WO2021251207A1 - 燃料電池の運転方法 - Google Patents

燃料電池の運転方法 Download PDF

Info

Publication number
WO2021251207A1
WO2021251207A1 PCT/JP2021/020789 JP2021020789W WO2021251207A1 WO 2021251207 A1 WO2021251207 A1 WO 2021251207A1 JP 2021020789 W JP2021020789 W JP 2021020789W WO 2021251207 A1 WO2021251207 A1 WO 2021251207A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
operating
electrolyte membrane
supplied
Prior art date
Application number
PCT/JP2021/020789
Other languages
English (en)
French (fr)
Inventor
智洋 坂上
大輔 出原
勝 橋本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US18/008,564 priority Critical patent/US20230231165A1/en
Priority to CN202180024452.1A priority patent/CN115336054A/zh
Priority to KR1020227040822A priority patent/KR20230022846A/ko
Priority to JP2021531510A priority patent/JP7315001B2/ja
Priority to EP21821097.9A priority patent/EP4164008A1/en
Publication of WO2021251207A1 publication Critical patent/WO2021251207A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention is a method for operating a fuel cell provided with a membrane electrode composite having an electrolyte membrane, a catalyst layer and a gas diffusion layer, and is used under high temperature conditions by increasing the humidity and back pressure of the supplied gas during high temperature operation.
  • the present invention also relates to an operation method of a fuel cell capable of obtaining excellent power generation performance.
  • a fuel cell is a kind of power generation device that extracts electric energy by electrochemically oxidizing fuels such as hydrogen and methanol, and has been attracting attention as a clean energy supply source in recent years.
  • polymer electrolyte fuel cells have a low standard operating temperature of around 100 ° C and a high energy density, so they are relatively small-scale distributed power generation facilities and power generation devices for mobile objects such as automobiles and ships. It is expected to have a wide range of applications. It is also attracting attention as a power source for small mobile devices and mobile devices, and is expected to be installed in mobile phones and personal computers in place of secondary batteries such as nickel-metal hydride batteries and lithium-ion batteries.
  • a polymer electrolyte fuel cell usually has a gas diffusion layer that supplies fuel gas and oxidation gas to the catalyst layer, an anode and cathode catalyst layer in which a reaction responsible for power generation occurs, and a proton conductor between the anode catalyst layer and the cathode catalyst layer.
  • the polymer electrolyte membrane to be used constitutes a membrane electrode composite (hereinafter, may be abbreviated as MEA), and the cell in which the MEA is sandwiched by the separator is configured as a unit.
  • the first characteristic required for the above-mentioned polymer electrolyte membrane is high proton conductivity, and it is particularly necessary to have high proton conductivity even under high temperature and low humidification conditions.
  • Nafion registered trademark
  • DuPont which is a perfluorosulfonic acid-based polymer
  • Nafion® exhibits high proton conductivity through proton conduction channels due to the cluster structure, there is a problem with proton conductivity under low humidification conditions.
  • Patent Document 1 describes a separator structure that suppresses gas pressure loss and an increase in anode / cathode pressure difference as a battery structure of a polymer electrolyte fuel cell that operates at a high temperature of 100 ° C. or higher.
  • a configuration is disclosed in which the cross-sectional area of the flow path on the downstream side in the gas flow direction of the cathode separator is made larger than the cross-sectional area on the upstream side to reduce the pressure loss of the cathode separator and improve the energy efficiency.
  • Patent Document 2 describes a membrane-electrode structure for a polymer electrolyte fuel cell provided with a proton conductive film having high proton conductivity, which is difficult to swell even under high temperature and high humidity conditions, and has excellent dimensional stability.
  • the body is described.
  • a configuration is disclosed in which a branched polyarylene-based copolymer having a specific structural unit is used as an electrolyte membrane to provide a membrane-electrode structure having a small dimensional change even at a high sulfonic acid equivalent.
  • Patent Document 3 describes a high-temperature polyelectrolyte membrane fuel cell that operates almost independently of the moisture content in the fuel cell, and an operation method thereof.
  • an electrolyte in which a self-dissociating compound such as phosphoric acid is retained in the membrane is used in order to operate in a state almost unrelated to water, and the operating temperature is 80 to 300 ° C. and the operating pressure is 0.3 bar to 5 bar.
  • the electrolyte described in Patent Document 3 strongly poisons the catalyst due to its strong acidity, and there is a concern that the power generation performance in a high temperature range may deteriorate. Another problem is that the proton conductivity decreases with its use. Therefore, in order to maintain high power generation performance in the high temperature range, the reaction gas in the vicinity of the electrode is appropriately humidified while appropriately humidifying the electrolyte using a solid polymer type polymer that does not contain a self-dissociating compound such as phosphoric acid in the membrane. It is necessary to suppress the decrease in the concentration of.
  • the present invention provides a method for operating a fuel cell in which the polymer electrolyte membrane is sufficiently humidified even under high temperature conditions and excellent power generation performance can be obtained.
  • the method for operating a fuel cell of the present invention is a method for operating a fuel cell including a film electrode composite (MEA) having an electrolyte membrane, a catalyst layer, and a gas diffusion layer, and the operating temperature of the fuel cell is 100. It includes a step of setting the temperature to °C or higher, and is characterized in that the relative humidity of the supply gas supplied to the fuel cell in the step is 70% or more, and the back pressure of the supply gas is 330 kPa or more. ..
  • MEA film electrode composite
  • the fuel cell system of the present invention is a fuel cell system used in the above-mentioned operating method of the fuel cell of the present invention, and is a fuel cell provided with a film electrode composite having an electrolyte membrane, a catalyst layer and a gas diffusion layer. It is characterized by being provided with a humidifier for humidifying the supply gas supplied to the fuel cell and a compressor for increasing the back pressure of the supply gas.
  • the membrane electrode composite (MEA) of the present invention has an electrolyte membrane, a catalyst layer provided on both sides of the electrolyte membrane, and a gas diffusion layer provided so as to be in contact with the electrolyte membrane on the opposite side of the catalyst layer. And have.
  • the electrolyte membrane contained in the membrane electrode composite of the present invention is not particularly limited, but is preferably an electrolyte membrane containing a solid polymer electrolyte, and the solid polymer electrolyte is an electrolyte containing a proton conductive polymer. Is preferable.
  • a perfluorosulfonic acid-based polymer that has been widely used as a conventional polyelectrolyte film can be used, but includes a hydrocarbon-based polymer that has been actively developed in recent years. It is preferable to use a polymer electrolyte membrane.
  • Polyelectrolyte membranes containing hydrocarbon-based polymers can replace perfluorosulfonic acid-based polymers in that they are inexpensive, suppress fuel crossover, have excellent mechanical strength, have high softening points, and can withstand use at high temperatures. It is an electrolyte membrane.
  • some attempts have been made to form a microphase-separated structure using a block copolymer composed of a hydrophobic segment and a hydrophilic segment in order to improve the low-humidity proton conductivity.
  • a polymer having such a structure the mechanical strength is improved by hydrophobic interaction and aggregation between hydrophobic segments, and clustering progresses by electrostatic interaction between ionic groups of hydrophilic segments.
  • Proton conductivity is improved by forming an ion conduction channel.
  • the acid dissociation constant of the sulfonic acid group contained in the molecular structure is small and the protons are easily dissociated, so that proton conduction by hopping is likely to proceed.
  • the acid dissociation constant of the sulfonic acid group in the molecule is larger than that in the fluorine-based electrolyte membrane, and dissociation of protons is less likely to occur.
  • the decrease in conductivity is greater than that of the fluoroelectrolyte film.
  • the acid dissociation constant here is one of the indexes for expressing the acid strength of a certain substance, and is represented by the negative common logarithm pKa of the equilibrium constant in the dissociation reaction in which a proton is released from the acid.
  • the aromatic hydrocarbon-based polymer is preferable as the hydrocarbon-based polymer.
  • Specific examples of the aromatic hydrocarbon-based polymer include polysulfone, polyethersulfone, polyphenylene oxide, polyarylene ether-based polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, and polyarylene-based polymer having an aromatic ring in the main chain.
  • polymers such as polyarylene ketone, polyether ketone, polyarylene phosphinhoxide, polyether phosphinhoxide, polybenzoxazole, polybenzthiazole, polybenzimidazole, aromatic polyamide, polyimide, polyetherimide, and polyimide sulfone. ..
  • polyether sulfone is a general term for polymers having ether bonds and sulfone bonds in their molecular chains.
  • polyether ketone is a general term for polymers having an ether bond and a ketone bond in their molecular chains, and is a polyether ketone ketone, a polyether ether ketone, a polyether ether ketone ketone, a polyether ketone ether ketone ketone, and the like. It contains polyether ketone sulfone and the like, and does not limit a specific polymer structure.
  • Polymers such as phosphinhoxide are preferred in terms of mechanical strength, physical durability, processability and hydrolysis resistance, with polyether ketones being more preferred.
  • polyetherketone a block copolymer composed of a segment having a benzophenone structure having an ionic group and a segment having a dioxolane structure is more preferable.
  • the method for synthesizing the aromatic hydrocarbon polymer is not particularly limited as long as the above-mentioned characteristics and requirements can be satisfied. Examples of such a method include Journal of Membrane Science, 197, 2002, p. The method described in 231-242 can be used.
  • the preferred polymerization conditions for synthesizing an aromatic hydrocarbon polymer by a polycondensation reaction are shown below.
  • the polymerization can be carried out in the temperature range of 0 to 350 ° C., but is preferably at a temperature of 50 to 250 ° C. If the temperature is lower than 0 ° C, the reaction tends not to proceed sufficiently, and if the temperature is higher than 350 ° C, decomposition of the polymer tends to start.
  • the reaction is preferably carried out in a solvent.
  • Examples of the solvent that can be used include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphontriamide and the like.
  • the aprotic and aprotic polar solvent of the above can be mentioned, but the present invention is not limited thereto, and any solvent may be used as long as it can be used as a stable solvent in the aromatic nucleophilic substitution reaction.
  • These organic solvents may be used alone or as a mixture of two or more kinds.
  • the condensation reaction is carried out in a solvent, it is preferable to add the monomer so that the obtained polymer concentration is 5 to 50% by weight.
  • the polymer concentration is less than 5% by weight, the degree of polymerization tends to be difficult to increase.
  • the polymer concentration is more than 50% by weight, the viscosity of the reaction system becomes too high, and the post-treatment of the reaction product tends to be difficult.
  • the aromatic hydrocarbon polymer may have an ionic group.
  • the method of introducing an ionic group into an aromatic hydrocarbon polymer include a method of polymerizing using a monomer having an ionic group and a method of introducing an ionic group by a polymer reaction.
  • a method of polymerizing using a monomer having an ionic group a monomer having an ionic group may be used in the repeating unit, and if necessary, an appropriate protecting group is introduced and polymerized, and then a deprotecting group is performed. May be good.
  • the method of introducing an ionic group will be described by way of example.
  • a method of sulfonation of an aromatic ring that is, a method of introducing a sulfonic acid group
  • Japanese Patent Application Laid-Open No. 2-16126 or Japanese Patent Application Laid-Open No. 2-208322. Etc. are described in.
  • the aromatic ring can be sulfonated by reacting it with a sulfonate such as chlorosulfonic acid in a solvent such as chloroform, or by reacting it with concentrated sulfuric acid or fuming sulfuric acid.
  • a sulfonate such as chlorosulfonic acid in a solvent such as chloroform
  • the sulfonate is not particularly limited as long as it sulfonates an aromatic ring, and sulfur trioxide or the like can be used in addition to the above.
  • the degree of sulfonation can be easily controlled by the amount of the sulfonate agent used, the reaction temperature and the reaction time.
  • the introduction of a sulfonimide group into an aromatic polymer is possible, for example, by a method of reacting a sulfonic acid group with a sulfonamide group.
  • a functional group having a negative charge is preferable, and a functional group having a proton exchange ability is particularly preferable.
  • a sulfonic acid group, a sulfonimide group, a sulfate group, a phosphonic acid group, a phosphoric acid group and a carboxylic acid group are preferably used.
  • the sulfonic acid group represents a group represented by the following general formula (f1)
  • the sulfoneimide group represents a group represented by the following general formula (f2) [in the general formula (f2), R represents an arbitrary organic group. ..
  • the sulfate group is represented by the following general formula (f3)
  • the phosphonic acid group is represented by the following general formula (f4)
  • the phosphate group is represented by the following general formula (f5) or (f6).
  • the group and the carboxylic acid group mean a group represented by the following general formula (f7).
  • the ionic group includes the case where the functional groups (f1) to (f7) are salts.
  • the cation forming the salt an arbitrary metal cation, NR4 + (R is an arbitrary organic group) can be mentioned as an example.
  • R is an arbitrary organic group
  • a metal cation its valence is not particularly limited.
  • preferable metal ions include ions of Li, Na, K, Rh, Mg, Ca, Sr, Ti, Al, Fe, Pt, Rh, Ru, Ir and Pd.
  • inexpensive and easily proton-substitutable Na, K, and Li ions are preferably used.
  • Two or more of these ionic groups can be contained in the polymer, and the combination can be appropriately determined depending on the structure of the polymer and the like. Among them, it is more preferable to use a sulfonic acid group, a sulfonimide group or a sulfate group from the viewpoint of high proton conductivity, and it is most preferable to have a sulfonic acid group from the viewpoint of raw material cost.
  • the softening point of the electrolyte membrane of the present invention is 120 ° C. or higher. If the softening point is less than 120 ° C., the mechanical strength of the electrolyte membrane is lowered at an operating temperature of more than 100 ° C., which may cause deterioration such as creep and film breakage. In order to maintain durability under high temperature conditions, it is preferable to apply an electrolyte membrane having a softening point of 120 ° C. or higher.
  • the softening point is a temperature at which the slope of the storage elastic modulus in the dynamic viscoelasticity measurement of the electrolyte membrane indicates an inflection point.
  • the polymer electrolyte membrane having such a high softening point it is preferable to use the above-mentioned polymer electrolyte membrane containing the hydrocarbon polymer.
  • the softening point of a general perfluorosulfonic acid-based polymer is around 80 ° C., and may not have sufficient mechanical strength at an operating temperature exceeding 100 ° C.
  • the softening point of the hydrocarbon polymer is higher, and it is easy to prepare an electrolyte membrane having a softening point of 120 ° C. or higher.
  • a polyelectrolyte membrane made of a hydrocarbon polymer can be more preferably used as the electrolyte membrane contained in the fuel cell operated under high temperature conditions.
  • the electrolyte membrane of the present invention preferably has an oxygen gas permeation coefficient of 1.0 ⁇ 10 -9 cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg or less at 90 ° C. and 80% RH, preferably 5.0 ⁇ 10 more preferably -10 cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg or less, further preferably 1.0 ⁇ 10 -10 cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg or less.
  • the high oxygen gas permeability of the electrolyte membrane increases the amount of hydrogen peroxide produced that causes the chemical deterioration of the membrane, which is caused by the chemical reaction between the oxygen that has permeated the membrane and the hydrogen that is supplied to the opposite electrode.
  • the saturation solubility of gas in the electrolyte membrane usually tends to decrease, but the diffusion rate of gas in the electrolyte membrane increases significantly, and as a result, the gas permeability coefficient often increases.
  • the oxygen gas permeability coefficient at 90 ° C 80% RH is 1.0 ⁇ 10-9 cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg or less. If there is, it is possible to suppress the decrease in chemical durability due to the production of hydrogen peroxide.
  • the electrolyte membrane of the present invention preferably has a hydrogen gas permeability coefficient of 5.0 ⁇ 10 -9 cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg or less at 90 ° C. and 80% RH, preferably 1.0 ⁇ 10 It is more preferably -9 cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg or less.
  • the high hydrogen gas permeability of the electrolyte membrane increases the amount of hydrogen peroxide produced that causes the chemical deterioration of the membrane, which is caused by the chemical reaction between the hydrogen that has permeated the membrane and the oxygen supplied to the opposite electrode.
  • the gas permeability coefficients of oxygen and hydrogen of the electrolyte membrane at 90 ° C. and 80% RH were measured according to the following conditions. The gas permeability coefficient was calculated by averaging the number of tests.
  • Equipment Differential pressure type gas permeability measurement system GTR-30AX (manufactured by GTR Tech Co., Ltd.) Temperature x Relative humidity: 90 ° C x 80% RH
  • Test gas Oxygen
  • Test gas pressure Total pressure including water vapor is 101.3 kPa (atmospheric pressure)
  • the partial pressure of each measured gas is 45.2 kPa.
  • Gas permeation area 3.14 cm 2 (circular sample with a diameter of 2.0 cm) * Masking is performed. Measurement n number: 3 (measured using the same sample)
  • the polymer electrolyte used in the present invention is preferably a hydrocarbon-based polymer.
  • the polyelectrolyte is an aromatic hydrocarbon-based polymer having crystallinity.
  • “having crystallinity” means that it has a crystallizable property that can be crystallized when the temperature is raised, or that it has already crystallized. The presence or absence of crystallinity is confirmed by differential scanning calorimetry (DSC) or wide-angle X-ray diffraction.
  • the amount of heat of crystallization measured by the differential scanning calorimetry after film formation is 0.1 J / g or more, or the degree of crystallization measured by wide-angle X-ray diffraction is 0.5% or more. Is preferable. That is, if no crystallization peak is observed in the differential scanning calorimetry method, it is possible that the polyelectrolyte is already crystallized or the polyelectrolyte is amorphous, but if it is already crystallized, the wide angle X The crystallinity becomes 0.5% or more by linear diffraction.
  • the film thickness of the electrolyte membrane is not particularly limited, but if it is thicker than 20 ⁇ m, the power generation performance tends to decrease, and if it is less than 5 ⁇ m, the durability and handleability tend to decrease. The following is preferable.
  • the film thickness of the electrolyte membrane is less than 5 ⁇ m, the amount of water retained in the membrane is small, the membrane dries early under high temperature conditions, and the power generation performance may deteriorate.
  • the catalyst layer of the present invention is composed of an ionic conductor and catalyst-supported particles in which a catalyst is supported on a carrier.
  • Precious metal species such as platinum, gold, ruthenium, and iridium, which have high activity in oxidation and reduction reactions, are preferably used as catalysts, but the catalyst is not limited thereto.
  • the carrier carbon particles and oxide particles having conductivity, high chemical stability, and a high surface area are preferable, and metal oxide particles are particularly preferable. Examples of carbon particles include acetylene black, Ketjen black, and vulcan carbon, and examples of metal oxide particles include tin oxide and titanium oxide.
  • a metal oxide carrier that is chemically stable even in an oxidizing atmosphere of 100 ° C. or higher. Oxidation of the carbon particles is promoted in an oxidizing atmosphere of 100 ° C. or higher, which may accelerate the desorption of the catalyst particles supported on the carbon particles and the deterioration due to syntaring.
  • the gas diffusion layer of the present invention includes a carbon sheet and a microporous layer. That is, it can be produced by forming a microporous layer on a carbon sheet.
  • the microporous layer is composed of a water-repellent resin such as PTFE and a conductive filler.
  • a conductive filler carbon powder is preferable.
  • Carbon powder includes carbon black such as furnace black, acetylene black, lamp black and thermal black, graphite such as scaly graphite, scaly graphite, earthy graphite, artificial graphite, expanded graphite, and flake graphite, carbon nanotubes, and wire.
  • graphite, milled fiber of carbon fiber and the like can be mentioned.
  • carbon black is more preferably used as the carbon powder which is a filler
  • acetylene black is preferably used because there are few impurities.
  • the amount of the water-repellent resin used for the microporous layer from the viewpoint of increasing the water retention. Further, by using a hydrophilic resin having a binding property instead of the water-repellent resin, the water retention as a membrane electrode complex can be further enhanced.
  • the carbon sheet is porous due to its high gas diffusivity for diffusing the gas supplied from the separator to the catalyst layer and its high drainage property for discharging the water generated by the electrochemical reaction to the separator. It is important to be. Further, the carbon sheet of the present invention preferably has high conductivity in order to take out the generated current. Therefore, in order to obtain a carbon sheet, it is preferable to use a porous body having conductivity. More specifically, the porous body used to obtain the carbon sheet includes, for example, a porous body containing carbon fibers such as carbon fiber woven fabric, carbon paper and carbon fiber non-woven fabric, and a carbonaceous foamed porous body containing carbon fibers. It is preferable to use it.
  • a porous body containing carbon fibers in order to obtain a carbon sheet, and further, dimensional changes in the direction perpendicular to the surface of the electrolyte membrane (thickness direction). Since it is excellent in the property of absorbing carbon fiber, that is, the "springiness”, it is preferable to use carbon paper obtained by binding a carbon fiber papermaking body with a carbonized material (binding material).
  • the above-mentioned method for producing a membrane electrode composite (MEA) having an electrolyte membrane, a catalyst layer and a gas diffusion layer is as follows: (I) A gas diffusion electrode (GDE) having a catalyst layer formed on one surface of the gas diffusion layer. A method of preparing and laminating the prepared gas diffusion electrode (GDE) with an electrolyte membrane, and (II) a method of preparing an electrolyte membrane with a catalyst layer (CCM) and laminating the prepared electrolyte membrane (CCM) with a gas diffusion layer. It is roughly divided into.
  • FIG. 2 is a schematic cross-sectional view for explaining the method (I) described above (the method of Example 2 described later).
  • the method (I) first, two sheets in which the anode catalyst layer 2a and the cathode catalyst layer 2b are formed on the microporous layer forming surfaces of the anode gas diffusion layer 1a and the cathode gas diffusion layer 1b, which are gas diffusion layers, respectively.
  • a gas diffusion electrode (GDE) is made.
  • the electrolyte membrane is arranged and bonded so as to be in direct contact with the catalyst layer forming surface of the anode and the cathode gas diffusion electrode.
  • FIG. 1 is a schematic cross-sectional view for explaining the method (II) described above (the method of Example 1 described later).
  • the method (II) first, an electrolyte membrane (CCM) with a catalyst layer in which the anode catalyst layer 2a and the cathode catalyst layer 2b are laminated on both surfaces of the electrolyte membrane 3 is produced.
  • the anode and cathode electrode base materials are arranged and bonded so as to be in direct contact with the catalyst layer forming surface of the CCM.
  • the joining method of the electrolyte membrane, the catalyst layer and the gas diffusion layer is not particularly limited, and is a known method (for example, the chemical plating method described in Electrochemistry, 1985, 53, p.269., edited by the Electrochemical Association (J. Electrochem. Soc.), Electrochemical Science and Technology, 1988, 135, 9, p.2209.
  • the heat press bonding method of the gas diffusion electrode described in can be applied.
  • the temperature and pressure may be appropriately selected depending on the thickness of the electrolyte membrane, the water content, the catalyst layer and the electrode base material.
  • Specific press methods include roll presses that regulate pressure and clearance, flat plate presses that regulate pressure, etc., such as industrial productivity and suppression of thermal decomposition of polymer materials having ionic groups. From the viewpoint, it is preferable to carry out in the range of 0 ° C to 250 ° C.
  • the pressurization is preferably as weak as possible from the viewpoint of protecting the electrolyte membrane and the electrodes, and in the case of a flat plate press, a pressure of 10 MPa or less is preferable.
  • Overlapping the electrodes and the electrolyte membrane to form a fuel cell without performing compounding by the pressing process is also one of the preferable options from the viewpoint of preventing a short circuit between the anode electrode and the cathode electrode.
  • this method when power generation is repeated as a fuel cell, deterioration of the electrolyte membrane presumed to be caused by a short-circuited portion tends to be suppressed, and the durability of the fuel cell becomes good.
  • MEA electrolyte membrane, the gas diffusion layer, and the catalyst layer as shown in FIGS. 1 and 2 as described above and pressing them at a constant temperature and pressure.
  • laminating and pressing may be performed simultaneously on both sides or one side at a time.
  • a method for continuously producing a membrane electrode composite there is a method of producing a roll-shaped electrolyte membrane, laminating it with a catalyst layer and / or a gas diffusion layer, and pressing at a constant temperature and pressure.
  • a film-like member such as a base material, an electrolyte membrane, or an electrolyte membrane with a base material
  • tension it is preferable to apply tension to each film-like member, and a method of providing a tension cut between each step. It can be changed by such means.
  • the tension cut includes, for example, a roll in which a motor, a clutch, a brake, or the like is installed, and it is preferable to provide a detecting means for detecting the tension applied to the film.
  • rollers used for tension cutting include a nip roller, a suction roller, or a combination of a plurality of rollers.
  • the nip roller sandwiches the film between the rollers and controls the feed rate of the film by the frictional force generated by the sandwiching pressure, and as a result, the pressure applied to the film can be changed before and after the roller.
  • the suction roller sucks the film-like member by sucking the inside of a roller with many holes on the surface or a roller that is made into a mesh or a child of a sill by winding a wire and making it a negative pressure, and by the suction force.
  • the frictional force generated controls the feed rate of the film-like member, and as a result, the pressure applied to the film-like member can be changed before and after the roller.
  • FIG. 3 is a perspective view for explaining the structure of the fuel cell unit 10 in the present invention.
  • the membrane electrode composite 4 produced as described above is joined to the anode separator 5a and the cathode separator 5b to form the fuel cell unit 10.
  • a plurality of grooves serving as a flow path through which the hydrogen gas 6 passes are formed on the surface of the anode separator 5a to be joined to the anode gas diffusion layer 1a.
  • the hydrogen gas 6 supplied to the groove of the anode separator 5a passes through the anode gas diffusion layer 1a and reaches the anode catalyst layer 2a, and is used for the oxidation reaction.
  • a plurality of grooves serving as a flow path through which air or oxygen gas 7 passes are formed on the surface of the cathode separator 5b that is joined to the cathode gas diffusion layer 1b.
  • the air or oxygen gas 7 supplied to the groove of the anode separator 5b passes through the cathode gas diffusion layer 1b and reaches the cathode catalyst layer 2b, and is used for the reduction reaction.
  • FIG. 4 is a schematic diagram for explaining the fuel cell system 20 in the present invention.
  • the fuel cell system 20 mainly includes a fuel cell stack 11, humidifiers 12a and 12b, compressors 13a and 13b, back pressure valves 14a and 14b, pipes connecting them, and various sensors.
  • the fuel cell unit 10 (FIG. 3) manufactured as described above is alternately connected to and integrated with a cooling plate (not shown) to form a fuel cell stack 11.
  • the humidifier is used for the purpose of humidifying the gas supplied to the fuel cell.
  • the humidifier is arranged on the upstream side of the gas supply port to the fuel cell stack 11. At this time, by controlling the amount of water supplied from the humidifier according to the operating temperature of the fuel cell, the electrolyte membrane can be appropriately humidified at any operating temperature.
  • a humidification method a method of passing a supply gas through an aqueous layer containing heated water (bubbler method), a method of directly adding steam to the supply gas and mixing it (steam addition method), and the like are used.
  • the gas supplied to the humidifier since the operating temperature of the fuel cell exceeds 100 ° C., the gas supplied to the humidifier also has a high temperature equal to or higher than that, so that the humidification of the supplied gas is sufficient even in the temperature range of 100 ° C. or higher.
  • a humidifier that can be carried out and has high temperature durability is preferable.
  • the compressor is used for the purpose of increasing the pressure of the gas supplied to the fuel cell.
  • the compressor compresses the supply gas, particularly the cathode gas (air or oxygen gas), and supplies the fuel cell with a high-pressure gas.
  • the compressor that compresses the cathode gas uses air as the cathode gas, and if air is always sucked from outside the fuel cell system, it is placed between the air intake port and the gas supply port of the fuel cell stack, and fuels the supply gas. In a configuration that circulates in the battery system, it is placed between the paths from the gas outlet to the gas supply.
  • the coolant is used for the purpose of controlling the operating temperature of the fuel cell.
  • the coolant is supplied to the cooling plate via the coolant circulation pump, absorbs the heat generated during power generation in the fuel cell stack, and dissipates it in the radiator (not shown).
  • the coolant since the operating temperature of the fuel cell exceeds 100 ° C., the coolant also has the same high temperature. Therefore, the fuel cell stack can be sufficiently cooled even in the temperature range of 100 ° C. or higher, and is low.
  • a coolant having a vapor pressure is preferred.
  • the method for operating a fuel cell of the present invention includes a step of setting the operating temperature of the fuel cell to 100 ° C. or higher by using the above-mentioned fuel cell system, and in this step, the relative humidity of the supply gas supplied to the fuel cell is determined. It is characterized in that it is set to be 70% or more, and the back pressure of the supply gas is set to 330 kPa or more.
  • the relative humidity (% RH) means the water vapor pressure with respect to the saturated water vapor pressure at a certain temperature
  • the back pressure means the pressure of the supply gas at the outlet of the fuel cell stack.
  • the pressure in the present invention means an absolute pressure.
  • the operating temperature of each fuel cell unit 10 (FIG. 3) in the fuel cell stack 11 is heated to 100 ° C. or higher by heating from the outside of the fuel cell stack 11 using, for example, a heater or the like. ..
  • the temperature of the fuel cell unit 10 is 100 ° C. by adjusting the heating temperature of a heater or the like while measuring by a method using a thermocouple embedded in the cell or a method using a thermography (infrared temperature imager). The above can be set.
  • a temperature distribution may occur in the fuel cell stack 11, but it is necessary to set all the cell units 10 in the fuel cell stack 11 to be 100 ° C. or higher.
  • the operating temperature of the fuel cell unit 10 may be 100 ° C.
  • the upper limit of the operating temperature of the fuel cell unit 10 is usually 150 ° C. or lower, preferably 140 ° C. or lower, and more preferably 130 ° C. or lower. Any combination of the above upper limit value and the above lower limit value of the operating temperature may be used.
  • Hydrogen gas which is a fuel gas
  • Hydrogen gas is stored in the hydrogen tank 18. Hydrogen gas is supplied from the hydrogen tank 18 to the compressor 13a via the hydrogen gas supply pipe 6c. In the compressor 13a, the hydrogen gas is compressed and the pressure is increased. The high-pressure hydrogen gas is supplied to the humidifier 12a. At this time, the hydrogen gas is humidified so that the relative humidity with respect to the temperature of the fuel cell unit 10 is 70% or more, and the temperature of the hydrogen gas is set to be the same as or higher than the dew point corresponding to the humidification amount. Will be done. Further, it is confirmed by the humidity sensor 16 that the humidity of the hydrogen gas is set to a predetermined humidification amount. Next, the humidified hydrogen gas is supplied to the inside of the fuel cell stack 11 from the hydrogen gas supply port of the fuel cell stack 11, and is supplied to the anode separator 5a (FIG. 3) of each fuel cell unit.
  • the humidified hydrogen gas is supplied to the inside of the fuel cell stack 11 from the hydrogen gas supply port of the fuel cell stack 11, and
  • the hydrogen gas 6 not used in the fuel cell unit is discharged from the hydrogen gas discharge port of the fuel cell stack 11 via the hydrogen gas discharge pipe 6d.
  • the back pressure of the hydrogen gas measured at the outlet of the fuel cell stack is set to be 330 kPa or more.
  • the back pressure of hydrogen gas can be measured by a pressure sensor 17 provided in the hydrogen gas discharge pipe 6d, and can be adjusted to a predetermined back pressure by the compressor 13a and the back pressure valve 14a.
  • air which is an oxidation gas
  • air is introduced from the air intake port and supplied to the compressor 13b via the air supply pipe 7c. Air is compressed and increased in pressure in the compressor 13b. The high-pressure air is supplied to the humidifier 12b. At this time, the air is humidified so that the relative humidity with respect to the temperature of the fuel cell unit 10 is 70% or more, and the temperature of the air is set to be heated to the same temperature as or higher than the dew point corresponding to the humidification amount. .. Further, it is confirmed by the humidity sensor 16 that the humidity of the air is set to a predetermined humidification amount. Next, the humidified air is supplied to the inside of the fuel cell stack 11 from the air supply port of the fuel cell stack 11, and is supplied to the cathode separator 5b (FIG. 3) of each fuel cell unit.
  • the air 7 not used in the fuel cell unit is discharged from the air discharge port of the fuel cell stack 11 via the air discharge pipe 7d.
  • the back pressure of the air measured at the outlet of the fuel cell stack is set to be 330 kPa or more.
  • the back pressure of the air can be measured by the pressure sensor 17 provided in the air discharge pipe 7d, and can be adjusted to a predetermined back pressure by the compressor 13b and the back pressure valve 14b.
  • the coolant is supplied into the fuel cell stack 20 by the coolant circulation pump 19.
  • the cooling water supplied into the fuel cell stack 20 recovers heat via a cooling plate (not shown) arranged between the fuel cell units 10 and is used as hot water outside the fuel cell stack 20. Is discharged to.
  • the recovered waste heat can be further effectively utilized.
  • the membrane electrode composite is suitable by setting the relative humidity of the supply gas to be 70% or more when the operating fuel cell reaches a high temperature of 100 ° C. or higher. It is possible to supply an amount of water vapor that can be humidified. Further, even when the water vapor pressure rises due to this, a sufficient amount of reaction gas can be supplied to the electrodes of the membrane electrode complex by increasing the back pressure of the supply gas to a specific value or more. As a result, it is possible to suppress an increase in the proton conduction resistance of the electrolyte membrane and the material diffusion resistance in the electrode reaction while increasing the catalytic activity and the heat exhaust efficiency, and it is possible to realize high performance of the fuel cell.
  • hydrogen gas 6 is supplied to the anode side and air or oxygen gas 7 is supplied to the cathode side in the fuel cell unit 10 (FIG. 3).
  • air or oxygen gas 7 is supplied to the cathode side in the fuel cell unit 10 (FIG. 3).
  • hydrogen is reduced to generate protons and electrons, and the protons conducted in the electrolyte membrane and the electrons conducted through the external circuit react with oxygen at the cathode electrode to generate water.
  • the consumption of hydrogen and oxygen at the anode electrode and cathode electrode is proportional to the amount of current flowing through the external circuit, and if the hydrogen and oxygen supplied near the electrodes are insufficient, it will cause performance degradation as material diffusion resistance. ..
  • water in the membrane contributes to the proton conduction in the solid polymer electrolyte, and its conductivity depends on the water content of the membrane.
  • the amount of water in the membrane decreases due to a decrease in humidity in the supply gas or an increase in operating temperature, the proton conduction resistance increases, causing performance deterioration. Therefore, in order to obtain a high-performance fuel cell, it is necessary to appropriately control the amount of hydrogen, oxygen and water in the supply gas.
  • the dehydration rate from the electrolyte membrane is high, and it is necessary to supply a high humidity gas in order to maintain the water content in the membrane.
  • the relative humidity of at least one of the air or oxygen gas supplied to the cathode side and the hydrogen gas supplied to the anode side of the fuel cell is 70% or more, preferably 75%.
  • the saturated water vapor pressure is much higher than that in the temperature range of 100 ° C or lower. Becomes very large. Even under such conditions, it is necessary to set the back pressure of the supply gas to a predetermined value or higher in order to supply hydrogen and oxygen required for the electrode reaction.
  • the back pressure specifically, by setting the back pressure to 330 kPa or more, preferably 350 kPa or more, more preferably 370 kPa or more, still more preferably 390 kPa or more, the material at the anode and cathode electrodes even in the high current density range. It is possible to suppress an increase in diffusion resistance.
  • the operation method of the present invention is particularly effective when the supply gas to the cathode side is air.
  • the oxygen concentration in the supply gas is reduced to about 1/5, so that the amount of oxygen in the vicinity of the electrode tends to be small. Even in such a situation, by increasing the gas supply pressure to 330 kPa or more, a sufficient amount of oxygen is supplied to the cathode electrode, and a high-performance fuel cell can be obtained.
  • reaction solution was diluted with ethyl acetate, the organic layer was washed with 100 ml of a 5% potassium carbonate aqueous solution, separated, and then the solvent was distilled off. 80 ml of dichloromethane was added to the residue to precipitate crystals, which were filtered and dried to obtain 52.0 g of 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane. GC analysis of this crystal revealed 99.8% 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane and 0.2% 4,4'-dihydroxybenzophenone.
  • NMP N-methylpyrrolidone
  • the softening point of the obtained polymer electrolyte membrane was measured by dynamic viscoelasticity measurement and found to be 160 ° C.
  • the resulting oxygen gas permeability coefficient at 90 ° C. 80% RH of the polymer electrolyte membrane 4.5 ⁇ 10 -11 cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg, the hydrogen gas permeability coefficient of 5.6 ⁇ 10 -10 It was cm 3 ⁇ cm / cm 2 ⁇ sec ⁇ cmHg.
  • Example 1 A transfer sheet with an anode catalyst (size: 50 x 50 mm) and a transfer sheet with a cathode catalyst (size: 50 x 50 mm) on both sides of the polyether ketone polymer electrolyte membrane (thickness: 10 ⁇ m, size: 70 mm ⁇ 70 mm) prepared in the above synthesis example 3 (thickness: 10 ⁇ m, size: 70 mm ⁇ 70 mm). (Size: 50 ⁇ 50 mm) was placed and heated and pressed at 160 ° C., 4.5 MPa, and 5 min to prepare a catalyst layer-coated electrolyte membrane (CCM). As the anode catalyst and the cathode catalyst, a platinum-based catalyst supported on a carbon carrier was used.
  • CCM catalyst layer-coated electrolyte membrane
  • an anode gas diffusion layer 1a size: 50 mm ⁇ 50 mm
  • a cathode gas diffusion layer 1b size: 50 mm ⁇ 50 mm
  • anode gas diffusion layer 1a and the cathode gas diffusion layer 1b a layer in which a microporous layer containing PTFE and carbon black was formed on a porous carbon sheet (“TGP-H-060” manufactured by Toray Industries, Inc.) was used.
  • a membrane electrode complex was prepared by hot pressing at 160 ° C. for 5 minutes at 4.5 Ma.
  • Example 2 An anode catalyst layer 2a was formed on the surface of the anode gas diffusion layer 1a on which the microporous layer was formed to prepare an anode electrode which is a gas diffusion electrode (GDE). Further, a cathode catalyst layer 2b was formed on the surface of the cathode gas diffusion layer 1b on which the microporous layer was formed to prepare a cathode electrode which is a gas diffusion electrode (GDE). The same as in Example 1 was used as the anode gas diffusion layer 1a, the cathode gas diffusion layer 1b, the anode catalyst, and the cathode catalyst. As shown in FIG.
  • the anode electrodes (size: 50 mm ⁇ ) are placed on both sides of the polyether ketone polymer electrolyte membrane (thickness: 10 ⁇ m, size: 70 mm ⁇ 70 mm) produced in Synthesis Example 3. 50 mm) and the cathode electrode (size: 50 mm ⁇ 50 mm) were arranged.
  • a membrane electrode complex was prepared by hot pressing at 160 ° C. for 5 minutes at 4.5 Ma.
  • the membrane electrode complex produced by the methods described in Examples 1 and 2 was set in a JARI standard cell "Ex-1" (electrode area 25 cm2) manufactured by Eiwa Co., Ltd. to prepare a power generation evaluation module. Hydrogen gas was supplied as a fuel gas to one anode electrode, and air was supplied as an oxidation gas to the other cathode electrode. Power generation was evaluated under the following conditions, and the current was swept from 0 A / cm 2 to 1.2 A / cm 2 until the voltage became 0.2 V or less. In the present invention, the voltages at a current density of 1 A / cm 2 were compared. When the membrane electrode complex was set in the cell, a pressure of 0.7 GPa was applied.
  • Electronic load device Electronic load device "PLZ664WA” manufactured by Kikusui Electronics Co., Ltd. Cell temperature; 65 ° C, 120 ° C Gas humidification conditions (hydrogen gas and air); 60% RH, 90% RH Gas back pressure (hydrogen gas and air): 200 kPa, 330 kPa Gas utilization rate; anode is 70% of stoichiometry, cathode is 40% of stoichiometry.
  • Table 1 The measurement results are shown in Table 1 below.
  • the membrane electrode complexes of Examples 1 and 2 have a gas back pressure of 200 kPa or 330 kPa under the condition of a relative humidity of 60% when the operating temperature rises from 65 ° C to 120 ° C. Even in some cases, a voltage drop occurred. On the other hand, under the condition of 90% relative humidity, the voltage does not decrease even when the operating temperature rises from 65 ° C to 120 ° C, and under the condition of back pressure of 330 kPa, good performance exceeding the power generation performance at 65 ° C can be obtained. rice field.
  • Example 1 High temperature power generation evaluation (humidity dependence)
  • the membrane electrode complex produced by the method described in Example 1 was set in a JARI standard cell "Ex-1" (electrode area 25 cm2) manufactured by Eiwa Co., Ltd. to prepare a power generation evaluation module.
  • Hydrogen gas was supplied as a fuel gas to one anode electrode, and air was supplied as an oxidation gas to the other cathode electrode.
  • Power generation evaluation was performed under the following conditions, and the voltages when the humidity was changed from 30% RH to 95% RH were compared while maintaining the current density of 1 A / cm2.
  • a pressure of 0.7 GPa was applied.
  • Electronic load device Electronic load device "PLZ664WA” manufactured by Kikusui Electronics Co., Ltd. Cell temperature; 120 ° C Gas humidification conditions (hydrogen gas and air); 30% RH-95% RH Gas back pressure (hydrogen gas and air): 330 kPa Gas utilization rate; anode is 70% of stoichiometry, cathode is 40% of stoichiometry.
  • Table 2 The measurement results are shown in Table 2 below.
  • the film electrode complex of Example 1 was found to have a voltage increase at 1 A / cm 2 as the relative humidity increased under the conditions of an operating temperature of 120 ° C. and a back pressure of 330 kPa.
  • the humidity dependence of the voltage is large at 30% RH to 60% RH, while the humidity dependence of the voltage is small at a humidity of 70% RH or higher, and it is stable when the humidity is 70% RH or higher. High power generation performance can be realized.
  • Anode gas diffusion layer 1b Cathode gas diffusion layer 2a: Anode catalyst layer 2b: Cathode catalyst layer 3: Electrolyte film 4: Film electrode composite (MEA) 5a: Anodic separator 5b: Cathode separator 6: Hydrogen gas 6c: Hydrogen gas supply pipe 6d: Hydrogen gas discharge pipe 7: Air 7c: Air supply pipe 7d: Air discharge pipe 10: Fuel cell unit 11: Fuel cell stack 12a, 12b: Humidifiers 13a, 13b: Compressors 14a, 14b: Back pressure valve 15: Temperature sensor 16: Humidity sensor 17: Pressure sensor 18: Hydrogen tank 19: Coolant circulation pump 20: Fuel cell system

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

高温条件下においても高分子電解質膜が十分に加湿され、優れた発電性能を得ることができる燃料電池の運転方法を提供する。本発明は、電解質膜と触媒層とガス拡散層を有する膜電極複合体を備えた燃料電池の運転方法であって、前記燃料電池の運転温度を100℃以上に設定する工程を含み、前記工程において燃料電池に供給される供給ガスの相対湿度を70%以上とし、且つ、前記供給ガスの背圧を330kPa以上とすることを特徴とする。

Description

燃料電池の運転方法
 本発明は、電解質膜と触媒層とガス拡散層を有する膜電極複合体を備えた燃料電池の運転方法であって、高温運転時の供給ガスの湿度及び背圧を高めることで、高温条件下においても優れた発電性能を得ることができる燃料電池の運転方法に関するものである。
 燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
 固体高分子型燃料電池は通常、燃料ガスおよび酸化ガスを触媒層へ供給するガス拡散層と、発電を担う反応の起こるアノードとカソードの触媒層と、アノード触媒層とカソード触媒層間のプロトン伝導体となる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。
 上記高分子電解質膜への要求特性としては、第一に高いプロトン伝導性が挙げられ、特に高温低加湿条件でも高いプロトン伝導性を有する必要がある。従来、パーフルオロスルホン酸系ポリマーであるナフィオン(登録商標)(デュポン社製)が高分子電解質膜に広く用いられてきた。ナフィオン(登録商標)はクラスター構造に起因するプロトン伝導チャネルを通じて高いプロトン伝導性を示す一方で、低加湿条件におけるプロトン伝導性に課題があった。
 一方、ナフィオン(登録商標)に替わり得る、炭化水素系高分子電解質膜の開発が近年活発化しており、中でも特に、プロトン伝導性向上に向け、疎水性セグメントと親水性セグメントからなるブロック共重合体を用いて、ミクロ相分離構造を形成させる試みがいくつかなされているが、依然として低加湿条件下におけるプロトン伝導性は課題であった。こうした状況から、燃料電池において、膜電極複合体中の水(特に電解質膜の含水量)を管理することが重要になる。
 一方で、固体高分子型燃料電池の更なる高性能化に向けて、100℃を超えるような運転温度の高温化が求められている。運転温度の上昇により触媒活性が向上し、発電性能が高まるとともに、ラジエータによる排熱効率が上昇することで燃料電池システムの小型化が実現できる。また、燃料ガス中に含まれる一酸化炭素などの被毒種による触媒被毒を低減し、不純物による性能低下を抑制することができる。しかし、運転温度の上昇は膜電極複合体、特に電解質膜からの脱水を引き起こし、プロトン伝導性を低下させるため、十分な性能が得られないという課題があった。そのため、高温、特に100℃を超える温度域で使用可能な電解質膜材料ならびに運転可能な燃料電池システムの開発が行われてきた。
 特許文献1には、作動温度100℃以上の高温で作動する固体高分子型燃料電池の電池構造として、ガスの圧損やアノード/カソード間圧力差の増大を抑制するセパレータ構造が記載されている。ここではカソードセパレータのガス流れ方向下流側の流路の断面積を、上流側の断面積より大きくすることで、カソードセパレータの圧損を低減し、エネルギー効率を高める構成が開示されている。
 また、特許文献2には、高いプロトン伝導性を有しつつ、高温高湿条件下でも膨潤し難く、優れた寸法安定性を有するプロトン伝導膜を備える固体高分子型燃料電池用膜-電極構造体が記載されている。ここでは電解質膜を特定の構成単位を有する分岐状ポリアリーレン系共重合体とすることで、高いスルホン酸当量においても寸法変化の小さい膜-電極構造体を提供する構成が開示されている。
 さらに、特許文献3では、燃料電池内の水分にほぼ無関係に動作する高温型高分子電解質膜燃料電池ならびにその運転方法が記載されている。ここでは、水分にほぼ無関係な状態で動作を行うためリン酸などの自己解離性化合物を膜中に保持した電解質を用いており、動作温度を80~300℃、動作圧力を0.3bar~5barとすることで、プロセスガス中のCO濃度やセル内に存在する水分量の影響を軽減する方法が開示されている。
特開2007-115413号公報 特開2009-238468号公報 特表2003-504805号公報
 しかし、本発明者らは、特許文献1,2に記載されたような固体高分子型電解質膜を用いた膜電極複合体に対して、高温運転下においてプロトン伝導性を維持するために加湿量を増加すると、供給ガス中の水分量が増加することで、反応ガス、特に酸化ガスの濃度が低下し、物質拡散抵抗が増大することで性能低下を引き起こすことを見出した。この点については、いずれの文献においても言及されていない。
 また、特許文献3に記載の電解質は、その強い酸性度のために触媒を強く被毒し、高温域での発電性能が低下する懸念がある。また、その使用に伴ってプロトン伝導性が低下する点も課題である。したがって、高温域において高い発電性能を維持するためには、リン酸などの自己解離性化合物を膜中に含まない固体高分子型ポリマーを用いた電解質を適切に加湿しつつ、電極近傍における反応ガスの濃度低下を抑制する必要がある。
 本発明は、かかる従来技術の背景に鑑み、高温条件下においても高分子電解質膜が十分に加湿され、優れた発電性能を得ることができる燃料電池の運転方法を提供するものである。
 本発明は、かかる課題を解決するために、次のような手段を採用するものである。
 すなわち、本発明の燃料電池の運転方法は、電解質膜と触媒層とガス拡散層を有する膜電極複合体(MEA)を備えた燃料電池の運転方法であって、前記燃料電池の運転温度を100℃以上に設定する工程を含み、前記工程において燃料電池に供給される供給ガスの相対湿度を70%以上とし、且つ、前記供給ガスの背圧を330kPa以上とすることを特徴とするものである。
 また、本発明の燃料電池システムは、上記本発明の燃料電池の運転方法において使用する燃料電池システムであって、電解質膜と触媒層とガス拡散層を有する膜電極複合体を備えた燃料電池と、燃料電池に供給される供給ガスを加湿するための加湿器と、前記供給ガスの背圧を高めるためのコンプレッサを備えたことを特徴とするものである。
 本発明によれば、高温条件下において高い発電性能を有する燃料電池の運転方法を提供することができる。
本発明の実施例1で作製した膜電極複合体の作製方法を説明するための模式断面図である。 本発明の実施例2で作製した膜電極複合体の作製方法を説明するための模式断面図である。 本発明における燃料電池セルユニットの構造を説明するための斜視図である。 本発明における燃料電池システムを説明するための模式図である。
 以下、本発明について詳細に説明する。
 〔膜電極複合体〕
 本発明の膜電極複合体(MEA)は、電解質膜と、前記電解質膜の両側に設けられた触媒層と、前記触媒層の前記電解質膜とは逆側に接するように設けられたガス拡散層とを有している。
 (電解質膜)
 本発明の膜電極複合体に含まれる電解質膜は特に限定されないが、固体高分子型電解質を含む電解質膜であることが好ましく、固体高分子型電解質としてはプロトン伝導性ポリマーを含む電解質であることが好ましい。
 本発明においては、プロトン伝導性ポリマーとしては、従来高分子電解質膜として広く用いられてきたパーフルオロスルホン酸系ポリマーを使用することができるが、近年開発が活発化している炭化水素系ポリマーを含む高分子電解質膜を用いることが好ましい。炭化水素系ポリマーを含む高分子電解質膜は、安価で、燃料クロスオーバーを抑制し、機械強度に優れ、軟化点が高く高温での使用に耐えるという点で、パーフルオロスルホン酸系ポリマーに替わり得る電解質膜である。
 なかでも特に、低加湿プロトン伝導性向上に向け、疎水性セグメントと親水性セグメントからなる、ブロック共重合体を用いて、ミクロ相分離構造を形成させる試みがいくつかなされている。このような構造のポリマーを用いることで、疎水性セグメント同士の疎水性相互作用や凝集等により機械強度が向上し、親水性セグメントのイオン性基同士の静電相互作用等によりクラスター化が進行し、イオン伝導チャネルを形成することでプロトン伝導性が向上する。
 これらの電解質膜中をプロトンが移動するメカニズムとして、プロトンが水和したヒドロニウムイオン自体が移動するビークル機構、ならびに基質と結合したプロトンが別の基質へとホッピングするグロータス機構が提唱されている。水分子の少ない低加湿条件下においては、グロータス機構に基づくスルホン酸基のホッピングによる移動が支配的となる。
 こうした状況下において、フッ素系電解質膜等の場合、分子構造の中に含まれるスルホン酸基の酸解離定数が小さく、プロトンが解離しやすいため、ホッピングによるプロトン伝導が進行しやすい。一方、炭化水素系ポリマーを含む高分子電解質膜では、分子中のスルホン酸基の酸解離定数が、フッ素系電解質膜と比較して大きく、プロトンの解離が生じにくいため、低加湿条件下におけるプロトン伝導度の低下がフッ素系電解質膜と比較して大きくなる。ここでいう酸解離定数とはある物質の酸強度を表すための指標の一つであり、酸からプロトンが放出される解離反応における平衡定数の負の常用対数pKaによって表される。
 本発明において、炭化水素系ポリマーとしては芳香族炭化水素系ポリマーが好ましい。芳香族炭化水素系ポリマーの具体例としては、主鎖に芳香環を有するポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、芳香族ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホン等のポリマーが挙げられる。
 なお、ポリエーテルスルホンとはその分子鎖にエーテル結合およびスルホン結合を有しているポリマーの総称である。また、ポリエーテルケトンとはその分子鎖にエーテル結合およびケトン結合を有しているポリマーの総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含むものであり、特定のポリマー構造を限定するものではない。
 これらの芳香族炭化水素系ポリマーのなかでも、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド等のポリマーが、機械強度、物理的耐久性、加工性および耐加水分解性の面から好ましく、ポリエーテルケトンがより好ましい。ポリエーテルケトンとしては、イオン性基を有するベンゾフェノン構造を有するセグメントと、ジオキソラン構造を有するセグメントからなるブロック共重合体が更に好ましい。
 芳香族炭化水素系ポリマーの合成方法は、前記した特性や要件を満足できれば特に限定されるものではない。かかる方法としては、例えばジャーナル オブ メンブレン サイエンス(Journal of Membrane Science),197,2002,p.231-242に記載された方法を用いることができる。
 一例として、重縮合反応により芳香族炭化水素系ポリマーを合成する場合の好ましい重合条件を以下に示す。重合は、0~350℃の温度範囲で行うことができるが、50~250℃の温度であることが好ましい。0℃より低い場合には、十分に反応が進まない傾向にあり、350℃より高い場合には、ポリマーの分解も起こり始める傾向がある。反応は、溶媒中で行うことが好ましい。使用できる溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒などを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されても良い。
 縮合反応を溶媒中で行う場合、得られるポリマー濃度が5~50重量%となるようにモノマーを配合することが好ましい。ポリマー濃度が5重量%よりも少ない場合は、重合度が上がりにくい傾向がある。一方、ポリマー濃度が50重量%よりも多い場合には、反応系の粘性が高くなりすぎ、反応物の後処理が困難になる傾向がある。
 本発明において、芳香族炭化水素系ポリマーはイオン性基を有していてもよい。芳香族炭化水素系ポリマーに対してイオン性基を導入する方法は、イオン性基を有するモノマーを用いて重合する方法と、高分子反応でイオン性基を導入する方法が挙げられる。イオン性基を有するモノマーを用いて重合する方法としては、繰り返し単位中にイオン性基を有したモノマーを用いれば良く、必要により適当な保護基を導入して重合した後に脱保護基を行ってもよい。
 イオン性基を導入する方法について例を挙げて説明すると、芳香環をスルホン化する方法、すなわちスルホン酸基を導入する方法としては、たとえば特開平2-16126号公報あるいは特開平2-208322号公報等に記載の方法がある。
 具体的には、例えば、芳香環をクロロホルム等の溶媒中でクロロスルホン酸のようなスルホン化剤と反応させたり、濃硫酸や発煙硫酸中で反応させたりすることによりスルホン化することができる。スルホン化剤には芳香環をスルホン化するものであれば特に制限はなく、上記以外にも三酸化硫黄等を使用することができる。この方法により芳香環をスルホン化する場合には、スルホン化の度合いはスルホン化剤の使用量、反応温度および反応時間により、容易に制御できる。芳香族系高分子へのスルホンイミド基の導入は、例えばスルホン酸基とスルホンアミド基を反応させる方法によって可能である。
 イオン性基は、負電荷を有する官能基が好ましく、特にプロトン交換能を有する官能基が好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。ここで、スルホン酸基は下記一般式(f1)で表される基、スルホンイミド基は下記一般式(f2)で表される基[一般式(f2)中、Rは任意の有機基を表す。]、硫酸基は下記一般式(f3)で表される基、ホスホン酸基は下記一般式(f4)で表される基、リン酸基は下記一般式(f5)または(f6)で表される基、カルボン酸基は下記一般式(f7)で表される基を意味する。
Figure JPOXMLDOC01-appb-C000001
 かかるイオン性基は、前記官能基(f1)~(f7)が塩となっている場合を含むものとする。前記塩を形成するカチオンとしては、任意の金属カチオン、NR4+(Rは任意の有機基)を例として挙げることができる。金属カチオンの場合、その価数は特に限定されない。好ましい金属イオンの具体例としては、Li、Na、K、Rh、Mg、Ca、Sr、Ti、Al、Fe、Pt、Rh、Ru、Ir、Pdのイオンが挙げられる。中でも、本発明に用いるブロック共重合体には、安価で、容易にプロトン置換可能なNa、K、Liのイオンが好ましく使用される。
 これらのイオン性基はポリマー中に2種類以上含むことができ、組み合わせはポリマーの構造などにより適宜決定することができる。中でも、高プロトン伝導度の点からスルホン酸基、スルホンイミド基または硫酸基を用いることがより好ましく、原料コストの点からはスルホン酸基を有することが最も好ましい。
 本発明の電解質膜としては、その軟化点が120℃以上であることが望ましい。軟化点が120℃未満であると、100℃を超える運転温度において電解質膜の機械的強度が低下し、クリープや膜破れといった劣化を引き起こす場合がある。高温条件下での耐久性を維持するために、120℃以上の軟化点を有する電解質膜を適用することが好ましい。本発明において軟化点は、電解質膜の動的粘弾性測定における貯蔵弾性率の傾きが変曲点を示す温度とする。
 そのような高い軟化点を有する高分子電解質膜として、前述の炭化水素系ポリマーを含む高分子電解質膜を用いることが好ましい。一般的なパーフルオロスルホン酸系ポリマーの軟化点は80℃付近であり、100℃を超える運転温度では十分な機械強度を有しない場合がある。一方で炭化水素系ポリマーの軟化点はより高く、120℃以上の軟化点を有する電解質膜を作製することが容易である。これにより、高温条件下で運転する燃料電池に含まれる電解質膜として、炭化水素系ポリマーからなる高分子電解質膜をより好適に用いることができる。
 本発明の電解質膜としては、その90℃80%RHにおける酸素ガス透過係数が1.0×10-9cm・cm/cm・sec・cmHg以下であることが好ましく、5.0×10-10cm・cm/cm・sec・cmHg以下であることがより好ましく、1.0×10-10cm・cm/cm・sec・cmHg以下であることが更に好ましい。電解質膜の酸素ガス透過性が高いことで、膜を透過した酸素と対極に供給される水素の化学反応によって生じる、膜の化学的劣化を引き起こす過酸化水素の生成量が増大する。特に高温条件においては、通常、電解質膜へのガスの飽和溶解度は低下傾向にあるものの電解質膜中におけるガスの拡散速度が大幅に増加することから、結果としてガス透過係数は増加することが多い。100℃を超える運転温度において十分な化学的耐久性を維持するために、90℃80%RHにおける酸素ガス透過係数が1.0×10-9cm・cm/cm・sec・cmHg以下であれば、過酸化水素の生成に伴う化学的耐久性の低下を抑制することができる。
本発明の電解質膜としては、その90℃80%RHにおける水素ガス透過係数が5.0×10-9cm・cm/cm・sec・cmHg以下であることが好ましく、1.0×10-9cm・cm/cm・sec・cmHg以下であることがより好ましい。電解質膜の水素ガス透過性が高いことで、膜を透過した水素と対極に供給される酸素の化学反応によって生じる、膜の化学的劣化を引き起こす過酸化水素の生成量が増大する。特に高温条件においては、通常、電解質膜へのガスの飽和溶解度は低下傾向にあるものの電解質膜中におけるガスの拡散速度が大幅に増加することから、結果としてガス透過係数は増加することが多い。100℃を超える運転温度において十分な化学的耐久性を維持するために、90℃80%RHにおける水素ガス透過係数が5.0×10-9cm・cm/cm・sec・cmHg以下であれば、過酸化水素の生成に伴う化学的耐久性の低下を抑制することができる。
 本発明において、90℃80%RHにおける電解質膜の酸素、水素それぞれのガス透過係数は、下記条件に従い測定した。ガス透過係数は試験回数3回の平均値で算出した。
 装置:差圧式ガス透過率測定システムGTR-30AX(GTRテック(株)製)
 温度×相対湿度:90℃×80%RH
 試験ガス:酸素、水素
 試験ガス圧力:水蒸気を含む全圧は101.3kPa(大気圧)
 90℃80%RH測定時、各測定ガスの分圧は45.2kPa
 ガス透過面積:3.14cm (直径2.0cmの円形サンプル) *マスキングを実施
 測定n数:3(同一サンプルを用いて測定)
 電解質膜のガス透過係数を低下させやすいことから、本発明で使用する高分子電解質は炭化水素系ポリマーであることが好ましい。また、十分な機械強度、ガス遮断性を得るためには、高分子電解質が結晶性を有する芳香族炭化水素系ポリマーであることが好ましい。ここで、「結晶性を有する」とは昇温すると結晶化されうる結晶化可能な性質を有しているか、あるいは既に結晶化していることを意味する。
 結晶性の有無の確認は、示差走査熱量分析法(DSC)あるいは広角X線回折によって実施される。本発明においては、製膜後に示差走査熱量分析法によって測定される結晶化熱量が0.1J/g以上であるか、もしくは、広角X線回折によって測定される結晶化度が0.5%以上であることが好ましい。すなわち、示差走査熱量分析法において結晶化ピークが認められない場合は、既に結晶化している場合と、高分子電解質が非晶性である場合が考えられるが、既に結晶化している場合は広角X線回折によって結晶化度が0.5%以上となる。
 電解質膜の膜厚は、特に限定されるものではないが、20μmより厚いと発電性能が低下する傾向があり、5μm未満であると耐久性や取り扱い性が低下する傾向にあるため、5μm以上20μm以下が好ましい。電解質膜の膜厚が5μm未満の場合、膜中に保持される水分量が少なく、高温条件下において膜の乾燥が早期に進み、発電性能の低下が起こる場合がある。
 (触媒層)
 本発明の触媒層は、イオン伝導体と、触媒を担体上に担持した触媒担持粒子から構成される。触媒には、酸化及び還元反応に高い活性を示す白金、金、ルテニウム、イリジウムといった貴金属種が好ましく使用されるが、これに限定されるものではない。担体としては導電性を有し化学的安定性が高く、かつ高い表面積を有する炭素粒子や酸化物粒子が好ましく、特に金属酸化物粒子が好ましい。炭素粒子としてはアセチレンブラック、ケッチェンブラック、バルカンカーボンなどが挙げられ、金属酸化物粒子としては酸化スズ、酸化チタンなどが挙げられる。
 本発明においては特に、100℃以上の酸化雰囲気下においても化学的に安定な金属酸化物担体を適用することが好ましい。炭素粒子は100℃以上の酸化雰囲気において酸化が促進され、炭素粒子上に担持された触媒粒子の脱離やシンタリングによる劣化を加速する場合がある。金属酸化物担体の適用により高温運転条件における触媒担体の劣化を抑制し、高い発電性能を維持することができる。
(ガス拡散層)
 本発明のガス拡散層は、炭素シートならびにマイクロポーラス層を含んでいる。すなわち、炭素シート上にマイクロポーラス層を形成することにより作製することができる。
 マイクロポーラス層はPTFEなどの撥水性樹脂と導電性フィラーから構成される。導電性フィラーとしては、炭素粉末が好ましい。炭素粉末としては、ファーネスブラック、アセチレンブラック、ランプブラックおよびサーマルブラックなどのカーボンブラックや、鱗片状黒鉛、鱗状黒鉛、土状黒鉛、人造黒鉛、膨張黒鉛、および薄片グラファイトなどのグラファイト、カーボンナノチューブ、線状カーボン、炭素繊維のミルドファイバーなどが挙げられる。それらの中でもフィラーである炭素粉末としては、カーボンブラックがより好ましく用いられ、不純物が少ないことからアセチレンブラックが好ましく用いられる。
 本発明において、保水性を高めるとの観点から、マイクロポーラス層に用いられる撥水性樹脂量を低減することが好ましい。また、撥水性樹脂に代わり結着性を有する親水性樹脂を用いることでも、膜電極複合体としての保水性をさらに高めることができる。
 炭素シートは、セパレータから供給されるガスを触媒層へと拡散するための高いガス拡散性と、電気化学反応に伴って生成する水をセパレータへ排出するための高い排水性のため、多孔質であることが重要である。さらに本発明の炭素シートは、発生した電流を取り出すために高い導電性を有することが好ましい。このため炭素シートを得るためには、導電性を有する多孔体を用いることが好ましい。より具体的には、炭素シートを得るために用いる多孔体は、例えば、炭素繊維織物、カーボンペーパーおよび炭素繊維不織布などの炭素繊維を含む多孔体、および炭素繊維を含む炭素質の発泡多孔体を用いることが好ましい。
 中でも、耐腐食性が優れていることから、炭素シートを得るためには炭素繊維を含む多孔体を用いることが好ましく、さらには、電解質膜の面に垂直な方向(厚さ方向)の寸法変化を吸収する特性、すなわち「ばね性」に優れていることから、炭素繊維の抄紙体を炭化物(結着材)で結着してなるカーボンペーパーを用いることが好ましい。
 (膜電極複合体の作製方法)
 上述した電解質膜と触媒層とガス拡散層とを有する膜電極複合体(MEA)の作製方法は、(I)ガス拡散層の一方の面に触媒層が形成されたガス拡散電極(GDE)を作製し、作製したガス拡散電極(GDE)を電解質膜と積層する方法、(II)触媒層つき電解質膜(CCM)を作製し、作製した電解質膜(CCM)をガス拡散層と積層する方法とに大別される。
 図2は、上記(I)の方法(後述する実施例2の方法)を説明するための模式断面図である。
 (I)の方法の場合、まず、ガス拡散層であるアノードガス拡散層1a及びカソードガス拡散層1bのマイクロポーラス層形成面に、アノード触媒層2a及びカソード触媒層2bをそれぞれ形成した2枚のガス拡散電極(GDE)を作製する。次いで、電解質膜がアノード及びカソードガス拡散電極の触媒層形成面と直接接するように配置され、接合される。
 図1は、上記(II)の方法(後述する実施例1の方法)を説明するための模式断面図である。
 (II)の方法の場合、まず、電解質膜3の両面にアノード触媒層2a及びカソード触媒層2bが積層した触媒層つき電解質膜(CCM)を作製する。次いで、アノード及びカソード電極基材(アノードガス拡散層1a及びカソードガス拡散層1b)がCCMの触媒層形成面と直接接するように配置され、接合される。
 電解質膜と触媒層とガス拡散層の接合法は特に制限されず、公知の方法(例えば、電気化学,1985, 53, p.269.記載の化学メッキ法、電気化学協会編(J. Electrochem. Soc.)、エレクトロケミカル サイエンス アンド テクノロジー(Electrochemical Science and Technology),1988, 135, 9, p.2209. 記載のガス拡散電極の加熱プレス接合法など)を適用することが可能である。
 電解質膜と触媒層とガス拡散層をプレスにより一体化する場合は、その温度や圧力は、電解質膜の厚さ、水分率、触媒層や電極基材により適宜選択すればよい。具体的なプレス方法としては、圧力やクリアランスを規定したロールプレスや、圧力を規定した平板プレスなどが挙げられ、これらは工業的生産性やイオン性基を有する高分子材料の熱分解抑制などの観点から0℃~250℃の範囲で行うことが好ましい。加圧は電解質膜や電極の保護の観点からできる限り弱い方が好ましく、平板プレスの場合、10MPa以下の圧力が好ましい。プレス工程による複合化を実施せずに電極と電解質膜を重ね合わせて燃料電池セル化することも、アノード電極とカソード電極の短絡防止の観点から好ましい選択肢の一つである。この方法の場合、燃料電池として発電を繰り返した場合、短絡箇所が原因と推測される電解質膜の劣化が抑制される傾向があり、燃料電池として耐久性が良好となる。
 具体的には、前述のように電解質膜、ガス拡散層、触媒層を図1および図2に示されるように積層し、一定温度・圧力でプレスすることにより、MEAを製造することが好ましい。このような積層およびプレスは両面同時に行っても、片面ずつ行ってもよい。
 連続的に膜電極複合体を製造する方法としては、ロール状電解質膜を製造した後、触媒層及び/又はガス拡散層と積層し、一定温度・圧力でプレスを行う方法が挙げられる。基材、電解質膜、または基材付き電解質膜などのフィルム状部材を積層する際には、それぞれのフィルム状部材に張力をかけながら実施するのが好ましく、各工程の間にテンションカットを設ける方法などによって、変化させることができる。テンションカットは、例えばロールにモーター、クラッチ、ブレーキ等を設置したものが挙げられ、フィルムに与えられる張力を検知する検知手段を備えることが好ましい。テンションカットに用いられるローラーとして、例えば、ニップローラー、サクションローラー、または複数のローラーの組み合わせ等が挙げられる。ニップローラーは、フィルムをローラーで挟み込み、挟み込み圧力により生じる摩擦力によってフィルムの送り速度を制御し、その結果、フィルムにかかる圧力をローラーの前後で変化させることができる。サクションローラーは、表面に多くの穴の開いたローラー、またはワイヤーを巻き付けて網状または簀の子状にしたローラーの内部を吸引し、負圧にすることによって、フィルム状部材を吸い付け、その吸引力によって生じる摩擦力によってフィルム状部材の送り速度を制御し、その結果、フィルム状部材にかかる圧力をローラーの前後で変化させることができる。
 〔燃料電池セルユニット〕
 図3は、本発明における燃料電池セルユニット10の構造を説明するための斜視図である。
 前述のようにして作製した膜電極複合体4はアノードセパレータ5a及びカソードセパレータ5bと接合されて燃料電池セルユニット10を構成する。アノードセパレータ5aのアノードガス拡散層1aと接合する面には水素ガス6が通過する流路となる複数の溝が形成されている。アノードセパレータ5aの溝に供給された水素ガス6は、アノードガス拡散層1aを通過してアノード触媒層2aに到達し、酸化反応に使用される。また、カソードセパレータ5bのカソードガス拡散層1bと接合する面には空気又は酸素ガス7が通過する流路となる複数の溝が形成されている。アノードセパレータ5bの溝に供給された空気又は酸素ガス7は、カソードガス拡散層1bを通過してカソード触媒層2bに到達し、還元反応に使用される。
 〔燃料電池システム〕
 図4は、本発明における燃料電池システム20を説明するための模式図である。
 燃料電池システム20は、燃料電池スタック11、加湿器12a,12b、コンプレッサ13a,13b、背圧弁14a,14b、及びこれらを接続する配管、並びに各種のセンサーから主に構成されている。前述のようにして作製した燃料電池セルユニット10(図3)は冷却板(不図示)と交互に接続され一体化されて燃料電池スタック11を構成する。
 (加湿器)
 加湿器は燃料電池セルへの供給ガスを加湿する目的で用いられる。加湿器は燃料電池スタック11へのガス供給口より上流側に配置される。このとき、燃料電池の運転温度に応じて加湿器から供給される水分量を制御することで、どのような運転温度であっても適切に電解質膜を加湿することができる。加湿方法としては、加熱した水を含む水層の中に供給ガスを通す方法(バブラー方式)や、水蒸気を供給ガスに直接添加して混入させる方法(水蒸気添加方式)などが用いられる。本発明の運転方法では燃料電池の運転温度が100℃を超えるため、加湿器に供給されるガスも同等以上の高温になることから、100℃以上の温度域においても供給ガスの加湿が十分に実施でき、かつ高温耐久性を有する加湿器が好ましい。
 (コンプレッサ)
 コンプレッサは燃料電池セルへの供給ガスを高圧化する目的で用いられる。コンプレッサは供給ガス、特にカソードガス(空気又は酸素ガス)を圧縮し、燃料電池に高圧化したガスを供給する。カソードガスを圧縮するコンプレッサは、カソードガスとして空気を用い、常に燃料電池システム外から空気を吸入する場合は、空気吸気口と燃料電池スタックのガス供給口との間に配置され、供給ガスを燃料電池システム内で循環させる構成においては、ガス排出口からガス供給口に向かう経路の間に配置される。
 (冷却液)
 冷却液は燃料電池セルの運転温度を制御する目的で用いられる。冷却液は冷却液循環ポンプを介して冷却板へと供給され、燃料電池スタックで発電時に発生する熱を吸熱し、ラジエータ(不図示)にて放熱する。本発明の運転方法では燃料電池の運転温度が100℃を超えるため、冷却液も同等の高温になることから、100℃以上の温度域においても燃料電池スタックの冷却が十分に実施でき、かつ低い蒸気圧を有する冷却液が好ましい。
 〔燃料電池の運転方法〕
 本発明の燃料電池の運転方法は、上述した燃料電池システムを用い、燃料電池の運転温度を100℃以上に設定する工程を含み、この工程において、燃料電池に供給される供給ガスの相対湿度を70%以上となるよう設定し、且つ、前記供給ガスの背圧を330kPa以上となるよう設定することを特徴とする。
 本発明において、相対湿度(%RH)とはある温度における飽和水蒸気圧に対する水蒸気圧を意味し、背圧とは燃料電池スタックの出口における供給ガスの圧力を意味する。また、本発明における圧力は絶対圧を意味する。
 本発明の燃料電池の具体的な運転方法を、図4(燃料電池システム20)を用いて以下に説明する。
 本発明において、燃料電池スタック11内の各燃料電池セルユニット10(図3)の運転温度は、例えば、ヒーター等を用いて燃料電池スタック11の外部から加熱することにより100℃以上に加熱される。燃料電池セルユニット10の温度は、セル内に埋め込んだ熱電対を用いる方法や、サーモグラフィー(赤外線温度画像装置)を用いる方法などにより測定しつつ、ヒーター等の加熱温度を調節することにより、100℃以上に設定することができる。燃料電池スタック11内では温度分布が生じていてもよいが、燃料電池スタック11内の全てのセルユニット10が100℃以上となるよう設定する必要がある。本発明においては、燃料電池セルユニット10の運転温度は100℃以上であればよいが、好ましくは105℃以上、より好ましくは110℃以上、更に好ましくは115℃以上に設定される。また、燃料電池セルユニット10の運転温度の上限は、通常150℃以下であり、好ましくは140℃以下、更に好ましくは130℃以下に設定される。運転温度の上記上限値と上記下限値はいずれの温度を組み合わせてもよい。
 燃料ガスである水素ガスは水素タンク18に貯留されている。水素ガスは水素タンク18から水素ガス供給管6cを経てコンプレッサ13aに供給される。コンプレッサ13aにおいて水素ガスは圧縮され高圧化される。高圧化された水素ガスは加湿器12aに供給される。このとき、水素ガスは燃料電池セルユニット10の温度に対する相対湿度が70%以上となるよう加湿され、水素ガスの温度は加湿量に相当する露点と同じもしくは露点より高い温度に加熱されるよう設定される。また、水素ガスの湿度は、湿度センサー16により所定の加湿量に設定されていることが確認される。次いで、加湿された水素ガスは燃料電池スタック11の水素ガス供給口から燃料電池スタック11の内部に供給され、各燃料電池セルユニットのアノードセパレータ5a(図3)に供給される。
 燃料電池セルユニットで使用されなかった水素ガス6は、燃料電池スタック11の水素ガス排出口から水素ガス排出管6dを経て排出される。このとき、燃料電池セルスタックの出口において測定される水素ガスの背圧は330kPa以上となるよう設定される。水素ガスの背圧は、水素ガス排出管6dに設けられた圧力センサー17により測定することができ、コンプレッサ13aと背圧弁14aにより所定の背圧となるよう調節することができる。
 一方、酸化ガスである空気は空気吸気口から導入され、空気供給管7cを経てコンプレッサ13bに供給される。コンプレッサ13bにおいて空気は圧縮され高圧化される。高圧化された空気は加湿器12bに供給される。このとき、空気は燃料電池セルユニット10の温度に対する相対湿度が70%以上となるよう加湿され、空気の温度は加湿量に相当する露点と同じもしくは露点より高い温度に加熱されるよう設定される。また、空気の湿度は、湿度センサー16により所定の加湿量に設定されていることが確認される。次いで、加湿された空気は燃料電池スタック11の空気供給口から燃料電池スタック11の内部に供給され、各燃料電池セルユニットのカソードセパレータ5b(図3)に供給される。
 燃料電池セルユニットで使用されなかった空気7は、燃料電池スタック11の空気排出口から空気排出管7dを経て排出される。このとき、燃料電池セルスタックの出口において測定される空気の背圧は330kPa以上となるよう設定される。空気の背圧は、空気排出管7dに設けられた圧力センサー17により測定することができ、コンプレッサ13bと背圧弁14bにより所定の背圧となるよう調節することができる。
 燃料電池スタック20内では燃料電池による発電により熱が発生する。この熱を回収するために、冷却液が冷却液循環ポンプ19により燃料電池スタック20内に供給される。燃料電池スタック20内に供給された冷却水は、各燃料電池セルユニット10の間に配設された冷却板(不図示)などを経由して、熱を回収し温水として燃料電池スタック20の外部に排出される。回収された排熱はさらに有効活用することができる。
 すなわち、本発明においては、運転中の燃料電池が100℃以上の高温になるときに、供給ガスの相対湿度を70%以上となるよう設定することで、膜電極複合体、特に電解質膜を適切に加湿できる量の水蒸気を供給することができる。さらに、それによって水蒸気圧が上昇したときにも、供給ガスの背圧を特定値以上に高めることで膜電極複合体の電極に十分な量の反応ガスを供給することができる。これにより、触媒活性および排熱効率を高めつつ、電解質膜のプロトン伝導抵抗ならびに電極反応における物質拡散抵抗の上昇を抑制することができ、燃料電池の高性能化が実現できる。
 燃料電池の運転時には、燃料電池セルユニット10(図3)において、アノード側に水素ガス6、カソード側に空気もしくは酸素ガス7が供給される。アノード電極では水素が還元されてプロトンと電子が生成し、電解質膜中を伝導したプロトンと外部回路を伝導した電子がカソード電極にて酸素と反応し、水が生成する。アノード電極およびカソード電極での水素ならびに酸素の消費量は、外部回路に流れる電流量と比例関係にあり、電極近傍に供給される水素ならびに酸素が不足すると、物質拡散抵抗として性能低下の要因となる。
 前述の通り、固体高分子電解質中のプロトン伝導には膜中の水が寄与しており、その伝導度は膜の含水率に依存する。供給ガス中の湿度低下や運転温度の上昇により膜中の水分量が減少すると、プロトン伝導抵抗が増大し、性能低下を引き起こす。したがって、高性能な燃料電池を得るためには供給ガス中の水素ならびに酸素量と水分量を適切に管理する必要がある。
 100℃以上の高温域では電解質膜からの脱水速度が大きく、膜中の含水量を維持するためには高湿度のガスを供給する必要がある。本発明においては、具体的には、カソード側に供給される空気又は酸素ガスと、燃料電池のアノード側に供給される水素ガスの少なくともいずれか一方の相対湿度を70%以上、好ましくは75%以上、より好ましくは80%以上、更に好ましくは85%以上とすることで、プロトン伝導抵抗の増大を抑制することができる。
 一方、100℃以上の高温域では100℃以下の温度域と比較して飽和水蒸気圧が非常に大きくなるため、ガス中の湿度を100℃以下の温度域と同等に保つためには水蒸気分圧が非常に大きくなる。そうした条件下においても、電極反応に必要な水素ならびに酸素を供給するために、供給ガスの背圧を所定値以上に設定することが必要である。本発明においては、具体的には、330kPa以上、好ましくは350kPa以上、より好ましくは370kPa以上、更に好ましくは390kPa以上の背圧とすることで、高電流密度域においてもアノードおよびカソード電極での物質拡散抵抗の増大を抑制することができる。
 特に本発明の運転方法は、カソード側への供給ガスが空気である場合に有効である。カソード側への供給ガスが空気である場合、供給ガス中の酸素濃度が約1/5に低下するため、電極近傍での酸素量が少なくなりやすい。このような状況においても、ガスの供給圧力を330kPa以上に高めることで、十分な量の酸素がカソード電極に供給され、高性能な燃料電池を得ることができる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 〔電解質膜の合成〕
 [合成例1]
 下記一般式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成
Figure JPOXMLDOC01-appb-C000002
 攪拌器、温度計及び留出管を備えた500mlフラスコに、4,4’-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸1水和物0.50gを仕込み溶解する。その後、得られた溶液を78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温し、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mlで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mlを加え結晶を析出させ、濾過し、乾燥して2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。この結晶をGC分析したところ99.8%の2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソランと0.2%の4,4′-ジヒドロキシベンゾフェノンであった。
 [合成例2]
 下記一般式(G2)で表されるジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成
Figure JPOXMLDOC01-appb-C000003
 4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO3)150mL(和光純薬試薬)中、100℃で10h反応させた。その後、反応物を多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、上記一般式(G2)で示されるジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.3%であった。構造は1H-NMRで確認した。不純物はキャピラリー電気泳動(有機物)およびイオンクロマトグラフィー(無機物)で定量分析を行った。
 [合成例3]
 下記一般式(G5)で表されるポリマーからなるポリエーテルケトン系高分子電解質膜の合成
Figure JPOXMLDOC01-appb-C000004
 炭酸カリウム6.91g、前記合成例2で得たイオン性基を有するジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン(G2)7.30g、前記合成例1で得た加水分解性基を有する2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(G1)10.3g、4,4’-ジフルオロベンゾフェノン5.24gを用いて、N-メチルピロリドン(NMP)中、210℃で重合を行った。
 得られたブロック共重合ポリマーを溶解させた25重量%N-メチルピロリドン(NMP)溶液をガラス繊維フィルターを用いて加圧ろ過後、ガラス基板上に流延塗布し、100℃にて4h乾燥後、窒素下150℃で10分間熱処理し、ポリケタールケトン膜を得た。ポリマーの溶解性は極めて良好であった。95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜を得た。得られた高分子電解質膜の軟化点を、動的粘弾性測定により測定したところ、160℃であった。得られた高分子電解質膜の90℃80%RHにおける酸素ガス透過係数が4.5×10-11cm・cm/cm・sec・cmHg、水素ガス透過係数が5.6×10-10cm・cm/cm・sec・cmHgであった。
 〔膜電極複合体の作製〕
 [実施例1]
 上記合成例3で作製したポリエーテルケトン系高分子電解質膜(膜厚:10μm,サイズ:70mm×70mm)の両側に、アノード触媒付き転写シート(サイズ:50×50mm)、カソード触媒付き転写シート(サイズ:50×50mm)を配置し、160℃、4.5MPa、5minで加熱プレスし触媒層被覆電解質膜(CCM)を作製した。アノード触媒及びカソード触媒としては、カーボン担体に担持した白金系の触媒を用いた。
 図1(断面図)に示すように、上記で作製したCCMの両側にアノードガス拡散層1a(サイズ:50mm×50mm)及びカソードガス拡散層1b(サイズ:50mm×50mm)を配置した。アノードガス拡散層1a及びカソードガス拡散層1bとしては、多孔質炭素シート(東レ社製“TGP-H-060”)上にPTFEとカーボンブラックを含むマイクロポーラス層が形成された層を用いた。160℃、5分、4.5Maの条件で、ホットプレスを行い、膜電極複合体を作製した。
 [実施例2]
 アノードガス拡散層1aのマイクロポーラス層が形成された面にアノード触媒層2aを形成してガス拡散電極(GDE)であるアノード電極を作製した。また、カソードガス拡散層1bのマイクロポーラス層が形成された面にカソード触媒層2bを形成してガス拡散電極(GDE)であるカソード電極を作製した。アノードガス拡散層1a、カソードガス拡散層1b、アノード触媒及びカソード触媒としては実施例1と同じものを使用した。図2(断面図)に示すように、上記合成例3で作製したポリエーテルケトン系高分子電解質膜(膜厚:10μm、サイズ:70mm×70mm)の両側に、上記アノード電極(サイズ:50mm×50mm)及び上記カソード電極(サイズ:50mm×50mm)を配置した。160℃、5分、4.5Maの条件で、ホットプレスを行い、膜電極複合体を作製した。
 〔高温発電評価(発電性能)〕
 実施例1および2に記載の方法で作製した膜電極複合体を英和(株)製 JARI標準セル“Ex-1”(電極面積25cm2)にセットして発電評価用モジュールとした。一方のアノード電極に燃料ガスとして水素ガスを供給し、他方のカソード電極に酸化ガスとして空気を供給した。下記条件で発電評価を行い、電圧が0.2V以下になるまで0A/cm2から1.2A/cm2まで電流を掃引した。本発明では電流密度1A/cm2時の電圧を比較した。なお、膜電極複合体を上記セルにセットする際に、0.7GPaの圧力を負荷した。
電子負荷装置;菊水電子工業社製 電子負荷装置“PLZ664WA”
セル温度;65℃、120℃
ガス加湿条件(水素ガス及び空気);60%RH、90%RH
ガス背圧(水素ガス及び空気):200kPa、330kPa
ガス利用率;アノードは量論の70%、カソードは量論の40%。
測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表から解るように、実施例1および実施例2の膜電極複合体は、運転温度が65℃から120℃に上昇した場合、相対湿度60%の条件ではガス背圧が200kPaと330kPaのいずれの場合でも電圧低下が生じた。一方、相対湿度90%の条件では、運転温度が65℃から120℃に上昇した場合でも電圧低下は起こらず、背圧330kPaの条件においては、65℃における発電性能を上回る良好な性能が得られた。
 〔高温発電評価(湿度依存性)〕
 実施例1に記載の方法で作製した膜電極複合体を英和(株)製 JARI標準セル“Ex-1”(電極面積25cm2)にセットして発電評価用モジュールとした。一方のアノード電極に燃料ガスとして水素ガスを供給し、他方のカソード電極に酸化ガスとして空気を供給した。下記条件で発電評価を行い、電流密度1A/cm2を維持しながら、湿度を30%RHから95%RHまで変更した時の電圧を比較した。なお、膜電極複合体を上記セルにセットする際に、0.7GPaの圧力を負荷した。
電子負荷装置;菊水電子工業社製 電子負荷装置“PLZ664WA”
セル温度;120℃
ガス加湿条件(水素ガス及び空気);30%RH~95%RH
ガス背圧(水素ガス及び空気):330kPa
ガス利用率;アノードは量論の70%、カソードは量論の40%。
測定結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000006
 表から解るように、実施例1の膜電極複合体は、運転温度120℃、背圧330kPaの条件において、相対湿度が上昇するにつれて1A/cm2における電圧が上昇する結果が得られた。30%RH~60%RHにおいては電圧の湿度依存性が大きいのに対し、70%RH以上の湿度においては電圧の湿度依存性は小さく、70%RH以上の湿度とすることで、安定して高い発電性能を実現することができる。
1a:アノードガス拡散層
1b:カソードガス拡散層
2a:アノード触媒層
2b:カソード触媒層
3:電解質膜
4:膜電極複合体(MEA)
5a:アノードセパレータ
5b:カソードセパレータ
6:水素ガス
6c:水素ガス供給管
6d:水素ガス排出管
7:空気
7c:空気供給管
7d:空気排出管
10:燃料電池セルユニット
11:燃料電池スタック
12a,12b:加湿器
13a,13b:コンプレッサ
14a,14b:背圧弁
15:温度センサー
16:湿度センサー
17:圧力センサー
18:水素タンク
19:冷却液循環ポンプ
20:燃料電池システム

Claims (11)

  1.  電解質膜と触媒層とガス拡散層を有する膜電極複合体を備えた燃料電池の運転方法であって、前記燃料電池の運転温度を100℃以上に設定する工程を含み、前記工程において燃料電池に供給される供給ガスの相対湿度を70%以上とし、且つ、前記供給ガスの背圧を330kPa以上とすることを特徴とする燃料電池の運転方法。
  2.  前記供給ガスが、燃料電池のカソード側に供給される空気若しくは酸素ガス、及び/又は、燃料電池のアノード側に供給される水素ガスである請求項1記載の燃料電池の運転方法。
  3.  前記供給ガスが、燃料電池のカソード側に供給される空気である請求項2記載の燃料電池の運転方法。
  4.  前記電解質膜が固体高分子型電解質を含む請求項1~3のいずれか1項に記載の燃料電池の運転方法。
  5.  前記固体高分子型電解質がプロトン伝導性ポリマーを含む請求項4記載の燃料電池の運転方法。
  6.  前記プロトン伝導性ポリマーが炭化水素系ポリマーである請求項5記載の燃料電池の運転方法。
  7.  前記電解質膜の軟化点が120℃以上である請求項1~6のいずれか1項に記載の燃料電池の運転方法。
  8.  前記電解質膜の90℃80%RHにおける酸素ガス透過係数が1.0×10-9cm・cm/cm・sec・cmHg以下である請求項1~7のいずれか1項に記載の燃料電池の運転方法。
  9.  前記電解質膜の90℃80%RHにおける水素ガス透過係数が5.0×10-9cm・cm/cm・sec・cmHg以下である請求項1~8のいずれか1項に記載の燃料電池の運転方法。
  10.  前記触媒層が酸化物担体を含む請求項1~9のいずれか1項に記載の燃料電池の運転方法。
  11.  請求項1~10のいずれか1項に記載の燃料電池の運転方法において使用する燃料電池システムであって、電解質膜と触媒層とガス拡散層を有する膜電極複合体を備えた燃料電池と、燃料電池に供給される供給ガスを加湿するための加湿器と、前記供給ガスの背圧を高めるためのコンプレッサを備えた燃料電池システム。
PCT/JP2021/020789 2020-06-09 2021-06-01 燃料電池の運転方法 WO2021251207A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/008,564 US20230231165A1 (en) 2020-06-09 2021-06-01 Method for operating fuel cell
CN202180024452.1A CN115336054A (zh) 2020-06-09 2021-06-01 燃料电池的运转方法
KR1020227040822A KR20230022846A (ko) 2020-06-09 2021-06-01 연료 전지의 운전 방법
JP2021531510A JP7315001B2 (ja) 2020-06-09 2021-06-01 燃料電池の運転方法
EP21821097.9A EP4164008A1 (en) 2020-06-09 2021-06-01 Method for operating fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-099761 2020-06-09
JP2020099761 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251207A1 true WO2021251207A1 (ja) 2021-12-16

Family

ID=78845669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020789 WO2021251207A1 (ja) 2020-06-09 2021-06-01 燃料電池の運転方法

Country Status (6)

Country Link
US (1) US20230231165A1 (ja)
EP (1) EP4164008A1 (ja)
JP (1) JP7315001B2 (ja)
KR (1) KR20230022846A (ja)
CN (1) CN115336054A (ja)
WO (1) WO2021251207A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216126A (ja) 1988-04-30 1990-01-19 Akzo Nv 芳香族ポリエーテルスルホンのスルホン化方法
JPH02208322A (ja) 1989-02-08 1990-08-17 Kurita Water Ind Ltd スルホン化樹脂の製造方法
JP2003504805A (ja) 1999-07-05 2003-02-04 シーメンス アクチエンゲゼルシヤフト 高温型高分子電解質膜(htm)燃料電池、htm燃料電池設備、htm燃料電池及び/又は燃料電池設備の運転方法
JP2007115413A (ja) 2005-10-18 2007-05-10 Hitachi Ltd 燃料電池
JP2009099491A (ja) * 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2009238468A (ja) 2008-03-26 2009-10-15 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
JP2013044032A (ja) * 2011-08-25 2013-03-04 Sharp Corp 発電システム
WO2013099480A1 (ja) * 2011-12-28 2013-07-04 日産自動車株式会社 燃料電池システム
JP2017208299A (ja) * 2016-05-20 2017-11-24 株式会社豊田中央研究所 燃料電池の慣らし運転方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815666B2 (ja) 2000-12-05 2011-11-16 株式会社豊田中央研究所 燃料電池システム
JP5205793B2 (ja) 2007-04-25 2013-06-05 日産自動車株式会社 芳香族炭化水素電解質膜、およびこれを用いた燃料電池
JP5660917B2 (ja) 2011-02-04 2015-01-28 国立大学法人東京工業大学 燃料電池用空気極触媒とその製造方法
JP2018116781A (ja) 2017-01-16 2018-07-26 三菱重工業株式会社 燃料電池システム及び燃料電池システムの運転方法
WO2020075777A1 (ja) 2018-10-09 2020-04-16 凸版印刷株式会社 燃料電池用膜電極接合体及び固体高分子形燃料電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216126A (ja) 1988-04-30 1990-01-19 Akzo Nv 芳香族ポリエーテルスルホンのスルホン化方法
JPH02208322A (ja) 1989-02-08 1990-08-17 Kurita Water Ind Ltd スルホン化樹脂の製造方法
JP2003504805A (ja) 1999-07-05 2003-02-04 シーメンス アクチエンゲゼルシヤフト 高温型高分子電解質膜(htm)燃料電池、htm燃料電池設備、htm燃料電池及び/又は燃料電池設備の運転方法
JP2007115413A (ja) 2005-10-18 2007-05-10 Hitachi Ltd 燃料電池
JP2009099491A (ja) * 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2009238468A (ja) 2008-03-26 2009-10-15 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
JP2013044032A (ja) * 2011-08-25 2013-03-04 Sharp Corp 発電システム
WO2013099480A1 (ja) * 2011-12-28 2013-07-04 日産自動車株式会社 燃料電池システム
JP2017208299A (ja) * 2016-05-20 2017-11-24 株式会社豊田中央研究所 燃料電池の慣らし運転方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Electrochemical Science and Technology (Electrochemical Science and Technology", J. ELECTROCHEM. SOC. (J. ELECTROCHEM. SOC., vol. 135, no. 9, 1988, pages 2209
JOURNAL OF MEMBRANE SCIENCE (JOURNAL OF MEMBRANE SCIENCE), vol. 197, 2002, pages 231 - 242

Also Published As

Publication number Publication date
CN115336054A (zh) 2022-11-11
EP4164008A1 (en) 2023-04-12
KR20230022846A (ko) 2023-02-16
JP7315001B2 (ja) 2023-07-26
JPWO2021251207A1 (ja) 2021-12-16
US20230231165A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
JP4410156B2 (ja) 燃料電池用電解質膜及びこれを含む燃料電池
KR100714361B1 (ko) 막전극 접합체와 그의 제조방법
JP2006019271A (ja) 燃料電池用バインダー組成物、膜−電極アセンブリー及び膜−電極アセンブリーの製造方法
WO2005124911A1 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
US8257825B2 (en) Polymer electrode membrane for fuel, and membrane-electrode assembly and fuel cell system comprising the same
JP2009021230A (ja) 膜−電極−ガス拡散層−ガスケット接合体及びその製造方法、並びに固体高分子形燃料電池
US7179560B2 (en) Composite electrolyte membrane and fuel cell containing the same
US11302949B2 (en) Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same
KR20080017422A (ko) 증가된 치수 안정성을 갖는 폴리머 전해질막
JP4352878B2 (ja) モノマー化合物、グラフト共重合化合物、及びそれらの製造方法、高分子電解質膜、並びに燃料電池
US8163438B2 (en) Composite electrolyte membrane, production method thereof, membrane-electrode assembly, and fuel cell
JP5233208B2 (ja) 架橋高分子電解質膜
KR101312971B1 (ko) 불소계 이오노모를 이용하여 표면 개질한 탄화수소계 고분자 전해질 분리막, 막 전극 접합체 및 연료전지
JP2010536151A (ja) 直接酸化型燃料電池の炭化水素系膜電極接合体用電極
JP5068610B2 (ja) イオン性ポリマー粒子分散液およびその製造方法
WO2021251207A1 (ja) 燃料電池の運転方法
JP4682629B2 (ja) 固体高分子型燃料電池用電解質膜、および固体高分子型燃料電池用膜・電極接合体
US20100196790A1 (en) Membrane and electrode assembly and fuel cell
KR20080039615A (ko) 복합 전해질막 및 이를 이용한 연료전지
Jalani Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells
US10020526B2 (en) Reverse osmosis membranes made with PFSA ionomer and ePTFE
KR102188833B1 (ko) 막-전극 접합체, 이의 제조방법 및 연료 전지
JP7006085B2 (ja) 触媒層付き電解質膜、中間層インク、中間層デカールおよび固体高分子形燃料電池
KR101343077B1 (ko) 연료 전지용 전극, 이의 제조 방법, 및 이를 포함하는 연료 전지용 막-전극 접합체 및 연료 전지 시스템
JP2009070631A (ja) 電解質膜、膜電極接合体および膜電極接合体を用いた燃料電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021531510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821097

Country of ref document: EP

Effective date: 20230109