所述第二光导纤维的长度方向与所述第二闪烁体层所在平面之间的夹角为大于或等于45度且小于或等于90度,所述第二光导纤维的厚度范围为200微米至5毫米。
  13. 如权利要求8至12任一项所述的平板探测器,其中所述第一闪烁体层的厚度大于或等于所述第二闪烁体层的厚度。
  14. 如权利要求8至12任一项所述的平板探测器,还包括屏蔽组件,所述屏蔽组件位于所述第一图像传感器和所述第四图像传感器之间,用于屏蔽紫外线以及比紫外线波长更长的电磁波。
  15. 如权利要求14所述的平板探测器,其中所述屏蔽组件包括屏蔽层,所述屏蔽层具有单层结构或多层结构,所述屏蔽层包括金属材料,所述屏蔽层的厚度范围为200微米至5毫米。
  16. 如权利要求15所述的平板探测器,其中所述屏蔽组件还包括第三粘合剂层,所述屏蔽层通过所述第三粘合剂层分别与所述第一图像传感器和所述第四图像传感器贴合。
  17. 如权利要求8至12任一项所述的平板探测器,其中:
    所述第三图像传感器包括:
    第三显示区,所述第三显示区包括多条第三走线;
    围绕所述第三显示区的第三非显示区,所述第三非显示区包括第三连接部,所述第三连接部中设置有与第三走线对应的第三连接线,所述第三连接线与所述第三走线电连接;
    所述第四图像传感器包括:
    第四显示区,所述第四显示区包括第四走线;
    围绕所述第四显示区的第四非显示区,所述第四非显示区包括第四连接部,所述第四连接部中设置有与第四走线对应的第四连接线,所述第四连接线与所述第四走线电连接;
    其中,沿所述平板探测器的所述厚度方向上,所述第三显示区和所述第四显示区彼此重叠,所述第三连接部和所述第四连接部彼此不重叠。
  18. 如权利要求17所述的平板探测器,其中所述第三走线包括彼此交叉的第三栅线 和第三数据线,所述第三连接部包括第三数据线连接部和第三栅线连接部,所述第三栅线连接部和所述第三数据线连接部分别位于所述第三显示区的第五边缘和第六边缘,该第五边缘和第六边缘相邻且彼此连接;
    所述第四走线包括彼此交叉的第四栅线和第四数据线,所述第四连接部包括第四栅线连接部和第四数据线连接部,所述第四栅线连接部和所述第四数据线连接部分别位于所述第四显示区的第七边缘和第八边缘,该第七边缘和第八边缘相邻且彼此连接。
  19. 一种平板探测器的制造方法,包括:
    形成第一光学组件,所述第一光学组件具有沿所述平板探测器的厚度方向的第一侧和与所述第一侧相对的第二侧,所述第一光学组件包括:第一闪烁体层,用于将至少部分射线转化为第一可见光;以及第一光传导结构,与所述第一闪烁体层堆叠,用于传导所述第一可见光;
    形成第一图像传感器组件,与所述第一光学组件堆叠,用于接收所述第一可见光,所述第一图像传感器组件包括第一图像传感器和第二图像传感器;以及
    将所述第一图像传感器、所述第二图像传感器与所述第一光学组件进行组装,使得所述第一图像传感器和所述第二图像传感器分别位于所述第一光学组件的所述第一侧和所述第一光学组件的所述第二侧,以形成第一探测单元。
  20. 如权利要求19所述的制造方法,包括:
    形成所述第一图像传感器,并且在所述第一图像传感器的面向所述第二图像传感器的一侧上形成所述第一闪烁体层;
    形成所述第一光传导结构;
    形成所述第二图像传感器,并且将所述第二图像传感器翻转并且旋转90度;以及
    将其上形成有所述第一闪烁体层的所述第一图像传感器、第一光传导结构和旋转后的所述第二图像传感器进行组装。
  21. 如权利要求19或20所述的制造方法,还包括:
    形成第二光学组件,所述第二光学组件位于所述第一图像传感器的远离所述第一光学组件的一侧,与所述第一光学组件和第一图像传感器组件堆叠;其中,所述第二光学组件具有沿所述平板探测器的厚度方向的第三侧和与所述第三侧相对的第四侧,所述第四侧比所述第三侧更靠近所述第一图像传感器,所述第二光学组件包括:第二闪烁体层,用于将至少另一部分射线转化为第二可见光;
    形成第二图像传感器组件,与所述第二光学组件堆叠,用于接收所述第二可见光,所述第二图像传感器组件包括第三图像传感器和第四图像传感器;
    将所述第三图像传感器、所述第四图像传感器与所述第二光学组件进行组装,使得所述第三图像传感器位于所述第二光学组件的所述第三侧,所述第四图像传感器位于所述第二光学组件的所述第四侧,以形成第二探测单元;
    将所述第二探测单元与所述第一探测单元进行组装。
PCT/CN2021/094474 2020-06-29 2021-05-19 平板探测器及其制造方法 WO2022001440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21834609.6A EP4071464A4 (en) 2020-06-29 2021-05-19 FLAT PANEL DETECTOR AND METHOD OF MANUFACTURING THEREOF
US17/789,826 US20220390623A1 (en) 2020-06-29 2021-05-19 Flat panel detector and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010607415.0 2020-06-29
CN202010607415.0A CN113933324B (zh) 2020-06-29 2020-06-29 平板探测器及其制造方法

Publications (1)

Publication Number Publication Date
WO2022001440A1 true WO2022001440A1 (zh) 2022-01-06

Family

ID=79273301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094474 WO2022001440A1 (zh) 2020-06-29 2021-05-19 平板探测器及其制造方法

Country Status (4)

Country Link
US (1) US20220390623A1 (zh)
EP (1) EP4071464A4 (zh)
CN (1) CN113933324B (zh)
WO (1) WO2022001440A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220120921A1 (en) * 2020-10-16 2022-04-21 Brown Universtiy High resolution x-ray detector system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538408A (zh) * 2015-01-14 2015-04-22 京东方科技集团股份有限公司 一种阵列基板及其制备方法和显示装置
CN106443754A (zh) * 2016-11-16 2017-02-22 奕瑞影像科技(太仓)有限公司 X射线图像摄取装置
CN109545810A (zh) * 2018-11-20 2019-03-29 京东方科技集团股份有限公司 一种平板探测器及其制备方法
CN110137199A (zh) * 2019-07-09 2019-08-16 南京迪钛飞光电科技有限公司 一种x射线传感器及其制造方法
US20190361133A1 (en) * 2018-05-28 2019-11-28 Iray Technology Company Limited Photoelectric detection structure and preparation method thereof
CN110987982A (zh) * 2019-12-19 2020-04-10 江苏康众数字医疗科技股份有限公司 一种x-光高吸收率探测***及图像成像方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003207981A1 (en) * 2002-02-14 2003-09-04 Technion Research And Development Foundation Ltd. Gamma camera for emission tomography and method for adaptive event position estimation
US7375341B1 (en) * 2006-05-12 2008-05-20 Radiation Monitoring Devices, Inc. Flexible scintillator and related methods
JP5657614B2 (ja) * 2011-08-26 2015-01-21 富士フイルム株式会社 放射線検出器および放射線画像撮影装置
JP2013246078A (ja) * 2012-05-28 2013-12-09 Fujifilm Corp 放射線画像検出装置
EP3462494B1 (en) * 2017-09-29 2021-03-24 Detection Technology OY Integrated radiation detector device
US10682116B2 (en) * 2017-11-27 2020-06-16 Varex Imaging Corporation Misalignment compensation in dual X-ray imager

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538408A (zh) * 2015-01-14 2015-04-22 京东方科技集团股份有限公司 一种阵列基板及其制备方法和显示装置
CN106443754A (zh) * 2016-11-16 2017-02-22 奕瑞影像科技(太仓)有限公司 X射线图像摄取装置
US20190361133A1 (en) * 2018-05-28 2019-11-28 Iray Technology Company Limited Photoelectric detection structure and preparation method thereof
CN109545810A (zh) * 2018-11-20 2019-03-29 京东方科技集团股份有限公司 一种平板探测器及其制备方法
CN110137199A (zh) * 2019-07-09 2019-08-16 南京迪钛飞光电科技有限公司 一种x射线传感器及其制造方法
CN110987982A (zh) * 2019-12-19 2020-04-10 江苏康众数字医疗科技股份有限公司 一种x-光高吸收率探测***及图像成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071464A4

Also Published As

Publication number Publication date
CN113933324A (zh) 2022-01-14
CN113933324B (zh) 2023-07-14
US20220390623A1 (en) 2022-12-08
EP4071464A4 (en) 2023-02-08
EP4071464A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
CN101228459B (zh) 放射线检测设备和放射线图像拾取***
CN105324683B (zh) 具有嵌入在tft平板中的cmos传感器的x射线成像器
US10032813B2 (en) Active pixel radiation detector array and use thereof
CN101842901B (zh) 放射线检测装置的制造方法、放射线检测装置和放射线成像装置
US20210202779A1 (en) Flat panel detector and manufacturing method thereof
WO2022142431A1 (zh) 双能辐射平板探测器、制备方法及探测***
US11237281B2 (en) Flat-panel detector comprising light-transmission layer between ray-conversion layer and photoelectric conversion layer and method of manufacturing flat-panel detector
US8916833B2 (en) Imaging device and imaging display system
CN112002718A (zh) X射线探测器及其制备方法
JP2005526961A (ja) X線撮像素子
CN110308475A (zh) 一种x射线探测器及其制备方法
US20190361133A1 (en) Photoelectric detection structure and preparation method thereof
CN104241436B (zh) 一种x射线探测基板及其制备方法、x射线探测设备
WO2022001440A1 (zh) 平板探测器及其制造方法
JP2018508763A (ja) 複合シンチレーション結晶、複合シンチレーション検出器及び放射線検出装置
WO2014030551A1 (ja) 電流/電圧変換回路及び撮像装置
CN103367378A (zh) 放射线检测设备和放射线检测***
CN110797365B (zh) 一种探测面板、其制作方法及光电检测装置
US20050199819A1 (en) X-ray detector with csi:ti conversion layer
CN100539171C (zh) 转换设备、放射检测设备和放射检测***
JP2013019690A (ja) 放射線検出器
CN101939667A (zh) 用于记录图像的设备和方法
US20140198900A1 (en) High resolution x-ray imaging with thin, flexible digital sensors
JPH10221456A (ja) 放射線検出器
WO2023141773A1 (zh) 探测基板及射线探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021834609

Country of ref document: EP

Effective date: 20220706

NENP Non-entry into the national phase

Ref country code: DE