CN107978794A - 三元锂电池电解液及耐高温高容量高安全的锂电池电芯 - Google Patents

三元锂电池电解液及耐高温高容量高安全的锂电池电芯 Download PDF

Info

Publication number
CN107978794A
CN107978794A CN201711254999.2A CN201711254999A CN107978794A CN 107978794 A CN107978794 A CN 107978794A CN 201711254999 A CN201711254999 A CN 201711254999A CN 107978794 A CN107978794 A CN 107978794A
Authority
CN
China
Prior art keywords
lithium
lithium battery
ternary
high temperature
electric core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711254999.2A
Other languages
English (en)
Inventor
王盼
江船
杨万光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Tian Jing New Forms Of Energy Science And Technology Co Ltd
Original Assignee
Guangdong Tian Jing New Forms Of Energy Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Tian Jing New Forms Of Energy Science And Technology Co Ltd filed Critical Guangdong Tian Jing New Forms Of Energy Science And Technology Co Ltd
Priority to CN201711254999.2A priority Critical patent/CN107978794A/zh
Publication of CN107978794A publication Critical patent/CN107978794A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种三元锂电池电解液及耐高温高容量高安全的锂电池电芯,其中,本发明锂电池电芯中:采用新型锂盐导电锂盐LiBOB(二草酸硼酸锂)和锂盐LiFSI(双氟磺酰亚胺锂),添加适量FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂制备而成的耐高温高安全电解液。正极使用纳米二氧化钛和三元材料(LiNi0.8Co0.1Mn0.1O2)的混合包覆后的新型三元正极材料,负极使用中间相碳微球MCMB和纳米碳管的混合制备新型的耐高温高容量锂离子动力汽车电芯,按照此方式制备的电芯提升循环性能,同时很好的解决高温气涨问题。

Description

三元锂电池电解液及耐高温高容量高安全的锂电池电芯
技术领域
本发明涉及锂电池领域,特别涉及一种三元锂电池电解液及耐高温高容量高安全的锂电池电芯。
背景技术
随着动力电池使用的多样化,消费者对设动力电池的能量密度要求也越来越高。要发展高容量型高能量密度锂离子电池,主要是通过发展高容量正极,提升正极充电电压和高容量负极来实现。
三元材料具有相对较高的能量密度,一方面,通过(镍钴锰酸锂体系)提高镍含量能大大提升材料的比容量;另一方面,通过提升充电电压可以进一步提升能量密度。但是高镍三元材料的充电电压较高(一般需要充到4.6V以上),而常规碳酸酯溶剂与六氟磷酸锂组成的电解液体系在4.5V(vs.Li/Li+)以上时便会发生分解,从而造成整个电池体系性能的下降,特别是容量迅速衰减,因此研究适用于高镍三元正极材料体系锂离子电池的高压电解液具有重要意义。
另外,正极材料充电电压提高的同时,电解液的氧化分解现象会加剧,导致电池性能的劣化。另外,对于高电压电池,在使用过程中,普遍存在正极金属离子溶出的现象,特别是电池在经过长时间的高温存储后,正极金属离子的溶出进一步加剧,导致电池的保持容量偏低。
动力汽车电池对电芯的安全和高温问题要求较高,随着能量密度的提升,三元动力电池将主导市场,随之而来现有的三元体系的安全性能和高温性能不能满足整车需求,本发明正是解决此问题。
发明内容
针对现有技术存在的问题,本发明提供一种三元锂电池电解液及耐高温高容量高安全的锂电池电芯。
首先,本发明提供一种三元锂电池电解液,其为以锂盐为溶质、以有机溶剂为溶剂的溶液,其浓度为1.0-1.3mol/L;该电解液还包括以锂盐与有机溶剂之质量和为基计的0.01%~10%添加剂;其中,有机溶剂为EC、EMC、DEC的混合液;锂盐选择LiBOB、LiFSI的混合物;添加剂选自FEC、MMDS、TMP的混合液。
优选地,该三元锂电池电解液中:
有机溶剂中的配比为EC∶EMC∶DEC=(2-3)∶(4-5)∶3;
锂盐中的配比为LiBOB∶LiFSI=(1∶9)~(5∶5);
添加剂中的配比为FEC∶MMDS∶TMP=(2-3)∶(4-5)∶3。
优选地,该三元锂电池电解液中:
以锂盐与有机溶剂之质量和为基计,添加剂的含量为0.5%~5%。
本发明还提供一种新型耐高温高容量高安全的锂离子电芯,包括:
上述的电解液;
正极材料:使用纳米TiO2包覆三元材料LiNi0.8Co0.1Mn0.1O2
负极材料:采用中间相碳微球MCMB和纳米碳管CNT的混合物。
优选地,所述正极材料中包覆层纳米TiO2的质量占比为2%。
优选地,所述负极材料中的配比为MCMB∶CNT=(8∶2)~(9∶1)。
采用本发明的技术方案,具有以下有益效果:
(1)、三元锂电池电解液的制备以及使用大大的提高了高温性能,解决高温涨气问题,提高循环性能。FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂的使用,提高了电芯的安全性能以及耐高温性能;导电锂盐LiBOB(二草酸硼酸锂)和锂盐LiFSI(双氟磺酰亚胺锂)混合,提高电解液的电导率以及电芯的大倍率性能;
(2)、纳米二氧化钛和三元材料(LiNi0.8Co0.1Mn0.1O2)的混合包覆制备正极三元材料,其作用主要是纳米二氧化钛包覆锂电池材料可抑制表面的氧化活性,减少电极与电解液的界面反应,提高锂电池充放电过程的循环稳定性,改善电池材料电化学性能,延长锂电池的寿命;
(3)、用中间相碳微球(MCMB)和纳米碳管(CNT)的混合物作为负极,球形石墨颗粒与线性纳米碳管结合,便于提高粘结性和极片的导电性,有利于大倍率充放电;
(4)、整个电芯相对于常规电芯,耐高温、容量以及安全性能提升较大,对低温和倍率放电性能也有所提高。
具体实施方式
以下结合具体实施例,对本发明进一步说明。
一、制作方法
1、三元锂电池电解液的配制
(1)精制有机溶剂:在专门设计的精馏装置内,分别对EC(碳酸乙烯酯)、EMC(碳酸甲乙酯)以及DEC(碳酸二乙酯)等有机溶剂进行精制,控制精馏的温度和压力,温度50~200℃,压力-0.05~-0.10MPa,调节回流比为10~15∶1,至有机溶剂纯度>99.9%备用;
(2)有机溶剂脱水:将精制后的有机溶剂EC、EMC和DEC分别导入专门设计的内置脱水剂的管状脱水装置,由其一端流入,从其另一端流出,控制有机溶剂流动的线速度,线速度0.5~50m/min,至有机溶剂含水量<30ppm;(3)调制电解液将已脱水的EC、EMC和DEC有机溶剂按照(2-3)∶(4-5):3(优选3∶4∶3)比例混合均匀,再将导电锂盐LiBOB(二草酸硼酸锂)和锂盐LiFSI(双氟磺酰亚胺锂)混合物(1∶9~5∶5,优选2∶8)溶入混合溶剂中,并搅拌均匀,配制1.0-1.3mol/1的电解液,然后,置入适量FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂,搅拌均匀即调制得电解液成品,添加剂与电解液的重量比,是0.01~10∶100,最好是0.5~5∶100。
2、电芯的制备:
使用本发明制备锂离子电芯时,所使用的正极材料,通过纳米二氧化钛和三元材料(LiNi0.8Co0.1Mn0.1O2)的混合(2∶98),研磨12h,在800-1000℃下煅烧10h,使二氧化钛在三元材料(LiNi0.8Co0.1Mn0.1O2)表面形成完整的包覆。包覆后的新型三元材料(LiNi0.8Co0.1Mn0.1O2)正极材料,减少电极与界面的反应,提高锂电池材料的充放电过程中循环。此高镍的三元材料其克比容量可以按照187mAh/g,压实3.5g/cm3,提高电芯的质量和体积能量密度。下述实施例中,将正极活性物质三元材料(LiNi0.8Co0.1Mn0.1O2)与超导炭黑SP导电剂混合,以PVDF作为粘结剂配制成正极浆料。
使用本发明制备锂离子电芯时,所使用的电解液材料为自制的耐高温高安全电解液。使用精制,脱水EC(碳酸乙烯酯)、EMC(碳酸甲乙酯)以及DEC(碳酸二乙酯)等有机溶剂,新型的导电锂盐LiBOB(二草酸硼酸锂)和锂盐LiFSI(双氟磺酰亚胺锂)混合物(2∶8),配制1.3mol/l的电解液,同时添加适量FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂,搅拌均匀即调制得电解液成品。使用的此耐高温电解液起到增加电芯的高温稳定性,增强高温循环性能。
使用本发明制备锂离子电芯时,所使用的负极材料,采用中间相碳微球(MCMB)和纳米碳管(CNT)的混合物,其混合比范围为8∶2~9∶1,球形石墨颗粒与线性纳米碳管结合,便于提高粘结性和极片的导电性,有利于大倍率充放电。下述实施例中,将负极活性物质MCMB和纳米碳管的混合(9∶1),CMC为增稠剂,以SBR作为粘结剂配制成负极浆料。
使用本发明隔膜采用聚乙烯(PE)、聚丙烯(PP)组成的PP-PE-PP三层复合膜,正负极集体分别采用铝箔和铜箔。聚偏氟乙烯(PVDF)和羧甲基纤维素钠(CMC)分别用作正负极的粘结剂。
将正、负极浆料分别涂于铝箔和铜箔上面,经高温烘烤,辊压,制成超薄、多孔隙的正极片和负极片。
按常规锂离子电芯的制备方法,将正、负极极片采用叠片结构与陶瓷隔膜制备成裸电芯,使用制备好的耐高温高安全电解液制成额定容量聚合物锂离子电池。
二、测试方法
采用BS-9088K-3A锂离子电池自动检测装置(广州蓝奇)对电池进行化成和分容;采用BK-7024L/60可充电电池检测设备(广州蓝奇)对电池进行倍率放电,倍率充电,高低温放电,高温储存以及荷电保持等电性能的检测;采用东莞贝尔试验设备(电池针刺试验机,电池重物冲击试验机,温控性电池短路试验箱,热滥用试验箱,电池挤压试验机等)验证安全性能(针刺测试,常温短路,重物冲击,热滥用以及过充等性能测试)。
三、实施例
实施例1:
正极采用包覆后的三元材料(LiNi0.8Co0.1Mn0.1O2),超导炭黑SP混合,以PVDF作为粘结剂配制成正极浆料;负极活性物质MCMB和纳米碳管的混合(9∶1)混合,CMC为增稠剂,以SBR作为粘结剂配制成负极浆料。使用耐高温高安全电解液(1.3mol/l LiBOB和LiFSI/EC(碳酸乙烯酯)∶EMC(碳酸甲乙酯)∶DEC(碳酸二乙酯)(3∶4∶3),FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂,聚合物锂离子电芯。
实施例2:
正极采用包覆后的三元材料(LiNi0.8Co0.1Mn0.1O2),超导炭黑SP混合,以PVDF作为粘结剂配制成正极浆料;负极活性物质MCMB和纳米碳管的混合(8.5∶1.5)混合,CMC为增稠剂,以SBR作为粘结剂配制成负极浆料。使用耐高温高安全电解液(1.0mol/1 LiBOB和LiFSI/EC(碳酸乙烯酯)∶EMC(碳酸甲乙酯)∶DEC(碳酸二乙酯)(2∶5∶3),FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂,聚合物锂离子电芯。
比较例1:
正极采用未包覆的三元材料(LiNi0.8Co0.1Mn0.1O2),超导炭黑SP混合,以PVDF作为粘结剂配制成正极浆料;负极活性物质MCMB和纳米碳管的混合(9∶1)混合,CMC为增稠剂,以SBR作为粘结剂配制成负极浆料。使用耐高温高安全电解液(1.3mol/l LiBOB和LiFSI/EC(碳酸乙烯酯)∶EMC(碳酸甲乙酯)∶DEC(碳酸二乙酯)(3∶4∶3),FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂,聚合物锂离子电芯。
比较例2:
正极采用包覆后的三元材料(LiNi0.8Co0.1Mn0.1O2),超导炭黑SP混合,以PVDF作为粘结剂配制成正极浆料;负极活性物质MCMB和纳米碳管的混合(9∶1)混合,CMC为增稠剂,以SBR作为粘结剂配制成负极浆料。使用常规电解液制备聚合物锂离子电芯。
比较例3:
正极采用包覆后的三元材料(LiNi0.8Co0.1Mn0.1O2),超导炭黑SP混合,以PVDF作为粘结剂配制成正极浆料;负极活性物质人造石墨和超导炭黑SP混合,CMC为增稠剂,以SBR作为粘结剂配制成负极浆料。使用耐高温高安全电解液(1.3mol/1 LiBOB和LiFSI/EC(碳酸乙烯酯)∶EMC(碳酸甲乙酯)∶DEC(碳酸二乙酯)(3∶4∶3),FEC(氟代碳酸乙烯酯)+MMDS(甲烷二磺酸亚甲酯)+TMP(三甲基磷酸酯)的添加剂,聚合物锂离子电芯。
四、测试结果对比
表1
从表1的测试结果可以看出,采用本发明的电解液的锂电池电芯,相较于比较例1-3的电芯,其在耐高温性能、容量的扩容、安全性能的提高等方面,均有显著的提升。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (6)

1.一种三元锂电池电解液,其特征在于,其为以锂盐为溶质、以有机溶剂为溶剂的溶液,其浓度为1.0-1.3mol/L;该电解液还包括以锂盐与有机溶剂之质量和为基计的0.01%~10%添加剂;
其中,有机溶剂为EC、EMC、DEC的混合液;
锂盐选择LiBOB、LiFSI的混合物;
添加剂选自FEC、MMDS、TMP的混合液。
2.根据权利要求1所述的三元锂电池电解液,其特征在于,
有机溶剂中的配比为EC∶EMC∶DEC=(2-3)∶(4-5)∶3;
锂盐中的配比为LiBOB∶LiFSI=(1∶9)~(5∶5);
添加剂中的配比为FEC∶MMDS∶TMP=(2-3)∶(4-5)∶3。
3.根据权利要求1所述的三元锂电池电解液,其特征在于,以锂盐与有机溶剂之质量和为基计,添加剂的含量为0.5%~5%。
4.一种新型耐高温高容量高安全的锂离子电芯,其特征在于,包括∶
权利要求1-3任一项所述的电解液;
正极材料∶使用纳米TiO2包覆三元材料LiNi0.8Co0.1Mn0.1O2
负极材料∶采用中间相碳微球MCMB和纳米碳管CNT的混合物。
5.根据权利要求1所述的锂离子电芯,其特征在于,所述正极材料中包覆层纳米TiO2的质量占比为2%。
6.根据权利要求1所述的锂离子电芯,其特征在于,所述负极材料中的配比为MCMB∶CNT=(8∶2)~(9∶1)。
CN201711254999.2A 2017-12-01 2017-12-01 三元锂电池电解液及耐高温高容量高安全的锂电池电芯 Pending CN107978794A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711254999.2A CN107978794A (zh) 2017-12-01 2017-12-01 三元锂电池电解液及耐高温高容量高安全的锂电池电芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711254999.2A CN107978794A (zh) 2017-12-01 2017-12-01 三元锂电池电解液及耐高温高容量高安全的锂电池电芯

Publications (1)

Publication Number Publication Date
CN107978794A true CN107978794A (zh) 2018-05-01

Family

ID=62008910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711254999.2A Pending CN107978794A (zh) 2017-12-01 2017-12-01 三元锂电池电解液及耐高温高容量高安全的锂电池电芯

Country Status (1)

Country Link
CN (1) CN107978794A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148166A (zh) * 2018-06-29 2019-01-04 广东天劲新能源科技股份有限公司 一种光固化性能可控的新型固体电解质
CN109888394A (zh) * 2019-04-08 2019-06-14 黄杜斌 一种新型的二次锂电池电解液
WO2020150154A1 (en) * 2019-01-14 2020-07-23 Battelle Memorial Institute Localized superconcentrated electrolytes for silicon anodes
CN111952668A (zh) * 2020-08-13 2020-11-17 梅州市量能新能源科技有限公司 电解液、锂离子电池及其制备方法
US10854923B2 (en) 2017-10-19 2020-12-01 Battelle Memorial Institute Low flammability electrolytes for stable operation of lithium and sodium ion batteries
US11094966B2 (en) 2017-03-02 2021-08-17 Battelle Memorial Institute High efficiency electrolytes for high voltage battery systems
US11127980B2 (en) 2017-10-19 2021-09-21 Battelle Memorial Institute Localized superconcentrated electrolytes for silicon anodes
CN113823829A (zh) * 2020-06-12 2021-12-21 厦门大学 一种耐高温的锂离子电池体系及其充放电方法
WO2022219301A1 (en) * 2021-04-15 2022-10-20 Dyson Technology Limited Electrolyte compositions
US11600859B2 (en) 2018-11-21 2023-03-07 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries
US11664536B2 (en) 2020-01-09 2023-05-30 Battelle Memorial Institute Electrolytes for lithium batteries with carbon and/or silicon anodes
US11705580B2 (en) 2020-01-09 2023-07-18 Battelle Memorial Institute Electrolytes for lithium-ion batteries operating at extreme conditions
CN116706230A (zh) * 2022-02-25 2023-09-05 浙江大学 一种用于锂电池的高电压电解液
EP4131487A4 (en) * 2020-12-24 2024-06-26 Contemporary Amperex Technology Co., Limited LITHIUM-ION SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, BATTERY MODULE, BATTERY PACK AND APPARATUS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715458A (zh) * 2013-10-23 2014-04-09 江西优锂新材股份有限公司 一种锰酸锂动力电池高温用电解液的制备方法
CN104332650A (zh) * 2013-07-22 2015-02-04 浙江万向亿能动力电池有限公司 一种高镍三元正极材料体系锂离子电池的高压电解液
CN105140567A (zh) * 2015-07-31 2015-12-09 山东玉皇新能源科技有限公司 一种用于锂离子电池的高压电解液及其制备方法
CN106169609A (zh) * 2016-08-25 2016-11-30 合肥国轩高科动力能源有限公司 一种改善电池高温性能的电解液及锂离子电池
CN106252712A (zh) * 2016-08-20 2016-12-21 深圳市比克动力电池有限公司 一种锂离子二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332650A (zh) * 2013-07-22 2015-02-04 浙江万向亿能动力电池有限公司 一种高镍三元正极材料体系锂离子电池的高压电解液
CN103715458A (zh) * 2013-10-23 2014-04-09 江西优锂新材股份有限公司 一种锰酸锂动力电池高温用电解液的制备方法
CN105140567A (zh) * 2015-07-31 2015-12-09 山东玉皇新能源科技有限公司 一种用于锂离子电池的高压电解液及其制备方法
CN106252712A (zh) * 2016-08-20 2016-12-21 深圳市比克动力电池有限公司 一种锂离子二次电池
CN106169609A (zh) * 2016-08-25 2016-11-30 合肥国轩高科动力能源有限公司 一种改善电池高温性能的电解液及锂离子电池

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094966B2 (en) 2017-03-02 2021-08-17 Battelle Memorial Institute High efficiency electrolytes for high voltage battery systems
US10854923B2 (en) 2017-10-19 2020-12-01 Battelle Memorial Institute Low flammability electrolytes for stable operation of lithium and sodium ion batteries
US11127980B2 (en) 2017-10-19 2021-09-21 Battelle Memorial Institute Localized superconcentrated electrolytes for silicon anodes
CN109148166A (zh) * 2018-06-29 2019-01-04 广东天劲新能源科技股份有限公司 一种光固化性能可控的新型固体电解质
US11600859B2 (en) 2018-11-21 2023-03-07 Battelle Memorial Institute Electrolyte for stable cycling of rechargeable alkali metal and alkali ion batteries
WO2020150154A1 (en) * 2019-01-14 2020-07-23 Battelle Memorial Institute Localized superconcentrated electrolytes for silicon anodes
CN109888394A (zh) * 2019-04-08 2019-06-14 黄杜斌 一种新型的二次锂电池电解液
US11705580B2 (en) 2020-01-09 2023-07-18 Battelle Memorial Institute Electrolytes for lithium-ion batteries operating at extreme conditions
US11664536B2 (en) 2020-01-09 2023-05-30 Battelle Memorial Institute Electrolytes for lithium batteries with carbon and/or silicon anodes
CN113823829A (zh) * 2020-06-12 2021-12-21 厦门大学 一种耐高温的锂离子电池体系及其充放电方法
CN111952668A (zh) * 2020-08-13 2020-11-17 梅州市量能新能源科技有限公司 电解液、锂离子电池及其制备方法
EP4131487A4 (en) * 2020-12-24 2024-06-26 Contemporary Amperex Technology Co., Limited LITHIUM-ION SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, BATTERY MODULE, BATTERY PACK AND APPARATUS
WO2022219301A1 (en) * 2021-04-15 2022-10-20 Dyson Technology Limited Electrolyte compositions
GB2606515A (en) * 2021-04-15 2022-11-16 Dyson Technology Ltd Electrolyte compositions
CN116706230A (zh) * 2022-02-25 2023-09-05 浙江大学 一种用于锂电池的高电压电解液
CN116706230B (zh) * 2022-02-25 2024-02-02 浙江大学 一种用于锂电池的高电压电解液

Similar Documents

Publication Publication Date Title
CN107978794A (zh) 三元锂电池电解液及耐高温高容量高安全的锂电池电芯
CN102544575B (zh) 一种富锂锰基动力电池及其制造方法
CN102738442B (zh) 一种高能量密度充放电锂电池
CN106159345B (zh) 一种高电压镍锰酸锂/石墨锂离子电池及其制作方法
CN101901907B (zh) 锂离子二次电池及其正极材料
CN104779394A (zh) 一种水系锂(钠)离子电池混合负极材料
CN108777295A (zh) 一种镍钴锰酸锂复合正极材料及其制备方法、锂离子电池
CN102856557B (zh) 新型电池
CN102496737A (zh) 一种锂离子电池电解液及其制备的锂离子电池
CN106602129B (zh) 一种多离子电池及其制备方法
CN105355908A (zh) 锂离子电池复合负极材料及其制备方法、使用该材料的负极和锂离子电池
CN103618084A (zh) 一种锂离子动力电池混合正极材料
CN101030639B (zh) 一种锂离子电池正极材料及其制备方法
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
CN104681808B (zh) 一种锶盐掺杂镍锰酸锂的锂离子电池正极材料制备方法
CN103078138A (zh) 高压锂离子电池及其电解液
CN103560243A (zh) 一种静电纺丝技术合成LiNi1/3Co1/3Mn1/3O2纳米纤维的制备方法
CN110246706A (zh) 一种锂离子储能器件的预嵌锂方法
CN104347846A (zh) 一种安全改进型镍钴锰酸锂正极片的制备方法
CN105449264B (zh) 一种高电压钴酸锂/钛酸锂电池及其制备方法
CN108767242A (zh) 一种可预锂化的锂离子启停电源及其制备方法
CN103855401A (zh) 一种锂离子电池正极极片及其制备方法和含有该极片的锂离子电池
CN108470939A (zh) 一种大倍率耐高温的电解液及锂离子电池
CN106654195A (zh) 一种锂离子电池及其制备方法
CN108807912A (zh) 一种C@SnOx(x=0,1,2)@C介孔状纳米中空球结构的制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180501

RJ01 Rejection of invention patent application after publication