WO2021248903A1 - 一种耐高温的锂离子电池体系及其充放电方法 - Google Patents

一种耐高温的锂离子电池体系及其充放电方法 Download PDF

Info

Publication number
WO2021248903A1
WO2021248903A1 PCT/CN2020/142236 CN2020142236W WO2021248903A1 WO 2021248903 A1 WO2021248903 A1 WO 2021248903A1 CN 2020142236 W CN2020142236 W CN 2020142236W WO 2021248903 A1 WO2021248903 A1 WO 2021248903A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
lithium ion
battery system
charging
rate
Prior art date
Application number
PCT/CN2020/142236
Other languages
English (en)
French (fr)
Inventor
张鹏
赵金保
刘一铮
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2021248903A1 publication Critical patent/WO2021248903A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of new energy, and specifically relates to a high-temperature-resistant lithium-ion battery system and a charging and discharging method thereof.
  • Lithium-ion battery as a chemical power system with high energy density, high output voltage, no memory effect, excellent cycle performance, and environmentally friendly, has good economic benefits, social benefits and strategic significance. It has been widely used in mobile communications, Digital products and other fields are very likely to become the most important power supply system in the field of energy storage and electric vehicles.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and provide a high-temperature-resistant lithium-ion battery system and a charging and discharging method thereof, which solves the problem of slow charging rate in the above-mentioned background art.
  • the technical scheme adopted by the present invention to solve its technical problems is to provide a high-temperature-resistant lithium ion battery system, which includes a positive electrode, a negative electrode, a diaphragm and an electrolyte, and each element is composed of high-temperature resistant materials.
  • the positive electrode is a lithium-containing composite oxide
  • the negative electrode adopts lithium metal or its alloy, oxide or carbon material capable of intercalation-deintercalation
  • the separator is an organic microporous separator or a ceramic separator
  • the positive electrode and the negative electrode
  • the diaphragm is made of high temperature resistant materials, and the high temperature is 120°C;
  • the components of the electrolyte include LiDFOB (lithium bis oxalate borate)/PC (propylene carbonate) and LiBOB (lithium bis oxalate borate)/PC. At least one, and the electrolyte meets the requirement that its decomposition temperature is higher than 120°C.
  • the present invention also provides a charging and discharging method for the above-mentioned lithium ion battery system.
  • the lithium ion battery system is placed at a temperature of 60-120°C, charged at a rate of 1-20C, and then discharged at a rate of 0.01-10C.
  • the lithium ion battery system is prepared as a soft pack battery, and an oven or a heat preservation device is arranged on the outer periphery of the soft pack battery, and the heat preservation device is connected to the temperature control system.
  • the invention provides a high-temperature-resistant lithium ion battery system and a charging and discharging method thereof, which can realize high-rate charging, general-rate discharge, close to actual high-rate charging and general-rate discharge application scenarios, and high electrolyte ion conductivity at high temperatures And a faster lithium ion deintercalation reaction can make the battery charge and discharge at a higher rate, solve the fast charge problem in practical applications, and also provide an implementable method for the high power density and high energy density of lithium ion batteries , To achieve better application of lithium-ion batteries in the power field.
  • Figure 1 is a diagram of the charge and discharge cycle capacity of Example 1, Comparative Example 1 and Comparative Example 2 at 120°C.
  • Fig. 2 is a time chart of capacity at different charging temperatures in Example 2.
  • Figure 3 shows the ionic conductivity at different temperatures in Example 2.
  • FIG. 4 is a schematic diagram of charging and discharging the battery in Example 3.
  • FIG. 4 is a schematic diagram of charging and discharging the battery in Example 3.
  • FIG. 5 is a time capacity diagram of the battery in Example 3.
  • FIG. 5 is a time capacity diagram of the battery in Example 3.
  • FIG. 6 is a diagram of the cycle capacity of the battery in Example 3.
  • FIG. 6 is a diagram of the cycle capacity of the battery in Example 3.
  • FIG. 7 is a graph showing the rate performance of the battery in Example 1 at 120°C.
  • Fig. 8 is a diagram of battery cycle capacity in Examples 7 and 8.
  • a soft-pack battery The positive electrode material is LiFePO 4 , the negative electrode material is lithium foil, there is a PP separator between the positive electrode material and the negative electrode material, and the electrolyte is 1M LiDFOB/PC.
  • the battery was placed in an oven at 120°C at a rate of 0.5C for charging and discharging tests.
  • a soft pack battery The positive electrode material is LiFePO 4 , the negative electrode material is lithium foil, there is an Asahi Kasei separator between the positive electrode material and the negative electrode material, and the electrolyte is 1M LiPF 6 (lithium hexafluorophosphorus) dissolved in EC (ethylene carbonate). )/DMC (dimethyl carbonate) (volume ratio 1:1) mixed solvent.
  • the battery was placed in an oven at 120°C at a rate of 0.5C for charging and discharging tests.
  • a soft pack battery The positive electrode material is LiFePO 4 , the negative electrode material is lithium foil, there is a PE separator between the positive electrode material and the negative electrode material, and the electrolyte is 1M LiDFOB/PC.
  • the battery was placed in an oven at 120°C at a rate of 0.5C for charging and discharging tests.
  • the cycle capacity graph of the battery of Example 1 shows that at 120°C, the specific capacity of the battery can be maintained at 161mAh g -1 at a rate of 0.5C, and there is no obvious decay trend in 50 cycles. , It is proved that the high temperature resistant battery used in this embodiment can work normally at high temperature.
  • Comparative Example 1 Since the LiPF 6 electrolyte system is unstable and gradually decomposes at high temperatures, the battery capacity decays continuously during the cycle until it reaches zero.
  • the battery was placed in an oven at 120°C for charging tests at different magnifications.
  • the rate performance of this battery is shown in Figure 7.
  • the battery has excellent rate performance. Due to the high ion conductivity and faster ion deintercalation rate at high temperatures at 1C-5C, the battery capacity does not change with the rate and remains above 160mAh g -1 , even 34.5 At C, it can still maintain 70mAh g -1 . Based on this, it can be seen that this case can realize fast charging at high temperature, and the charging and discharging rate can reach more than 30C.
  • the positive electrode material is LiFePO 4
  • the negative electrode material is lithium foil
  • a PP separator coated with aluminum oxide on one side is arranged between the positive electrode material and the negative electrode material
  • the electrolyte is 1M LiDFOB/PC.
  • a PP diaphragm coated with aluminum oxide on one side was immersed in 1M LiDFOB/PC electrolyte between two stainless steel plate electrodes, and the ion conductivity was tested by electrochemical impedance spectroscopy (EIS) method, frequency amplitude It is 0.1-100kHz, and the conductivity at different temperatures is measured by placing the battery in an oven at different temperatures for 0.5h.
  • EIS electrochemical impedance spectroscopy
  • the battery was placed in an oven at 120°C and 25°C, and charged at a rate of 20C.
  • FIG. 2 it is the capacity time diagram of 120°C and 25°C. It can be seen that at 120°C, the battery of Example 2 can be charged to a specific capacity of 141mAh g -1 , while at 25°C, the high rate battery of 20C is basically Can't charge. This shows that the battery can achieve high-rate fast charging that cannot be achieved at room temperature under high temperature.
  • a soft pack battery is provided with a high-temperature resistant battery protective shell, the protective shell is connected with a temperature control device, the positive electrode material is LiFePO 4 , the negative electrode material is lithium foil, a PP diaphragm is arranged between the positive electrode material and the negative electrode material, and the electrolyte is It is 1M LiDFOB/PC.
  • the battery was placed in an oven at 120°C at a rate of 20C for charging, and then placed in a thermostat at 25°C for 1C discharge, and the above charging and discharging process was repeated.
  • Time battery capacity of the present embodiment of the embodiment shown in Figure 5, can be seen from FIG. 120 deg.] C, the specific capacity of the battery at 20C 154s rate reached 140mAh g -1, at 25 °C 1C rate 3080s the discharge specific capacity of 140mAh g -1 End , To achieve the purpose of fast charging, 1C discharge also meets the actual use requirements.
  • the cycle capacity diagram of the battery in this example shows that the specific discharge capacity of the battery charged at 120°C and 20C rate and discharged at 25°C and 1C rate is 140mAh g -1 , and the charging and discharging efficiency is close to 100%.
  • the use scheme of the lithium ion battery with high temperature and high rate charging at room temperature and 1C discharge in this embodiment can enable the battery to achieve an excellent cycle performance that can be used in practice.
  • a soft-pack battery The positive electrode material is LiFePO 4 , the negative electrode material is graphite, there is a PP separator coated with alumina on one side between the positive electrode material and the negative electrode material, and the electrolyte is 1M LiDFOB/PC.
  • the battery was placed in an oven at 120°C at a rate of 30C for charging, and then placed at room temperature for 1C discharge, and the above charging and discharging process was repeated.
  • the positive electrode material is LiFePO 4
  • the negative electrode material is lithium vanadate
  • the electrolyte is 1M LiDFOB/PC.
  • 1M LiBOB/PC The batteries with two different electrolytes were placed in an oven at 120°C at a rate of 20C for charging, and then placed at room temperature for 1C discharge, and the above charging and discharging process was repeated.
  • LiFePO 4 is used as the positive electrode material
  • lithium titanate (LTO) and graphite are used as the negative electrode material.
  • LTO lithium titanate
  • the negative electrode adopts lithium foil, graphite, lithium vanadate or lithium titanate (LTO).
  • the ceramic diaphragm is a pure inorganic ceramic diaphragm or a polyolefin diaphragm coated with inorganic ceramic powder on one or both sides, and the inorganic ceramic powder is aluminum oxide or aluminum oxide.
  • the organic microporous membrane is formed by compounding one or more of polypropylene single-layer or multi-layer composite film, non-woven fabric and polyimide.
  • the components of the electrolyte include LiDFOB/PC and LiBOB/PC, and the concentration of LiDFOB or LiBOB in the electrolyte is 0.5-2 mol/L (wherein, LiDFOB or LiBOB is used as a lithium salt, and PC is used as a solvent).
  • the invention discloses a high temperature resistant lithium ion battery system and a charging and discharging method thereof.
  • the high-temperature-resistant lithium-ion battery system includes a positive electrode, a negative electrode, a separator, and an electrolyte; all components are made of materials resistant to high temperatures of 120°C and above, and the electrolyte components include at least one of LiDFOB/PC and LiBOB/PC. One type, and the electrolyte meets its decomposition temperature higher than 130°C.
  • the charging and discharging method of the lithium ion battery system is to place it at a temperature of 60 ⁇ 120°C, charge at a rate of 1 ⁇ 20C, and then discharge at a rate of 0.01 ⁇ 10C, to achieve high rate charging, general rate discharge, close to reality
  • the usage scenarios of the application By improving the electrolyte ion conductivity and the lithium ion deintercalation reaction speed, the lithium ion battery can be charged and discharged at a higher rate, which solves the fast charging problem in practical applications and ensures the high power density and high energy density of the lithium ion battery , It has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种耐高温的锂离子电池体系及其充放电方法。该耐高温的锂离子电池体系包括正极、负极、隔膜和电解液;各元件均采用耐120℃及以上高温的材料,所述电解液的组分中包括LiDFOB/PC和LiBOB/PC中的至少一种,且电解液满足其分解温度高于130℃。该锂离子电池体系的充放电方法为将其置于60~120℃的温度下,以1~20C倍率进行充电,再以0.01~10C倍率进行放电,实现高倍率充电,一般倍率放电,贴近实际应用的使用场景。通过提高电解液离子电导率及锂离子脱嵌反应速度,实现锂离子电池以更高的倍率充放电,解决实际应用中的快充问题,同时保证了锂离子电池的高功率密度和高能量密度。

Description

一种耐高温的锂离子电池体系及其充放电方法 技术领域
本发明属于新能源技术领域,具体涉及一种耐高温的锂离子电池体系及其充放电方法。
背景技术
锂离子电池作为一种能量密度高、输出电压高、无记忆效应、循环性能优异、环境友好的化学电源体系,具有很好的经济效益、社会效益和战略意义,已被广泛应用于移动通讯、数码产品等各个领域,并极有可能成为储能和电动汽车领域最主要的电源***。
但是,作为一种常用的电池,其充电的速率会大大限制他的使用,特别是在动力电池领域。以现在市面上的电动汽车为例,某品牌的电动汽车容量为23kwh,往往需要充电90分钟以上才能达到满电的状态。
发明内容
本发明的目的在于克服现有技术的不足之处,提供了一种耐高温的锂离子电池体系及其充放电方法,解决了上述背景技术中充电速率慢的问题。
本发明解决其技术问题所采用的技术方案是:提供了一种耐高温的锂离子电池体系,包括正极、负极、隔膜和电解液,各元件均由耐高温的材料组成。所述正极为含锂复合氧化物,所述负极采用能够嵌入-脱嵌的锂金属或其合金、氧化物或碳材料,所述隔膜为有机微孔隔膜或陶瓷隔膜;且所述正极、负极、隔膜采用耐高温材料,所述高温为120℃;所述电解液的组分中包括LiDFOB(双氟草酸硼酸锂)/PC(碳酸丙烯酯)和LiBOB(双草酸硼酸锂)/PC中的至少一种,且电解液满足其分解温度高于120℃。
本发明还提供了上述锂离子电池体系的充放电方法,将锂离子电池体系置于60~120℃的温度下,以1~20C倍率进行充电,再以0.01~10C倍率进行放电。
在本发明一较佳实施例中,所述锂离子电池体系制备为软包电池,软包电池的外周设有烘箱或保温装置,所述保温装置与温控***连接。
本技术方案与背景技术相比,它具有如下优点:
本发明提供一种耐高温的锂离子电池体系及其充放电方法,可以实现高倍率充电,一般倍率放电,贴近实际高倍率充电一般倍率放电应用的使用场景,高温下高的电解液离子电导率以及更快速的锂离子脱嵌反应可以使电池以更高的倍率充放电,解决实际应用中的快充问题,同时也为锂离子电池的高功率密度和高能量密度提供一种可实施的方法,实现锂离子电池在动力领域更好的应用。
附图说明
图1为实施例1、对比例1和对比例2在120℃的充放循环容量图。
图2为实施例2不同充电温度的容量时间图。
图3为实施例2中不同温度下的离子电导率。
图4为实施例3中电池充放电示意图。
图5为实施例3中电池的时间容量图。
图6为实施例3中电池循环容量图。
图7为实施例1中电池120℃下的倍率性能图。
图8为实施例7、8中电池循环容量图。
具体实施方式
实施例1
一种软包电池,正极材料采用LiFePO 4,负极材料采用锂箔,在正极材料和负极材料之间有PP隔膜,电解液为1M的LiDFOB/PC。将该电池置于120℃的烘箱中在0.5C的倍率下进行充放电测试。
对比例1
一种软包电池,正极材料采用LiFePO 4,负极材料采用锂箔,在正极材料和负极材料之间有旭化成隔膜,电解液为1M的LiPF 6(六氟磷锂)溶于EC(碳酸乙烯酯)/DMC(碳酸二甲酯)(体积比1:1)的混合溶剂。将该电池置于120℃的烘箱中在0.5C的倍率下进行充放电测试。
对比例2
一种软包电池,正极材料采用LiFePO 4,负极材料采用锂箔,在正极材料和负极材料之间有PE隔膜,电解液为1M的LiDFOB/PC。将该电池置于120℃的烘箱中在0.5C的倍率下进行充放电测试。
一、120℃下电池放电测试
如图1,实施例1电池的循环容量图中可以看出,在120℃下,电池可以在0.5C倍率下放电比容量保持在161mAh g -1,并且在50次循环中没有明显的衰减趋势,证明本实施例使用的耐高温电池可以在高温下正常工作。
对比例1由于LiPF 6电解液体系在高温下不稳定逐渐分解,电池容量在循环过程中不断衰减,直至为零。
对比例2中PE隔膜在120℃下收缩导致电池短路使得电池容量直接降至零。
二、120℃下不同倍率下充电测试
将该电池置于120℃的烘箱中在不同倍率下进行充电测试。该电池的倍率性能如图7所示。
高温下,电池的有着优异的倍率性能,在1C-5C由于高温下高的离子电导率以及更快的离子脱嵌速率,使得电池容量不随倍率变化并且保持在160mAh g -1以上,甚至 在34.5C时仍然能保持70mAh g -1。据此可以看出该案例是可以实现高温下快充的,并且充放电倍率都可以达到30C以上。
实施例2
一种软包电池,正极材料采用LiFePO 4,负极材料采用锂箔,在正极材料和负极材料之间有单面涂覆三氧化二铝的PP隔膜,电解液为1M的LiDFOB/PC。
三、电导率与温度关系测试
用单面涂覆三氧化二铝的PP隔膜在两片不锈钢板电极之间用1M LiDFOB/PC的电解液浸泡,用电化学阻抗谱(EIS)法对离子电导率进行了测试,频率幅值为0.1~100kHz,不同温度下电导率则是将电池置于不同温度下的烘箱中0.5h来测得的。
如图3,随着温度的升高,离子电导率有很明显的提升,甚至在120℃时电导率为常温下电导率的3倍多。这说明在高温下离子的运动速率加快,这也是高温下电池倍率性能优异的关键。
四、不同温度下电池充电测试
将该电池分别置于120℃和25℃的烘箱中在20C的倍率下进行充电。
如图2,为120℃和25℃的容量时间图,可以看出在120℃下,实施例2的电池能够充电到比容量141mAh g -1,而在25℃下,20C的高倍率电池根本无法充电。这说明高温下电池可以达到常温下不能达到的高倍率快充。
实施例3
一种软包电池,设置有耐高温电池保护壳,所述保护壳与温控装置连接,正极材 料采用LiFePO 4,负极材料采用锂箔,在正极材料和负极材料之间有PP隔膜,电解液为1M的LiDFOB/PC。如图4,将该电池置于120℃的烘箱中在20C的倍率下进行充电,之后置于25℃的恒温箱中进行1C放电,重复上述充放电过程。
本实施例电池的时间容量图如图5,从图中可以看出来120℃、20C倍率下154s电池的比容量达到140mAh g -1,25℃1C倍率下3080s将140mAh g -1比容量放完,实现了快充的目的,1C放电也符合实际使用要求。如图6,本实施例电池的循环容量图中可以看出,电池在120℃、20C倍率充电,25℃、1C倍率放电的放电比容量为140mAh g -1,且充放电效率接近百分之百,说明本实施例高温高倍率充电室温1C放电的锂离子电池使用方案能使电池达到一个优异的可实际使用的循环性能。
实施例4
一种软包电池,正极材料采用LiFePO 4,负极材料采用石墨,在正极材料和负极材料之间有单面涂覆氧化铝的PP隔膜,电解液为1M的LiDFOB/PC。将该电池置于120℃的烘箱中在30C的倍率下进行充电,之后置于室温条件下进行1C放电,重复上述充放电过程。
实施例5、6
两种软包电池,正极材料采用LiFePO 4,负极材料均采用钒酸锂,在正极材料和负极材料之间有单面涂覆三氧化二铝的PP隔膜,电解液分别为1M的LiDFOB/PC和1M的LiBOB/PC。将两种不同电解液的电池置于120℃的烘箱中在20C的倍率下进行充电,之后置于室温条件下进行1C放电,重复上述充放电过程。
实施例7、8
两种软包电池,正极材料均采用LiFePO 4,负极材料分别采用钛酸锂(LTO)和石墨,在正极材料和负极材料之间有单面涂覆三氧化二铝的PP隔膜,电解液均为1M的LiDFOB/PC。将电池置于120℃的烘箱中在5C的倍率下进行充放电测试。
两种电池的循环容量结果如图8所示,从图中可以看出,石墨负极的电池在22圈时容量有一个明显的衰减,这是由于PC溶剂与石墨负极的相容性差造成负极材料的脱落,高温下两者的相容性更差;而钛酸锂负极材料与PC有着较低的反应活性使得电池能在高温下稳定运行。
本领域技术人员可知,当本发明的技术参数在如下范围内变化时,可以预期得到与上述实施例相同或相近的技术效果:
所述负极采用锂箔、石墨、钒酸锂或钛酸锂(LTO)。
所述陶瓷隔膜为纯无机的陶瓷隔膜或聚烯烃隔膜的单面或双面涂覆无机陶瓷粉的隔膜,所述无机陶瓷粉为氧化铝或三氧化二铝。
所述有机微孔隔膜采用聚丙烯的单层或多层复合膜、无纺布和聚酰亚胺中的一种或一种以上复合而成。
所述电解液的组分包括LiDFOB/PC和LiBOB/PC,所述的电解液中LiDFOB或LiBOB的浓度为0.5-2mol/L(其中,LiDFOB或者LiBOB作为锂盐,PC作为溶剂)。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种耐高温的锂离子电池体系及其充放电方法。该耐高温的锂离子电池体系包括正极、负极、隔膜和电解液;各元件均采用耐120℃及以上高温的材料,所述电解液的组分中包括LiDFOB/PC和LiBOB/PC中的至少一种,且电解液满足其分解温度高于130℃。该锂离子电池体系的充放电方法为将其置于60~120℃的温度下,以1~20C倍率进行充电,再以0.01~10C倍率进行放电,实现高倍率充电,一般倍率放电,贴近实际应用的使用场景。通过提高电解液离子电导率及锂离子脱嵌反应速度,实现锂离子电池以更高的倍率充放电,解决实际应用中的快充问题,同时保证了锂离子电池的高功率密度和高能量密度,具有工业实用性。

Claims (10)

  1. 一种耐高温的锂离子电池体系,其特征在于:包括正极、负极、隔膜和电解液;
    所述正极为含锂复合氧化物,所述负极采用能够嵌入-脱嵌的锂金属或其合金、氧化物、硅材料、碳材料或硅碳材料,所述隔膜为有机微孔隔膜或陶瓷隔膜;且所述正极、负极、隔膜采用耐高温材料,所述高温为高于120℃;所述电解液的组分中包括LiDFOB/PC和LiBOB/PC中的至少一种,且电解液满足其分解温度高于120℃。
  2. 根据权利要求1所述的一种耐高温的锂离子电池体系,其特征在于:所述正极的活性材料为LiFePO 4
  3. 根据权利要求1所述的一种耐高温的锂离子电池体系,其特征在于:所述负极采用锂箔、石墨、钒酸锂或钛酸锂中的至少一种。
  4. 根据权利要求1所述的一种耐高温的锂离子电池体系,其特征在于:所述陶瓷隔膜为纯无机的陶瓷隔膜或聚烯烃隔膜的单面或双面涂覆无机陶瓷粉的隔膜,所述无机陶瓷粉为氧化铝或三氧化二铝。
  5. 根据权利要求1所述的一种耐高温的锂离子电池体系,其特征在于:所述有机微孔隔膜采用聚丙烯的单层或多层复合膜、无纺布和聚酰亚胺中的一种或一种以上复合而成。
  6. 根据权利要求1所述的一种耐高温的锂离子电池体系,其特征在于:所述电解液为1M LiDFOB/PC。
  7. 根据权利要求1所述的一种耐高温的锂离子电池体系,其特征在于:所述电解液的组分包括LiDFOB/PC和LiBOB/PC,所述的电解液中LiDFOB或LiBOB的浓度为0.5-2mol/L。
  8. 如权利要求1~7任一项所述锂离子电池体系的充放电方法,其特征在于:将锂离子电池体系置于60~120℃的温度下,以1~20C倍率进行充电,再置于25~120℃的温度下,以0.01~10C倍率进行放电。
  9. 根据权利要求8所述的充放电方法,其特征在于:将锂离子电池体系置于90~120℃的温度下,以20C倍率进行充电,再置于25~40℃的温度下,以0.1~5C倍率进行放电。
  10. 根据权利要求8所述的充放电方法,其特征在于:所述锂离子电池体系制备为软包电池,软包电池的外周设有烘箱或保护壳,所述保护壳与温控***连接。
PCT/CN2020/142236 2020-06-12 2020-12-31 一种耐高温的锂离子电池体系及其充放电方法 WO2021248903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010536078.0 2020-06-12
CN202010536078.0A CN113823829B (zh) 2020-06-12 2020-06-12 一种耐高温的锂离子电池体系及其充放电方法

Publications (1)

Publication Number Publication Date
WO2021248903A1 true WO2021248903A1 (zh) 2021-12-16

Family

ID=78846928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142236 WO2021248903A1 (zh) 2020-06-12 2020-12-31 一种耐高温的锂离子电池体系及其充放电方法

Country Status (2)

Country Link
CN (1) CN113823829B (zh)
WO (1) WO2021248903A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN103296326A (zh) * 2013-06-08 2013-09-11 苏州诺信创新能源有限公司 高温型电解液的制备方法
CN103531843A (zh) * 2013-10-24 2014-01-22 兰州理工大学 一种高温高倍率锂离子电池用电解液
CN108258301A (zh) * 2018-02-05 2018-07-06 广州天赐高新材料股份有限公司 一种高温循环性能优异的锂离子电池
CN108666511A (zh) * 2018-05-03 2018-10-16 厦门大学 一种耐高温聚合物改性陶瓷隔膜及其应用
CN109193041A (zh) * 2018-09-28 2019-01-11 山东天瀚新能源科技有限公司 一种高温循环性能优异的锂离子电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016414A (ja) * 2006-07-10 2008-01-24 Sony Corp 非水電解質二次電池
CN103456908A (zh) * 2012-05-28 2013-12-18 万向电动汽车有限公司 一种高安全性隔膜及采用该隔膜的高容量锂离子动力电池
CN102969471B (zh) * 2012-10-24 2016-08-17 中国科学院青岛生物能源与过程研究所 一种耐高温聚芳砜酰胺基锂离子电池隔膜
CN104868165B (zh) * 2014-07-08 2020-04-14 贝特瑞新材料集团股份有限公司 一种凝胶态聚合物锂电池制备方法及电池
CN105449139A (zh) * 2015-03-27 2016-03-30 万向A一二三***有限公司 一种解决钛酸锂负极锂离子电池高温胀气的方法
CN107978794A (zh) * 2017-12-01 2018-05-01 广东天劲新能源科技股份有限公司 三元锂电池电解液及耐高温高容量高安全的锂电池电芯
CN109786737A (zh) * 2018-12-28 2019-05-21 双一力(宁波)电池有限公司 一种高安全性能的锂离子电池及其制备方法
CN110350239A (zh) * 2019-07-08 2019-10-18 无锡市明杨新能源有限公司 高倍率高能量密度锂离子电池
CN110707270A (zh) * 2019-09-28 2020-01-17 上海应用技术大学 一种基于纤维氧化铝的锂离子电池陶瓷隔膜及其制备方法
CN111224067A (zh) * 2019-11-18 2020-06-02 淮北市锂动芯新能源科技有限公司 一种兼顾高温与倍率性能软包装锂离子电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437302A (zh) * 2011-11-25 2012-05-02 东莞市比比克电子科技有限公司 一种锂离子电池隔膜及高温热稳定型锂离子电池
CN103296326A (zh) * 2013-06-08 2013-09-11 苏州诺信创新能源有限公司 高温型电解液的制备方法
CN103531843A (zh) * 2013-10-24 2014-01-22 兰州理工大学 一种高温高倍率锂离子电池用电解液
CN108258301A (zh) * 2018-02-05 2018-07-06 广州天赐高新材料股份有限公司 一种高温循环性能优异的锂离子电池
CN108666511A (zh) * 2018-05-03 2018-10-16 厦门大学 一种耐高温聚合物改性陶瓷隔膜及其应用
CN109193041A (zh) * 2018-09-28 2019-01-11 山东天瀚新能源科技有限公司 一种高温循环性能优异的锂离子电池

Also Published As

Publication number Publication date
CN113823829B (zh) 2023-11-07
CN113823829A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
US11283061B2 (en) Negative electrode plate, testing method of active specific surface area of electrode plate, battery
CN104538207B (zh) TiNb2O7/碳纳米管复合材料的制备方法及以该材料为负极的锂离子电容器
CA2792747C (en) Lithium secondary battery using ionic liquid
GB2592341A (en) Electrode compositions
CN109449414A (zh) 一种锂离子电池正极复合材料以及含该材料的全固态电池
CN106602129B (zh) 一种多离子电池及其制备方法
KR20200029961A (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
JP2014067733A (ja) リチウムイオン二次電池用電解質およびそのリチウムイオン二次電池
CN106133952B (zh) 非水电解质二次电池
CN113130988A (zh) 一种电解液及应用的电化学装置
CN102427123A (zh) 锂离子二次电池及其正极片
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2019095717A1 (zh) 一种锂原电池
CN103094567A (zh) 一种锂快离子导体复合的锂电池正极材料及其制备方法
CN113270571B (zh) 锂离子二次电池的制造方法和负极材料
CN106532031B (zh) 一种Li4Ti5O12负极材料及其制成的钛酸锂电池
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2021248903A1 (zh) 一种耐高温的锂离子电池体系及其充放电方法
CN102610810A (zh) 锂离子电池及其正极极片和正极材料
JP2016009564A (ja) リチウムイオン電池用電極スラリー、リチウムイオン電池用電極およびリチウムイオン電池の製造方法
CN106784682A (zh) 一种金属氧化物包覆尖晶石型锰酸锂的制备方法
CN108183216A (zh) 一种碳包覆富锂锰基正极材料及其制备方法和锂离子电池
CN103840153B (zh) 一种高镍基锂电池正极材料及其制备方法
CN101359748B (zh) 一种锂离子二次电池及其制备方法
JP5880942B2 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939503

Country of ref document: EP

Kind code of ref document: A1